wo 2012/129729 A1 [N NP0 0O 0N A O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization é 0 00 I OO

International Bureau) L.
_").//)/ (10) International Publication Number

\

(43) International Publication Date WO 2012 /1 29729 Al

4 October 2012 (04.10.2012) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 11/14 (2006.01) kind of national protection available). AE, AG, AL, AM,
21) International Apolication Number- AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: PCT/CN201 1000555 CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
31 March 2011 (31.03.2011) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
- . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
(26) Publication Language: English SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ,

UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant (for all designated States except US): INTEL . o
CORPORATION [US/US]; 2200 Mission College Blvd., (84) Designated States (uniess otherwise indicated, for every

M/S: RNB4-150, Santa Clara, CA 95052 (US). kind of regional protection available): ARIPO (BW, GH,

GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

(72) Inventors; and ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

(75) Inventors/Applicants (for US only): DONG, Yaozu TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

[CN/CNJ; APT. 101 (1009), Building #5, Lane #123, Yan- EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

ping Road, Shanhai 200042 (CN). WANG, Yunyoung MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, SM,

[CN/CN]; Zixing Road 880, Shanghai 200241 (CN). JI- TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ANG, Yunhong [CN/CN]; Room 401, No.290, 1010 ML, MR, NE, SN, TD, TG).

Nong, Mingzhong Rd., Shanghai 201612 (CN).

(74) Agent: CHINA PATENT AGENT (H.K.) LTD; 22/F,
Great Eagle Centre, 23 Harbour Road, Wanchai, Hong
Kong (CN).

Published:
— with international search report (Art. 21(3))

(54) Title: MEMORY MIRRORING AND REDUNDANCY GENERATION FOR HIGH AVAILABILITY

(57) Abstract: A virtualization based system comprises a host and a plurality of virtual machines that may each comprises a guest
memory. A virtual machine monitor (VMM) has access to underlying platform hardware in the system and may control physical re -
sources in the platform. The platform hardware comprises a processor and a memory coupled to the processor. Further, the VMM
may manage guest software including guest operating systems running on the virtual machines. A binary translation logic may re-
place guest memory writing instructions corresponding to a hot spot in guest application with translated codes to generate a mirrored
content for the guest memory. The binary translation logic may combine one or more of the guest memory writing instructions in a
region and keep the region atomic. The processor may execute the translated codes in an atomic region together to write a content in
the guest memory and a mirrored content in a mirroring memory. The VMM may allocate a memory region in the host memory for
the mirroring memory. The guest memory comprises one or more guest memory pages and the mirroring memory may comprise one
or more mirroring memory pages. The VMM may add an offset to a virtual address of a guest memory page to obtain a virtual ad -
dress of a mirroring memory page. The VMM may manage or emulate a guest page table comprising a mapping of virtual addresses
to guest physical addresses for the guest memory. The VMM may synchronize a shadow page table with the mapping in the guest
page table. The shadow page table comprises a mapping of virtual addresses to host physical addresses for the guest memory and a
mapping of virtual addresses to host physical addresses for the mirroring page. Upon a memory failure in the guest memory page, the
VMM may restore the content of the corrupted guest memory page from the mirroring memory page.

10

15

20

25

WO 2012/129729 PCT/CN2011/000555

MEMORY MIRRORING AND REDUNDANCY GENERATION FOR HIGH
AVAILABILITY '

BACKGROUND

Virtualization enables a single host machine with hardware and software support for
virtualization to present an abstraction of machine interface, such that the underlying
hardware of the host machine appears as one or more independently operating virtual
machines. Each virtual machine may therefore function as a self-contained platform.
Virtualization technology may be used to allow multiple guest operating systems and/or
other guest software to coexist and execute apparently simultaneously and apparently
independently on multiple virtual machines while actually physically executing on the same
hardware platform. A virtual machine may mimic the hardware of the host machine or

alternatively present a different hardware abstraction altogether.

Virtualization systems may include a virtual machine monitor (VMM) which may
control the host machine. The VMM provides guest software operating in a virtual machine
with a set of resources (e.g., processors, memory, IO devices). The VMM may use facilities
of hardware virtualization assistance to provide services to a virtual machine and to provide
protection from and between multiple virtual machines executing on the host machine. The
VMM may create virtual devices, emulated in software in the VMM, which are included in
the virtual machine (e.g., virtual IO devices). The VMM handles/emulates instructions in
software in a manner suitable for sharing the host machine hardware for the virtual
machines on which the guest software is executing. Examples of VMM may comprise a
hybrid VMM, a host based VMM and a hypervisor VMM. In the hypervisor architecture,
the VMM may have access to the platform hardware and control physical resources in the

underlying platform.
BRIEF DESCRIPTION OF THE DRAWINGS

The invention described herein is illustrated by way of example and not by way of
limitation in the accompanying figures. For simplicity and clarity of illustration, elements
illustrated in the figures are not necessarily drawn to scale. For example, the dimensions of

some elements may be exaggerated relative to other elements for clarity. Further, where

1

CONFIRMATION COPY

10

15

20

25

WO 2012/129729 PCT/CN2011/000555

considered appropriate, reference labels have been repeated among the figures to indicate

corresponding or analogous elements.

FIG. 1 is a schematic diagram of a high level structure of an exemplary virtual

machine environment according to an embodiment of the invention.

FIG. 2 is a schematic diagram of a relationship between a virtual machine and a host

machine in one embodiment.

FIG. 3 is a schematic diagram of page table mechanism according to an embodiment

of the invention.
FIG. 4 is a schematic diagram of a change in the codes to provide a mirroring page.
FIG. § illustrates a schematic block diagram of a processor based system.

FIG. 6 illustrates a schematic diagram of a method according to an embodiment of

the invention.

FIG. 7 illustrates a schematic diagram of a method according to another embodiment

of the invention.

DETAILED DESCRIPTION

The following description may relate to techniques for memory failure recovery.
The implementation of the techniques is not restricted in computing systems; it may be used
by any execution environments for similar purposes, such as, for example, any other
digital/electronic device. In the following description, numerous specific details such as
logic implementations, opcodes, means to specify operands, resource
partitioning/sharing/duplication implementations, types and interrelationships of system
components, and logic partitioning/integration choices are set forth in order to provide a
more thorough understanding of the present invention. However, the invention may be
practiced without such specific details. In other instances, control structures and full
software instruction sequences have not been shown in detail in order not to obscure the

invention.

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

References in the specification to "one embodiment”, "an embodiment", "an
example embodiment", etc., indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every embodiment may not necessarily
include the particular feature, structure, or characteristic. Moreover, such phrases are not
necessarily referring to the same embodiment. Further, when a particular feature, structure,
or characteristic is described in connection with an embodiment, it is submitted that it is
within the knowledge of one skilled in the art to effect such feature, structure, or

characteristic in connection with other embodiments whether or not explicitly described.

Embodiments of the invention may be implemented in hardware, ﬁrmwaré, software,
or any combination thereof. Embodiments of the invention may also be implemented as
instructions stored on a machine-readable medium, which may be read and executed by one
or more processors. A machine-readable medium may include any mechanism for storing or
transmitting information in a form readable by a machine (e.g., a computing device). For
example, a machine-readable medium may include read only memory (ROM); random
access memory (RAM); magnetic disk storage media; optical storage media; flash memory
devices; electrical, optical, acoustical or other forms of propagated signals (e.g., carrier

waves, infrared signals, digital signals, etc.), and others.

The following descripti.on may include terms, such as first, second, etc. that are used

for descriptive purposes only and are not to be construed as limiting.

FIG. 1 illustrates one embodiment of a virtual-machine environment 100. In this
embodiment, a processor-based platform 116 may execute a VMM 114 or any other virtual
machine control logic. The VMM, though implemented in software, may emulate and
export a virtual machine interface to higher level software. Such higher level software may
comprise a standard OS, a real time OS, or may be a stripped-down environment with
limited operating system functionality and may not include OS facilities available in a
standard OS in some embodiments. Alternatively, for example, the VMM 114 may be run
within, or using the services of, another VMM. VMMs may be implemented, for example,
in hardware, software, firmware or by a combination of various techniques in some
embodiments. The components of the VMM executing directly on the platform hardware
are referred to herein as host components of the VMM. In another embodiment, examples of

VMM 114 may be a hybrid virtual machine monitor, a host virtual machine monitor or a

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

hypervisor virtual machine monitor.

The platform hardware 116 may be a personal computer (PC), server, mainframe,
handheld device such as a personal digital assistant (PDA) or "smart" mobile phone,
Internet Protocol device, digital camera, portable computer, handheld PC such as netbook or
notebook or Tablet, or embedded applications such as a micro controller, a digital signal
processor (DSP), system on a chip (SoC), network computers (NetPC), set-top boxes,

network hubs, wide area network (WAN) switches, or another processor-based system.

The platform hardware 116 includes at least a processor 126 and memory 120.
Processor 126 may be any type of processor capable of executing programs, such as a
microprocessor, digital signal processor, microcontroller, or the like. The processor may
include microcode, programmable logic or hard coded logic for execution in embodiments.
Although FIG. 1 shows only one such processor 126, there may be one or more processors
in the system in an embodiment. Additionally, processor 126 may include multiple cores,
support for multiple threads, or the like. The processor 126 may include microcode,
programmable logic or hard-coded logic for performing operations associated with various

embodiments described herein.

Memory 120 may comprise random access memory (RAM), read only memory
(ROM), flash memory, any other type of volatile memory devices or non-volatile memory
devices, or combination of the above devices, or any other type of machine medium
readable by processor 126 in various embodiments. Memory 120 may store instructions
and/or data for performing program execution and other method embodiments. In some
embodiments, some elements of the invention may be implemented in other system

components, €.g., in the platform chipset or in the system's one or more memory controllers.

The VMM 114 may present to guest software an abstraction of one or more virtual
machines. The VMM 114 may present the same or different abstractions of VMs to the
various guest software. FIG. 1 shows two virtual machines, 102 and 112. Guest software
such as guest software 103 and 113 running on each virtual machine may include a guest OS
such as a guest OS 104 or 106 and various guest software applications 108 and 110. Guest
software 103 and 113 may access resources (e.g., processor registers, memory and I/O
devices) within the virtual machines on which the guest software 103 and 113 is running and

to perform other functions. For example, the guest software 103 and 113 may have access to

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

all registers, caches, structures, I/O devices, memory and the like, according to the

architecture of the processor and platform presented in the virtual machine 102 and 112.

In one embodiment, in response to a virtual processor 102 referencing a memory
location in its virtual address space, a reference to an actual address in the physical memory
of the host machine 116 (or machine physical memory) may be generated by memory
virtualization management logic 130, which may be implemented in hardware (sometimes
incorporated into the processor 126, e.g., memory management unit (MMU)) and/or
software and/or firmware. For example, memory virtualization management logic 130 may
translate from virtual address to physical address for a memory page. Memory virtualization
management logic 130, among other functions, may map a location in the virtual memory
space of the guest machine to a location in physical memory address space of the host
machine. In the example of FIG. 1, the memory virtualization management logic 130 may
among other functions map from virtual memory space to physical memory space. The
physical memory may be divided into parts such as pages that may be interleaved with
pages from other processes in physical memory. While the example of Fig. 1 comprises
memory virtualization management logic 130, in some embodiments, one or more control

logics may be utilized to realize the memory virtualization management logic 130.

The memory virtualization management logic 130 may perform address translation,
for example, the translation of a virtual address to a physical address, based on any memory
management technique, such as paging. The memory virtualization management logic 130
may refer to one or more data structures stored in processor 126, memory 120, any other
memory devices or any other storage locations in the platform hardware 116 and/or any
combination of these components and locations. For example, the data structures may
comprise page directories and page tables. The memory virtualization management logic
130 may utilize a page table that comprises a mapping from a first address to a second
address, e.g., for a memory page. For example, the memory virtualization management
logic 130 may translate from virtual memory address of a guest machine to linear memory
address (such as in Intel x86 architecture), which may further be translated to physical
memory address of host machine, e.g., based on a physical page table. In another
embodiment, memory virtualization management logic 130 may directly translate from
virtual memory address into physical memory address of host machine based on a physical

page table, such as for Intel Itanium® architecture that may not have segmentation

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

mechanism or x86 architecture with segmentation disabled. As used herein, the term
"virtual memory address" may include any address referred to as first address that may be
used as input address to be translated to a second address host physical memory address. For
example, “virtual memory address” may include any address referred to as a logical or a

linear address depending on, e.g., processor architecture.

FIG. 2 depicts a relationship between one or more virtual machines executing on a
host machiné with regard to the mapping of guest memory in one embodiment. FIG. 2
illustrates how guest-physical memory is remapped through the virtualization system of the
host machine. A virtual machine such as virtual machine 202 may present a virtual
processor 206 to guest software running on the virtual machine 202. The virtual machine
202 may provide an abstraction of physical memory to the guest operating system or other
guest software, guest-physical memory 204. As guest software executes on the virtual
machine 202, it is actually executed by the host machine 212 on host processor 216 utilizing
host-physical memory 214.

As shown in FIG. 2, in one embodiment, guest-physical memory 204 (which may be
presented as a physical memory space starting at address 0 in virtual machine 202) is
mapped to some contiguous region 218 in host-physical memory 214. If the virtual machine
202 is assigned 256 MB of memory, one possible mapping might be that virtual machine
202 is assigned a range of 128-384 MB. Although FIG. 2 illustrates an example of a virtual
machine, some embodiments may have one or more virtual machines. For example, a
guest-physical memory in each virtual machine may be mapped to a different portion of
host-physical memory 214 and each virtual machine may reference a guest-physical address
space of 0-256 MB. As shown in FIG. 2, the host machine 212 may have 1024 MB of
host-physical memory. The VMM may be aware that each virtual machine's address space
that maps to different portions of the host-physical address space.

In a more general embodiment, memory may be segmented or divided into several
parts such as pages. Each page may contain a known amount of memory, e.g., based on
processor architecture requirement, varying across implementations, €.g. a page may
contain 4096 bytes of memory, 1 MB of memory, or any other amount of memory as may be
desired for an application. For example, memory virtualization management such as 130 of

FIG. 1 may support to segment the guest-physical memory 204 or the host-physical memory

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

214 into several pages of 4,096 ("4K") bytes each. The memory virtualization management
logic 130 may map a page in a virtual memory to a page in host physical memory. Memory

virtualization management logic 130 may use a page table or other data structure to specify

_ the physical page location corresponding to a guest space physical page location.

The virtual machines and memory mapping shown in FIG. 2 are only one
representation of one embodiment, in other embodiments, the actual number of virtual
machines executing on a host machine may vary from one to many; the actual memory sizes
of the host machine and the virtual machines may vary and be variable from virtual machine
to virtual machine. The example depicts a contiguous allocation of memory to virtual
machines; however, in some embodiment, the view of guest physical memory may not
necessarily limit to be contiguous. In another embodiment, the guest physical address may
not always start from address OMB. Embodiments of the invention may be used with
systems containing more or less memory, and configured to operate on larger or smaller
pages. The physical-memory pages allocated to a virtual machine may not be contiguous
and might be distributed in the host-physical memory 214 interleaved with each other and
with pages belonging to the VMM and to other host processes.

In one embodiment, runtime memory failure on the platform hardware may
influence, e.g., reliability, serviceability and availability (RAS) of the platform. Hardware
enhancement to memory architecture may provide certain level of enhanced RAS by
correcting n-bit error with memory redundancy of n+1 bits per unit such as per cache line .
redundancy. However, memory failure may happen to a block of memory or several
clustered blocks or with equal or more than n+1 bit error in one unit, which may not be
recovered by hardware itself. Further, in a virtualized environment, although the memory
failure, e.g., hareware un-recoverable, may be directed to guest OS for further processing,
e.g., to contain the failure inside limited processes, the service running in guest may have to

be aborted.

Software based virtual machine (VM) level fault tolerance such as VM
log-and-replay or VM checkpoint may enhance RAS by generating a backup VM in case of
hardware failure. VM log-and-replay and VM checkpoint may require duplication of the
platform resources, €.g., processor, memory, 1/0, for VM backup, and VMM intervention to

the execution of VM.

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

Referring to FIG. 2, in an embodiment, a hypervisor such as VMM 114 of FIG. 1
may allocate a contiguous region in the host physical memory 214 for a mirroring memory
220 that mirrors physical memory 218 that is mapped to the guest-physical memory 204.
The mirroring memory 220 may comprise one or more memory pages that are the same as or
have the same content as the corresponding pages in the mapped physical memory 218. For
example, the mirroring memory 220 may have a one to one redundancy configuration for
the guest-physical memory 204. In another embodiment, the system may implement n to 1
redundancy configuration (for increased availability), e.g., by generating n bytes mirroring

memory or n byte redundancy for one byte guest memory, wherein n is positive integer that

is bigger than or equal to 1. In another embodiment, the system may implement n pages

mirroring memory for one page guest memory, or in any unit of block to generate n blocks
mirroring memory per one block guest memory. In some embodiments, the VMM 114 may
send to the guest OS executing on the virtual machine 202 a request to cooperatively
allocate redundaht memory to mirror the guest-physical memory 204, e.g., by
paravirtualization. The guest OS may allocate the redundant memory, €.g., by using
memory balloon driver. The example depicts an embodiment of contiguous allocation of the
mirroring memory. Embodiments of the invention may be used with systems containing
more or less memory, and configured to operate on larger or smaller pages. The
physical-memory pages allocated to a mirroring memory may not be contiguous and might
be distributed in the host-physical memory 214 interleaved with each other and interleaved
with pages belonging to the VMM and to other host processes.

FIG. 3 shows one example of page table mechanism used to translate or compute a
physical address from virtual address. Examples of page table format may comprise
instruction set architectures, e.g., the Intel Itanium Architecture, 32-bit, 64-bit and other
variations such as Physical Address Extension (PAE)/ Page Size Extensions (PSE) of the
x86 architecture, among many others, and to other configurations. In some embodiments,
the page table mechanism may comprise one page table for the whole system, a separate
page table for each application, a separate page table for each segment, or some combination
of these. The page table may be implemented as a tree-like page tables, a clustered hash
page table, or even linear array etc. The page table may comprise one or more levels in some

embodiments.

Guest software executing on each virtual machine may reference to a guest virtual -

10

15

20

25

- 30

WO 2012/129729 PCT/CN2011/000555

address may be translated to a guest physical memory address based on a guest page table,
e.g., in the guest. In another embodiment, the processor in the host machine may translate
the guest virtual address to host physical memory address, by using a page table managed by
VMM. In one example, for the translation, the VMM may use a host physical page table,
e.g., a shadow page table. The shadow page table may synchronize with the guest page table
for semantics in VMM. In another embodiment, the VMM may use a single host-physical
page table such as a direct page table in, e.g., Xen paravirtualization, by cooperatively
working with guest OS to hold the real translation information (e.g., from virtual address to
host physical address). In this embodiment, a virtual machine may not have a guest page
table in the guest physical memory, e.g., 302. The VMM may emulate a guest page table for
the guest OS based on the host-physical or direct page table. In this embodiment, the guest
OS may get knowledge of the emulated guest page table with additional data structure such
as machine-to-guest-physical and guest-physical-to-machine page mapping.

Referring to FIG. 3, the guest-physical memory 302 may store a guest page table
structure 350. The guest page table structure 350 may comprise a mapping between guest
physical address and guest physical address. In the example of FIG.3, the guest page table
structure 350 may comprise a guest directory table 304 and a guest page table 306. In some
embodiments, any other format of data structures may be utilized by the guest software, €.g.,
memory management mechanism active in the guest (e.g., configured by the guest OS), to
translate the guest virtual addresses to the guest physical addresses. For example, in one
embodiment, the directory table 304 may store a directory entry 330 that may point to a base
of the page table 306. Information from the guest page directory table 330 may comprise a
base address of the page table 306. The page table 306 may comprise a page table entry 332.
Information from the page table entry 332 may comprise a base address of a guest physical
page (not shown) being accessed by the guest software. In one embodiment, in response to
the guest software executing a process to reference to a guest virtual address, e.g.,
represented by X0, the guest software may use the guest page table structure 350 to translate
the guest physical address X0 to a guest physical address (e.g., GPX0) within the
corresponding guest physical page (e.g., represented by GPNO) being accessed. For
example, the base address of the guest physical page, derived from page table entry 332,
may be combined with appropriate bits of the guest physical address X0 to form the guest
physical address GPX0.

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

Referring to FIG. 3, the hypervisor 312 may maintain a shadow page table structure
360 that is a shadow version of the guest page table structure 350. The shadow page table
structure 360 may store a mapping between guest virtual addresses and host physical
addresses. In the embodiment of FIG. 3, the shadow page table structure 360 comprises a
shadow page directory table 314 that may point to a first shadow page table 316, which hay
synchronize with guest page table 306, and a second shadow page table 318, which may
include a mapping for the mirroring memory 308. The shadow page directory téble 314 may
comprise a first directory table entry 340 that comprises a base address of the first shadow
page table 316. The first shadow page table 316 comprises a first shadow page table entry
346 to point to a base (e.g., a base address) of a host physical page (e.g., represented by
HPNO) being accessed in response to the guest machine referencing the corresponding guest
virtual address X0. The hypervisor 312 may utilize the directory table 314 and first page
table 316 to translate the guest virtual address X0 to the host physical address (e.g., HPXO0)
of the host physical page HPNO. For example, the hypervisor 312 may use the base address
of the host physical page HPNO and appropriate bits of the guest virtual address X0 for the

translation.

FIG. 3 illustrates an embodiment of one or more mirroring pages 308 (e.g.,

represented by MHPNO, 1...n) that mirrors the original mapped host physical page HPNO

for guest page GPNO in a one to one mirroring configuration or a multiple to one mirroring

configuration. The hypervisor may maintain a relationship to map from GPNO to HPNO and
MHPNO. The one or more mirroring pages 308 may be allocated in the host physical
memory by the hypervisor 312 or in cooperation with the guest software (e.g., guest OS)
executing on the guest machine. The hypervisor 312 may store a mapping between a guest

virtual address and the host physical address of the mirroring page(s) 308 in the shadow

-page table structure 360.

In one embodiment, the mirroring page(s) 308 may have the guest virtual addréss X1
that is an offset to the guest virtual address X0, e.g., X1=X0+mirror_offset, herein
mirror_offset is an offset value that is used to form the guest virtual address X1 of a
mirroring page 308. In one embodiment, the mirror_offset may have a fixed value; however,
in some embodiments, the hypervisor 312 and/or a binary translation agency (that will be
mentioned with regard to Figs. 4 and 5) may utilize a predetermined policy to generate the

mirror_offset that may be variable. In some embodiments, other policy may be used to

10

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

position a mirroring page. In the embodiment of n to 1 mirroring, the above may be
performed a plurality of times to generate one or more translations for each k™ mirroring

(k=1...n).

The shadow page table structure 360 may further comprise a mapping between guest
virtual addresses and host physical addresses for mirroring pages in a mirroring memory
space. For example, the shadow page directory table 314 may comprise a shadow directory
table entry 342. The content of the shadow page table entry 342 comprises a base address of
the second shadow page table 318 that is used for the mirroring memory. The second
shadow page table 318 may comprise a shadow page table entry 348 that may point to a base
of a page in the mirroring pages 308. Information from the shadow page table entry 348 may
comprise a base address of the mirroring pages 308. In one embodiment, the hypervisor 312
may use the base address of a page in the mirroring pages 308 and appropriate bits in the
guest virtual address X1 of the page in the mirroring pages 308 to obtain a host physical
address of the page in the mirroring page 308 being accessed actually by the host machine or

a corresponding host processor.

The page table mechanism 350 and shadow page table mechanism 360 shown in
FIG. 3 is only one representation of one erhbodiment. While Fig. 3 shows two separate
shadow page tables 316 and 318 for mapped host physical pages and mirroring pages,
respectively, in some embodiments, the shadow page tables 316 and 318 may be integrated
in the same shadow page table. In another embodiment, the guest page table and shadow
page table may be 2, 3 or 4 level page table or with more levels. In some embodiments, the
page table mechanism and shadow page table mechanism may have a different hierarchy or
structure as mentioned above. For example, the guest page table may be 2 level page tables,
while the shadow page tables 316 and 318 may be configured as 3 level or 4 level page
tables.

While Fig. 3 illustrates an embodiment of a shadow page table; in some
embodiments, a direct page table may be utilized, wherein, e.g., the guest may not have an
instance of guest page table. In the embodiment of direct page table, the guest may still have
a “view” of its page table (e.g., operated through read/write API to the page table contents)
which may be emulated by VMM 312 based on the direct page table. For example, the
“view” of guest page table may be referred with regard to the guest page table 350 in Fig. 3.

11

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

FIG. 4 is a schematic diagram of a change in the codes or instructions to provide a
mirroring page. The embodiment of FIG. 4 illustrates original codes 412 of guest software
on a guest machine. The original codes 412 may be stored in a guest memory. A binary
translation (BT) layer or any other translation logic (e.g., BT layer 512 of FIG. 5) ina
hypervisor may perform a translation on the original codes 412. In some embodiments, the
BT translation layer 512 may perform various translations such as binary translation and
optimization on the original codes 412; in some embodiments, the translation made by the
BT translation layer 512 may not change some original codes. In the example of FIG. 4, the
original codes 412 may be combined into one or more code blocks such as code block 414
and 416; however, in some embodiments, the original codes 412 may not be combined. In

one embodiment, code block 414 may comprise one or more instructions.

Numerical reference 418 may refer to a guest memory write instruction 418. In one
embodiment, the write instruction 418 may refer to a memory store instruction, e.g., “mov”
instruction in Intel® 64 and IA-32 architectures. In another embodiment, examples of the
write instruction 418 may comprise any instructions for memory store and/or processor
internal state change, e.g., “push”, “call”, “ret”, “iret”, “stosb”, “smovsb” instructions such
as in Intel® 64 and IA-32 architectures, or similar instruction in any other architectures that
may modify contents of memory. In yet another embodiment, examples of the write
instruction 418 may comprise instructions that may use, e.g., floating point registers to
modify memory state and/or processor internal state. The instruction 418’ and/or 428 may
use any write instruction support by the architecture of the . In another embodiment, the

instruction 428, 418’ and 418 may use same write instruction or different write instructions.

The BT layer 512 may translate the guest memory write instruction 418 into two
translated write instructions 418’ and 428 in the embodiment of 1 to 1 mirroring, and may
translate the guest memory write instruction 418 into a plurality of (e.g., n) translated write
instructions in the embodiment of n to 1 mirroring. The translated write instruction 418’
may access the same guest memory location or address as the original guest memory write
instruction 418. For example, as shown in FIG. 4, the translated code 418’ may write “D0”
in the address “[addr]”, e.g., X0 in the embodiment of Fig. 3. In the embodiment of Fig. 2,
the content “D0” may be written to the address 232 in the mapped host physical memory
space 218.

12

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

Referring to FIG. 4, the translated code for the guest memory write instruction 418
may further comprise an additional write instruction 428 to write the content “D0” in an
address “[addr+R]”, e.g., X1 in the embodiment of Fig. 3, wherein “R” represents an offset
to the original address “[addr]”. In response to the translated code 428, the content “D0”
written or to be written in the address “[addr]” may be mirrored to the address “[addr+R]”.
In another embodiment, the content “D0” may be mirrored to one or more mirroring
addresses, e.g., by using a plurality of mirroring data write instructions 428. In one
embodiment, the offset “R” may have a fixed value; however, in some embodiments, the
offset may not be fixed and/or other policy may be used to form a mirroring memory. In the
embodiment of Fig. 2, the content “D0” is shown as written in the address 234 of the
mirroring memory space 220. In some embodiments, the content “D0” may be written in a

plurality of address of the mirroring memory space 220 in the host physical memory 214.

The BT layer may combine translated codes for one or more guest memory write
instructions together to form a translated code (TC) block such as TC blocks 424 and 426. In
one embodiment, the BT layer may mirror memory in response to each guest memory write
in a TC block. In another embodiment, the BT layer may update the mirroring memory in
response to each TC block. In either embodiment, the BT layer 512 may keep each TC block
atomic and may undo the one or more write operations in the whole TC block. When a
memory failure happens within the TC block before the mirroring memory and the guest
memory are both updated in response to executing the TC block, the hypervisor 510 may
inform BT layer 512 to re-execute the whole operation of the TC block from the beginning
of the TC block. The translated codes may be stored in a translation cache such as
translation cache 516 of FIG. 5; in some embodiments, the translated codes may be stored in
processor 126, memory 120, any other memory devices or any other storage locations in the
platform hardware 116 and/or any combination of these components and locations. In some
embodiments, the translated codes may include codes that may be changed based on the
translation made by the BT layer 512 and/or codes that may not be changed after the -
translation made by the BT layer 512. In some embodiments, the BT layer may only
combine translated instructions corresponding to write instructions into one or more TC
blocks; in some embodiments, the instructions combined into the TC blocks may not be

write instructions.

In another embodiment, the BT layer may modify translated codes to perform a

13

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

comparison of the contents in memory addresses for the original guest memory and the
mirroring memory after executing the memory write instruction and mirroring memory
write instruction(s) to verify the writes have been executed correctly; however, in some

embodiments, the comparison may not be necessary.

In the example as shown in FIG. 4, translated codes for an original guest memory
write instruction may be executed earlier than executing translated codes for writing a
mirroring memory for simplicity in description; however, in some embodiments, a different
order may be implemented, e.g., the translated codes may not write the guest memory earlier

than the mirroring memory.

FIG. 5 illustrates a block diagram of an embodiment of a proceésor based system.
The system 500 comprises a system memory 502, in which guest OS 504 and application
506 or other guest software and applications running on a virtual machine may be stored.
The system 500 may further comprise a VMM such as a hypervisor 510 or any other virtual
machine control logic that may be resident in the system memory 502 or any other location.
The hypervisor 510 may comprise a binary translation (BT) layer or logic 512. While Fig. 5
illustrate an embodiment of using BT layer 512 in the hyi:;'ervisor 510, in some embodiments,
any other translation layer or logic may be utilized by the hypervisor 510. The hypervisor
510 may comprise a memory virtualization control logic 513. For example, the description
on the memory virtualization control logic 513 may refer to tlie embodiments as mentioned

above with regard to the memory virtualization management logic 130.

The BT layer 512 may comprise a region former 514 and a translator 516. The
translator 516 may perform a binary translation or any other translation and/or optimization
on original codes to generate translated codes 540. In one embodiment, the translator 516
may further generate translated codes or one or more memory write instruction to mirror
data written or to be written for each guest memory write to a mirroring memory. The
translated codes may be formed one or more translated code blocks or in any other
combination format by the region former 514. The translated code blocks may be stored in a
translation cache. The region former 514 may keep the translated code block as an atomic
region. In another embodiment, the translated codes for the mirroring memory writes may
further be stored in one or more internal buffers (not shown) in the processor of the platform

hardware 520 and may be invisible to the system memory 502 and/or hardware acceleration

14

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

for binary translation 522. In some embodiments, hardware acceleration may not be
necessary or in any other format, the binary translation or other translation supports may be

implemented in hypervisor.

The translated codes such as one or more translated code blocks may be stored (e.g.,
by the hypervisor) in a translation cache 516 in the hypervisor 510 or any other location in
the system. The platform hardware 520 may comprise a jump table 524. In response to the
translated codes being stored in, e.g., translation cache 516, the jump table 524 may
comprise a mapping between original memory addresses corresponding to the original
codes and translation cache addresses for the translated codes. In response to the platform
hardware 520 such as a processor or any other execution logic executing original codes
pointed to by an original memory address in the jump table, the processor or any other
execution logic may jump to a corresponding translétion cache address based on the jump
table and execute the translated codes in the translation cache address. In one embodiment,
the platform hardware 520 may comprise a micro code generating logic 526 that may further
translate translated codes 540 into any other formats of micro codes to support various
instructions micro-code backend; however, in some embodiments, the translation from the
translated codes 540 to other micro codes may not be necessary. In one embodiment, micro
codes from the micro code generating logic 526 may be executed by the processor or any

other execution logic in the platform hardware 520.

Referring to FIG. 5, the platform hardware 520 may comprise a self-modifying code
(SMC) logic 528 to provide a self-code modifying function in the platform hardware;
however, in some embodiment, the SMC logic 530 may not be necessary. The platform
hardware 520 may further comprise a commit buffer 530. The commits of all memory
writes in every atomic region may happen at the end of the execution of the atomic region.
For example, in response to the processor executing memory write instructions in an atomic
region, all the write instructions in the atomic region may be stored in one or more internal
buffers in the processor and the processor may execute the write instructions together or
substantially simultaneously after all the write instructions are stored in the buffers. In
response to the memory write instructions in an atomic region being executed, a
corresponding execution result may be provided to one or more status registers or control
registers in the processor, such as RAX, RBX, RCX, etc. In one embodiment, the BT layer

512 may, among other ways, utilize the hardware feature of restricted transactional memory

15

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

in the underneath hardware 520 to ensure a translated code block as an atomic region.

In response to a memory failure, the processor may notify machine check exception
(MCE) handler (not shown) in VMM (512 or 510 up to implementation). The MCE handler
may take the control and identify the corrupted memory page based on the information
provided by the processor such as the error physical address (e.g., EHPN1). If a corrupted
page is within guest pages, hypervisor 510 may offline or disable the corrupted page and
allocate a new page to backup the corrupted memory page. Hypervisor 510 may modify the
mappings used for the guest such as the shadow page table or direct page table pointing to
the new page, and/or any other machine-to-guest-physical page mapping data structure,
guest-physical-to-machine page mapping data structure and/or machine-to-mirroring page
mapping data structure. The hypervisor 510 may look up the machine-to-guest-physical
page mapping data structure to determine the error guest physical page (e.g., EGPN1), or it
may search in the guest-physical-to-machine page mapping data structure to determine the
EGPNI1. The hypervisor 510 may use the guest-physical-to-mirroring page mapping data
structure to determine the mirroring host page number (MHPN1) for the EGPNI. In another
embodiment, the hypervisor may directly use the machine-to-mirroring page mapping data
structure to determine the mirroring host page number (MHPN1). In response to
determining the MHPN 1, the hypervisor 510 may restore the contents of the guest memory
from the mirroring page (MHPN1), and inform the BT layer 512 to continue execution if the
mirroring memory is updated with latest data. In another embodiment, the hypervisor 510
may discard the current TC block operation to re-execute the TC block if mirroring memory
is not updated or BT layer 512 may undo the previous one or more write operations. If the
corrupted page is within a mirroring page, the hypervisor 510 may use a new page to replace
the corrupted mirroring page and restore the content of the mirroring page from the original
mapped physical page, e.g., 218. While the hypervisor of Fig. 5 is implemented by a
plurality of separate logic, in some embodiments, the plurality of logic may not be
integrated in one or more logic or modules. In some embodiments, the logic in the
hypervisor of Fig. 5 may be realized by software, hardware, firmware and/or any

combination of them or may be implemented the hardware platform.

The flowchart of FIG. 6 depicts execution of guest application in one embodiment.
The execution begins at 604. The processor may combine one or more writes in original

codes in the guest application into a code block, e.g., via a region former in the binary

16

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

translation layer. The processor may utilize hardware feature of restricted transaction

memory underneath the binary translation layer to form the code block as an atomic region.
In block 606, the processor may translate, e.g., via the translator 516, the original codes into
binary translated codes that may be stored in a translation cache. In another embodiment, the

processor may perform any other translation or optimization on the original codes.

Referring to FIG. 6, in block 606, the processor, €.g., via a translator 516, may
further translate each write instruction in the atomic region to generate a first translated
write instruction that is binary translated and a second translated write instruction that writes
the mirroring memory. The first translated write instruction and the second mirroring
memory write instruction may write the same content in the guest memory (e.g., a guest
memory page) and the mirroring memory (e.g., a mirroring memory page), respectively, or
copy the content written or to be written to the guest memory in the mirroring memory. The
second translated write instruction itself may be binary translated by the processor. In some
embodiments, the atomic region may be formed in response to the original codes being

translated in block 606.

In block 608, the processor may generate a jump table that comprises a mapping
between original guest memory addresses corresponding to the original codes and
translation cache addresses for the translated codes. The jump table may comprise one or
more records or entries that may each map an original guest memory address to a translation
cache address. In one embodiment, the jump table may provide an index for each record in
the jump table. In response to the execution of the guest application reaching a guest
memory address in the jump table, the processor may jump to the translation cache and
access a corresponding translation cache address to obtain the translated codes relating to
the translation cache address (block 610). In block 612, the processor via such as a
micro-code generating logic may further translate the obtained translated codes into
micro-codes with the format that is supported by the processor. In block 614, the processor
or any other execution logic may execute the micro-codes. In block 616, the processor may
return the execution result to the guest application. The result may comprise status
information and/or control information relating to the execution of the translated codes. For
example, the status information and the control information may be stored in one or more |
control/status registers. In one embodiment, the flow may continue to execute the guest

application based on the status information and the control information.

17

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

The flowchart of FIG. 7 depicts execution of restore a corrupted memory page in one
embodiment. In block 702, the processor may execute guest codes based on one or more
guest applications in a guest OS. In one embodiment, the processor may jump to execute
translated guest codes based on a translation code address in a jump table. In response to a
memory failure during the execution of the translated codes, the processor may detect the
memory failure (block 704). The processor may send information relating to the memory
failure to MCE handler or any other control logic that may be provided in VMM or
hypervisor. In one embodiment, the MCE handler may be implemented by software,
hardware, firmware or any combination thereof. The MCE handler may take control in
response to receiving the memory failure related information from the processor (block 706).
The information may indicate that the memory failure happens in the guest code. The
information may indicate a corrupted memory page, e.g., a memory location of the
corrupted page. In one embodiment, the MCE handler may identify the corrupted memory
page from the information. In block 708, VMM may 6fﬂine or disable the corrupted
memory page and allocate a new memory page to replace the corrupted memory page, e.g.,

via memory virtualization management logic in VMM.

In block 710, if the failure happens in the guest memory, VMM may restore content
of the corrupted page from the mirroring memory. In one embodiment, VMM may inform
the BT layer to undo the execution of a current TC block, copy the contents from mirroring
page to the new memory page to restore the content of the corrupted guest memory page,
and re-execute the current TC block. Referring again to Fig. 4, in another embodiment, if the
execution of a TC block has updated both the guest memory page and the mirroring page,
e.g., both instructions 418’ and 428 have been executed, or if the execution of a TC block
has not updated either the guest memory or the mirroring memory, e.g., before the execution
of instruction 418’ or 428, the VMM may copy the contents from the mirroring page to the
new memory page, and continue the execution of the TC block. In yet another embodiment,
if the execution of a TC block has updated a guest memory address, but has not updated the
mirroring address, e.g., instruction 418’ has been executed, but instruction 428 has not been
executed, VMM may copy the contents from the mirroring page to the new memory page,
re-execute instruction 418’ and execute 428. In still another embodiment, if the execution of
a TC block has updated the guest memory address, but has not updated the mirroring

memory address, e.g., instruction 418 has been executed, but instruction 428 has not been

18

10

15

20

25

30

WO 2012/129729 PCT/CN2011/000555

executed, VMM may complete execution of the current TC block, e.g., the instruction 428
and copy the contents from the updated mirroring page to the new memory page in response
to the completion of the current TC block. In another embodiment, if the execution of a TC
block has updated one memory address, but has not updated the second memory address,
e.g., one of instructions 418 and 428 has been executed, VMM and/or BT layer may
determine which address has been updated, and which address has not been updated. If the
mirroring address has been updated, VMM may copy the contents from mirroring page to

the new memory page and continue execution.

In block 712, the processor may continue to execute a next translation code block or
subsequent translated codes (block 712). Then, the processor may continue the execution of
the guest OS. Similarly, in response to determining that the mirroring memory has a
corrupted page, the VMM may allocate a new page for the corrupted mirroring page and
restore the content of the corrupted mirroring page from the corresponding guest page. The
flow to recover guest memory failure and the flow to recover mirroring memory failure may
refer to the embodiments as mentioned above with regard to block 710. For example, if the
execution of a TC block has updated one memory address, but has not updated the second
memory address, e.g., instruction 418’ has been executed, but instruction 428 has not been
executed, VMM and BT layer may determine which address has been updated, and which
has not. If the guest memory address has been updated, VMM may copy the contents from
guest page to the new memory page to recover the failure in the mirroring memory and

continue execution.

While the methods of FIGs. 6 and 7 are illustrated to comprise a sequence of |
processes, the methods in some embodiments may perform illustrated processes in a
different order. While the methods of Figs. 6 and 7 are described based on a configuration of
one mirroring page mapping to one guest page, the spirits of Figs. 6 and 7 may be utilized
for a configuration of n mirroring page mapping to one guest page. For example, the VMM
may use content from one of mapped mirroring pages to recover the memory failure in the
guest page. In another embodiment, the VMM may utilize the content of a guest page to

recover the memory failure in one or more mirroring pages in the n to 1 configuration.

While the embodiment of Fig. 7 illustrates an example of a TC block wherein e.g.,

instruction 418’ is executed before instruction 428, in some embodiments, the flow of Fig. 7

19

10

15

20

25

WO 2012/129729 PCT/CN2011/000555

may be applied similarly a TC block wherein, e.g., instruction 418’ is executed after
instruction 428. If the memory failure happens in the guest memory, VMM may similarly
allocate a new guest memory page for the corrupted guest memory page. In one
embodiment, VMM may inform the BT layer to undo the execution of current TC block,
copy the contents from mirroring page to the new memory page to restore the content of the
corrupted guest memory page, and re-execute the current TC block. In another embodiment,
if both instructions 418’ and 428 have been executed, or if none of instruction 418’ and 428
has been executed, the VMM may copy the contents from the mirroring page to the new
memory page, and continue the execution of the TC block. In yet another embodiment, if
instruction 428 has been executed but 418 has not been executed, VMM may copy the
contents from the mirroring page to the new memory page and continue the execution of the
TC block from 418°. In still another embodiment, if instruction 428 has been executed but
instruction 418’ has not been executed, VMM may cdmplete‘ execution of the current TC
block, e.g., from 418 and copy the contents from the updated mirroring page to the new
memory page in response to the completion of the current TC block. In another embodiment,
if the execution of a TC block has updated one of the guest and mirroring memory address,
e.g., one of instructions 418 and 428 has been executed, VMM and/or BT layer may
determine which address has been updated and which has not. If the mirroring address has
been updated, VMM may copy the contents from mirroring page to the new memory page

and continue execution.

While certain features of the invention have been described with reference to
embodiments, the description is not intended to be construed in a limiting sense. Various
modifications of the embodiments, as well as other embodiments of the inverition, which are
apparent to persons skilled in the art to which the invention pertains are deemed to lie within

the spirit and scope of the invention.

20

10

15

20

25

WO 2012/129729 PCT/CN2011/000555

What is claimed is:

1. An apparatus, comprising:

a memory virtualization control logic to translate from a first virtual memory
address in the virtual address space of a guest indicated in a first guest memory writing

instruction to a first physical memory address in a host address space of a host; and

a translation logic to translate the first guest memory writing instruction into a first
set of translated codes that are to store a first content in the first physical memory address
and to store the first content in a second physical memory address in the host that is a

mirroring address for the first physical memory address.

2. The apparatus of claim 1, wherein the memory virtualization control logic is
further to translate the first virtual memory address to a guest physical address based on a
guest page table.

3. The apparatus of claim 2, wherein the memory virtualization control logic is
further to:

translate the first virtual memory address to the first host physical memory address
based on a physical page table that is synchronized with the guest page table;

add an offset on the first virtual memory address to generate a second virtual

memory address; and

translate the second virtual memory address to the second host physical memory

address based on the physical page table.

4. The apparatus of claim 3, wherein the memory virtualization control logic is

further to:

emulate the guest page table to the guest base on the physical page table.

21

10

15

20

25

WO 2012/129729 PCT/CN2011/000555

5. The apparatus of claim 1, wherein the translation logic is further to:

translate the second guest memory writing instruction relating to a second virtual
memory address of the guest into a second set of translated codes that are to store the second
content in a third physical memory address corresponding to the second virtual memory
address and to store the second content in a fourth physical memory address of the host that

is a mirroring address for the third physical memory address; and

form an atomic region that comprises the first set of translation codes and the

second set of translation codes.

6. The apparatus of claim 1, wherein the translated codes are further to copy the

content into a plurality of mirroring memory address in the host.

7. The apparatus of claim 5, wherein in response to a memory failure in the first
physical memory address during the execution of the translated codes in the atomic region,

the translation logic is further to undo the execution of the translated codes.

8. The apparatus of claim 5, wherein in response to a memory failure in the first
physical memory address during the execution of the translated codes in the atomic region,
the VMM is further to allocate a new physical memory page for the corrupted first physical
memory page to restore the content of the corrupted first physical memory page from the
second physical memory page, and further continue the execution of the translation codes in

the atomic region.

9. The apparatus of claim 1, wherein in response to a memory failure in the first
physical memory address during the execution of the first set of translated codes, the
translation logic is further to complete the execution of the translation codes and copy the

content of the second physical memory address to the first physical memory address.

22

10

15

20

WO 2012/129729 PCT/CN2011/000555

10. The apparatus of claim 9, wherein the VMM is further to offline the corrupted
memory page corresponding to the first physical memory address and allocate a new page to

replace the corrupted memory page.

11. A method, comprfsing:
forming original codes for writing guest memory into an atomic region;

translating the original codes into translated codes that are to write the guest

memory and a host mirroring memory for the guest memory; and

executing the translated codes in the atomic region to write the same content into

the guest memory and the host mirroring memory.

12. The method of claim 10, further comprising:

generating a mapping comprising a translation from a virtual memory address of

the guest memory to a host physical memory address; and

adding an offset to the virtual memory address to generate an offset virtual address

for the host mirroring memory; and

updating the mapping to generate a translation from the offset virtual address to a

physical memory address of the host mirroring memory.

13. The method of claim 10, further comprising:

continuing the execution of the translated codes before the guest memory and the
host mirroring memory are updated, in response to a memory failure in the guest memory

during the execution of the translated codes;

23

10

15

20

25

WO 2012/129729 PCT/CN2011/000555

copying a content of the updated host mirroring memory to the corrupted guest

memory to recover the content of the corrupted guest memory.

14. The method of claim 10, further comprising:

‘completing the execution of the translated codes in the atomic region, in
response to a memory failure in the guest memory during the execution of the translated

codes;

copying a content of the host mirroring memory that is updated based on the
translation codes to the corrupted guest memory to recover the content of the corrupted

guest memory.

15. A system, comprising:
a memory;

a virtual machine control logic to translate a guest memory updating instruction
into a first instruction to update a guest memory page of a guest and a second updating
instruction to update a mirroring memory page in a host that is corresponding to the guest

memory page; and

a processor to execute the first instruction and the second instruction to store the

same content to the guest memory page and the mirroring memory page.

16. The system of claim 15, wherein the virtual machine control logic comprises a
region forming logic to combine the guest memory updating instruction and another guest
memory updating instruction to form an atomic region that is to be executed by the

processor together.

17. The system of claim 16, wherein the virtual machine control logic is further to

undo the operations in the atomic region in response to a memory failure in the guest

24

10

15

20

WO 2012/129729 PCT/CN2011/000555

memory page and in response to the mirroring memory page not having been updated, and
allocate a new guest memory page to replace the corrupted guest memory page and restore

the content of the new guest memory page from the mirroring memory page.

18. The system of claim 17, wherein the virtual machine control logic is further to
update a guest-physical-to-machine page mapping data structure and a
machine-to-guest-physical page mapping data structure in response to the corrupted guest

memory page being replaced by the new guest memory page.

19. The system of claim 15, wherein the virtual machine control logic is further to
completion the execution of the first updating instruction and the second updating
instruction in response to a memory failure in the guest memory page; and copy a content of
the host mirroring page to a new guest memory page allocated for the corrupted guest |
memory page to recover the content of the corrupted guest memory page in response to the

completion of the first updating instruction and the second updating instruction.

20. The system of claim 15, wherein the virtual machine control logic is further to
allocate a new memory page for the guest memory page in response to a memory failure in
the guest memory page during the execution of the first updating instruction and the second
updating instruction, copy a content of the host mirroring page to the new guest memory
page, and continue the execution of the execution of the first updating instruction and the

second updating instruction.

25

WO 2012/129729 PCT/CN2011/000555

/ 100
102 112
[Ve
Guest Software #1 103 Guest Software #2 113
Application 108 Application 110
0S #1 104 0S #2 106

Virtual Machine Monitor (VMM) 114

Memory Virtualization
Management
130

Platform Hardware 116

Processor 1/0 Device
126 122
Memory Graphic
120 Control
Page Table(s) 124
128
FIG. 1

1/7

PCT/CN2011/000555

WO 2012/129729

| 1
! 1
1 |
' W "
! =] o~ 28]
1
' = Q 2 <t |
P 00 < S !
] — o <] — I
1 NN i o |
! u N T — “
)
(% o 3 2 |
1 £ © © wv]
_m > a 43} 1
1 W % v o0 o m Yo}]
1 8 - © 4|3 s = !
) M o N a. 1
[- |
[Q & 173
38 2 o o !
! I
y L M = “
'
! Qo ! ' !
'
" 2 : ']
e _ "
I ! ' '
f
" ! | |
IIIIIIIIIII et mr e, e c e, r— e ————————
1 [
1 |
1 1
1 !
||||||| G - -y
" 1 | 1
1 ! !)
' 1
.m _ “
[© !
Vo = 5 (
n —
) £ > W. T 0 '
e K < 5 v W 1
! a £ © £+ 8 O]
- ~N O &
1 [4¢] qu [0 w o 1
.M 3] P W |
] = “
- © _
| ——-— faa)]
1
R 2 _
] o wn "
| ~ .

FIG. 2

_ 2/7

WO 2012/129729 PCT/CN2011/000555

Guest Physical Memory 302

350 ===
\ | 306 !
1 |
r---= N\ 332
1304 LT
1 1
i }
] }
' v
Hypervisor 312
360
AW 316
346
314
30| T
—_ 348
342 A\ B
Platform Hardware 322

FIG. 3

3/7

WO 2012/129729 PCT/CN2011/000555

Insl: ...
Ins2: [addr]=D0
Ins3: ...

Ins2: [addr]=D0
Ins2B: [addr+R]=D0

Ins3: ... \

424 \

Original Translated

Code 412 422
a14 Code 422

’\
Block1 T}M__]’

TC Block1l

TC Block 2 1)\~ 426

Block 2 A

2

L/

416

FIG. 4

a7

WO 2012/129729

200

;

PCT/CN2011/000555

System Memory 502

Guest OS 504

Application 506

/5_:@
Binary Translation 512 Memory Translation
Region Former 514 Virtualization Cache 518
— Control Logic add = v 540
1"
Translator 516 513 cmp.— |
' Jump || MiBlataey [Ramavaigpd®| Commit !
' Table || Generating Code Buffer '
| 524 526 528 530 ;
1 1
} 1

Hardware Acceleration for Binary Translation (522)

FIG.5

5/7

WO 2012/129729

Executing guest application
604 |

y

Forming code block as an atomic
region and translating original codes
606

v

Generating jump table
for the translated codes
608

v

Jumping to translation cache to
execute the translated code therein
610

v

Translating the translated
codes into micro-codes
612

v

Executing the translated micro-codes
614

v

Returning the execution result
to the guest application
616

FIG. 6

6/7

PCT/CN2011/000555

WO 2012/129729

702

Guest Executing //

Memory Failure

Processor provides corresponding
information to MCE handler
704

v

MCE handler identifies
corrupted memory page
706

v

VMM offline the corrupted page
and allocates a new page
708

v

VMM restores content
of the corrupted page, and VMM
informs BT layer (MCE handler) to
discard or undo execution of the
current TC block, or continue
execution of the current TC block, or
re-execute the current instruction or
complete the current TC block
710

v

Guest OS continues its execution
712

FIG. 7

7/7

PCT/CN2011/000555

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2011/000555

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 11/14 (2006.01)i
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GOGF 11/-, GOGF 9/-; GO6F 3/-; GOGF 12/ G11C 7/-; G11C 19/=;

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT,CNKIL,WPLEPODOC.IEEE: memory, stor+, redundan+, mirror+, backup+, virtual+, VMM, VM, address, translat+, recovert,

fail+, map+, shadow, restor+

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraphs 11-43,59-97, figures 1-6

document

Y CN101866307A (H3C TECHNOLOGIES CO., LTD.), 20 Oct. 2010 (20.10.2010), description

Y CN101398768A (BEINING AERONAUTICS AND ASTRONAUTICS UNIVERSITY), 01 Apr.
2009 (01.04.2009), description page 7 lines 6-14, page 21 lines 18-19, page 24 lines 22-28

A CN101632128A (MOSAID TECHNOLOGIES INC.), 20 Jan. 2010 (20.01.2010), the whole

A [US2011/0072430A1 (AVAYA INC.), 24 Mar. 2011 (24.03.2011), the whole document

1-20

1-20

1-20

1-20

[Further documents are listed in the continuation of Box C.

X See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not
considered to be of particular relevance

“E” earlier application or patent but published on or after the
international filing date

“L” document which may throw doubts on priority claim (S) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or
other means

“P” document published prior to the international filing date

but later than the priority date claimed

“T> later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

invention
“X” document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to involve
an inventive step when the document is taken alone
“Y” document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such
documents, such combination being obvious to a person

skilled in the art

“& “document member of the same patent family

Date of the actual completion of the international search

01 Aug. 2011 (01.08.2011)

Date of mailing of the international search report

19 Jan. 2012 (19.01.2012)

IName and mailing address of the ISA/CN

The State Intellectual Property Office, the PR.China

6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China
100088

[Facsimile No. 86-10-62019451

Authorized officer
FU, Ying
Telephone No. (86-10)62413535

Form PCT/ISA /210 (second sheet) (July 2009)

INTERNATTIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/CN2011/000555
Patent Documents referred Publication Date Patent Family Publication Date
in the Report

CNI101866307A 20.10.2010 None

CNI101398768A 01.04.2009 None

CN101632128A 20.01.2010 WO2008101317A1 28.08.2008
WO2008101318A1 28.08.2008
WO2008101316A1 28.08.2008
US2008/0205168A1 28.08.2008
US2008/0209108A1 28.08.2008
US2008/0209110A1 28.08.2008
US2010/0275056A1 28.10.2010
US2011/0131445A1 02.06.2011
TW200847182A 01.12.2008
EP2118901A1 18.11.2009
KR20090120479A 24.112009
JP2010519641T 03.06.2010

US2011/0072430A1 24.03.2011 EP2306318A1 06.04.2011
JP2011070667A 07.04.2011
CN102033795A 27.04.2011

Form PCT/ISA /210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - wo-search-report
	Page 35 - wo-search-report

