(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

=N
) O 00 0 OO

(10) International Publication Number

WO 2006/052897 A2

(43) International Publication Date
18 May 2006 (18.05.2006)

(51) International Patent Classification: (74) Agents: COURTNEY, Barbara, B. et al.; Courtney Stan-
GOGF 7/00 (2006.01) iford & Gregory LLP, P.O. Box 9686, San Jose, California
95157 (US).

(21) International Application Number:
PCT/US2005/040312 (81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

(22) International Filing Date: AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
8 November 2005 (08.11.2005) CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

(25) Filing Language: English KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,

(26) Publication Language: English NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,

SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,

(30) Priority Data: UZ, VC, VN, YU, ZA, ZM, ZW.

60/626,252 8 November 2004 (08.11.2004) US
60/626,292 8 November 2004 (08.11.2004) US (84) Designated States (unless otherwise indicated, for every
60/626,293 8 November 2004 (08.11.2004) US kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(71) Applicant (for all designated States except US): ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
INNOPATH SOFTWARE, INC. [US/US]; 400 European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
Caribbean Drive, Sunnyvale, California 94089 (US). FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
(72) Inventors; and GN, GQ, GW, ML, MR, NE, SN, TD, TG).
(75) Inventors/Applicants (for US only): GU, Jinsheng
[CN/US]; 400 Caribbean Drive, Sunnyvale, California Published:
94089 (US). MANAPETTY, Premijth [IN/US]; 400 — without international search report and to be republished
Caribbean Drive, Sunnyvale, California 94089 (US). upon receipt of that report

[Continued on next page]

(54) Title: REORGANIZING IMAGES IN STATIC FILE SYSTEM DIFFERENCING AND UPDATING

(

N-1)

100~ Image

(T Tofo fite () Dff calc Diff file A ()

Image (N) cné Modifying

Info fi

Image (N+1) [CIRT |

(tufo file B ()

(57) Abstract: Systems and methods are provided for reorganizing static file system (SFS) images for efficient differencing, updat-
& ing and to reduce the update time. The systems and methods are for updating compressed read-only memory file system (CRAMEFS)
& format images as an example. The reorganizing receives an image that includes one or more SFS components such as CRAMFS
components and determines any changed sections within the SFS images. Reorganized CRAMES components are generated using
information of the CRAMFES components by moving any of the changed sections from a first position to a second position in the
component. The second position can follow all unchanged data sections of the image. A modified image is generated that includes
g the reorganized CRAMEFS component. The modified image is used in SFS differencing and updating.

Diff calc .
(0)

X

Modifying

6/052897 A2 | IV VY 200 S0 0

WO 2006/052897 A2 I} N0V NDVYH0 A0 000 00O AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 2006/052897 PCT/US2005/040312

Reorganizing Images in Static File System Differencing and Updating

Inventors:

Premyjith Manapetty
Jinsheng Gu

Related Application

This application claims the benefit of United States Patent Application
Numbers 60/626,252, 60/626,292, and 60/626,293, all filed November 8, 2004.
This application is related to United States Patent Application Numbers (number not
yet assigned; attorney docket number DOGO.P019; entitled “Static File System
Differencing and Updating”) and (number not yet assigned; attorney docket number
DOGO.P020; entitled “Updating Compressed Read-Only Memory File System
(CRAMFS) Images”), both filed November 8, 2005.

Technical Field

The disclosed embodiments relate to reorganizing images in updating static
file system images to reduce the update time and reduce the size of difference files
and more particularly updating compressed read-only memory file system
(CRAMEYS) format images.

Background

Software running on a processot, microprocessor, and/or processing unit to
provide certain functionality often changes over time and also increases in
complexity. The changes can result from the need to correct bugs, or errors, in the
software files, adapt to evolving technologies, or add new features, to name a few.
In particular, software hosted on mobile processing devices, for example mobile
wireless devices, often includes numerous software bugs that require correction.
Software includes one or more computer programs, algorithms, files, and/or code
pertaining to operation of the host device. Software can be divided into smaller
units that are referred to as modules or components.

Portable processor-based devices like mobile processing devices typically
include a real-time operating system (RTOS) in which all software components of
the device are linked as a single large executable image. Further, file system support

has become common recently due to the availability of compact storage and more

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

demanding functionalities in these mobile wireless devices. In addition, the single
large image needs to be preloaded, or embedded, into the device using a slow
communication link like a radio, infrared, or serial link.

Obstacles to updating the software of mobile processing devices include the
time, bandwidth, and cost associated with delivering the updated file to the device,
as well as limited resources of the device available for use in updating new files
once received. As one example, small changes in one or more sections of a software
component result in large changes in a host software image because the small
changes cause a shift in position of all unchanged data sections that follow the
changed sections. Consequently, there is a need for reducing differences in content
between different versions of software resulting from shifts of unchanged data

sections caused by content changes of changed data sections.

Incorporation By Reference

Each publication, patent, and/or patent application mentioned in this
specification is herein incorporated by reference in its entirety to the same extent as
if each individual publication and/or patent application was specifically and

individually indicated to be incorporated by reference.

Brief Description of the Figui‘es

Figure 1 is a block diagram for file differencing using reorganized
(modified) images, under an embodiment.

Figure 2A is an example of an original image and a new image prior to
CIRT processing.

Figure 2B is an example of a modified image following repositioning of the
changed data section (e.g., section increased in size) by the CIRT, under an
embodiment.

Figure 3 is a block diagram of the CIRT processing file system images,
under an embodiment.

Figure 4 is a block diagram of a file system image and the corresponding
input parameters, under an embodiment.

Figure S is a block diagram of an image that includes multiple CRAMFS

components.

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

Figure 6 is a block diagram of image processing when the image includes a
single CRAMFS component, under an embodiment.

Figure 7 is a block diagram of image processing when the image includes
multiple CRAMFS components, under an embodiment.

Figure 8 is block diagram of the CIRT, under an embodiment.

Figure 9 is an example of a received CRAMFS image, under an
embodiment.

Figure 10 is an example of an original CRAMFS image (version Vg) and a
new CRAMEFS image (version Vy), under an embodiment.

Figure 11 is the image manipulation of the CIRT, under an embodiment.

Figure 12 shows an equivalent image V’g for the original version of the
image Vg and an equivalent image V’y for the new version of the image Vy, under
an embodiment.

Figure 13 is a flow diagram for modifying an image, under an embodiment.

Figure 14 is a flow diagram for file differencing using equivalent images
resulting from the CIRT reorganization, under an embodiment.

Figure 15 is a block diagram of an SFS differencing system that can include
an IRT, under an embodiment.

Figure 16 is a flow diagram for SFS differencing, under an embodiment.

Figure 17 is a flow diagram for SFS differencing, under another
embodiment.

Figure 18 is an example SFS image following splitting of the image blocks
into portions, under an embodiment.

Figure 19 is a block diagram of an SFS differencing and updating system,
under an embodiment.

Figure 20 is a flow diagram for SFS updating, under an embodiment.

Figure 21 is a flow diagram for in-place updating of SFS images in devices,
under an embodiment.

In the drawings, the same reference numbers identify identical or
substantially similar elements or acts. To easily identify the discussion of any
particular element or act, the most significant digit or digits in a reference number
refer to the Figure number in which that element is first introduced (e.g., element

100 is first introduced and discussed with respect to Figure 1).

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

Detailed Description

Systems and methods are provided for reorganizing static file system (SFS)
images for use in determining differences between different software versions that
include the images and updating the software versions. The systems and methods
for reorganizing are collectively referred to herein as the Image Reorganizing Tool
(IRT) but are not so limited. An embodiment of the systems and methods for
reorganizing are used to reorganize images that include one or more compressed
read-only memory file system (CRAMFS) format components, and these systems
and methods for reorganizing are collectively referred to herein as the CRAMFS
Image Reorganizing Tool (CIRT). The CIRT may also be referred to herein as a
change CRAMFS (CHCRAMEFS) tool.

The reorganizing of images that include a CRAMFS component receives an
image that includes one or more compressed read-only memory file system
(CRAMFS) format components and determines any sections of the CRAMFS
components in which the contents or data have changed. Reorganized CRAMFS
components are generated using information of the CRAMFS components by
moving one or more of the changed sections from a first position to a second
position in the CRAMFS component. The second position can follow all unchanged
data sections of the image but is not so limited. A modified image is generated that
includes the reorganized CRAMFS component, and the modified image is
functionally equivalent to the original image. The modified image is used in SFS
differencing and updating. Once the image is reorganized to be closer to the original
or old version, the header information (e.g., super header CRC, the offset pointers,
etc.) are adjusted, so that the resulting image complies with the CRAMFS format
specification.

The CRAMEFS is a read-only Linux file system used in embedded and small-
footprint systems like mobile devices. Unlike compressed images in conventional
file systems, a CRAMEFS image has individual files compressed separately. Thus if
a particular file is accessed, then only that particular file’s data needs to be
uncompressed. The CRAMEFS file system files are zlib-compressed one page at a
time to allow random read access. The recent version of the CRAMFS image allows
XIP files to be place among the compressed files. The XIP files are not compressed
and also they are page aligned on start and end. The meta-data sections (e.g., super
header, directory headers, file data headers, etc.) are not compressed, but are

4

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

expressed in a terse representation that is more space-efficient than conventional file
systems.

A SFS, also referred to as a read-only file system, is a file system that can
not be modified during run time. Examples of SFSs include but are not limited to
the Symbian Z drive (also referred to as the “ROM drive”), the Linux CRAMEFS, the
encrypted file systems, and file systems that might store operating system
executables, built-in applications, essential multimedia information, and default
language files, to name a few.

In the following description, numerous specific details are introduced to
provide a thorough understanding of, and enabling description for, embodiments of
the IRT. One skilled in the relevant art, however, will recognize that the IRT can be
practiced without one or more of the specific details, or with other components,
systems, etc. In other instances, well-known structures or operations are not shown,
or are not described in detail, to avoid obscuring aspects of the IRT.

Figure 1 is a block diagram for file differencing 100 using reorganized
(modified) images, under an embodiment. The file differencing 100 includes the
CIRT as an embodiment of the IRT for pre-processing the images prior to
differencing operations, as described below. The CIRT pre-processes the images
(also referred to as CRAMFS images, CRAMFS ROM images or ROM images),
which include at least one CRAMFS component, prior to or simultaneous with
package generation by the new software component distributor (N CSD). The pre-
processing minimizes the number of flash memory block (e.g., read-only memory)
changes required when updating a CRAMFS component.

The CIRT generally modifies the image by repositioning sections of the
CRAMFS components in the image in order to reduce the number of updated or
changed sections or blocks of the image. The CIRT can use the previous version of
the image as the reference image and creates a new image which is equivalent to the
original image. In this manner the CIRT reduces the number of updated blocks in
the image by reducing or eliminating to the extent possible the ROM block rewrites
resulting from content shifts in the image. The CIRT thus reorganizes one or more
CRAMFS component(s) in a binary image and uses file system structure
information to produce more efficient upgrade packages and faster update times.

The CIRT of an embodiment receives the images (e.g., Image (N), Image

(N+1), etc.) and generally examines or evaluates the images for correctness and
5

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

integrity. The CIRT repositions or rearranges only the changed data sections of the
received image and outputs a modified image (e.g., Image (N)’, Image (N+1)’, etc.)
in which the changed data sections have been repositioned, thus leaving the
remaining data sections (e.g., unchanged data sections) of the image unaltered.
Repositioning of a changed data section of an embodiment leaves the original
content of the original version at a location in the modified image that is the same as
its location in the original version so that no rewrite of that portion of the original
image is required, but the embodiment is not so limited. Following processing by
the CIRT, the files and data in the modified images (e.g., Image (N)’, Image (N+1)’,
etc.) are identical to the original images (e.g., Image (N), Image (N+1), etc.), except
the location of the changed data sections is different. Moving the changed data
sections of the image eliminates the need to rewrite memory blocks when the data
contents of the blocks remains unchanged in a new version of the image. In
generating a modified image the CIRT of an embodiment optionally uses
information of a previous modified image received in an image information file
(e.g., Info file A, Info file B, etc.), but is not so limited. The CIRT is described in
detail below.

The IRT of an embodiment couples among components of a host computer
system (not shown), where the components can include at least one of a processor, a
controller, a memory device, and/or a bus, but are not so limited. One or more of the
components or modules of the IRT run under control of at least one algorithm,
program, ot routine. A host computer system processor couples among the
components of the host computer system and the components of the IRT under
program control. While the components of the IRT/CIRT described herein may be
shown as separate blocks, some or all of these blocks can be monolithically
integrated onto a single chip, distributed among a number of chips or components of
a host system, and/or provided by one or some combination of programs or
algorithms. The programs or algorithms when present can be implemented in
software algorithm(s), firmware, hardware, and any combination of software,
firmware, and hardware.

The term “module” as generally used herein refers to a logically separable
part of a program, and is interchangeable with one or more terms including software,
algorithm, program, component, and unit. The term “component” as generally used
herein refers to one or more of the parts that make up a system; a component may be

6

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

software and/or hardware and may be subdivided into other components. The terms
“module”, “component”, and “unit” may be used interchangeably or defined to be
sub-elements of one another in different ways depending on the context. The term
“processor” as generally used herein refers to any logic processing unit, such as one
or more central processing units (CPUs), digital signal processors (DSPs),
application-specific integrated circuits (ASIC), etc.

Figure 2A shows an example of an original image and a new image prior to
CIRT processing. This example shows how an increase in size of a section 202 of
the new image shifts the position of all following sections of the image relative to
their position in the original image. Figure 2B is an example of a modified image
following repositioning 252 of the changed data section 202 (section increased in
size) by the CIRT, under an embodiment. The CIRT therefore reconfigures or
restructures the image to generate or create a modified image that provides for a
reduced number of differences in the image when compared to the original image
(e.g., byte-to-byte comparison). Repositioning of the changed data section 202 to a
spare or reserved space following the unchanged data sections minimizes or
eliminates disturbances to the unchanged data sections of the image. The
repositioning 252 minimizes or eliminates changes in the image resulting from the
increased size of section 202, and thus reduces a size of the corresponding difference
file because a fewer number of changes are required to be encoded in the difference
file. The modified image, also referred to as the equivalent image, is file-data-wise
functionally equivalent to the new image and data-location-wise much closer to the
original image than the new image.

The systems and methods of an embodiment define a formula to measure the
byte-level closeness between two images as follows:

ICF = Noame
total
where,
ICF represents the Image Closeness Factor,

Niame represents the number of bytes that are the same between the two images,
and

Niowr represents the total number of bytes in the image.
The higher the value of ICF, the better the images match, therefore the ICF of the

modified image is generally higher than the unmodified new image but is not so

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

limited. The embodiments described herein are not limited to the above formula for
the ICF and may determine ICF using other formulas or may use factors other than
ICF to determine closeness between multiple images.

The CIRT reorganizes or modifies one or more CRAMEFS file system
components in a binary image (also referred to as a binary ROM image) and by so
doing uses file system structure information to produce more efficient upgrade
packages. The modified images (e.g., Image (N)’, Image (N+1)’, etc.) are then
processed by the NSCD to produce upgrade packages. This processing includes
generating delta files or difference files (e.g., diff file A, diff file B, etc.) that include
differences identified or determined between different versions of the modified
images (e.g., Image (N)’, Image (N+1)). For example a first difference file (e.g.,
diff file A) includes differences between modified images Image (N-1)’ and Image
(N)’, and a second difference file (e.g., diff file B) includes differences between
modified images Image (N)’ and Image (N+1).

The upgrade packages update all componentized content of the image not in
a CRAMFS component. The upgrade packages also update the file system
directory, sub-directory, and file structure, including new, deleted, and repositioned
files and directories. The upgrade packages of the NSCD update the file system data
content changes resulting from new or deleted files and/or new or deleted
directories. The upgradé packages ignore changes to data contents of the CRAMFS
component files that result only from the repositioning of files and directories, and
do not involve changes to file contents; consequently, the file system structure is
updated, but the repositioned file data is ignored since the file contents have not
been changed.

Figure 3 is a block diagram of the CIRT processing 300 file system images,
under an embodiment. The CIRT, using information of the received image files
(input files), generates or produces a modified image of the latest software version
that can be used to create an upgrade package by the NSCD. The CIRT can also
generate or create an image information file for the modified image that is used for
processing the next version of the ROM image for the same device model. Because
the NSCD uses modified images for two software versions (e.g., version 1 or vl,
version 2 or v2, etc.), the CIRT of an embodiment is used twice, in sequence for
example, to generate modified images for both versions (e.g., v1 and v2) prior to

and/or as a component of differencing operations.
8

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

The images received for processing using the CIRT of an embodiment are
binary images. The original (e.g., unmodified) image for the corresponding software
version should be available (this is referred to herein as the original version or latest
version). Further, the input parameter information of the received image is provided
to the CIRT as described below. Prior to processing images using the CIRT, the
entire image is componentized (including the CRAMFS components) except for
code designated not to be upgraded (e.g., boot code). The componentizing allows
the images to be supported by a file upgrade system, for example the DeltaUpgrade
Plus available from InnoPath Software, Inc. of Sunnyvale, California.

When processing all versions of the image after the initial image version,
information of the modified image for the previous software version should be
available to the CIRT but is optional. Furthermore, the information file for the
previous modified version should be available to the CIRT but is also optional, as
described below.

Referring to Figure 3, the CIRT of an embodiment receives numerous input
files. The input files received include, but are not limited to, the original latest
version ROM image file (can include one (1) or two (2) files), modified previous
version ROM image file (can include one (1) or two (2) files) (optional; none for
version 0 of the image), and the previous version ROM image information file
(optional). The original latest version ROM image file is the unmodified (not
reorganized by the CIRT) binary image file for the latest version of the image.

The modified previous version ROM image file, which is an optional input
file to the CIRT, is the reorganized binary ROM image file for the version
immediately preceding the latest version of the image. The initial version image
(e.g., v1) is processed without the modified previous version ROM image file
because there is no previous version image. The previous version ROM image
information file, which is also an optional input file to the CIRT, is the image
information file generated by the CIRT during processing of the corresponding
image immediately preceding the latest version.

The CIRT of an embodiment may receive a resize list or resize file as an
input file, but the resize list is an optional input file. The resize list is a file that
specifies the CRAMEFS files within CRAMFS components that are to be increased in
size without changing the contents of the CRAMEFS files. The CIRT uses

10

15

20

25

30

35

40

WO 2006/052897 PCT/US2005/040312

information of the resize list to allocate additional memory space to the files

specified in the resize list. An example resize list is as follows:

#
Format

For each entry there needs to be two lines:
First line is the filename.

Second line is the new size of the file.
#

#

#

#

#

Comments start with #
Empty lines with only a # are allowed: others are not allowed

prelink.cache
6144

#
ENTRY 2

1d.so.cache
0x1800
#
In this example, the file with filename “prelink.cache” will have 6144 bytes of

memory allocated. Similarly, the file with filename “Id.so.cache” will have 0x1800
bytes of memory allocated.

The CIRT of an embodiment receives input parameters in addition to the
input files. The input parameters include information as to the fundamental structure
of the image that is to be processed. Figure 4 is a block diagram of an image 400
and the corresponding input parameters, under an embodiment. The image 400
includes a single CRAMFS component but is not so limited as images processed by
the CIRT may have multiple CRAMFS components. As an example, Figure Sis a
block diagram of an image 500 that includes multiple CRAMFS components A and
B. When the image includes multiple CRAMFS components the CIRT of an
embodiment sequentially processes and re-processes each of the CRAMFS
components, and the component parameters are changed as appropriate to specify
each CRAMFS component being processed in turn, as described below. The
received images 400 and 500, whether they include single or multiple CRAMFS
components, are not limited to including only CRAMFS components and may
include other areas or regions (e.g., “NOT Reorganized”) that are not processed by

the CIRT.

10

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

The input parameters of an embodiment, with reference to image 400 of
Figure 4, include a CRAMFS start address 402, CRAMFS size 404, and data offset
406, but are not so limited. The CRAMFS start address 402 is the starting address
of the CRAMFS component to be processed. For images with more than one
CRAMFS component, the start address specifies the starting address of the
component being processed for each stage of the processing. The CRAMF'S start
address 402 can be obtained from the map extensible markup language (XML) file
for the device model.

The CRAMEFS size 404 is the number of bytes of the CRAMFS component
to be processed. For images with more than one CRAMF'S component, the
CRAMEFS size specifies the size of the component being processed for each stage of
the processing. The CRAMFS size 404 can be obtained from the map XML file for
the device model.

The data offset 406 is the starting address of the data area of the CRAMFS
component to be positioned. This value needs to larger than a sum of the size of the
super header and the size of the directory header. This allows for the data sections
to be positioned in such a way as to allow for the directory header to grow or shrink
between versions. For images with more than one CRAMFS component, the data
offset 406 is specified individually for the component being processed in each stage
of processing. The data offset 406 is provided to the CIRT only for the first or base
version; for subsequent versions the CIRT will use or take the offset value from the
previously processed image. If the data offset is not received for the first version
processing, then the data sections are positioned just after the directory sections, as
is generally done in CRAMFS images.

The processing of image files to generate reorganized or modified images
depends, as described above, on the software version of the image and the number of
CRAMFS components in the image. Regarding the version of the image, the
modified previous version ROM image file and the previous version ROM image
information file are not available for initial images. Further, ROM image files for
images that include multiple CRAMFS components are processed and reprocessed
in order to sequentially modify each CRAMFS component, until such time as all

CRAMFS components of the image have been reorganized.

11

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

35

The CIRT of an embodiment initiates generation of modified image files

upon receiving a command line but is not so limited. The command line format of

an example embodiment is as follows:

cheramfs [-v] [-d] [[[-f data_offset] [-r resize_list]]/[-p prev_img[-ai_info]]]
[-b o_info] [-o out_img] [-1 list] [-g log_file] [-x xpand_dir] [-s start_addr]

[-z image_size] in_img.

The representations of the example command line format are as follows:

~v[vv]: display small, medium, or large amount of processing information
on the user’s monitor;

-f data_offset: the starting address of the dafa area for the CRAMFS
component to be positioned (default: take the data offset from the previous
image processed; offset is not altered if the previous image is not provided);
-rresize list: pathname of the resize list file used to resize the CRAMFS
files (default: not used);

-p prev_img: pathname of the modified previous version ROM image file;
-ai_info: pathname of the previous ROM image information file;

-b o_info: pathname of the latest ROM image information file to be created
(default: not created);

-1 list: pathname of the output list file to be created;
-g log_file: pathname of the log file to be created;

—x xpand_dir: directory pathname where compressed files are expanded
(default: no directory specified; files are expanded in the current directory);

-s start_addr: the starting address of the CRAMFS component to be
processed;

-z image_size: size (bytes) of the CRAMFS component to be processed
(default: the image size of the input file CRAMF'S file);

in_img: pathname of the original latest ROM image (binary files supported);
-h: display the application command line syntax on the user’s monitor; and
-d: only decode the CRAMFS ROM image.

The data offset specifies the memory to be allocated for the CRAMFS

header, which contains the directory structure, and file names and location for the
device model file system to which the image corresponds, but does not include the
file contents. The data offset of an embodiment specifies a memory space large

enough to accommodate at least the entire file system header.

Prior to processing the initial (first) versions of a device model image, the

correct data offset value is determined by the CIRT of an embodiment. To

12

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

determine the data offset for initial images, the CIRT initially processes the binary
image file using the following parameters and inputs, for example: “chcramfs.exe —
vvv —d —x <expansion directory pathname> -s <CRAMFS component starting
address> -z <CRAMFS component size> <binary image filename>". This
processing causes the display of processing information for the data line, for
example: “start_dir = 0x4C, end dir = 0x35C, start_data = 0x35C, end data =
0x1C000, real_end_data = 0x1BC8C, file size = 0x3800000”. The value for the
data offset parameter is determined as the data offset value that is larger than
“end_dir” and less than “end_data”.

The data offset from the previous version can be retained (by not including
the “-f” parameter described above) for use by the CIRT in subsequent processing of
later image versions (e.g., V2, V3, V4, etc.). Alternatively, the data offset can be
changed by specifying a new data offset value for processing of later ROM image
versions.

The CIRT processes the original latest version ROM image and outputs the
modified latest version ROM image as described above. Additionally, the CIRT
generates a latest version ROM image information file that corresponds to the
modified image. The CIRT optionally generates an output list file and/or a log file,
but is not so limted.

The CIRT of an embodiment modifies or reorganizes ROM images with one
CRAMEFS component, as described above. Figure 6 is a block diagram of image
processing 600 when the image includes a single CRAMFS component, under an
embodiment. The image processing of this example includes processing of an initial
image (v1 Image Processing) followed by processing of two additional versions of
the image (v2 Image Processing and v3 Image Processing, respectively), but the
embodiment can process any number of image versions and is not limited to
processing three (3) versions of an image. Because the NSCD application uses two
modified images in order to produce an upgrade package, each modified image is
processed in turn. When the image includes only one CRAMFS component for the
file system, each image is processed only once. The processing of the initial version
of an image (e.g., v1) differs from the processing of subsequent images (e.g., v2, v3,
v4, etc.) because there is no version that precedes the initial version.

The CIRT generates an initial modified (e.g., reorganized) image (e.g., v1
Image Processing) by receiving the original (unmodified) image file and

13

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

determining an initial value for the data offset parameter (-f). The parameters of the
CIRT command line are received and the command is executed. The CIRT
generates the initial modified CRAMFS image upon execution of the command.

As an example of generating a modified CRAMFS image, an example
command is as follows:

cheramfs.exe —vv —x \expend\v1\root_files —f 0x6000

-b \output\v1\infov1.bin —o \output\vl\vl.bin

-s 0x00360000 —z 0x01CA0000 \input\v1\v1.bin
This example generates a modified CRAMFS image binary file for v1 (e.g.,
“output\v1\v1.bin”) and an associated image information file (e.g.,
“output\v1\infov1.bin”). This example uses CRAMFS image binary file vl (e.g.,
“input\v1\v1.bin”) as input and specifies the expansion directory pathname (e.g.,
expend\vl\root_files”). The input parameters include offset position for data (e.g.,
0x6000), starting address of the CRAMFS component (e.g., 0x00360000), and size
of the CRAMFS component (0x01CA0000). The option “-vv” generates a medium
amount of processing information to help the user monitor CIRT processing activity.

The CIRT of an embodiment generates a subsequent (e.g., v2, v3, etc.)
modified image for the image with one CRAMFS component. Generally, the CIRT
generates the subsequent modified (e.g., reorganized) CRAMFS image by receiving
the original (unmodified) CRAMFS image file for the version being processed. The
CIRT also receives the modified (reorganized) CRAMFS image for the version
immediately preceding the version being processed. The CIRT further receives
image information for the version immediately preceding the version being
processed. A determination is made as to whether the data offset is to be changed
and, if so, the new value of the data offset that is to be used. The parameters of the
CIRT command line are received and the command is executed. The CIRT
generates the subsequent modified CRAMFS image upon execution of the
command.

As an example of generating a modified CRAMFS image of a later or
subsequent version of the image, an example command is as follows:

cheramfs.exe —vvv —x \expend\v2\root_files —f 0x2500

-a \output\v1\infov1.bin —b .\output\v2\infov2.bin

-p \output\v1\v1.bin —o .\output\v2\v2.bin -s 0x00360000

—z 0x01B20000 \input\v2\v2.bin
14

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

This example generates a modified CRAMFS image binary file for v2 (e.g.,
“output\v2\v2.bin”) and an associated image information file (e.g.,
“output\v2\infov2.bin”). This example uses CRAMFS image binary file v2 (e.g.,
“input\v2\v2.bin™) as input with the output files from the initial image output (e.g.,
“output\v1\v1.bin” and “output\v1\infov1.bin”). This example specifies the
expansion directory pathname (e.g., expend\v2\root_files”). The input parameters
include offset position for data (e.g., 0x2500), starting address of the CRAMFS
component (e.g., 0x00360000), and size of the CRAMFS component (0x01B20000).
The option “~vvv” generates detailed processing information to help the user
monitor CIRT processing activity.

An example follows of the CIRT generating subsequent modified images for
an image with one CRAMFS component. The CIRT processes a second version
(v2) of an image (v2 Image Processing) by receiving the original (unmodified)
CRAMFS image file (Original v2 ROM Image File) for the version (v2) being
processed. The CIRT also receives the modified CRAMEFS image (Reorganized v1
ROM Image File) for the version (v1) immediately preceding the version (v2) being
processed. The CIRT further receives image information (vl ROM Image
Information File) for the version (v1) immediately preceding the version (v2) being
processed; the image information of an embodiment is received in an image
information file but is not so limited. A determination is made as to whether the
data offset is to be changed and, if so, the new value of the data offset that is to be
used. The parameters of the CIRT command line are received and the command is
executed. The CIRT generates the subsequent modified CRAMFS image
(Reorganized v2 ROM Image File) upon execution of the command.

Continuing with the example, the CIRT processes a third version (v3) of the
image (v3 Image Processing) by receiving the original (unmodified) CRAMFS
image file (Original v3 ROM Image File) for the version (v3) being processed. The
CIRT also receives the modified CRAMFS image (Reorganized v2 ROM Image
File) for the version (v2) immediately preceding the version (v3) being processed.
The CIRT further receives image information (v2 ROM Image Information File) for
the version (v2) immediately preceding the version (v3) being processed; the image
information of an embodiment is received in an image information file but is not so
limited. A determination is made as to whether the data offset is to be changed and,
if s0, the new value of the data offset that is to be used. The parameters of the CIRT

15

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

command line are received and the command is executed, and the CIRT generates
the subsequent modified CRAMFS image (Reorganized v3 ROM Image File) upon
execution of the command.

The CIRT of an embodiment also modifies or reorganizes ROM images with
multiple CRAMFS components, as described above. Figure 7 is a block diagram of
image processing 700 when the image includes multiple CRAMEFS components,
under an embodiment. The image processing of this example includes processing of
an initial version of the image (v1 ROM Image or v1) and one additional version (v2
ROM Image or v2) of the image, where the image includes two (2) CRAMFS
components (Comp A and Comp B) but is not so limited. The processing includes
processing the initial version of the image (v1) by processing the first CRAMFS
component (vl Comp A Processing) and processing the second CRAMEFS
component (vl Comp B Processing) of the initial version (v1). The processing
further includes processing the additional version of the image (v2) by processing
the first CRAMFS component (v2 Comp A Processing) and processing the second
CRAMFS component (v2 Comp B Processing) of the additional version (v2). The
embodiment can process any number of image versions having any number of
components and is not limited to processing two (2) versions of an image having
two (2) CRAMEFS components.

Generally, each component of an image is processed in turn and, similarly,
each version of an image is processed in turn. To reorganize an image, the received
image file is processed and then reprocessed by the CIRT as appropriate to the
number of components of the image. During each processing iteration a particular
CRAMFS component of the image is specified (e.g., from first to last), and the
CIRT reorganizes the specified component as described herein. When all CRAMFS

. components of an image are reorganized the CIRT outputs an image that includes all
reorganized components. Additional versions of the image are processed in order to
reorganize the CRAMFS components of the version, with the CRAMFS components
of each version processed in turn.

The processing 700 of this example includes an image that includes two
components (Comp A and Comp B). The components are processed in turn but are
not so limited. Consequently, the processing 700 begins with processing of the first
component of the first version (v1 Comp A Processing). The CIRT receives the
original (unmodified) image file (Original vl ROM Image File) along with one or

16

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

more input parameters. The input parameters as described above include or specify
a CRAMFS start address, CRAMEFS size, and data offset of the first component
Comp A, but are not so limited. The CIRT processing (vl Comp A Processing)
generates a first modified image (Reorganized vl Comp A ROM Image File) that
includes a reorganized version of the first component (Comp A). The processing
(vl Comp A Processing) also generates and outputs an image information file (v1
Comp A ROM Image Information File) corresponding to the reorganized image file.

The processing 700 continues with processing of the second component (v1
Comp B Processing). The CIRT receives the reorganized image file (Reorganized
vl Comp A ROM Image File) along with input parameters that include or specify a
CRAMFS start address, CRAMFS size, and data offset of the second component
Comp B. The CIRT processing (vl Comp B processing) generates a second
modified image (Reorganized v1 Comp A&B ROM Image File) that includes a
reorganized version of both the first component (Comp A) and the second
component (Comp B). The processing (vl Comp B Processing) also generates and
outputs an image information file (vl Comp B ROM Image Information File)
corresponding to the reorganized image file.

The processing 700 of this example continues with processing of a second
version of the image (Original v2 ROM Image File) that includes two components
(Comp A and B). The components are processed in turn so the first component
Comp A is processed first. The processing (v2 Comp A Processing) receives inputs
that include but are not limited to the original (unmodified) second version (Original
v2 ROM Image File), the reorganized initial image (Reorganized vl Comp A&B
ROM Image File), and the image information file of the a first modified image of
the initial version (Reorganized vl Comp A ROM Image File). The CIRT also
receives input parameters that include or specify a CRAMFS start address,
CRAMEFS size, and data offset of the first component Comp A of the second version
(v2). The CIRT processing (v2 Comp A processing) generates a first modified
image (Reorganized v2 Comp A ROM Image File) that includes a reorganized
version of the first component (Comp A) of the second version (v2) of the image.
The processing (v2 Comp A Processing) also generates and outputs an image
information file (v2 Comp A ROM Image Information File) corresponding to the

reorganized image file.

17

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

The processing 700 continues with processing of the second component of
the second version (v2 Comp B Processing). The CIRT receives the reorganized
image file of the second version (Reorganized v2 Comp A ROM Image File) along
with the image information file (vl Comp B ROM Image Information File)
corresponding to the second modified image of the first version and the image
information file of the first modified image of the initial version (Reorganized v1
Comp A ROM Image File). The CIRT also receives input parameters that include or
specify a CRAMFS start address, CRAMFS size, and data offset of the second
component Comp B of the second version (v2). The CIRT processing (v2 Comp B
Processing) generates a second modified image (Reorganized v2 Comp A&B ROM
Image File) that includes a reorganized version of both the first component (Comp
A) and the second component (Comp B). The processing (v2 Comp B Processing)
also generates and outputs an image information file (v2 Comp A&B ROM Image
Information File) corresponding to the reorganized image file.

The NSCD uses the reorganized images of the first version and the second
version to determine differences in content between the versions. The NSCD
Processing thus receives for example the Reorganized v1 Comp A&B ROM Image
File and the Reorganized v2 Comp A&B ROM Image File. The NSCD Processing
determines content or data differences between the two versions of the image by
determining differences between the modified image of the first version and the
modified image of the second version using information of the modified image files.

Figure 8 is block diagram of the CIRT 800, under an embodiment. The
CIRT 800 includes components that comprise one or more of a control module 802,
input verifier 804, logic verification and bridge CRAMEFS and Datalnfo library 806,
strategy manager 808, a number of strategies (e.g., S1, S2, 83, etc.) (e.g.,
repositioning logic) under control of the strategy manager 808, a log file 810, a
CRAMEFS library 812, and a DataInfo handling library 814.

The components of the CIRT 800 receive and read an input image, and
verify or validate the input image and the input parameters for completeness and
correctness. Figure 9 is an example of a received CRAMFS image 900, under an
embodiment. The CRAMFS image 900 includes a CRAMFS header section and a
CRAMFS body. The header section includes a super header section S and a
directory header section H. The super header S is a fixed 72-byte header that

includes information like the image size, the integrity check signatures,
18

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

configurations, and the root node information to name a few. The directory header
H is a variable section which includes the names of the directories, files, symbols,
etc. The directory header section H also includes the pointet/location of each file in
the data section. Additionally, the directory header H includes information like the
hierarchy of the directories and their contents.

The CRAMFS body includes the data section D, which can include
compressed and uncompressed sections or portions. The data section includes the
data of the files/symbols that are specified in the directory header, but is not so
limited.

Figure 10 is an example of an original CRAMFS image (version Vg) and a
new CRAMFS image (version Vy), under an embodiment. In this example the
sections of the new image Vy labeled “C” represent sections that include actual
changes to the content. The new image Vi shows how the content of all unchanged
sections of the image is shifted as a result of the actual changes in the changed
sections C.

Upon validating the new image, components of the CIRT 800 pre-process
the new image by initially manipulating or rearranging the image by preparing or
generating an image that includes all non-changed file data portions of the input
image. Figure 11 is the image manipulation 1100 of the CIRT, under an
embodiment. The CIRT receives a CRAMFS image Ix (where X represents &
version number of the image and is a value 1, 2, etc.) for manipulation or
reorganization from a source Sy like a software provider. The CIRT generates an
equivalent image I’ from the received image Ix. The equivalent image I'xis
registered for version X at the NSCD and used in the update process to generate
difference files or delta files as described above.

The CIRT of an embodiment uses the image manipulation 1100 to pre-
process the new image VY, also referred to as the current base version, using the
original image Vg and in so doing generates an image that is “equivalent” to the
original image. This manipulation or rearrangement includes allocating a fixed gap
or gap between the CRAMFS header and CRAMFS body (described above with
reference to Figure 9) as per a previous version of the image. The gaps in files that
are most likely to change can be pre-filled. The CIRT in generating the equivalent
image therefore adds padding to the header section using the gap and repositions

changed sections having changed data. The CIRT of an embodiment repositions the
19

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

changed sections to one or more reserved areas in the image as described below, but
is not limited to this repositioning strategy as the repositioning is configurable
through one or more options.

Figure 12 shows an equivalent image V’p for the original version and an
equivalent image V’y for the original version, under an embodiment. The CIRT
generates an equivalent image by generating an image with an initial buffer or
reserved area RESH in the header section H (if there is no version prior to the
current version being processed by the CIRT then the CIRT outputs this image with
the initial buffer as the equivalent image). The CIRT logic (repositioning logic)
repositions changed sections C of the image to spare reserved space RESD for file
body data D at the end of the current image but is not so limited. In this example the
sections of the new equivalent image V’y labeled “C” represent sections that include
actual changes to the content.

The repositioning logic uses one or more of a number of different strategies
to generate different modified images, and then determines the best image resulting
from the different strategies. The different strategies are controlled by the strategy
manager using configurable or programmable logic, but are not so limited. The
repositioning logic under which the repositioning is performed can include one or
more of best-fit algorithms, worst-fit algorithms, and custom logic to name a few.
Regardless of the logic used, the CIRT generates an equivalent image under all
available repositioning logic or strategies and calculates which of the equivalent
images provides the best equivalent image.

The modified images resulting from each of the different strategies are
evaluated and the best image is selected. The CIRT of an embodiment selects the
best image using the ICF, as described above, but other techniques can be used in
alternative embodiments. Components of the CIRT perform validity and integrity
checks on the selected modified image and output the modified image and any
corresponding information files (e.g., image information file).

In repositioning sections of a received image to generate an equivalent
image, the CIRT can handle different sections as appropriate to the type of content
in the sections. For example, since the header section is the start of the image and is
highly prone to changes, its shift will surely shift all following data sections.
Therefore, the CIRT adds a gap in the header section to allow for growth of the

header section. The size of this gap is configurable. Similarly, some data sections
20

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

are more prone to change and can be known in advance (e.g., prelink.cache files,
Jo.cache files, etc.). The CIRT also provides these files with an extra gap so as to
allow for changes in size of these files.

Compressed files or data sections of an embodiment are arranged according
to their location in the previous version of the current image so that they occupy the
same location in the equivalent image. Regarding eXecute-In-Place (XIP) files or
data sections, the CIRT attempts to put all XIP files together in the equivalent
image. This is done because the XIP data alignment requirement would result in
wasted space as a result of padding bytes in the equivalent image if XIP files were
placed between file data sections; putting all XIP files together in the image can
eliminate wasted space in the equivalent image because the CIRT only uses padding
as necessary to keep the real data and alignment intact in the equivalent image
according to the previous version of the current image.

Figure 13 is a flow diagram for modifying 1300 an image, under an
embodiment. The modifying 1300 receives 1302 an image that includes one or
more CRAMFS components. Any changed data sections of the CRAMFS
component(s) are determined or identified 1304. The modifying 1300 further
includes generating 1306 one or more reorganized CRAMFS components by
reorganizing the received CRAMFS component. Reorganizing of an embodiment
includes moving at least one changed section of any changed sections from a first
position to a second position in the CRAMFS component. A modified image is
generated that includes the reorganized CRAMFS components.

Figure 14 is a flow diagram for file differencing 1400 using modified
versions of images, under an embodiment. The differencing 1400 operations receive
1402 a first version of an image. The image includes static file system images but is
not necessarily so limited. A modified first version is generated 1404 by
reorganizing one or more components of the first version. Reorganizing includes
moving at least one changed data section of the component(s) from a first position to
a second position in the component. The differencing continues by receiving 1406
at least one other version of the image and generating 1408 at least one other
modified version by reorganizing one or more components of each of the other
versions. Differences in content are determined 1410 between the first version and
at least one of the other versions by determining content differences betweeri the

modified first version and the corresponding other modified version.

21

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

The IRT of an embodiment can be used as described above in differencing
and updating systems. For example, the CIRT can be used as a component of
systems and methods for SFS differencing and updating as described in the Related
Applications. The systems and methods for SFS differencing and updating include
portion-level differencing and block-level updating of update units of an original
image (referred to as device blocks or blocks) as described below. The differencing
and updating of an embodiment splits SFS images into a series of portions based on
block information and the SFS image structure. A delta file is generated for each
portion (portion-level differencing) of the new SFS image, and the delta file includes
information of differences between the portion of the new SFS image and the
portion(s) of the original SFS image to which the new SFS image portion
corresponds (a new portion can depend on more than one original portion, and in
addition, the original portion(s) might not be in the same location as the new
portion). The delta files are transferred to a device for use in updating images of the
device to the new SFS image. The target SFS image of the device is updated block-
by-block using information of the delta files. The block-by-block update of an
embodiment reconstructs all portions of the new SFS image in a device block in
random access memory (RAM) of the host device and then writes the reconstructed
block into ROM of the host device.

The SFS differencing and updating of embodiments described below
receives images of a static file system. The images, which include an original image
and a new image, each include a number of blocks, for example super blocks, data
blocks, etc. The SFS differencing splits the images by using information of the
blocks to split the images into multiple portions. Differences are determined
between content of the images by determining differences between the portions of
the original image and the new image, where the differences are generated for each
portion of the new image. The differences include byte-level differences between
the portions, but are not so limited. A delta file is generated that includes the
differences for each portion of the new image.

The SFS differencing and updating of embodiments includes updating by
which the SFS of an image hosted on a portable device is updated in-place on the
portable device. The updating receives the delta file at a portable device via at least
one coupling. Dependent ones of the original portions hosted on the portable device
are assembled, and at least one of the new portion that is identified that corresponds

22

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

to the delta file received, where the new portion location in ROM is encoded in the
SFS delta package associated with its corresponding delta file in an embodiment.
The updating reconstructs at least one new portion on the portable device that
corresponds to the delta file identified. The reconstructed new portions of the new
image are written to the read-only memory (ROM) of the portable device.

Figure 15 is a block diagram of a SFS differencing system 1500, under an
embodiment. The SFS differencing system includes an image processing module
1502, a dependency generation module 1504, a difference engine or module 1506,
and a packaging engine or module 1508, but is not so limited. The dependency
generation module 1504 of an embodiment is coupled to the image processing
module 1502. The difference engine 1506 of an embodiment is coupled to the
dependency generation module 1504. The packaging engine 1508 of an
embodiment is coupled to the difference engine 1506.

The CIRT can be a component of the image processing module 1502 for
example. Also, the CIRT can be coupled to and/or a component of one or more of
the image processing module 1502, dependency generation module 1504, difference
engine or module 1506, packaging engine or module 1508, and/or various other
components of the SFS differencing system 1500.

The SFS differencing system 1500 of an embodiment couples among
components of a host computer system (not shown), where the components can
include at least one of a processor, a controller, a memory device, and/or a bus, but
are not so limited. One or more of the components or modules 1502-1508 of the
SFS differencing system 1500 run under control of at least one algorithm, program,
or routine. A host computer system processor couples among the components of the
host computer system and the components 1502-1508 of the SFS differencing
system 1500 under program control. While the image processing module 1502,
dependency generation module 1504, difference engine 1506, and packaging engine
1508 are shown as separate blocks, some or all of these blocks 1502-1508 can be
monolithically integrated onto a single chip, distributed among a number of chips or
components of a host system, and/or provided by one or some combination of
programs or algorithms. The programs or algorithms when present can be
implemented in software algorithm(s), firmware, hardware, and any combination of

software, firmware, and hardware.

23

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

In operation the SFS differencing system 1500 receives at least one original
SFS image 1512 and at least one new SFS image 1514 and performs portion-level '
differencing to generate one or more delta files as described below. The delta files
are assembled into a delta package 1522 for transfer to a portable or mobile device,
also referred to as a client device. These differences include byte-level differences
between one or more portions of blocks of the compared images, but are not so
limited. The SFS differencing system 1500 generates the delta file in a processor-
based or computer system or running under a processor-based or computer system.
The computer system on which or under which the SFS differencing system runs
includes any collection of computing components and devices operating together, as
is known in the art. The computer system can also be a component or subsystem
within a larger computer system or network.

Contents of the delta file provide an efficient representation of the
differences between the original image 1512 and the new image 1514. The delta file
can include meta-data along with actual data of replacement and/or insertion
operations that represent the differences between the new or current version of the
associated file and previous versions of the file, as described in the United States
Patent Number 6,925,467 issued to InnoPath Software, Inc. of Sunnyvale, California
on August 2, 2005. The SFS differencing system 1500 provides any differences
between the original image 1512 and the new image 1514 in delta files of the delta
package 1522 using a minimum number of bytes and a pre-defined format or
protocol, thereby providing a delta file optimized in space.

The SFS differencing system 1500 performs portion-level differencing, and
Figure 16 is a flow diagram for SFS differencing 1600, under an embodiment. The
SFS differencing is performed, for example, using the SFS differencing system 1500
described above and elsewhere herein. The SFS differencing 1600 receives 1602
images of a static file system. The images include an original image and a new
image, but are not so limited. Each image also includes a number of blocks, for
example super blocks, data blocks, etc. The blocks are of a pre-specified size (e.g.,
64 KB, 128 KB, etc.) but are not so limited. The blocks of the received images are
split 204 into a number of portions using information of the blocks for example.
The SFS differencing 1600 determines 1606 differences between content of the
images by determining differences between the portions of each of the original

image and the new image. A delta file is generated 1608 that includes information
24

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

of the differences in content or data between each portion of the new image and one
or more aligned portions of the original image.

As another example, Figure 17 is a flow diagram for SFS differencing 1700,
under an embodiment. The SFS differencing 1700 receives 1702 images of a static
file system, as described above with reference to Figure 15. The received original
image is divided 1704 into one or more original sections or portions, and the
received new image is divided 1704 into one or more new sections or portions. The
SFS differencing identifies 1706 dependency alignments between the original
sections and the new sections. A delta file is generated 1708 for at least one of the
new sections. The delta file includes but is not limited to differences between a new
section and one or more original section(s), where the new section depends on the
original section(s). The delta files of alternative embodiments may include
differences between at least one new section and at least one original section on
which the new sections depend.

The image processing module 1502, as described above with reference to
Figure 15, receives each of an original SFS image 1512 and a new SFS image 1514.
The image processing module 1502 of an embodiment operates to begin the portion-
level differencing of the received images by parsing the specific image area and
extracting information of the images. The information extracted about the images is
used in differencing and updating operations. This parsing includes decoding the
information of the static file system structure and internal format to get related
information for use in performing SFS image differencing and updating. The
information resulting from the parsing includes, but is not limited to, the locations
and sizes of blocks of the image (e.g., super blocks, data blocks, etc.), the
compression library used (if compressed), the type of encryption used to encrypt the
image (e.g., encryption algorithm, encryption key, etc.) (if encrypted), to name a few.

Based on the target device block information, the image processing module
1502 divides or splits the SFS image into a number or series of portions. Figure 18
is an example SFS image 1800 following splitting into portions 1802 by the image
processing module 102, under an embodiment. The portions 1802 include portions
or parts of a block (e.g., “Block 4”) of the image but are not so limited. For example,
following splitting of an embodiment Block 2 includes portions 1802-2a, 1802-2b,
and 1802-2¢, and Block 4 includes portions 1802-4a and 1802-4b. Following the
splitting operation a block may contain any number of portions as appropriate to the

25

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

data content of the block and/or the specific structure of the SFS image. The
portions include for example a super block/header portion, a control meta-data
portion, a file portion, etc. The SFS image processing module 1502 may perform
decompression (when the image is compressed), decryption (when the image is
encrypted) and/or any other processing needed in order for the image processing
module 1502 to extract data from the received image.

The image processing module 1502 of an embodiment also outputs a file
which includes mapping information like the SFS image/file name and one or more
locations of the SFS image/file name, for example. This file is referred to herein as
a hint file but is not so limited.

The dependency generation module 1504, also referred to herein as a
dependency analysis module or dependency generator, determines or generates a
mapping or alignment between the original images and the new images. The
alignment includes information as to portions of the new image that depend on
portions of the original image. The alignment of an embodiment also can include
information as to the sequence by which the portions of the new image are to be
updated during the in-place update of the original image hosted in the processor-
based portable device. The dependency generation module 104 uses information of
the specific structure of the SFS as domain knowledge (e.g., information from the
hint file) in performing the alignment, and the alignment is determined relative to
the block boundaries of the images, but is not so limited.

The difference engine 1506 generally determines or computes the portion-
level differences between data of each new portion of the new image and data of the
original portion of the original image. The difference engine 1506 uses information
received from the dependency generation module 1504 to read or gather one or more
portions of the original image on which each portion of the new image depends.
The difference engine 1506 of an embodiment computes the differences between
content of the new portion and content of the original portion upon which the new
portion depends. The identified differences in data between the original and new
portions are encoded into a file that is referred to herein as a delta file. In addition to
the encoded differences in data between original and new portions, the delta file can
include control information like dependency information of dependencies between
new portions and original portions. Furthermore, the delta file can include

verification information (e.g., checksum values, cyclic redundancy codes (CRCs),
26

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

etc.) of the delta body, the original portion of an image to be updated, and the
corresponding dependency information

While the difference engine 1506 described above determines differences
between original and new images at the portion-level, the difference engine of
alternative embodiments may determine differences using a different granularity
(e.g., multiple portions, etc.). Furthermore, while the difference engine 1506
described above generates a delta file for each portion of a new image that is
different from the portion of the original image on which it depends, alternative
embodiments may generate more than one delta file for each portion or may include
difference information of multiple portions in one delta file.

The packaging engine 1508 receives the delta files generated by the
difference engine 1506 and assembles the delta files into a delta package or
difference package. The packaging engine 1508 of an embodiment assembles the
delta files into the delta package according to an update order or sequence, but is not
so limited. The packaging engine 1508 can also perform additional operations on
the delta file and/or delta package, for example encrypting the delta package.

While the SFS differencing system 1500 described above is described as
including the image processing module 1502, dependency generation module 1504,
difference engine 1506, and packaging engine 1508 as separate modules or
components, the embodiment is not so limited. Alternative embodiments for
example can include functionality of the modules 1502-1508 in one or more
modules and/or distribute the functionality of modules 1502-1508 among any
number of modules or system components.

The SFS differencing and updating of embodiments include updating by
which SFS images hosted on a device like a portable electronic device are updated
in-place on the device, as described above. The updating receives the delta fileata
portable device via at least one coupling. Dependent ones of the original portions
hosted on the portable device are assembled, and at least one of the dependent
original sections is identified that corresponds to the delta file received. The
updating reconstructs at least one new portion on the portable device that
corresponds to the delta file identified. The reconstructed new portions of the new
image are written to the ROM of the portable device.

Figure 19 is a block diagram of an SFS differencing and updating system

1900, under an embodiment. The system 1900 includes an SFS differencing system
27

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

1500 and an SFS updating system 1950. The SFS differencing system 1500
includes an image processing module 1502, a dependency generation module 1504,
a difference engine 1506, and a packaging engine 1508, as described above with
reference to Figure 15, but is not so limited. In operation the SFS differencing
system 1500 receives at least one original SFS image 1512 and at least one new SFS
image 1514 and performs portion-level differencing to generate a delta package
1522 that includes one or more delta files as described herein.

The SFS differencing system 1500 generates the delta file in a processor-
based or computer system or running under a processor-based or computer system.
The computer system on which or under which the SFS differencing system 1500
runs includes any collection of computing components and devices operating
together, as is known in the art. The computer system can also be a component or
subsystem within a larger computer system or network.

The SFS updating system 1950 is hosted on a processor-based device, and
receives the delta file and performs updates to original images hosed on the portable
device. The processor-based device or system on which or under which the SFS
updating system 1950 runs includes any collection of computing components and
devices operating together, as is known in the art. The computer system can also be
a component or subsystem within a larger computer system or network. The
processor-based device or system can include mobile devices, for example, cellular
telephones, personal computers, portable computing devices, portable telephones,
portable communication devices, subscriber devices or units, and personal digital
assistants (PDAs). The mobile devices, also referred to as “mobile communication
devices,” “portable communication devices” and “communication devices,” can
include all such devices and equivalents, and are not limited to communication
devices that are wireless.

The SFS differencing system 1500 and SFS updating system 1950
communicate via a communication path 1906. The communication path 1906
includes any medium by which files are communicated or transferred between
processor-based devices or systems. Therefore, the communication path 1906
includes wireless couplings or connections, wired couplings or connections, and
hybrid wireless/wired couplings or connections. The communication path 1906 also
includes couplings or connections to and/or through networks or network
components including local area networks (LANS), metropolitan area networks

28

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

(MANG), wide area networks (WANS), proprietary networks, interoffice or backend
networks, and the Internet. The communication path 1906 can include various
network components (not shown) of a communication service provider or carrier,
but is not so limited. Furthermore, the communication path 1906 includes
removable fixed mediums like floppy disks, hard disk drives, and CD-ROM disks,
as well as telephone lines, buses, and electronic mail messages.

The delta package 1522 is transferred or transmitted to the SFS updating
system 1950 via the communication path 1906. The SFS updating system 1950
includes an update module 1952 that uses information of the delta package 1522 to
perform an in-place update 1954 of the SFS image 1512P hosted on the portable
device. The update module 1952 generally reconstructs the new image 1514P at the
portable device by applying contents of the delta package 1522 to portions of the
original SFS image 1512P hosted on the portable device. The reconstructed portions
of the new image 1514P are writtén to the ROM of the portable device, for example,
by writing the new image 1514P over the hosted original image 1512P. Upon
completion of this SFS update process, the SFS image now hosted on the portable
device is substantially identical to the new SFS image 1514 received in the first SFS
differencing system 1500.

Figure 20 is a flow diagram for SFS updating 2000, under an embodiment.
The SFS updating 2000 of an embodiment is used in resource-limited computing
devices for example. The SFS updating receives 2002 the delta file at a portable
device via at least one coupling. Dependent original portions of the SFS image
hosted on the portable device are assembled 2004. The updating 2000 identifies
2006 at least one of the dependent original sections that correspond to the received
delta file. The updalting 2000 reconstructs 2008 at least one new portion on the
portable device that corresponds to the delta file identified. The reconstructed new
portions of the new image are subsequently written to the memory (e.g., ROM) of
the portable device, for example, simultaneous with or subsequent to processing of
all delta files received in a delta package.

Figure 21 is a flow diagram for in-place updating 2100 of SFS images in
devices, under an embodiment. The updating 2100 can be performed for example
by an update module 1952 as described above with reference to Figure 19. The
updating 2100 uses the control information encoded in the received delta package to

determine 2102 that data of the delta package is not corrupt, thereby verifying the
29

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

integrity of the delta package contents. The integrity of each SFS image portion to
be updated can also be verified. If any data of the delta package is corrupt, the error
is reported 2104.

When it is determined 2102 that the data of the delta package is not corrupt,
the updating 2100 sets 2106 a pointer to the start of the delta package in order to
begin the update. The portion update order and device block update order is
implicitly encoded in the delta package of an embodiment. It is determined 2108
that a delta file is present at the start of the update and the update proceeds. The
delta file could be encrypted for security purposes and, in that case, the delta file is
decrypted (using appropriate keys) before or simultaneous with the start of the
update process. The updating 2100 uses information of the delta file contents (e.g.,
control information) to decode 2112 dependency formation information, read 2112
related portions of the original image (if necessary), unzip and/or decrypt 2112
dependent portions of the original image (if necessary), and assemble 2112
dependent content of original portions of the original image hosted on the portable
device.

The updating 2100 generates or reconstructs the new portion of the image
being updated by applying 2114 the contents of the delta file to the dependent
content of the original portion of the original image. The new portion once
reconstructed is written to an area of RAM in the host device, and is zipped and/or
encrypted 2114 as appropriate to the SFS image. The new portion is placed 2114
into a specific location in the block of the original image so as to replace the original
portion to which it corresponds. After each block of the new image is created or
reconstructed, that particular block is written to the ROM; alternative embodiments
may write the reconstructed blocks to the ROM at other points in the update process.
The update process then proceeds with processing the delta file for the next block.

The updating 2112 and 2114 described above continues until the end of the
delta package is reached and all delta files of the delta package have been processed.
In so doing, a determination 2116 is made as to whether the delta package includes
further delta files for use in updating additional portions of the original image.
When the delta package includes unprocessed delta files corresponding to additional
portions of the original image to be updated, operation returns to read and apply
these unprocessed delta files. When it is determined 2116 that all delta files of the

delta package have been processed and applied to the original image, the updating
30

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

2100 writes 2118 the new SFS image to the ROM of the portable device. The
updating of an embodiment overwrites the original SFS image with the new SFS
image, but alternative embodiments can write the new SFS image to one or more
other areas of ROM or other device memory areas.

Referring to Figures 1-3, 6-8, 11-17, and 19-21, the operations of the
processes are under control of at least one processor, but are not so limited. Those
skilled in the relevant art can create source code, microcode, program logic arrays or
otherwise implement the IRT, SFS differencing, and/or SFS updating of an
embodiment based on these flow diagrams and the detailed description provided
herein. The algorithm or routine operating according to these flow diagrams is
stored as program code in machine-readable or computer-readable memory areas or
devices of a computer system (e.g., non-volatile memory) that forms part of the
associated processors, in the associated memory areas, in removable media, such as
disks, or hardwired or preprogrammed in chips, such as electronically erasable
programmable ROM (“EEPROM”) semiconductor chips, or in any combination of
these components, but is not so limited.

The IRT of an embodiment includes a method comprising receiving an
image that includes at least one component, wherein the at least one component
includes a compressed read-only memory file system (CRAMFS) format. The
method of an embodiment comprises determining any changed sections of the at
Jeast one component. The method of an embodiment comprises generating at least
one reorganized component by reorganizing the at least one component, the
reorganizing including moving at least one changed section of any changed sections
from a first position to a second position in the component. The method of an
embodiment comprises generating a modified image that includes the at least one
reorganized component.

The image of an embodiment is a static file system image.

The method of an embodiment comprises receiving at least one parameter of
the at least one CRAMFS component, wherein the at least one parameter includes at
least one of a starting address of a CRAMFS component, a size of the CRAMFS
component, and a data offset of the CRAMFS component.

The method of an embodiment comprises determining a data offset of the at

least one CRAMFS component, the data offset specifying an amount of memory to

31

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

be allocated in the reorganized CRAMFS component for a header of the at least one
CRAMFS component.

The method of an embodiment comprises receiving at least one resize list,
wherein information of the resize list specifies at least one file that is to be increased
in size in the reorganized CRAMFS component, wherein the at least one file is
within at least one component of the reorganized CRAMFS component.

The second position of an embodiment follows any unchanged data section
of the at least one CRAMFS component.

The method of an embodiment comprises generating an image information
file that includes information of the modified image.

The method of an embodiment comprises converting the image to a binary
file simultaneous with or subsequent to receiving the image.

The byte-level differences between the CRAMFS component and the
reorganized CRAMFS component of an embodiment are at a minimum and the
reorganized CRAMFS component is functionally equivalent to a corresponding one
of the at least one CRAMFS component.

The method of an embodiment comprises determining differences in content
between a first version of a file and a second version of a file, wherein the first
version and the second version each include corresponding versions of the image,
wherein determining differences includes determining data differences between the
modified image of the first version and the modified image of the second version.

The at least one CRAMFS component of an embodiment includes a single
CRAMFS component. The method of an embodiment comprises receiving a first
version of the image. The method of an embodiment comprises determining any
changed sections of the CRAMFS component of the first version and generating a
first reorganized CRAMFS component by moving the changed sections. The
method of an embodiment comprises generating a modified first version that
includes the first reorganized CRAMFS component.

The method of an embodiment comprises receiving a second version of the
image. The method of an embodiment comprises determining any changed sections
of the CRAMFS component of the second version and generating a second
reorganized CRAMFS component by moving the changed sections. The method of
an embodiment comprises generating a modified second version that includes the

second reorganized CRAMES component.
32

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

The method of an embodiment comprises receiving a first image information
file of the first image.

The method of an embodiment comprises determining differences in content
between the first version and the second version by determining data differences
between the modified first version and the modified second version. The method of
an embodiment comprises generating a difference file that includes the differences
identified between the first version and the second version.

The method of an embodiment comprises receiving a third version of the
image. The method of an embodiment comprises determining any changed sections
of the CRAMFS component of the third version and generating a third reorganized
CRAMFS component by moving the changed sections. The method of an
embodiment comprises generating a modified third version that includes the third
reorganized CRAMFS component.

The method of an embodiment comprises receiving a second image
information file of the second image.

The method of an embodiment comprises determining differences in content
between the second version and the third version by determining data differences
between the modified second version and the modified third version.

The at least one CRAMFS component of an embodiment includes a plurality
of CRAMFS components. . The method of an embodiment comprises receiving a
first version of the image. The method of an embodiment comprises determining
any changed sections of a first CRAMFS component of the first version and
generating a first reorganized CRAMFS component by moving the changed
sections. The method of an embodiment comprises determining any changed
sections of a second CRAMEFS component of the first version and generating a
second reorganized CRAMFS component by moving the changed sections. The
method of an embodiment comprises generating a modified first version that
includes the first reorganized CRAMFS component and the second reorganized
CRAMFS component.

The method of an embodiment comprises determining any changed sections
of at least one additional CRAMFS component of the first version, wherein the at
least one additional CRAMFS component is in addition to the first CRAMFS
component and the second CRAMFS component. The method of an embodiment
comprises generating at least one additional reorganized CRAMFS component by

33

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

moving the changed sections of the at least one additional CRAMFS component,
wherein the generating a modified first version includes generating the modified first
version to include the first reorganized CRAMFS component, the second
reorganized CRAMFS component, and the at least one additional reorganized
CRAMFS component.

The method of an embodiment comprises receiving a second version of the
image. The method of an embodiment comprises determining any changed sections
of a first CRAMFS component of the second version and generating a third
reorganized CRAMFS component by moving the changed sections. The method of
an embodiment comprises determining any changed sections of a second CRAMFS
component of the second version and generating a fourth reorganized CRAMFS
component by moving the changed sections. The method of an embodiment
comprises generating a modified second version that includes the third reorganized
CRAMFS component and the fourth reorganized CRAMFS component. The
method of an embodiment comprises determining differences in content between the
first version and the second version by determining data differences between the
modified first version and the modified second version.

The IRT of an embodiment includes a method comprising receiving a first
version of an image that is a static file system image. The method of an embodiment
comprises generating a modified first version by reorganizing at least one
component of the first version, wherein reorganizing includes moving at least one
changed data section of the at least one component from a first position to a second
position in the component. The method of an embodiment comprises receiving at
least one other version of the image. The method of an embodiment comprises
generating at least one other modified version by reorganizing at least one
component of each of the at least one other version. The method of an embodiment
comprises determining differences in content between the first version and the at
Jeast one other version by determining content differences between the modified first
version and the at least one other modified version.

The method of an embodiment comprises generating a difference file that
includes the differences identified between the first version and the at least one other
modified version.

The reorganizing of an embodiment comprises identifying at least one
changed data section of each version of the image, wherein the at least one changed

34

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

data section includes a data section having changed content in at least one file of the
component. The reorganizing of an embodiment comprises repositioning the at least
one changed data section to at least one position that follows all unchanged data
sections of the component.

The at least one component of an embodiment includes a compressed read-
only memory file system (CRAMFS) format component.

The IRT of an embodiment includes a device for differencing static file
system images. The device of an embodiment comprises a receiver that receives
images of a static file system, the images including at least one compressed read-
only memory file system (CRAMFS) format component. The device of an
embodiment comprises a pre-processor coupled to the receiver, the pre-processor
configured to determine any changed sections of the at least one CRAMFS
component, the pre-processor further configured to generate at least one reorganized
CRAMFS component by reorganizing the at least one CRAMFS component, the
reorganizing including moving at least one changed section of any changed sections
from a first position to a second position in the CRAMFS component, the pre-
processor further configured to generate a modified image that includes the at least
one reorganized CRAMFS component.

The pre-processor of an embodiment is configured to receive at least one
parameter of the at least one CRAMFS component, wherein the at least one
parameter includes at least one of a starting address of a CRAMFS component, a
size of the CRAMFS component, and a data offset of the CRAMFS component.

The pre-processor of an embodiment is configured to determine a data offset
of the at least one CRAMFS component, the data offset specifying an amount of
memory to be allocated in the reorganized CRAMFS component for a header of the
at least one CRAMFS component.

The pre-processor of an embodiment is configured to receive at least one
resize list, wherein information of the resize list specifies at least one file that is to
be increased in size in the reorganized CRAMFS component, wherein the at least
one file is within at least one component of the reorganized CRAMFS component.

The second position of an embodiment follows any unchanged data section
of the at least one CRAMFS component.

The pre-processor of an embodiment is configured to generate an image
information file that includes information of the modified image.

35

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

The byte-level differences between the CRAMFS component and the
reorganized CRAMFS component of an embodiment are at a minimum and the
reorganized CRAMFS component is functionally equivalent to a corresponding one
of the at least one CRAMFS component.

The pre-processor of an embodiment is configured to determine differences
in content between a first version of a file and a second version of a file, wherein the
first version and the second version each include corresponding versions of the
image, wherein determining differences includes determining data differences
between the modified image of the first version and the modified image of the
second version.

The IRT of an embodiment includes a system comprising a receiver that
receives a first version of an image and at least one other version of the image,
wherein the image is a static file system image. The system of an embodiment
includes a pre-processor coupled to the receiver, the pre-processor configured to
generate a modified first version by reorganizing at least one component of the first
version, wherein reorganizing includes moving at least one changed data section of
the at least one component from a first position to a second position in the
component, the pre-processor further configured to generate at least one other
modified version by reorganizing at least one component of each of the at least one
other version. The system of an embodiment includes a difference engine coupled
to the pre-processor, the difference engine configured to determine differences in
content between the first version and the at least one other version by determining
content differences between the modified first version and the at least one other
modified version.

The pre-processor of an embodiment is configured to receive at least one
parameter of the at least one CRAMFS component, wherein the at least one
parameter includes at least one of a starting address of a CRAMFS component, a
size of the CRAMFS component, and a data offset of the CRAMFS component.

The pre-processor of an embodiment is configured to determine a data offset
of the at least one CRAMFS component, the data offset specifying an amount of
memory to be allocated in the reorganized CRAMFS component for a header of the
at least one CRAMEFS component.

The pre-processor of an embodiment is configured to receive at least one

resize list, wherein information of the resize list specifies at least one file that is to
36

10

15

20

25

30

WO 2006/052897 PCT/US2005/040312

be increased in size in the reorganized CRAMFS component, wherein the at least
one file is within at least one component of the reorganized CRAMFS component.

The second position of an embodiment follows any unchanged data section
of the at least one CRAMFS component.

The pre-processor of an embodiment is configured to generate an image
information file that includes information of the modified image.

The byte-level differences between the CRAMFS component and the
reorganized CRAMFS component of an embodiment are at a minimum and the
reorganized CRAMFS component is functionally equivalent to a corresponding one
of the at least one CRAMFS component.

The difference engine of an embodiment is configured to determine
differences in content between a first version of a file and a second version of a file,
wherein the first version and the second version each include corresponding versions
of the image, wherein determining differences includes determining data differences
between the modified image of the first version and the modified image of the
second version.

The IRT of an embodiment includes a computer readable media including
executable instructions which, when executed in a processing system, reorganize
static file system images by receiving an image that includes at least one component,
wherein the at least one component includes a compressed read-only memory file
system (CRAMFS) format. The executed instructions of an embodiment reorganize
static file system images by determining any changed sections of the at least one
component. The executed instructions of an embodiment reorganize static file
system images by generating at least one reorganized component by reorganizing the
at least one component, the reorganizing including moving at least one changed
section of any changed sections from a first position to a second position in the
component. The executed instructions of an embodiment reorganize static file
system images by generating a modified image that includes the at least one
reorganized component.

The SFS differencing and updating of an embodiment includes a device for
differencing static file system images. The device of an embodiment comprises a
receiver that receives images of a static file system, the images including an original
image and a new image. The device of an embodiment also comf)rises a pre-

processor that divides the original image into numerous original sections and divides
37

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

the new image into numerous new sections. The device of an embodiment
comprises a dependency generator that identifies dependency alignments between
the plurality of original sections and the plurality of new sections. The device of an
embodiment comprises a difference engine that generates a delta file for at least one
of the new sections, wherein the delta file includes differences between the at least
one new sections and at least one of the original sections on which the at least one
new sections depends.

The device of an embodiment further comprises a packaging engine that
assembles the delta file for the at least one of the new sections according to an
update sequence.

The SES differencing and updating of an embodiment includes a method
comprising splitting blocks of SFS images into portions based on block information
and image structure information, wherein the SFS images include original images
and new images. The method of an embodiment comprises performing portion-level
differencing by generating a delta file for a new portion of the new image, wherein
the delta file includes information of differences between the new portion and one of
more corresponding original portions of the original image. The method of an
embodiment comprises transferring the delta file to a client device. The method of
an embodiment comprises updating a target SFS image of the client device using
information of the delta file by reconstructing all portions of the new image in a
device block in random access memory of the host device and writing the device
block into read-only memory of the host device.

The SFS differencing and updating of an embodiment includes a method
comprising receiving images of a static file system, the images including an original
image and a new image. The method of an embodiment comprises dividing the
original image into a plurality of original sections and divides the new image into a
plurality of new sections. The method of an embodiment comprises identifying
dependency alignments between the plurality of original sections and the plurality of
new sections. The method of an embodiment comprises generating a delta file for at
least one of the new sections, wherein the delta file includes differences between the
at least one new sections and at least one of the original sections on which the at
least one new sections depends.

The SFS differencing and updating of an embodiment includes a system

comprising a receiver that receives images of a static file system, the images
38

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

including an original image and a new image. The system of an embodiment
comprises a pre-processot coupled to the receiver that divides the original image
into a plurality of original sections and divides the new image into a plurality of new
sections. The system of an embodiment comprises a dependency generator coupled
to the pre-processor that identifies dependency alignments between the plurality of
original sections and the plurality of new sections. The system of an embodiment
comprises a difference engine coupled to the dependency generator that generates a
delta file for at least one of the plurality of new sections that is different from at least
one of the plurality of original sections on which the at least one new section
depends, the delta file including coded differences between a new section and one or
more original sections. The system of an embodiment comprises a packaging engine
coupled to the difference engine that assembles the delta files into a delta package.

The system of an embodiment comprises an update engine in a portable
device, wherein the portable device receives the delta package via at least one
coupling, wherein the update engine assembles dependent original sections of the
plurality of original sections hosted on the portable device, identifies at least one
delta file of the delta package that corresponds to at least one of the dependent
original sections, and
reconstructs at least one new section that corresponds to the at least one delta file
identified.

The update engine of an embodiment receives the delta package and verifies
integrity of contents of at least one delta file of the delta package.

The update engine of an embodiment reconstructs the at least one new
section in a first memory area of the portable device.

The first memory area of an embodiment is in random access memory
(RAM).

The update engine of an embodiment continues identifying delta files of the
delta package that correspond to at least one of the dependent original sections and
reconstructing new sections that correspond to the delta files identified.

The update engine of an embodiment determines that all delta files of the
delta package have been applied to the original sections hosted on the portable
device and in response to the determination writes the reconstructed new sections to

a second memory area of the portable device.

39

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

The update engine of an embodiment writes each block of the reconstructed
new sections to a second memory area.

The second memory area of an embodiment is in read-only memory (ROM).

The SFS differencing and updating of an embodiment includes a method
comprising receiving images of a static file system, the images including an original
image and a new image, wherein the images include a plurality of blocks. The
method of an embodiment comprises splitting the images by using information of
the plurality of blocks to split the images into a plurality of portions. The method of
an embodiment comprises determining differences between content of the images by
determining differences between the plurality of portions of the original image and
the new image. The method of an embodiment comprises generating a delta file that
includes the differences for at least one portion.

The method of an embodiment comprises transferring the delta file to a
portable wireless device that hosts the original image.

The method of an embodiment comprises receiving the delta file at a
portable device via at least one coupling. The method of an embodiment comprises
assembling dependent original portions of the plurality of original portions hosted
on the portable device. The method of an embodiment comprises identifying at least
one of the dependent original portions that corresponds to the delta file received.
The method of an embodiment comprises reconstructing at least one new portion
that corresponds to the at least one delta file identified.

The method of an embodiment comprises assembling a plurality of the delta
files into a delta package.

The method of an embodiment comprises transferring the delta package to a
portable wireless device that hosts the original image.

The method of an embodiment comprises receiving the delta package at the
portable device via at least one coupling. The method of an embodiment comprises
assembling dependent original portions of the plurality of original portions hosted
on the portable device. The method of an embodiment comprises identifying at least
one delta file of the delta package that corresponds to at least one of the dependent
original portions. The method of an embodiment comprises reconstructing at least
one new portion that corresponds to the at least one delta file identified.

The SFS differencing and updating of an embodiment includes computer

readable media including executable instructions which, when executed in a
40

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

processing system, determine differences between images by receiving images of a
static file system, the images including an original image and a new image, wherein
the images include a plurality of blocks. The media further determines differences
between images by splitting the images by using information of the plurality of
blocks to split the images into a plurality of portions. The media further determines
differences between images by determining differences between content of the
images by determining differences between the plurality of portions of the original
image and the new image. The media further determines differences between
images by generating a delta file that includes the differences for at least one
portion.

The media further determines differences between images by transferring the
delta file to a portable wireless device that hosts the original image.

The media further determines differences between images by receiving the
delta file at a portable device via at least one coupling. The media further
determines differences between images by assembling dependent original portions
of the plurality of original portions hosted on the portable device. The media further
determines differences between images by identifying at least one of the dependent
original portions that corresponds to the delta file received. The media further
determines differences between images by reconstructing at least one new portion
that corresponds to the at least one delta file identified.

The media further determines differences between images by assembling a
plurality of the delta files into a delta package.

The media of an embodiment may transfer the delta package to a portable
wireless device that hosts the original image.

The media of an embodiment receives the delta package at the portable
device via at least one coupling. The media of an embodiment assembles dependent
original portions of the plurality of original portions hosted on the portable device.
The media of an embodiment identifies at least one delta file of the delta package
that corresponds to at least one of the dependent original portions. The media of an
embodiment reconstructs at least one new portion that corresponds to the at least one
delta file identified.

Aspects of the IRT and SFS differencing and updating described above may
be implemented as functionality programmed into any of a variety of circuitry,

including programmable logic devices (PLDs), such as field programmable gate
41

WO 2006/052897 PCT/US2005/040312

10

15

20

25

30

arrays (FPGAs), programmable array logic (PAL) devices, electrically
programmable logic and memory devices and standard cell-based devices, as well as
application specific integrated circuits (ASICs). Some other possibilities for
implementing aspects of the IRT and SFS differencing and updating include:
microcontrollers with memory (such as electronically erasable programmable read
only memory (EEPROM)), embedded microprocessors, firmware, software, etc.
Furthermore, aspects of the IRT and SFS differencing and updating may be
embodied in microprocessors having software-based circuit emulation, discrete logic
(sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum
devices, and hybrids of any of the above device types. Of course the underlying
device technologies may be provided in a variety of component types, €.g., metal-
oxide semiconductor field-effect transistor (MOSFET) technologies like
complementary metal-oxide semiconductor (CMOS), bipolar technologies like
emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer
and metal-conjugated polymer-metal structures), mixed analog and digital, etc.

Unless the context clearly requires otherwise, throughout the description and
the claims, the words “comprise,” “comprising,” and the like are to be construed in
an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a
sense of “including, but not limited to.” Words using the singular or plural number
also include the plural or singular number respectively. Additionally, the words
“herein,” “hereunder,” “above,” “below,” and words of similar import, when used in
this application, refer to this application as a whole and not to any particular portions
of this application. When the word “or” is used in reference to a list of two or more
items, that word covers all of the following interpretations of the word: any of the
items in the list, all of the items in the list and any combination of the items in the
list.

The above description of illustrated embodiments of the IRT and SFS
differencing and updating is not intended to be exhaustive or to limit the invention to
the precise form disclosed. While specific embodiments of, and examples for, the
IRT and SFS differencing and updating are described herein for illustrative
purposes, various equivalent modifications are possible within the scope of the IRT
and SFS differencing and updating, as those skilled in the relevant art will recognize.

The teachings of the IRT and SFS differencing and updating provided herein can be

42

10

15

20

WO 2006/052897 PCT/US2005/040312

applied to other processing systems and communication systems, not only for the
IRT and SFS differencing and updating systems described above.

The elements and acts of the various embodiments described above can be
combined to provide further embodiments. These and other changes can be made to
the IRT and SFS differencing and updating in light of the above detailed description.
Furthermore, aspects of the IRT and SFS differencing and updating can be modified,
if necessary, to employ the systems, functions and concepts of the various patents
and applications described above to provide yet further embodiments of the IRT and
SFS differencing and updating.

In general, in the following claims, the terms used should not be construed to
limit the IRT and SFS differencing and updating to the specific embodiments
disclosed in the specification and the claims, but should be construed to include all
processing systems that operate under the claims to provide file pre-processing,
differencing and updating. Accordingly, the IRT and SFS differencing and updating
is not limited by the disclosure, but instead the scope of the IRT and SFS
differencing and updating is to be determined entirely by the claims.

While certain aspects of the IRT and SFS differencing and updating are
presented below in certain claim forms, the inventors contemplate the various
aspects of the IRT and SFS differencing and updating in any number of claim forms.
For example, while only one aspect of the IRT and SFS differencing and updating is
recited as embodied in computer-readable medium, other aspects may likewise be
embodied in computer-readable medium. Accordingly, the inventors reserve the
right to add additional claims after filing the application to pursue such additional

claim forms for other aspects of the IRT and SFS differencing and updating.

43

O 0 3 & W h~ W N =

— ek
—_ O

AW SN -

DWW =

—_

WO 2006/052897 PCT/US2005/040312

Claims

What is claimed is:

1. A method comprising:

receiving an image that includes at least one component, wherein the at least
one component includes a compressed read-only memory file system (CRAMFS)
format;

determining any changed sections of the at least one component;

generating at least one reorganized component by reorganizing the at least
one component, the reorganizing including moving at least one changed section of

any changed sections from a first position to a second position in the component;

and
generating a modified image that includes the at least one reorganized
component. ’
2. The method of claim 1, wherein the image is a static file system image.
3. The method of claim 1, further comprising receiving at least one parameter

of the at least one CRAMFS component, wherein the at least one parameter includes
at least one of a starting address of a CRAMFS component, a size of the CRAMFS
component, and a data offset of the CRAMFS component.

4, The method of claim 1, further comprising determining a data offset of the at
least one CRAMFS component, the data offset specifying an amount of memory to
be allocated in the reorganized CRAMFS component for a header of the at least one
CRAMEFS component.

5. The method of claim 1, further comprising receiving at least one resize list,
wherein information of the resize list specifies at least one file that is to be increased
in size in the reorganized CRAMFS component, wherein the at least one file is

within at least one component of the reorganized CRAMFS component.

6. The method of claim 1, wherein the second position follows any unchanged

data section of the at least one CRAMFS component.
44

WO 2006/052897 PCT/US2005/040312

—

AW -

AN W kW N

XL N Bt W N

7. The method of claim 1, further comprising generating an image information

file that includes information of the modified image.

8. The method of claim 1, further comprising converting the image to a binary

file simultaneous with or subsequent to receiving the image.

9. The method of claim 1, wherein the byte-level differences between the
CRAMFS component and the reorganized CRAMFS component are at a minimum
and the reorganized CRAMFS component is functionally equivalent to a

corresponding one of the at least one CRAMFS component.

10. The method of claim 1, further comprising determining differences in
content between a first version of a file and a second version of a file, wherein the
first version and the second version each include corresponding versions of the
image, wherein determining differences includes determining data differences
between the modified image of the first version and the modified image of the

second version.

11. The method of claim 1, wherein the at least one CRAMFS component
includes a single CRAMFS component.

12. The method of claim 11, further comprising:

receiving a first version of the image;

determining any changed sections of the CRAMFS component of the first
version and generating a first reorganized CRAMFS component by moving the
changed sections;

generating a modified first version that includes the first reorganized

CRAMEFS component.

13. The method of claim 12, further comprising:

receiving a second version of the image;

45

WO 2006/052897 PCT/US2005/040312

N O o B W

1 N D BN

—_

determining any changed sections of the CRAMFS component of the second
version and generating a second reorganized CRAMFS component by moving the
changed sections;

generating a modified second version that includes the second reorganized

CRAMEFS component.

14. The method of claim 13, further comprising receiving a first image

information file of the first image.

15. The method of claim 13, further comprising determining differences in
content between the first version and the second version by determining data

differences between the modified first version and the modified second version.

16. The method of claim 15, further comprising generating a difference file that

includes the differences identified between the first version and the second version.

17. The method of claim 13, further comprising:

receiving a third version of the image;

determining any changed sections of the CRAMFS component of the third
version and generating a third reorganized CRAMFS component by moving the
changed sections;

generating a modified third version that includes the third reorganized

CRAMFS component.

18. The method of claim 13, further comprising receiving a second image

information file of the second image.

19. The method of claim 17, further comprising determining differences in
content between the second version and the third version by determining data

differences between the modified second version and the modified third version.

20. The method of claim 1, wherein the at least one CRAMFS component
includes a plurality of CRAMFS components.

46

WO 2006/052897 PCT/US2005/040312

—t
W ®0 3 o v AW [« N TN - RN B« N

—_ =
—_— O

O 0 3 & it B W N

.
(=

21. The method of claim 20, further comprising:

receiving a first version of the image;

determining any changed sections of a first CRAMFS component of the first
version and generating a first reorganized CRAMFS component by moving the
changed sections;

determining any changed sections of a second CRAMFS component of the
first version and generating a second reorganized CRAMFS component by moving
the changed sections;

generating a modified first version that includes the first reorganized

CRAMTFS component and the second reorganized CRAMFS component.

22. The method of claim 21, further comprising:

determining any changed sections of at least one additional CRAMFS
component of the first version, wherein the at least one additional CRAMFS
component is in addition to the first CRAMFS component and the second CRAMFS
component;

generating at least one additional reorganized CRAMFS component by
moving the changed sections of the at least one additional CRAMEFS component,
wherein the generating a modified first version includes generating the modified first
version to include the first reorganized CRAMFS component, the second
reorganized CRAMFS component, and the at least one additional reorganized

CRAMFS component.

23. The method of claim 21, further comprising:

receiving a second version of the image;

determining any changed sections of a first CRAMFS component of the
second versién and generating a third reorganized CRAMFS component by moving
the changed sections;

determining any changed sections of a second CRAMFS component of the
second version and generating a fourth reorganized CRAMFS component by
moving the changed sections;

generating a modified second version that includes the third reorganized

CRAMFS component and the fourth reorganized CRAMFS component.

47

WO 2006/052897 PCT/US2005/040312

O 0 N1 O i B W=

N
1SS e N e]

[« WLV, T U U'S B (& T

—

24. The method of claim 23, further comprising determining differences in
content between the first version and the second version by determining data

differences between the modified first version and the modified second version.

25. A method comprising:

receiving a first version of an image that is a static file system image;

generating a modified first version by reorganizing at least one component of
the first version, wherein reorganizing includes moving at least one changed data
section of the at least one component from a first position to a second position in the
component;

receiving at least one other version of the image;

generating at least one other modified version by reorganizing at least one
component of each of the at least one other version;

determining differences in content between the first version and the at least
one other version by determining content differences between the modified first

version and the at least one other modified version.

26. The method of claim 25, further comprising generating a difference file that
includes the differences identified between the first version and the at least one other

}

modified version.

27. The method of claim 25, wherein the reorganizing further comprises:
identifying at least one changed data section of each version of the image,
wherein the at least one changed data section includes a data section having changed
content in at least one file of the component; and
repositioning the at least one changed data section to at least one position

that follows all unchanged data sections of the component.

28. The method of claim 25, wherein the at least one component includes a

compressed read-only memory file system (CRAMFS) format component.

29. A device for differencing static file system images, comprising:

48

]

O 0 3 O »n B W

10

12

AW = [V, TN VS S

(O, T G U S

WO 2006/052897 PCT/US2005/040312

a receiver that receives images of a static file system, the images including at
least one compressed read-only memory file system (CRAMFS) format component;
and

a pre-processor coupled to the receiver, the pre-processor configured to
determine any changed sections of the at least one CRAMFS component, the pre-
processor further configured to generate at least one reorganized CRAMFS
component by reorganizing the at least one CRAMFS component, the reorganizing
including moving at least one changed section of any changed sections from a first
position to a second position in the CRAMFS component, the pre-processor further
configured to generate a modified image that includes the at least one reorganized

CRAMEFS component.

30. The device of claim 29, wherein the pre-processor is further configured to
receive at least one parameter of the at least one CRAMFS component, wherein the
at least one parameter includes at least one of a starting address of a CRAMFS
component, a size of the CRAMFS component, and a data offset of the CRAMFS

component.

31. The device of claim 29, wherein the pre-processor is further configured to
determine a data offset of the at least one CRAMFS component, the data offset
specifying an amount of memory to be allocated in the reorganized CRAMFS

component for a header of the at least one CRAMEF'S component.

32. The device of claim 29, wherein the pre-processor is further configured to
receive at least one resize list, wherein information of the resize list specifies at least
one file that is to be increased in size in the reorganized CRAMFS component,
wherein the at least one file is within at least one component of the reorganized

CRAMEFS component.

33. The device of claim 29, wherein the second position follows any unchanged

data section of the at least one CRAMFS component.

34. The device of claim 29, wherein the pre-processor is further configured to

generate an image information file that includes information of the modified image.

49

WO 2006/052897 PCT/US2005/040312

SHOWON =

N L B W=

W 0 3 O it B W N o=

O T
AW N = O

[, TR O 'S T \O T

35. The device of claim 29, wherein the byte-level differences between the
CRAMEFS component and the reorganized CRAMFS component are at 2 minimum
and the reorganized CRAMFS component is functionally equivalent to a

corresponding one of the at least one CRAMFS component.

36. The device of claim 29, whetein the pre-processor is further configured to
determine differences in content between a first version of a file and a second
version of a file, wherein the first version and the second version each include
corresponding versions of the image, wherein determining differences includes
determining data differences between the modified image of the first version and the

modified image of the second version.

37. A system comprising:

a receiver that receives a first version of an image and at least one other
version of the image, wherein the image is a static file system image;

a pre-processor coupled to the receiver, the pre-processor configured to
generate a modified first version by reorganizing at least one component of the first
version, wherein reorganizing includes moving at least one changed data section of
the at least one component from a first position to a second position in the
component, the pre-processor further configured to generate at least one other
modified version by reorganizing at least one component of each of the at least one
other version; and

a difference engine coupled to the pre-processor, the difference engine
configured to determine differences in content between the first version and the at
least one other version by determining content differences between the modified first

version and the at least one other modified version.

38. The system of claim 37, wherein the pre-processor is further configured to
receive at least one parameter of the at least one CRAMFS component, wherein the
at least one parameter includes at least one of a starting address of a CRAMFS
component, a size of the CRAMFS component, and a data offset of the CRAMFS

component.

50

WO 2006/052897 PCT/US2005/040312

[S A T

i A~ WD =

AN L R W N S VL I\ |

[T, B LY > S

39. The system of claim 37, wherein the pre-processor is further configured to
determine a data offset of the at least one CRAMFS component, the data offset
specifying an amount of memory to be allocated in the reorganized CRAMFS

component for a header of the at least one CRAMFS component.

40. The system of claim 37, wherein the pre-processor is further configured to
receive at least one resize list, wherein information of the resize list specifies at least
one file that is to be increased in size in the reorganized CRAMFS component,
wherein the at least one file is within at least one component of the reorganized

CRAMFS component.

41. The system of claim 37, wherein the second position follows any unchanged

data section of the at least one CRAMFS component.

42. The system of claim 37, wherein the pre-processor is further configured to

generate an image information file that includes information of the modified image.

43. The system of claim 37, wherein the byte-level differences between the
CRAMFS component and the reorganized CRAMFS component are at a minimum
and the reorganized CRAMFS component is functionally equivalent to a

corresponding one of the at least one CRAMFS component.

44. The system of claim 37, wherein the difference engine is further configured
to determine differences in content between a first version of a file and a second
version of a file, wherein the first version and the second version each include
corresponding versions of the image, wherein determining differences includes
determining data differences between the modified image of the first version and the

modified image of the second version.

45. Computer readable media including executable instructions which, when
executed in a processing system, reorganize static file system images by:

receiving an image that includes at least one component, wherein the at least
one component includes a compressed read-only memory file system (CRAMFS)
format;

51

WO 2006/052897 PCT/US2005/040312

0 NN N

11
12

determining any changed sections of the at least one component;

generating at least one reorganized component by reorganizing the at least
one component, the reorganizing including moving at least one changed section of
any changed sections from a first position to a second position in the component;
and

generating a modified image that includes the at least one reorganized

component.

52

PCT/US2005/040312

WO 2006/052897

1/20

['Dld

() 9 21y of)

() @ o Jid)«

() (1) sfomy }«— BmigpoN ———

ﬁ

el Jid

() - J«— smégpon

]

Al

1||© (1+8) %ﬁ@

\

() V 15 o)
A

—1 1¥D

() (o)

() v o5 Jid)«

e Jid

() 10 oBomy)

() o1y 991)

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/040312

WO 2006/052897

2/20

deDId

oSew] PIIPOI

uonisod ur payiys oIe
707 UON3S SUIMO[[0] SUOIIIIG

N

aewy moN

VIO

ofew] MaN

o7IS UL POSBAIOUI 7(7 UONDOS SIU]

s

oewy [eWISLIO

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/040312

WO 2006/052897

3/20

€'O1q C wosmdyg | so[g (7) 0ag 10
| 3y _“ (1) ouo apujour we)
r Asopon(q puedxg ! [euondgy <----——-
TOISIOA JXAU 10 jnduy omooaq ued mdjmgy T M---,, S g
— vy
Y H
A 80T <4~ S — 1SIT SZIS9Y
o 387 Jmding <4---1-
e _ 9[14 uorjewIofuy ofewy
31 uonewiopu] ogew] -
- JNOY UOISISA SNOTA9I]
WOY UOISI8A 159187 sofo] i 8
| £1mo « + [2B WOY
uwmewm%@_mﬁmm%m » . JIPON W0ISI9 1831 JemiSu()
) (08 305 210) oyt aBewy oy
L1opam(ding D UOISIOA SNOIAAI PALJIPOJY

UOISIA X901 JOJ Jndur sowoseq (nding)

00§—"

18I0 B

8z1§ odew] SINVID

SsaIppy 1elg ofew] SINVY)

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/040312

WO 2006/052897

4/20

SI0Y) o oFRW] O <

90v

7 OI4

paziuedi0ay LON

RSO ee(

2 1 o o e " - o > o oy = e 2n s]

(worezruedioar oy 99(qns)

nmanodwo) SV

19pBay

00v

paziuedi100y LON

asew] WO

vy
¢ 9ZIS SAANVED

0r
) SSOIPPY MBI
SANVYD

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/040312

WO 2006/052897

5/20

- pozIued109y LON

g wauodwo) SANVID

e e e e = e e = = . T A - o A - o

JETTET S|

paziuesiody LON

Yy juenodwo) SANYYD

L]
paziuediody ION
0o0v 9gew] WOV

$ DI

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/040312

WO 2006/052897

6/20

< e WOY

~—

dussaoolg
odew] ¢A

o
aBew] JWOY 7A

7h POZIESI0NY

a7 9%ew] WO
¢ [eUIBUQ),

9Dl

A

]

3018530017

<1

914 ORI}
238 OY TA

< P RW A

1A pazinegiooy

oy eBem] WOX
TA [PWBHQ

adew] 7A

I

]

Surssas01d

<~ 1080 Teq [ewduQ

| op odew] NOY
[A [PUBHQ

odemy [A

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/040312

WO 2006/052897

7/20

ofeyoeq apuifdp ZA-TA
| 4
| 21§ onBmop] oem] a1 ooy afemm] o]1 TORerIoyu] 93wy
Woy@yhgp < T[] moavamp ST T Rotvempp T
L wdmpormy | _ || wdmwoy _| 0 _ | oMWY
) dwoy 7 pommdiony | ¥ dmoy 78 pommesiosy | 74 1w
Suissaa0ig < < 9 SB0] WOY 43V
ON $mssa001 Smssaoorg| o) 14 perimefiony
A q dmoy 74 y dmop 74
2[4 VOPLLOyY] 35 o[Uonoyay ey E——
@é g %Q I - WOY ¥ H_ms (S i A L %ﬁo@ =
qrdmporgy | _ | wwddwmiwoy _| o | WSy [
T oy pa pozmedoay | v dmoy 74 pazimeiony JA [iﬂa&if-
| SV
oA mssaoorg Jmssaoor] agewy| ..
00c g dmop 1 ¥ duo) [HOY A
NOY 1A

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/040312

WO 2006/052897

8720

3 DI

e 28
Are1qry Surjpuepy ojupere(AIBIQIT SANVYD
il i {3 i 0 A
“tS S 18 908
Y Axe1qry ojuyereq pue SRR
4 Q Q SANVY) 98puig JOIJLIS A
__ + UOLBOLTIOA i
308 JoSeuepy ASereng 2150 jnduy

|

L
Ly |
o0

GE

08 S[MPON [onuo)

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/040312

WO 2006/052897

9/20

6 DI

uonoes e[<=

19peay A103903IJ SANVYD <=

19peoH SIAVYD Ifadng <—

Apog SANVED

19peal SANVYD

Y

—~

a

H

SUBSTITUTE SHEET (RULE 26)

WO 2006/052897

CRAMFS Image Original Version (Vg)

7
rd
Pl
4
'
~
e >
2
4 ,,
4 s
s,
-
e
P
a
v
e
,/Y
P
. @)
Pras
-
-
/”
/”
-
-
-
-
-
T
-
”/
-
______ >

CRAMFS Image New Version (V)

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/040312

F1G.10

PCT/US2005/040312

WO 2006/052897

11/20

[TDIA

ssao0xd ajepdn w1 asn I0J QDSN oY) 18

sty *] 9Sewn o) oSeun jusyeAlnbe pue [YID

§830017 30UAII(

10] $958W]

u
I+ 1

J

L 2R N]

Y TOISIOA I0J PaIojsi3al ST odeun
£q parersuad afeml SANVED

¥ UOISIoA 10} aewt STNV YD

Y UOISIOA JOJ 90In0G

g
<=

0

2

{0

{1

fr

u
Trm

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/040312

WO 2006/052897

12/20

AR

HSTY
HSHY asay HS3d
asgy mamoa\aaamqm \aaoo\
N []]] J LT T
3T . 3 T3
~ TgTITneaa \ b A
\ ,+//H,,,H/uuuu,mmHHWIHHHHu“uuuwm\u\mmmm\'\“,,/ m m_. _m
RN
S dadqaaaadaaaaddadddadpss o

NA uoision
MON

9\ worsion
[PUISLI)

SUBSTITUTE SHEET (RULE 26)

WO 2006/052897 PCT/US2005/040312

13/20

1300
Receive an image that includes 130
at least one CRAMFS component.
Determine any changed sections 1304
of the CRAMFS component.
Generate at least one reorganized CRAMFS 1306
component by moving at least one changed section. .

Y

Generate a modified image that includes the at
least one reorganized CRAMFS component.

——1308

FIG.13

SUBSTITUTE SHEET (RULE 26)

WO 2006/052897 PCT/US2005/040312

14/20

Receive a first version of an image. — 1402

A

Generate modified first version by reorganizing at
least one component of the first version by moving
at least one changed data section from a first to

—— 1404
a second position in the component ‘

Receive at least one other version of the image. [~ 1406

4

Generate at least one other modified
version by reorganizing at least one 1408
component of the other version.

\

Determine differences in content between first
version and other versions by determining content
differences between the modified first version
and the other modified version.

——1410

F1G.14

SUBSTITUTE SHEET (RULE 26)

WO 2006/052897 PCT/US2005/040312

15/20

Original SFS Image | New SFS Image
1512 1514

W /

Image processing
module

um—
N
S
o

|

Dependency generation 1504
module —

Y

Rs—
n
<N

Difference engine

\

[o——y
[
(=

Packaging engine

\

Delta package 1522

FIG 13

SUBSTITUTE SHEET (RULE 26)

WO 2006/052897 PCT/US2005/040312

16/20

_—1600

Receive images of static file system, the images
including an original image and a new image.

—— 1602

\

Split received images using information of
image blocks to split the images into portions.

— 1604

Y

Determine differences between content of images

using differences between the portions of the images.

——1606

A

Generate delta file that includes the
differences for at least one portion.

—— 1608

FIG.16

SUBSTITUTE SHEET (RULE 26)

WO 2006/052897 PCT/US2005/040312

17/20
1700
Receive images of static file system, the images 10
including an original image and a new image.
Y
Divide original image into original sections;
Y X : . —_1704
divide new image into new sections.
Identify dependency alignments between :
- ; : ——1706
original sections and new sections.
Y
Generate a delta file for at least one new section. |~—-1708
1802-2a | 1802-2¢ 180%-43 1802-4b
SFS '
image : :
Block 1 Block 2 Block 3 |- Block 4

F1G.138

SUBSTITUTE SHEET (RULE 26)

WO 2006/052897 PCT/US2005/040312

18/20

Original SFS Image New SES Image

Image preprocessing module 1502

\
Dependency genetation module 1504

A

Difference engine 1506
|
Packaging engine 1508 1500
1 LW
Y
Delta package 1522
<
\/\(1906
"""""""""""""""""" i l‘_"i"""'"__""_-"“-"‘l
. [Hosted Original ' N .
|7 SPS mage || | Delta Package 5
| e | 1
| ROM |] RAM |
______ jo sl
Update Module 1952
wg 1
-4 New SFS Image 1514P 1950
F1G 19 ™-1900

SUBSTITUTE SHEET (RULE 26)

WO 2006/052897 PCT/US2005/040312

19/20

2000

Receive the delta file at a portable device.

——2002

Y

Assemble dependent original portions of the plurality
of original portions hosted on the portable device.

——2004

Y

Identify dependent original section that
corresponds to the delta file received.

——2006

\

Reconstruct at least one new portion that
corresponds to the at least one delta file identified.

——-2008

FIG.20

SUBSTITUTE SHEET (RULE 26)

WO 2006/052897

2

20/20

PCT/US2005/040312

2100~ 2102 2104
< Data cormpted?>¥ﬁ——> Report ettor
No .
\
106 —— Set pointer to start of delta package
! . KZIIO
*< Delta files? >—O—> Return
2108 j Yes
(1) Decode dependency formation,
(2) Read related portions if necessary. 211
(3) Unzip/decrypt dependent portions if necessary. |
(4) Assembly dependent content.
2114

A

s

0
3

(1) Apply delta file contents to dependent content to compute new portion.

) Ziplencrypt new portion if necessary.

(3) Put new portion into specific location in the block as directed.

A

\ or no more deltas remain?

No / Next delta file for anothet block

52116

Yes

Y

Write new content of this block info ROM |—~-2118

FI1G.21

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

