wo 2013/025934 A1 I}] 000 0O 0 0

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/025934 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

74

31

International Filing Date:
16 August 2012 (16.08.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/212,061 17 August 2011 (17.08.2011) US

Applicant (for all designated States except US): SYN-
OPSYS, INC. [US/US]; 700 E. Middlefield Rd., Mountain
View, CA 94043 (US).

Inventor; and

Inventor/Applicant (for US only): ARUNACHALAM,
Anand [US/US]; 1470 Hollenbeck Avenue, Sunnyvale,
CA 94087 (US).

Agent: SUZUE, Kenta; Haynes Beffel & Wolfeld LLP,
PO Box 366, Half Moon Bay, CA 94019 (US).

21 February 2013 (21.02.2013) WIPOIPCT
International Patent Classification:
GO6F 17/50 (2006.01)
International Application Number:
PCT/US2012/051204

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

Designated States (unless otherwise indicated, for every Published:

kind of national protection available). AE, AG, AL, AM,

with international search report (Art. 21(3))

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR AUTOMATIC RELATIVE PLACEMENT GENERATION FOR CLOCK TREES

PREPROCESS ANNOTATED NETLIST 2101

]

SCAN FOR CLOCK DRIVERS AND COLLECT GLOCK SINKS 2102

POST-INITIAL PLACEMENT

(]

READ IN USER CLOCK TREE SYNTHESIS CONSTRAINTS 2104

SUCH AS CLOCK TREE REFERENCES

CLOCK TREE SYNTHESIS CLUSTERING | p—

2108

1

PROCESS CLUSTERS FROM CLOCK TREE SYNTHESIS
CLUSTERING AND FORM RELATIVE PLACEMENT GROUPS;
GEOMETRIC CCMPRESSION; AUTO DETERMINE SHAPES OF
RELATIVE PLACEMENT GROUPS

— 2108

¥

ADD INTEGRATED CLOCK GATING OR CLOCK DRIVER FCR ‘ — 2110

EACH CLUSTER. BREAK NETS AS NEEDED.

[]

SET RELATIVE PLACEMENT OPTIONS FOR EACH RELATIVE

PLACEMENT GROUP; PIN ALIGN, ORIENTATION ETC 2112

¥

REFINE PLACEMENT | J—

2114

]

OPTIMIZATION 2116

]

FIX/MARK SIZE RELATIVE PLACEMENT FOR CTS 2118

¥

FULL CLOCK TREE SYNTHESIS 2120

Fig. 21

(57) Abstract: Methods and apparatuses are disclosed for
automatic relative placement of part of a clock tree in the
course of generating a placed, routed, and optimized circuit
design.

WO 2013/025934 A1 |IIWAT 00TV AV R A0

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2013/025934 PCT/US2012/051204

METHOD AND APPARATUS FOR AUTOMATIC RELATIVE PLACEMENT
GENERATION FOR CLOCK TREES

Inventors: Anand Arunachalam

BACKGROUND

Field of the Invention

[0001] The technology relates to integrated circuit fabrication, and more particularly to
placement, routing, and optimization of an integrated circuit design that obeys rules that specify

the relative placement of circuit elements.

Description of Related Art

[0002] An integrated circuit design flow typically proceeds through the following stages:
product idea, EDA software, tapeout, fabrication equipment, packing/assembly, and chips. The

EDA software stage includes the steps shown in the following table:

EDA step ‘What Happens

System Design - Describe the functionality to implement
- What-if planning
- Hardware/software architecture partitioning

Logic Design and | - Write VHDL/ Verilog for modules in system

Functional - Check design for functional accuracy, does the design produce
Verification correct outputs?
Synthesis and - Translate VHDL/Verilog to netlist
Design for Test - Optimize netlist for target technology
- Design and implement tests to permit checking of the finished
chip
Design Planning - Construct overall floor plan for the chip

- Analyze same, timing checks for top-level routing

Netlist Verification | - Check netlist for compliance with timing constraints and the

VHDL/Verilog
Physical - Placement (positioning circuit elements) and routing (connecting
Implement. circuit elements)
Analysis and - Verify circuit function at transistor level, allows for what-if
Extraction refinement
Physical - Various checking functions: manufact., electrical, lithographic,
Verfication (DRC, | circuit correctness
LRC, LVS)
Resolution - Geometric manipulations to improve manufacturability

Enhanc. (OPC,
PSM, Assists)

Mask Data - “Tape-out” of data for production of masks for lithographic use
Preparation produce finished chips

WO 2013/025934 PCT/US2012/051204

[0003] With regard to physical implementation technology, methodologies for structured
placement offer circuit designers superior power, yield, and/or area for a given logic function.
With the advent of manual placement of transistors, designers created arrayed layouts where
logic gates were manually placed in a regularized fashion. This methodology has evolved to the
point that automation has been applied to the problem. However, regularized placement still
suffers from a great deal of manual effort, such as in cell drive strength selection.

[0004] Capturing a priori designer knowledge of structured placement requirements in HDL
is a nontrivial problem. Even if captured, structured placement requirements are lost during
standard cell random placement. Standard cell placers tend to take more localized views during
optimization. This results in not just loss of regularity, but also extra buffering, routing, vias,
and cell oversizing, compared to a solution which might be obtained following structured
placement.

[0005] One approach to this problem is to perform cell sizing and optimization of a
structured placement manually through homegrown tools. This approach is quite expensive in
terms of engineering effort. This approach is also hard to integrate with the rest of the design.
Such integration requires multiple iterations, because standard cell placement and optimization
changes the placement, sizing, etc. of the surrounding, non-structured logic. Unfortunately, this
triggers another iteration, with further manual sizing and optimization efforts through the
homegrown tools for the block with structured placement.

[0006] Other approaches to this problem are to generate structured placement through
synthesis or through a specific tool, and then pass on the result to a placer through a set of
special constraints, or as a macro/IP block. The initial structure generated through synthesis or
through the special tool is problematic. Because the initial structure is generated prior to
placement, the initial structure is formed lacking complete placement knowledge, and thus the
initial structure fails to lead to optimal placement as generation. Also if it is passed as a macro/IP
block, then place and route tools cannot resize or otherwise optimize the blocks.

[0007] Relative placement rules as applied to clock trees are problematic. Several of the
disadvantages follow. Relative placement rules specified in a scripting language such TCL can
require updates as the relative placement language changes. The design can be over-constrained
and more clock gates inserted than needed, and clock gate incorrectly sized. A manual iterative
process of figuring the maximum distance of the flip-flops to cluster is labor intensive. There
can be inability to cluster and create smaller relative placement groups when a clock gate drives
more than the maximum fanout limit of a clock gate. It is labor intensive to manually create

relative placement rules and manually modify the netlist (connect/disconnect gates/flops) and

WO 2013/025934 PCT/US2012/051204

insert clock buffers and create relative placement structures. Non-convergence can be caused by
using ad-hoc/distance based techniques up front in placement/optimization versus a native clock
tree clustering algorithm used in clock tree synthesis, as they are not the same processes.

[0008] Therefore, it would be desirable to efficiently implement structured placement with

circuit design.

SUMMARY
[0009] One aspect of the technology is a method of circuit design with a computer system.
The method includes generating with the computer system a placed, routed, and optimized
circuit design. Generating the circuit design includes guiding coarse placement of the circuit
design according to rules created specifically and automatically for a set of circuit elements in a
netlist of the circuit design including clock network flip-flops. The rules specify positioning of
each circuit element of the set of circuit elements in the circuit design relative to other circuit
elements of the set of circuit elements in the circuit design. Generating the circuit design also
includes completing placement, routing, and optimization of the netlist of the circuit design
according to the rules.
[0010] Various embodiments can include one or more of the following features.
[0011] The method further includes, after the coarse placement and before clock tree
synthesis of the circuit design, automatically creating the clock network flip-flops in the netlist of
the circuit design.
[0012] The method further includes, after the coarse placement and before clock tree
synthesis of the circuit design, automatically creating the clock network flip-flops in the netlist of
the circuit design based on clock sinks in the netlist.
[0013] The method further includes, after the coarse placement and before clock tree
synthesis of the circuit design, automatically grouping the clock network flip-flops into a
plurality of flip-flop groups.
[0014] The method further includes, after the coarse placement and before clock tree
synthesis of the circuit design, automatically grouping the clock network flip-flops into a
plurality of flip-flop groups. The rules automatically created for the clock network flip-flops are
based on the plurality of flip-flop groups.
[0015] The method further includes, after the coarse placement and before clock tree
synthesis of the circuit design, performing clock tree clustering that automatically groups the

clock network flip-flops into a plurality of flip-flop groups.

WO 2013/025934 PCT/US2012/051204

[0016] The method further includes, after the coarse placement and before clock tree
synthesis of the circuit design, performing clock tree clustering that automatically groups the
clock network flip-flops into a plurality of flip-flop groups, without creating clock network
buffer circuitry.

[0017] The method further includes, after the coarse placement and before clock tree
synthesis of the circuit design, performing clock tree clustering that automatically groups the
clock network flip-flops into a plurality of flip-flop groups. The rules automatically created for
the clock network flip-flops are based on the plurality of flip-flop groups from the clock tree
clustering.

[0018] The method further includes, after the coarse placement and before clock tree
synthesis of the circuit design, performing clock tree clustering that automatically groups the
clock network flip-flops into a plurality of flip-flop groups. The method further includes, during
placement of the circuit design, automatically creating clock network buffer circuitry for the
plurality of flip-flop groups.

[0019] In the method, the clock network flip-flops are leaf nodes of a clock tree of the circuit
design.

[0020] The method further includes, during placement of the circuit design, automatically
adding clock network buffer circuitry matched to the grouped clock network flip-flops in the
circuit design.

[0021] In the method, the rules obey clock tree constraints specified for the circuit design.
[0022] Other aspects of the technology can be embodied in a corresponding system,
apparatus, and computer readable medium.

[0023] The data processing system is adapted to process a computer implemented
representation of a circuit design. The system has a data processor and memory coupled to the
data processor. The memory stores instructions executable by the data processor. The
instructions perform a process as described herein.

[0024] The apparatus can be a circuit. The circuit follows a placed, routed, and optimized
circuit design. The placed, routed, and optimized circuit design is created by a process as
described herein.

[0025] The computer readable medium has computer readable instructions executable by a
computer system. The instructions perform a process as described herein.

[0026] Other embodiments include a computer readable medium with computer readable

instructions for circuit design, with computer instructions that perform the technology described

WO 2013/025934 PCT/US2012/051204

herein; a circuit design generated with the technology described herein; and an electrical circuit

with circuitry designed by the technology described herein.

BRIEF DESCRIPTION OF THE DRAWINGS
[0027] Figure 1 is a flow diagram illustrating an exemplary process for using relative
placement in circuit design.
[0028] Figure 2 is a flow diagram illustrating an exemplary process of the placement,
routing, and optimization tool.
[0029] Figure 3 shows the placement, as a single unit, of a group of circuit elements
following relative placement rules.
[0030] Figure 4 shows circuit elements organized by relative placement rules into columns
and rows.
[0031] Figure 5 shows the creation of a hierarchy of circuit elements organized by relative
placement rules.
[0032] Figure 6 shows the creation of a multiple instances of circuit elements hierarchically
organized by relative placement rules.
[0033] Figure 7 shows an ungrouped version of the circuit design of Figure 6.
[0034] Figure 8 shows a circuit design with keepouts defined by the relative placement rules.
[0035] Figure 9 shows cells that straddle multiple columns and multiple rows as defined by
the relative placement rules.
[0036] Figure 10 shows the creation of a hierarchy of circuit elements organized by relative
placement rules that permit straddling of multiple rows and multiple columns.
[0037] Figure 11 shows a circuit design organized by relative placement rules with
orientation optimization and pin alignment.
[0038] Figure 12 shows a relative placement group of a circuit design aligned by pins.
[0039] Figure 13 shows a relative placement group of a circuit design aligned by multiple
pins.
[0040] Figure 14 shows a relative placement block of a circuit design that contains a group
aligned by pins.
[0041] Figure 15 shows a relative placement block of a circuit design anchored at the x-
coordinate and the y-coordinate.
[0042] Figure 16 shows multiple relative placement blocks of a circuit design aligned and

anchored vertically at four coordinates.

WO 2013/025934 PCT/US2012/051204

[0043] Figure 17 shows circuit elements with and without compression specified by relative
placement rules.

[0044] Figure 18 shows the placement of relative placement cells in a circuit design
containing keepouts.

[0045] Figure 19 is a simplified block diagram of a computer system suitable for use with
embodiments of the technology, as well as a circuit design and circuit embodiments of the
technology.

[0046] Figure 20 is a flow diagram illustrating an exemplary process of the placement,
routing, and optimization tool with clock tree synthesis clustering being performed during
placement.

[0047] Figure 21 is a flow diagram illustrating another exemplary process of the placement,
routing, and optimization tool with clock tree synthesis clustering being performed during

placement.

DETAILED DESCRIPTION
[0048] Relative placement information generates a structure of the instances and controls the
placement of the instances. The resulting annotated netlist is used for physical optimization,
during which the placement, routing, and optimization tool preserves the structure.
[0049] Figure 1 shows the overall flow for using relative placement. Relative placement
usually is applied to datapaths and registers, but relative placement can be applied to any cells in
a circuit design, controlling the exact relative placement topology of gate-level logic groups and
defining the circuit layout.
[0050] At 110, a mapped netlist (a structural interconnection of library cells) is read. At 140,
a netlist annotator adds annotations of the relative placement constraints to the mapped netlist.
The relative placement constraints may have come from an automatic rule creator 120, which
generates automatically created relative placement rules 125. Also, the relative placement
constraints may have come from the circuit designer/custom tool 130, which generates relative
placement rules created by the circuit designer 135. Based on the mapped netlist 110 and the
relative placement rules, the netlist annotator 140 generates a netlist annotated with relative
placement rules 145.
[0051] The netlist annotator 140, which may be GUI-based or text-based provides a way
create relative placement structures for the placement, routing, and optimization tool 150. In a
GUI-based annotator, the relative placement can be specified by drag-and-drop of circuit

clements into positions relative to other circuit elements. Clicking multiple circuit elements and

WO 2013/025934 PCT/US2012/051204

assigning an identifier such as a color, a pattern, or a name can define multiple groups with
respective relative placement rules. With a text-based annotator, relative column and row
positions can be specified of instances with respect to each other. These placement constraints
create relative placement structures that are preserved during placement and legalization.
Whether GUI-based or text-based, the cells in each structure group are placed as a single entity.
[0052] The placement, routing, and optimization tool 150 receives the netlist annotated with
relative placement rules 145 and generates the placed, routed, and optimized netlist obeying
relative placement rules 155. The optimization includes, for example, orientation optimization.
[0053] Figure 2 shows an exemplary process flow of a placement, routing, and optimization
tool. At 201, an annotated netlist is preprocessed for the relative placement annotation. Data
structures are created to carry relative placement information. At 202, the sizes of relative
placement blocks and aspect ratios are estimated by applying relative placement rules for each
relative placement block. Any hierarchical relative placement blocks are estimated also. At 204,
cach of the estimated relative placement blocks is modeled for coarse placement purposes, for
example as a macro with pin locations visible but the internal cells hidden from the coarse
placer. At 206, the relative placement blocks are placed within the context of entire design,
including the cells which have the relative placement rules simultaneously along with the cells
which do not have relative placement rules. Among the relative placement blocks of cells, the
blocks are placed one at a time. At 208, if needed another incremental placement is done for
area recovery of sparse relative placement blocks. One block at a time is fixed based on the
locations returned by the coarse placer. Individual relative placement instances are fixed before
such area recovery. At 210, individual instances of cells are readjusted within each relative
placement block, based on new locations determined by the placer according to the optimization
constraints. User constraints are respected for each relative placement block. At 212, the nearest
legal locations for all the relative placement cells are found, and the relative placement cells
fixed there. Any overlaps of relative placement blocks are resolved by checking each of the
already fixed blocks and making sure that the moved blocks do not overlap with them. If
overlaps occurs, the moved blocks are moved with minimal movement as the cost. At 214,
detailed placement is done for the non-relative placement cells, considering the fact that cells
with relative placement are already fixed. At 216, all relative placement cells are unfixed. If
optimization and relative placement constraints are met, then the tool can stop, finish writing out
the placed and routed netlist, and exit the placement and optimization process. At 218, physical
optimization is done for all the instances, including relative placement instances, to meet timing

or any other user specified goals. This could focus on the most critical objectives such as timing,

WO 2013/025934 PCT/US2012/051204

respecting design rules, congestion, wire length etc. The optimization includes, for example,
orientation optimization. At 220, relative placement constraints are reapplied, and locations
readjusted based on optimization results. Thus, the relative placement constraints specified in
the annotated netlist are preserved. The process then loops back to 212.

[0054] The above process can be rearranged, for example by combining, adding, removing,
or modifying steps. For example, 212-216 can be rearranged, depending on the design, and 208
and 210 can be combined into one step.

[0055] Benefits of Relative Placement

[0056] Various embodiments that implement relative placement provide one or more of the
following benefits:

[0057] 1) Provides a method to maintain structured placement for legacy or intellectual
property (IP) designs using a placement, routing, and optimization tool.

[0058] 2) Handles flat and hicrarchical designs.

[0059] 3) For complex designs, a typical design can have many engineers working on it and
many blocks. Hierarchical relative placement enables placing those blocks together relative to
each other more easily. Any number of levels of hierarchies are allowed.

[0060] 4) Reduces the placement search space in critical arcas of the design resulting in
greater predictability of QoR (wire length, timing, power) and congestion.

[0061] 5) Is technology independent.

[0062] 6) Improves routability.

[0063] Relative Placement Considerations

[0064] Various embodiments that implement relative placement require one or more of the
following considerations:

[0065] 1) When the placement, routing, and optimization tool estimates that the size of a
relative placement block is not suitable to the given floorplan, the placement, routing, and
optimization tool can fail in placement. To maintain relative placement information precisely,
there should be enough space for relative placement blocks without overlapping placement
obstructions in the design floorplan.

[0066] 2) If the design contains multiheight cells and exact relative placement (perfect
alignment of the cells on one or more sides of the row or column) is used, the current relative
placement implementation might not get perfect alignment in every case.

[0067] 3) There is no limit on the number of cells in a relative placement group. However, if
the design has many relative placement groups, at times coarse placement returns overlapping

group locations, resulting in misalignment. In these cases, a warning

WO 2013/025934 PCT/US2012/051204

appears after coarse placement.
[0068] The following is a specific exemplary implementation of the discussed process flow.
Many of the examples which follow are implemented with a text-based shell. The text-based
examples are provided for in an exemplary Synopsys™ design environment for the purposes of
illustration. The examples are also applicable to a GUI-based environment, in which the text-
based commands are replaced or complemented with a mouse-driven interface.
[0069] Exemplary Relative Placement Flow
[0070] Implementing the methodology for the relative placement flow follows several steps.
[0071] 1. Ina design environment that permits a user to decide whether or not to use
relative placement, relative placement is enabled. Relative placement is enabled by entering
“XG mode”, performed by entering the shell command: psyn_shell-xg-t> set
physopt_enable rp in xg mode "true"
[0072] 2. The gate-level netlist is prepared and read it in to the placement, routing, and
optimization tool, using the read milkyway or read_db command.
[0073] 3. The relative placement data are prepared.
[0074] Create the relative placement groups. Use the create rp group command.
[0075] Add relative placement items to the groups. Use the add to rp group command.
[0076] The netlist annotator annotates the netlist with the relative placement information,
and generates a placed netlist containing the data.
[0077] 4. Preserve the relative placement information in the annotated netlist. Use
set_size only to preserve relative placement information for cells that contain it. For example,
enter

psyn_shell-xg-t> set_size only {RP_cells} true
[0078] 5. Set the block utilization of the relative placement block. The block utilization is
how densely a block is packed. A value of 1 indicates no gap between columns. It could vary
between 0 and less than or equal to 1. Enter

psyn_shell-xg-t> set physopt use block utilization true
[0079] The default value is 1.0.
[0080] 6. Read floorplan information. For example, enter

psyn_shell-xg-t> read_pdef top.pdef
[0081] 7. Perform coarse placement for the design. Use the create placement command.
[0082] 8. Analyze the design using the placement, routing, and optimization tool GUL
[0083] 9. If the relative placement result is not acceptable, modify the relative placement file

and run this procedure again.

PCT/US2012/051204

WO 2013/025934
10
[0084] If the relative placement is acceptable, then perform optimization, by running
physopt.
[0085] Sample Script for a Relative Placement Flow
[0086] The following is a sample script for running a relative placement flow.

Set library and design paths

source setup.tcl

set physopt_enable rp in_xg mode "true”
Read db file generated from rp_recader
read_db block rp.db

read_db block2 rp.db

read_db other blocks.db

read_db top.db

current_design top

link

link physical library

Create relative placement

create rp group

add to rp_group

Apply constraints

source constraints.tcl

Apply set_size only on relative placement cells to preserve relative placement

information #

set size _only {RP_cells} true
Read floorplan information

read pdef top.pdef

Perform coarse placement on the design

create_placement

Perform analysis. If okay, do physical synthesis or

incremental physical synthesis

physopt or physopt -incremental

WO 2013/025934 PCT/US2012/051204
11

[0087] Considerations for Using Relative Placement

[0088] A design can contain both structured and unstructured items (leaf cells, keepouts,
hierarchical groups). Control of which cells are to be structured is accomplished by including
the cells to be structured in a relative placement group.

[0089] Determining which portions of the module need to be structured is beneficial.
Providing relative placement information for cells that would have been placed better by
allowing the placement, routing, and optimization tool to place the cells can produce poor
results.

[0090] Some designs are appropriate for structured placement (for example, datapaths),
whereas others are more appropriate for usual placement by the placement, routing, and
optimization tool.

[0091] Data Required for Relative Placement

[0092] Relative placement requires a gate-level netlist. The format can be

any format read by the placement, routing, and optimization tool.

[0093] Commands for Relative Placement

[0094] The basic functionality for relative placement is carried out by way of

dedicated Tcl commands used within the placement, routing, and optimization tool. The
commands create groups and add leaf cells, hierarchy, and keepouts to the groups. In addition, a
script of annotated information can be generated, edited, and reapplied to the design, and relative
placement groups can be removed.

[0095] In addition to these dedicated commands, physical synthesis commands are available.
[0096] Commands Specific to Relative Placement

[0097] Relative placement uses the dedicated commands listed in Table 1.

[0098] Table 1 Dedicated Commands for Relative Placement

Command Described in section

create_rp_group See “Creating Relative Placement Groups™.
add_to_rp_group See “Adding Items to a Group”.
write_rp_group See “Writing Relative Placement

Information to a Script File”.

remove rp_group See “Removing Relative Placement
Information”.

WO 2013/025934 PCT/US2012/051204
12

[0099] Other Commands Often Used for Relative Placement
[00100] The commands listed in Table 2 are often used for relative placement.

[00101] Table 2 Other Commands Often Used for Relative Placement

Command Described in section

set_size only See “Preserving Relative Placement
Information During Optimization”.

create_bounds See “Constraining Relative Placement Cell
Placement Using Placement Bounds™.

find Locates and returns a collection of relative
placement groups that match listed names.
The man page has information.

source Loads and runs a script file. The man page
has information.

[00102] Preserving Relative Placement Information During Optimization

[00103] The relative placement information for an instance is attached to the instance. During
optimization, relative placement cells can be optimized or removed. When an instance with
relative placement information is removed during optimization, relative placement information
attached to the instance is also removed.

[00104] To prevent relative placement cells from being removed during optimization, apply
set_size only to true on leaf cells to preserve relative placement information for cells that
contain it. If relative placement cells are upsized or downsized, the relative placement cell
alignment is maintained for placement.

[00105] Constraining Relative Placement Cell Placement Using Placement Bounds
[00106] The placement of relative placement cells is constrained by defining placement
bounds. To do this, use the create_bounds command. Both soft bounds and hard bounds are
supported for relative placement cells and both rectangular bounds and rectilinear bounds are
supported.

[00107] Note: In relative placement, only move bounds (with fixed coordinates) are
supported for relative placement cells. Group bounds are not supported. In other embodiments,
group bounds are supported in relative placement.

[00108] Specify individual cell names as provided in an add_to rp_group command with the
create_bounds command. For example, enter

psyn_shell-xg-t> create_bounds -coordinates {100 100 200 200} U1 U2 U3 U4

WO 2013/025934 PCT/US2012/051204
13

[00109] In other embodiments, a relative placement group is specified.

[00110] If some cells of a relative placement group are specified to be inside a bound and
some cells are not specified to be inside the bound, cells that are not constrained by the bound
are placed as loose cells. This can lead to legally correct but possibly poor placement QoR.
[00111] Ignoring Relative Placement Information

[00112] The tool can be directed to ignore relative placement information annotated to the
design, for example, when to confirm that relative placement is helpful to QoR. To do this, set
the variable physopt_ignore_structure to true (default is false).

[00113] Setting this variable to true causes the placement, routing, and optimization tool not
to do structured placement for any relative placement groups in the design.

[00114] When the tool is directed to ignore relative placement information, the parts of the
relative placement groups are placed as if the group has no relative placement information.
[00115] Removing Relative Placement Information

[00116] Relative placement annotation can be removed from an annotated database for one or
more relative placement groups. To do this, use the remove rp_group command.

[00117] Note: When a relative placement group is removed, the memory it

occupies is freed to be reused by this same process. However, memory is not returned to the
operating system until exit from psyn_shell.

[00118] To remove relative placement groups, enter

psyn_shell-xg-t> remove_rp_group [options]

To do this Use this

List the relative placement groups to group_list
remove. (vs. using —all).

Remove all relative placement groups. (vs. | -all
using -all).
Remove all the designs within the -hierarchy

hierarchies of the groups listed in the group
list. By omitting this option, subgroups are
not removed. (vs. using —all).

During removal, disable printing the -quiet
groups being removed.

[00119] Example
[00120] To remove the relative placement group named grp_ripple and confirm its removal,

enter

WO 2013/025934 PCT/US2012/051204
14

psyn_shell-xg-t> find rp_group
{mul::grp_mul ripple::grp_ripple xample3::top group}
psyn_shell-xg-t> remove _rp _group grp _ripple
Removing rp group ’ripple::grp ripple’
1
psyn_shell-xg-t> find rp_group grp_ripple
Error: Can’t find object *grp_ripple’. (UID-109)
psyn_shell-xg-t> remove_rp_group -all
Removing rp group *mul::grp mul’
Removing rp group *example3::top group’
1
[00121] Modifying Relative Placement Information
[00122] A relative placement group can be modified. For example:
[00123] + Remove items from a group
[00124] -+ Rename a group
[00125] -« Move an item from one position to another
[00126] - Realign or reorient items
[00127] A group can be modified in the following ways:
[00128] -« Remove the group to be changed, then create a new

group that incorporates the changes.

[00129] - Generate a script (using write_rp_group) and edit the

information in the generated script.

[00130] Creating Relative Placement Groups

[00131] A relative placement group is an association of cells, other groups, and keepouts.
During placement and legalization, the group structure is preserved and the cells in the group are
placed as a single entity. To create a group, use the create rp _group command. The group is
placed as a single entity, as shown in Figure 3. In Figure 3, floorplan 302 is shown. The group
306 includes cells 310 and obstructions 312. The group can be moved 308 as a single unit. The
floorplan 302 also has RAM 304 which is fixed in place.

[00132] Positions for Columns and Rows in Relative Placement Data

[00133] Figure 4 shows the positions for columns and rows in relative placement data 400.

Columns count from column 0 (the leftmost column). Rows count from row 0 (the bottom row).

WO 2013/025934 PCT/US2012/051204
15

The width of a column is the width of the widest cell in that column. The height of a row is
determined by the height of the tallest cell in that row.

[00134] In Figure 4, positions 0 3 (column 0, row 3) and 4 1 (column 4, row 1) are not used
and therefore are not specified. Position 1 2 occupies (straddles) columns 1 and 2 in row 2.
Position 4 3 in column 4 straddles rows 3 and 4.

[00135] Straddling is described in “Creating Relative Placement Structures Containing
Multiple Column or Row Positions™.

[00136] The following points can apply to creating a new group:

[00137] <+ A new group is empty. To add leaf cells, hierarchy (other groups), and keepouts to
the group, use the add to rp_group command.

[00138] <+ Any number of groups can be created.

[00139] - Relative placement groups are persistently stored using the

write_milkyway command and read using the read_milkyway command.

[00140] - The create rp_group command returns a collection handle (identifier) to the relative
placement groups that are created. If no objects were created, the empty string is returned.
[00141] To use the create rp_group command, enter

psyn_shell-xg-t> create_rp_group [options]

To do this Use this

Name the group group_name

Specify the name of the design in which to | -design
create the new group. Omitting this option,
defaults the design to the current

design. Using this switch is good practice.

Specify the number of columns for the -columns
group, expressed as a positive integer. The
default is 1.

Specity the number of rows for the group, | -rows
expressed as a positive integer. The default
is 1.

Specify the default pin name to look up on | -pin_align name
a cell. By specifying -pin_align name in an
add to rp group command, the value
specified in add to rp_group overrides the
value specified here. See “Aligning
Relative Placement by Pins”.

WO 2013/025934 PCT/US2012/051204

16
To do this Use this
Use the group for hierarchy instantiation. -instance
See “Defining Hierarchical Groups for
Instantiation”.
Anchor the group on the x-axis or the y- -x_offset or
axis but allow the group to slide in the -y_offset

other dimension. The values are in microns
and the offset is relative to the chip’s
origin. See “Anchoring Relative Placement
Blocks at a Specified Location”.

Anchor the group on both the x-axis and y- | -x_offset and
axis by specifying the lower-left -y_offset
coordinates (anchor) for the group. The
values are in micron and the offset is
relative to the chip’s origin. See
“Anchoring Relative Placement Blocks at a
Specified Location”.

[00142] Example
[00143] To create the group named rpl for designA having 1 column and 3

rows, enter

psyn_shell-xg-t> create rp_group rpl -design designA -columns 1 -rows 3
[00144] Renaming a Group
[00145] A group cannot be renamed directly. To rename a group, remove the group and create
a new group that duplicates the removed group but has the new name. Alternatively, generate a
script (using write_rp_group) and edit the name in the generated script. In other embodiments,
the group can be renamed directly.
[00146] Adding Items to a Group
[00147] To add leaf cells, hierarchy groups, and keepouts to relative placement groups
(created using create_rp_group), use the add_to rp_group command.
[00148] When adding an item to a relative placement group, the following points can apply:
[00149] - The relative placement group in which the item is added must exist. In another
embodiment, a default group is created.
[00150] - Switches identify whether the item added is a leaf cell (-leaf), hierarchical group (-
hierarchy), or a keepout (-keepout).
[00151] The syntaxes for adding leaf cells, hierarchy groups, and keepouts differ. Table 3

provides a quick look up of the options allowed for each syntax.

WO 2013/025934 PCT/US2012/051204
17

[00152] - If an item already exists in the group at the given column and row location or if the
item to be inserted is already positioned, an error message appears.
[00153] + The command returns a collection handle (identifier) to the relative placement
groups in which the objects are added. If no objects are created, the empty string is returned.
[00154] Syntax for Adding a Leaf Cell
[00155] The syntax to add a leaf cell is

add_to_rp_group group list -leaf cell name

[-column col number] [-row row_number]

[-pin_align name pin_name]

[-orientation direction]

[00156] Syntax for Adding a Hierarchical Group
[00157] The syntax to add a hierarchical group is
add_to_rp_group group list -hierarchy group name
[-instance instance name]
[-column col number] [-row row_number]
[00158] Syntax for Adding a Keepout
[00159] The syntax to add a keepout is
add_to_rp_group group list -keepout keepout name
[-column column_number] [-row row_number]
[-width value] [-height value]
[00160] Options To Use to Add Items to Relative Placement Groups
[00161] Use appropriate options as shown previously in the syntaxes to add items to a relative
placement group. The options used depend on the item to be added to the group. Table 3

provides a quick look up for the options available for each add to rp group syntax.

To do this Use this

List the relative placement group names in | group_list
which to add items. The groups must be for
the same design. In other embodiments,
different designs are permitted.

Specify the column position in which to -column
add the item (default is 0). Column
positions start at 0, which is the leftmost
column.

WO 2013/025934

18

PCT/US2012/051204

To do this

Use this

Specify the row position in which to add
the item (default is 0). Row positions start
at 0, which is the bottom row.

-row

Add the named leaf cell. Each leaf cell
added must exist in the gate-level netlist.
(vs. -hierarchy or -keepout for the position
specified). In other embodiments, a default
cell is created.

-leaf

Add the named relative placement group
for hierarchy inclusion. The group can be
used one time in another group in the same
design. See “Defining Hierarchical Groups
for Inclusion™. (vs. -leaf or -keepout for the
position specified).

-hierarchy

Specify the name of the instance on which
to instantiate the given hierarchical relative
placement group for hierarchy
instantiation. A group can be instantiated
more than once. See “Defining
Hierarchical Groups for Instantiation”. Use
—instance with —hierarchy. (vs. -leaf or -
keepout for the position specified).

-hierarchy
-instance

Add the named hard keepout. There is no
keepout object so the name provided here
is to reference the keepout after it is
created. See “Adding Keepouts™.

-keepout

Specify the name of the pin to use for pin
alignment of this cell with other cells in a
group. If using -pin_align name, the value
specified here overrides a pin name
provided with create rp_group for the
relative placement group to which it is
being added. See “Aligning Relative
Placement by Pins”.

-pin_align_name

WO 2013/025934 PCT/US2012/051204
19

To do this Use this

Specify the placement orientation of a cell | -orientation
with respect to the group to which it is
added. PDEF or DEF syntax can be used,
as follows:

— PDEF orientations: 0, 90, 180, 270, 0-
mirror, 90-mirror, 180-mirror, or 270-
mirror

— DEF orientations: N, W, S, E, FN, FW,
FS, or FE

See “Specifying Orientation for Leaf
Cells”.

Specify the width of the keepout to add. If | -width
—width omitted, the keepout defaults to the
width of the widest cell in the column in
which the keepout is added. Use this option
with -keepout and -height. See “Adding
Keepouts™.

Specify the height of the keepout to add. If | -height
-height omitted, the keepout defaults to the
height of the tallest cell in the column in
which the keepout is added. Use this option
with -keepout and -width. See “Adding
Keepouts™.

[00162] Quick Lookup of Options for add_to_rp_group Syntaxes
[00163] Table 3 provides a quick lookup of the options available for the add to rp_group
syntaxes.

[00164] Table 3 Quick Lookup of Options for add_to_rp_group Syntaxes

Option Syntax | Leaf Hierarchy Hierarchy for | Keepout
cell for Inclusion | instantiation

group_list X X X X

-column X X X X

-row X X X X

-leaf X

-hierarchy X X

-keepout X

-pin_align_name X

WO 2013/025934 PCT/US2012/051204

20
Option Syntax | Leaf Hierarchy Hierarchy for | Keepout
cell for Inclusion | instantiation
-orientation X
-instance X
-width X
-height X

[00165] Example
[00166] To find relative placement group grp_ripple, add leaf cell U2 to grp_ripple, then
instantiate grp_ripple in the top group, enter

psyn_shell-xg-t> find rp_group grp_ripple

{ripple::grp_ripple}

psyn_shell-xg-t> add_to_rp _group grp ripple -leaf carry in 1

{ripple::grp_ripple}

psyn_shell-xg-t>add_to_rp group top_group -hierarchy grp_ripple -instance U2

{example3::top_group}
[00167] Adding Hierarchical Groups
[00168] Hierarchical relative placement allows relative placement groups to be embedded
within other relative placement groups. The embedded groups then are handled similarly to leaf
cells. To add hierarchical groups, use the add to_rp group command with its -hierarchy or -
hierarchy and -instance switches, depending on the type of hierarchical group wanted.
[00169] Hierarchical relative placement simplified expression of relative placement
constraints. With hierarchical relative placement, providing relative placement information
multiple times is unnecessary for a recurring pattern.
[00170] Benefits of Using Hierarchical Groups in Relative Placement
[00171] Various embodiments that implement hierarchical relative placement provide one or
more of the following benefits:
[00172] 1) Allows organization of relative placement in a manner that is easier to maintain
and understand. For example, the relative placement group can bed created to parallel Verilog or
VHDL organization.
[00173] 2) Allows reuse of a repeating placement pattern, for example, an adder.
[00174] 3) Can reduce the number of lines of relative placement information to be written.
[00175] 4) Allows integrating blocks.
[00176] 5) Provides flexibility for the wanted configuration.

WO 2013/025934 PCT/US2012/051204
21

[00177] Types of Hierarchical Relative Placement Group Usage
[00178] Hierarchical relative placement in different ways, depending on whether the relative
placement group is used in the same design or in different designs:
[00179] Inclusion
[00180] Applies to a relative placement group in the same design as the group in which it is
included. An included group is used one time in the same design.
[00181] See “Defining Hierarchical Groups for Inclusion”.
[00182] Instantiation
[00183] Applies to a relative placement group that is not from the design in which it is
instantiated. An instantiated relative placement group can be used multiple times and in multiple
places up to the number of times the design of the group is instantiated in the netlist.
[00184] See “Defining Hierarchical Groups for Instantiation”.
[00185] Important;
[00186] The syntaxes for creating the hierarchical group definitions for inclusion and for
instantiation are the same except the use of -instance switch for instantiation.
[00187] Defining Hierarchical Groups for Inclusion
[00188] To specify that a group is a hierarchically included group, specify hierarchy by using
the -hierarchy switch with the add to_rp group command.
[00189] When a group is included in a parent group, it is as if the group is directly embedded
within the parent group. An included group can be used in another group of the same design one
time. However, the new group that contains the included group can be further included in
another group in the same design or instantiated in another group of a different design.
[00190] See the syntax provided in “Syntax for Adding a Hierarchical Group” and the options
summary provided in Table 3.
[00191] Example
[00192] To include the relative placement group named rp3 as a hierarchical group for
inclusion in group rp4, enter

psyn_shell-xg-t>add_to_rp group rp4 -hierarchy rp3 -column 0 -row 0
[00193] The script in the following example defines the input for a hierarchical relative
placement definition for inclusion. Groups 1pl, rp2, rp3, and rp4 are all defined as being part of
design top (shown in bold). The contents of groups rpl, rp2, and rp3 are treated as leaf cells
when they are included in group rp4.
[00194] Example Hierarchical Relative Placement Definition for Inclusion

create_rp_group rpl -design top -columns 2 -rows 1

WO 2013/025934 PCT/US2012/051204
22

add_to_rp_group rpl -leaf Ul -column 0 -row 0

add_to_rp_group rpl -leaf U4 -column 1 -row 0

create_rp_group rp2 -design top -columns 2 -rows 1

add_to_rp_group rp2 -leaf U2 -column 0 -row 0

add_to_rp_group rp2 -leaf US -column 1 -row 0

create_rp_group rp3 -design top -columns 2 -rows 1

add_to_rp_group rp3 -leaf U3 -column 0 -row 0

add_to_rp_group rp3 -leaf U6 -column 1 -row 0

create_rp_group rp4 -design top -columns 1 -rows 3

add_to rp_group rp4 -hier rpl -column 0 -row 0

add_to rp_group rp4 -hier rp2 -column 0 -row 1

add to rp_group rp4 -hier rp3 -column O -row 2
[00195] In the above example,
[00196] -« Groups rpl, rp2, and rp3 are cach defined as having two columns and one row.
[00197] -« Group 1p4, in which groups rp1, rp2, and rp3 are included (each group used one
time), is defined as having one column and three rows.
[00198] - Each included group is defined as a hierarchical subgroup (group rp1 as subgroup
pl, group rp2 as subgroup rp2, and group rp3 as subgroup rp3).
[00199] - Group rp4 can be further included as a hierarchical subgroup in another group in the
same design.
[00200] The construction of the resulting hierarchical relative placement structure is shown in
Figure 5.
[00201] Groups 1pl, rp2, and 1p3 are from the same design, top_design. They are included in
group rp4, which can be further included one time in top_design.
[00202] Defining Hierarchical Groups for Instantiation
[00203] Specify that a group is a hierarchically instantiated group by specifying hierarchy
plus an instance name with the add to _rp_group command.
[00204] Instantiating a group is a useful way to replicate relative placement information
across multiple instances of a design and to create relative placement relationships between those
instances. An instantiated group can be used multiple times and in multiple places. For example,
various embodiments use hierarchy instantiation for one or more of these cases:
[00205] 1) Multiple relative placement layouts are to be used for different instances of a

design.

WO 2013/025934 PCT/US2012/051204
23

[00206] 2) Despite one layout, relative placement is to be specified between instances of that
layout or between instances and other cells and groups.
[00207] The syntax for instantiation is the same as the syntax for inclusion but provides the -
instance switch in addition to the -hierarchy switch. The -instance switch specifies the
hierarchical cell upon which to instantiate the given hierarchical relative placement group. The
instance is within the design of the group to which it is added and is an instance of the same
design of the group being added hierarchically.
[00208] When uniquified, instantiated groups are dropped unless they are required for the
newly uniquified group; that is, each instantiation will go to one uniquified design.
[00209] See the syntax provided in “Syntax for Adding a Hierarchical Group” and the options
summary provided in Table 3.
[00210] Example
[00211] To instantiate the relative placement group named rp1 using a hierarchical cell
instance named 11 in the relative placement group named rp2, enter
psyn_shell-xg-t>add_to_rp_group rp2 -hierarchy rpl
-instance I1 -column 0 -row 0
[00212] The script in the example below provides a definition for hierarchical relative
placement for instantiation. Group rpl is in the design pair_design (shown in bold) and defines
leaf cells Ul and U2 as the group. Group rp2 is in the design mid_design (shown in bold) and
instantiates three instances of group rpl from pair_design, named I1, 12, and 3. Each instance is
defined as a subgroup plus an instance name and each is treated as a leaf cell.
[00213] Example Definition for Hierarchical Relative Placement for Instantiation
create_rp_group rpl -design pair_design -columns 2 -rows 1
add_to _rp_group rpl -leaf Ul -column 0 -row 0
add_to _rp_group rpl -leaf U2 -column 1 -row 0
create rp_group rp2 -design mid_design -columns 1 -rows 3
add_to_rp_group rp2 -hier rp1 -instance I1 -column 0 -row 0
add_to_rp_group rp2 -hier rpl -instance 12 -column 0 -row 1
add_to_rp_group rp2 -hier rpl -instance I3 -column 0 -row 2
[00214] In the above example,
[00215] - Instances I1, 12, and I3 are hierarchical cells instantiating the design pair_design.
[00216] e« Groups rpl is defined as having two columns and one row and contains leaf cells

U1 and U2.

WO 2013/025934 PCT/US2012/051204
24

[00217] -+ Group rp2, in which group rpl is instantiated three times, is defined as having one
column and three rows. Each instantiated group is defined as a hierarchical subgroup containing
a named instance.
[00218] « Group rp2 is treated as a leaf cell, and can be used multiple times if it is further
instantiated.
[00219] The construction of the resulting hierarchical relative placement block is shown in
Figure 6.
[00220] Group rpl belongs to the design pair_design. It is instantiated three times in group
rp2, which can be further instantiated in different designs.
[00221] Ungrouping Hierarchical Relative Placement
[00222] The ungroup command changes hierarchical relative placement structure.
[00223] After using ungroup, hierarchical relative placement instantiation is converted to
hierarchical relative placement inclusion because the design is flattened and all the groups are
now of the same design. Instantiation of hierarchical modules no longer exists.
[00224] Relative placement groups affected by an ungroup command are renamed to show the
path to the group before flattening followed by a slash (/) and the original group name. If this
results in a name collision, a numbered suffix is added to create a unique name. For example, rp2
rp1(I3) 0 2 becomes rp2 13/rpl 0 2 after ungrouping.
[00225] Using the hicrarchical block shown in Figure 6, the relative placement definition is
now as shown in the example below. After ungroup -flatten -all, the resulting ungrouped
hierarchical placement block is as shown in Figure 7.
[00226] Example Hierarchical Relative Placement Changed by the ungroup Command
create_rp_group [1/rpl -design mid_design -columns 2 -rows 1
[1/rp1 -leaf 11/U1 -column O -row 0
[1/rp1 -leaf 11/U2 -column 1 -row 0
create_rp_group [2/rpl -design mid_design -columns 2 -rows 1
12/rp1 -leaf 12/U1 -column O -row 0
12/rp1 -leaf 12/U2 -column 1 -row 0
create_rp_group [3/rpl -design mid_design -columns 2 -rows 1
[3/rp1 -leaf I13/U1 -column O -row 0
[3/rp1 -leaf 13/U2 -column 1 -row 0
create_rp_group rp2 -design mid_design -columns 1 -rows 3
rp2 -hierarchy I1/rpl -column O -row 0
rp2 -hierarchy 12/rp1 -column O -row 1

WO 2013/025934 PCT/US2012/051204
25

rp2 -hierarchy 13/rp1 -column O -row 2
[00227] Uniquifying Hierarchical Relative Placement
[00228] The uniquify command can change each instantiation of hierarchical relative
placement structure.
[00229] For example, uniquifying
group grp_top top 1 2
hier grp_ripple(U1) 0 0
hier grp_ripple(U2) 0 1
group grp_ripple ripple
[...]
[00230] results in
group grp_top top 1 2
hier grp_ripple 1(U1) 00
hier grp_ripple 2(U2) 0 1
group grp_ripple 1 ripple 1
group grp_ripple 2 ripple 2
[00231] Adding Keepouts
[00232] Hard keepouts can be specified within relative placement blocks. To do this, use the
add to rp_group command with its —keepout switch.
[00233] When defining keepouts, the one or more of the following points can apply:
[00234] -« Keepouts are not objects. A name is to be provided for reference. IN other
embodiments, object keepouts are created.
[00235] e« The width and height of a keepout can be specified.
[00236] - The unit of width for a keepout is the number of placement sites. If the width is not
specified, the default width is the width of the widest cell in that column.
[00237] - The unit of height for a keepout is one row. If the height is not specified, the default
height is the height of the tallest cell in that row.
[00238] See the syntax provided in “Syntax for Adding a Keepout” and the options summary
provided in Table 3.
[00239] Example
[00240] To create the hard keepout named gapl shown in Figure 8, enter
psyn_shell-xg-t>add_to_rp group misc
-keepout gap1

-column O -row 2

WO 2013/025934 PCT/US2012/051204
26

-width 15 -height 1
[00241] Figure 8 shows a relative placement block containing keepouts 800 (named gapl ...
gap5 in this example). The input to define the keepouts 800 is provided in the example below,
following the figure.
[00242] The script in the example below provides the definition for the relative placement
block containing keepouts shown in Figure 8.
[00243] Example Definition for Relative Placement Input for Defining Keepouts
create_rp_group misc -design top -columns 5 -rows 4
add_to rp_group misc -leaf U1l -column 0 -row 0
add to rp_group misc -leaf U3 -column O -row 1
add_to rp group misc -keepout gapl -column 0 -row 2 -width 15
-height 1
add_to rp group misc -leaf U4 -column 0 -row 3
add_to rp_group misc -leaf U2 -column 1 -row 0
add_to rp group misc -keepout gap2 -column 1 -row 1 -width 15
-height 1
add_to rp group misc -keepout gap3 -column 2 -row 1 -width 10
-height 1
add_to rp_group misc -leaf U5 -column 3 -row 0
add to rp_group misc -leaf U6 -column 3 -row 1
add to rp_group misc -leaf U7 -column 3 -row 2
add_to_rp_group misc -keepout gap4 -column 3 -row 2 -width 5 -height 1
add_to rp group misc -keepout gap5 -column 3 -row 3 -width 20
-height 1
add_to rp_group misc -leaf U8 -column 4 -row 0
add to rp_group misc -leaf U9 -column 4 -row 1
[00244] Creating Relative Placement Structures Containing Multiple Column or Row
Positions
[00245] A cell can occupymultiple column positions ormultiple row positions, which is
known as straddling. To define straddling, use the inclusion hierarchical relative placement
syntax (see “Defining Hierarchical Groups for Inclusion”). When a group is an included group, it
can be used once in the design in which it is defined. However, the new group in which it is

included can be included or instantiated in another group.

WO 2013/025934 PCT/US2012/051204
27

[00246] Figure 9 shows a relative placement group in which cells straddle columns (instance
U2 901) and rows (instance U7 902).

[00247] The script in the example below provides the definition for the relative placement
block shown in Figure 9.

[00248] To construct the hierarchy needed for straddling, the leaf cell groups are defined for
pl, rp2 (the cell that straddles columns 0 and 1), and rp3, then define group rp4 to contain
groups 1pl, rp2, and rp3. Finally, rp5 is defined to contain group rp4 and leaf cell U7 (the cell
that straddles rows 0, 1, and 2).

[00249] Example Definition for Relative Placement Input for Hierarchical

Placement With Straddling

create_rp_group rpl -design top -columns 2 -rows 1
add_to _rp_group rpl -leaf Ul -column 0 -row 0
add_to _rp_group rpl -leaf U4 -column 1 -row 0
create_rp_group rp2 -design top -columns 1 -rows 1
add_to_rp_group rp2 -leaf U2 -column 0 -row 0
create_rp_group rp3 -design top -columns 2 -rows 1
add_to rp_group rp3 -leaf U3 -column 0 -row 0
add_to _rp_group rp3 -leaf U6 -column 1 -row 0
create_rp_group rp4 -design top -columns 1 -rows 3
add_to rp_group rp4 -hier rpl -column 0 -row 0
add_to rp_group rp4 -hier rp2 -column 0 -row 1
add to rp_group rp4 -hier rp3 -column O -row 2
create_rp_group rp5 -design top -columns 2 -rows 1
add_to rp_group rp5 -hier rp4 -column 0 -row 0
add_to_rp_group rp5 -leaf U7 -column 1 -row 0
[00250] Figure 10 shows the construction of the hierarchy defined in the example above.
[00251] Specifying Orientation for Leaf Cells
[00252] By default, the placement, routing, and optimization tool does orientation
optimization (automatic orientation) for cells in relative placement groups but orientation can be
specified for cells on a per-cell basis, use a mix of user-specified orientation and automatic
orientation, or disable orientation on cells in relative placement groups. You cannot specify
orientation for a group. In some embodiments, specifying orientation for a group specifies that

orientation for all cells of the group.

WO 2013/025934 PCT/US2012/051204
28

[00253] If an orientation is not specified for a cell, by default, the tool uses either orientation
optimization or the default orientation for the cell. Orientation optimization can flip a cell from
its default orientation to improve wire length.
[00254] To specify orientation for leaf cells, use the add to rp_group command with its -
orientation switch and the syntax for defining a leaf cell. In addition, direct the placement,
routing, and optimization tool is to be directed regarding orientation optimization.
[00255] When specifying orientation, one or more of the following points can apply:
[00256] - Orientation specifed has precedence over orientation optimization and default
orientation.
[00257] - If an orientation that is not valid is specified, that orientation is ignored and a valid
orientation is used.
[00258] - Specifying both pin alignment and orientation in the same invocation might be
contradictory. Although every attempt is made to honor such a request, honoring both might not
be possible. In this case, the orientation specification takes precedence over the pin alignment
specification.
[00259] - If orientation is not specified for a cell and automatic orientation is done, pin
alignment is honored.
[00260] The syntax is

add_to_rp_group group list -leaf instance_name

-column col number -row row_number -orientation direction
[00261] For syntax details, see “Adding Items to a Group”.
[00262] Directing Orientation Optimization
[00263] Orientation optimization can flip a cell to improve relative placement wire length,
thereby improving QoR for the design. Orientation optimization is enabled by default.
[00264] The physopt rp_enable orient opt variable controls whether orientation optimization
is enabled (default true). Orientation optimization is enabled or disabled according to whether to
specify the orientation for some cells or disable orientation optimization.
[00265] Specifying a Mix of User-Specified Orientation and Automatic Orientation
[00266] Orientation can be specified for some cells in a group and automatic orientation
allowed for the other cells. To do this, ensure that the physopt_rp_enable orient opt variable is
set to true (the default).
[00267] This ensures that orientations specifed are respected and automatic orientation is done

for the other cells.

WO 2013/025934 PCT/US2012/051204
29

[00268] Disabling Orientation Optimization

[00269] Orientation optimization can be disabled by setting physopt rp_enable orient opt to

false (default is true), for example, when pin alignment is to have precedence.

[00270] When this variable is set to false, the specified orientation is respected if the

orientation is valid. If no user-specified orientation exists, a default valid orientation is chosen.

[00271] Specifying Orientation and Pin Alignment

[00272] Both orientation and pin alignment can be specified in the same invocation but doing

this might be contradictory.

[00273] When used with pin alignment, in various embodiments the priorities for orientation

are as follows, in this order:

[00274] 1. User-specified orientation

[00275] When used with pin alignment, orientation has precedence.

[00276] 2. Orientation optimization

[00277] If orientation is not specified for a cell and orientation optimization is done, pin

alignment is honored.

[00278] 3. Default orientation

[00279] When used with pin alignment, pin alignment has precedence.

[00280] Other embodiments remove, add to, or rearrange the above priorities.

[00281] Figure 11 shows orientation optimization used with pin alignment, in particular pin A

1100. In such a case, both orientation and pin alignment are honored. (Not all leaf cells listed in

the example that follows the figure are shown in the figure.)

[00282] The example below provides the definition for the relative placement shown in Figure

11.

[00283] Example Orientation Optimization Used With Pin Alignment

create_rp_group miscl -design block1 -columns 3 -rows 10 -pin_alignment A

add-to_rp_group miscl -leaf I3 -column 0 -row 0 -orientation N
add-to_rp_group miscl -leaf 14 -column 0 -row 1 -orientation FN
add-to_rp_group miscl -leaf IS -column 0 -row 2 -orientation N
add-to_rp_group miscl -leaf I6 -column O -row 3
add-to_rp_group miscl -leaf I7 -column 0 -row 4

add-to_rp_group miscl -leaf I8 -column 0 -row 5

WO 2013/025934 PCT/US2012/051204
30

[00284] Writing Relative Placement Information to a Script File

[00285] Specified relative placement groups can be written to a named file, creating a Tcl-
format script for recreating relative placement groups and their items on the same design. To do
this, use the write_rp group command.

[00286] The command returns a collection handle (identifier) of relative placement groups
written out. If no objects were written, the empty string is returned.

[00287] To use the write_rp group command, enter psyn_shell-xg-t> write_rp_group

[options]

To do this Use this
List the groups to write to the script. (vs. group_list
using —all).

Write all the relative placement groups to -all

the script. (vs. using a group list or —

hicrarchy).

Write all the relative placement groups -hierarchy

within the hierarchy of the relative
placement groups. By omitting this option,
subgroups are not written.

Disable line splitting when information -nosplit
exceeds the column width.

Write the script to the specified file. By -output
omitting this option, the information is
written to the screen.

[00288] Example
[00289] To save all the relative placement groups to disk, remove the information from the
design, then recreate the information on the design, enter

psyn_shell-xg-t> find rp_group

{mul::grp_mul ripple::grp_ripple example3::top _group}

psyn_shell-xg-t> write_rp_group -all -output my_groups.tcl

1
psyn_shell-xg-t>remove_rp_group -all -quiet

1
psyn_shell-xg-t> find rp_group
Error: Can’t find objects matching **’. (UID-109)

psyn_shell-xg-t> source my_groups.tcl

WO 2013/025934 PCT/US2012/051204
31

{example3::top_group}
psyn_shell-xg-t> find rp_group
{example3::top_group ripple::grp_ripple mul::grp _mul}

[00290] Aligning Relative Placement by Pins
[00291] Columns can be aligned by pins instead of by the lower-left corner (the default). This
capability increases the probability of straight routes and can result in less congestion, lower
power, and lower routing resources by eliminating vias.
[00292] To align a group by pins, use the create_rp_group command with its -pin_align name
switch.
[00293] When aligning by pins, one or more of the following points can apply:
[00294] + When specifing a pin name, the tool determines the location for that pin in cells in
the column, then aligns the column based on the pin locations.
[00295] - If cells in a column do not have the pin specified, the column is aligned as follows:
[00296] - If some cells in a column do not have the pins specified, those cells are aligned with
a default position (e.g., the lower-left corner) and an information message appears.
[00297] - If no cells in a column have the pins specified, the cells are aligned with a default
position (e.g., the lower-left corner) and a warning appears.
[00298] -« Aligning by pins can result in empty space between columns.
[00299] -« Both pin alignment and orientation can be specified in the same invocation but
doing this might be contradictory. Although every attempt is made to honor such a request,
honoring both might not be possible. In this case, the orientation specification takes precedence
over the pin alignment specification.
[00300] <« The widest cell in the column determines the width of the column.
[00301] Figure 12 shows a relative placement group aligned by pins.
[00302] The script in the example below defines the relative placement group shown in Figure
12, which is aligned by pin A 1201.
[00303] Example Definition for Relative Placement Group Aligned by Pins
create_rp_group rpl -design pair_design -columns 1 -rows 4 -pin_align name A

add_to _rp_group rpl -leaf Ul -column 0 -row 0

add_to _rp_group rpl -leaf U2 -column 0 -row 1

add to rp_group rpl -leaf U3 -column O -row 2

add to rp _group rpl -leaf U4 -column 0 -row 3
[00304] A column can be aligned within a placement group by a specified pin and align cells

within the column by a different pin as shown in Figure 13, with pin A 1301 and pin B 1302.

WO 2013/025934 PCT/US2012/051204
32

The alignment pin name specified for particular cells in the column overrides the alignment pin
name specified for the group.
[00305] A set of cells can be specified to align over specified pins. For example, pins A and B
can be aligned in a group by specifying a different pin alignment name for some cells.
[00306] The script in the example below defines the relative placement group shown in Figure
13. In the example, the group miscl is aligned by pin A and instances IS5 and 16 within the group
are aligned by pin B, overriding the group pin alignment name A for those instances.
[00307] Example Definition to Align a Group and Leaf Cells by Pins
create_rp_group miscl -design block1 -columns 3 -rows 10 -pin_align name A

add _to _rp_group miscl -leaf I3 -column 0 -row 0

add _to rp group miscl -leaf I4 -column 0 -row 1

add_to rp_group miscl -leaf IS5 -column O -row 2 -pin_align name B

add_to rp group miscl -leaf I6 -column 0 -row 3 -pin_align name B

add _to _rp group miscl -leaf I7 -column 0 -row 4

add_to rp group miscl -leaf I8 -column 0 -row 5
[00308] Figure 14 shows a relative placement block that contains a group aligned by pins, in
particular pin CLK 1401 —the column named bank1 (col 0). It is included in the group named
final. Group final can also be used further for instantiation or inclusion in another group.
[00309] The script in the example below provides the definition for the relative placement
block shown in Figure 14.
[00310] Example Definition for Hierarchical Relative Placement Block With
Column Aligned by Pins

create_rp_group bankl -design top -columns 1 -rows 4 -pin_name clk
add_to_rp_group bank1 -leaf U1 -column 0 -row 0
add_to_rp_group bank1 -leaf U2 -column 0 -row 1
add_to_rp_group bank1 -leaf U3 -column 0 -row 2
add_to_rp_group bank1 -leaf U4 -column 0 -row 3

create_rp_group bank?2 -design top -columns 1 -rows 2
add_to_rp_group bank?2 -leaf U5 -column 0-row 0
add to rp_group bank?2 -leaf U6 -column O-row 1

create rp_group bank4 -design top -columns 1 -rows 4

add_to_rp_group bank4 -leaf U19 -column 0 -row 0

add_to_rp_group bank4 -leaf U22 -column O -row 3

WO 2013/025934 PCT/US2012/051204
33

create rp_group combl -design top -columns 3 -rows 1
add_to rp_group combl -leaf U7 -column 0 -row 0
add_to rp group combl -leaf U8 -column 1 -row 0
add_to rp_group combl -leaf U9 -column 2 -row 0
create_rp_group comb2 -design top -columns 3 -rows 1
add_to_rp_group comb?2 -leaf U10 -column O -row 0
add_to_rp_group comb?2 -leaf Ul1 -column 1 -row 0
add_to_rp_group comb?2 -leaf U12 -column 2 -row 0
create_rp_group comb3 -design top -columns 3 -rows 1
add_to_rp_group comb3 -leaf U13 -column O -row 0
add_to_rp_group comb3 -leaf U14 -column 1 -row 0
add_to_rp_group comb3 -leaf U15 -column 2 -row 0
create_rp_group comb4 -design top -columns 3 -rows 1
add_to_rp_group comb4 -leaf U16 -column O -row 0
add_to_rp_group comb4 -leaf U17 -column 1 -row 0
add_to_rp_group comb4 -leaf U18 -column 2 -row 0
create_rp_group bank3 -design top -columns 1 -rows 4
add_to_rp_group bank3 -hierarchy combl -column 0 -row 0
add to rp_group bank3 -hierarchy comb2 -column 0 -row 1

create_rp_group final -design top -columns 4 -rows 1

add_to_rp_group final -hierarchy bank1 -column 0 -row 0

add_to_rp_group final -hierarchy bank2 -column 1 -row 0

add_to_rp_group final -hierarchy bank3 -column 2 -row 0

add_to_rp_group final -hierarchy bank4 -column 3 -row 0
[00311] Anchoring Relative Placement Blocks at a Specified Location
[00312] A single relative placement block can be anchored at a location specifed. Anchoring
allows controlled placement of the relative placement block with respect to other relative
placement blocks, macros, or to the edges and origin of the core area.
[00313] To anchor a relative placement group, use the create rp_group command with its -
x_offset and -y _offset switches.
[00314] When specifying an anchor point, one or more of the following points can apply:
[00315] - Provide anchor points for top level groups. Anchor points are allowed at the top

level.

WO 2013/025934 PCT/US2012/051204
34

[00316] - Both the x- and y-coordinates or either the x- or y-coordinate can be specified.
Specifying one coordinate as fixed allows the unspecified coordinate to slide. The offset is an
integer, in microns, relative to the chip’s origin.
[00317] - If an anchor point outside the design boundary is specified, relative placement
alignment for the block fails, a warning appears, and the cells are clustered inside the boundary.
[00318] - If an anchor point is specified for a group that is not a top-level group or that causes
placement that is not valid, a warning appears and relative placement continues.
[00319] Figure 15 shows a relative placement block anchored at both the x-coordinate and the
y-coordinate.
[00320] The script in the example below provides the definition for anchoring relative
placement block miscl in block 1 at both x-coordinate 100 and y-coordinate 100. (In both the
figure and the example, not all rows are shown.)
[00321] Example Definition for Anchoring a Group Using Two Coordinates

create_rp_group miscl -design block1 -columns 3 -rows 10

-x_offset 100 -y _offset 100

add_to_rp_group miscl -leaf 130 -column O -row 0

add_to_rp_group miscl -leaf I31 -column O -row 1

add_to_rp_group miscl -leaf 132 -column O -row 2

add_to_rp_group miscl -leaf 133 -column O -row 3

add_to_rp_group miscl -leaf 134 -column 0 -row 4

add_to_rp_group miscl -leaf I35 -column O -row 5

[00322] Figure 16 shows 12 relative placement blocks aligned and anchored vertically at four
coordinates. Blocks 1, 2, and 3 1601 have —x_offset 100. Blocks 4, 5, and 6 1602 have —
x_offset 200. Blocks 7, 8, and 9 1603 have —x_offset 300. Blocks 10, 11, and 12 1604 have —
x_offset 400.

[00323] The script in the example below defines the locations of the 12 vertically aligned and
anchored relative placement blocks shown in Figure 16. For brevity, not every group is listed in
the example.

[00324] Example Definitions for Locations of Vertically Aligned and Anchored

Blocks
create_rp_group blockl -design miscl -columns 3 -rows 10 -x_offset 100

create_rp_group block2 -design miscl -columns 3 -rows 10 -x_offset 100

create_rp_group block3 -design miscl -columns 3 -rows 10 -x_offset 100

WO 2013/025934 PCT/US2012/051204
35

create_rp_group block4 -design miscl -columns 3 -rows 10 -x_offset 200
create_rp_group blockS -design miscl -columns 3 -rows 10 -x_offset 200

create_rp_group block6 -design miscl -columns 3 -rows 10 -x_offset 200

create_rp_group block12 -design miscl -columns 3 -rows 10 -x_offset 400
[00325] Using Compression to Remove Empty Space in a Relative Placement Group
[00326] By default, construction for relative placement aligns cells from their bottom-left
corner. Compression removes empty space in rows to create a more compact structure. The
compressed columns are no longer aligned and utilization is higher in the area of the compressed
cells.
[00327] If compression is needed, use hicrarchical relative placement to construct the pattern,
using the syntax for hierarchical inclusion.
[00328] Figure 17 shows the same cells aligned without compression 1701 and with
compression 1702. The cells are bottom-left aligned.
[00329] Alternatively, compression can be accomplished by using bit-stack placement. Set the
variable physopt bit stacked placement to true (the default is false). Setting this variable to true
causes the empty space to be removed, compressing the group as shown in Figure 17. The
columns are no longer aligned and utilization is higher.
[00330] Relative Placement in a Design Containing Obstructions
[00331] During placement, relative placement groups can avoid placement keepouts
(obstructions) that are defined in the PDEF file or created by a the placement, routing, and
optimization tool keepout command (create placement keepout, create wiring keepout). A
relative placement group can be broken into pieces that straddle obstructions.
[00332] Figure 18 shows the placement of relative placement cells in a design containing
keepouts 1801 that were either defined in the PDEF file or created by a the placement, routing,
and optimization tool keepout command. Rows 0 and 2 and column 5 are placed to avoid the
keepouts but relative placement alignment is maintained.
[00333] Converting rp_reader Syntax to Tcl Syntax
[00334] Use the following transformations to convert existing rp_reader text files to Tcl
syntax to use within the placement, routing, and optimization tool:
[00335] -+ Change the keyword group to the create rp group command
[00336] - Insert the add to rp group command before each item in a group
[00337] -« Change the keyword keepout to -keepout
[00338] -+ Change the keyword hierarchy to -hierarchy

WO 2013/025934 PCT/US2012/051204
36

[00339] -« Change the keyword leaf to -leaf
[00340] - Insert the -design switch before the design name when creating a relative placement
group
[00341] < Insert the -column and -row switches in front of those values
[00342] - Insert the -width and -height switches in front of those values
[00343] Alternatively, the following command can be used that runs a script to do the
conversion:

rp_reader dbfile out.tcl -tcl _export
[00344] The following tables show the rp_reader file format elements for groups, leaf cells,
hierarchy groups, and keepouts.

[00345] Group

group misc top 9 10

keyword | group | design number of | number
name | name columns of rows

[00346] Leafcell

custom leaf uo 0 0
group keyword | instance | column | row
name name position | position

[00347] Hierarchy group for inclusion

p4 hier pl 0 0
group keyword | subgroup | column | row
name name position | position

[00348] Hierarchy group for instantiation

p2 hier pl (U3) 0 0
group keyword | subgroup | instance | column | row
name name name position | position

[00349] Keepout

misc keep gap4 3 2 5 1

WO 2013/025934 PCT/US2012/051204

37
group keyword | keepout | column | row width height
name name position | position

[00350] Figure 19 is a simplified block diagram of a computer system 1910 suitable for use
with embodiments of the technology. Computer system 1910 typically includes at least one
processor 1914 which communicates with a number of peripheral devices via bus subsystem
1912. These peripheral devices may include a storage subsystem 1924, comprising a memory
subsystem 1926 and a file storage subsystem 1928, user interface input devices 1922, user
interface output devices 1920, and a network interface subsystem 1916. The input and output
devices allow user interaction with computer system 1910. Network interface subsystem 1916
provides an interface to outside networks, including an interface to communication network
1918, and is coupled via communication network 1918 to corresponding interface devices in
other computer systems. Communication network 1918 may comprise many interconnected
computer systems and communication links. These communication links may be wireline links,
optical links, wireless links, or any other mechanisms for communication of information. While
in one embodiment, communication network 1918 is the Internet, in other embodiments,
communication network 1918 may be any suitable computer network.

[00351] User interface input devices 1922 may include a keyboard, pointing devices such as a
mouse, trackball, touchpad, or graphics tablet, a scanner, a touchscreen incorporated into the
display, audio input devices such as voice recognition systems, microphones, and other types of
input devices. In general, use of the term "input device" is intended to include all possible types
of devices and ways to input information into computer system 1910 or onto computer network
1918.

[00352] User interface output devices 1920 may include a display subsystem, a printer, a fax
machine, or non-visual displays such as audio output devices. The display subsystem may
include a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), a
projection device, or some other mechanism for creating a visible image. The display subsystem
may also provide non-visual display such as via audio output devices. In general, use of the term
"output device" is intended to include all possible types of devices and ways to output
information from computer system 1910 to the user or to another machine or computer system.
[00353] Storage subsystem 1924 stores the basic programming and data constructs that
provide the functionality of certain embodiments. For example, the various modules
implementing the functionality of certain embodiments may be stored in storage subsystem

1924. These software modules are generally executed by processor 1914,

WO 2013/025934 PCT/US2012/051204
38

[00354] Memory subsystem 1926 typically includes a number of memories including a main
random access memory (RAM) 1930 for storage of instructions and data during program
execution and a read only memory (ROM) 1932 in which fixed instructions are stored. File
storage subsystem 1928 provides persistent storage for program and data files, and may include a
hard disk drive, a floppy disk drive along with associated removable media, a CD-ROM drive,
an optical drive, or removable media cartridges. The databases and modules implementing the
functionality of certain embodiments may be stored by file storage subsystem 1928,

[00355] Bus subsystem 1912 provides a mechanism for letting the various components and
subsystems of computer system 1910 communicate with each other as intended. Although bus
subsystem 1912 is shown schematically as a single bus, alternative embodiments of the bus
subsystem may use multiple busses.

[00356] Computer readable medium 1940 can be a medium associated with file storage
subsystem 1928, and/or with network interface 1916. The computer readable medium can be a
hard disk, a floppy disk, a CD-ROM, an optical medium, removable media cartridge, or
electromagnetic wave. The computer readable medium 1940 is shown storing a circuit design
1980 created with the described technology. Also shown is a circuit 1990 created with the
described technology.

[00357] Computer system 1910 itself can be of varying types including a personal computer, a
portable computer, a workstation, a computer terminal, a network computer, a television, a
mainframe, or any other data processing system or user device. Due to the ever-changing nature
of computers and networks, the description of computer system 1910 depicted in Figure 19 is
intended only as a specific example for purposes of illustrating the preferred embodiments.
Many other configurations of computer system 1910 are possible having more or less
components than the computer system depicted in Figure 19.

[00358] Automatic relative placement rules at RTL-level

[00359] Relative placement rules can be generated the RTL-level. RP takes advantage of
inherent structure at the RTL-level of behavioral description, in addition to at the netlist cell
level.

[00360] When relative placement rules can be generated at the RTL-level, the RP constraints
are not required to be specific to the netlist, as the RP constraints are not required to be tied to
the instance names of the cells in the netlist. Thus, every time a new netlist is synthesized, and
the netlist has different instance names from a previously synthesized netlist despite functionally

identical designs, the RP constraints are not invalidated and need not be re-written to reference

WO 2013/025934 PCT/US2012/051204
39

new cell instance names. This process is easily repeatable. RP constraints at the RTL-level are
portable even when a new netlist is created through additional synthesis.

[00361] When relative placement rules can be generated at the RTL-level, then corresponding
RP constraints at the cell instance level do not have to be written. This saves time, because
writing RP constraints at the cell instance level is a very detailed and tedious task.

[00362] This technology focuses on RP specification on high level RTL constructs and
subsequent automatic cell level RP generation from the specification. It frees the user from
writing the cell level RP constraints and rewriting them when the design is re-synthesized. The
solution also has the full implementation flow support from RTL synthesis to place and route.
[00363] In one example design flow, an RTL hardware description is processed by a synthesis
tool such as Synopsys Design Compiler into a netlist. The synthesis tool automatically creates
RTL-level RP rules. When the synthesis tool creates the netlist, the corresponding netlist-level
RP rules are automatically created based on the RTL-level RP rules. A place and route and
optimization tool such as Synopsys IC Compiler then generates the placed, routed, and optimized
design from the netlist and the netlist-level RP rules. Generated netlist-level RP rules are
automatically updated reflecting name changes on composing cells when design hierarchy is
being ungrouped, uniquified, change named or change linked.

[00364] The RP constraints are propagated to synthesis and place and route tools such as DCT
and ICC.

[00365] Automatic relative placement for clock trees

[00366] The application of automatic relative placement to clock trees helps to prevent
overdesign from adding too many levels of buffers to the clock network, and helps to prevent
oversizing the drivers of the buffers. Because overdesign is reduced, the clock tree can handle
higher fanouts from the clock drivers for relative placement.

[00367] Figure 20 is a flow diagram illustrating an exemplary process of the placement,
routing, and optimization tool with clock tree synthesis clustering being performed during
placement.

[00368] The process flow of Figure 20 is similar to the process of Figure 2, and adds clock
tree synthesis clustering during placement. In 2002, coarse placement is performed on the
netlist. In 2004, during placement, clock tree synthesis is applied to cluster leaf-level clock flip-
flops.

[00369] In 2006, during placement, relative placement groups are automatically defined based
on the results from the clock tree synthesis clustering of leaf-level clock flip-flops. There are

four cases shown — the four combinations of netlists with and integrated clock gating, and clock

WO 2013/025934 PCT/US2012/051204
40

tree buffers added or not added. In 2006A, the netlist is without integrated clock gating, and
buffers are added before each of the relative placement groups. Clock buffers amplify clock
signals degraded by interconnect impedance, and isolate clock nets from upstream load
impedance of the clock tree. Because buffers are added, the nets are broken between the clock
and the relative placement groups. In 2006B, the netlist is without integrated clock gating, and
buffers are not added before each of the relative placement groups. Because buffers are not
added, the nets are not broken between the clock and the relative placement groups. In 2006C,
the netlist is with integrated clock gating, and integrated clock gating is added in each of the
relative placement groups. In 2006D, the netlist is with integrated clock gating, and integrated
clock gating is not added in each of the relative placement groups, such that the integrated clock
gating is freely movable by the placer.

[00370] In 2009, incremental placement of relative placement blocks, and detailed placement
of non-relative placement cells, is performed. In 2018, physical optimization of cells is
performed. In 2020, relative placement constraints are applied. In 2030, clock tree synthesis is
applied to build the complete clock tree(s).

[00371] Figure 21 is a flow diagram illustrating another exemplary process of the placement,
routing, and optimization tool with clock tree synthesis clustering being performed during
placement.

[00372] In 2101, the annotated netlist is preprocessed for relative placement annotation. Data
structures are created to carry relative placement information. In 2102, clock drivers such as
integrated clock gating are scanned in the netlist (or user input received for a given clock net,
clock pin, or clock name), etc., and clock sinks for a given clock object (integrated clock gating,
clock pin, clock name, clock pin, etc.) are collected for post-initial placement. In 2104, user
clock tree synthesis constraints are read in, such as clock tree references. Clock tree constraints
are specified early for relative placement, rather than waiting for post-placement full clock tree
synthesis.

[00373] Clock tree constraints are listed as follows, with a description of constraint. None,
one, or more of the clock tree constraints can be in effect. The scope of each constraint can be
global or per clock. Various constraints specify: clock trees that the options apply to; maximum
capacitance constraint; maximum fanout constraint; maximum transition time constraint;
maximum skew goal; minimum insertion delay goal; maximum number of clock tree levels;
preferred layers for clock tree routing; nondefault routing rule used for clock tree routing;
whether default routing rules are used for the clock tree levels closest to the clock sink; whether

to enable/disable boundary cell insertion; whether to cluster based on minimum wire length;

WO 2013/025934 PCT/US2012/051204
41

whether to cluster based on on-chip variation; whether to enable/disable logic-level balancing;
whether to enable/disable buffer relocation during optimization; whether to enable/disable buffer
sizing during optimization; whether to enable/disable delay insertion during optimization;
whether to enable/disable gate relocation during optimization; whether to enable/disable gate
sizing during optimization; the clock configuration file to read; and the name of the clock
configuration file that is written after clock tree synthesis.

[00374] In 2106, clock tree synthesis clustering is performed. Prior to clustering, pre-existing
relative placement cells, invalid relative placement objects etc. are filtered out of list of flip-flops
to be clustered. Responsive to calling the compile clock tree clustering algorithm, the clock tree
synthesis clusters are returned. Multiple cluster handling includes checking all elements in a
cluster to verify that they belong to the same hierarchy. If all elements do not belong to the same
hierarchy, then a relative placement group is not created from the cluster.

[00375] In 2108, clusters from the clock tree synthesis clustering are processed, and relative
placement groups are formed form the clusters; geometric compression is performed; and the
shapes of relative placement groups is automatically determined. Example geometric
compression details follow. Existing RP elements are filtered from collection. Sorting is
performed based on X location of each cell (alternatively, Y location). The number of rows and
columns is automatically determined based on the total number of elements. An example of this
determination follows: MaxRows = f(RPShape,userinput); FormFactor = flMacflops,MaxRows);
NumRows = f(FormFactor,NumFlops); NumCols = f(Numflops,clockdriver, NumRows).

Finally, elements are sorted within each column based on Y location of each cell (alternatively,
X location).

[00376] In 2110, integrated clock gating is added, or clock drivers are added to the clusters
from clock tree synthesis clustering. Nets are broken as needed to make such additions of the
integrated clock gating and the clock drivers. For example, if a buffer needs to be inserted, then
the net is broken, the buffer is created, and the buffer is connected. In another example, clock
drivers of correct size are chosen and inserted. In 2112, relative placement options are set for
each relative placement group. Examples of relative placement options are bottom left
alignment (alternatively bottom right, top right, top left), pin alignment (such as clock pin),
orientation (such as to minimize wire crossing within a relative placement group), X offset
and/or Y offset (in case of anchored locations, anchor of RP group derived based on initial
locations of flip-flops and ICG, and center of gravity used to determine X and/or Y offsets),
routing and optimization options, move values for RP groups (how much a group can move

while doing overlap removal, etc. In 2114, the coarse placement is refined. In the next pass of

WO 2013/025934 PCT/US2012/051204
42

coarse placement, the relative placement groups are placed. Relative placement groups are
legalized respecting all automatically generated or manually specified relative placement
constraints. In 2116, optimization occurs. In 2118, size is fixed/marked for the relative
placement groups for clock tree synthesis. In 2120, the full clock tree synthesis is performed.
[00377] While the present invention is disclosed by reference to the embodiments and
examples detailed above, it is to be understood that these examples are intended in an illustrative
rather than in a limiting sense. It is contemplated that modifications and combinations will
readily occur to those skilled in the art, which modifications and combinations will be within the

spirit of the invention and the scope of the following claims. What is claimed is:

10

WO 2013/025934 PCT/US2012/051204

43

CLAIMS

L. A method of circuit design with a computer system, comprising:
generating with the computer system a placed, routed, and optimized circuit
design, including:
guiding coarse placement of the circuit design according to rules created
specifically and automatically for a set of circuit elements in a netlist of the circuit
design including clock network flip-flops, the rules specifying positioning of each
circuit element of the set of circuit elements in the circuit design relative to other
circuit elements of the set of circuit elements in the circuit design; and
completing placement, routing, and optimization of the netlist of the

circuit design according to the rules.

2. The method of claim 1, further including:
after the coarse placement and before clock tree synthesis of the circuit design,

automatically creating the clock network flip-flops in the netlist of the circuit design.

3. The method of claim 1, further including:
after the coarse placement and before clock tree synthesis of the circuit design,
automatically creating the clock network flip-flops in the netlist of the circuit design

based on clock sinks in the netlist.

4. The method of claim 1, further including:
after the coarse placement and before clock tree synthesis of the circuit design,

automatically grouping the clock network flip-flops into a plurality of flip-flop groups.

5. The method of claim 1, further including:
after the coarse placement and before clock tree synthesis of the circuit design,
automatically grouping the clock network flip-flops into a plurality of flip-flop groups,
wherein the rules automatically created for the clock network flip-flops are based

on the plurality of flip-flop groups.

WO 2013/025934 PCT/US2012/051204

44

6. The method of claim 1, further including:
after the coarse placement and before clock tree synthesis of the circuit design,
performing clock tree clustering that automatically groups the clock network flip-flops

into a plurality of flip-flop groups.

7. The method of claim 1, further including:
after the coarse placement and before clock tree synthesis of the circuit design,
performing clock tree clustering that automatically groups the clock network flip-flops

into a plurality of flip-flop groups, without creating clock network buffer circuitry.

8. The method of claim 1, further including:

after the coarse placement and before clock tree synthesis of the circuit design,
performing clock tree clustering that automatically groups the clock network flip-flops
into a plurality of flip-flop groups,

wherein the rules automatically created for the clock network flip-flops are based

on the plurality of flip-flop groups from the clock tree clustering.

9. The method of claim 1, further including:

after the coarse placement and before clock tree synthesis of the circuit design,
performing clock tree clustering that automatically groups the clock network flip-flops
into a plurality of flip-flop groups; and

during placement of the circuit design, automatically creating clock network

buffer circuitry for the plurality of flip-flop groups.

10. The method of claim 1, wherein the clock network flip-flops are leaf nodes of a

clock tree of the circuit design.

11. The method of claim 1, further including:
during placement of the circuit design, automatically adding clock network buffer

circuitry matched to the grouped clock network flip-flops in the circuit design.

10

11

12

WO 2013/025934 PCT/US2012/051204

45
12. The method of claim 1, wherein the rules obey clock tree constraints specified for
the circuit design.
13. A computer readable medium with computer readable instructions executable by a

computer system, comprising:
instructions generating with the computer system a placed, routed, and optimized
circuit design, including:
instructions guiding coarse placement of the circuit design according to
rules created specifically and automatically for a set of circuit elements in a netlist
of the circuit design including clock network flip-flops, the rules specifying
positioning of each circuit element of the set of circuit elements in the circuit
design relative to other circuit elements of the set of circuit elements in the circuit
design,
instructions completing placement, routing, and optimization of the netlist

of the circuit design according to the rules.

14. The computer readable medium of claim 1, further including:
instructions, after the coarse placement and before clock tree synthesis of the
circuit design, automatically creating the clock network flip-flops in the netlist of the

circuit design.

15. The computer readable medium of claim 1, further including:
instructions, after the coarse placement and before clock tree synthesis of the
circuit design, automatically creating the clock network flip-flops in the netlist of the

circuit design based on clock sinks in the netlist.

16. The computer readable medium of claim 1, further including:
instructions, after the coarse placement and before clock tree synthesis of the
circuit design, automatically grouping the clock network flip-flops into a plurality of flip-

flop groups.

WO 2013/025934 PCT/US2012/051204

46

17. The computer readable medium of claim 1, further including:

instructions, after the coarse placement and before clock tree synthesis of the
circuit design, automatically grouping the clock network flip-flops into a plurality of flip-
flop groups,

wherein the rules automatically created for the clock network flip-flops are based

on the plurality of flip-flop groups.

18. The computer readable medium of claim 1, further including:
instructions, after the coarse placement and before clock tree synthesis of the
circuit design, performing clock tree clustering that automatically groups the clock

network flip-flops into a plurality of flip-flop groups.

19. The computer readable medium of claim 1, further including:

instructions, after the coarse placement and before clock tree synthesis of the
circuit design, performing clock tree clustering that automatically groups the clock
network flip-flops into a plurality of flip-flop groups, without creating clock network

buffer circuitry.

20. The computer readable medium of claim 1, further including:

instructions, after the coarse placement and before clock tree synthesis of the
circuit design, performing clock tree clustering that automatically groups the clock
network flip-flops into a plurality of flip-flop groups,

wherein the rules automatically created for the clock network flip-flops are based

on the plurality of flip-flop groups from the clock tree clustering.

21. The computer readable medium of claim 1, further including:

instructions, after the coarse placement and before clock tree synthesis of the
circuit design, performing clock tree clustering that automatically groups the clock
network flip-flops into a plurality of flip-flop groups; and

during placement of the circuit design, automatically creating clock network

buffer circuitry for the plurality of flip-flop groups.

10

11

12

13

14

WO 2013/025934 PCT/US2012/051204

47

22. The computer readable medium of claim 1, wherein the clock network flip-flops

are leaf nodes of a clock tree of the circuit design.

23. The computer readable medium of claim 1, further including:
instructions, during placement of the circuit design, automatically adding clock
network buffer circuitry matched to the grouped clock network flip-flops in the circuit

design.

24. The computer readable medium of claim 1, wherein the rules obey clock tree

constraints specified for the circuit design.

25. A data processing system adapted to process a computer implemented
representation of a circuit design, comprising:
a data processor and memory coupled to the data processor, the memory storing
instructions executable by the data processor, the instructions including:
instructions generating with the computer system a placed, routed, and
optimized circuit design, including:
instructions guiding coarse placement of the circuit design
according to rules created specifically and automatically for a set of circuit
elements in a netlist of the circuit design including clock network flip-
flops, the rules specifying positioning of each circuit element of the set of
circuit elements in the circuit design relative to other circuit elements of
the set of circuit elements in the circuit design,
instructions completing placement, routing, and optimization of the

netlist of the circuit design according to the rules.

26. A circuit, comprising:
a circuit following a placed, routed, and optimized circuit design, wherein the
placed, routed, and optimized circuit design is created by:
guiding coarse placement of the circuit design according to rules created

specifically and automatically for a set of circuit elements in a netlist of the circuit

10

WO 2013/025934 PCT/US2012/051204

48

design including clock network flip-flops, the rules specifying positioning of each

circuit element of the set of circuit elements in the circuit design relative to other

circuit elements of the set of circuit elements in the circuit design; and
completing placement, routing, and optimization of the netlist of the

circuit design according to the rules.

WO 2013/025934

1/21

RTL/

PCT/US2012/051204

PLACED, ROUTED, AND

OPTIMIZED NETLIST

OBEYING RELATIVE

PLACEMENT RULES
155

Fig. 1

MAPPED
NETLIST
110
AUTOMATIC RULE C'%%%'Igﬁggfm
CREATOR o
120
AUTOMATICALLY RELATIVE PLACEMENT
CREATED RELATIVE RULES CREATED BY
PLACEMENT RULES CIRCUIT DESIGNER
125 135
Y Y Y
RTL / NETLIST ANNOTATOR
140
RTL / NETLIST
ANNOTATED WITH
RELATIVE
PLACEMENT RULES
145
Y
PLACEMENT,
ROUTING, AND
OPTIMIZATION TOOL
150

WO 2013/025934 PCT/US2012/051204
2/21

PREPROCESS ANNOTATED NETLIST — 201

Y

ESTIMATE AND CONSTRUCT BLOCKS — 202

Y

MODEL EACH BLOCK — 204

Y

PLACE RELATIVE PLACEMENT BLOCKS IN
CONTEXT OF DESIGN

Y

INCREMENTAL PLACEMENT OF RELATIVE
PLACEMENT BLOCKS

Y

READJUST CELLS IN RELATIVE PLACEMENT
BLOCKS BASED ON NEW POSITION

v

FIX RELATIVE PLACEMENT CELLS AND
— RESOLVE OVERLAP OF RELATIVE — 212
PLACEMENT BLOCKS

Y

DETAILED PLACEMENT FOR
NON-RELATIVE PLACEMENT CELLS

Y

UNFIX RELATIVE PLACEMENT CELLS AND
FINISH IF OPTIMIZATION CONSTRAINTS OK

Y

PHYSICAL OPTIMIZATION OF CELLS — 218

Y

APPLY RELATIVE PLACEMENT CONSTRAINTS | — 220

— 206

— 208

— 210

— 214

— 216

Fig. 2

WO 2013/025934 PCT/US2012/051204
3/21

302
306 /

N
I “““ e}
\ | E
E |
E ‘E
E |
E
,,,,,,,,, _ -
o | N
| E
z B
| | z — 308
Mmoo’ AR : j
RAM — 304 \ ,
\‘\
CELLS 310 —~——
OBSTRUCTIONS 312 —X$

Fig. 3

WO 2013/025934

row-5 |

row-4 |

FOW-3

row-2| 02

4/21

PCT/US2012/051204

row- 1
row-0| 00 10 20 30 40 |50
coi-0 colb-1 ool col-3 col-4 ool-5

Fig. 4

WO 2013/025934 PCT/US2012/051204

5/21
rot
row-0 | U3 L4 rpd
porl-0 ool -
rpe

col-0 o0l-1

o3 : i
' r
row-0 §&\\\\§§§§§ col-0
col-0 col-1

Fig. 5

WO 2013/025934 PCT/US2012/051204

6/21
rpt
” A 3
rpe
-0 ool . s
oo 109 { row-2
row-0 rpt {12) { row-1
col-0 col-1 rpt {11} { row-0

rpl

row-0

col-G ool-1

Fig. 6

WO 2013/025934

H/rp1

SRR N

row-2 | 11U Hue

ool-0 col-1
2/rp1

e

row-1 b 120 2

calQ col-1
13/rp1

N

row-0 | 137LH 132

col-0 cot-1

7121

3rpt
2irpd

Hip

Fig. 7

|

U S

PCT/US2012/051204

J3U 302

J2rus 2/U2

114 Hiu2

ool-0

FOW-2
row-1

row-0

WO 2013/025934 PCT/US2012/051204

8 /21

row-3 | U4 800 : gapb :\

| ::/ "‘*‘“**‘: 800
row-2 | gapl | / \ U7 lgapd
ow-1 | U3 | gap2 | gap3 | U6 ug

: R

row-0 | U1 e s us

col-0 sol-1 col-2 col-3 col-4

WO 2013/025934 PCT/US2012/051204
9/21

— 902

901 —

Fig. 9

WO 2013/025934

Mt

-

row-0 Ut 4

colQ col-1
rp2
row-0 Up
cob0 col

fow-

row-2 |U7

row-1

row-0

col-1

Fig. 10

PCT/US2012/051204

!'pd,

Uz
et | U 4

rOW-2

Fes- 1

row-0

rpd

L2

| U7
U~

L U4

FOW-2

row-1

row-0

col0 cold

WO 2013/025934 PCT/US2012/051204
11/21

Pin A
1100

Pin A
1100

Pin A
1100 ™

13 10

Fig. 11

WO 2013/025934

FOW-3

FOW-2

oW~ 1

row-0

PCT/US2012/051204

12/ 21

U N\

Uz /

Fig. 12

1201 Pin A

WO 2013/025934 PCT/US2012/051204
13/ 21

misc |

row-5

row-4

row-3 18 \

1301 Pin A

5 1 1302 Pin B
_

FOW-2

Fow-1

row-0 IV
]

WO 2013/025934 PCT/US2012/051204

14 / 21
final
banki bank? bank3 bankd
fcombi-4)
N

21

A\ 0 ;

,,,,,,,,,,,,,,,,,,,,,,,,] Us
\ U4 |
row-0 \ ________ U7 L8 g3 U9
E H {1 i |
| | | |
col-0 col-1 col-2 col-3
{comb1-4)
| : |
z|
oal-1
final

Fig. 14

WO 2013/025934 PCT/US2012/051204
15/ 21
misct
135 {45 155
134 {44 154
133 {43 153
ja2 142 152
131 {41 151
130 140 150
{100,100}

Fig. 15

WO 2013/025934

PCT/US2012/051204
16/ 21

1601 ——

i i
F
Lid
,,,,,,, Lo
{ o
[
i

1602 —

f;¥ I i
i T S g
i L fiot :
o - =
) 1 —

| I
S 1e0— LI =
e T 1604—
=L
]]

mi
i
=

=T

|
il

i

Fig. 16

WO 2013/025934

rpt rpe

Ugi | Ue

Uz 1Us — 1701

Ut U4

o3

17 121
rpd <
rpe 4
1702 —
rpl <

PCT/US2012/051204

Fig. 17

Ua i us
Uz 1us
Ul u4

0000000000000

FOW-2
row- 1

_

11
row-Q | 00 i0
col-0 col-1

121 31
30
3

22222222222222222

"
21 o
O .

WO 2013/025934
19/ 21

PCT/US2012/051204

/— 1910

1926 \ STORAGE SUBSYSTEM COMPUTER SYSTEM
1928 Ve 1924
MEMORY SUBSYSTEM 7 1922 j
1930
1932 D 7 FILE
ROM RAM STORAGE USER INTERFACE
SUBSYSTEM INPUT DEVICES
1912
I [— 1914 I 1916 I
j — 1920
NETWORK USER INTERFACE
PROCESSOR(S) INTERFACE OUTPUT DEVICES

T

l

NETWORK

COMMUNICATION | 1918

1990

FIG. 19

COMPUTER 1940
READABLE
MEDIUM
CIRCUIT CIRCUIT
DESIGN

WO 2013/025934

PCT/US2012/051204

20/ 21

PERFORM COARSE PLACEMENT ON NETLIST

Y

DURING PLACEMENT, APPLY CLOCK TREE
SYNTHESIS PROCESS TO CLUSTER LEAF-
LEVEL CLOCK FLIP-FLOPS

Y

— 2002

— 2004

DURING PLACEMENT, DEFINE RELATIVE PLACEMENT GROUPS

BASED ON CLUSTERING OF LEAF-LEVEL CLOCK FLIP-FLOPS 5g05
FOR NETLIST FOR NETLIST
W/O ICG, ADD FOR NETLIST W/ICG. ADD FOR NETLIST
WIO ICG, ’ W/ICG, DON'T
BUFFERS : BUFFERS :
DON'T ADD ADD
BEFORE RP BUFFERS INTO RP
GROUPS GROUPS BUFFERS
2006A 2006B 2006C 2006D
INCREMENTAL PLACEMENT OF RELATIVE
PLACEMENT BLOCKS, AND DETAILED
PLACEMENT FOR NON-RELATIVE PLACEMENT | — 2009
CELLS
PHYSICAL OPTIMIZATION OF CELLS — 2018
APPLY RELATIVE PLACEMENT CONSTRAINTS | — 2020
APPLY CLOCK TREE SYNTHESIS TOBUILD | — 2030
COMPLETE CLOCK TREE

Fig. 20

WO 2013/025934 PCT/US2012/051204

21/ 21

PREPROCESS ANNOTATED NETLIST

Y

SCAN FOR CLOCK DRIVERS AND COLLECT CLOCK SINKS
POST-INITIAL PLACEMENT

Y

READ IN USER CLOCK TREE SYNTHESIS CONSTRAINTS
SUCH AS CLOCK TREE REFERENCES

v

CLOCK TREE SYNTHESIS CLUSTERING

v

PROCESS CLUSTERS FROM CLOCK TREE SYNTHESIS
CLUSTERING AND FORM RELATIVE PLACEMENT GROUPS;
GEOMETRIC COMPRESSION; AUTO DETERMINE SHAPES OF
RELATIVE PLACEMENT GROUPS

Y

ADD INTEGRATED CLOCK GATING OR CLOCK DRIVER FOR
EACH CLUSTER. BREAK NETS AS NEEDED.

Y

SET RELATIVE PLACEMENT OPTIONS FOR EACH RELATIVE
PLACEMENT GROUP; PIN ALIGN, ORIENTATION ETC.

Y

REFINE PLACEMENT

Y

OPTIMIZATION

Y

FIXIMARK SIZE RELATIVE PLACEMENT FOR CTS

Y

FULL CLOCK TREE SYNTHESIS

Fig. 21

2101

2102

2104

2106

2108

2110

2112

2114

2116

2118

2120

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2012/051204

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 17/50(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC : GOGF

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
circuit design, optimized, netlist, clock network flip-flop

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2009-0199142 A1 (ANAND ARUNACHALAM et al.) 06 August 2009 1,10,12-13,22
See abstract; paragraphs [0012-0019], [0048-0143], [0238-0252]; claims 1-40; ,24-26
figures 1-2.
Y HONGXIA WANG et al. ‘Electromagnetic Interference and Digital Circuits : An 1,10,12-13,22
Initial Study of Clock Networks' , In: Electromagnetics, Volume 26, 2006, ,24-26
pp.73-86

See abstract; pages 75—85.

A US 2009-0083685 A1l (ALEXANDER GIDON et al.) 26 March 2009 1-26
See abstract; paragraphs [0035]-[0040],[0052]-[0090]; figures 7,9,11.

A US 2004-0078767 Al (TIMOTHY M. BURKS et al.) 22 April 2004 1-26
See abstract; paragraphs [0013],[0028]-[0126]; figures 1-13.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
20 DECEMBER 2012 (20.12.2012) 21 DECEMBER 2012 (21.12.2012)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan lee Jung Eun
. City, 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5391

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2012/051204
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2009-0199142 A1 06.08.2009 US 7937682 B2 03.05.2011
US 2009-0083685 A1 26.03.2009 US 2005-062496 A1 24.03.2005
US 7584441 B2 01.09.2009
US 8060844 B2 15.11.2011
WO 2005-029262 A2 31.03.2005
US 2004-0078767 A1 22.04.2004 US 7103863 B2 05.09.2006

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - wo-search-report
	Page 73 - wo-search-report

