wo 2013/136371 A1 | I 0N OO R AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/136371 Al

19 September 2013 (19.09.2013) WIPO I PCT

(51) International Patent Classification: (74) Agent: WILLFORT INTERNATIONAL; Kanda-
GO6F 11/20 (2006.01) Ogawamachi Tosei Bldg. II 7F, 3, Kanda-Ogawamachi 3-

h hi -ku, Tokyo, 1010052 (JP).

(21) International Application Number: chome, Chiyoda-ku, Tokyo, ()
PCT/JP2012/001833 (81) Designated States (uniess otherwise indicated, for every
. .) kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: 15 Match 2012 (15.03.201 AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
ar (15.03.2012) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,
L.) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(71) Applicant (for all designated States except US): HITA- MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
CHL LTD. [JP/JP]; 6-6, Marunouchi 1-chome, Chiyo- OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
da-ku, Tokyo, 1008280 (JP). SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

’ ’ TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(72) Inventor; and . L

(75) Inventor/Applicant (for US only): DEGUCHI, Akira (84) Designated States (uniess otherwise indicated, for every

[JP/IP]; ¢/o HITACHI, LTD., Yokohama Research Labor-
Totsuka-ku, Yokohama-shi,

atory,

292, Yoshida-cho,
Kanagawa, 2440817 (JP).

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

[Continued on next page]

(54) Title: STORAGE SYSTEM AND DATA MANAGEMENT METHOD

Fig. 11

Primary host

CPU

Memo __ | 101
Application

104

L 100A

103]

Primary storage system

|,\, 200A

Secondary storage system

t\, 200B

103

Secondary host

Application

CPU |
b 102
|~ 1008
Memory I 101

(57) Abstract: A storage system is provided with a plurality of physical storage
devices, a cache memory, a control device that is coupled to the plurality of physical
storage devices and the cache memory, and a buffer part. The butfer part is a storage
region that is formed by using at least a part of a storage region of the plurality of
physical storage devices and that is configured to temporarily store at least one target
data element that is to be transmitted to a predetermined target. The control device
stores a target data element into a cache region that has been allocated to a buffer re-
gion (that is a part of the cache memory and that is a storage region of a write destin-
ation of the target data element for the buffer part). The control device transmits the
target data element from the cache memory. In the case in which a new target data
element is generated, the control device executes a control in such a manner that the
new target data element has a high tendency to be stored for a buffer region in which
the transmitted target data element has been stored and to which a cache region has
been allocated.

WO 2013/136371 A1 WK 00TV VAT VR 0 A0

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

WO 2013/136371 PCT/JP2012/001833

[0001]

[0002]

[0003]

[0004]

[0005]

Description
Title of Invention: STORAGE SYSTEM AND DATA

MANAGEMENT METHOD
Technical Field

The present invention relates to a technique for storing data on a temporary basis into

a storage region based on at least a part of a physical storage device.

Background Art

A storage system can be provided with a plurality of logical volumes (hereafter
referred to as a volume) as a plurality of logical storage devices based on a plurality of
nonvolatile physical storage devices (such as an HDD (Hard Disk Drive)). There is a
volume that is used as a buffer volume in the plurality of volumes. The buffer volume
is a volume that is used as a temporary storage region like a buffer in which data is
stored on a temporary basis (see Patent Literature 1 for instance).

A storage system is provided with a cache memory (for instance, a volatile memory)
in addition to a physical storage device in general. The storage system receives a write
request that specifies a volume from a host computer for instance, stores data (write
data) of a write target that conforms to the write request, and returns a response to the
host. Hereafter a volume that can be specified by an I/0 request (a write request or a
read request) from a host computer is referred to as a normal volume in order to dis-
tinguish the volume from a buffer volume. The storage system stores write data into a
physical storage device that is a basis of a normal volume from a cache memory after
responding to the host. A response can be returned to a host after the write data is
stored into a normal volume (a physical storage device that is a basis of a normal
volume) from a cache memory.

A storage system can also store data that is written to a buffer volume into a cache
memory and then store the data from a cache memory to a buffer volume (a physical
storage device that is a basis of a buffer volume) at an arbitrary timing in the case in
which data is stored into not only a normal volume but also a buffer volume.

There is a journal volume as a buffer volume for instance. A remote copy is to copy a
duplicate of a copy source volume (a primary volume) of a primary storage system to a
copy destination volume (a secondary volume) of a secondary storage system. For the
remote copy, the data of a copy source volume is stored into a journal volume as a
journal. A journal volume is used in such a manner that a journal that is corresponded
to a write to a primary volume is stored into a leading region at first and other regions
in order of precedence for instance. After a journal is stored into a trailing region of a

journal volume, the journal volume is used in such a manner a journal is stored into a

WO 2013/136371 PCT/JP2012/001833

[0006]

[0007]

[0008]

[0009]

[0010]

[0011]

leading region at first and other regions again.

Citation List

Patent Literature
PTL 1: U.S. Patent Application Laid-Open Publication No. 2007/0079088

Summary of Invention

Technical Problem

In order to store data that is stored into a volume into a cache memory, a cache
region (a part of a cache memory) is allocated for a volume region (a part of a volume)
that is a write destination of data. The allocation of a cache region is executed by a
control device (a processor in a quintessential way) that is included in a storage
system.

In the case in which a cache region is newly allocated for a volume region of a write
destination every when data is stored into a volume, a cache region is newly allocated
for a volume region of a store destination of a journal every when a journal is stored
into a journal volume. Consequently, a load is applied to a control device.

Moreover, a cache memory is limited, it is necessary that a cache region that has
been allocated and in which a transmitted journal has been stored is released appro-
priately in order to newly allocate a cache region. This is one of causes of a load to a
control device.

Solution of Problem

A storage system is provided with a plurality of physical storage devices, a cache
memory, a control device that is coupled to the plurality of physical storage devices
and the cache memory, and a buffer part. The buffer part is a storage region that is
formed by using at least a part of a storage region of the plurality of physical storage
devices and that is configured to temporarily store at least one target data element that
is to be transmitted to a predetermined target. The control device executes the
following processing (A) to (C):

(A) The control device stores a target data element into a cache region that is a part
of the cache memory and that has been allocated to a buffer region that is a storage
region of a write destination of the target data element for the buffer part.

(B) The control device transmits the target data element from the cache memory.

(C) In the case in which a new target data element is generated, the control device
executes a control in such a manner that the new target data element has a high
tendency to be stored for a buffer region in which the transmitted target data element

has been stored and to which a cache region has been allocated.
Brief Description of Drawings

[fig.1]Fig. 1 is a view illustrating a management method of a journal for a journal

WO 2013/136371 PCT/JP2012/001833

volume in accordance with a conventional example.

[fig.2]Fig. 2 is a view showing an example of the management information for
managing a journal for a journal volume in accordance with a conventional example.
[fig.3]Fig. 3 is a view illustrating a first problem in accordance with a conventional
example.

[fig.4]Fig. 4 is a view illustrating a second problem in accordance with a conventional
example.

[fig.5]Fig. 5 is a view illustrating a first solving method for solving a problem.
[fig.6]Fig. 6 is a view illustrating a state of a cache part for a first solving method for
solving a problem.

[fig.7]Fig. 7 is a view illustrating a second solving method for solving a problem.
[fig.8]Fig. 8 is a view illustrating a state of a cache part for a second solving method
for solving a problem.

[fig.9]Fig. 9 is a view illustrating a summary of an embodiment 1.

[fig.10]Fig. 10 is a view illustrating a state of a journal volume in accordance with the
embodiment 1.

[fig.11]Fig. 11 is a total block diagram showing a computer system in accordance with
the embodiment 1.

[fig.12]Fig. 12 is a partial block diagram showing a computer system concentrating on
the storage system in accordance with the embodiment 1.

[fig.13]Fig. 13 is a view illustrating a copy of a volume and a journal volume in ac-
cordance with the embodiment 1.

[fig.14]Fig. 14 is a view illustrating a summary of an operation in a data write in ac-
cordance with the embodiment 1.

[fig.15]Fig. 15 is a detailed block diagram showing a memory package in accordance
with the embodiment 1.

[fig.16]Fig. 16 is a view showing an example of the sequence number information in
accordance with the embodiment 1.

[fig.17]Fig. 17 is a view showing an example of a block management bitmap in ac-
cordance with the embodiment 1.

[fig.18]Fig. 18 is a view showing an example of the current block information in ac-
cordance with the embodiment 1.

[fig.19]Fig. 19 is a view showing an example of the current address information in ac-
cordance with the embodiment 1.

[fig.20]Fig. 20 is a view illustrating a block management bitmap, a current block, and a
current address in accordance with the embodiment 1.

[fig.21]Fig. 21 is a view showing an example of the in-block maximum sequence

number information in accordance with the embodiment 1.

WO 2013/136371 PCT/JP2012/001833

[fig.22]Fig. 22 is a flowchart of a processing in a write in accordance with the em-
bodiment 1.

[fig.23]Fig. 23 is a flowchart of a JNL data storage address decision processing in ac-
cordance with the embodiment 1.

[fig.24]Fig. 24 is a flowchart of a block release processing in accordance with the em-
bodiment 1.

[fig.25]Fig. 25 is a flowchart of a JNL read processing in accordance with the em-
bodiment 1.

[fig.26]Fig. 26 is a flowchart of a restore processing in accordance with the em-
bodiment 1.

[fig.27]Fig. 27 is a detailed view showing a control information part in accordance
with the embodiment 2.

[fig.28]Fig. 28 is a detailed view showing a program part in accordance with the em-
bodiment 2.

[fig.29]Fig. 29 is a view showing an example of the JNCB block management in-
formation in accordance with the embodiment 2.

[fig.30]Fig. 30 is a view showing an example of the JNCB current write block in-
formation in accordance with the embodiment 2.

[fig.31]Fig. 31 is a view showing an example of the JNCB current read block in-
formation in accordance with the embodiment 2.

[fig.32]Fig. 32 is a view showing an example of the JNCB current write address in-
formation in accordance with the embodiment 2.

[fig.33]Fig. 33 is a view showing an example of the JNCB current read address in-
formation in accordance with the embodiment 2.

[fig.34]Fig. 34 is a view illustrating a block and an address in accordance with the em-
bodiment 2.

[fig.35]Fig. 35 is a flowchart of a JNCB storage address decision processing in ac-
cordance with the embodiment 2.

[fig.36]Fig. 36 is a flowchart of a JNL read processing in accordance with the em-
bodiment 2.

[fig.37]Fig. 37 is a flowchart of a restore processing in accordance with the em-
bodiment 2.

[fig.38]Fig. 38 is a view illustrating a summary of an embodiment 3.

[fig.39]Fig. 39 is a detailed view showing a control information part in accordance
with the embodiment 3.

[fig.40]Fig. 40 is a flowchart of a JNL data storage address decision processing in ac-
cordance with the embodiment 3.

[fig.41]Fig. 41 is a view illustrating a modified example in accordance with the em-

WO 2013/136371 PCT/JP2012/001833

[0012]

[0013]

bodiment 3.
[fig.42]Fig. 42 is a view illustrating a virtual volume in accordance with the em-
bodiment 4.
[fig.43]Fig. 43 is a view showing an example of a pool table in accordance with the
embodiment 4.
[fig.44]Fig. 44 is a view showing an example of a virtual volume management table in
accordance with the embodiment 4.
[fig.45]Fig. 45 is a flowchart of a block release processing in accordance with the em-
bodiment 4.
[fig.46]Fig. 46 is a flowchart of a page release processing in accordance with the em-
bodiment 4.
[fig.47]Fig. 47 is a view showing an example of a correspondence relationship between
a block and a page in accordance with the embodiment 4.
[fig.48]Fig. 48 is a flowchart of a page release processing in accordance with a
modified example of the embodiment 4.
[fig.49]Fig. 49 is a first view illustrating an expansion of a journal volume in ac-
cordance with the embodiment 4.
[fig.50]Fig. 50 is a second view illustrating an expansion of a journal volume in ac-
cordance with the embodiment 4.
[fig.51]Fig. 51 is a view illustrating a summary of an embodiment 5.
[fig.52]Fig. 52 is a detailed view showing a control information part in accordance
with the embodiment 5.
[fig.53]Fig. 53 is a flowchart of a JNL data storage address decision processing in ac-
cordance with the embodiment 5.
[fig.54]Fig. 54 is a flowchart of a JNL read processing in accordance with the em-
bodiment 5.
[fig.55]Fig. 55 is a flowchart of a restore processing in accordance with the em-
bodiment 5.
Description of Embodiments

Some embodiments will be described with reference to drawings in the following.
Any embodiments that will be described in the following do not restrict the invention
in accordance with the claims, and all of elements and all of pairs of the elements that
will be described in the embodiments are not necessarily essential for the means for
solving the problems of the invention.

In the following descriptions, while the information will be described in the ex-
pression of "aaa table" in some cases, the information can be represented by other than

a data structure such as a table. In order to indicate that the information is not

WO 2013/136371 PCT/JP2012/001833

[0014]

[0015]

[0016]

[0017]

[0018]

[0019]

[0020]

depended on a data structure, the information of "aaa table" or the like can also be
referred to as "aaa information".

In the following descriptions, the processing will be described while a "program" is
handled as a subject in some cases. In the case in which the program is executed by a
processor, the predetermined processing is executed. Consequently, a subject of a
processing can also be a processor. The processing that is disclosed while a program is
handled as a subject can also be a processing that is executed by a processor that
executes the program or an apparatus that is provided with the processor (for instance,
a control device, a controller, and a storage system). Moreover, a part or a whole of a
processing that is executed when the processor executes a program can also be
executed by a hardware circuit as substitute for or in addition to a processor. A wide
variety of programs can be installed to each of the computers by a program distribution
server or a storage medium that can be read by a computer.

Embodiment 1

In the first place, a problem of a conventional example and a summary of an em-
bodiment 1 will be described in the following.

Fig. 1 is a view illustrating a management method of a journal for a journal volume
in accordance with a conventional example.

For a management method of a journal in accordance with a conventional example, a
JVOL (Journal Volume) 252 that is used as a buffer region for storing a JNL (Journal)
on a temporary basis is used by a wraparound method for a primary storage system
200A. In other words, a JNL that has been generated is stored from a leading head
address of the JVOL 252 in order of precedence. After a JNL is stored up to the last
address, a JNL is stored from a leading head address again. On the other hand, a JNL
of a leading head address of the JVOL 252 is taken in order of precedence and is
transmitted to a secondary storage system 200B.

Fig. 2 is a view showing an example of the management information for managing a
journal for a journal volume in accordance with a conventional example.

The management information 1000 is managed in order to achieve a journal
management method that is shown in Fig. 1. The management information 1000 stores
a record that is provided with the fields of a type 1000a, a JL number (#) 1000b, and an
address 1000c.

The type 1000a stores a type of an address. In this example, a leading head address
that indicates an address of a leading head of a free region that is to store a JNL and an
end address that indicates an address of an end in which a transmitted JNL has been
stored. The JL number (#) 1000b stores a volume number of a JVOL. The address
1000c stores a corresponded address. The volume number is a number for uniquely

identifying a volume in the storage system 200.

WO 2013/136371 PCT/JP2012/001833

[0021]

[0022]

[0023]

[0024]

[0025]

[0026]

[0027]

[0028]

In the journal management method, a region in which a JNL that has not been
transmitted to a secondary storage system 200B has been stored is managed in such a
manner that the region is not overwritten by using a leading head address and an end
address.

Fig. 3 is a view illustrating a first problem in accordance with a conventional
example. In the figure, the rectangles in a volume 252 and a cache part 223 indicate a
region in which a JNL is stored. A region in which a JNL has been stored as a practical
matter is shown by solid lines and a region in which a JNL has not been stored as a
practical matter is shown by dashed lines.

As shown in a state 1 of Fig. 3, in the case in which a JNL that is stored at a leading
head of a JVOL 252 is generated, a JNL is not stored into a region of an address to
which the JVOL 252 is corresponded, and the JNL is stored into a region of the cache
part 223 that has been allocated to the corresponded address.

In the case in which a predetermined time has elapsed after a JNL is stored into the
cache part 223, data of the cache part 223 is stored into the JVOL 252 as shown in a
state 2 of Fig. 3. In other words, the data of the cache part 223 is destaged.

There is a possibility that a JNL that has been destaged has been transmitted to the
secondary storage system 200B. A JNL that has been transmitted to the secondary
storage system 200B is data that is not required to be stored into the JVOL 252. In the
case in which a processing of destage is executed for such data, a processor resource
and a resource of an HDD 240 that are related to the processing of destage go to waste,
whereby the utilization efficiency is reduced unfortunately (a first problem).

Fig. 4 is a view illustrating a second problem in accordance with a conventional
example.

As shown in a state 1 of Fig. 4, in the case in which a new JNL is generated in a se-
quential manner, a region of the JVOL 252 is allocated to all regions of the cache part
223.

In the case in which a new JNL is further generated after that, as shown in a state 2 of
Fig. 4, a region of the cache part 223 is released, the region is allocated to a new region
of the JVOL 252, and a JNL is stored into the region. In the case in which a JNL that
has been stored into a region that is released for the cache part 223 is dirty data (data
that has not been destaged to the JVOL 252) in this case, the region is released and
used after a JNL is destaged to the JVOL 252. On the other hand, in the case in which
a JNL that has been stored into a region that is released for the cache part 223 is clean
data, the region is released and used in a timely fashion. In the case in which the data
on the cache part 223 is equivalent to the data that has been stored into the HDD 240,
the data on the cache part 223 is clean data. Moreover, the data that is on the cache part
223 and that has not yet been written to the HDD 240 is dirty data.

WO 2013/136371 PCT/JP2012/001833

[0029]

[0030]

[0031]

[0032]

[0033]

[0034]

[0035]

[0036]

In this case, a processing of a release of a region of the cache part 223 and a
processing of an allocation of a region of the cache part 223 to a new region of the
JVOL 252 are executed. Consequently, a processor resource that executes the
processing has a load, whereby the utilization efficiency of a processor resource is
reduced unfortunately (a second problem).

Fig. 5 is a view illustrating a first solving method for solving a problem. Fig. 6 is a
view illustrating a state of a cache part for a first solving method for solving a problem.
For the first solving method as shown in Fig. 5, a processor 211 releases a region of
the cache part 223 that has been allocated to a region of the JVOL 252 in which a JNL

that has been transmitted to the secondary storage system 200B, that is, a transmitted
JNL is stored for instance. The region of the JVOL 252 in which a transmitted JNL has
been stored can be identified by a leading head address and an end address of the
management information 1000. Moreover, a region of the cache part 223 that has
stored the data can be identified based on the allocation relationship between a region
of the JVOL 252 and a region of the cache part 223.

In accordance with this solving method, as shown in the state 1 of Fig. 6, in the case
in which a region of the cache part 223 is allocated to a region of the JVOL 252, a
region of the cache part 223 that has been allocated to a region of the JVOL 252 that
stores a JNL that has been transmitted is released to be in the state 2. As described
above, since a JNL that has been transmitted does not exist in a region of the cache part
223, the destage for the JNL is not executed, a useless load to a processor resource and
an HDD resource can be reduced.

Fig. 7 is a view illustrating a second solving method for solving a problem. Fig. 8 is a
view illustrating a state of a cache part for a second solving method for solving a
problem.

For the second solving method, in the case in which a circuit disturbance or the like
does not occur, a JNL is generated and stored into the JVOL 252 (or the cache part
223), and the JNL that has been stored into the JVOL 252 (or the cache part 223) is
transmitted to the secondary storage system 200B. Consequently, the second solving
method is implemented by focusing attention on that a JNL remains only in a capacity
that is sufficiently smaller than the total capacity of the JVOL 252.

In other words, for the first solving method as shown in Fig. 7, a free region of the
next address is not used in a sequential manner as a region of the JVOL 252 that stores
a JNL, but a region that is used for the JVOL 252 is a comparatively small capacity in
such a manner that a region that has been transmitted is sued. Since the region is a
comparatively small capacity as described above, there is a high possibility that a
region of the cache part 223 is allocated to a region of the JVOL 252.

In accordance with this solving method, as shown in the state 1 of Fig. &, in the case

WO 2013/136371 PCT/JP2012/001833

[0037]

[0038]

[0039]

[0040]

[0041]

in which a region of the cache part 223 is allocated to a region of the JVOL 252, a JNL
that has been newly generated is stored into a region in which a transmitted JNL of the
JVOL 252 is stored, and the JNL can be stored into the cache part 223 without
executing a processing for newly allocating a region of the cache part 223 to the
region. As described above, it is not necessary to execute a processing for allocating a
region of the cache part 223 to the JVOL 252. Consequently, a load to a processor
resource can be reduced. Since a possibility of that a JNL that has been transmitted
remains in the cache part 223 can be reduced by this solving method, an occurrence of
destage can be reduced and the first problem can also be solved.

Fig. 9 is a view illustrating a summary of an embodiment 1. Fig. 10 is a view 1il-
lustrating a state of a journal volume in accordance with the embodiment 1.

In the embodiment 1 as shown in Fig. 9, a free region of the next address is not used
in a sequential manner as a region of the JVOL 252 that stores a JNL, and a region that
has been transmitted is used to make a region that is used for the JVOL 252 to be a
comparatively small capacity. As described above, a region that is used for the JVOL
252 can be made a comparatively small capacity in which a JNL that has been
transmitted has been stored. Consequently, there is a high possibility that a region of
the cache part 223 is allocated to a region of the JVOL 252, and there is a high pos-
sibility that it is not necessary that an allocation of a region of the cache part 223 is
executed.

In a state shown in Fig. 9 for instance, in the case in which a JNL is stored into a
region that has been transmitted and a circuit disturbance occurs for instance, a leading
head address that indicates a region in which a JNL is stored catches up with an end
address, and there is no region that stores a JNL. Consequently, in the embodiment 1, a
region of the JVOL 252 can be used in an appropriate manner even in such a case.

In the present embodiment, as shown in a state 1 of Fig. 10, a fixed capacity is
allocated to a JNCB region 2524 in which a JNCB 2523 is stored, and the JNL data
2524 in a JNL is managed by using a plurality of blocks BK of a predetermined size (a
fixed size in this embodiment). The JNCB 2523 is the control data for managing an
storage address for the JVOL 252 of the JNL data. At least one JNL data 2524 can be
stored into the block BK. In the figure, a JNCB 2523 is indicated by a rectangle, a
sequence number that is corresponded to the JNCB is indicated in the rectangle, the
JNL data 2524 is shown in a circular form, and a sequence number that is cor-
responded to JNL data 2524 is indicated in a circular form. A block BK is indicated by
a dashed rectangle and a block number (for instance, (1)) is indicated in a rectangle. In
other similar figures, a similar description is executed.

In a first place, as shown in a state 1, the JNL data 2524 that has been generated is

stored to a leading head block (a block number 1) in order of precedence from a

10

WO 2013/136371 PCT/JP2012/001833

[0042]

[0043]

[0044]

[0045]

[0046]

[0047]

leading head. In the case in which there is no space to which the JNL data 2524 is
written in the leading head block BK, a free block BK (a block of a block number 2 in
the figure) is searched and the JNL data 2524 is written to the block BK as shown in a
state 2 of Fig. 10.

On the other hand, in the case in which all of the JNL data 2524 in the block BK is
transmitted to the secondary storage system 200B, the block BK (a block of a block
number 1 in the figure) is made to be a free block as shown in a state 3 of Fig. 10.

In the case in which the JNL data 2524 is generated and a free block is searched after
that, a block that is not the next block BK (a block of a block number 3) but a block
BK that has been used and that becomes a free block recently (a block of a block
number 1) is a block BK of a stored destination of the JNL data 2524, and the JNL data
2524 is stored as shown in a state 4 of Fig. 10. Since there is a high possibility that a
region of the cache part 223 has been allocated to a block that becomes a free block
recently, there is a high possibility that a processing for allocating a region of the cache
part 223 to the block BK is not necessary when the JNL data 2524 is stored into the
block BK. Consequently, there is a high possibility that the JNL data 2524 is stored
into a storage region to which a region of the cache part 223 has been allocated.
Therefore, a load to a processor can be reduced and the utilization efficiency of a
processor can be improved.

In the next place, a computer system in accordance with the embodiment 1 will be
described in detail.

Fig. 11 is a total block diagram showing a computer system in accordance with the
embodiment 1.

A computer system 10 is provided with a primary host computer (a primary host)
100A, a primary storage system 200A, a secondary storage system 200B, and a
secondary host computer (a secondary host) 100B. The primary storage system 200A
is a storage system that is on a primary side (a copy source) to one volume, and can be
a storage system that is on a secondary side (a copy destination) to other volume in
some cases. Similarly, the secondary storage system 200B is a storage system that is on
a secondary side to one volume, and can be a storage system that is on a primary side
to other volume in some cases.

The primary host 100A and the primary storage system 200A are coupled to each
other via a network. The primary storage system 200A and the secondary storage
system 200B are coupled to each other via a network. The secondary storage system
200B and the secondary host 100B are coupled to each other via a network. It is not
always necessary that the secondary host 100B is installed in advance. The secondary
host 100B can be installed by no later than when a business processing is executed

using the secondary storage system 200B.

11

WO 2013/136371 PCT/JP2012/001833

[0048]

[0049]

[0050]

[0051]

[0052]

[0053]

[0054]

[0055]

The primary host 100A is provided with a memory 101, a CPU (Central Processing
Unit) 102, and an interface (I/F) 103. The memory 101 stores an application (such as a
data base application) 104 that is software that is configured to execute a business
processing. The application 104 stores the data that is used for a business processing
into the primary storage system 200A.

The secondary storage system 200B is used for storing a copy of data that has been
stored into the primary storage system 200A for a disaster recovery for instance.

The secondary host 100B is a host that is configured to execute a business processing
by using data of the secondary storage system 200B in the case in which a failure
occurs for the primary host 100A or the primary storage system 200A. The secondary
host 100B is provided with a memory 101, a CPU (Central Processing Unit) 102, and
an interface (I/F) 103. The memory 101 stores an application 104 that is software that
is configured to execute a business processing. The application 104 stores the data that
is used for a business processing into the secondary storage system 200B.

Fig. 12 is a partial block diagram showing a computer system concentrating on the
storage system in accordance with the embodiment 1.

The storage system 200 (200A, 200B) is provided with at least one microprocessor
package (MPPK) 210, a memory package 220, a back end package (BE package) 230,
and a front end package (FE package) 260. The MPPK 210, a memory package 220, a
BE package 230, and a FE package 260 are coupled to each other via an internal bus
280.

The FE package 260 is provided with a port 261 and a memory 262. The port 261 is
coupled to the host 100 (100A, 100B) via a network 110, and mediates a commu-
nication with the host 100. The memory 262 stores a wide variety of data that is
necessary for a processing of the FE package 260. The memory 262 is used for storing
data that has been transmitted from the primary host 100A and data that is transmitted
to the primary host 100A on a temporary basis.

The memory package 220 is configured by at least one memory device for instance,
and is provided with a control information part 221 that is configured to store the
control information, a program part 222 that is configured to store a program, and a
cache part 223 as an example of a cache memory that is configured to cache data for
instance. A capacity of the cache part 223 is smaller than that of a volume 250 in
general.

The MPPK 210 is provided with a processor 211, a local memory 212, and a
maintenance port 213. The processor 211, the local memory 212, and the maintenance
port 213 are coupled to each other via an internal bus 214. The local memory 212
stores a wide variety of data that is necessary for the MPPK 210. The maintenance port

213 mediates a communication with a maintenance terminal 270. The processor 211

12

WO 2013/136371 PCT/JP2012/001833

[0056]

[0057]

[0058]

[0059]

[0060]

executes a wide variety of processing. The processor 211 executes a wide variety of
processing by executing a wide variety of programs that have been stored into a
program part 222 of the memory package 220. Moreover, the processor 211 executes a
wide variety of processing by using a wide variety of information that has been stored
into the control information part 221 of the memory package 220.

The BE package 230 is provided with a port 231 and a memory 232. The port 231 is
coupled to at least one HDD 240 as an example of a physical storage device via a bus
283. A volume 250 that is configured to manage data is configured by at least one
storage region of the HDD 240 for instance. The physical storage device is not re-
stricted to an HDD and can also be an SSD (Solid State Drive) or a DVD for instance.
Moreover, at least one HDD 240 can be collected up in a unit of a parity group, and a
high reliability technique such as a RAID (Redundant Arrays of Independent Disks)
can also be used.

The maintenance terminal 270 that is configured to maintain the storage system 200
is coupled to the storage system 200 via a bus 280. The maintenance terminal 270 is
provided with a CPU 271, a memory 272, an input/output part 274, and a maintenance
port 275. The memory 272 stores a program for a maintenance (a maintenance
program) 273. The CPU 271 executes the maintenance program 273 to execute a
maintenance processing. The input/output part 274 is configured by a mouse, a
keyboard, a display and so on for instance. The input/output part 274 receives a wide
variety of instruction inputs from an operator who carries out the maintenance, and
displays a wide variety of information on a display. The maintenance port 275
mediates a communication with the storage system 200.

Fig. 13 is a view illustrating a copy of a volume and a journal volume in accordance
with the embodiment 1.

For the primary storage system 200A, a PVOL (Primary Volume) 251 is managed as
a storage region that stores the business data that is related to the business processing
by the primary host 100A. For the secondary storage system 200B, a SVOL
(Secondary Volume) 254 that is configured to store the copy of the business data that
has been stored into the PVOL 251 is managed. Here, the PVOL 251 and the SVOL
254 are called a copy pair.

The primary storage system 200A stores a JVOL (Journal Volume) 252 that is used
as a buffer region (a buffer part) that is configured to temporarily store at least one JNL
(Journal) that indicates a history of a write to the PVOL 251. The JNL includes a
JNCB (journal Control Block) 2523 and the JNL data 2524. The JNCB 2523 includes
the control information such as a storage address for the JVOL 252 of the JNL data, a
write address for the PVOL 251, and an occurrence order of the JNL, that is, a
sequence number that indicates a write order of data to the PVOL 251. The JNL data

13

WO 2013/136371 PCT/JP2012/001833

[0061]

[0062]

[0063]

[0064]

[0065]

[0066]

[0067]

[0068]

2524 is data that is equivalent to data (write data) that has been written from the
primary host 100A to the PVOL 251.

The JVOL 252 includes a JNBC region 2521 that stores the JNCB 2523 and a JNL
data region 2522 that stores the JNL data 2524. The JVOL 252 can be configured by a
plurality of volumes and can store a JNL to a plurality of PVOLs 251.

The secondary storage system 200B stores a JVOL 253 that is stored on a temporary
basis in the case in which a JNL that is stored into the JVOL 252 of the primary
storage system 200A is received. The configuration of the JVOL 253 is equivalent to
that of the JVOL 252. The number of the JVOLs 252 of the primary storage system
200A and the number of the JVOL 253 of the secondary storage system 200B can be
different from each other.

An operation summary of an asynchronous copy processing for the computer system
10 will be described in the following.

In the case in which a write of data from the primary host 100A to the PVOL 251
occurs, the primary storage system 200A stores data that has been written to the PVOL
251, generates a JNL that is related to the write data and stores a JNL into the JVOL
252.

After that, the primary storage system 200A acquires a JNL from the JVOL 252 and
transmits the JNL to the secondary storage system 200B. The secondary storage
system 200B stores the received JNL to the JVOL 253.

In the next place, the secondary storage system 200B acquires the JNL data 2524 in a
JNL of the JVOL 253 in accordance with an order of a write from the primary host
100A to the PVOL 251, and generates a copy of the PVOL 251 to the SVOL 254 by
writing the JNL data 2524 to the SVOL 254. The order that has been written to the
PVOL 251 can be implemented by a sequence number.

A capacity of the JVOL 252 will be described in the following. In the case in which a
circuit disturbance occurs between the primary storage system 200A and the secondary
storage system 200B for instance, a JNL starts to remain for the JVOL 252. In the case
in which the circuit disturbance is resolved after that, a JNL of the JVOL 252 is
transmitted to the JVOL 253 of the secondary storage system 200B. Consequently, in
the case in which the JVOL 252 is provided with a capacity sufficient to store JNLs
that have been generated, a remote copy can be continued without stopping a remote
copy. A capacity of the JVOL 252 is designed in accordance with a time in which the
capacity can withstand a circuit disturbance. In general, a capacity of the JVOL 252 is
a large capacity and is extremely larger than that of a cache part 223 of the memory
package 220 for instance. In the case in which a capacity of a cache part 223 is 1 TB
for instance, a capacity of the JVOL 252 is several tens TB for instance.

Fig. 14 is a view illustrating a summary of an operation in a data write in accordance

14

WO 2013/136371 PCT/JP2012/001833

[0069]

[0070]

[0071]

[0072]

[0073]

[0074]

[0075]

with the embodiment 1.

In the case in which a write request is transmitted from the host 100A to the volume
250 of the primary storage system 200A, the primary storage system 200A stores the
write data from the host 100A into the cache part 223 of the primary storage system
200A. After that, the primary storage system 200A stores the write data of the cache
part 223 into the volume 250 (PVOL 251) asynchronously with the write request.
Moreover, a JNL is stored into the cache part 223 and is then stored into the volume
(JVOL 252) similarly to the data that has been acquired from the host 100A.

Fig. 15 is a detailed block diagram showing a memory package in accordance with
the embodiment 1.

The control information part 221 of the memory package 220 stores the sequence
number information 2210, the JNL pointer information 2211, the block management
bitmap 2212, the current block information 2213, the current address information
2214, and the in-block maximum sequence number information 2215.

The program part 222 stores a write program 2221, a JNL creation program 2222, a
JNL data storage address decision program 2223, a block release program (primary)
2224, a block release program (secondary) 2225, a JNL read program (primary) 2226,
a JNL read program (secondary) 2227, and a restore program 2228. In the present em-
bodiment, in consideration of the case in which one storage system is operated as the
primary storage system 200A and the case in which one storage system is operated as
the secondary storage system 200B, one storage system stores a program that is
necessary to be operated as any of the primary storage system 200A and the secondary
storage system 200B. In the case in which one storage system is operated as only one
of the primary storage system 200A and the secondary storage system 200B, it is not
necessary for the storage system to be provided with all programs.

Fig. 16 is a view showing an example of the sequence number information in ac-
cordance with the embodiment 1.

The sequence number information 2210 stores a sequence number that indicates an
order in which the storage system 200 receives a write from the primary host 100A.
The sequence number is a sequence number of a JNL that has occurred recently for
instance. Figs. 17 to 19 are the information for managing a usage situation of the JVOL
252.

Fig. 17 is a view showing an example of a block management bitmap in accordance
with the embodiment 1. Fig. 18 is a view showing an example of the current block in-
formation in accordance with the embodiment 1. Fig. 19 is a view showing an example
of the current address information in accordance with the embodiment 1. Fig. 20 is a
view illustrating a block management bitmap, a current block, and a current address in

accordance with the embodiment 1.

15

WO 2013/136371 PCT/JP2012/001833

[0076]

[0077]

[0078]

[0079]

[0080]

[0081]

[0082]

The block management bitmap 2212 stores a value that indicates whether each block
of the JVOL 252 is being used or is not used as shown in Fig. 17. In the present em-
bodiment, a bit value 1 is set in the case in which the corresponded block BK is being
used, and a bit value O is set in the case in which the corresponded block BK is not
used. In the present embodiment, the JVOL 252 is classified into a plurality of blocks
of a predetermined common fixed size and is managed. Each block is in a size capable
of storing a plurality of JNL data and a size that is sufficiently smaller than a capacity
of the cache part 223. More specifically, in the case in which a capacity of the cache
part 223 is 1 TB for instance, a size of a block can be 10 MB. Moreover, a size of the
JVOL 252 can be several ten TB for instance.

Since the present embodiment shows an example in which each block has a common
fixed size, a flag of 1 bit is managed to each block for the block management bitmap
2212. However, in the case in which each block has a different size for instance, a start
address, an end address, and a flag of each block can be corresponded to each other to
be managed.

The current block information 2213 stores a block number of a current block as
shown in Fig. 18. The current block is a target block BK (a block of a block number 1
in the figure) that stores a current JNL (JNL data 2524 in this example) as shown in
Fig. 20.

The current address information 2214 stores a current address of a current block as
shown in Fig. 19. The current address is an address that indicates a range that has been
used in a current block, that is, a range that has stored the JNL data 2524 as shown in
Fig. 20.

Fig. 21 is a view showing an example of the in-block maximum sequence number in-
formation in accordance with the embodiment 1. The information shown in Fig. 21 is
the information that is used for the release processing of a block that is described in
Fig. 24.

The in-block maximum sequence number information 2215 stores a record to which
the fields of a block number (#) 2215a and an in-block maximum sequence number
2215b are corresponded. The block number (#) 2215a stores the number of a block (a
block #) of the JVOL 252. The in-block maximum sequence number 2215b stores a
maximum sequence number (an in-block maximum sequence number) of a JNL that
has been stored into the corresponded block. For the in-block maximum sequence
number information 2215 shown in Fig. 21, it is found that a maximum sequence
number of a JNL (JNL data 2524) that has been stored into a block of a block # "3" is
"350".

In the next place, an operation of the computer system in accordance with the em-

bodiment 1 will be described in the following.

16

WO 2013/136371 PCT/JP2012/001833

[0083]

[0084]

[0085]

[0086]

[0087]

[0088]

[0089]

[0090]

[0091]

Fig. 22 is a flowchart of a processing in a write in accordance with the embodiment
1.

In the case in which a write program 2221 receives a write request from the host
100A to the PVOL 251 (step S101), the write program 2221 writes the data of a write
target (write data) to the volume 250 (such as the PVOL 251) (step S102). In the next
place, the write program 2221 calls a journal creation program (step S103) and waits a
completion of the journal (JNL) creation program 2222 (step S104).

In the case in which the journal creation program 2222 is called, the journal creation
program 2222 ensures a sequence number of a JNL that is to be created (step S201)
and calls the JNL data storage address decision program 2223 (step S202). By these
steps, the JNL data storage address decision processing (see Fig. 23) is executed, an
address of a JVOL that stores the JNL data is decided, and the journal creation
program 2222 is notified of the address.

In the next place, the journal creation program 2222 stores the JNL data 2524 as the
data that is stored to the notified address of the JVOL 252 into the cache part 223 (step
S203).

In the next place, the journal creation program 2222 decides an address of the JVOL
252 that stores the JNCB 2523 (step S204) and stores the INCB 2523 as the data that is
stored to the decided address of the JVOL 252 into the cache part 223 (step S205).
Here, the address that stores the JNCB 2523 is decided as an address next to the INCB
2523 that has been stored or a leading head address of a INCB region 2521 in the case
in which the JNCB 2523 is stored up to the last of the JNCB region 2521.

In the next place, the journal creation program 2222 notifies the write program 2221
of a completion of a processing (step S206). The write program 2221 that has received
the notification notifies the host 100A of a completion report of a write (step S105) and
terminates the processing.

Fig. 23 is a flowchart of a JNL data storage address decision processing in ac-
cordance with the embodiment 1.

A JNL data storage address decision program 2223 acquires a block number of a
current block from the current block information 2213 (step S301) and judges whether
or not the new JNL data 2524 can be stored into the current block, that is, whether or
not the current block has a free space (step S302).

In the case in which the current block has a free space (Yes for the step S302) as a
result of the judgment, the JNL data storage address decision program 2223 proceeds
to the step S305. On the other hand, in the case in which the current block has no free
space (No for the step S302) as a result of the judgment, the JNL data storage address
decision program 2223 searches a free block (step S303). In the present embodiment,

the JNL data storage address decision program 2223 searches a block that is provided

17

WO 2013/136371 PCT/JP2012/001833

[0092]

[0093]

[0094]

[0095]

[0096]

[0097]

with a bit value of "0" from a leading head of a block management bitmap 2212.

In the next place, the JNL data storage address decision program 2223 allocates the
identified block as a block that stores the JNL data 2524 and proceeds to a processing
of the step S305 (step S304). More specifically, the JNL data storage address decision
program 2223 modifies a bit value of the block management bitmap 2212 to the
identified block to be "1" and modifies a block number of the current block in-
formation 2213 to be a block number of the identified block.

In the step S305, the JNL data storage address decision program 2223 decides an
address that stores the JNL data 2524 of the corresponded block. In the next place, the
JNL data storage address decision program 2223 updates a current address of the
current address information 2214 to be a decided address (step S306), updates a
maximum sequence number to the block of the in-block maximum sequence number
information 2215 to be a sequence number of the JNL data 2524 (step S307), and
terminates the processing.

In accordance with the above JNL data storage address decision processing, the JNL
data 2524 can be stored on a preferential basis into a region that is a block that is
located close to the leading head of the JVOL 252 and that is provided with a free
space and to which a region of the cache part 223 has a high degree of probability of
having been allocated. By this configuration, regions to which the JNL data 2524 is
stored can be aggregated to a comparatively small range, and an occurrence of a
processing for newly allocating a region of a cache part can be reduced in the case in
which the JNL data is stored. An allocating method of a block that stores the JNL data
is not restricted to the method. For instance, a free block that has been used most
recently can be allocated as a block that stores the JNL data 2524. By this con-
figuration, there is a higher possibility that a region that is corresponded to a region of
the free block is managed by the cache part 223, and there is a high possibility that a
region of the cache part 223 can be used without executing processing for allocating a
region of the cache part to the region in the case in which data is stored into the free
block. As a method for acquiring a free block that has been used most recently, the free
block can be managed by a stack.

Fig. 24 is a flowchart of a block release processing in accordance with the em-
bodiment 1.

The block release processing is executed on a regular basis by the block release
program (primary) 2224 for the primary storage system 200A for instance. Alter-
natively, the block release processing is called in the JNL read processing shown in
Fig. 25, and executed.

The block release program (primary) 2224 refers to a sequence number of a JNL that

has been transmitted (a transmitted sequence number) (step S401). The sequence

18

WO 2013/136371 PCT/JP2012/001833

[0098]

[0099]

[0100]

[0101]

[0102]

[0103]

[0104]

number of a JNL that has been transmitted is stored into the control information part
221 by the primary storage system 200A for instance.

In the next place, the block release program (primary) 2224 identifies a block that is
not a current block and in which the block management bitmap 2212 is ON (a bit value
is "1") (step S402).

In the next place, the block release program (primary) 2224 acquires the in-block
maximum sequence number of each block that has been identified from the in-block
maximum sequence number information 2215 (step S403), and judges whether or not
the in-block maximum sequence number that has been acquired for each block is
smaller than a transmitted sequence number that has been referred to (step S404).

In the case in which the in-block maximum sequence number that has been acquired
is smaller than a transmitted sequence number that has been referred to (Yes for the
step S404) as a result of the judgment, since it means that all JNLs of the block have
been transmitted to the secondary storage system 200B, the block release program
(primary) 2224 sets a bit value that is corresponded to the block of the block
management bitmap 2212 to be OFF ("0") to make the block to be a free block (step
S405). On the other hand, in the case in which the in-block maximum sequence
number that has been acquired is not smaller than a transmitted sequence number that
has been referred to (No for the step S404) as a result of the judgment, since it means
that all JNLs of the block have not been transmitted to the secondary storage system
200B, the processing is terminated.

For the block release processing, all blocks in which the JNL data has been
transmitted can be made a free block and can be used for the subsequent storage of the
JNL data.

Fig. 25 is a flowchart of a JNL read processing in accordance with the embodiment
1.

The JNL read program (secondary) 2227 of the secondary storage system 200B
issues a JNL read command to the primary storage system 200A (step S601) and waits
a response from the primary storage system 200A (step S602). The JNL read command
includes a sequence number of a JNL that has been transmitted to the secondary
storage system 200B (a transmitted sequence number).

In the case in which the JNL read program (primary) 2226 receives the JNL read
command, the primary storage system 200A reads the JNCB 2523 that has not been
transmitted (step S501). Here, the JNCB 2523 that has not been transmitted is
identified based on the information that is managed by the primary storage system
200A. In the present embodiment, since the INCB 2523 is arranged in a sequence
number order, the JNCB 2523 that has not been transmitted can be easily identified by
managing the JNCB 2523 that has not been transmitted by using a pointer.

19

WO 2013/136371 PCT/JP2012/001833

[0105]

[0106]

[0107]

[0108]

[0109]

[0110]

In the next place, the JNL read program (primary) 2226 identifies a storage location
of the JNL data 2524 by acquiring an address of the JNL data 2524 from the JNCB
2523 that has read (step S502) and reads the JNL data of the storage location that is
corresponded (step S503). Here, in the case in which the JNL data 2524 that is cor-
responded has been stored into the cache part 223, the JNL read program (primary)
2226 reads the JNL data 2524 from the cache part 223. In the case in which the JNL
data 2524 that is corresponded has not been stored into the cache part 223, the JNL
read program (primary) 2226 reads the JNL data 2524 from the JVOL 252.

In the next place, the JNL read program (primary) 2226 transmits the JNL that has
been read (the JNCB 2523 and the JNL data 2524) to the secondary storage system
200B (step S504). In the next place, the JNL read program (primary) 2226 stores the
sequence number that has been transmitted into the control information part 221 (step
S505), calls the block release program (primary) 2224 (step S506), and terminates the
processing. By these steps, the block release processing is executed (see Fig. 24).

On the other hand, in the case in which the secondary storage system 200B receives a
JNL from the primary storage system 200A (step S603), the JNL read program
(secondary) 2227 calls the JNL data storage address decision program 2223 (step
S604). For the secondary storage system 200B, the JNL data storage address decision
processing that is similar to that of Fig. 23 is executed, and a block and an address of
the JVOL 253 that stores the JNL data 2524 are decided.

In the next place, the JNL read program (secondary) 2227 stores the JNL data 2524
into the cache part 223 as data that is stored into an address of the decided block of the
JVOL 253 (step S605).

In the next place, the JNL read program (secondary) 2227 decides an address of the
JVOL 253 that stores the INCB 2523 (step S606), stores the JNCB 2523 into the cache
part 223 as data that is stored to the decided address of the JVOL 253 (step S607), and
terminates the processing. Here, the address that stores the INCB 2523 is decided as an
address next to the JNCB 2523 that has been stored or a leading head address of a
JNCB region 2521 in the case in which the JINCB 2523 is stored up to the last of the
JNCB region 2521.

In accordance with the above JNL read processing, the JNL data 2524 can be stored
on a preferential basis into a region that is a block that is located close to the leading
head of the JVOL 253 and that is provided with a free space and to which a region of
the cache part 223 has a high degree of probability of having been allocated. By this
configuration, regions to which the JNL data 2524 is stored can be aggregated to a
comparatively small range, and an occurrence of a processing for newly allocating a
cache part can be reduced in the case in which the JNL data 2524 is stored. An al-

locating method of a block is not restricted to the method. For instance, a free block

20

WO 2013/136371 PCT/JP2012/001833

[0111]
[0112]

[0113]

[0114]

[0115]

[0116]

[0117]

[0118]

that has been used most recently can be allocated as a block that stores the JNL data.
By this configuration, there is a higher possibility that a region that is corresponded to
a region of the free block is managed by the cache part 223, and there is a high pos-
sibility that a region of the cache part 223 can be used without executing processing for
allocating a region of the cache part 223 to the region in the case in which data is
stored into the free block.

Fig. 26 is a flowchart of a restore processing in accordance with the embodiment 1.
The restore processing is a processing for writing to the SVOL 254 based on a JNL
and is executed on a regular basis for the secondary storage system 200B for instance.
The restore program 2228 checks a JNCB that has been stored into the JVOL 253

(step S701) and identifies a range of a JNL that has reached the secondary storage
system 200B without a miss (step S702). Here, since the INCB 2523 of a JNL that has
not reached is all 0, a range of a JNL that has reached can be identified in an ap-
propriate manner.

In the next place, the restore program 2228 identifies a maximum sequence number
of a JNL in a range that has been identified (step S703) and stores the maximum
sequence number as a sequence number that has been transmitted into the control in-
formation part 221 (step S704).

In the next place, the restore program 2228 acquires a JNL up to a sequence number
that has been transmitted from the JVOL 253 and writes the JNL to the SVOL 254 in
an order of a sequence number, that is, restores the JNL (step S705). In the case in
which the corresponded JNL data 2524 has been stored into the cache part 223 for an
acquisition from the JVOL 253, the restore program 2228 reads the JNL data 2524
from the cache part 223. In the case in which the corresponded JNL data 2524 has not
been stored into the cache part 223, the restore program 2228 reads the JNL data 2524
from the JVOL 253. Moreover, in a write to the JVOL 254, the restore program 2228
stores the JNL data 2524 into the cache part 223 as the data of an write address of the
JVOL 254.

In the next place, the restore program 2228 stores the maximum sequence number
that has been restored as a restored sequence number into the control information part
221 (step S706) and calls the block release program (secondary) 2225 (step S707). The
block release program (secondary) 2225 executes the block release processing.

More specifically, the block release program (secondary) 2225 refers to the sequence
number that has been restored (step S801) and identifies a block that is not a current
block and in which the block management bitmap 2212 is ON (a bit value is "1") (step
S802).

In the next place, the block release program (secondary) 2225 acquires the in-block

maximum sequence number of each block that has been identified from the in-block

21

WO 2013/136371 PCT/JP2012/001833

[0119]

[0120]

[0121]

[0122]

[0123]

[0124]

[0125]

maximum sequence number information 2215 (step S803), and judges whether or not
the in-block maximum sequence number that has been acquired for each block is
smaller than a restored sequence number that has been referred to (step S804).

In the case in which the in-block maximum sequence number that has been acquired
is smaller than a restored sequence number that has been referred to (Yes for the step
S804) as a result of the judgment, since it means that all JNLs of the block have been
restored to the SVOL 254, the block release program (secondary) 2225 sets a bit value
that is corresponded to the block of the block management bitmap 2212 to be OFF
("0"), to make the block to be a free block (step S805), terminates the processing (step
S$806), and notifies the restore program 2228 of that. On the other hand, in the case in
which the in-block maximum sequence number that has been acquired is not smaller
than a restored sequence number that has been referred to (No for the step S804) as a
result of the judgment, the block release program (secondary) 2225 terminates the
processing (step S806) and notifies the restore program 2228 of that. In the case in
which the restore program 2228 receives the notification of that the processing has
been terminated from the block release program (secondary) 2225, the restore program
2228 terminates the restore processing.

For the block release processing, all blocks in which a restore has been executed by
the JNL data can be made a free block and can be used for the subsequent storage of
the JNL data.

Embodiment 2

In the next place, the computer system in accordance with the embodiment 2 will be
described in the following.

While the INL data 2524 of a JNL is managed based on a block for the computer
system in accordance with the embodiment 1, the JNCB 2523 of a JNL is also
managed based on a block similarly for the computer system in accordance with the
embodiment 2. The elements that are equivalent to those of the computer system in ac-
cordance with the embodiment 1 are numerically numbered similarly and the different
points will be mainly described.

Fig. 27 is a detailed view showing a control information part in accordance with the
embodiment 2. Fig. 28 is a detailed view showing a program part in accordance with
the embodiment 2.

The control information part 221 in accordance with the embodiment 2 further stores
the INCB block management information 2216, the current write block information
2217, the current read block information 2218, the current write address information
2219, and the current read address information 221A to the control information part
221 in accordance with the embodiment 1.

The program part 222 in accordance with the embodiment 2 further stores the JINCB

22

WO 2013/136371 PCT/JP2012/001833

[0126]

[0127]

[0128]

[0129]

[0130]

[0131]

[0132]

storage address decision program 2229 to the program part 222 in accordance with the
embodiment 1.

Fig. 29 is a view showing an example of the JNCB block management information in
accordance with the embodiment 2. Fig. 30 is a view showing an example of the JNCB
current write block information in accordance with the embodiment 2. Fig. 31 is a view
showing an example of the INCB current read block information in accordance with
the embodiment 2. Fig. 32 is a view showing an example of the JNCB current write
address information in accordance with the embodiment 2. Fig. 33 is a view showing
an example of the JNCB current read address information in accordance with the em-
bodiment 2. Fig. 34 is a view illustrating a block and an address in accordance with the
embodiment 2.

The JNCB block management information 2216 is the information for managing an
order of a block in which the INCB 2523 is stored. More specifically, a block number
of a block in which the JNCB 2523 is stored and a block of the next order, that is, a
block number of a block in which the subsequent INCB 2523 is stored are cor-
responded to each other for a management. In accordance with the JNCB block
management information 2216, as shown in Fig. 34, a block of the next order in which
the subsequent INCB 2523 is stored can be identified.

The JNCB current write block information 2217 is the information for storing a
block number of a current write block as shown in Fig. 30. The current write block is a
block in which a new JNCB 2523 is to be stored as shown in Fig. 34.

The JNCB current read block information 2218 is the information for storing a block
number of a current read block as shown in Fig. 31. The current read block is a block
in which a JNCB 2523 that is transmitted in the next place is stored as shown in Fig.
34.

The JNCB current write address information 2219 is the information for storing a
current write address of a current write block as shown in Fig. 32. The current write
address is an address in a block in which a new JNCB 2523 is stored as shown in Fig.
34.

The JNCB current read address information 221A is the information for storing a
current read address of a current read block as shown in Fig. 33. The current read
address is an address in a block in which a JNCB 2523 that is transmitted in the next
place is stored as shown in Fig. 34.

In the next place, an operation of the computer system in accordance with the em-
bodiment 2 will be described in the following. For an operation of the computer system
in accordance with the embodiment 2, a processing for deciding a storage address of
the INCB for the primary storage system 200A, a processing for deciding a storage
address of the INCB for the secondary storage system 200B, a processing for reading

23

WO 2013/136371 PCT/JP2012/001833

[0133]

[0134]

[0135]

[0136]

[0137]

[0138]

[0139]

the INCB from the JVOL 252 of the primary storage system 200A, and a processing
for reading the INCB from the JVOL 253 of the secondary storage system 200B are
different from those of an operation of the computer system in accordance with the em-
bodiment 1. For a block in which the JNCB 2523 has been stored, the block release
processing can be executed by a processing similar to that of a block in which the JNL
data 2524 has been stored.

Fig. 35 is a flowchart of a JNCB storage address decision processing in accordance
with the embodiment 2.

The JNCB storage address decision processing is executed for each of the primary
storage system 200A and the secondary storage system 200B. For the primary storage
system 200A, the JNCB storage address decision processing is called in the S204 of
the journal creation program 2222.

A JNCB storage address decision program 2229 acquires a block number of a current
block from the current write block information 2217 (step S901), acquires a current
write address from the current write address information 2219 (step S902), and judges
whether or not the JNCB 2523 can be stored into the current write block, that is,
whether or not the current block has a free space (step S903).

In the case in which the current write block has a free space (Yes for the step S903)
as a result of the judgment, the INCB storage address decision program 2229 proceeds
to the step S906. On the other hand, in the case in which the current write block has no
free space (No for the step S903) as a result of the judgment, the JNCB storage address
decision program 2229 searches a free block (step S904). In the present embodiment,
the INCB storage address decision program 2229 searches a block that is provided
with a bit value of "0" from a leading head of a block management bitmap 2212.

In the next place, the INCB storage address decision program 2229 allocates the
identified block as a block that stores the INCB 2523 and proceeds to a processing of
the step S906 (step S905). More specifically, the JNCB storage address decision
program 2229 modifies a bit value of the block management bitmap 2212 to the
identified block to be "1" and modifies a block number of the current write block in-
formation 2217 to be a block number of the identified block.

In the step S906, the JNCB storage address decision program 2229 decides an
address that stores the INCB 2523 of the corresponded block. In the next place, the
JNCB storage address decision program 2229 updates a current address of the current
write address information 2219 to be a decided address (step S907), updates a
maximum sequence number to the block of the in-block maximum sequence number
information 2215 to be a sequence number of the INCB 2523 (step S908), and
terminates the processing.

In accordance with the above JNCB storage address decision processing, the JNCB

24

WO 2013/136371 PCT/JP2012/001833

[0140]

[0141]

[0142]

[0143]

2523 can be stored on a preferential basis into a region that is a block that is located
close to the leading head of the JVOL 252 and that is provided with a free space and to
which a region of the cache part 223 has a high degree of probability of having been
allocated. By this configuration, regions to which the INCB 2523 is stored can be ag-
gregated to a comparatively small range, and an occurrence of a processing for newly
allocating a region of a cache part can be reduced in the case in which the JINCB 2523
is stored. An allocating method of a block is not restricted to the method. For instance,
a free block that has been used most recently can be allocated as a block that stores the
JNCB 2523. By this configuration, there is a higher possibility that a region that is cor-
responded to a region of the free block is managed by the cache part 223, and there is a
high possibility that a region of the cache part 223 can be used without executing
processing for allocating a region of the cache part 223 to the region in the case in
which data is stored into the free block. As a method for acquiring a free block that has
been used most recently, the free block can be managed by a stack.

Fig. 36 is a flowchart of a JNL read processing in accordance with the embodiment
2. The parts that are equivalent to those of the JNL read processing (see Fig. 25) in ac-
cordance with the embodiment 1 are numerically numbered similarly and the different
points will be mainly described.

In the case in which the JNL read program (primary) 2226 receives the JNL read
command, the primary storage system 200A acquires a current read block number
from the current read block information 2218 (step S1001) and acquires a current read
address from the current read address information 221A (step S1002). In the next
place, the JNL read program (primary) 2226 judges whether or not a current read block
and a current write block are equivalent to each other (step S1003).

In the case in which a current read block and a current write block are not equivalent
to each other (No for the step S1003) as a result of the judgment, the JNL read program
(primary) 2226 reads the INCB 2523 from the current read address to the end of the
current read block (step S1004), identifies the next block based on the JNCB block
management information 2216, makes the block to be a current read block (step
S1005), sets the current read address of the current read address information 221A to
be "0" (step S1006), and proceeds to the step S1009. By these steps, in the case in
which the JNL read processing is executed after that, the JINCB 2523 can be read from
the subsequent block in an appropriate manner.

On the other hand, in the case in which a current read block and a current write block
are equivalent to each other (Yes for the step S1003) as a result of the judgment, the
JNL read program (primary) 2226 reads the JNCB 2523 from the current read address
to the current write address (step S1007), sets the current read address to be an address

that has been read (an address equal to the current write address) (step S1008), and

25

WO 2013/136371 PCT/JP2012/001833

[0144]

[0145]

[0146]

[0147]

[0148]

[0149]

[0150]

proceeds to the step S1009.

In the step S1009, the JNL read program (primary) 2226 identifies a storage location
of the JNL data 2524 from the JNCB 2523 that has been read (step S1009). After that,
the JNL read program (primary) 2226 executes the processing of the step S503 and the
subsequent steps.

On the other hand, the JNL read program (secondary) 2227 stores the JNL data 2524
into the cache part 223 as data that is stored into an address of the decided block of the
JVOL 253 (step S605) and calls the INCB storage address decision program 2229
(step S1101). After that, the JNL read program (secondary) 2227 acquires a block and
an address of the JVOL 253 that stores the JINCB 2523 from the JNCB storage address
decision program 2229.

Fig. 37 is a flowchart of a restore processing in accordance with the embodiment 2.
The parts that are equivalent to those of the restore processing (see Fig. 26) in ac-
cordance with the embodiment 1 are numerically numbered similarly and the different
points will be mainly described.

The restore processing is executed on a regular basis for the secondary storage
system 200B for instance.

The restore program 2228 acquires a current read block number from the current read
block information 2218 (step S1201) and acquires a current read address from the
current read address information 221A (step S1202). In the next place, the restore
program 2228 reads the INCB 2523 to the end of the current read block (step S1203)
and identifies a range of a JNL that has reached the secondary storage system 200B
without a miss (step S1204). Here, since the JINCB 2523 of a JNL that has not reached
is all 0, arange of a JNCB 2523 that has reached can be identified in an appropriate
manner.

In the next place, the restore program 2228 judges whether or not the end of the
range that has been identified is an end of the current read block (step S1205). In the
case in which the end of the range that has been identified is an end of the current read
block (Yes for the step S1205) as a result of the judgment, the restore program 2228
sets a current read address of the current read address information 221A to be O,
identifies the next block based on the JNCB block management information 2216, sets
the block to be a current read block (step S1206), and proceeds to the step S703. By
these steps, in the case in which the restore processing is executed after that, the JNCB
2523 can be read in an appropriate manner from the subsequent block in which the
JNCB 2523 has been stored.

On the other hand, in the case in which the end of the range that has been identified
is not an end of the current read block (No for the step S1205) as a result of the

judgment, the restore program 2228 sets a current read address of the current read

26

WO 2013/136371 PCT/JP2012/001833

[0151]

[0152]

[0153]

[0154]
[0155]

[0156]

[0157]

address information 221A to be an address of the end of the range that has been
identified (step S1207), and proceeds to the step S703.

In accordance with the above embodiment 2, the JINCB 2523 can be stored on a pref-
erential basis into a region that is a block that is located close to the leading head of the
JVOL 253 and that is provided with a free space and to which a region of the cache
part 223 has a high degree of probability of having been allocated. By this con-
figuration, regions to which the JINCB 2523 is stored can be aggregated to a com-
paratively small range, and an occurrence of a processing for newly allocating a region
of a cache part can be reduced in the case in which the INCB 2523 is stored.
Embodiment 3

In the next place, the computer system in accordance with the embodiment 3 will be
described in the following.

While the JVOL 252 and the JVOL 253 are managed based on a plurality of blocks
of a common fixed length for the computer system in accordance with the embodiment
2, the JVOL 252 and the JVOL 253 are managed based on two types of blocks of
different sizes for the computer system in accordance with the embodiment 3. Con-
sequently, the number of blocks for the JVOL 252 and the JVOL 253 is reduced and
the information that is required for a block management is reduced in accordance with
the embodiment 3.

Fig. 38 is a view illustrating a summary of an embodiment 3.

In the present embodiment, the JVOL 252 (253) is divided into a plurality of (four in
the figure) blocks of a small size (a small capacity) (a small size block) SBK and one
block of a large size (a large capacity) (a large size block) LBK to be managed. By this
configuration, the control information amount for managing a block, for instance, the
information amount of the information of the block management bitmap 2212 and the
in-block maximum sequence number information 2215 can be reduced in addition to
the effects of the above described embodiments 1 and 2.

There is a possibility that a write amount from the host 100A is sharply increased on
a temporary basis to exceed a pace in which a small size block of the JVOL 252 is
released. In this case, a JNL is stored into the large size block LBK in some cases.
After a reduction in a write amount, a processor load can be reduced by using a small
size block as described in the embodiment 1. However, in a logic that has described in
the embodiment 1, a JNL is stored into the large size block LBK until all regions of the
large size block LBK is used up.

In the case in which a JNL is stored into the large size block LBK until all regions of
the large size block LBK is used up as described above, a processing for destaging a
JNL that has been transmitted, a processing for allocating a region of the cache part

223, and a processing for releasing a region of the cache part 223 are executed,

27

WO 2013/136371 PCT/JP2012/001833

[0158]

[0159]

[0160]

[0161]

[0162]

[0163]

whereby a load to the processor is increased.

Consequently, in the embodiment 3, a control is executed in such a manner that a
JNL can be stored into the small size block SBK even before all regions of the large
size block LBK is used up.

Fig. 39 is a detailed view showing a control information part in accordance with the
embodiment 3.

The control information part 221 in accordance with the embodiment 3 further stores
the current block size information 221B to the control information part 221 in ac-
cordance with the embodiment 2. The current block size information 221B stores the
information that indicates whether a size of a current block is a large size or a small
size

Fig. 40 is a flowchart of a JNL data storage address decision processing in ac-
cordance with the embodiment 3. The parts that are equivalent to those of the JNL data
storage address decision processing (see Fig. 23) in accordance with the embodiment 1
are numerically numbered similarly and the different points will be mainly described.

In the case in which it is decided that the current block has a free space in the step
S302 (Yes for the step S302), the INL data storage address decision program 2223
judges whether or not the current block has a large size and a predetermined return
condition is satisfied (step S308). Here, the predetermined return condition is a
condition for judging whether or not an operation is possible by only a block of a small
size in the case in which a remaining amount of the current JNL data 2524 is
continued. For instance, the predetermined return condition is a condition in which "an
average JNL data amount that remains in the current JVOL 252 < the total free
capacity of a small size block" in addition to "a small size block has a free space".
Moreover, in consideration of a variation of an occurrence of the JNL data 2524 after
that, "an average JNL data amount that remains in the current JVOL 252" can be
replaced by "an average JNL data amount that remains in the current JVOL 252 +A"
(A is a predetermined data amount).

In the case in which the current block has a large size and a predetermined return
condition is satisfied (Yes for the step S308) as a result of the judgment, the JNL data
storage address decision program 2223 proceeds to the step S303 and executes the
subsequent processing. By this configuration, the JNL data 2524 can be stored into a
small size block from a state in which a large size block is free, and the execution of a
processing for destaging a JNL that has been transmitted, a processing for allocating a
region of the cache part 223, and a processing for releasing a region of the cache part
223 can be reduced in an appropriate manner. In the case in which the current block
has a small size or a predetermined return condition is not satisfied (No for the step
S308), the INL data storage address decision program 2223 proceeds to the step S305.

28

WO 2013/136371 PCT/JP2012/001833

[0164]

[0165]

[0166]

[0167]

[0168]

[0169]

[0170]
[0171]

[0172]

The JNL data storage address decision processing has been described above.
However, a processing for deciding a storage address for the JINCB 2523 (JNCB
storage address decision processing) can also be implemented by adding a step that is
similar to the step S308 for the JNCB storage address decision processing of the em-
bodiment 2 (see Fig. 35).

Fig. 41 is a view illustrating a modified example in accordance with the embodiment
3.

In the above described example, there is one large size block LBK for the JVOL 252
(253). In this case, as shown in the state 1, in the case in which the large size block
LBK has a free region LS and the JNL data 2524 is stored into the small size block
SBK, the large size block LBK is managed as a block that is being used before all of
the JNL data 2524 that has been stored is transmitted. Consequently, even in the case
in which an occurrence of the JNL data 2524 is sharply increased, a situation in which
a free region LS is not used occurs.

On the other hand, as shown in the state 2 for instance, it is thought that the JVOL
252 is provided with a plurality of large size blocks LBK. For instance, a size of the
large size block LBK can be a common size. In the case in which a plurality of large
size blocks LBK is provided with as described above, other large size blocks LBK can
be used, whereby a capacity of a useless free region can be reduced.

Embodiment 4

In the next place, the computer system in accordance with the embodiment 4 will be
described in the following.

For the computer system in accordance with the embodiment 4, the JVOL 252 and
the JVOL 253 are configured with a virtual volume (a virtual VOL) by using a
capacity virtualization function (Thin Provisioning) in the above described em-
bodiment.

Fig. 42 is a view illustrating a virtual volume in accordance with the embodiment 4.

The storage system 200 (200A, 200B) is provided with a capacity pool (a pool) 290
that is configured by a plurality of storage regions of HDDs 240. The pool 290
includes a pool volume (a pool VOL) 291 that is configured by a physical storage
region of an HDD 240. The pool VOL 291 includes a page that is a physical region
that is an allocation unit of a virtual VOL 293. A capacity of a page is in the range of
several KB to several tens MB.

In the case in which data is written to a predetermined region for the virtual VOL
293, a page 292 of the pool VOL 291 is allocated to the region. In the present em-
bodiment, the JVOLs 252, 253 is configured as the virtual VOL 293. Consequently,
since a page 292 is not allocated to a region in which the JVOLs 252, 253 is not used, a

storage region of the HDD 240 can be used in an effective manner. Since the JVOLs

29

WO 2013/136371 PCT/JP2012/001833

[0173]

[0174]

[0175]

[0176]

[0177]

[0178]

[0179]

252, 253 is not used by a wraparound method in the present embodiment in particular
unlike the conventional system, an allocation amount of a page can be reduced.

Fig. 43 is a view showing an example of a pool table in accordance with the em-
bodiment 4.

A pool table 224 is a table that is configured to manage each page 292 of the pool
290 and is stored into the control information 221 of the memory package 220.

The pool table 224 manages a record to which the fields of a page number 224a, a
start address 224b, an end address 224c, a state 224d, and an allocation destination
224e are corresponded. The page number 224a stores a page number that identifies a
page 292 of the pool 290. The start address 224b stores a start address of a page that is
corresponded. The end address 224c stores an end address of a page 292 thatis cor-
responded. The state 224d stores the information that indicates whether the page 292
that is corresponded has been allocated to the virtual volume 293 or has not been
allocated to the virtual volume 293. The allocation destination 224e stores a virtual
volume number to which the page 292 that is corresponded has been allocated. In ac-
cordance with the top record of the pool table 224, it is found that the start address is
"0" and the end address is "99" for a page that is provided with a page number of "1"
and the page has been allocated to the virtual volume 1.

Fig. 44 is a view showing an example of a virtual volume table in accordance with
the embodiment 4.

The virtual volume table 225 is a table that is configured to manage an allocation of a
page 292 to the virtual volume 293 and is stored into the control information 221 of the
memory package 220.

The virtual volume table 225 manages a record that includes the fields of a virtual
volume number 225a, an address 225b, a page allocation state 225¢c, and a page
number 225d. The virtual volume number 225a stores a virtual volume number that
identifies a virtual volume 293. The address 225b stores a range of an address of the
virtual volume 293 that is corresponded. The page allocation state 225¢ stores the in-
formation that indicates whether or not the page 292 has been allocated to a region in
the range of an address that is corresponded. The page number 225d stores a page
number that has been allocated to a region that is corresponded. In accordance with the
top record of the virtual volume table 225, it is found that the page 292 that is provided
with a page number "2" has been allocated to a region of the addresses 0 to 99 of the
virtual volume that is provided with a virtual volume number "1".

With reference to Figs. 45 to 48, the following describes the processing for releasing
a page that is corresponded to only an unused block by a block release. Fig. 45 is a
flowchart of a block release processing in accordance with the embodiment 4. A step

5406 for calling a page release program is added immediately after the step S405 of

30

WO 2013/136371 PCT/JP2012/001833

[0180]

[0181]

[0182]

[0183]

[0184]

the block release program (primary) 2224 shown in Fig. 24.

Fig. 46 is a view showing an example of a page release program that is called from
the step S406 of the block release program (primary) 2224. Fig. 47 is a view showing
an example of a correspondence relationship between a block and a page in accordance
with the embodiment 4. Fig. 48 is a view showing another example of a page release
program.

The processing of Fig. 46 will be described. The page release program identifies at
least one page 292 that is corresponded to the block BK (step S1501). A page that is
corresponded to a block in which a block number is 1 is a page A in the example of in
Fig. 47. Moreover, a page that is corresponded to a block in which a block number is 2
is a page A and a page B. In the next place, the page release program makes a page that
has not been processed to be a processing target page (step S1502). In the case in
which a block number of a processing target block is 2 in the example shown in Fig. 47
for instance, the page A is a processing target at first. After the steps S1503 to S1505
are executed to the page A, the steps S1503 to S1505 are executed to the page B. In the
next place, the page release program identifies at least one block that is corresponded
to a page (step S1503). In the case in which the page A shown in Fig. 47 is a
processing target for instance, a block 1 and a block 2 are identified.

In the next place, the page release program refers to the block management bitmap
2212 and judges whether or not all blocks that have been identified are free (step
S1504). In the case in which all blocks that have been identified are free (Yes for the
step S1504) as a result of the judgment, the page release program releases the page
(step S1505) and proceeds to the step S1506. In other words, the page release program
deletes the allocation information of the corresponded page 292 from the pool table
224 and the virtual volume table 225 and proceeds to the step S1506. On the other
hand, in the case in which all blocks that have been identified are not free (No for the
step S1504) as a result of the judgment, the page release program proceeds to the step
S1506.

In the step S1506, the page release program judges whether or not there is a page 292
that has not been processed. In the case in which there is a page 292 that has not been
processed (Yes for the step S1506) as a result of the judgment, the page release
program executes the processing from the step S1502. On the other hand, in the case in
which there is not a page 292 that has not been processed (No for the step S1506) as a
result of the judgment, the page release program terminates the page release
processing.

By the page release processing, the page 292 that has been allocated to the block BK
that has stored the JNL data 2524 that has been transmitted can be released in an ap-

propriate manner and can be used for an allocation to other region.

31

WO 2013/136371 PCT/JP2012/001833

[0185]

[0186]

[0187]

[0188]

[0189]

[0190]

[0191]

For the page release processing shown in Fig. 46, the page 292 that has been
allocated to a free block is released. However, there is a high possibility that data is
written to the small size block SBK after that and a new page 292 is allocated to the
small size block SBK. Consequently, as shown in Fig. 48, the page 292 that has been
allocated to the small size block SBK is not released and a load that is required for a
reallocation of the page 292 to the small size block SBK can be reduced.

Fig. 48 is a flowchart of a page release processing in accordance with a modified
example of the embodiment 4. The parts that are equivalent to those of the page release
processing (see Fig. 46) are numerically numbered similarly and the different points
will be mainly described.

In the case in which all blocks are free (Yes for the step S1504) as a result of the
judgment, the page release program judges whether or not all blocks that have been
identified are a large size block LBK (step S1507). In the case in which all blocks that
have been identified are large size blocks LBK (Yes for the step S1507) as a result of
the judgment, the page release program proceeds to the step S1505 and releases the
page 292. On the other hand, in the case in which all blocks that have been identified
are not large size blocks LBK (No for the step S1507) as a result of the judgment, the
page release program proceeds to the step S1506 without releasing the page 292.

In accordance with this page release processing, the page 292 that has been allocated
to the small size block SBK is not released. Consequently, in the case in which the JNL
data 2524 is stored into the small size block SBK after that, it is not necessary a
processing that is required for a reallocation of the page 292 is executed, whereby a
processing load can be reduced.

The virtual volume 293 has a characteristic in which a capacity can be expanded after
the virtual volume 293 is created. Here, the processing in the case in which a capacity
of the virtual volume 293 is expanded will be described.

Fig. 49 is a first view illustrating an expansion of a journal volume in accordance
with the embodiment 4.

In the case in which a capacity of the JVOL 252 (253) that is shown before an
expansion is expanded for instance, only a capacity of the last block (a block of a block
number 5 in the figure) of the JVOL 252 can be expanded as shown after an expansion.
In this case, since the number of blocks is not modified in accordance with an
expansion of a capacity of the JVOL 252, the information amount of the block
management bitmap 2212 and the in-block maximum sequence number information
2215 is not modified. Here, the last block can be comprehended as a range from a start
address that is calculated by the expression of (a block size of a small size block x the
number of small size blocks) + (a block size of a large size block x (the number of
large size blocks - 1)) to an end address after the expansion of the JVOL 252.

32

WO 2013/136371 PCT/JP2012/001833

[0192]

[0193]

[0194]

[0195]

[0196]
[0197]

[0198]

[0199]

Fig. 50 is a second view illustrating an expansion of a journal volume in accordance
with the embodiment 4.

In the case in which a capacity of the JVOL 252 that is shown before an expansion is
expanded for instance, the expanded capacity of the JVOL 252 can be divided into a
plurality of (32 for instance) blocks (added blocks) ABK and can be managed as
shown after an expansion. In this case, it is necessary that a record that is corresponded
to the increased blocks ABK is added to the block management bitmap 2212 and the
in-block maximum sequence number information 2215. By adopting such a method, a
problem in which a usage efficiency of a JVOL is reduced and that has been described
in the state 1 of Fig. 41 can be avoided.

Embodiment 5

In the next place, the computer system in accordance with the embodiment 5 will be
described in the following.

In the above described embodiment, a management is executed in such a manner that
the JNL data 2524 and/or the JNCB 2523 are stored using a block. However, for the
computer system in accordance with the embodiment 5, the JNL data 2524 and/or the
JNCB 2523 are stored without using a block.

Fig. 51 is a view illustrating a summary of an embodiment 5.

In the present embodiment, as shown in the state 1, a region in which the JNL data
2524 that has not been transmitted has been stored can be managed by managing a pair
(the region identification information) of pointers of a leading head pointer (1) that
indicates an address of a leading head of a storage destination of the JNL data 2524
that has not been transmitted for the JVOL 252 (253) and an end pointer (1) that
indicates an address of an end of the JNL data 2524 that has not been transmitted (an
address of a leading head of a storage destination of the JNL data that has been
transmitted).

Here, the new JNL data 2524 is stored into a region of the JNL data 2524 that has not
been transmitted (a transmitted region) for instance. In other words, in the case in
which a region in which the JNL data 2524 that has not been transmitted has been
stored is reused, as shown in the state 2, in order to manage a region (a second region)
in which the JNL data that has not been transmitted has been stored to a region that is
reused, a region of the JNL data 2524 that has not been transmitted for a region that is
reused is managed by using another pair of pointers (a leading head pointer (2) and an
end pointer (2): the second region identification information).

Moreover, in the case in which the JNL data 2524 is stored to all of regions that is
reused, as shown in the state 3, the JNL data 2524 is stored into an unused region after
the leading head pointer (1), and a region (a third region) of the JNL data that has not

been transmitted is managed by using another pair of pointers (a leading head pointer

33

WO 2013/136371 PCT/JP2012/001833

[0200]

[0201]

[0202]

[0203]

[0204]

[0205]

[0206]

[0207]

(3) and an end pointer (3)).

As described above, a region in which of the JNL data that has not been transmitted
has been stored can managed by using a pair of a plurality of pointers (a leading head
pointer and an end pointer). Here, in accordance with an order of a pair of pointers that
have been created, each JNL data 2524 of a region that is indicated by the pointers is
arranged. By this configuration, it can be identified that the JNL data 2524 of a region
that is indicated by a pair of pointers that have been created beforehand is the JNL data
2524 that has been created before the JNL data 2524 of a region that is indicated by a
pair of pointers that have been created later. Consequently, an occurrence order of the
JNL data 2524 can be comprehended in an appropriate manner.

Fig. 52 is a detailed view showing a control information part in accordance with the
embodiment 5.

The control information part 221 in accordance with the embodiment 5 further stores
a pair of at least one leading head pointer 221C and at least one end pointer 221D (for
instance, a leading head pointer (1) and an end pointer (1)) to the control information
part 221 in accordance with the embodiment 4.

In the next place, an operation of the computer system in accordance with the em-
bodiment 5 will be described in the following. Here, an operation that is different from
that of the embodiment 4 will be described.

Fig. 53 is a flowchart of a JNL data storage address decision processing in ac-
cordance with the embodiment 5.

A JNL data storage address decision program 2223 acquires a leading head pointer
that is being used, that is, a leading head pointer that has been created at last (step
S1601) and judges whether or not there is a free region (a transmitted region) that is
equal to or larger than a predetermined size before an address that is indicated by the
pointer (step S1602).

In the case in which there is not a free region that is equal to or larger than a prede-
termined size (No for the step S1602) as a result of the judgment, the JNL data storage
address decision program 2223 judges whether or not the JNL data 2524 can be stored
immediately after an address that is indicated by a leading head pointer that is being
used (step S1603). In the case in which the JNL data 2524 can be stored immediately
after an address that is indicated by a leading head pointer that is being used (Yes for
the step S1603) as a result of the judgment, the JNL data storage address decision
program 2223 decides a region immediately after an address that is indicated by a
leading head pointer as a storage destination of the JNL data 2524 (step S1608) and
updates a leading head pointer that is being used (step S1609).

On the other hand, in the case in which the JNL data 2524 cannot be stored im-

mediately after an address that is indicated by a leading head pointer that is being used

34

WO 2013/136371 PCT/JP2012/001833

[0208]

[0209]

[0210]

[0211]

[0212]

(No for the step S1603) as a result of the judgment, the JNL data storage address
decision program 2223 searches a free region in the regions after a leading head
pointer (step S1604) and proceeds to the step S1605.

Moreover, in the case in which there is a free region that is equal to or larger than a
predetermined size (Yes for the step S1602) as a result of the judgment of the step
S1602, the JNL data storage address decision program 2223 proceeds to the step
S1605.

In the step S1605, the JNL data storage address decision program 2223 ensures a
region of a pair of new pointers (an end pointer and a leading head pointer) for the
control information part 220, makes the ensured pointer to be a pointer that is being
used (step S1606), and sets an end pointer in such a manner that the end pointer
indicates a leading head address of a free region (step S1607). In the next place, a
region immediately after an address that is indicated by an end pointer is decided as a
storage destination of the JNL data 2524 (step S1608) and a leading head pointer that
is being used is updated (step S1609). By these steps, in the case in which there is a
free region that is equal to or larger than a predetermined size in the regions before a
leading head pointer that is being used, the JNL data 2524 can be stored into the free
region. In the present embodiment, by making a size of a free region to be equal to or
larger than a predetermined size, the number of pairs of pointers for managing a region
that stores the JNL data 2524 that has not been transmitted can be reduced. Regardless
of a size of a free region, a free region can also be used in the case in which there is a
free region. In the case in which a free region cannot be found in the step S1604, since
a free region does not exist in the JVOL 252, an abnormal termination is executed.

Fig. 54 is a flowchart of a JNL read processing in accordance with the embodiment
5. The parts that are equivalent to those of the JNL read processing (see Fig. 25) are
numerically numbered similarly and the different points will be mainly described.

For the primary storage system 200A, after the JNL read program (primary) 2226
transmits the JNL (the JNCB 2523 and the JNL data 2524) that has been read to the
secondary storage system 200B (step S504), and identifies all regions in which data
that has been transmitted has been stored (step S1701). Here, the region in which data
that has been transmitted has been stored is a region that is indicated by a pair of
pointers. In the next place, one processing target is decided from at least one identified
region (step S1702).

In the next place, the JNL read program (primary) 2226 judges whether or not all of
the JNL data 2524 in a region that has been decided have been transmitted (step
S1703). Here, whether or not all of the JNL data 2524 in a region have been
transmitted can be judged by whether or not a region that is indicated by a pair of

pointers that are corresponded is included in a data region that has been identified in

35

WO 2013/136371 PCT/JP2012/001833

[0213]

[0214]

[0215]

[0216]

[0217]

[0218]

[0219]

the step S1701.

In the case in which all of the JNL data 2524 in a region have been transmitted (Yes
for the step S1703) as a result of the judgment, the JNL read program (primary) 2226
releases a pair of pointers that are corresponded (step S1704) and proceeds to the step
S1706.

On the other hand, in the case in which all of the JNL data 2524 in a region have not
been transmitted (No for the step S1703) as a result of the judgment, the JNL read
program (primary) 2226 sets the end pointer of a pair of pointers that are corresponded
forward to a location of the JNL data 2524 that has been transmitted (step S1705) and
proceeds to the step S1706.

In the step S1706, the INL read program (primary) 2226 judges whether or not all
regions of the JNL data 2524 that has been transmitted have been checked. In the case
in which all regions of the JNL data 2524 that has been transmitted have not been
checked (No for the step S1706) as a result of the judgment, the JNL read program
(primary) 2226 proceeds to the step S1702. On the other hand, in the case in which all
regions of the JNL data 2524 that has been transmitted have been checked (Yes for the
step S1706) as a result of the judgment, the JNL read program (primary) 2226
terminates the processing.

For the secondary storage system 200B, in the case in which a JNL is received from
the primary storage system 200A (step S603), the JNL read program (secondary) 2227
calls the JNL data storage address decision program 2223 (step S1801). For the
secondary storage system 200B, the JNL data storage address decision processing
shown in Fig. 53 is executed and a block and an address of the JVOL 253 that stores
the JNL data 2524 are decided.

Fig. 55 is a flowchart of a restore processing in accordance with the embodiment 5.
The parts that are equivalent to those of the restore processing (see Fig. 26) are nu-
merically numbered similarly and the different points will be mainly described.

For the secondary storage system 200B, after the restore program 2228 stores the
maximum sequence number that has been restored as a restored sequence number (step
S706), the restore program 2228 identifies all regions in which the restored data has
been transmitted (step S1901). Here, the region in which the restored data has been
transmitted is a region that is identified by a pair of pointers. In the next place, one
processing target region is decided from at least one identified region (step S1902).

In the next place, the restore program 2228 judges whether or not all of the JNL data
2524 in a region that has been decided has been restored (step S1903). Here, whether
or not all of the JNL data 2524 in a region that has been decided has been restored can
be judged by whether or not a region that is indicated by a pair of pointers that are cor-

responded is included in a data region that has been identified in the step S1901.

36

WO 2013/136371 PCT/JP2012/001833

[0220]

[0221]

[0222]

[0223]

[0224]

[0225]

In the case in which all of the JNL data 2524 in a region has been restored (Yes for
the step S1903) as a result of the judgment, the restore program 2228 releases a pair of

pointers that are corresponded (step S1904) and proceeds to the step S1906.
On the other hand, in the case in which all of the JNL data 2524 in a region has not

been restored (No for the step S1903) as a result of the judgment, the restore program
2228 sets the end pointer of a pair of pointers that are corresponded forward to a
location of the JNL data 2524 that has been restored (step S1905) and proceeds to the
step S1906.

In the step S1906, the restore program 2228 judges whether or not all regions of the
JNL data 2524 that has been restored have been checked. In the case in which all
regions of the JNL data 2524 that has been used for a restore have not been checked
(No for the step S1906) as a result of the judgment, the restore program 2228 proceeds
to the step S1902. On the other hand, in the case in which all regions of the JNL data
2524 that has been used for a restore have been checked (Yes for the step S1906) as a
result of the judgment, the restore program 2228 terminates the processing.

While the preferred embodiments in accordance with the present invention have been
described above, the present invention is not restricted to the embodiments, and the
present invention can be applied to a wide variety of other modes.

For instance, the present invention is applied to a management of a JNL for the
JVOL 252 that stores a JNL on a temporary basis in the above embodiments. However,
the present invention is not restricted to the embodiments. In the case in which the
monitor data that is related to an I/0O (input/output) of the computer system 10 is
transmitted to an apparatus that is configured to use the monitor data for instance, the
present invention can be applied to a management of the monitor data for a buffer
region (for instance, a volume) that is used as a buffer that stores the monitor data on a
temporary basis. The point is that the present invention can be applied to a
management of the data for a region that is used as a buffer that stores data on a
temporary basis.

Reference Signs List

10: Computer system

100: Host

100A: Primary host

100B: Secondary host

200: Storage system

200A: Primary storage system

200B: Secondary storage system

WO 2013/136371

[Claim 1]

[Claim 2]

[Claim 3]

37

PCT/JP2012/001833

Claims

A storage system comprising:

a plurality of physical storage devices;

a cache memory;

a control device that is coupled to the plurality of physical storage
devices and the cache memory; and

a buffer part that is formed by using at least a part of a storage region of
the plurality of physical storage devices and that is a storage region that
is configured to temporarily store at least one target data element that is
to be transmitted to a predetermined target,

wherein:

(A) the control device stores a target data element into a cache region
that is a part of the cache memory and that has been allocated to a
buffer region that is a storage region of a write destination of the target
data element for the buffer part;

(B) the control device transmits the target data element from the cache
memory; and

(C) in the case in which a new target data element is generated, the
control device executes a control in such a manner that the new target
data element has a high tendency to be stored for a buffer region in
which the transmitted target data element has been stored and to which
a cache region has been allocated.

A storage system according to claim 1, wherein:

the buffer region is divided into a plurality of blocks; and

in the case in which a new target data element is generated in the (C),
the control device decides a second block as a stored destination of the
new target data element when there is not a free region in a first block
of a predetermined write target and when there is the second block that
is a block prior to the first block and in which all target data elements
have been transmitted, and the control device decides a third block that
is provided with a free region subsequent to the first block as a stored
destination of the target data element when there is not the second
block.

A storage system according to claim 2, wherein:

the plurality of blocks includes a plurality of blocks of a small size that
is a first storage capacity smaller than a storage capacity of the cache

memory.

WO 2013/136371

[Claim 4]

[Claim 5]

[Claim 6]

[Claim 7]

[Claim 8]

38

PCT/JP2012/001833

A storage system according to claim 3, wherein:

the plurality of blocks includes at least one block of a large size of a
second storage capacity larger than the first storage capacity.

A storage system according to claim 4, wherein:

the block of a small size is allocated to a storage region on a leading
head side of the buffer part from the block of a large size.

A storage system according to claim 5, wherein:

in the case in which a new target data element is generated in the (C),
the control device decides a fourth block as a stored destination of the
new target data element when a block of a write target is the block of a
large size and when there is the fourth block that is a block prior to the
block of a large size and in which all target data elements have been
transmitted.

A storage system according to claim 6, wherein:

the buffer part is a journal volume in which a journal is stored wherein
the journal includes data that is transmitted by a remote copy between
storage systems and that is stored into a volume of a copy source or a
copy destination; and

the target data element is the data in the journal.

A storage system according to claim 2, wherein:

in the (C),

(c1) in the case in which a new target data element is generated in order
of precedence, the control device stores the new target data element
from a storage region capable of storing on a leading head of the buffer
part in order of precedence and updates the region identification in-
formation that is configured to identify a storage region of the buffer
part of at least one target data element that has not been transmitted to
the predetermined target;

(c2) the control device reads the target data element from a storage
region of a leading head of the buffer part in order of precedence,
transmits the target data element, and updates the region identification
information; and

(c3) in the case in which the new target data element is generated after
a storage capacity from a leading head of the buffer part to a storage
region that is identified by the region identification information
becomes a predetermined storage capacity, the control device stores the
new target data element that has been generated from the storage region

of a leading head of the buffer part in order of precedence.

WO 2013/136371

[Claim 9]

[Claim 10]

[Claim 11]

39

PCT/JP2012/001833

A storage system according to claim 2, wherein:

there is a plurality of logical regions based on the physical storage
device,

the buffer part is a virtual volume that is a virtual logical volume,

the control device is configured to allocate any one of the plurality of
logical regions to a block that is a block of a stored destination of the
target data element and that is a block of the virtual volume, and

in the (C), if there is the second block in the buffer part, a logical region
which has been allocated to the second block is a destination of the
target data element,

in the (C), if there is not the second block in the buffer part, a logical
region which is allocated to a third block in the buffer partis a des-
tination of the target data element.

A storage system according to claim 1, wherein:

there is a plurality of logical regions based on the physical storage
device,

the buffer part is a virtual volume that is a virtual logical volume,

the control device allocates any one of the plurality of logical regions to
a virtual region that is a region of a stored destination of the target data
element and that is a region of the virtual volume, and

in the (C), the control device decides a write destination of the target
data element as a virtual region in which a logical region has been
allocated as long as a predetermined condition is satisfied.

A data management method for a storage system that is provided with a
plurality of physical storage devices and a cache memory, comprising
the steps of:

storing a target data element into a cache region that is a part of the
cache memory and that has been allocated to a buffer region that is a
storage region of a write destination of the target data element for a
buffer part that is formed by using at least a part of a storage region of
the plurality of physical storage devices and that is a storage region that
is configured to temporarily store at least one target data element that is
to be transmitted to a predetermined target;

transmitting the target data element from the cache memory; and
executing a control in such a manner that a new target data element has
a high tendency to be stored for a buffer region in which the transmitted
target data element has been stored and to which a cache region has

been allocated in the case in which the new target data element is

40

WO 2013/136371 PCT/JP2012/001833

generated.

WO 2013/136371

1/44

PCT/JP2012/001833

[Fig. 1]
Fig. 1
252 /_\
Already
transmitted . End address
Not transmitted .
JVOL : & Leading
l head address
Not used
_____/
Ne—"
[Fig. 2]
Fig. 2
l/\/ 1000
~1000a ~ 1000b .. 1000c
Type JVOL# Address
Leading head y 100
address
End address 1 300

2/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 3]

State 1 State 2

or 202 o 223

N
o1
N

L~ 223

Address ~|

v v v v
v v v vo

Cache part Cache part

3
3

—
<
o
—
[
<
o
—

3/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 4]

State 1 State 2

L 252 223 . 252 . 223

=

Sv v v v v O

Ty v

Cache part Cache part

4/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 5]

Releases a cache

252 /‘\ /
Already
transmitted < End address
Not transmitted .
JVOoL - & Leading
l head address
Not used
—
g
[Fig. 6]
Fig. 6
Releases a
cache since a
State 1 State 2 transmission
has been
A 252 223 L 252 . 223 finished
; [|~
A i~
Address i . o

L - -
T Cache part Cache part
JVYOL

5/44

WO 2013/136371 PCT/JP2012/001833
[Fig. 7]
Fig. 7
g 252
\v
Already
transmitted
Not transmitted
JVYOL
Not used
v
[Fig. 8]
Fig. 8
Stores a new JNL to
State 1 State 2 an address that has
been transmitted
252 223 252 f 223
~ oL o~ o
Q 0 zeesseeesy _{\\
—TTH | | = 25
i Cache part Cache part
.-
JVOL JVOL

6/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 9]
Fig. 9

252

Not traqsmltted Leading

1’ head address
Already
transmitted

End address

Not transmitted F

JVOL

Not used

7/44

WO 2013/136371 PCT/JP2012/001833
[Fig. 10]
Fig. 10
~ 252 252
2523 /T
017121 | L NGB region 01112
wioa | |2 gy |l |
| i 1
N S00] 2% 200
|| O@
: | S :
: i — JNL data region : :
| I @ 2522) I]
1 R : 1 B :
1 1 1 1
| 1 | |
1 1 1 1
1 W ()} _ 1 U ()
State 1 State 2
o 252

Nt e = o A o e e e S

SO ——

State 4

8/44

WO 2013/136371 PCT/JP2012/001833
[Fig. 11]
Fig. 11
10
Primary host
L~ 100A
Memory L~ 101
Application L 104

~ 102

CPU
| /\/103
I/F

Primary storage system ~ 200A
Secondary storage system . 200B
~ 103
Secondary host /E
CPU |
L 102
. 100B
Memory 101
Application L 104

9/44

WO 2013/136371

[Fig. 12]

Fig. 12

Host
. 110

L~ 100

PCT/JP2012/001833

A/ZOO

~ 260

v 261

® Port
FE package

Memory

L 262

210

!

Storage system

2

10

W 214
| Processor 4211

L1 Local memory A 212

[Maintenance A 213
| port

MPPK

B

214

Processor

1 211

Local memoryj 212

Maintenance
port

1,213

MPPK

~ 280

~ 220

Control information part

Program part

Cache part

Memory package

v 221

. 222

v 223

~ 230

BE package

Memory
Port pr 231

A 232

283 i i Wt B m

Volume

™ |HDD||HDD|| HDD|
[|

240 240 240

250

Maintenance 275 Memory

- 272

port

Maintenance
program

|~ 273

[cru p27"

Input/output part {~ 274

Maintenance terminal

} 270

10/44

WO 2013/136371 PCT/JP2012/001833
[Fig. 13]
Fig. 13
L~ 100A .~ 100B
Primary host Se%oonsc:ary
~ 200A ez 2008
] 54
: 251 \
~
’ vV
JVOL JVOL 253
// \\
Primary/stérage system [~ Secondary storage system

e
e
e
7
7

/s
7
I
7
e
Z
JNCB

JVOL m

2523 ,L/

e E——

OOOOOOOOOOOO 1 JNCB region
|__ _% \ | | 2521
B e et |
JNLdata1 | JNLdata2 | JNLdata3 | INL data region
I M\ 2524 |~ 2522

WO 2013/136371

[Fig. 14]

11/44

PCT/JP2012/001833

Fig. 14

Host ,\/1 00
L} 223
Write L~ 200
data
Cache part
¥ /250
Write @
data
Volume
Storage system

12/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 15]

Fig. 15

~r 220
Memory package
Control information part o oo
Sequence humber information o~

JNL pointer information 2211

Block management bitmap 2212

Current block information 2213

Current address information 2214

In-block maximum sequence number information ™~ 2215
Program part 222

Write program L2221

JNL creation program }2222

JNL data storage address decision program pr2223

Block release program (primary) 12224

Block release program (secondary) 2225

JNL read program (primary) 2226

JNL read program (secondary) pr2227

Restore program 12228
Cache part 223

WO 2013/136371

[Fig. 16]

[Fig. 17]

13/44

Fig. 16

Sequence number

I~ 2210

250

Fig. 17

Block management bitmap

s 2212

1

1

PCT/JP2012/001833

WO 2013/136371

[Fig. 18]

14/44

Fig.18

Current block

. 2213

2

[Fig. 19]

Fig.19

Current address

. 2214

100

[Fig. 20]

Current block

2213

2

Current

address — T

2214

PCT/JP2012/001833

Block

management
¢ bitmap 2212

15/44

WO 2013/136371 PCT/JP2012/001833
[Fig. 21]
Fig. 21
l/\/ 2215
A~ 2215a ~ 2215b
Block # In-block maximum sequence number
1 100
2 200
3 350
4 480

16/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 22]

Fig. 22

. Journal creation
Write program
program
1

W S101

Receives

a write request
|

Writes the write data S$102
tothe PvOL |~

5103

Calls a journal
creation program

Waits a completion S104
of the journal ~
S201
A~

creation program Ensures
a sequence number

I
Calls the JNL data storage |
address decision program

Stores the JNL data " S203
into the cache part

A 4

5202

l S204
Decides N
a JNCB storage address
' $205
Creates JNCB and stores |

the JNCB into the cache part

l S206
Completion 4

&
«

S105
Notifies the host |

of a completion

Terminates
the processing

17/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 23]

Fig. 23

JNL data storage address
decision program

S301
Acquires a current block ~
I o $302
Can the JNL data be stored
into the current block?
Yes
No
S303
) o9
Searches a free block
|
S304
Allocates a free block N~
S305
Decides a JNL data storage destination |~
I S306
Updates a current address =
| S307
Updates an in-block maximum A~
sequence number
I
Terminates the processing

18/44

WO 2013/136371

[Fig. 24]

Fig. 24

Block release program
(primary)

Refers to a sequence number
that has been transmitted

|dentifies a block that is
not a current block and in which
the block management bitmap is ON

Acquires the in-block maximum sequence
nhumber of each block that has been identified

PCT/JP2012/001833

S401

5402

S403

S404
In-block maximum sequence
number < sequence humber
that has been transmitted No
Yes $405

~

Sets the block management bitmap to be OFF

”
G

Terminates the processing

WO 2013/136371

[Fig. 25]

JNL read program
(primary)

19/44

PCT/JP2012/001833

Fig. 25

JNL read program
(secondary)

&
Ty

Issues a JNL read command
and notifies a sequence
number that has
been transmitted

Waits a response from
the primary storage system

release program (primary)

Terminates the processing

5601

S602

S603

Receives a JNL

Calls the JNL data storage
address decision program

5604

S501
Reads the JNCB that A/
has not been transmitted |
| 5502
Identifies a storage location | ~/
of the JNL data
S503
Reads the JNLdata [~
| S504
Transmits the JNL to the o -
secondary storage system -
S505
Stores the sequence number|~/
that has been transmitted
5506
Calls the block N |

Stores the JNL data
into the cache part

S605

S606

Decides the JNCB
storage address

S607

Stores the JNCB
into the cache part

Terminates the processing

20/44
WO 2013/136371 PCT/JP2012/001833

[Fig. 26]

@estore progran) F ig) 2 6

|
Checks a JNCB that has " S701

been stored into the JVOL
|

Identifies a range of a JNL
that has reached the secondary|~ §702
storage system without a miss

[dentifies a maximum sequence] ., S703
number of a JNL in a range
that has belen identified

Stores the maximum sequence
number as a sequence number
that has been transmitted

L~ S704

I
Writes a JNL up to a sequence | . S705
number that has been
transmitted fo the SVOL

Stores the maximum sequence S706
number that has been restored [~ (D
~ S707

Block release

as a restored seqguence number
rogram (secondary

l
Calls the block release
program (secondary)

Cd

Refers to a sequence number }~ S801

that has been restored
]
Identifies a block that is not a sS802
R . 24
current block and in which the

block management bitmap is ON
I

S803
Acquires the in-block maximum{~’

sequence number of each block

S804
n-block maximum sequence\ Nq

humber < sequence number
that has been restored

Yes S805
~S

Sets the block management
bitmap to be OFF

”
&

S806

prd
Y

Terminates the processing

Terminates the processing

21/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 27]

Fig. 27

Control information part
221
: - 2210 (¥

Sequence number information A
JNL pointer information o 2211
Block management bitmap N 2212
Current block information 2213
Current address information | 2214
2215

In-block maximum sequence number N

information
JNCB block management information 2216
Current write block information N 2217
2218
Current read block information o

2219

Current write address information N
: : 221A

Current read address information o

22/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 28]

Fig. 28

Program part n 222
Write program ,\/2221
2222
JNL creation program o
A/2223
JNL data storage address decision program
A/2224
Block release program (primary)
/\/2225
Block release program (secondary)
A/2226
JNL read program (primary)
A/2227
JNL read program (secondary)
2228
Restore program o
2229
JNCB storage address decision program ol

23/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 29]

Fig. 29

JNCB block management information

2216
Block # Next block ~
Block # Next block
3 NULL

[Fig. 30]
Fig. 30
JNCB current write block information
JNCB current write block o 2217
3
[Fig. 31]

Fig. 31

JNCB current read block information
JNCB current read block

2218

1

24/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 32]

Fig. 32

JNCB current write address information
~ 2219

JNCB current write address

100

[Fig. 33]
Fig. 33
JNCB current read address information
JNCB current read address |~ 221A
20
[Fig. 34]

Fig. 34

Current read address

Current read block

JNCB block management
information 2216

/[) @)l Current write block

25/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 35]

Fig. 35
JNCB storage address
decision program

Acquires a current write block S

Acquires a current write address

S903
< Can the JNCB be stored

S901

5902

into the current write block? Y
es
No
| S904
Refers to the block management
bitmap and searches a free block
|
Allocates a free block N S905
(the block management bitmap
and a current write block)
: . S906
Decides a JNCB storage destination |~
l S907
Updates a current write address ™~
l S908

Updates an in-block maximum od
sequence number

Terminates the processing

WO 2013/136371

[Fig. 36]

(JNL read program)
(primary)

26/44

PCT/JP2012/001833

Fig. 36

(JNL read program
(secondary)
|

)

Acquires a current read block

. S1001

Acquires a current read addr

. $1002

51003

Are a current read block \\

and a current write block

Issues a JNL read command and

notifies a sequence Number
that has been transmitted

. S601

Waits a response from
the primary storage system

. S602

equivalent to each other?/ Yes
No 51004 > S1007
Reads the JNCB from the Reads the JNCB from the

current read address
to the end of the block

current read address to
the current write address

~ S1005

- $1008

Makes the next block
to be a current read block

Sets the current read
address to be an address
that has been read

to be an address 0

Sets the current read address

L., S1006

&

<

identifies a storage location
of the JNL data

/\§1009

Reads the JNL data

L S503

. S504

|
Transmits the JNL to the
secondary storage system

b
”

Stores the sequence number
that has been transmitted

. S505

Calls the biock release
program (primary)
I

L. S506

Terminates the processing

Receives a JNL

. S603

Calls the JNL data storage
address decision program

4

| S604

Stores the JNL data
into the cache part

L S605

Calls the JNCB storage
address decision program

| S1101

Stores the JNCB

. S607

Terminates the processing

27/44

WO 2013/136371 PCT/JP2012/001833
[Fig. 37]
Fig. 37
Restore)
program
|
S$1201
Acquires a current read block ~
]
Acquires a current read addr ™~ 51202
|
Reads the JNCB ~ 51203
to the end of the block
|
Identifies a range of a JNL that
has reached the secondary | . S1204
storage system without a miss
' 51205
s the end of the range theﬁq
has been identified an end
of the current read block?/ No ~r S1207

[Yes __s1206

Sets a current read address to
be an address 0 and sets the
read block to be the next block

.

Sets a current read address
to be the end of the range
that has been identified
Block release

Qrogram (seconda

&

ldentifies a maximum
sequence number of a JNL in

a range that has been identified

)

Stores the maximum sequence

that has been transmitted

number as a sequence number

Writes a JNL up to a sequence
number that has been
transmitted to the SVOL

Stores the maximum sequence
number that has been restored

as a restored sequence number

Calls the block release
program (secondary)

prd
T

Terminates the processing

S703 >
Refers to a sequence number . S801
that has been restored
I
S704 Identifies a block thatis nota | __ S802
od current block and in which the
block management bitmap is ON|
1
S705 Acquires the in-block maximum | S803
A~
sequence number of each block
]
S706 S804
~ n-block maximum sequence
number < sequence number
S707 that has been restored No
|~
Yes 805
Sets the block management
bitmap to be OFF
Terminates the processing |~ S806

WO 2013/136371

[Fig. 38]

———

.

28/44

!

—— o o —

B e R i I

PCT/JP2012/001833

In the case in which a
predetermined condition is
satisfied when a large size
block is being used, a small

size block is returned

29/44

WO 2013/136371

[Fig. 39]

Fig. 39

PCT/JP2012/001833

Control information part

Sequence number information

2210

/\/2211

JNL pointer information

Block management bitmap

/\/2212

Current block information

/\/2213

Current address information

2214

In-block maximum sequence number
information

2215

JNCB block management information

2216

Current write block information

2217

Current read block information

2218

Current write address information

2219

Current read address information

221A

Current block size information

/\/2218

221

30/44

WO 2013/136371 PCT/JP2012/001833
[Fig. 40]
Fig. 40
JNL data storage address
decision program
S301
Identifies a current block Y
| $302
< Can the write data be stored \Q/
into th nt block?
into the curre /Yes 308
No o~

Yes Does the current block have a
large size and is a return condition
of a small size satisfied?

A

Refers to the block S303
\ N
management bitmap and
searches a free block

|
Allocates a free block

No

(the block management ,\/8304
bitmap and updates
a current block)
_ 8305
Decides a JNL storage destination
| 5306
Updates a current address
I
Updates an in-block maximum /\/5307
sequence number
I
Terminates the processing

31/44

PCT/JP2012/001833

WO 2013/136371

[Fig. 41]

Fig. 41

State 2

State 1

252

252

||

JVYOL

JVOL

32/44

WO 2013/136371 PCT/JP2012/001833
[Fig. 42]
Fig. 42
Storage system

Virtual VOL Vrual VOL 200

B

_______________________ Ll |

1

i

1203

I

I

1

Page /i/ 202
W,
L~ 290

Pool VOL

Pool

292

Page

u Page

Pool VOL

Pool VOL

33/44

WO 2013/136371 PCT/JP2012/001833
[Fig. 43]
Fig. 43
Pool table NS A
. 224a .- 224b - 224cC o 224d . 224e
Page Start address | End address State Allopatxpn
number destination
1 0 99 Allocated Virtual volume 1
2 100 199 Allocated Virtual volume 1
3 200 299 Allocated Virtual volume 5
4 300 399 Unallocated -
[Fig. 44]
Fig. 44
Virtual volume table 225
A~ 225a ~ 2250 ~ 225c ~ 225d
Virtual volume Address Page allocation Page number
number state
1 0~99 Allocated 2
1 100~199 Allocated 3
1 200-299 Allocated 1
1 300-399 Unallocated —

34/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 45]

Fig. 45

Block release
program (primary)

(==

S401

Refers to a sequence number

Identifies a block that is not a
current block and in which the
block management bitmap is ON

L S402

Acquires the in-block maximum
sequence number of each block
that has been identified

S403
A

In-block maximum sequence
number < sequence number
that has been transmitted

Yes

5404

5405

Sets the block management
bitmap to be OFF

5406

Calls the page release program

o
%

Terminates the processing

35/44

WO 2013/136371

[Fig. 46]

Fig. 46

E’age release prograra

PCT/JP2012/001833

Identifies at least one page
that is corresponded to the block

S1501

I
>

Makes a page that has not been

processed to be a processing target page

S1502

Identifies at least one block
that is corresponded to a page

515603

Are all blocks that
have been identified free?

A~

Yes S1505

S1504

No

Releases the page

”
l

S1506

/ Is there a page that has not

Yes\, been processed?

=

No

Terminates the processing

36/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 47]

Page

: | A 292

37/44

WO 2013/136371 PCT/JP2012/001833
[Fig. 48]
Fig. 48
Page release
program
. S1501
Identifies at ieast one page
that is corresponded to the block
Makes a page that has not been S1502
processed to be a processing I~
target page
Identifies at least one block |, S1503
that is corresponded to a page
I . S1604
Are all blocks
that have been identified free?
S1507
Are all the identified blocks
Iarge size?
51505
s
Releases the page
1506
Is there a page
that has not been processed?

Yes
No

Terminates the processing

38/44

PCT/JP2012/001833

WO 2013/136371

[Fig. 49]

Fig. 49

After expansion

Before expansion

252

JNL VOL

JNL VOL

39/44

PCT/JP2012/001833

WO 2013/136371

[Fig. 50]

Fig. 50

After expansion

Before expansion

252

|||||||||||||||||||||||||||||

||||||||||||

JVOL

|||||||

JVOL

40/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 51]

Fig. 51

252 A~ 252

End
Not pointer (2)
Transmitted transmitted Leading
head
le— End Transmitted pointer (2)
i 1 <
t NOt‘tt d el Not poiﬁ‘?edr('])
ransmited | . data transmitted |
JNL <—| eading region <— Leading
data he.ad head
region pointer pointer (1)
(1
Unused Unused
\—.’ _ AR
State 1 State 2
252
& End pointer (2)
Not
Transmitted Leading head pointer (2)
End pointer (1
JNL Not P)
data transmitted Leading head pointer (1)
region Not

transmitted End pointer (3)
Leading head pointer (3)

N

Unused

e
State 3

41/44

WO 2013/136371 PCT/JP2012/001833

[Fig. 52]

Fig. 52

Control information part
| 221
2210 1
Sequence number information =
2211
JNL pointer information o
A/2212
Block management bitmap
A/221 3
Current block information
/\/2214
Current address information
In-block maximum sequence number /\/221 5
information
JNCB block management information 2216
2217
Current write block information od
2218
Current read block information N
Current write address information N 2219
221A
Current read address information N
Current block size information A/221 B
Leading head pointer ,«/2210
221D
End pointer ~

WO 2013/136371

[Fig. 53]

42/44

PCT/JP2012/001833

Fig. 53

JNL data storage

Qddress decision program)

Acquires a leading head
pointer that is being used

Is there a free region
that is equal to or larg r

2

51601

A

S1602

than a predetermined siz
before the pomter?

Can the JNL data be

\q S1603
stored immediately aft

Yes

a leading head pointe
that is bemg used?

/No

1604
", S
Searches a free region in the
regions after a leading head
pointer that is being used

>
«

Ensures the region of a new
end pointer and a new leading
head pointer from the control

S$1605

information part

S1606
Makes the ensured pointerto {~

be a pointer that is being used

I
Sets an end pointer that W S1607

indicates a storage start Iocationl

&
%

$1608

Decides a storage destination
of the JNL data

I

Updates a leading head
pointer that is being used

Terminates the processing

51609
A

43/44

WO 2013/136371

[Fig. 54]

PCT/JP2012/001833

Fig. 54

GN

L read progranj

JNL read program
(primary) (secondary)
I
Issues a JNL read command
P and notifies a sequence /\/8601
o number that has
Reads the JNCB that o 5901 been transmitted
has not been transmitted | S602
ot : — S502 Waits a response from
entifies a storage location the orimary storage svstem
of the JNL data ol pImely soeee
| 5503
Reads the JNL data
| S504
Transmits the JNL to the ™~ -
secondary storage system -
_ NSGOB
Receives a JNL
Identifies a data region that |, , S1701 |
has been transmitted Calis the JNL data storage ,\/31801
address decision program
. [
: : S1702 Stores the JNL data S605
Decides a processing |/ ! N
' $1703 | 5606
Have all of the JNL data in Storets tthhe JJ':‘/%dLata
a region been transmitted?, Into the
No | MSGO?
Yes g1704 Stores the JNCB
into the JVOL
Releases pointers |
Terminates the processing

/\/81705

Sets the end pointer forward

prd
Y

No Have all data regions

been checked?

/\ﬁ'] 706

that have been transmitted

Yes

Terminates the processing

WO 2013/136371

[Fig. 55]

44/44

Fig. 55

(Restore prog ram)

PCT/JP2012/001833

Checks a JNCB that has been
stored into the JNL VOL

. S701

Identifies a range of a JNL that
has reached the secondary
storage system without a miss
I

L S702

Identifies a maximum sequence
number of a JNL in a range
that has been identified

8703

Stores the maximum sequence
number as a sequence number
that has been transmitted

§704

Wirites a JNL up to a sequence
number that has been
transmitted to the SVOL

5705

Stores the maximum sequence
number that has been restored
as a restored sequence number|

S706

Identifies a region
that has been restored

. $1901

o

w

Identifies a region
that has been restored

. S1902

All of the JNL data
in a region has restored?

<

Yes

i

~r 51904

S1903

Releases pointers

__ S1905

Sets the end pointer forward

prd
Ty

Have all regions that have

Yes

No S$1906
<been restored been Checked>d

Terminates the processing

INTERNATIONAL SEARCH REPORT

International application No

PCT/JP2012/001833

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/20
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

AL) 4 May 2004 (2004-05-04)
figures 1-23

AL) 5 April 2007 (2007-04-05)

figures 1-36

7 March 2000 (2000-03-07)
column 2, Tine 12 - column 3,
figures 1-9C

paragraph [0025] - paragraph [0036]

paragraph [0012] - paragraph [0014];

line 43;

X US 6 732 124 Bl (KOSEKI MICHIHIKO [JP] ET 1-11

X US 2007/079088 Al (DEGUCHI AKIRA [JP] ET 1-11

X US 6 035 412 A (TAMER PHILIP [US] ET AL) 1-11

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

20 November 2012

Date of mailing of the international search report

30/11/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Filip, Liviu

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/JP2012/001833
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6732124 Bl 04-05-2004 JP 3763992 B2 05-04-2006
JP 2000284995 A 13-10-2000
us 6732124 Bl 04-05-2004
US 2007079088 Al 05-04-2007 EP 1783595 A2 09-05-2007
JP 5036158 B2 26-09-2012
JP 2007102579 A 19-04-2007
US 2007079088 Al 05-04-2007
US 6035412 A 07-03-2000 AU 2334197 A 10-10-1997
EP 0954807 Al 10-11-1999
JP 3958795 B2 15-08-2007
JP 2000507014 A 06-06-2000
us 5852715 A 22-12-1998
us 6035412 A 07-03-2000
WO 0735269 Al 25-09-1997

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - wo-search-report
	Page 88 - wo-search-report

