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1. 

MINIMUM DELTA GENERATOR FOR 
PROGRAMI BINARIES 

RELATED APPLICATIONS 

This application is a continuation of and claims priority to 
U.S. patent application Ser. No. 09/713,633, filed on Nov. 14, 
2000, the disclosure of which is incorporated by reference. 

BACKGROUND 

One of the important characteristics of modern software 
systems is its ability to be upgraded, which may be called 
“upgradability.” Old software is continuously being replaced 
by newer versions, and code reusability and modular devel 
opment are major features of Software design. 
Accuracy 
When software is upgraded from an old version to a new 

version, complete accuracy is vital. Every bit in the newly 
upgraded Software in the target computer must match exactly 
with the new software from at its media source. Otherwise, 
the new software may operate incorrectly or not at all. 

To assure complete accuracy, conventional techniques 
completely replace the old software with the new software. As 
Software programs (in particular major application Suites and 
operating systems) grow in size and complexity, this whole 
sale replacement-to-update scheme becomes more time con 
Suming and frustrating to the customer of Such software. 

Aggravating matters is a trend to move the source of Such 
updates from local, portable, high-bandwidth removable 
media (such as a CD-ROM) to remote, centralized, relatively 
low-bandwidth network servers (such as Internet web serv 
ers). While replacing a 100 MB of software may be from a 
CD-ROM may take several minutes, replacing the same 
amount of Software over a dial-up Internet connection may 
take several hours. 

Herein, “complete accuracy” and “substantially identical 
allows for minor and insubstantial differences between the 
new software as originally produced and the new software as 
it exists on a user's computer. 
Conventional Delta-Patching 

Typically, newer versions of software have a few additional 
portions, as well as some minor changes in older portions. 
Therefore, the brute force approach of completely replacing 
the old with the new is overkill. An alternative is to capture 
these changes into a "patch’ So that one can reconstruct the 
newer version from the older one. Because there are differ 
ences between the old and new versions, this technique is 
sometimes called “diff-patching.” Herein, the differences 
between the old and new versions are called the “delta” (A), 
thus this diff-patching technique may be called "delta-patch 
ing' (or "A-patching'). 
The problem with delta-patching is accuracy. Identifying 

what is and is not 1B patched is difficult. If the boundaries of 
Such a patch are not accurately determined, the patched ver 
sion will be different from the desired new version of the 
software. 
As a result, conventional delta-patching compromises effi 

ciency to achieve accuracy. Generally, the Sub-module files, 
data files, library files, and groups of such files are marked if 
there is any change whatsoever within them. This means, for 
example, if one line of source code is changed within a 100 
Kb DLL (dynamic link library) file is changed, the entire DLL 
file is replaced. This is done rather than replacing the frag 
ment in the existing DLL file in part because of the difficulty 
in selecting the fragment that needs replacing and replacing 
only that with complete accuracy. However, it is most done 
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2 
because replacing the entire module is more efficient with 
conventional techniques. A Small change in one little frag 
ment might appear to be a change spread all over the entire 
program. 

Although this conventional inefficient delta-patching is 
more efficient and faster than wholesale replacement of the 
entire software, it still is not as efficiency as possible. It would 
be more efficient to patch only those fragments of modules 
and sub-modules that are different from or non-existent in the 
old Software version. Examples of fragments include Subrou 
tines, functions, objects, data structures, interfaces, methods, 
or portions of any of these. 

Invariant Fragment Detection 
A prerequisite for detecting fragment deltas is the ability to 

detect invariance of fragments. In other words, before a pro 
gram module can be patched, one needs to determine which 
fragments have not been changed across the two versions. 
With knowledge of the source code for each version, detect 
ing Such invariants and creating a patch is not very difficult. 

However, detecting invariance of fragments becomes 
much more difficult when dealing with binary manifestations 
of such fragments (with no knowledge of the Source code). A 
major difficulty is the existence of functionally unchanged 
code that appears different in the differing versions of a pro 
gram module. Code may undergo no change in its function 
ality, but it may look different in the two versions due to a 
variety of reasons. Examples of Such reasons include: 

Changes in one region of code can cause another (un 
changed) region to look different 

Two Small sequences of binary code may look identical 
even if they correspond to source code with different 
functionality 

Differences in the register allocation in the two builds 
Change Begets Apparent Change 

Often Small changes in one portion of the code cause a 
cascade of changes in nearby and sometimes even far-off 
regions of code. Consider, for example, the following two 
Source fragments: 

Program P1 Program P2 

function f(int p) function g(int p) 
inta=3, b=4: intb=4, a=3; 
if (b > p) { if (b > p) { 
a = p.; a = p 
return a: return a: 

The two functions f and g, located in the two programs P1 
and P2, are really the same, apart from a difference of names. 
Clearly, knowledge of the source code would establish that 
the “if (bap) conditional in each fragment is the same, and 
need not be patched. However, if their corresponding binaries 
are examined, the offset ofb from the base of the stack would 
be different in these two fragments. This is because of the 
declaration of a before b in P1 differs in form from the 
declaration ofb beforea in P2. Hence, the binaries of the two 
fragments will not be identical, evenifeverything else was the 
same. Of course, these differences in form are irrelevant in 
substance, but their resulting binaries are different neverthe 
less. 
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Now consider the following snippets: 

Program P1 Program P2 

x = f(10) X = g(10) 

Assume, for this example, that the functions f and g are 
defined as in the previous example. Here again, the two calls 
are identical, because the functions being called as well as the 
call arguments are identical. However, if the identity off and 
g is not known, then the identity of the calls above will also 
not be discovered. This is an example of how local changes 
can cascade through potentially far-off regions of code. 
Appear Identical, but Are Not 

At times, two binary fragments may look identical even 
though they correspond to different regions in the structure of 
the corresponding programs. Consider the following: 

Program P1 Program P2 

inta = atoi (argV1); 
int b = atoi (argV2); 
if (a < 10) return; 
if (b < 20) return; 

int b = atoi (argV2); 
if (b < 10) return; 

The conditionals “if (ak10)” in P1 and “if (b<10)” in P2 
might both translate to the same binary code, even though 
their functionality is different (as is seen clearly by examining 
their source code). This happens because the offset ofb on the 
stack in P2 may be the same as that of a on the stack of P1. The 
two variables are clearly different, being defined by different 
program arguments, as can be see in the context above them. 
However, comparing their binary equivalents without refer 
ence to the Source code context above can give the illusion of 
an identity. A representation of the binary equivalent might 
look something like: 

mov eax, dword ptrebp + 8h 
cmp eax, Oah 
jge L. 
ret 
L: . . . 

Register Allocation 
Another problem in detecting identity of binary fragment is 

caused by register allocation. A change in a portion of code 
may cause the register allocation to change in nearby regions, 
even though these latter regions have not been modified. 
Therefore, when comparing binaries, one has to consider the 
possibility that what looks like a change of register operands 
may in fact be an identity disguised by a simple renaming of 
registers. 

SUMMARY 

Described herein is a technology for generating a mini 
mum delta between at least two program binaries. An imple 
mentation, described herein, is given a source program (S) in 
a binary format and a target program (T) in a binary form. It 
constructs control flow graphs (CFGs) of each. It matches 
common blocks of the S's CFGs and T’s CFGs. The blocks 
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4 
are matched based upon their content and their local neigh 
borhoods (e.g., d-neighborhoods). In addition, blocks are 
matched using labels, which are based upon computed hash 
values. The matching is done in multiple passes where each 
pass improves the matching by relaxing the criteria for a 
match. In addition, the register renaming problems is solved 
so that blocks can be fairly compared. 

This described implementation produces an intermediate 
output, which is the content of unmatched blocks. Such 
unmatched blocks are those found in Tthat are not found in S. 
It generates a set of edge edit operations for merging the 
unmatched blocks into S. The combination of the unmatched 
blocks and the edit operations is the delta. To patch S to 
produce a reconstructed copy of T, the delta is merged with S. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The same numbers are used throughout the drawings to 
reference like elements and features. 

FIG. 1 is a schematic block diagram showing an embodi 
ment of a minimum is delta generator for program binaries. 

FIG. 2 is a schematic block diagram showing another 
embodiment of a minimum delta generator for program bina 
ries. 

FIGS. 3A-C are illustrations of a simplified application of 
an implementation of a minimum delta generator for program 
binaries. 

FIGS. 4 and 5 are illustrations of applications of imple 
mentations of a minimum delta generator for program bina 
ries. 

FIG. 6 is a flow diagram showing a methodological imple 
mentation of a minimum delta generator for program bina 
ries. 

FIG. 7 is a flow diagram showing another methodological 
implementation of a minimum delta generator for program 
binaries. 

FIG. 8 is a flow diagram showing still another method 
ological implementation of a minimum delta generator for 
program binaries. 

FIG. 9 is an example of a computing operating environ 
ment capable of implementing an implementation of a mini 
mum delta generator for program binaries. 

DETAILED DESCRIPTION 

The following description sets forth specific embodiments 
ofa minimum delta generator for program binaries that incor 
porate elements recited in the appended claims. These 
embodiments are described with specificity in order to meet 
statutory written description, enablement, and best-mode 
requirements. However, the description itself is not intended 
to limit the scope of this patent. 

Described herein are one or more exemplary implementa 
tions of a minimum delta generator for program binaries. The 
inventors intend these exemplary implementations to be 
examples. The inventors do not intend these exemplary 
implementations to limit the scope of the claimed embodi 
ments. Rather, the inventors have contemplated that the 
claimed embodiments might also be embodied and imple 
mented in other ways, in conjunction with other present or 
future technologies. 

Incorporation by Reference 
The following co-pending patent applications, which were 

all filed Jun. 30, 1999 and assigned to the Microsoft Corpo 
ration, are incorporated by reference herein: 
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U.S. patent application Ser. No. 09/343,805 entitled 
“Translation and Transformation of Heterogeneous Pro 
grams: 

U.S. patent application Ser. No. 09/343,298 entitled 
“Instrumentation and Optimization Tools for Heteroge- 5 
neous Programs'; 

U.S. patent application Ser. No. 09/343.279 entitled 
“Shared Library Optimization for Heterogeneous Pro 
grams: 

U.S. patent application Ser. No. 09/343,276 entitled 10 
Application Program Interface for Transforming Het 
erogeneous Programs'; and 

U.S. patent application Ser. No. 09/343.287 entitled “Cross 
Module Representation of Heterogeneous Programs”. 

15 Brief Overview 
An exemplary implementation of a minimum delta genera 

tor for program binaries may be referred to as an exemplary 
"delta-generator. The one or more exemplary implementa 
tions described herein may be implemented (whole or in part) 
by a delta-generator system 100 of FIG. 1 and/or by a com 
puting environment like that shown in FIG. 9. 

To promote efficiency and speed, an exemplary delta-gen 
erator finds the minimum differences between the binary 
Source and target programs and uses that to modify the Source 
program. However, accuracy is not compromised for Such 
efficiency and speed. 

To accomplish this, the exemplary delta-generator com 
pares the binary fragments of the Source and target programs. 
It identifies those fragments that are the same (i.e., 
unchanged) between them. Necessarily, this also identifies 
those fragments that are different (i.e., changed) between 
them. The changed fragments are included in a delta. The 
exemplary delta-generator patches the source with the delta to 
transform the source into the target program. 

25 

30 

35 

High-Level Description of Delta-Generator System 
FIG. 1 illustrates the delta-generator system 100. It shows 

a binary Source program 112 and a binary target program 122. 
The delta-generator system 100 reconstructs the target pro 
gram 122 from the source program 112 and a delta (A) 142. 40 
Presumably, the target and source programs are different 
versions of the same program, so that at least some portions of 
their code are common. For example, the target program may 
be a newer version of the source program. 
A source CFGer 110 produces a Control Flow Graph 45 

(CFG) of the source program 112. CFGs are discussed in 
more detail below in the “Terminology” section. Likewise, a 
target CFGer 120 produces a CFG of the target program 122. 
Of course, these two CFGers 110 and 120 may be a common 
CFGer. 50 

FIG. 1 shows a block matcher 130 that receives the source 
and target CFGs as input and compares them. It matches 
binary fragments found in both the source and target CFG. 

The delta generator 140 identifies the remaining (i.e., 
unmatched) fragments in the target CFG that were not 55 
matched as the delta (A) fragments. Collectively, the block 
matcher 140 and the delta generator 150 it identify binary 
fragments in the target CFG that are matched in the source 
CFG or those that are unmatched in the source CFG. 

In addition, the A-determiner 140 also determines how to 60 
edit the source CFG to merge the Atherein. These "edits” are 
part of the A142, which is the result of the A-determiner 140. 

AA-patcher 150 patches the source program at the binary 
level. The source program 112 is combined with the A142 to 
reconstruct the target program 150. The reconstructed target 65 
program 150 is identical to target program 122. It is identical 
because the intended result is an identical copy of the target 

6 
program 122. Since this delta-generator system 100 intro 
duces no inaccuracies by its efficient patching of the source 
program, the copy will be identical. 

FIG. 2 schematically illustrates a sample application sce 
nario for the exemplary implementation of a minimum delta 
generator for program binaries. FIG. 2 shows a server side 
210 and a client side 220 linked via a network connection 215, 
such as the Internet. The serverside 210 includes a server 212 
having a copy of the binary source program (S) 112 and a 
copy of the binary target program (T) 122. The client side 220 
includes a client 222 having only a copy of the binary source 
program (S) 112. Initially, it does not have a copy of the target 
program (T) 122 or delta (A) 142. 
The server 212 at the serverside 210 produces the A142, in 

accordance with implementations described herein. It trans 
mits such A to the client 222 at the client side 220. Represen 
tations 142a and 142b (and their arrows) indicates the Abeing 
transmitted from the server to the client. 
The client patches S112 with the newly arrived A142 to 

reconstruct T 122. Thus, with an implementation of an exem 
plary delta-generator, a minimum sized delta is transmitted 
over a presumably limited bandwidth network 215 for a client 
to patch S to accurately reconstruct T. 
Terminology 
An example of a program binary (or binary program) is 

binary manifestation of program module (e.g., Software). It 
does not include the Source code for a program module. 
A “basic block' (or simply a “block”) is a sequence of 

instructions that has a single entry point (only the first instruc 
tion can be reached from outside) and has one exit point, at the 
last instruction. Thus, there is sequential control flow inside a 
basic block. A basic block is an example of a fragment. 
Specifically, it is an example of a code-fragment. A basic 
block may be called a “code block.” 
A Control Flow Graph (CFG) is an abstraction of a pro 

gram. It is a directed graph where the nodes are the basic 
blocks in the program, and the edges (often visually indicated 
by arrows) representall possible control flow between blocks. 
FIGS. 3A-5 include CFGs. 

Contiguous areas of static data in a program are called 
“data blocks” and they also form nodes in the CFG. A data 
block is an example of a fragment. Specifically, it is an 
example of a data-fragment. 

Data blocks have static data (called the “raw' data) and 
they may have pointers to other parts of the program. These 
pointers could be, for example, virtual table entries of an 
object. Such pointers are relocatable data, and are thus differ 
ent from other static data in a data block. 

In a CFG, pointers in data blocks are represented by 
directed edges from the data block to the target blocks. In 
addition, address operands in the instructions in a code block 
are represented as edges from the code block to the block at 
the corresponding address. 
The content of a data block includes its raw data, but it 

excludes the pointers in the block. Likewise, the content of a 
code block includes its sequence of instructions, but it 
excludes the address operands. The contents of the basic 
blocks in a CFG, along with its edges, fully specify the pro 
gram. Given any block V in a CFG P. its parents are the set 
{xx->v is an edge in P}, and its children are the set {x|v ->x 
is an edge in P}. 
The CFG described herein contains complete information 

about the layout of the program. Corresponding to the func 
tions in the binary, there are procedures in the CFG each 
procedure is the subgraph induced by the basic blocks of a 
single function. The layout of the function (i.e., the organiza 
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tion of the basic blocks in the program’s address space) is 
captured by a linked list of the all the blocks of the corre 
sponding procedure. Such that a traversal of the list, from head 
to tail, exactly describes the order of the basic blocks in the 
function's layout. 
A tool V creates the CFG described herein for any given 

program binary. Moreover, V may provide an interface (to the 
CFG) that allows a large class of modifications to be made to 
the program. These modifications include, but are not 
restricted to, addition and deletion of basic blocks, modifica 
tion of their contents, and changes in the edges. 

Those who are of ordinary skill in the art understand how to 
implement and use a tool V as described herein In addition, 
the incorporated-by-reference patent applications describe 
components that may be used to implement a tool like tool V. 
Moreover, the following publications provide a general back 
ground on CFG methodologies that the tool V may use: Aho, 
Hoperoft, Ulman: “Principles of Compiler Design” and 2) A. 
Aho, R. Sethi, J. Ullman, “Compilers, Principles, Tech 
niques, and Tools” (1986). 

In describing the one or more examples of implementa 
tions of the minimum delta generator for program binaries, a 
Source (S) binary of a program and a target (T) binary of a 
program are discussed. The relationship of T and S may be 
described mathematically as: 

Diff(S.T)=A; and 
Patch(S, A)=T 
Or in other words as: 
The difference between S and T is delta; and 
When S is patched with delta, it is T. 
As described herein, the exemplary implementations fully 

minimize A while maintaining the ability to achieve complete 
accuracy in patching S to reconstruct T. Herein, with regard to 
patching, “complete accuracy” (and “substantially identical 
or similar terminology) allows for insubstantial differences 
between the original T and the reconstructed T. 
Matching 
A prerequisite for detecting changes between binary pro 

grams (such as S and T) is the ability to detect identity of 
binary fragments. In other words, before a program module 
can be patched, one needs to determine which fragments have 
not been changed across the two binary programs. For 
example, one may detect the identity of a fragment in a 
program module by finding the same unchanged fragment in 
another program module (presumably an earlier or later ver 
sion of the same module). 

SIMPLE EXAMPLE 

FIGS. 3A-3C illustrate a simple example of a methodologi 
cal implementation of the exemplary delta-generator. In this 
example, the initial goal is to compute a A 330 for the input 
lists source (S) 310 and target (T) 320. 

FIG. 3A shows source 310 and it includes six nodes, 311 
316; and the contents of those nodes are H, O, O, V, E, R, 
respectively. Target 320 includes six nodes, 321-326; and 
contents of those nodes are H, O, O, P. E. R., respectively. 
Compared to the source 310, the target 320 is largely 
unchanged. The difference is node 314 (containing “V”), 
which is missing in the target but is replaced by node 324 
(containing “P”) 
The exemplary delta-generator matches nodes that have 

not changed. Based on content and relative positioning, each 
node is matched (i.e., identified) except for the nodes 314 and 
324. For example, node 311 and 321 match because their 
content (specifically, “H”) and relative position are identical. 
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8 
Likewise, nodes 312 and 312 match, nodes 313 and 313, 
nodes 315 and 315, and nodes 316 and 316. 
As shown in FIG. 3A, the delta 330 includes the content 

(“P”) of node 324 as the content of node 337. The delta 330 
also includes "edits” that specify how the new node is patched 
into the source. Specifically, delta330 specifies “ADDEDGE 
(313,337); ADDEDGE(337,315) within edit-box 339. 

FIG. 3B shows that there are two edges to be added to 
source 310 after inserting the new node 337. Thus, the delta 
contains the edit operations ADDEDGE(313, 337), which 
translates to adding an edge 339a from the node 313 in the 
source 310 to the new node 337, and ADDEDGE(337,315), 
which specifies the addition of link 339b from node 337 to 
node 315 in the source. 

FIG. 3C illustrates a combination of the source and the 
delta at 340a. The addition of the delta (new node 337 and the 
two new edges (339a and 339b)) transforms the source to an 
exact copy of list target 320. That exact copy of the target may 
be called a reconstructed target 340b. 

Comparing FIGS. 3B and 3C, one notices the deletion of 
edge 314a between nodes 313 and 314 of the source and the 
deletion of edge 314b between nodes 314 and 315 of the 
source. This deletion is implicit by the addition of edges 339a 
and 339b. 

Finding Matching Blocks 
A good matching of blocks is one that minimizes the num 

ber of edit operations. If two blocks are matched based on 
content similarity alone, there might not be a good match. 
This is because there are usually multiple blocks in the source 
as well as target with identical content, differing only in their 
location in the respective graphs. For example, consider the 
subgraphs shown in FIG. 4. 

FIG. 4 shows subgraphs of source 410 and target 420. In 
terms of content, assume, for this example, that all the blocks 
in each of the following groups are identical: (412, 416,422), 
(413,417,423), (414,418, 424), (411,421), (415,425). Also, 
assume, for this example, that two blocks can be matched 
only if they are identical in content. If block 422 is matched 
with block 412 (which both contain 'A'), then the best match 
ing of the other blocks is 

block 411 (D) with block 421 (D): 
block 415 (E.) with block 425 (E.): 
block 413 with block 423 (which both contain “B”); and 
block 414 with block 424 (which both contain “C”). 
In this case, no edit operations are needed, since the local 

edge structure is preserved under this matching. On the other 
hand, if block 422 is matched with block 416 (which both 
contain 'A'), the best matching of the other blocks is 

block 411 (D) with block 421 (D): 
block 415 (E.) with block 425 (E.): 
block 417 with block 423 (which both contain “B”); and 
block 418 with block 424 (which both contain “C”). 
The edit operations are Delete(411, 412), Add(422, 416), 

Delete(416,419), Add(416,415). Herein, Delete(a,b) means 
“delete the edge from node a to node b. Similarly, Add(a,b) 
means "add an edge from node a to node b. 
The above examples are based upon content alone. These 

examples do not consider the blocks Surrounding each block. 
Those surrounding blocks may be called the block's neigh 
borhood or local neighborhood. These examples illustrate 
that the conventional matching approaches that are based 
upon contentalone do not produce a good matching of blocks. 
It may even produce incorrect matching. 

Consequently, the exemplary delta-generator considers 
neighborhoods of blocks while matching them. 
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Neighborhood Consideration 
The exemplary delta-generator matches blocks based on 

their content and neighborhood. In fact, it makes several 
passes of the source and target CFGs, considering neighbor 
hoods of decreasing sizes in each pass. Matching based on 
larger neighborhood sizes first is desirable—it produces 
matches that are more accurate. In a final pass, blocks are 
matched based on their content alone, after matching based 
on neighborhood has been examined. Although not a require 
ment, matching content last is advantageous because the 
overhead of recording an unmatched block is usually greater 
than the size of the edit operations required after it has been 
matched with any arbitrary block that has identical content. 

To detect identical content of blocks, begin by obtaining is 
the sequence of instruction opcodes for code blocks and the 
raw, non-relocatable data for data blocks. As mentioned ear 
lier, address operands are not considered part of content, 
because addresses usually change even though the referred 
blocks remain same. This problem is handled by considering 
address operands as edges in the CFG. 

Register operands may be tricky to handle. Addition or 
deletion of some blocks may change the register allocation in 
some other nearby regions of the CFG, even though no 
change was made in these regions. Such operands are 
matched modulo a possible register-renaming, using register 
flow analysis of each graph. Since offsets of stack variables 
usually change because of changes in the local variable dec 
larations, they present a problem. To address this problem, the 
exemplary delta-generator matches blocks even if certain 
immediate operands is have changed. In each of the above 
cases, when the sequence of operand types remains same, the 
content of code blocks is considered unchanged. 

Ani-neighborhood (i.e., local neighborhood) of a node V in 
a CFG P is the set of blocks that are at distancesi from V in the 
undirected graph corresponding to P. Thus, for example, a 
0-neighborhood is the set {v} and a 1-neighborhood is V and 
its parents and children. The exemplary delta-generator com 
putes, while attempting to find a match for a block, its 
d-neighborhood, for different values of d. Leta child edge for 
block V be an edge from V to one of its children, and a parent 
edge be an edge from a parent of V to V. 
The exemplary delta-generator computes the i-neighbor 

hood of V doing a breadth first traversal of the CFG, starting 
from the node V. It traverses child edges as well as parent 
edges (in the reverse direction) of blocks until it is at a dis 
tance greater thani from V. Alternatively, the exemplary delta 
generator may ignore all parent edges, and traverses only 
child edges to compute the neighborhood. 

For instance, consider the first block V in a procedure fin S 
that is called from three different blocks, b, band b. Sup 
pose all these blocks, as well as the procedure f remain 
unchanged in T, but an extra call is added to f from the block 
ba. The i-neighborhood (for ile 1) of V changes because of this 
extra call, and thus, V may remain unmatched because of it. 

However, assume, for this example, that f itself did not 
undergo any changes, and hence, it might be advantageous to 
ignore the parents of V while computing its neighborhood. At 
times, the neighborhood may exclude any blocks that are in a 
different procedure. 

In general, the larger the neighborhood size considered, the 
more accurate is the match, in terms of resolving ambiguities 
in matching candidates. However, it leads to fewer matches, 
which is undesirable. Hence. The exemplary delta-generator 
uses Small neighborhood sizes (typically three or less), along 
with a longer random component, which is obtained by doing 
a “random walk’ that is described later. This "random walk' 
heuristic has been empirically observed to perform well. 
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10 
One example of a “random walk” is illustrated by the 

following: Suppose a person has to do a random walk on a 
straight road with several bus-stations A.B. . . N (in that 
order) on it. The person starts at A (one end of the road). Since 
this person can only go to the right, the person must go 
right to B. Now, at B, there are two options go left (to A) 
or right (to C). In the uniform random walk model, an unbi 
ased coin is tossed and the person decides to go one way if its 
heads and the other if its tails. If the person keeps doing this 
at every station she reaches, then the person has performed a 
random walk. 
The same idea can easily be extended to a general graph 

instead of a straight line. Here is heuristic based upon the 
above illustration of "random walk’. Let R be the undirected 
graph whose vertices are the nodes of the CFG and which has 
an edge on a vertex pairifand only if the corresponding vertex 
pair in the CFG has a (directed) control flow edge, in either 
direction. Clearly, R is a graph with maximum degree three. It 
starts at the original node W, and at any node X, takes one of the 
dx edges with uniform probability. (dx is the degree of x). It 
aborts when it encounters a procedure boundary (call or 
branch to another procedure) or when the path length crosses 
a pre-determined limit. 

Consider a blockb that does not match any other block in 
content. Such a block, if included in the neighborhood of any 
block V, may prevent V from being matched, since in order for 
V to be matched to some block, its entire neighborhood has to 
be matched. The block b is called a “bad” node or an outlier. 
Before performing the matching, such outliers may be filtered 
out of the neighborhood of all their neighbors. 
The exemplary delta-generator detects matches in several 

passes of the CFGs, based on progressively relaxing criteria. 
Preliminarily, the exemplary delta-generator matches the pro 
cedures of S and T. based on a preliminary estimate of the 
number of matching blocks. Examples of procedures are rou 
tines and Sub-routines of a binary program. 

This preliminary matching is performed at a global level 
(i.e., blocks are matched irrespective of the procedures in 
which they are located). Subsequently, blocks are matched 
only if they belong to matching procedures. Such matching 
may also be called local matching. The procedure match 
information is also used to examine targets of call instructions 
to detect if two different calls target the same function (which 
may have been renamed or whose first blocks might be dif 
ferent). 

During a matching pass, the current matching criteria are 
used to compute short hash values of each node. The hash 
value of a block V is computed as follows: 

Each block in its d-neighborhood (for some suitable value 
ofd) is hashed based on its content to produce a label for 
itself 

All these labels are concatenated and the resulting string is 
hashed again to produce a single label for V, which is 
called the “d-label of the block. 

The nodes in each graph are sorted by these labels and 
blocks with identical labels and matching procedures are 
matched. 
Some other heuristics are used to improve the matching. 

These heuristics are described herein, in particular in the 
Additional Implementation Details' sections below. 
Assume, for instance, two blocks c and c are said to be 
corresponding children of blocks b, and b if they are the i' 
children of b and b respectively, according to the above 
ordering, for some i. An example of a heuristic used to refine 
the matching is this: If matching blocks have corresponding 
children that match in their content labels (but maybe not in 
their d-labels), match those children. 
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At the end of this phase, the exemplary delta-generator has 
computed a partial matching of the blocks of S and T. 
Computing Edits 

After the matching is complete, the next phase is comput 
ing the A. The toy example of FIGS. 3A-C gave a simple 
illustration of computing A. FIG. 5 illustrates an example that 
shows how the matching computed above may be used in 
creating the A for the case of graphs (i.e., CFGs). 

FIG. 5 shows subgraphs of source 510 and target 520. 
Suppose the matching phase has matched these block pairs: 
511 and 521 (“A”),512 and 522 (“B”),513 and 523 (“C”), and 
516 and 526 (“E”). The unmatched blocks in the target sub 
graph 520 are block 525 (F) and block 524 (D). If A contains 
the contents of block 525 (F) and block 524 (D), and the edit 
operations Add(512, 525) and Add (512, 524), the target 
subgraph 520 can be reconstructed from the source subgraph 
51O. 
The edit operations Delete(512,514) and Delete(512,515) 

need not be explicitly included in the A. They are implicitly 
included. Those of ordinary skilled in the art understand that 
the implicit edits may be expressly included in the A without 
departing from the spirit and the scope of the claimed embodi 
ments. However, the implicit edits are not included in the A of 
the exemplary implementations described herein because 
they unnecessarily increase the size of the A. 

The exemplary delta-generator, therefore, outputs (at some 
point) the contents of the unmatched blocks in the target, and 
the edges that need to be added, and that comprises the A. 
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Methodological Implementation of the Exemplary Delta 
Generator 

FIGS. 6 and 7 shows methodological implementations of 
the exemplary delta-generator performed by the delta-gen 
erator system 100 (or some portion thereof). These method 
ological implementations may be performed in Software, 
hardware, or a combination thereof. 

FIG. 6 primarily shows the “matching phase of a meth 
odological implementation of the exemplary delta-generator. 
FIG. 7 primarily shows the "edit' phase of a methodological 
implementation of the exemplary delta-generator. The "edit 
phase follows the “matching phase. The result of the "edit 
phase is the delta. 

FIG. 6 shows, at 620, the exemplary delta-generator 
obtaining the sequence of instruction opcodes for code blocks 
and the raw, non-relocatable data for data blocks. Such blocks 
being blocks of procedures from source program binary (S) 
612 and procedures from target program binary (T) 614. 
At 624, the exemplary delta-generator computes, while 

attempting to find a match for a block, its d-neighborhood, for 
different values of d. In addition, the d-neighborhood is com 
puted by breadth first traversal. 

At 628, short hash values are computed for each node. In 
addition, the exemplary delta-generator determines labels for 
nodes based upon the hash values in their d-neighborhood 
(i.e., local neighborhood). Also at 628, the exemplary delta 
generator matches blocks even if certain immediate operands 
have changed. At 630, the nodes in each graph are sorted by 
these labels, and blocks with identical labels and matching 
procedures are matched. At the end of this phase at 632, the 
exemplary delta-generator has computed a partial matching 
of the blocks of S and T. It also computes the converse, which 
are the unmatched blocks. 
More details about the “matching phase of this method 

ological implementation of the delta-generator are provided 
below in the "Additional Details' section. 

FIG. 7 shows, at 720, the exemplary delta-generator 
receives the content 710 of unmatched blocks in P, (i.e., a 

30 

35 

40 

45 

50 

55 

60 

65 

12 
procedure from target program binary), which is part of the 
output from the methodological implementation of FIG. 6. 
The content of a block excludes all edge information. Thus, if 
an unmatched block V whose content is being recorded has 
address operands (for code blocks) or pointers (for data 
blocks), then Such operands or pointers are replaced by 
“dummy’ addresses that indicate that they have to be cor 
rected using the edge edit information. 
P and P, represent all pairs of procedures (in S and T 

respectively) that are matched by the matching phase. For any 
pair, P is the procedure from the source and P, is the matching 
procedure from T. The exemplary delta-generator receives a 
pair of procedure P 712 in source program binary (S) and 
procedure P, 714 in source program binary (T). 
At 730, all the information necessary to reconstruct a 

linked list of P, from a linked list of P is recorded as part of the 
computed A. The layout (i.e., arrangement of blocks) of each 
procedure in the programs address space is captured by a 
linked list of blocks, such that a sequential traversal of this 
list, from head to tail, can exactly describe the layout of the 
procedure. The first taskin reconstructing P. from P would be 
to reconstruct the linked list of P. from the linked list of P. 
Hence, all the information necessary to reconstruct one linked 
list from the other is recorded as part of the computed A. 
At 732, edge edit operations are calculated. An edge edit 

operation, as mentioned above, is an explicit addition of an 
edge (rather than an implicit deletion). Each edge can be fully 
specified by its source and target. Within the context of edits, 
the term “source” refers to the exact operand (for code blocks) 
or relocatable word (for data blocks) that this edge represents. 
In addition, within the context of edits, the word “target' on 
the other hand represents the block whose address this oper 
and or relocatable word refers to. The exemplary delta-gen 
erator records an edited edge (an edge that has been added or 
deleted) by recording unique identifiers for the source and the 
target in separate lists. 
The delta for a given procedure (P) in the source is out 

putted at 734. Such delta includes the unmatched blocks in P, 
and the edge edit operations calculated at 732. 
The above methodological implementation of the "edit 

phase of the exemplary delta-generator records sufficient 
information to reconstruct the target program binary up to 
Some minor changes in register names, immediate values, and 
instruction opcodes. These changed register names, immedi 
ate values, and opcodes are recorded in separate lists. 
Additional Implementation Details 
The matching phase of the exemplary implementation 

makes several passes of the CFGs, each of which is described 
in more detail below. 

Multiple-Pass in the Matching Phase 
Each pass in the matching phase uses different criteria for 

comparing blocks in Sand P. and it does so by computinghash 
values or labels for each block. In the exemplary implemen 
tation, two exemplary Sub-processes are employed and called 
in several passes. Herein, they are called ComputeLabel and 
Compute Label. 

ComputeLabel: Computes the hash value of the content of 
a block. This is also called the content label of the block. It 
uses a standard hash to calculate the hash value. An example 
of such a standard hash is MD5, which produces 16 byte 
strings as the hash of a given String of bytes. 

This exemplary Sub-process, called ComputeLabel, is 
parameterized to allow different matching criteria, and the 
Boolean parameters are: Immediate, RegisterChain, Opcode 
String and ProcId. Immediate indicates whether the immedi 
ate operands in a code block are to be used in hashing. Simi 
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larly, RegisterChain specifies whether register renaming is to 
be used, and OpcodeString indicates whether an opcode is 
represented by its precise name or its group identifier (“group 
id’). 

Using group ids for similar opcodes catches Small changes 
in instructions so that do not affect the functionality. For 
example, considera portion of Swhere the only change is that 
an instructionige eax, 10” has changed to “le eax, 10. This 
could happen, for instance, if a bug was discovered where the 
direction of the inequality was incorrect. In such cases, both 
ge and le can be represented by their opcode group 
branch and the corresponding blocks might be matched as a 
result. 

The fourth parameter, ProcId indicates whether procedure 
matching has already been done, in which case procedures 
have unique identifiers that match for matching procedures. If 
this parameter is set, function call targets are represented by 
their procedure identifiers. An example of the pseudo-code is 
for the sub-process ComputeLabel is: 

ComputeLabel (Block, Immediate, RegisterChain, OpcodeString, ProcId) 
If (Block is a data block) 

Iterate through each Relocatable word in Block, and clear it 
to Zero. 

Hash the resulting data buffer and return the hash value. 
Endif 
If (Block is a code block) 

Create a buffer that may hold the data to be hashed. 
For each instruction except the last: 

If (OpcodeString is true) 
Record the opcode string in the buffer 

Else 
Record the opcode group in the buffer 

End 
For each operand in the instruction 

Case OperandType 
Pointer: Record the constant string “Block'. 
Register: If (RegisterChain is true) 
Record the register flow id and 

register flow id is defined (computed earlier) 
Else 

Record the register name. 
Endif 

Immediate: If (Immediate is true) 
Record the immediate constant 

Endif 
End 

End 
End 

For the last instruction : 
If (Opcodestring is true) 

Record the opcode string in the buffer 
Else 

Record the opcode group in the buffer 
End 
If (ProcId is true) 

Compute the target block of the instruction. 
If the target is in a different procedure 

Record the procedure id of the target procedure 
Endif 

Endif 
End 
Hash the buffer and return the hash value. 

Endif 
End ComputeLabel 

ComputeDLabel: Computes the hash value based on con 
tent as well as neighborhood. This examines the entire 
already-computed neighborhood (including the root node) 
and concatenates their content labels. It then returns the hash 
value of this concatenated list. 
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The implementation uses a standard hash to calculate the 

hash value. An example of such a standard hash is MD5, 
which produces 16 byte strings as the hash of a given String of 
bytes. 
Additional Details about the Methodological Implementation 
of the Matching Phase of the Exemplar Delta-Generator 

FIG. 8 illustrates the broad methodological implementa 
tion of the matching phase of the exemplary delta-generator. 
This broad methodological implementation may be per 
formed by the delta-generator system 100 (or some portion 
thereof). This broad methodological implementation may be 
performed in software, hardware, or a combination thereof. 

Additional details of this broad methodological implemen 
tation are described below: 

Task 1 (810 of FIG. 8): Preliminary Matching of Basic 
Blocks 

This task (810 of FIG. 8) matches basic blocks at a global 
level. 

For each block in S as well as T, the exemplary delta 
generator calls ComputeLabel and assigns it a content 
label. Each of the four parameters to ComputeLabel is 
false at this stage. 

The exemplary delta-generator matches blocks of S with 
blocks of T based on the computed labels. Duplicate 
blocks in S (i.e., blocks having the same hash value) are 
matched to any of the blocks in T that have the same 
label. Whenever two blocks are matched, each of them is 
assigned a unique Matchld for reference later. Blocks 
that are unmatched after this task are designated as out 
liers. 

The exemplary delta-generator computes d-neighbor 
hoods (d=2) for each block, by doing a breadth-first 
traversal that starts at this block. The traversal visits 
parents of a block if it has no children. 

The exemplary delta-generator filters out bad nodes com 
puted above from all d-neighborhoods. 

The exemplary delta-generator calls ComputeDLabel for 
each block and assigns it a d-label, which is the value 
returned from the call. 

The exemplary delta-generator matches blocks of S and T 
that have identical d-labels. 

Any two matching blocks, b and b must have the same 
number of out-edges. Let these out-edges be ordered by 
their location in the blocks. Two blockSc and care said 
to be corresponding children of blocks band b if they 
are thei" children ofb and b respectively, according to 
the above ordering, for some i. The exemplary delta 
generator refines the matches by using the following 
rule: If matching blocks have corresponding children 
that match in their content labels (but maybe not in their 
d-labels), match those children. 

Task 2 (812 of FIG. 8): Matching Procedures 
This task (812 of FIG. 8) uses the preliminary match com 

55 puted above to match procedures. 

60 

65 

The exemplary delta-generator iterates through each pro 
cedure P, in T, and computes, for each procedure P in S. 
the number m of blocks in P, that match blocks in P. 

The exemplary delta-generator matchs procedure pairs 
based on their my values. The my values may also be 
called the procedure-matching-criteria. The technique 
for matching procedures using my values is discussed 
below. 

The exemplary delta-generator assigns the same unique 
identifiers to matching procedures. The exemplary 
delta-generator assigns unique identifiers to all other 
procedures also. 
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An exemplary delta-generator for matching procedures 
meets this condition: Given any P and any two P, and P, if 
P is matched to P, then either M2m, or P is matched to 
Ps Such that m2m. The following technique satisfies the 
condition: 

Create (P. P. m.) triplets W. and sort them on m. and 
Iterate through the sorted list of triplets in the descending 

order. At any iteration, if P and P are both unmatched, 
match them. 

Task 3 (814 of FIG. 8): Local Matching of Basic Blocks 
This task (814 of FIG. 8) uses the procedure matching 

information obtained in the previous task to compute local 
matching of blocks (i.e., blocks are matched only between 
matching procedures). 

Start with no blocks matched. For each blockinS as well as 
T, the exemplary delta-generator calls ComputeLabel 
and assigns it a content label. The Immediate, Opcode 
String and ProcId parameters are true when calling 
ComputeLabel. 

The exemplary delta-generator matches blocks of S with 
blocks of Tbased on the computed content labels. Dupli 
cate blocks in S (i.e., blocks having the same hash value, 
are matched to any of the blocks in T that have the same 
label). Whenever two blocks are matched, each of them 
is assigned a unique Matchld for reference later. If a 
block already has a previously assigned Matchld, reas 
sign it. Blocks that are unmatched after this task are 
designated as outliers. 

For d=3.2.1 the exemplary delta-generator does the follow 
1ng: 
Computes d-neighborhood for each block, by doing a 

breadth-first traversal that starts at this block. The 
d-neighborhood has a random component also. The 
random component is a set of blocks that are encoun 
tered while performing a fixed length uniform random 
walk starting at the original node. The random walk 
looks only at real control flow edges and chooses one 
of them with uniform probability. It aborts when it 
encounters a procedure boundary (e.g., call or branch 
to another procedure). 

Filters out the bad nodes computed above from all the 
d-neighborhoods. 

Calls ComputeDLabel for each block and assign it a 
d-label. 

Matches blocks of Sand T that have identical d-labels. If 
two blocks inT match the same block in S, only one of 
them is actually matched. The tie may be broken 
arbitrarily. 

Improves the matching by following the guideline: If 
matching blocks have corresponding children that 
match in their content labels (but maybe not in their 
d-labels), match those children. 

At any stage, a block previously matched is not rematched 
or unmatched. 
The exemplary delta-generator assigns each matching pair 

of blocks a unique Matchld, which is used as the content 
label for those two blocks thereafter 

Task 4 (816 of FIG. 8): Solving the Register Renaming 
Problem 

This task (816 of FIG. 8) solves the register-renaming 
problem (i.e., it detects matching blocks even in the face of a 
possible register renaming). The exemplary delta-generator 
computes all register flow chains in SandT, and assigns each 
of them an identifier. Matching blocks have their correspond 
ing register flows assigned the same identifier. 
The exemplary delta-generator calls ComputeLabel with 

RegisterChain true and assigns each block a content label. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
The exemplary delta-generator matches unmatched blocks, 
based on these labels and their d-neighborhoods (d=2). The 
exemplary delta-generator repeats this task until no more 
matches are discovered. This is done because the new match 
ing blocks may cause Some more register chains to be 
assigned the same identifiers, and in turn lead to even more 
matches. 

Below, the section titled “Solving the Register Renaming 
Problem discusses this in more detail. 

Task 5 (818 of FIG. 8): The Final Pass 
In this last matching task (818 of FIG. 8), any pair of blocks 

with identical content label (computed in the previous tasks) 
is matched. 

Solving the Register Renaming Problem 
For each procedure, the exemplary delta-generator com 

putes its use-def chains, def-use chains, and dominator infor 
mation. A use-def chain is a list that starts with a register use 
and goes through all the definitions (defs) of that register that 
reach this use. Similarly, a def-use chain is a list that starts 
with a register def and goes through each use of the same 
register, reached by this def. A block d is called a dominator 
of another block b. b is reachable from d and any path to b 
from the entry point of the procedure must first pass through 
d. Typically, computing dominator information means com 
puting all dominators of every block in the procedure. 

For each basic block in each procedure, the exemplary 
delta-generator looks at all the register defs in the block, and 
assigns each of them an id, called the defid, which is unique 
for that block. The exemplary delta-generator looks at all the 
register uses in that block, and if any use has its only defin the 
same block, assigns the defidentifier to this use. Thus at this 
stage, all defs and some uses have ids associated with them. 
There may be some register uses with undefined ids. Com 
puteLabel (defined above) when called with 
RegisterChain=true uses their names if the id is not defined. 
The exemplary delta-generator calls ComputeLabel (with 

RegisterChain=true) for each unmatched block in S and T. 
and assigns the returned label to its content label. The exem 
plary delta-generator computes d-neighborhoods (d 2) for 
each unmatched block. The exemplary delta-generator calls 
Compute Label to assign it a d-label, and matches S and T 
based on the newly computed d-labels. 

For any pair of code blocks (b,b) currently matched, the 
exemplary delta-generator does the following: 

Iterates through corresponding (located at the same place) 
register defs in the two blocks. 

Assigns a unique identifier (positive), unique for the entire 
procedure, to each of the two defs being examined cur 
rently. 

These identifiers replace any previously assigned defiden 
tifiers that the defs may have. The fact that two defs match is 
recorded, and a single identifier is associated with both of 
them. 

Next, the exemplary delta-generator matches register uses 
based on the newly assigned defidentifiers. For both S and T. 
the exemplary delta-generator iterates through all the register 
uses in each basic block. For each such use, all the defs are 
examined that reach it and are not dominated by it. The 
exemplary delta-generator adds up their defidentifiers and 
assign the Sum to the current use’s identifier. Consequently, 
each register operand, defor use, has an identifier associated 
with it. Matching blocks have matching identifiers associated 
with corresponding register operands. More specifically, two 
register operands, that have exactly matching defs, may also 
have matching identifiers even though the register names may 
be different. 
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If any new matches were discovered in the most recent 
execution of the exemplary delta-generator calling Compute 
Label with RegisterChain=true (described above), the pro 
cess loop back to there. 
Additional Details about the Methodological Implementation 
of the Edit Phase of the Exemplary Delta-Generator 
The exemplary delta-generator creates a new dummy CFG, 

called bin, with a single procedure that may serve as a con 
tainer for all the additional blocks of T. These blocks are, for 
example, maintained in the form of a linked list. 
The exemplary delta-generator traverses each block in T. in 

sequence, and assigns consecutive identifiers (starting at 
Zero) to each unmatched block. Also, the exemplary delta 
generator dumps the unmatched blocks into bin, making Sure 
that address operands in code blocks and pointers in data 
blocks are modified into 'dummy addresses referring to the 
blocks containing those pointers. 

The exemplary delta-generator traverses each block in S, in 
sequence, and assigns consecutive identifiers to each match 
ing block. The same identifiers are assigned to matching 
blocks in T. The identifiers assigned in this and the previous 
task are called New Node Ids. 

The exemplary delta-generator examines the matched 
blocks of the source graph. If a block X in S matches blocky 
in T. check each of its outgoing edges. For each edge X->Z, 
there has to be a corresponding y->Z. 

case i. Z. matches Zi: do nothing. 
case ii. Z. matches ZzZ: Record the link X->Z. 
case iii. Z is unmatched: Record the link X->Z. 
An edge is recorded as follows. Three lists, named Tar 

getId, OperandIndex and SourceProcFirstBlock are created. 
If an edge x-y is to be recorded, the New Node Ids of y is 
inserted into Targetld. If this edge was the i' edge in the 
current procedure, i is pushed into the list OperandIndex. 
Finally, if any procedure P in S has at least one edge being 
recorded, the New Node Id of its first block is pushed into 
SourceProcFirstBlock. 
The exemplary delta-generator examines all the 

unmatched blocks in the target graph. The exemplary delta 
generator looks at each of its outgoing edges X sy. Ify is also 
an unmatched block, the exemplary delta-generator creates 
an edge in bin going from X toy. Ify matches Z in the Source 
graph, the exemplary delta-generator records the link X Zby 
pushing the New Node Id of Z into a list called TargetOper 
and Targets. 

For each procedure P in Sthat has a matching procedure P, 
in T, the exemplary delta-generator traverses the linked list of 
the blocks of P. At any point in the traversal, if ptr. and ptra 
point to the current node and its next node in T. let mptr. and 
mptr be their matching pointers. Ifptr points to block X in 
T, its matching pointer mptr points to its matching block in S 
if there is one, or to the copy of x that has been dumped in bin. 
At any stage in the traversal, if mptr and mptre point to nodes 
that are not adjacent (in that order) in the list, the edge 
mptr-emptra is recorded. This is done by pushing the 
New Node Ids of their corresponding blocks into separate 
lists called LinkedListsLeft and LinkedListsRight. In addi 
tion, the New Node Id of the first block of P along with the 
latter's size (in terms of number of blocks) and the number of 
recorded links in P, is recorded in a separate list called Pro 
cedureInfo. 
The exemplary delta-generator uses the edit information 

computed above, along with S to reconstruct T. 
Alternatively, the exemplary delta-generator may detect 

the register names, immediate values, and instruction 
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18 
opcodes that differ between the original and reconstructed 
versions of T, and output these differences in a separate list 
called MinorDifferences. 

All these lists, together with the bin comprises the com 
puted A in an exemplary implementation of the delta-genera 
tOr. 

Delta Compression 
The above sections sufficiently describe how to recon 

struct, using the exemplary delta-generator, a copy of T. given 
Sand A. Like what is shown in FIG. 2, the generated A may be 
transmitted from a server 212 to a client 222. 

This A may be compressed to use the available bandwidth 
on network 215 more efficiently. Therefore, the exemplary 
delta-generator may format the patch in a way that it can be 
heavily compressed. The patch is split into several parts, each 
holding information of a different kind, so that each part can 
be compressed separately. This approach is based on the 
observation that different types of data (code vs. lists of 
integers, for example) may be best compressed by different 
compression algorithms (i.e., engines). 

This approach may be combined with steps mentioned 
above in the Additional Implementation Details' section. In 
the exemplary delta-generator, the “several parts' mentioned 
here are the several different lists that were mentioned in the 
Edits phase above and the dummy “bin' that was mentioned 
there. Each of these lists (and bin) are stored as a separate file 
in one implementation, and thus compressed separately. An 
example of a compression algorithm that may be used is 
LZW. 

It is expected to work better for large executables (of the 
order of several hundred kilobytes) and our initial experi 
ments show that for Such large executables. The exemplary 
delta-generator produces, on the average, a Smaller patch that 
any of the other available patching tools that we know of. 

Examples of Applications for Exemplary 
Implementations 

Among the possible examples of applications for imple 
mentations of the exemplary delta-generator is as a tool to 
send Software upgrades or patches via media with bandwidth 
constraints. With software availability on the Internet becom 
ing increasingly popular every day, Such a patching tool may 
be beneficial to uses of software Another possible example of 
applications for implementations of the exemplary delta-gen 
erator is in the realm of anti-piracy of Software. Using an 
implementation of the exemplary delta-generator, an anti 
piracy tool may be able to detect similarity of programs. 
Another possible exemplary application could be in analysis 
of the nature of changes between different versions of soft 
Wa. 

Exemplary Computing Environment 
FIG. 9 illustrates an example of a suitable computing envi 

ronment 920 on which an exemplary delta-generator are, for 
example, implemented. 

Exemplary computing environment 920 is only one 
example of a Suitable computing environment and is not 
intended to Suggest any limitation as to the scope of use or 
functionality of an exemplary delta-generator. Neither should 
the computing environment 920 be interpreted as having any 
dependency or requirement relating to any one or combina 
tion of components illustrated in the exemplary computing 
environment 920. 
The exemplary delta-generator is operational with numer 

ous other general purpose or special purpose computing sys 
tem environments or configurations. Examples of well known 
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computing systems, environments, and/or configurations that 
are, for example, Suitable for use with an exemplary delta 
generator include, but are not limited to, personal computers, 
server computers, thin clients, thick clients, hand-held or 
laptop devices, multiprocessor Systems, microprocessor 
based systems, set top boxes, programmable consumer elec 
tronics, network PCs, minicomputers, mainframe computers, 
distributed computing environments that include any of the 
above systems or devices, and the like. 
An exemplary delta-generator are, for example, described 

in the general context of computer-executable instructions, 
Such as program modules, being executed by a computer. 
Generally, program modules include routines, programs, 
objects, components, data structures, etc. that perform par 
ticular tasks or implement particular abstract data types. An 
exemplary delta-generator may also be practiced in distrib 
uted computing environments where tasks are performed by 
remote processing devices that are linked through a commu 
nications network. In a distributed computing environment, 
program modules are, for example, located in both local and 
remote computer storage media including memory storage 
devices. 
As shown in FIG. 9, the computing environment 920 

includes a general-purpose computing device in the form of a 
computer 930. The components of computer 920 may 
include, by are not limited to, one or more processors or 
processing units 932, a system memory 934, and a bus 936 
that couples various system components including the system 
memory 934 to the processor 932. 

Bus 936 represents one or more of any of several types of 
bus structures, including a memory bus or memory controller, 
a peripheral bus, an accelerated graphics port, and a processor 
or local bus using any of a variety of bus architectures. By way 
of example, and not limitation, such architectures include 
Industry Standard Architecture (ISA) bus, Micro Channel 
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video 
Electronics Standards Association (VESA) local bus, and 
Peripheral Component Interconnects (PCI) bus also known as 
Mezzanine bus. 
Computer 930 typically includes a variety of computer 

readable media. Such media are, for example, any available 
media that is accessible by computer 930, and it includes both 
Volatile and non-volatile media, removable and non-remov 
able media. 

In FIG.9, the system memory includes computer readable 
media in the form of volatile memory, such as random access 
memory (RAM) 940, and/or non-volatile memory, such as 
read only memory (ROM) 938. A basic input/output system 
(BIOS)942, containing the basic routines that help to transfer 
information between elements within computer 930, such as 
during start-up, is stored in ROM 938. RAM 940 typically 
contains data and/or program modules that are immediately 
accessible to and/or presently be operated on by processor 
932. 
Computer 930 may further include other removable/non 

removable, Volatile/non-volatile computer storage media. By 
way of example only, FIG. 9 illustrates a hard disk drive 944 
for reading from and writing to a non-removable, non-volatile 
magnetic media (not shown and typically called a "hard 
drive'), a magnetic disk drive 946 for reading from and writ 
ing to a removable, non-volatile magnetic disk 948 (e.g., a 
“floppy disk’), and an optical disk drive 950 for reading from 
or writing to a removable, non-volatile optical disk 952 such 
as a CD-ROM, DVD-ROM or other optical media. The hard 
disk drive 944, magnetic disk drive 946, and optical disk drive 
950 are each connected to bus 936 by one or more interfaces 
954. 
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The drives and their associated computer-readable media 

provide nonvolatile storage of computer readable instruc 
tions, data structures, program modules, and other data for 
computer 930. Although the exemplary environment 
described herein employs a hard disk, a removable magnetic 
disk 948 and a removable optical disk 952, it should be 
appreciated by those skilled in the art that other types of 
computer readable media which can store data that is acces 
sible by a computer, Such as magnetic cassettes, flash memory 
cards, digital video disks, random access memories (RAMS), 
read only memories (ROM), and the like, may also be used in 
the exemplary operating environment. 
A number of program modules are, for example, stored on 

the hard disk, magnetic disk 948, optical disk 952, ROM938, 
or RAM 940, including, by way of example, and not limita 
tion, an operating system 958, one or more application pro 
grams 960, other program modules 962, and program data 
964. 

Each of such operating system 958, one or more applica 
tion programs 960, other program modules 962, and program 
data 964 (or some combination thereof) may include an 
embodiment of an exemplary delta-generator. More specifi 
cally, each may include an embodiment of delta-generator 
system, comparator, edit-op determiner, and output Sub-sys 
tem. 

A user may enter commands and information into com 
puter 930 through input devices such as keyboard 966 and 
pointing device 968 (such as a “mouse'). Other input devices 
(not shown) may include a microphone, joystick, game pad, 
satellite dish, serial port, scanner, or the like. These and other 
input devices are connected to the processing unit 932 
through a user input interface 970 that is coupled to bus 936, 
but are, for example, connected by other interface and bus 
structures, such as a parallel port, game port, or a universal 
serial bus (USB). 
A monitor 972 or other type of display device is also 

connected to bus 936 via an interface, such as a video adapter 
974. In addition to the monitor, personal computers typically 
include other peripheral output devices (not shown). Such as 
speakers and printers, which may be connected through out 
put peripheral interface 975. 
Computer 930 may operate in a networked environment 

using logical connections to one or more remote computers, 
such as a remote computer 982. Remote computer 982 may 
include many or all of the elements and features described 
herein relative to computer 930. 

Logical connections shown in FIG. 9 are a local area net 
work (LAN) 977 and a general wide area network (WAN) 
979. Such networking environments are commonplace in 
offices, enterprise-wide computer networks, intranets, and 
the Internet. 
When used in a LAN networking environment, the com 

puter 930 is connected to LAN 977 via network interface or 
adapter 986. When used in a WAN networking environment, 
the computer typically includes a modem 978 or other means 
for establishing communications over the WAN 979. The 
modem 978, which are, for example, internal or external, are, 
for example, connected to the system bus 936 via the user 
input interface 970 or other appropriate mechanism. 

Depicted in FIG.9, is a specific implementation of a WAN 
via the Internet. Computer 930 typically includes a modem 
978 or other means for establishing communications over the 
Internet 980. Modem978, which are, for example, internal or 
external, is connected to bus 936 via interface 970. 

In a networked environment, program modules depicted 
relative to the personal computer 930, or portions thereof, are, 
for example, stored in a remote memory storage device. By 
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way of example, and not limitation, FIG. 9 illustrates remote 
application programs 989 as residing on a memory device of 
remote computer 982. It will be appreciated that the network 
connections shown and described are exemplary and other 
means of establishing a communications link between the 
computers are, for example, used. 
Exemplary Operating Environment 

FIG. 9 illustrates an example of a suitable operating envi 
ronment 920 in which an exemplary delta-generator may be 
implemented. Specifically, the exemplary delta-generator(s) 
described herein is implemented (wholly or in part) by any 
program module 960-962 and/or operating system 958 in 
FIG.9 or a portion thereof. 
The operating environment is only an example of a Suitable 

operating environment and is not intended to Suggest any 
limitation as to the scope or use of functionality of the exem 
plary delta-generator(s) described herein. Other well known 
computing systems, environments, and/or configurations that 
are suitable for use with an exemplary delta-generator 
include, but are not limited to, personal computers (PCs), 
server computers, hand-held or laptop devices, multiproces 
Sor systems, microprocessor-based systems, programmable 
consumer electronics, wireless phones and equipments, gen 
eral- and special-purpose appliances, application-specific 
integrated circuits (ASICs), network PCs, minicomputers, 
mainframe computers, distributed computing environments 
that include any of the above systems or devices, and the like. 
Computer-Executable Instructions 
An implementation of an exemplary delta-generator may 

be described in the general context of computer-executable 
instructions, such as program modules, executed by one or 
more computers or other devices. Generally, program mod 
ules include routines, programs, objects, components, data 
structures, etc. that perform particular tasks or implement 
particular abstract data types. Typically, the functionality of 
the program modules may be combined or distributed as 
desired in various embodiments. 

Computer Readable Media 
An implementation of an exemplary delta-generator may 

be stored on or transmitted across some form of computer 
readable media. Computer readable media can be any avail 
able media that can be accessed by a computer. By way of 
example, and not limitation, computer readable media may 
comprise "computer storage media' and “communications 
media.” 
“Computer storage media' include volatile and non-vola 

tile, removable and non-removable media implemented in 
any method or technology for storage of information Such as 
computer readable instructions, data structures, program 
modules, or other data. Computer storage media includes, but 
is not limited to, RAM, ROM, EEPROM, flash memory or 
other memory technology, CD-ROM, digital versatile disks 
(DVD) or other optical storage, magnetic cassettes, magnetic 
tape, magnetic disk storage or other magnetic storage devices, 
or any other medium which can be used to store the desired 
information and which can be accessed by a computer. 

“Communication media typically embodies computer 
readable instructions, data structures, program modules, or 
other data in a modulated data signal. Such as carrier wave or 
other transport mechanism. Communication media also 
includes any information delivery media. 
The term "modulated data signal” means a signal that has 

one or more of its characteristics set or changed in Such a 
manner as to encode information in the signal. By way of 
example, and not limitation, communication media includes 
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wired media such as a wired network or direct-wired connec 
tion, and wireless media Such as acoustic, RF, infrared, and 
other wireless media. Combinations of any of the above are 
also included within the scope of computer readable media. 
Conclusion 

Although the minimum delta generator for program bina 
ries has been described in language specific to structural 
features and/or methodological steps, it is to be understood 
that the minimum delta generator for program binaries 
defined in the appended claims is not necessarily limited to 
the specific features or steps described. Rather, the specific 
features and steps are disclosed as preferred forms of imple 
menting the claimed embodiments. 
The invention claimed is: 
1. A method for matching blocks between a first control 

flow graph (CFG) representation of a portion of a first pro 
gram and a second CFG representation of a portion of a 
second program, the method comprising: 

matching blocks, by one or more computing devices con 
figured to match blocks between the first CFG represen 
tation of the portion of the first program and the second 
CFG representation of the portion of the second pro 
gram, between the first and second CFG representations 
based upon the content of the blocks; 

detecting outliers, by one or more computing devices, 
wherein outliers are blocks in the first CFG representa 
tion that do not match any block in the second CFG 
representation during the matching step; 

computing a neighborhood, that may have a depth greater 
than 1, of each block in the first and second CFG repre 
sentations by performing a breadth first traversal; 

removing the outliers from each neighborhood. 
2. A method as recited in claim 1 further comprising: 
computing labels for each block in first and second CFG 

representations based upon content of a block; 
for each neighborhood computed in the computing step, 

forming a “d-label for each block in a neighborhood 
based upon labels of the blocks within the neighbor 
hood; 

attempting to match blocks between first and second CFG 
representations by comparing the d-labels of the blocks. 

3. A computer-readable storage medium storing computer 
executable instructions that, when executed by a computer, 
performs the method as recited in claim 1. 

4. A method for matching procedures between a first con 
trol flow graph (CFG) representation of a portion of a first 
program and a second CFG representation of a portion of a 
second program, wherein a procedure comprises multiple 
blocks in a CFG representation, wherein each block of each 
procedure has its own defined sequence of executable instruc 
tions with a block's first instruction being its single entry 
point and its last instruction being its single exit point, the 
method comprising: 

computing, by one or more computing devices configured 
to match procedures between the first CFG representa 
tion of the portion of the first program and the second 
CFG representation of the portion of the second pro 
gram, a procedure-match-criterion for each procedure in 
the second CFG representation, where the procedure 
match-criterion for a procedure in the second CFG rep 
resentation represents the number of matching blocks 
between that procedure and a specified procedure in the 
first CFG representation; 

matching, by one or more computing devices, procedures 
in the second CFG representation with the specified 
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procedure in the first CFG representation based upon the 
procedure-match-criteria for the procedures in the sec 
ond CFG representation; 

attempting to match blocks in the procedure in the second 
CFG representation with blocks in the specified proce 
dure in the first CFG representation. 

5. A computer-readable storage medium storing computer 
executable instructions that, when executed by a computer, 
performs the method as recited in claim 4. 

6. A method for matching of blocks in a procedure of a first 
control flow graph (CFG) representation of a portion of a first 
program between an ostensibly matching procedure of a sec 
ond CFG representation of a portion of a second program, the 
method comprising: 

matching blocks, by one or more computing devices con 
figured to match blocks between the procedure of the 
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first CFG representation of the portion of the first pro 
gram between the ostensibly matching procedure of the 
second CFG representation of the portion of the second 
program, between the first and second CFG representa 
tions based upon the content of the blocks; 

computing, by the one or more computing devices, succes 
sively smaller neighborhoods of each block in the first 
and second CFG representations via breadth first tra 
Versals; 

for each neighborhood computed in the computing step, 
forming a “d-label for each block in a neighborhood 
based upon labels of the blocks within the neighbor 
hood; 

attempting to match blocks between first and second CFG 
representations by comparing the d-labels of the blocks. 
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