
(12) United States Patent
Venkatesan et al.

USOO7681 190B2

US 7,681,190 B2
*Mar. 16, 2010

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)

(58)

MINIMUM DELTA GENERATOR FOR
PROGRAMI BINARIES

Inventors: Ramarathnam Venkatesan, Redmond,
WA (US); Saurabh Sinha, Seattle, WA
(US)

Assignee: Microsoft Corporation, Redmond, WA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1036 days.

This patent is Subject to a terminal dis
claimer.

Appl. No.: 11/276,814

Filed: Mar 15, 2006

Prior Publication Data

US 2006/O145895A1 Jul. 6, 2006

Related U.S. Application Data
Continuation of application No. 09/713,633, filed on
Nov. 14, 2000, now Pat. No. 7,058,941.

Int. C.
G06F 9/44 (2006.01)
U.S. Cl. 717/168; 717/132; 717/144;

717/156
Field of Classification Search None
See application file for complete search history.

Reconstructed
Target Program

150

(56) References Cited

U.S. PATENT DOCUMENTS

5,379,422 A 1/1995 Antoshenkov

(Continued)
FOREIGN PATENT DOCUMENTS

632O8941 8, 1988

(Continued)
OTHER PUBLICATIONS

Burns, “Differential Compression: a Generalized Solution for Binary
Files. Thesis’ Dec. 1996.

(Continued)

JP

Primary Examiner Michael JYigdall
(74) Attorney, Agent, or Firm Lee & Hayes, PLLC

(57)
Implementations provide a technology for generating a mini
mum delta between at least two program binaries. An imple
mentation is given a source program (S) in a binary format
and a target program (T) in a binary form. It constructs control
flow graphs (CFGs) of each. It matches common blocks of the
S’s CFGs and T’s CFGs. The blocks are matched based upon
their content and their local neighborhoods. In addition, the
register renaming problems is solved so that blocks can be
fairly compared. This implementation produces an interme
diate output, which is the content of unmatched blocks. It
generates a set of edge edit operations for merging the
unmatched blocks into S. The combination of the unmatched
blocks and the edit operations is the delta. To patch S to
produce a reconstructed copy of T, the delta is merged with S.

ABSTRACT

6 Claims, 8 Drawing Sheets

US 7,681,190 B2
Page 2

U.S. PATENT DOCUMENTS WO WO99,04336 1, 1999
WO WOOO 11549 3, 2000

5,481,722 A 1/1996 Skinner
5,630,138 A 5, 1997 Raman et al.
5,710,916 A 1/1998 Barbara et al. OTHER PUBLICATIONS

5,774,730 A 6, 1998 Aizikowitz et al. Chipman, Laure J., “A graph theoretic approach to scene matching.”
5,974,254 A 10, 1999 HSu The University of Alabama in Huntsville, 1990.
6,018,747 A 1/2000 Burns et al. Coppieters, "A Cross-Platform Binary Diff.” Dr. Dobbs Journal, Red
6,189,116 B1 2/2001 Mongan et al. wood City CA US, May 1, 1995, pp. 3235-3236.
6,205,444 B1 3/2001 Floratos et al. Horwitz, Susan et al. “Efficient comparison of program slices' Acta
6,314,562 B1 1 1/2001 Biggerstaff Informatica v. 28 n 8, 1991, pp. 713-732.
6,526,574 B1 22003 Jones Horwitz, Susan, “Identifying the Semantic and Textual Differences
6,594,822 B1 7/2003 Schweitz et al. Between Two Versions of a Program” Proceedings of the ACM
6,860,422 B2 3/2005 Hull et al. Sigplan 1990 Conf. on the Programming Language Design and
7,058,941 B1 6/2006 Venkatesan et al. Implementation, White Plains NY, Jun. 20, 1990, pp. 234-245.

2003, OO84424 A1 5/2003 Reddy et al. Maruyama, Katsuhisa, et al., “A Mechanism for Automatically and
2004/0268219 A1 12/2004 Brown et al. Dynamically Changing Software Components.” NTT Software
2006/0200796 A1 9, 2006 Ota et al.

FOREIGN PATENT DOCUMENTS

90.16389
JP 20021697O2
JP 1, 1997

6, 2002

Libraries, 1997.
Tridgell A. “Efficient Algorithms for Sorting and
Synchronization. Thesis' Apr. 2000. Thesis submitted for the
Degree of Doctor of Philosophy at The Australian National Univer
sity, pages complete 113.

U.S. Patent Mar. 16, 2010 Sheet 1 of 8 US 7,681,190 B2

CD 110 12O CD
Source Target
CFGer CFGer

Source
Program

112

Target
Program

122

130
Block Matcher

Delta Determiner

142

150 Delta Patcher
(S+ Delta = T)

Reconstructed
Target Program F 1 150 9

U.S. Patent Mar. 16, 2010 Sheet 2 of 8 US 7,681,190 B2

We Client

a- 'e- 12 142 - C J. J= A." st A : 142

10 : 22
- r = r - - - - - - - - - -

311 312 313 - 314 - 315 - 316 -
\ \ \ \ \ \

so is H. H. O. H. O v - E - R.
T 321 \ 322 \ 323-y 324 \ 325 \ 326 \

to Hoop
330 A: P - 337 ADDEDGE(313, 337); ADDEDGE(337,315) 339

Fig.
3A

U.S. Patent Mar. 16, 2010 Sheet 3 of 8 US 7,681,190 B2

330

ADDEDGE(313, 337), ADDEDGE(337,315) - 339

311

34.0a < S -- A:

34Ob

U.S. Patent Mar. 16, 2010 Sheet 4 of 8 US 7,681,190 B2

Source (410) Target (420)

Source (510) Target (520)
^. ^-

52 -

511 up 516 -(e)
512 522 d

513 -.."'. 515 523 ".". - 54

- 525

Fig. 5

U.S. Patent Mar. 16, 2010 Sheet 5 of 8 US 7,681,190 B2

612 614

Target
Binaries (T)

Source
Binaries (S)

62O Obtain the sequence of instruction opcodes for code blocks and
the raw, non-relocatable data for data blocks from S and T

624 Compute, while attempting to find a match for a block, its d
neighborhood, for different values of d

628 Compute short hash values for each node and determine labels
based upon hash values in a d-neighborhood; Match blocks

even if certain immediate operands have changed

630 Sort the nodes in each graph by these labels and blocks with
identical labels and matching procedures are matched

Partial
matching of
the blocks of
S and T

632

U.S. Patent Mar. 16, 2010 Sheet 6 of 8 US 7,681,190 B2

71O- 712 - 717.

Content of
unmatched
blocks in Pt

ProceduFre Ps Procedures Pt

730 Record all the information necessary to reconstruct a linked list
of Pt from a linked list of Ps as part of the computed Delta

732 -
Calcuate edge edit operations

Delta (included
edge edit
operations)

734 /

Fig. 7

U.S. Patent Mar. 16, 2010 Sheet 7 of 8 US 7,681,190 B2

810
Preliminary, match basic blocks at a global level

812 Using the preliminary matches computed at 810, match
procedures

814 Using the procedure matching information obtained 812,
compute local matching of blocks

816 -
Solve the register-renaming problem

818
Match any pair of blocks with identical content label

Fig. 8

US 7,681,190 B2 Sheet 8 of 8 Mar. 16, 2010 U.S. Patent

?

US 7,681,190 B2
1.

MINIMUM DELTA GENERATOR FOR
PROGRAMI BINARIES

RELATED APPLICATIONS

This application is a continuation of and claims priority to
U.S. patent application Ser. No. 09/713,633, filed on Nov. 14,
2000, the disclosure of which is incorporated by reference.

BACKGROUND

One of the important characteristics of modern software
systems is its ability to be upgraded, which may be called
“upgradability.” Old software is continuously being replaced
by newer versions, and code reusability and modular devel
opment are major features of Software design.
Accuracy
When software is upgraded from an old version to a new

version, complete accuracy is vital. Every bit in the newly
upgraded Software in the target computer must match exactly
with the new software from at its media source. Otherwise,
the new software may operate incorrectly or not at all.

To assure complete accuracy, conventional techniques
completely replace the old software with the new software. As
Software programs (in particular major application Suites and
operating systems) grow in size and complexity, this whole
sale replacement-to-update scheme becomes more time con
Suming and frustrating to the customer of Such software.

Aggravating matters is a trend to move the source of Such
updates from local, portable, high-bandwidth removable
media (such as a CD-ROM) to remote, centralized, relatively
low-bandwidth network servers (such as Internet web serv
ers). While replacing a 100 MB of software may be from a
CD-ROM may take several minutes, replacing the same
amount of Software over a dial-up Internet connection may
take several hours.

Herein, “complete accuracy” and “substantially identical
allows for minor and insubstantial differences between the
new software as originally produced and the new software as
it exists on a user's computer.
Conventional Delta-Patching

Typically, newer versions of software have a few additional
portions, as well as some minor changes in older portions.
Therefore, the brute force approach of completely replacing
the old with the new is overkill. An alternative is to capture
these changes into a "patch’ So that one can reconstruct the
newer version from the older one. Because there are differ
ences between the old and new versions, this technique is
sometimes called “diff-patching.” Herein, the differences
between the old and new versions are called the “delta” (A),
thus this diff-patching technique may be called "delta-patch
ing' (or "A-patching').
The problem with delta-patching is accuracy. Identifying

what is and is not 1B patched is difficult. If the boundaries of
Such a patch are not accurately determined, the patched ver
sion will be different from the desired new version of the
software.
As a result, conventional delta-patching compromises effi

ciency to achieve accuracy. Generally, the Sub-module files,
data files, library files, and groups of such files are marked if
there is any change whatsoever within them. This means, for
example, if one line of source code is changed within a 100
Kb DLL (dynamic link library) file is changed, the entire DLL
file is replaced. This is done rather than replacing the frag
ment in the existing DLL file in part because of the difficulty
in selecting the fragment that needs replacing and replacing
only that with complete accuracy. However, it is most done

10

15

25

30

35

40

45

50

55

60

65

2
because replacing the entire module is more efficient with
conventional techniques. A Small change in one little frag
ment might appear to be a change spread all over the entire
program.

Although this conventional inefficient delta-patching is
more efficient and faster than wholesale replacement of the
entire software, it still is not as efficiency as possible. It would
be more efficient to patch only those fragments of modules
and sub-modules that are different from or non-existent in the
old Software version. Examples of fragments include Subrou
tines, functions, objects, data structures, interfaces, methods,
or portions of any of these.

Invariant Fragment Detection
A prerequisite for detecting fragment deltas is the ability to

detect invariance of fragments. In other words, before a pro
gram module can be patched, one needs to determine which
fragments have not been changed across the two versions.
With knowledge of the source code for each version, detect
ing Such invariants and creating a patch is not very difficult.

However, detecting invariance of fragments becomes
much more difficult when dealing with binary manifestations
of such fragments (with no knowledge of the Source code). A
major difficulty is the existence of functionally unchanged
code that appears different in the differing versions of a pro
gram module. Code may undergo no change in its function
ality, but it may look different in the two versions due to a
variety of reasons. Examples of Such reasons include:

Changes in one region of code can cause another (un
changed) region to look different

Two Small sequences of binary code may look identical
even if they correspond to source code with different
functionality

Differences in the register allocation in the two builds
Change Begets Apparent Change

Often Small changes in one portion of the code cause a
cascade of changes in nearby and sometimes even far-off
regions of code. Consider, for example, the following two
Source fragments:

Program P1 Program P2

function f(int p) function g(int p)
inta=3, b=4: intb=4, a=3;
if (b > p) { if (b > p) {
a = p.; a = p
return a: return a:

The two functions f and g, located in the two programs P1
and P2, are really the same, apart from a difference of names.
Clearly, knowledge of the source code would establish that
the “if (bap) conditional in each fragment is the same, and
need not be patched. However, if their corresponding binaries
are examined, the offset ofb from the base of the stack would
be different in these two fragments. This is because of the
declaration of a before b in P1 differs in form from the
declaration ofb beforea in P2. Hence, the binaries of the two
fragments will not be identical, evenifeverything else was the
same. Of course, these differences in form are irrelevant in
substance, but their resulting binaries are different neverthe
less.

US 7,681,190 B2
3

Now consider the following snippets:

Program P1 Program P2

x = f(10) X = g(10)

Assume, for this example, that the functions f and g are
defined as in the previous example. Here again, the two calls
are identical, because the functions being called as well as the
call arguments are identical. However, if the identity off and
g is not known, then the identity of the calls above will also
not be discovered. This is an example of how local changes
can cascade through potentially far-off regions of code.
Appear Identical, but Are Not

At times, two binary fragments may look identical even
though they correspond to different regions in the structure of
the corresponding programs. Consider the following:

Program P1 Program P2

inta = atoi (argV1);
int b = atoi (argV2);
if (a < 10) return;
if (b < 20) return;

int b = atoi (argV2);
if (b < 10) return;

The conditionals “if (ak10)” in P1 and “if (b<10)” in P2
might both translate to the same binary code, even though
their functionality is different (as is seen clearly by examining
their source code). This happens because the offset ofb on the
stack in P2 may be the same as that of a on the stack of P1. The
two variables are clearly different, being defined by different
program arguments, as can be see in the context above them.
However, comparing their binary equivalents without refer
ence to the Source code context above can give the illusion of
an identity. A representation of the binary equivalent might
look something like:

mov eax, dword ptrebp + 8h
cmp eax, Oah
jge L.
ret
L: . . .

Register Allocation
Another problem in detecting identity of binary fragment is

caused by register allocation. A change in a portion of code
may cause the register allocation to change in nearby regions,
even though these latter regions have not been modified.
Therefore, when comparing binaries, one has to consider the
possibility that what looks like a change of register operands
may in fact be an identity disguised by a simple renaming of
registers.

SUMMARY

Described herein is a technology for generating a mini
mum delta between at least two program binaries. An imple
mentation, described herein, is given a source program (S) in
a binary format and a target program (T) in a binary form. It
constructs control flow graphs (CFGs) of each. It matches
common blocks of the S's CFGs and T’s CFGs. The blocks

10

15

25

30

35

40

45

50

55

60

65

4
are matched based upon their content and their local neigh
borhoods (e.g., d-neighborhoods). In addition, blocks are
matched using labels, which are based upon computed hash
values. The matching is done in multiple passes where each
pass improves the matching by relaxing the criteria for a
match. In addition, the register renaming problems is solved
so that blocks can be fairly compared.

This described implementation produces an intermediate
output, which is the content of unmatched blocks. Such
unmatched blocks are those found in Tthat are not found in S.
It generates a set of edge edit operations for merging the
unmatched blocks into S. The combination of the unmatched
blocks and the edit operations is the delta. To patch S to
produce a reconstructed copy of T, the delta is merged with S.

BRIEF DESCRIPTION OF THE DRAWINGS

The same numbers are used throughout the drawings to
reference like elements and features.

FIG. 1 is a schematic block diagram showing an embodi
ment of a minimum is delta generator for program binaries.

FIG. 2 is a schematic block diagram showing another
embodiment of a minimum delta generator for program bina
ries.

FIGS. 3A-C are illustrations of a simplified application of
an implementation of a minimum delta generator for program
binaries.

FIGS. 4 and 5 are illustrations of applications of imple
mentations of a minimum delta generator for program bina
ries.

FIG. 6 is a flow diagram showing a methodological imple
mentation of a minimum delta generator for program bina
ries.

FIG. 7 is a flow diagram showing another methodological
implementation of a minimum delta generator for program
binaries.

FIG. 8 is a flow diagram showing still another method
ological implementation of a minimum delta generator for
program binaries.

FIG. 9 is an example of a computing operating environ
ment capable of implementing an implementation of a mini
mum delta generator for program binaries.

DETAILED DESCRIPTION

The following description sets forth specific embodiments
ofa minimum delta generator for program binaries that incor
porate elements recited in the appended claims. These
embodiments are described with specificity in order to meet
statutory written description, enablement, and best-mode
requirements. However, the description itself is not intended
to limit the scope of this patent.

Described herein are one or more exemplary implementa
tions of a minimum delta generator for program binaries. The
inventors intend these exemplary implementations to be
examples. The inventors do not intend these exemplary
implementations to limit the scope of the claimed embodi
ments. Rather, the inventors have contemplated that the
claimed embodiments might also be embodied and imple
mented in other ways, in conjunction with other present or
future technologies.

Incorporation by Reference
The following co-pending patent applications, which were

all filed Jun. 30, 1999 and assigned to the Microsoft Corpo
ration, are incorporated by reference herein:

US 7,681,190 B2
5

U.S. patent application Ser. No. 09/343,805 entitled
“Translation and Transformation of Heterogeneous Pro
grams:

U.S. patent application Ser. No. 09/343,298 entitled
“Instrumentation and Optimization Tools for Heteroge- 5
neous Programs';

U.S. patent application Ser. No. 09/343.279 entitled
“Shared Library Optimization for Heterogeneous Pro
grams:

U.S. patent application Ser. No. 09/343,276 entitled 10
Application Program Interface for Transforming Het
erogeneous Programs'; and

U.S. patent application Ser. No. 09/343.287 entitled “Cross
Module Representation of Heterogeneous Programs”.

15 Brief Overview
An exemplary implementation of a minimum delta genera

tor for program binaries may be referred to as an exemplary
"delta-generator. The one or more exemplary implementa
tions described herein may be implemented (whole or in part)
by a delta-generator system 100 of FIG. 1 and/or by a com
puting environment like that shown in FIG. 9.

To promote efficiency and speed, an exemplary delta-gen
erator finds the minimum differences between the binary
Source and target programs and uses that to modify the Source
program. However, accuracy is not compromised for Such
efficiency and speed.

To accomplish this, the exemplary delta-generator com
pares the binary fragments of the Source and target programs.
It identifies those fragments that are the same (i.e.,
unchanged) between them. Necessarily, this also identifies
those fragments that are different (i.e., changed) between
them. The changed fragments are included in a delta. The
exemplary delta-generator patches the source with the delta to
transform the source into the target program.

25

30

35

High-Level Description of Delta-Generator System
FIG. 1 illustrates the delta-generator system 100. It shows

a binary Source program 112 and a binary target program 122.
The delta-generator system 100 reconstructs the target pro
gram 122 from the source program 112 and a delta (A) 142. 40
Presumably, the target and source programs are different
versions of the same program, so that at least some portions of
their code are common. For example, the target program may
be a newer version of the source program.
A source CFGer 110 produces a Control Flow Graph 45

(CFG) of the source program 112. CFGs are discussed in
more detail below in the “Terminology” section. Likewise, a
target CFGer 120 produces a CFG of the target program 122.
Of course, these two CFGers 110 and 120 may be a common
CFGer. 50

FIG. 1 shows a block matcher 130 that receives the source
and target CFGs as input and compares them. It matches
binary fragments found in both the source and target CFG.

The delta generator 140 identifies the remaining (i.e.,
unmatched) fragments in the target CFG that were not 55
matched as the delta (A) fragments. Collectively, the block
matcher 140 and the delta generator 150 it identify binary
fragments in the target CFG that are matched in the source
CFG or those that are unmatched in the source CFG.

In addition, the A-determiner 140 also determines how to 60
edit the source CFG to merge the Atherein. These "edits” are
part of the A142, which is the result of the A-determiner 140.

AA-patcher 150 patches the source program at the binary
level. The source program 112 is combined with the A142 to
reconstruct the target program 150. The reconstructed target 65
program 150 is identical to target program 122. It is identical
because the intended result is an identical copy of the target

6
program 122. Since this delta-generator system 100 intro
duces no inaccuracies by its efficient patching of the source
program, the copy will be identical.

FIG. 2 schematically illustrates a sample application sce
nario for the exemplary implementation of a minimum delta
generator for program binaries. FIG. 2 shows a server side
210 and a client side 220 linked via a network connection 215,
such as the Internet. The serverside 210 includes a server 212
having a copy of the binary source program (S) 112 and a
copy of the binary target program (T) 122. The client side 220
includes a client 222 having only a copy of the binary source
program (S) 112. Initially, it does not have a copy of the target
program (T) 122 or delta (A) 142.
The server 212 at the serverside 210 produces the A142, in

accordance with implementations described herein. It trans
mits such A to the client 222 at the client side 220. Represen
tations 142a and 142b (and their arrows) indicates the Abeing
transmitted from the server to the client.
The client patches S112 with the newly arrived A142 to

reconstruct T 122. Thus, with an implementation of an exem
plary delta-generator, a minimum sized delta is transmitted
over a presumably limited bandwidth network 215 for a client
to patch S to accurately reconstruct T.
Terminology
An example of a program binary (or binary program) is

binary manifestation of program module (e.g., Software). It
does not include the Source code for a program module.
A “basic block' (or simply a “block”) is a sequence of

instructions that has a single entry point (only the first instruc
tion can be reached from outside) and has one exit point, at the
last instruction. Thus, there is sequential control flow inside a
basic block. A basic block is an example of a fragment.
Specifically, it is an example of a code-fragment. A basic
block may be called a “code block.”
A Control Flow Graph (CFG) is an abstraction of a pro

gram. It is a directed graph where the nodes are the basic
blocks in the program, and the edges (often visually indicated
by arrows) representall possible control flow between blocks.
FIGS. 3A-5 include CFGs.

Contiguous areas of static data in a program are called
“data blocks” and they also form nodes in the CFG. A data
block is an example of a fragment. Specifically, it is an
example of a data-fragment.

Data blocks have static data (called the “raw' data) and
they may have pointers to other parts of the program. These
pointers could be, for example, virtual table entries of an
object. Such pointers are relocatable data, and are thus differ
ent from other static data in a data block.

In a CFG, pointers in data blocks are represented by
directed edges from the data block to the target blocks. In
addition, address operands in the instructions in a code block
are represented as edges from the code block to the block at
the corresponding address.
The content of a data block includes its raw data, but it

excludes the pointers in the block. Likewise, the content of a
code block includes its sequence of instructions, but it
excludes the address operands. The contents of the basic
blocks in a CFG, along with its edges, fully specify the pro
gram. Given any block V in a CFG P. its parents are the set
{xx->v is an edge in P}, and its children are the set {x|v ->x
is an edge in P}.
The CFG described herein contains complete information

about the layout of the program. Corresponding to the func
tions in the binary, there are procedures in the CFG each
procedure is the subgraph induced by the basic blocks of a
single function. The layout of the function (i.e., the organiza

US 7,681,190 B2
7

tion of the basic blocks in the program’s address space) is
captured by a linked list of the all the blocks of the corre
sponding procedure. Such that a traversal of the list, from head
to tail, exactly describes the order of the basic blocks in the
function's layout.
A tool V creates the CFG described herein for any given

program binary. Moreover, V may provide an interface (to the
CFG) that allows a large class of modifications to be made to
the program. These modifications include, but are not
restricted to, addition and deletion of basic blocks, modifica
tion of their contents, and changes in the edges.

Those who are of ordinary skill in the art understand how to
implement and use a tool V as described herein In addition,
the incorporated-by-reference patent applications describe
components that may be used to implement a tool like tool V.
Moreover, the following publications provide a general back
ground on CFG methodologies that the tool V may use: Aho,
Hoperoft, Ulman: “Principles of Compiler Design” and 2) A.
Aho, R. Sethi, J. Ullman, “Compilers, Principles, Tech
niques, and Tools” (1986).

In describing the one or more examples of implementa
tions of the minimum delta generator for program binaries, a
Source (S) binary of a program and a target (T) binary of a
program are discussed. The relationship of T and S may be
described mathematically as:

Diff(S.T)=A; and
Patch(S, A)=T
Or in other words as:
The difference between S and T is delta; and
When S is patched with delta, it is T.
As described herein, the exemplary implementations fully

minimize A while maintaining the ability to achieve complete
accuracy in patching S to reconstruct T. Herein, with regard to
patching, “complete accuracy” (and “substantially identical
or similar terminology) allows for insubstantial differences
between the original T and the reconstructed T.
Matching
A prerequisite for detecting changes between binary pro

grams (such as S and T) is the ability to detect identity of
binary fragments. In other words, before a program module
can be patched, one needs to determine which fragments have
not been changed across the two binary programs. For
example, one may detect the identity of a fragment in a
program module by finding the same unchanged fragment in
another program module (presumably an earlier or later ver
sion of the same module).

SIMPLE EXAMPLE

FIGS. 3A-3C illustrate a simple example of a methodologi
cal implementation of the exemplary delta-generator. In this
example, the initial goal is to compute a A 330 for the input
lists source (S) 310 and target (T) 320.

FIG. 3A shows source 310 and it includes six nodes, 311
316; and the contents of those nodes are H, O, O, V, E, R,
respectively. Target 320 includes six nodes, 321-326; and
contents of those nodes are H, O, O, P. E. R., respectively.
Compared to the source 310, the target 320 is largely
unchanged. The difference is node 314 (containing “V”),
which is missing in the target but is replaced by node 324
(containing “P”)
The exemplary delta-generator matches nodes that have

not changed. Based on content and relative positioning, each
node is matched (i.e., identified) except for the nodes 314 and
324. For example, node 311 and 321 match because their
content (specifically, “H”) and relative position are identical.

10

15

25

30

35

40

45

50

55

60

65

8
Likewise, nodes 312 and 312 match, nodes 313 and 313,
nodes 315 and 315, and nodes 316 and 316.
As shown in FIG. 3A, the delta 330 includes the content

(“P”) of node 324 as the content of node 337. The delta 330
also includes "edits” that specify how the new node is patched
into the source. Specifically, delta330 specifies “ADDEDGE
(313,337); ADDEDGE(337,315) within edit-box 339.

FIG. 3B shows that there are two edges to be added to
source 310 after inserting the new node 337. Thus, the delta
contains the edit operations ADDEDGE(313, 337), which
translates to adding an edge 339a from the node 313 in the
source 310 to the new node 337, and ADDEDGE(337,315),
which specifies the addition of link 339b from node 337 to
node 315 in the source.

FIG. 3C illustrates a combination of the source and the
delta at 340a. The addition of the delta (new node 337 and the
two new edges (339a and 339b)) transforms the source to an
exact copy of list target 320. That exact copy of the target may
be called a reconstructed target 340b.

Comparing FIGS. 3B and 3C, one notices the deletion of
edge 314a between nodes 313 and 314 of the source and the
deletion of edge 314b between nodes 314 and 315 of the
source. This deletion is implicit by the addition of edges 339a
and 339b.

Finding Matching Blocks
A good matching of blocks is one that minimizes the num

ber of edit operations. If two blocks are matched based on
content similarity alone, there might not be a good match.
This is because there are usually multiple blocks in the source
as well as target with identical content, differing only in their
location in the respective graphs. For example, consider the
subgraphs shown in FIG. 4.

FIG. 4 shows subgraphs of source 410 and target 420. In
terms of content, assume, for this example, that all the blocks
in each of the following groups are identical: (412, 416,422),
(413,417,423), (414,418, 424), (411,421), (415,425). Also,
assume, for this example, that two blocks can be matched
only if they are identical in content. If block 422 is matched
with block 412 (which both contain 'A'), then the best match
ing of the other blocks is

block 411 (D) with block 421 (D):
block 415 (E.) with block 425 (E.):
block 413 with block 423 (which both contain “B”); and
block 414 with block 424 (which both contain “C”).
In this case, no edit operations are needed, since the local

edge structure is preserved under this matching. On the other
hand, if block 422 is matched with block 416 (which both
contain 'A'), the best matching of the other blocks is

block 411 (D) with block 421 (D):
block 415 (E.) with block 425 (E.):
block 417 with block 423 (which both contain “B”); and
block 418 with block 424 (which both contain “C”).
The edit operations are Delete(411, 412), Add(422, 416),

Delete(416,419), Add(416,415). Herein, Delete(a,b) means
“delete the edge from node a to node b. Similarly, Add(a,b)
means "add an edge from node a to node b.
The above examples are based upon content alone. These

examples do not consider the blocks Surrounding each block.
Those surrounding blocks may be called the block's neigh
borhood or local neighborhood. These examples illustrate
that the conventional matching approaches that are based
upon contentalone do not produce a good matching of blocks.
It may even produce incorrect matching.

Consequently, the exemplary delta-generator considers
neighborhoods of blocks while matching them.

US 7,681,190 B2
9

Neighborhood Consideration
The exemplary delta-generator matches blocks based on

their content and neighborhood. In fact, it makes several
passes of the source and target CFGs, considering neighbor
hoods of decreasing sizes in each pass. Matching based on
larger neighborhood sizes first is desirable—it produces
matches that are more accurate. In a final pass, blocks are
matched based on their content alone, after matching based
on neighborhood has been examined. Although not a require
ment, matching content last is advantageous because the
overhead of recording an unmatched block is usually greater
than the size of the edit operations required after it has been
matched with any arbitrary block that has identical content.

To detect identical content of blocks, begin by obtaining is
the sequence of instruction opcodes for code blocks and the
raw, non-relocatable data for data blocks. As mentioned ear
lier, address operands are not considered part of content,
because addresses usually change even though the referred
blocks remain same. This problem is handled by considering
address operands as edges in the CFG.

Register operands may be tricky to handle. Addition or
deletion of some blocks may change the register allocation in
some other nearby regions of the CFG, even though no
change was made in these regions. Such operands are
matched modulo a possible register-renaming, using register
flow analysis of each graph. Since offsets of stack variables
usually change because of changes in the local variable dec
larations, they present a problem. To address this problem, the
exemplary delta-generator matches blocks even if certain
immediate operands is have changed. In each of the above
cases, when the sequence of operand types remains same, the
content of code blocks is considered unchanged.

Ani-neighborhood (i.e., local neighborhood) of a node V in
a CFG P is the set of blocks that are at distancesi from V in the
undirected graph corresponding to P. Thus, for example, a
0-neighborhood is the set {v} and a 1-neighborhood is V and
its parents and children. The exemplary delta-generator com
putes, while attempting to find a match for a block, its
d-neighborhood, for different values of d. Leta child edge for
block V be an edge from V to one of its children, and a parent
edge be an edge from a parent of V to V.
The exemplary delta-generator computes the i-neighbor

hood of V doing a breadth first traversal of the CFG, starting
from the node V. It traverses child edges as well as parent
edges (in the reverse direction) of blocks until it is at a dis
tance greater thani from V. Alternatively, the exemplary delta
generator may ignore all parent edges, and traverses only
child edges to compute the neighborhood.

For instance, consider the first block V in a procedure fin S
that is called from three different blocks, b, band b. Sup
pose all these blocks, as well as the procedure f remain
unchanged in T, but an extra call is added to f from the block
ba. The i-neighborhood (for ile 1) of V changes because of this
extra call, and thus, V may remain unmatched because of it.

However, assume, for this example, that f itself did not
undergo any changes, and hence, it might be advantageous to
ignore the parents of V while computing its neighborhood. At
times, the neighborhood may exclude any blocks that are in a
different procedure.

In general, the larger the neighborhood size considered, the
more accurate is the match, in terms of resolving ambiguities
in matching candidates. However, it leads to fewer matches,
which is undesirable. Hence. The exemplary delta-generator
uses Small neighborhood sizes (typically three or less), along
with a longer random component, which is obtained by doing
a “random walk’ that is described later. This "random walk'
heuristic has been empirically observed to perform well.

5

10

15

25

30

35

40

45

50

55

60

65

10
One example of a “random walk” is illustrated by the

following: Suppose a person has to do a random walk on a
straight road with several bus-stations A.B. . . N (in that
order) on it. The person starts at A (one end of the road). Since
this person can only go to the right, the person must go
right to B. Now, at B, there are two options go left (to A)
or right (to C). In the uniform random walk model, an unbi
ased coin is tossed and the person decides to go one way if its
heads and the other if its tails. If the person keeps doing this
at every station she reaches, then the person has performed a
random walk.
The same idea can easily be extended to a general graph

instead of a straight line. Here is heuristic based upon the
above illustration of "random walk’. Let R be the undirected
graph whose vertices are the nodes of the CFG and which has
an edge on a vertex pairifand only if the corresponding vertex
pair in the CFG has a (directed) control flow edge, in either
direction. Clearly, R is a graph with maximum degree three. It
starts at the original node W, and at any node X, takes one of the
dx edges with uniform probability. (dx is the degree of x). It
aborts when it encounters a procedure boundary (call or
branch to another procedure) or when the path length crosses
a pre-determined limit.

Consider a blockb that does not match any other block in
content. Such a block, if included in the neighborhood of any
block V, may prevent V from being matched, since in order for
V to be matched to some block, its entire neighborhood has to
be matched. The block b is called a “bad” node or an outlier.
Before performing the matching, such outliers may be filtered
out of the neighborhood of all their neighbors.
The exemplary delta-generator detects matches in several

passes of the CFGs, based on progressively relaxing criteria.
Preliminarily, the exemplary delta-generator matches the pro
cedures of S and T. based on a preliminary estimate of the
number of matching blocks. Examples of procedures are rou
tines and Sub-routines of a binary program.

This preliminary matching is performed at a global level
(i.e., blocks are matched irrespective of the procedures in
which they are located). Subsequently, blocks are matched
only if they belong to matching procedures. Such matching
may also be called local matching. The procedure match
information is also used to examine targets of call instructions
to detect if two different calls target the same function (which
may have been renamed or whose first blocks might be dif
ferent).

During a matching pass, the current matching criteria are
used to compute short hash values of each node. The hash
value of a block V is computed as follows:

Each block in its d-neighborhood (for some suitable value
ofd) is hashed based on its content to produce a label for
itself

All these labels are concatenated and the resulting string is
hashed again to produce a single label for V, which is
called the “d-label of the block.

The nodes in each graph are sorted by these labels and
blocks with identical labels and matching procedures are
matched.
Some other heuristics are used to improve the matching.

These heuristics are described herein, in particular in the
Additional Implementation Details' sections below.
Assume, for instance, two blocks c and c are said to be
corresponding children of blocks b, and b if they are the i'
children of b and b respectively, according to the above
ordering, for some i. An example of a heuristic used to refine
the matching is this: If matching blocks have corresponding
children that match in their content labels (but maybe not in
their d-labels), match those children.

US 7,681,190 B2
11

At the end of this phase, the exemplary delta-generator has
computed a partial matching of the blocks of S and T.
Computing Edits

After the matching is complete, the next phase is comput
ing the A. The toy example of FIGS. 3A-C gave a simple
illustration of computing A. FIG. 5 illustrates an example that
shows how the matching computed above may be used in
creating the A for the case of graphs (i.e., CFGs).

FIG. 5 shows subgraphs of source 510 and target 520.
Suppose the matching phase has matched these block pairs:
511 and 521 (“A”),512 and 522 (“B”),513 and 523 (“C”), and
516 and 526 (“E”). The unmatched blocks in the target sub
graph 520 are block 525 (F) and block 524 (D). If A contains
the contents of block 525 (F) and block 524 (D), and the edit
operations Add(512, 525) and Add (512, 524), the target
subgraph 520 can be reconstructed from the source subgraph
51O.
The edit operations Delete(512,514) and Delete(512,515)

need not be explicitly included in the A. They are implicitly
included. Those of ordinary skilled in the art understand that
the implicit edits may be expressly included in the A without
departing from the spirit and the scope of the claimed embodi
ments. However, the implicit edits are not included in the A of
the exemplary implementations described herein because
they unnecessarily increase the size of the A.

The exemplary delta-generator, therefore, outputs (at some
point) the contents of the unmatched blocks in the target, and
the edges that need to be added, and that comprises the A.

10

15

25

Methodological Implementation of the Exemplary Delta
Generator

FIGS. 6 and 7 shows methodological implementations of
the exemplary delta-generator performed by the delta-gen
erator system 100 (or some portion thereof). These method
ological implementations may be performed in Software,
hardware, or a combination thereof.

FIG. 6 primarily shows the “matching phase of a meth
odological implementation of the exemplary delta-generator.
FIG. 7 primarily shows the "edit' phase of a methodological
implementation of the exemplary delta-generator. The "edit
phase follows the “matching phase. The result of the "edit
phase is the delta.

FIG. 6 shows, at 620, the exemplary delta-generator
obtaining the sequence of instruction opcodes for code blocks
and the raw, non-relocatable data for data blocks. Such blocks
being blocks of procedures from source program binary (S)
612 and procedures from target program binary (T) 614.
At 624, the exemplary delta-generator computes, while

attempting to find a match for a block, its d-neighborhood, for
different values of d. In addition, the d-neighborhood is com
puted by breadth first traversal.

At 628, short hash values are computed for each node. In
addition, the exemplary delta-generator determines labels for
nodes based upon the hash values in their d-neighborhood
(i.e., local neighborhood). Also at 628, the exemplary delta
generator matches blocks even if certain immediate operands
have changed. At 630, the nodes in each graph are sorted by
these labels, and blocks with identical labels and matching
procedures are matched. At the end of this phase at 632, the
exemplary delta-generator has computed a partial matching
of the blocks of S and T. It also computes the converse, which
are the unmatched blocks.
More details about the “matching phase of this method

ological implementation of the delta-generator are provided
below in the "Additional Details' section.

FIG. 7 shows, at 720, the exemplary delta-generator
receives the content 710 of unmatched blocks in P, (i.e., a

30

35

40

45

50

55

60

65

12
procedure from target program binary), which is part of the
output from the methodological implementation of FIG. 6.
The content of a block excludes all edge information. Thus, if
an unmatched block V whose content is being recorded has
address operands (for code blocks) or pointers (for data
blocks), then Such operands or pointers are replaced by
“dummy’ addresses that indicate that they have to be cor
rected using the edge edit information.
P and P, represent all pairs of procedures (in S and T

respectively) that are matched by the matching phase. For any
pair, P is the procedure from the source and P, is the matching
procedure from T. The exemplary delta-generator receives a
pair of procedure P 712 in source program binary (S) and
procedure P, 714 in source program binary (T).
At 730, all the information necessary to reconstruct a

linked list of P, from a linked list of P is recorded as part of the
computed A. The layout (i.e., arrangement of blocks) of each
procedure in the programs address space is captured by a
linked list of blocks, such that a sequential traversal of this
list, from head to tail, can exactly describe the layout of the
procedure. The first taskin reconstructing P. from P would be
to reconstruct the linked list of P. from the linked list of P.
Hence, all the information necessary to reconstruct one linked
list from the other is recorded as part of the computed A.
At 732, edge edit operations are calculated. An edge edit

operation, as mentioned above, is an explicit addition of an
edge (rather than an implicit deletion). Each edge can be fully
specified by its source and target. Within the context of edits,
the term “source” refers to the exact operand (for code blocks)
or relocatable word (for data blocks) that this edge represents.
In addition, within the context of edits, the word “target' on
the other hand represents the block whose address this oper
and or relocatable word refers to. The exemplary delta-gen
erator records an edited edge (an edge that has been added or
deleted) by recording unique identifiers for the source and the
target in separate lists.
The delta for a given procedure (P) in the source is out

putted at 734. Such delta includes the unmatched blocks in P,
and the edge edit operations calculated at 732.
The above methodological implementation of the "edit

phase of the exemplary delta-generator records sufficient
information to reconstruct the target program binary up to
Some minor changes in register names, immediate values, and
instruction opcodes. These changed register names, immedi
ate values, and opcodes are recorded in separate lists.
Additional Implementation Details
The matching phase of the exemplary implementation

makes several passes of the CFGs, each of which is described
in more detail below.

Multiple-Pass in the Matching Phase
Each pass in the matching phase uses different criteria for

comparing blocks in Sand P. and it does so by computinghash
values or labels for each block. In the exemplary implemen
tation, two exemplary Sub-processes are employed and called
in several passes. Herein, they are called ComputeLabel and
Compute Label.

ComputeLabel: Computes the hash value of the content of
a block. This is also called the content label of the block. It
uses a standard hash to calculate the hash value. An example
of such a standard hash is MD5, which produces 16 byte
strings as the hash of a given String of bytes.

This exemplary Sub-process, called ComputeLabel, is
parameterized to allow different matching criteria, and the
Boolean parameters are: Immediate, RegisterChain, Opcode
String and ProcId. Immediate indicates whether the immedi
ate operands in a code block are to be used in hashing. Simi

US 7,681,190 B2
13

larly, RegisterChain specifies whether register renaming is to
be used, and OpcodeString indicates whether an opcode is
represented by its precise name or its group identifier (“group
id’).

Using group ids for similar opcodes catches Small changes
in instructions so that do not affect the functionality. For
example, considera portion of Swhere the only change is that
an instructionige eax, 10” has changed to “le eax, 10. This
could happen, for instance, if a bug was discovered where the
direction of the inequality was incorrect. In such cases, both
ge and le can be represented by their opcode group
branch and the corresponding blocks might be matched as a
result.

The fourth parameter, ProcId indicates whether procedure
matching has already been done, in which case procedures
have unique identifiers that match for matching procedures. If
this parameter is set, function call targets are represented by
their procedure identifiers. An example of the pseudo-code is
for the sub-process ComputeLabel is:

ComputeLabel (Block, Immediate, RegisterChain, OpcodeString, ProcId)
If (Block is a data block)

Iterate through each Relocatable word in Block, and clear it
to Zero.

Hash the resulting data buffer and return the hash value.
Endif
If (Block is a code block)

Create a buffer that may hold the data to be hashed.
For each instruction except the last:

If (OpcodeString is true)
Record the opcode string in the buffer

Else
Record the opcode group in the buffer

End
For each operand in the instruction

Case OperandType
Pointer: Record the constant string “Block'.
Register: If (RegisterChain is true)
Record the register flow id and

register flow id is defined (computed earlier)
Else

Record the register name.
Endif

Immediate: If (Immediate is true)
Record the immediate constant

Endif
End

End
End

For the last instruction :
If (Opcodestring is true)

Record the opcode string in the buffer
Else

Record the opcode group in the buffer
End
If (ProcId is true)

Compute the target block of the instruction.
If the target is in a different procedure

Record the procedure id of the target procedure
Endif

Endif
End
Hash the buffer and return the hash value.

Endif
End ComputeLabel

ComputeDLabel: Computes the hash value based on con
tent as well as neighborhood. This examines the entire
already-computed neighborhood (including the root node)
and concatenates their content labels. It then returns the hash
value of this concatenated list.

10

15

25

30

35

40

45

50

14
The implementation uses a standard hash to calculate the

hash value. An example of such a standard hash is MD5,
which produces 16 byte strings as the hash of a given String of
bytes.
Additional Details about the Methodological Implementation
of the Matching Phase of the Exemplar Delta-Generator

FIG. 8 illustrates the broad methodological implementa
tion of the matching phase of the exemplary delta-generator.
This broad methodological implementation may be per
formed by the delta-generator system 100 (or some portion
thereof). This broad methodological implementation may be
performed in software, hardware, or a combination thereof.

Additional details of this broad methodological implemen
tation are described below:

Task 1 (810 of FIG. 8): Preliminary Matching of Basic
Blocks

This task (810 of FIG. 8) matches basic blocks at a global
level.

For each block in S as well as T, the exemplary delta
generator calls ComputeLabel and assigns it a content
label. Each of the four parameters to ComputeLabel is
false at this stage.

The exemplary delta-generator matches blocks of S with
blocks of T based on the computed labels. Duplicate
blocks in S (i.e., blocks having the same hash value) are
matched to any of the blocks in T that have the same
label. Whenever two blocks are matched, each of them is
assigned a unique Matchld for reference later. Blocks
that are unmatched after this task are designated as out
liers.

The exemplary delta-generator computes d-neighbor
hoods (d=2) for each block, by doing a breadth-first
traversal that starts at this block. The traversal visits
parents of a block if it has no children.

The exemplary delta-generator filters out bad nodes com
puted above from all d-neighborhoods.

The exemplary delta-generator calls ComputeDLabel for
each block and assigns it a d-label, which is the value
returned from the call.

The exemplary delta-generator matches blocks of S and T
that have identical d-labels.

Any two matching blocks, b and b must have the same
number of out-edges. Let these out-edges be ordered by
their location in the blocks. Two blockSc and care said
to be corresponding children of blocks band b if they
are thei" children ofb and b respectively, according to
the above ordering, for some i. The exemplary delta
generator refines the matches by using the following
rule: If matching blocks have corresponding children
that match in their content labels (but maybe not in their
d-labels), match those children.

Task 2 (812 of FIG. 8): Matching Procedures
This task (812 of FIG. 8) uses the preliminary match com

55 puted above to match procedures.

60

65

The exemplary delta-generator iterates through each pro
cedure P, in T, and computes, for each procedure P in S.
the number m of blocks in P, that match blocks in P.

The exemplary delta-generator matchs procedure pairs
based on their my values. The my values may also be
called the procedure-matching-criteria. The technique
for matching procedures using my values is discussed
below.

The exemplary delta-generator assigns the same unique
identifiers to matching procedures. The exemplary
delta-generator assigns unique identifiers to all other
procedures also.

US 7,681,190 B2
15

An exemplary delta-generator for matching procedures
meets this condition: Given any P and any two P, and P, if
P is matched to P, then either M2m, or P is matched to
Ps Such that m2m. The following technique satisfies the
condition:

Create (P. P. m.) triplets W. and sort them on m. and
Iterate through the sorted list of triplets in the descending

order. At any iteration, if P and P are both unmatched,
match them.

Task 3 (814 of FIG. 8): Local Matching of Basic Blocks
This task (814 of FIG. 8) uses the procedure matching

information obtained in the previous task to compute local
matching of blocks (i.e., blocks are matched only between
matching procedures).

Start with no blocks matched. For each blockinS as well as
T, the exemplary delta-generator calls ComputeLabel
and assigns it a content label. The Immediate, Opcode
String and ProcId parameters are true when calling
ComputeLabel.

The exemplary delta-generator matches blocks of S with
blocks of Tbased on the computed content labels. Dupli
cate blocks in S (i.e., blocks having the same hash value,
are matched to any of the blocks in T that have the same
label). Whenever two blocks are matched, each of them
is assigned a unique Matchld for reference later. If a
block already has a previously assigned Matchld, reas
sign it. Blocks that are unmatched after this task are
designated as outliers.

For d=3.2.1 the exemplary delta-generator does the follow
1ng:
Computes d-neighborhood for each block, by doing a

breadth-first traversal that starts at this block. The
d-neighborhood has a random component also. The
random component is a set of blocks that are encoun
tered while performing a fixed length uniform random
walk starting at the original node. The random walk
looks only at real control flow edges and chooses one
of them with uniform probability. It aborts when it
encounters a procedure boundary (e.g., call or branch
to another procedure).

Filters out the bad nodes computed above from all the
d-neighborhoods.

Calls ComputeDLabel for each block and assign it a
d-label.

Matches blocks of Sand T that have identical d-labels. If
two blocks inT match the same block in S, only one of
them is actually matched. The tie may be broken
arbitrarily.

Improves the matching by following the guideline: If
matching blocks have corresponding children that
match in their content labels (but maybe not in their
d-labels), match those children.

At any stage, a block previously matched is not rematched
or unmatched.
The exemplary delta-generator assigns each matching pair

of blocks a unique Matchld, which is used as the content
label for those two blocks thereafter

Task 4 (816 of FIG. 8): Solving the Register Renaming
Problem

This task (816 of FIG. 8) solves the register-renaming
problem (i.e., it detects matching blocks even in the face of a
possible register renaming). The exemplary delta-generator
computes all register flow chains in SandT, and assigns each
of them an identifier. Matching blocks have their correspond
ing register flows assigned the same identifier.
The exemplary delta-generator calls ComputeLabel with

RegisterChain true and assigns each block a content label.

10

15

25

30

35

40

45

50

55

60

65

16
The exemplary delta-generator matches unmatched blocks,
based on these labels and their d-neighborhoods (d=2). The
exemplary delta-generator repeats this task until no more
matches are discovered. This is done because the new match
ing blocks may cause Some more register chains to be
assigned the same identifiers, and in turn lead to even more
matches.

Below, the section titled “Solving the Register Renaming
Problem discusses this in more detail.

Task 5 (818 of FIG. 8): The Final Pass
In this last matching task (818 of FIG. 8), any pair of blocks

with identical content label (computed in the previous tasks)
is matched.

Solving the Register Renaming Problem
For each procedure, the exemplary delta-generator com

putes its use-def chains, def-use chains, and dominator infor
mation. A use-def chain is a list that starts with a register use
and goes through all the definitions (defs) of that register that
reach this use. Similarly, a def-use chain is a list that starts
with a register def and goes through each use of the same
register, reached by this def. A block d is called a dominator
of another block b. b is reachable from d and any path to b
from the entry point of the procedure must first pass through
d. Typically, computing dominator information means com
puting all dominators of every block in the procedure.

For each basic block in each procedure, the exemplary
delta-generator looks at all the register defs in the block, and
assigns each of them an id, called the defid, which is unique
for that block. The exemplary delta-generator looks at all the
register uses in that block, and if any use has its only defin the
same block, assigns the defidentifier to this use. Thus at this
stage, all defs and some uses have ids associated with them.
There may be some register uses with undefined ids. Com
puteLabel (defined above) when called with
RegisterChain=true uses their names if the id is not defined.
The exemplary delta-generator calls ComputeLabel (with

RegisterChain=true) for each unmatched block in S and T.
and assigns the returned label to its content label. The exem
plary delta-generator computes d-neighborhoods (d 2) for
each unmatched block. The exemplary delta-generator calls
Compute Label to assign it a d-label, and matches S and T
based on the newly computed d-labels.

For any pair of code blocks (b,b) currently matched, the
exemplary delta-generator does the following:

Iterates through corresponding (located at the same place)
register defs in the two blocks.

Assigns a unique identifier (positive), unique for the entire
procedure, to each of the two defs being examined cur
rently.

These identifiers replace any previously assigned defiden
tifiers that the defs may have. The fact that two defs match is
recorded, and a single identifier is associated with both of
them.

Next, the exemplary delta-generator matches register uses
based on the newly assigned defidentifiers. For both S and T.
the exemplary delta-generator iterates through all the register
uses in each basic block. For each such use, all the defs are
examined that reach it and are not dominated by it. The
exemplary delta-generator adds up their defidentifiers and
assign the Sum to the current use’s identifier. Consequently,
each register operand, defor use, has an identifier associated
with it. Matching blocks have matching identifiers associated
with corresponding register operands. More specifically, two
register operands, that have exactly matching defs, may also
have matching identifiers even though the register names may
be different.

US 7,681,190 B2
17

If any new matches were discovered in the most recent
execution of the exemplary delta-generator calling Compute
Label with RegisterChain=true (described above), the pro
cess loop back to there.
Additional Details about the Methodological Implementation
of the Edit Phase of the Exemplary Delta-Generator
The exemplary delta-generator creates a new dummy CFG,

called bin, with a single procedure that may serve as a con
tainer for all the additional blocks of T. These blocks are, for
example, maintained in the form of a linked list.
The exemplary delta-generator traverses each block in T. in

sequence, and assigns consecutive identifiers (starting at
Zero) to each unmatched block. Also, the exemplary delta
generator dumps the unmatched blocks into bin, making Sure
that address operands in code blocks and pointers in data
blocks are modified into 'dummy addresses referring to the
blocks containing those pointers.

The exemplary delta-generator traverses each block in S, in
sequence, and assigns consecutive identifiers to each match
ing block. The same identifiers are assigned to matching
blocks in T. The identifiers assigned in this and the previous
task are called New Node Ids.

The exemplary delta-generator examines the matched
blocks of the source graph. If a block X in S matches blocky
in T. check each of its outgoing edges. For each edge X->Z,
there has to be a corresponding y->Z.

case i. Z. matches Zi: do nothing.
case ii. Z. matches ZzZ: Record the link X->Z.
case iii. Z is unmatched: Record the link X->Z.
An edge is recorded as follows. Three lists, named Tar

getId, OperandIndex and SourceProcFirstBlock are created.
If an edge x-y is to be recorded, the New Node Ids of y is
inserted into Targetld. If this edge was the i' edge in the
current procedure, i is pushed into the list OperandIndex.
Finally, if any procedure P in S has at least one edge being
recorded, the New Node Id of its first block is pushed into
SourceProcFirstBlock.
The exemplary delta-generator examines all the

unmatched blocks in the target graph. The exemplary delta
generator looks at each of its outgoing edges X sy. Ify is also
an unmatched block, the exemplary delta-generator creates
an edge in bin going from X toy. Ify matches Z in the Source
graph, the exemplary delta-generator records the link X Zby
pushing the New Node Id of Z into a list called TargetOper
and Targets.

For each procedure P in Sthat has a matching procedure P,
in T, the exemplary delta-generator traverses the linked list of
the blocks of P. At any point in the traversal, if ptr. and ptra
point to the current node and its next node in T. let mptr. and
mptr be their matching pointers. Ifptr points to block X in
T, its matching pointer mptr points to its matching block in S
if there is one, or to the copy of x that has been dumped in bin.
At any stage in the traversal, if mptr and mptre point to nodes
that are not adjacent (in that order) in the list, the edge
mptr-emptra is recorded. This is done by pushing the
New Node Ids of their corresponding blocks into separate
lists called LinkedListsLeft and LinkedListsRight. In addi
tion, the New Node Id of the first block of P along with the
latter's size (in terms of number of blocks) and the number of
recorded links in P, is recorded in a separate list called Pro
cedureInfo.
The exemplary delta-generator uses the edit information

computed above, along with S to reconstruct T.
Alternatively, the exemplary delta-generator may detect

the register names, immediate values, and instruction

10

15

25

30

35

40

45

50

55

60

65

18
opcodes that differ between the original and reconstructed
versions of T, and output these differences in a separate list
called MinorDifferences.

All these lists, together with the bin comprises the com
puted A in an exemplary implementation of the delta-genera
tOr.

Delta Compression
The above sections sufficiently describe how to recon

struct, using the exemplary delta-generator, a copy of T. given
Sand A. Like what is shown in FIG. 2, the generated A may be
transmitted from a server 212 to a client 222.

This A may be compressed to use the available bandwidth
on network 215 more efficiently. Therefore, the exemplary
delta-generator may format the patch in a way that it can be
heavily compressed. The patch is split into several parts, each
holding information of a different kind, so that each part can
be compressed separately. This approach is based on the
observation that different types of data (code vs. lists of
integers, for example) may be best compressed by different
compression algorithms (i.e., engines).

This approach may be combined with steps mentioned
above in the Additional Implementation Details' section. In
the exemplary delta-generator, the “several parts' mentioned
here are the several different lists that were mentioned in the
Edits phase above and the dummy “bin' that was mentioned
there. Each of these lists (and bin) are stored as a separate file
in one implementation, and thus compressed separately. An
example of a compression algorithm that may be used is
LZW.

It is expected to work better for large executables (of the
order of several hundred kilobytes) and our initial experi
ments show that for Such large executables. The exemplary
delta-generator produces, on the average, a Smaller patch that
any of the other available patching tools that we know of.

Examples of Applications for Exemplary
Implementations

Among the possible examples of applications for imple
mentations of the exemplary delta-generator is as a tool to
send Software upgrades or patches via media with bandwidth
constraints. With software availability on the Internet becom
ing increasingly popular every day, Such a patching tool may
be beneficial to uses of software Another possible example of
applications for implementations of the exemplary delta-gen
erator is in the realm of anti-piracy of Software. Using an
implementation of the exemplary delta-generator, an anti
piracy tool may be able to detect similarity of programs.
Another possible exemplary application could be in analysis
of the nature of changes between different versions of soft
Wa.

Exemplary Computing Environment
FIG. 9 illustrates an example of a suitable computing envi

ronment 920 on which an exemplary delta-generator are, for
example, implemented.

Exemplary computing environment 920 is only one
example of a Suitable computing environment and is not
intended to Suggest any limitation as to the scope of use or
functionality of an exemplary delta-generator. Neither should
the computing environment 920 be interpreted as having any
dependency or requirement relating to any one or combina
tion of components illustrated in the exemplary computing
environment 920.
The exemplary delta-generator is operational with numer

ous other general purpose or special purpose computing sys
tem environments or configurations. Examples of well known

US 7,681,190 B2
19

computing systems, environments, and/or configurations that
are, for example, Suitable for use with an exemplary delta
generator include, but are not limited to, personal computers,
server computers, thin clients, thick clients, hand-held or
laptop devices, multiprocessor Systems, microprocessor
based systems, set top boxes, programmable consumer elec
tronics, network PCs, minicomputers, mainframe computers,
distributed computing environments that include any of the
above systems or devices, and the like.
An exemplary delta-generator are, for example, described

in the general context of computer-executable instructions,
Such as program modules, being executed by a computer.
Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform par
ticular tasks or implement particular abstract data types. An
exemplary delta-generator may also be practiced in distrib
uted computing environments where tasks are performed by
remote processing devices that are linked through a commu
nications network. In a distributed computing environment,
program modules are, for example, located in both local and
remote computer storage media including memory storage
devices.
As shown in FIG. 9, the computing environment 920

includes a general-purpose computing device in the form of a
computer 930. The components of computer 920 may
include, by are not limited to, one or more processors or
processing units 932, a system memory 934, and a bus 936
that couples various system components including the system
memory 934 to the processor 932.

Bus 936 represents one or more of any of several types of
bus structures, including a memory bus or memory controller,
a peripheral bus, an accelerated graphics port, and a processor
or local bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus also known as
Mezzanine bus.
Computer 930 typically includes a variety of computer

readable media. Such media are, for example, any available
media that is accessible by computer 930, and it includes both
Volatile and non-volatile media, removable and non-remov
able media.

In FIG.9, the system memory includes computer readable
media in the form of volatile memory, such as random access
memory (RAM) 940, and/or non-volatile memory, such as
read only memory (ROM) 938. A basic input/output system
(BIOS)942, containing the basic routines that help to transfer
information between elements within computer 930, such as
during start-up, is stored in ROM 938. RAM 940 typically
contains data and/or program modules that are immediately
accessible to and/or presently be operated on by processor
932.
Computer 930 may further include other removable/non

removable, Volatile/non-volatile computer storage media. By
way of example only, FIG. 9 illustrates a hard disk drive 944
for reading from and writing to a non-removable, non-volatile
magnetic media (not shown and typically called a "hard
drive'), a magnetic disk drive 946 for reading from and writ
ing to a removable, non-volatile magnetic disk 948 (e.g., a
“floppy disk’), and an optical disk drive 950 for reading from
or writing to a removable, non-volatile optical disk 952 such
as a CD-ROM, DVD-ROM or other optical media. The hard
disk drive 944, magnetic disk drive 946, and optical disk drive
950 are each connected to bus 936 by one or more interfaces
954.

5

10

15

25

30

35

40

45

50

55

60

65

20
The drives and their associated computer-readable media

provide nonvolatile storage of computer readable instruc
tions, data structures, program modules, and other data for
computer 930. Although the exemplary environment
described herein employs a hard disk, a removable magnetic
disk 948 and a removable optical disk 952, it should be
appreciated by those skilled in the art that other types of
computer readable media which can store data that is acces
sible by a computer, Such as magnetic cassettes, flash memory
cards, digital video disks, random access memories (RAMS),
read only memories (ROM), and the like, may also be used in
the exemplary operating environment.
A number of program modules are, for example, stored on

the hard disk, magnetic disk 948, optical disk 952, ROM938,
or RAM 940, including, by way of example, and not limita
tion, an operating system 958, one or more application pro
grams 960, other program modules 962, and program data
964.

Each of such operating system 958, one or more applica
tion programs 960, other program modules 962, and program
data 964 (or some combination thereof) may include an
embodiment of an exemplary delta-generator. More specifi
cally, each may include an embodiment of delta-generator
system, comparator, edit-op determiner, and output Sub-sys
tem.

A user may enter commands and information into com
puter 930 through input devices such as keyboard 966 and
pointing device 968 (such as a “mouse'). Other input devices
(not shown) may include a microphone, joystick, game pad,
satellite dish, serial port, scanner, or the like. These and other
input devices are connected to the processing unit 932
through a user input interface 970 that is coupled to bus 936,
but are, for example, connected by other interface and bus
structures, such as a parallel port, game port, or a universal
serial bus (USB).
A monitor 972 or other type of display device is also

connected to bus 936 via an interface, such as a video adapter
974. In addition to the monitor, personal computers typically
include other peripheral output devices (not shown). Such as
speakers and printers, which may be connected through out
put peripheral interface 975.
Computer 930 may operate in a networked environment

using logical connections to one or more remote computers,
such as a remote computer 982. Remote computer 982 may
include many or all of the elements and features described
herein relative to computer 930.

Logical connections shown in FIG. 9 are a local area net
work (LAN) 977 and a general wide area network (WAN)
979. Such networking environments are commonplace in
offices, enterprise-wide computer networks, intranets, and
the Internet.
When used in a LAN networking environment, the com

puter 930 is connected to LAN 977 via network interface or
adapter 986. When used in a WAN networking environment,
the computer typically includes a modem 978 or other means
for establishing communications over the WAN 979. The
modem 978, which are, for example, internal or external, are,
for example, connected to the system bus 936 via the user
input interface 970 or other appropriate mechanism.

Depicted in FIG.9, is a specific implementation of a WAN
via the Internet. Computer 930 typically includes a modem
978 or other means for establishing communications over the
Internet 980. Modem978, which are, for example, internal or
external, is connected to bus 936 via interface 970.

In a networked environment, program modules depicted
relative to the personal computer 930, or portions thereof, are,
for example, stored in a remote memory storage device. By

US 7,681,190 B2
21

way of example, and not limitation, FIG. 9 illustrates remote
application programs 989 as residing on a memory device of
remote computer 982. It will be appreciated that the network
connections shown and described are exemplary and other
means of establishing a communications link between the
computers are, for example, used.
Exemplary Operating Environment

FIG. 9 illustrates an example of a suitable operating envi
ronment 920 in which an exemplary delta-generator may be
implemented. Specifically, the exemplary delta-generator(s)
described herein is implemented (wholly or in part) by any
program module 960-962 and/or operating system 958 in
FIG.9 or a portion thereof.
The operating environment is only an example of a Suitable

operating environment and is not intended to Suggest any
limitation as to the scope or use of functionality of the exem
plary delta-generator(s) described herein. Other well known
computing systems, environments, and/or configurations that
are suitable for use with an exemplary delta-generator
include, but are not limited to, personal computers (PCs),
server computers, hand-held or laptop devices, multiproces
Sor systems, microprocessor-based systems, programmable
consumer electronics, wireless phones and equipments, gen
eral- and special-purpose appliances, application-specific
integrated circuits (ASICs), network PCs, minicomputers,
mainframe computers, distributed computing environments
that include any of the above systems or devices, and the like.
Computer-Executable Instructions
An implementation of an exemplary delta-generator may

be described in the general context of computer-executable
instructions, such as program modules, executed by one or
more computers or other devices. Generally, program mod
ules include routines, programs, objects, components, data
structures, etc. that perform particular tasks or implement
particular abstract data types. Typically, the functionality of
the program modules may be combined or distributed as
desired in various embodiments.

Computer Readable Media
An implementation of an exemplary delta-generator may

be stored on or transmitted across some form of computer
readable media. Computer readable media can be any avail
able media that can be accessed by a computer. By way of
example, and not limitation, computer readable media may
comprise "computer storage media' and “communications
media.”
“Computer storage media' include volatile and non-vola

tile, removable and non-removable media implemented in
any method or technology for storage of information Such as
computer readable instructions, data structures, program
modules, or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to store the desired
information and which can be accessed by a computer.

“Communication media typically embodies computer
readable instructions, data structures, program modules, or
other data in a modulated data signal. Such as carrier wave or
other transport mechanism. Communication media also
includes any information delivery media.
The term "modulated data signal” means a signal that has

one or more of its characteristics set or changed in Such a
manner as to encode information in the signal. By way of
example, and not limitation, communication media includes

10

15

25

30

35

40

45

50

55

60

65

22
wired media such as a wired network or direct-wired connec
tion, and wireless media Such as acoustic, RF, infrared, and
other wireless media. Combinations of any of the above are
also included within the scope of computer readable media.
Conclusion

Although the minimum delta generator for program bina
ries has been described in language specific to structural
features and/or methodological steps, it is to be understood
that the minimum delta generator for program binaries
defined in the appended claims is not necessarily limited to
the specific features or steps described. Rather, the specific
features and steps are disclosed as preferred forms of imple
menting the claimed embodiments.
The invention claimed is:
1. A method for matching blocks between a first control

flow graph (CFG) representation of a portion of a first pro
gram and a second CFG representation of a portion of a
second program, the method comprising:

matching blocks, by one or more computing devices con
figured to match blocks between the first CFG represen
tation of the portion of the first program and the second
CFG representation of the portion of the second pro
gram, between the first and second CFG representations
based upon the content of the blocks;

detecting outliers, by one or more computing devices,
wherein outliers are blocks in the first CFG representa
tion that do not match any block in the second CFG
representation during the matching step;

computing a neighborhood, that may have a depth greater
than 1, of each block in the first and second CFG repre
sentations by performing a breadth first traversal;

removing the outliers from each neighborhood.
2. A method as recited in claim 1 further comprising:
computing labels for each block in first and second CFG

representations based upon content of a block;
for each neighborhood computed in the computing step,

forming a “d-label for each block in a neighborhood
based upon labels of the blocks within the neighbor
hood;

attempting to match blocks between first and second CFG
representations by comparing the d-labels of the blocks.

3. A computer-readable storage medium storing computer
executable instructions that, when executed by a computer,
performs the method as recited in claim 1.

4. A method for matching procedures between a first con
trol flow graph (CFG) representation of a portion of a first
program and a second CFG representation of a portion of a
second program, wherein a procedure comprises multiple
blocks in a CFG representation, wherein each block of each
procedure has its own defined sequence of executable instruc
tions with a block's first instruction being its single entry
point and its last instruction being its single exit point, the
method comprising:

computing, by one or more computing devices configured
to match procedures between the first CFG representa
tion of the portion of the first program and the second
CFG representation of the portion of the second pro
gram, a procedure-match-criterion for each procedure in
the second CFG representation, where the procedure
match-criterion for a procedure in the second CFG rep
resentation represents the number of matching blocks
between that procedure and a specified procedure in the
first CFG representation;

matching, by one or more computing devices, procedures
in the second CFG representation with the specified

US 7,681,190 B2
23

procedure in the first CFG representation based upon the
procedure-match-criteria for the procedures in the sec
ond CFG representation;

attempting to match blocks in the procedure in the second
CFG representation with blocks in the specified proce
dure in the first CFG representation.

5. A computer-readable storage medium storing computer
executable instructions that, when executed by a computer,
performs the method as recited in claim 4.

6. A method for matching of blocks in a procedure of a first
control flow graph (CFG) representation of a portion of a first
program between an ostensibly matching procedure of a sec
ond CFG representation of a portion of a second program, the
method comprising:

matching blocks, by one or more computing devices con
figured to match blocks between the procedure of the

10

15

24
first CFG representation of the portion of the first pro
gram between the ostensibly matching procedure of the
second CFG representation of the portion of the second
program, between the first and second CFG representa
tions based upon the content of the blocks;

computing, by the one or more computing devices, succes
sively smaller neighborhoods of each block in the first
and second CFG representations via breadth first tra
Versals;

for each neighborhood computed in the computing step,
forming a “d-label for each block in a neighborhood
based upon labels of the blocks within the neighbor
hood;

attempting to match blocks between first and second CFG
representations by comparing the d-labels of the blocks.

k k k k k

