DÉMande internationale publiée en vertu du traité de coopération en matière de brevets (PCT)

Organisation Mondiale de la Propriété Intellectuelle
Bureau international

Date de la publication internationale
11 octobre 2001 (11.10.2001)

(51) Classification internationale des brevets :
C01F 17/00, C09C 1/00, C08K 3/30, C09D 7/12

(21) Numéro de la demande internationale :
PCT/FR01/000951

(22) Date de dépôt international : 29 mars 2001 (29.03.2001)

(25) Langue de dépôt :
français

(26) Langue de publication :
français

(30) Données relatives à la priorité :
00/04062 30 mars 2000 (30.03.2000) FR

(43) Date de la publication internationale
11 octobre 2001 (11.10.2001)

(74) Mandataire : DUBRUC, Philippe; Rhodia Services, 40, rue de la Haie-Coq, F-93306 Aubervilliers (FR).

(84) États désignés (régional) : brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet euasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Déposant (pour tous les États désignés sauf US) : RHODIA TERRES RARES [FR/FR]; Z.I. - 26, rue Chef de Baie, F-17041 La Rochelle (FR).

(72) Inventeur; et

Annexe : avec rapport de recherche internationale

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

Title: RARE EARTH SULPHIDE COMPOSITION WITH IMPROVED CHEMICAL STABILITY, PREPARATION METHOD AND USE THEREOF AS PIGMENT

(54) Titre : COMPOSITION A BASE D'UN SULFURE DE TERRE RARE A STABILITE CHIMIQUE AMELIORÉE, SON PROCEDE DE PREPARATION ET SON UTILISATION COMME PIGMENT

(57) Abstract: The invention concerns a composition based on a rare earth sulphide with improved chemical stability, its preparation method and its use as colouring pigment. The inventive composition is characterised in that it contains a rare earth sulphide support and a layer based on at least said rare earth sulphide salt, a hydroxide, an oxide of said rare earth or an oxygen and/or hydroxy derivative thereof, the salt, the hydroxide, the oxide and the derivative being insoluble in water and/or in alcohols. Said composition is obtained by acid attack of said support surface optionally followed by neutralisation.

Abbrégé : La présente invention concerne une composition à base d’un sulfure de terre rare à stabilité chimique améliorée, son procédé de préparation et son utilisation comme pigments colorant. La composition de l’invention est caractérisée en ce qu’elle contient un support à base d’un sulfure de terre rare et une couche à base d’au moins un sel de la terre rare du sulfure précité, d’un hydroxyde, d’un oxyde de cette terre rare ou d’un dérivé oxyde et/ou hydroxyde de ceux-ci, le sel, l’hydroxyde, l’oxyde et le dérivé étant insolubles dans l’eau et/ou dans les alcools. Cette composition est obtenue par une attaque acide de la surface du support précité éventuellement suivie d’une neutralisation.
COMPOSITION A BASE D'UN SULFURE DE TERRE RARE A STABILITE
CHIMIQUE AMELIOREE, SON PROCEDÉ DE PREPARATION ET SON
UTILISATION COMME PIGMENT

RHODIA TERRES RARES

La présente invention concerne une composition à base d'un sulfure de terre rare à stabilité chimique améliorée, son procédé de préparation et son utilisation comme pigment.

Les pigments minéraux de coloration sont déjà largement utilisés dans de nombreuses industries notamment dans celles des peintures, des matières plastiques et des céramiques. Parmi ces pigments, on trouve un certain nombre de compositions contenant du soufre. Notamment, des produits à base de sulfures de terres rares ont déjà été proposés par la Demanderesse comme substituts à des pigments comprenant des métaux à toxicité réputée très élevée comme, notamment, le cadmium, le plomb, le chrome et le cobalt dont l'emploi devient de plus en plus sévèrement réglementé. Des compositions à base de sesquisulfures de terre rare et d'éléments alcalins ont ainsi été décrites dans EP-A-545746. Ces compositions se sont avérées être des substituts particulièrement intéressants. Toutefois, les pigments à base de soufre présentent d'une manière générale l'inconvénient de dégager de l'H₂S dans certaines applications, par exemple lors de leur incorporation dans des milieux comme les polymères ou des précurseurs de ces polymères et, dans le cas de l'incorporation dans des polymères, lorsque celle-ci se fait à une température relativement élevée, par exemple d'au moins 200°C. Il existe donc un besoin en pigments à base de soufre dont la stabilité chimique soit améliorée en ce qui concerne le dégagement d'H₂S.

Des pigments à base de sulfures de terre rare et comprenant un composé du zinc ont été mis au point par la Demanderesse et décrits dans la demande de brevet WO 97/20002. Ces pigments ont la propriété de ne dégager que des quantités très faibles d'H₂S mais il est nécessaire d'améliorer encore cette propriété et c'est donc l'objet de la présente invention.

Dans ce but, la composition selon l'invention est caractérisée en ce qu'elle contient :
- un support à base d'un sulfure de terre rare;
- une couche à base d'au moins un sel de la terre rare du sulfure précité, d'un hydroxyde, d'un oxyde de cette terre rare ou d'un dérivé oxy et/ou hydroxy de ceux-ci, le sel, l'hydroxyde, l'oxyde et le dérivé étant insolubles dans l'eau et/ou dans les alcools.

L'invention concerne aussi un procédé de préparation d'une composition du type ci-dessus qui est caractérisé en ce qu'on effectue une attaque avec un acide de la
surface du support précité et en ce qu'on fait éventuellement suivre cette attaque d'une neutralisation.

D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer.

Pour la suite de la description, on entend par terre rare les éléments du groupe constitué par l'yttrium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71.

La composition selon l'invention comporte tout d'abord un support, formant noyau, à base d'un sulfure de terre rare.

Le support peut être à base d'un sulfure de terre rare du type Ln₂S₃, Ln étant la terre rare, comme décrit dans EP-A-203838.

Ce support peut être aussi un sulfure de terre rare et d'alcalin. Il peut s'agir plus précisément d'un sulfure de formule ALnS₂ dans laquelle A représente au moins un alcalin et Ln au moins une terre rare. On peut citer plus particulièrement ceux de formules suivantes : KLaS₂, NaCeS₂.

Selon une variante préférée, le sulfure contient au moins un élément alcalin et/ou alcino-terreux dont une partie au moins est incluse dans le réseau cristallin dudit sulfure. Ce sulfure peut être plus particulièrement un sesquisulfure. On pourra se référer à la demande de brevet européen EP-A-545746 dont l'enseignement est incorporé ici.

On peut rappeler pour cette variante que l'élément alcalin peut être choisi notamment parmi le lithium, le sodium ou le potassium. Bien entendu, le sulfure ou sesquisulfure peut comprendre plusieurs éléments alcalins ou alcino-terreux.

L'élément alcalin ou alcino-terreux est inclus au moins en partie dans le réseau cristallin du sulfure ou sesquisulfure. Selon un mode de réalisation particulier, l'élément alcalin ou alcino-terreux est inclus essentiellement ou totalement dans le réseau cristallin.

Le sesquisulfure peut posséder notamment une structure cristallographique cubique de type Th₃P₄, qui présente des lacunes au niveau du réseau des cations; cette structure lacunaire peut être symbolisée en donnant aux sesquisulfures la formule M₁₀,₆₆ []₁₃,₃₃ -S₁₆ (voir notamment à ce sujet, W.H. ZACHARIASEN, "Crystal Chemical Studies of the 5f-Series of Elements. The Ce₂S₃-Ce₃S₄ Type of Structure", Acta Cryst., (1949), 2, 57).

Les éléments alcalins ou alcino-terreux peuvent être introduits dans ces lacunes cationiques, jusqu'à saturation ou non de ces dernières. La présence de cet élément au sein du sulfure ou sesquisulfure peut être mise en évidence par simple analyse chimique. Par ailleurs, les analyses en diffraction X montrent qu'il y a conservation de la phase cristalline en Th₃P₄ du sesquisulfure, avec dans certains cas, une modification
plus ou moins importante des paramètres de maille, fonction à la fois de la nature et de
la quantité de l'élément alcalin ou alcalino-terreux introduit.

Généralement, la quantité d'élément alcalin ou alcalino-terreux est d'au plus 50%
de la quantité molaire en terre rare du sulfure ou du sesquisulfure.

Selon une autre caractéristique préférée, la quantité molaire en alcalin ou alcalino-
terreux est au moins égale à 0,1%, et avantageusement comprise entre 5% et 50% et
plus particulièrement 5 et 20%, de la quantité molaire en terre rare.

Dans cette variante comprenant un sesquisulfure, la terre rare peut être plus
particulièrement le cérium ou le lanthane. Encore plus particulièrement, le sesquisulfure
de terre rare est un sesquisulfure Ce₂S₃ γ cubique.

On pourra encore citer comme sulfures de terre rare utilisables comme support
dans le cadre de la présente invention, ceux décrits dans la demande de brevet
comprennent au moins un élément alcalin et ils sont constitués de grains monocristallins
entiers de taille moyenne d'au plus 1,5µm. Ils sont obtenus par un procédé dans lequel
on met en présence au moins un carbonate ou un hydroxy carbonate de terre rare avec
au moins un composé d'un élément alcalin et on les chauffe en présence d'au moins un
gaz choisi parmi le sulfure d'hydrogène ou le sulfure de carbone. Ces produits
prientent par ailleurs une taille moyenne (granulométrie CILAS) généralement
inférieure à 2µm, plus particulièrement comprise entre 0,7 et 1,5 µm. Après une
désagglomération dans des conditions douces, la taille moyenne peut être d'au plus
1,5µm et avantageusement comprise entre 0,3 et 0,8µm.

Le support à base de sulfure de terre rare peut aussi être constitué d'un substrat
sur lequel est déposé le sulfure de terre rare. Ce substrat peut être un sussubstrat du type
mica, kaolin, silice, oxyde de titane, alumine, graphite, oxyde de fer par exemple.

Selon la caractéristique principale de l'invention, la composition comprend, outre
le support, une couche à base d'au moins un sel de la terre rare du sulfure précité, d'un
hydroxyde, d'un oxyde de cette terre rare ou d'un dérivé oxy et/ou hydroxy de ceux-ci.
Le sel est, bien entendu, différent du sulfure de terre rare du support.

Par sel, on entend un composé du type LnₐAₓ où Ln représente l'élément terre rare
et A un anion, x et y étant des nombres entiers dont la valeur dépend de la valence et
de la nature de Ln et A.

L'anion peut être plus particulièrement un anion sulfate (A = SO₄²⁻) ou un anion
orthophosphate (A = PO₄³⁻). D'autres anions peuvent aussi être envisagés comme les
anions acétate, chlorure ou fluorure.

La couche peut être à base d'un hydroxyde ou d'un oxyde de la terre rare, c'est à
dire un composé de formule Lnₓ(OH)ₙₓ y ou LnₓOₙₓ respectivement, x et y étant définis tels
que précédemment.
Par dérivés oxy et hydroxy on entend les composés qui suivent:

- les oxyxsels de formule LnₓOᵧₓAᵧ, x, y et z étant des nombres entiers dont la valeur dépend de la valence et de la nature de Ln et A;

- les hydroxysels de formule Lnₓ(OH)ᵧₓ₋₁Aᵧ, x, y et z étant définis tels que précédemment;

- les oxyhydroxysels de formule Lnₓ(OH)ₓ₋₁Oᵧₓ₋₁Aᵧ, x, y, w et z étant définis tels que précédemment;

- les oxyhydroxydes de formule LnₓOₓ₋₁(OH)ᵧ, x, y et z étant des nombres entiers dont la valeur dépend de la valence et de la nature de Ln;

10 La couche peut être à base d'un de ces composés ou d'un mélange de ceux-ci dans des proportions relatives variables.

Une condition nécessaire est que le sel de la terre rare, l'hydroxyde, l'oxyde et le dérivé soient insolubles dans l'eau et/ou dans les alcools. Par insoluble, on entend une solubilité inférieure à 10⁻⁶mole/l dans le solvant ou le milieu concerné.

15 Cette couche à base du sel, de l'hydroxyde, de l'oxyde ou du dérivé est déposée sur le support et enrobe au moins partiellement celui-ci. Cette couche enrobant le support peut ne pas être parfaitement continue ou homogène. Toutefois, de préférence, cette couche est uniforme et continue.

Par ailleurs et de préférence aussi, cette couche est d'épaisseur contrôlée. Plus précisément, l'épaisseur maximale est celle au delà de laquelle le sulfure de terre rare ainsi enrobé perdrait ses propriétés pigmentaires; généralement cette épaisseur est d'au plus 200nm. Elle peut être plus particulièrement d'au plus 100nm et de préférence d'au plus 20nm. Par ailleurs et habituellement, cette couche est d'au moins quelques nanomètres par exemple d'au moins 3nm.

20 La disposition continue, homogène et d'épaisseur contrôlée de la couche de sel, d'hydroxyde, d'oxyde ou du dérivé est obtenue notamment lorsque cette couche provient d'une attaque acide du sulfure de terre rare. En outre, dans ce cas, la liaison entre la couche et le support est particulièrement intime.

D'autres variantes de l'invention vont maintenant être décrites.

30 Selon une première variante, la composition comprend en outre une couche à base d'au moins un oxyde transparent, déposée sur le support. On pourra se référer aussi en ce qui concerne un produit de ce type comprenant une telle couche, à la demande de brevet EP-A-620254 au nom de la Demanderesse dont l'enseignement est incorporé ici.

35 Là encore, cette couche périphérique enrobant le support peut ne pas être parfaitement continue ou homogène. Toutefois, de préférence, les compositions selon cette variante comprennent une couche de revêtement uniforme et d'épaisseur
contrôlée d’oxyde transparent, et ceci de manière à ne pas altérer la couleur originelle du support avant enrobage.

Par oxyde transparent, on entend ici un oxyde qui, une fois déposé sur le support sous la forme d’une pellicule plus ou moins fine, n’absorbe que peu ou pas du tout les rayons lumineux dans le domaine visible, et ceci de manière à ne pas ou peu masquer la couleur intrinsèque d’origine dudit support. En outre, il convient de noter que le terme oxyde, qui est utilisé par commodité dans l’ensemble de la présente description, doit être entendu comme couvrant également des oxydes du type hydraté.

Ces oxydes, ou oxydes hydratés, peuvent être amorphes et/ou cristallisés.

À titre d’exemple de tels oxydes, on peut plus particulièrement citer l’oxyde de silicium (silice), l’oxyde d’aluminium (alumine), l’oxyde de zirconium (zircone), l’oxyde de titane, le silicate de zirconium ZrSiO₄ (zircon) et les oxydes de terres rares. Selon une variante préférée, la couche enrobante est à base de silice ou d’un mélange de silice et d’alumine.

Selon une seconde variante, la composition comprend en outre une couche à base d’au moins un composé du zinc déposée sur le support. Ce composé du zinc peut avoir été obtenu par réaction d’un précurseur du zinc avec de l’ammoniaque et/ou un sel d’ammonium. Le précurseur du zinc peut être un oxyde ou un hydroxyde de zinc que l’on utilise en suspension. Ce précurseur peut être aussi un sel de zinc, de préférence un sel solubile. Ce peut être un sel d’acide inorganique comme un chlorure, ou encore un sel d’acide organique comme un acétate. La forme sous laquelle se présente ce composé du zinc ainsi obtenu n’est pas connue précisément, mais on peut penser que le zinc est présent sous la forme d’un complexe zinc-ammoniaque de formule Zn(NH₃)ₓ(A)ᵧ dans laquelle A représente un anion comme OH⁻, Cl⁻, l’anion acétate ou encore un mélange d’anions, x étant au plus égal à 4 et y au plus égal à 2.

L’invention comprend en outre une troisième variante selon laquelle la composition comprend en outre du fluor.

Pour une telle composition, on pourra aussi se référer en ce qui concerne plus particulièrement la disposition des atomes de fluor à la demande de brevet EP-A-628608 au nom de la Demandérresse dont l’enseignement est incorporé ici.

Les compositions fluorées peuvent présenter au moins l’une des caractéristiques suivantes :

- les atomes de fluor sont distribués selon un gradient de concentration décroissant de la surface au cœur desdites compositions.
- les atomes de fluor sont majoritairement répartis à la périphérie externe des compositions. On entend ici par périphérie externe une épaisseur de matière mesurée à partir de la surface de la particule, de l’ordre de quelques centaines d’Angströms. On
entend en outre par majoritairement que plus de 50% des atomes de fluor présents dans la composition se trouvent dans ladite peripherie externe.

- le pourcentage en poids des atomes de fluor presents dans les compositions n'excede pas 10%, et de preference 5%.

- les atomes de fluor sont presents sous la forme de composes fluorres ou sulfofluorres, en particulier sous la forme de fluorures de terres rares ou de sulfofluorures (thiofluorures) de terres rares.

L'invention couvre bien entendu les cas combinant deux ou trois des variantes qui viennent d'etre decrites.

Dans le cas de ces variantes, la couche interne, c'est a dire la plus proche du support est generalement celle a base du sel, de l'hydroxyde, de l'oxyde de terre rare ou du derive ou encore la couche d'atome de fluor. Les autres couches peuvent etre disposees dans un ordre quelconque. Il est aussi possible que le compose du zinc, les atomes de fluor et/ou l'oxyde transparent soient present dans une meme couche, en mélange, ou encore que ces trois elements forment meme avec le sel, l'hydroxyde, l'oxyde de la terre rare ou le derive precise une seule couche unique.

Un procede de preparation de la composition de l'invention va maintenant etre decrit.

Ce procede comprend une attaque avec un acide de la surface du support.

L'acide peut etre choisi parmi ceux susceptibles d'apporter l'anion A pour former le sel, l'hydroxysel ou l'oxyhydroxysel descrits plus haut. Mais il est aussi possible de travailler avec un autre type d'acide et en presence d'un sel susceptible d'apporter l'anion A, par exemple du sulfate d'ammonium qui apportera ainsi l'anion sulfate ou encore du fluorure ou du chlorure d'ammonium.

Il est aussi possible de faire suivre l'attaque acide d'une neutralisation. Cette neutralisation est effectuee en traitant le support avec une base. On peut utiliser notamment comme base les produits du type hydroxydes d'alcalins ou d'alcalino-terreux ou l'ammoniaque. Cette neutralisation permet d'obtenir les compositions dans lesquelles la couche comporte au moins un hydroxyde de la terre rare ou un derive du type decrit plus haut. Dans le cas de cette preparation comprenant une neutralisation, il est possible de partir d'acides dont les seels de la terre rare peuvent etre solubles dans l'eau et les alcools. On peut mentionner l'acide nitrique comme exemple de tels acides.

L'attaque acide se fait generalement par mise en suspension du support dans un milieu de reaction liquide puis introduction de l'acide dans ce milieu.

Selon un mode de realisation particulier, on effectue l'attaque avec l'acide et, egalement, la neutralisation, dans un milieu alcoolique. Ce milieu alcoolique peut etre constitue par un alcool choisi parmi les alcools aliphatiques tel que par exemple le butanol ou l'éthanol.
On effectue l'attaque acide avec une quantité d'acide qui dépend de l'épaisseur de la couche de sel, d'hydroxyde, d'oxyde ou de dérivé que l'on désire former et aussi de la granulométrie du support.

L'attaque acide peut être suivie d'un mûrissement. Pendant ce mûrissement le milieu réactionnel est maintenu à température constante qui peut être comprise par exemple entre la température ambiante et 200°C, de préférence entre 20 et 100°C. La durée du mûrissement est généralement d'au plus 10 heures.

Le produit ainsi traité peut être séparé du milieu réactionnel puis séché. Le séchage ou le mûrissement à température élevée permet d'obtenir une couche à base d'oxyde de terre rare.

Dans le cas où l'attaque acide conduit à un sel, hydroxyde, oxyde ou dérivé d'une terre rare à un état d'oxydation donné, par exemple un hydroxyde de cérium III et où il existe un sel, hydroxyde, oxyde ou dérivé de cette même terre rare à un état d'oxydation supérieur, par exemple un hydroxyde de cérium IV, et plus insoluble dans l'eau que l'espèce correspondante à l'état d'oxydation inférieur de la terre rare, il est possible de réaliser l'attaque acide en présence d'un oxydant comme l'eau oxygénée par exemple On obtient ainsi un produit dont la couche comprend le sel, l'hydroxyde, l'oxyde ou le dérivé de la terre rare à l'état d'oxydation supérieur et ce produit présente une stabilité améliorée en ce qui concerne le dégagement d'H₂S.

Dans le cas de la préparation d'une composition qui comprend en outre une couche à base d'au moins un oxyde transparent, on effectue d'abord l'attaque acide puis on met en contact le support et un précurseur de l'oxyde transparent et on précipite l'oxyde transparent sur le dit support.

On pourra se reporter à l'enseignement de la demande de brevet EP-A-620254 pour la préparation d'une composition de ce type. Le principe de préparation consiste donc essentiellement à précipiter l'oxyde sur le support. Des exemples de procédés vont être donnés ci-dessous pour les différents types d'oxydes, procédés dans lesquels le précurseur de l'oxyde peut être un alcoolate.

Dans le cas de la silice on peut mentionner la préparation de la silice par hydrolyse d'un alkyl-silicate, en formant un milieu réactionnel par mélange d'eau, d'alcool, du support qui est alors mis en suspension, et éventuellement d'une base, d'un fluorure alcalin ou d'un fluorure d'ammonium qui peut jouer le rôle de catalyseur de la condensation du silicate. On introduit ensuite l'alkyl-silicate. On peut encore effectuer une préparation par réaction du support, d'un silicate, du type silicate alcalin, et d'un acide.

Dans le cas d'une couche à base d'alumine, on peut faire réagir le support, un aluminate et un acide, ce par quoi on précipite de l'alumine. Cette précipitation peut
aussi être obtenue en mettant en présence et en faisant réagir le support, un sel
d'aluminium et une base.

Enfin, on peut former l'alumine par hydrolyse d'un alcoolate d'aluminium.

Pour ce qui est de l'oxyde de titane, on peut le précipiter en introduisant dans une
suspension hydroalcoolique du support un sel de titane d'une part tel que TiCl₄, TiOCl₂
ou TiOSO₄, et une base d'autre part. On peut aussi opérer par exemple par hydrolyse
d'un titanate d'alkyle ou précipitation d'un sol de titane.

Enfin, dans le cas d'une couche à base d'oxyde de zirconium, il est possible de
procéder par cohydrolyse ou coprécipitation d'une suspension du support de cérium en
présence d'un composé organométallique du zirconium, par exemple un alcoxyde de
zirconium comme l'isopropoxyde de zirconium.

Pour la préparation d'une composition qui comprend une couche à base d'au
moins un composé du zinc, on effectue d'abord l'attaque acide puis on met en contact
ledit support, un précurseur du zinc, de l'ammoniaque et/ou un sel d'ammonium et on
dépose le composé de zinc sur le support.

Le précurseur du zinc peut être un oxyde ou un hydroxyde de zinc que l'on utilise
en suspension. Ce précurseur peut être aussi un sel de zinc, de préférence un sel
soluble. Ce peut être un sel d'acide inorganique comme un chlorure, ou encore un sel
d'acide organique comme un acétate.

Il est aussi possible d'utiliser à la fois de l'ammoniaque et un sel d'ammonium.

Selon une caractéristique intéressante, la mise en contact entre le support, le
précurseur du zinc, l'ammoniaque et/ou le sel d'ammonium se fait en présence d'un
alcool. L'alcool utilisé peut être du même type que celui mentionné dans le cas de
l'attaque acide, c'est à dire qu'il est généralement choisi parmi les alcools aliphatiques
tel que par exemple le butanol ou l'éthanol. L'alcool peut, en particulier, être apporté
avec le précurseur du zinc sous forme d'une solution alcoolique de zinc.

Selon une autre variante intéressante de l'invention, on met en contact le support,
le précurseur du zinc, l'ammoniaque et/ou le sel d'ammonium en présence d'un
dispersant. Ce dispersant a pour but d'éviter l'agglomération des particules formant
support lors de leur mise en suspension. Il permet aussi de travailler dans des milieux
plus concentrés. Il favorise la formation d'une couche homogène sur l'ensemble des
particules.

Ce dispersant peut être choisi dans le groupe des dispersants par effet stérique et
notamment des polymères hydrosolubles ou organosolubles non ioniques. On peut citer
comme dispersant la cellulose et ses dérivés, les polyacrylamides, les oxydes de
polyéthylène, les polyéthylène glycols, les polyoxypropylène glycols polyoxyéthylénés,
les polyacrylates, les alkyl phénols polyoxyéthylénés, les alcools à longues chaînes
polyoxylethylénés, les polyvinylalcools, les alkanoilamides, les dispersants du type polyvinylpyrrolidone, les composés à base de gomme xanthane.

En particulier, l'agent de fluoration peut être liquide, solide ou gazeux. De préférence, on opère sous des conditions de traitement où l'agent de fluoration est liquide ou gazeux.

A titre d'exemples d'agents fluorants convenant pour la mise en œuvre du traitement selon l'invention, on peut plus particulièrement citer le fluor F₂, les fluorures d'alcalis, le fluorure d'ammonium, les fluorures de gaz rares, le fluorure d'azote NF₃, le fluorure de bore BF₃, le tétrafluorométhane, l'acide fluorhydrique HF.

Dans le cas d'un traitement sous atmosphère fluorante, l'agent fluorant peut être utilisé pur ou en dilution dans un gaz neutre, par exemple de l'azote.

Les conditions de réaction sont choisies de préférence de manière telle que le traitement n'industre une fluoration qu'en surface (conditions douces). D'une manière pratique, on peut suivre et contrôler expérimentalement le degré d'avancement de la réaction de fluoration, par exemple en mesurant l'évolution de la prise de masse des matériaux (prise de masse induite par l'introduction progressive du fluor).

Les procédés qui viennent d'être décrits peuvent être mis en œuvre l'un à la suite de l'autre. On entend par là que l'on effectue d'abord l'attaque acide, éventuellement suivie de la neutralisation. Ensuite, on réalise éventuellement la fluoration puis le dépôt sur le support de l'oxyde transparent puis celui du composé du zinc dans cet ordre ou dans l'ordre inverse. La fluoration pourrait aussi être réalisée après le dépôt du zinc et/ou de l'oxyde transparent.

Selon une variante du procédé, le dépôt de l'oxyde transparent et du composé du zinc peuvent être réalisés simultanément en mettant en contact le support, le précurseur de l'oxyde transparent, le précurseur du zinc et l'ammoniaque et/ou le sel d'ammonium.

La présente invention concerne aussi l'utilisation comme pigments colorants des compositions décrites plus haut ou obtenues par les procédés de préparation ci-dessus.

Les compositions ou produits de l'invention possèdent en effet un pouvoir de coloration et un pouvoir couvrant et, de ce fait, conviennent à la coloration de nombreux matériaux, tels que plastiques, peintures et autres. Ils sont tout particulièrement adaptés aux formulations plastiques à caractère acide, qui peuvent donner lieu à une hydrolyse partielle du sulfore de terre rare et/ou dans lesquelles ils sont mis en œuvre à une température relativement élevée.
Ainsi, et plus précisément, ils peuvent être utilisés dans la coloration de polymères pour matières plastiques qui peuvent être du type thermoplastiques ou thermorécissables, ces polymères étant susceptibles de contenir des traces d'eau.

Comme résines thermoplastiques susceptibles d'être colorées selon l'invention, on peut citer, à titre purement illustratif, le chlorure de polyvinyle, l'alcool polyvinylique, le polystyrène, les copolymères styrène-butadiène, styrène-acrylonitrile, acrylonitrile-butadiène-styrène (A.B.S.), les polymères acryliques notamment le polyméthacrylate de méthyle, les polyléfines telles que le polyéthylène, le polypropylène, le polybutène, le polyméthylpentène, le polybutylène téréphtalate (PBT), les dérivés cellulosiques tels que par exemple l'acétate de cellulose, l'acéto-butyrate de cellulose, l'éthylcéllulose, les polyamides dont le polyamide 6-6.

Concernant les résines thermorécissables pour lesquelles les compositions selon l'invention conviennent également, on peut citer, par exemple, les phénoplastes, les aminoplastes notamment les copolymères urée-formol, mélamine-formol, les résines époxy et les polyesters thermorécissables.

On peut également mettre en œuvre les compositions de l'invention dans des polymères spéciaux tels que des polymères fluorés en particulier le polytétrafluoréthylène (P.T.F.E.), les polycarbonates, les élastomères silicones, les polyimidé.

Dans cette application spécifique pour la coloration des plastiques, on peut mettre en œuvre les compositions de l'invention directement sous forme de poudres. On peut également, de préférence, les mettre en œuvre sous une forme pré-dispersée, par exemple en prémélange avec une partie de la résine, sous forme d'un concentré pâte ou d'un liquide qui permet de les introduire à n'importe quel stade de la fabrication de la résine.

Ainsi, les produits selon l'invention peuvent être incorporés dans des matières plastiques telles que celles mentionnées ci-avant dans une proportion pondérale allant généralement soit de 0,01 à 5% (ramenée au produit final) soit de 20 à 70% dans le cas d'un concentré.

Les produits de l'invention peuvent être également utilisés dans le domaine des peintures et lasures et plus particulièrement dans les résines suivantes : résines alkylées dont la plus courante est dénommée glycéropalhtalique; les résines modifiées à l'huile longue ou courte; les résines acryliques dérivées des esters de l'acide acrylique (méthylique ou éthylque) et méthacrylique éventuellement copolymérisés avec l'acrylate d'éthyle, d'éthyl-2 hexyle ou de butyle; les résines vinylques comme par exemple l'acétate de polyvinyle, le chlorure de polyvinyle, le butyralpolyvinylique, le formaldehylpolvinylique, et les copolymères chlorure de vinylique et acétate de vinylique ou chlorure de vinyldène; les résines aminoplastes ou phénoliques le plus souvent
modifiées; les résines polyesters; les résines polyuréthannes; les résines époxy; les résines silicones.

Généralement, les produits sont mis en œuvre à raison de 5 à 30% en poids de la peinture, et de 0,1 à 5% en poids du lasuré.

Enfin, les produits selon l'invention sont également susceptibles de convenir pour des applications dans l'industrie du caoutchouc, notamment dans les revêtements pour sols, dans l'industrie du papier et des encre de l'imprimerie, dans le domaine de la cosmétique, ainsi que nombreuses autres utilisations comme par exemple, et non limitativement, les teintures, dans les cuirs pour le finissage de ceux-ci et les revêtements stratifiés pour cuisines et autres plans de travail, les céramiques et les glaçures.

Les produits de l'invention peuvent aussi être utilisés dans la coloration des matériaux à base de ou obtenu à partir d'au moins un liant minéral.

Ce liant minéral peut être choisi parmi les liants hydrauliques, les liants aériens, le plâtre et les liants du type sulfate de calcium anhydre ou partiellement hydraté.

Par liants hydrauliques, on entend les substances ayant la propriété de faire prise et de durcir après addition d'eau en formant des hydrates insolubles dans l'eau. Les produits de l'invention s'appliquent tout particulièrement à la coloration des ciments et bien entendu des bétons fabriqués à partir de ces ciments par addition à ceux-ci d'eau, de sable et/ou de graviers.

Dans le cadre de la présente invention, le ciment peut, par exemple, être du type alumineux. On entend par là tout ciment contenant une proportion élevée soit d'alumine en tant que telle soit d'aluminate soit des deux. On peut citer à titre d'exemple les ciments à base d'aluminate de calcium, notamment ceux du type SECAR.

Le ciment peut aussi être du type silicate et plus particulièrement à base de silicate de calcium. On peut donner à titre d'exemple les ciments PORTLAND et, dans ce type de ciments, les Portland à prise rapide ou très rapide, les ciments blancs, ceux résistant aux sulfates ainsi que ceux comprenant des laitiers de hauts-fourneaux et/ou des cendres volantes et/ou du méta-kaolin.

On peut aussi mentionner les ciments à base d'hémihydrate, de sulfate de calcium ainsi que les ciments magnésiens dits ciments de Sorel.

Les produits de l'invention s'utilisent aussi à la coloration des liants aériens, c'est à dire des liants durcissant à l'air libre par l'action du CO₂, du type oxyde ou hydroxyde de calcium ou de magnésium.

Les produits de l'invention s'utilisent enfin à la coloration du plâtre et des liants du type sulfate de calcium anhydre ou partiellement hydraté (CaSO₄ et CaSO₄, 1/2H₂O).

Enfin, l'invention concerne des compositions de matière colorées notamment du type plastiques, peintures, lasures, caoutchoucs, céramiques, glaçures, papiers, encres,
produits cosmétiques, teintures, cuirs, revêtements stratifiés ou du type à base ou obtenu à partir d’au moins un liant minéral, qui comprennent comme pigment colorant, une composition selon l’invention ou obtenue par un procédé du type décrit ci-dessus.

Des exemples vont maintenant être donnés.

On donne ci-dessous le test utilisé pour la mesure de l’émission d’H$_2$S.

Le test mesure la quantité de H$_2$S dégagée après extrusion du pigment avec du polyamide 6,6 commercialisé par Nyltech sous la référence A216. La température de l’extrudeuse bi-vis co-rotative est fixée à 270°C. L’extrusion est réalisée à partir d’un mélange homogénéisé contenant : 1484g de polymère, 15g de pigment (préalablement séché 4h à 130°C) et 1g d’agent collant comme le stéarate de butyle. La vitesse de rotation des vis est portée et conservée égale à 120 tours/min lors de l’extrusion. L’extrudat est ensuite granulé et 400 g sont placés dans un flacon de polyéthylène d’un litre. Après 30min de repos à température ambiante des mesures de concentrations en H$_2$S sont effectuées à l’aide de tubes “Dräger” ou “Gastec” équipés d’une pompe doseeuse. L’incertitude relative sur les mesures est de 10%.

EXEMPLE 1 COMPARATIF

Réactifs

La nature et les proportions des réactifs sont données ci-dessous. Le sulfate de cérium utilisé est un sulfate de structure γ cubique, comprenant du sodium inclus dans le réseau cristallin (rapport atomique Na/Ce = 0,2).

<table>
<thead>
<tr>
<th>Réactif</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfure de cérium</td>
<td>100 g</td>
</tr>
<tr>
<td>Éthanol 95%</td>
<td>335 g</td>
</tr>
<tr>
<td>Ammoniaque 32%</td>
<td>52 g</td>
</tr>
<tr>
<td>Fluorure d’ammonium</td>
<td>5 g</td>
</tr>
<tr>
<td>Oxyde de zinc</td>
<td>10 g</td>
</tr>
<tr>
<td>Silicate d’éthyle</td>
<td>16 g</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone K10 Mw=10000 (PVP)</td>
<td>2.5 g</td>
</tr>
</tbody>
</table>

Mode opératoire

Le sulfate de cérium est mis en suspension dans l’éthanol.

On ajoute ensuite la solution de fluorure d’ammonium et on maintient sous agitation à température ambiante pendant deux heures. On a effectué ainsi un traitement de fluoruration du sulfate.
La PVP, préalablement dissoute dans l'éthanol, est alors ajoutée à la suspension.
La solution d'ammoniaque est ajoutée, puis le zinc sous forme ZnO dispersé dans de l'éthanol. Le silicate d'éthyle est ensuite introduit de façon continue pendant deux heures.

Après la fin d'introduction du silicate d'éthyle, la suspension est maintenue 2 heures sous agitation. Les particules ainsi obtenues sont lavées à l'éthanol, puis séchées 4h à 130°C.

EXEMPLE 2

Cet exemple est un exemple selon l'invention dans lequel le support est traité avec l'acide sulfurique.

Réactifs

Le sulfure de cérium utilisé est le même sulfure que celui utilisé dans l'exemple 1.

<table>
<thead>
<tr>
<th>Sulfure de cérium</th>
<th>100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éthanol 95%</td>
<td>265 g</td>
</tr>
<tr>
<td>Ammoniaque 32%</td>
<td>52 g</td>
</tr>
<tr>
<td>H₂SO₄ 2N dilué dans l'eau</td>
<td>70 ml</td>
</tr>
<tr>
<td>Oxyde de zinc</td>
<td>10 g</td>
</tr>
<tr>
<td>Silicate d'éthyle</td>
<td>16 g</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone K10 Mw=10000</td>
<td>2.5 g</td>
</tr>
</tbody>
</table>

Mode opératoire

Le sulfure de cérium est mis en suspension dans l'éthanol.
On ajoute ensuite en 1 heure la solution d'acide sulfurique et on maintient sous agitation à température ambiante pendant 1 heure.
La PVP, préalablement dissoute dans l'éthanol, est alors ajoutée à la suspension.
La solution d'ammoniaque est ajoutée, puis le zinc sous forme ZnO dispersé dans de l'éthanol. Le silicate d'éthyle est ensuite introduit de façon continue pendant deux heures.
Après la fin d'introduction du silicate d'éthyle, la suspension est maintenue 2 heures sous agitation.
Les particules ainsi obtenues sont lavées à l'éthanol, puis séchées 4h à 130°C.
EXEMPLE 3

Réactifs

Le sulfate de cérium utilisé est le même sulfate que celui utilisé dans l'exemple 1. On effectue dans cet exemple une neutralisation en utilisant l'ammoniaque.

<table>
<thead>
<tr>
<th>Sulfure de cérium</th>
<th>100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éthanol 95%</td>
<td>251 g</td>
</tr>
<tr>
<td>Eau</td>
<td>400 g</td>
</tr>
<tr>
<td>Ammoniaque 32%</td>
<td>52 g</td>
</tr>
<tr>
<td>(\text{H}_2\text{SO}_4 \text{ N dilué dans l'eau})</td>
<td>42 ml</td>
</tr>
<tr>
<td>Ammoniaque N</td>
<td>42 ml</td>
</tr>
<tr>
<td>Oxyde de zinc</td>
<td>10 g</td>
</tr>
<tr>
<td>Silicate d'éthyle</td>
<td>16 g</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone K10 Mw=10000</td>
<td>2,5 g</td>
</tr>
</tbody>
</table>

Mode opératoire

Le sulfate de cérium est mis en suspension dans l'eau.
On ajoute ensuite en 1,5 heure la solution d'acide sulfurique et de base (ammoniaque N) et on maintient sous agitation à température ambiante pendant 0,5 heure.

La suspension est filtrée pour éliminer le maximum d'eau puis remise en suspension dans l'éthanol.
La PVP, préalablement dissoute dans l'éthanol, est alors ajoutée à la suspension.
La solution d'ammoniaque (solution à 32%) est ajoutée, puis le zinc sous forme de \(\text{ZnO dispersé dans de l'éthanol} \). Le silicate d'éthyle est ensuite introduit de façon continue pendant deux heures.
Après la fin d'introduction du silicate d'éthyle, la suspension est maintenue 2 heures sous agitation.
Les particules ainsi obtenues sont lavées à l'éthanol, puis séchées 4h à 130°C.
EXEMPLE 4

Réactifs

5

Le sulfure de cérium utilisé est le même sulfure que celui utilisé dans l'exemple 1. L’acide utilisé ici est l’acide phosphorique.

<table>
<thead>
<tr>
<th>Sulfure de cérium</th>
<th>100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éthanol 95%</td>
<td>293 g</td>
</tr>
<tr>
<td>Ammoniaque 32%</td>
<td>52 g</td>
</tr>
<tr>
<td>H₂PO₄ N dilué dans l'eau</td>
<td>42 ml</td>
</tr>
<tr>
<td>Oxyde de zinc</td>
<td>10 g</td>
</tr>
<tr>
<td>Silicate d'éthyle</td>
<td>16 g</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone K10 Mw=10000</td>
<td>2,5 g</td>
</tr>
</tbody>
</table>

10 Mode opératoire

Le sulfure de cérium est mis en suspension dans l'éthanol.

On ajoute ensuite en 1,5 heure la solution d'acide phosphorique et on maintient sous agitation à température ambiante pendant 0,5 heure.

15 La PVP, préalablement dissoute dans l'éthanol, est alors ajoutée à la suspension.

La solution d'ammoniaque est ajoutée, puis le zinc sous forme ZnO dispersé dans de l'éthanol. Le silicate d'éthyle est ensuite introduit de façon continue pendant deux heures.

Après la fin d' introduction du silicate d'éthyle, la suspension est maintenue 2 heures sous agitation.

Les particules ainsi obtenues sont lavées à l'éthanol, puis séchées 4h à 130°C.

EXEMPLE 5

25 Réactifs

Le sulfure de cérium utilisé est le même sulfure que celui utilisé dans l'exemple 1. L’acide utilisé est l’acide nitrique et on effectue une neutralisation avec de l’ammoniaque.
<table>
<thead>
<tr>
<th>Matière</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfure de cérium</td>
<td>100 g</td>
</tr>
<tr>
<td>Éthanol 95%</td>
<td>293 g</td>
</tr>
<tr>
<td>Ammoniaque 32%</td>
<td>52 g</td>
</tr>
<tr>
<td>HNO₃ N dilué dans l’eau</td>
<td>21 ml</td>
</tr>
<tr>
<td>Ammoniaque N</td>
<td>21 ml</td>
</tr>
<tr>
<td>Oxyde de zinc</td>
<td>10 g</td>
</tr>
<tr>
<td>Silicate d’éthyle</td>
<td>16 g</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone K10 Mw=10000</td>
<td>2,5 g</td>
</tr>
</tbody>
</table>

Mode opératoire

5 Le sulfure de cérium est mis en suspension dans l’éthanol.
On ajoute ensuite en 1,5 heure la solution d’acide nitrique et de base (ammoniaque N) et on maintient sous agitation à température ambiante pendant 0,5 heure.

La PVP, préalablement dissoute dans l’éthanol, est alors ajoutée à la suspension.

10 La solution d’ammoniaque (solution à 32%) est ajoutée, puis le zinc sous forme ZnO dispersé dans de l’éthanol. Le silicate d’éthyle est ensuite introduit de façon continue pendant deux heures.
Après la fin d'introduction du silicate d'éthyle, la suspension est maintenue 2 heures sous agitation.

15 Les particules ainsi obtenues sont lavées à l’éthanol, puis séchées 4h à 130°C.

EXEMPLE 6

Réactifs

20 Le sulfure de cérium utilisé est le même sulfure que celui utilisé dans l'exemple 1. L’acide utilisé est l’acide nitrique et on effectue une neutralisation avec de l’ammoniaque mais en présence d’eau oxygénée.

<table>
<thead>
<tr>
<th>Matière</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfure de cérium</td>
<td>100 g</td>
</tr>
<tr>
<td>Éthanol 95%</td>
<td>293 g</td>
</tr>
<tr>
<td>Ammoniaque 32%</td>
<td>52 g</td>
</tr>
<tr>
<td>HNO₃ N dilué dans l’eau</td>
<td>21 ml</td>
</tr>
<tr>
<td>Ammoniaque N</td>
<td>21 ml</td>
</tr>
<tr>
<td>H₂O₂ 30%</td>
<td>3 ml</td>
</tr>
</tbody>
</table>
Mode opératoire

Le sulfure de cérium est mis en suspension dans l’éthanol.

On ajoute simultanément en 1,5 heure la solution d’acide nitrique et l’ammoniaque (ammoniaque N) mélangée à l’eau oxygénée. On maintient sous agitation à température ambiante pendant 0,5 heure.

La PVP, préalablement dissoute dans l’éthanol, est alors ajoutée à la suspension.

La solution d’ammoniaque (solution à 32%) est ajoutée, puis le zinc sous forme ZnO dispersé dans de l’éthanol. Le silicate d’éthyle est ensuite introduit de façon continue pendant deux heures.

Après la fin d’introduction du silicate d’éthyle, la suspension est maintenue 2 heures sous agitation.

Les particules ainsi obtenues sont lavées à l’éthanol, puis séchées 4h à 130°C.

On donne dans le tableau ci-dessous les résultats obtenus dans le test d’émission d’H₂S.

<table>
<thead>
<tr>
<th>Exemples</th>
<th>Emissions d’H₂S (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>70</td>
</tr>
</tbody>
</table>
REVENDICATIONS

1- Composition caractérisée en ce qu'elle contient :
 - un support à base d'un sulfure de terre rare ;
 - une couche à base d'au moins un sel de la terre rare du sulfure précité, d'un
 hydroxyde, d'un oxyde de cette terre rare ou d'un dérivé oxy et/ou hydroxy de ceux-ci, le
 sel, l'hydroxyde, l'oxyde et le dérivé étant insolubles dans l'eau et/ou dans les alcools.

2- Composition selon la revendication 1, caractérisée en ce que la couche à base d'au
 moins un sel, d'un hydroxyde, d'un oxyde ou du dérivé précité a été obtenue par attaque
 acide du sulfure de terre rare.

3- Composition selon la revendication 1 ou 2, caractérisée en ce que le sel précité est
 un sulfate ou un phosphate.

4- Composition selon l'une des revendications précédentes, caractérisée en ce que le
 sulfure est un sulfure de terre rare et d'alcalin.

5- Composition selon l'une des revendications 1 à 3, caractérisée en ce que le sulfure
 contient au moins un élément alcalin et/ou alcalino-terreux dont une partie au moins est
 incluse dans le réseau cristallin dudit sulfure.

6- Composition selon la revendication 5, caractérisée en ce que le sulfure est un
 sesquisulfure de terre rare.

7- Composition selon la revendication 6, caractérisée en ce que le sesquisulfure de terre
 rare est un sesquisulfure Ce₂S₃γ cubique.

8- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle
 comprend en outre une couche à base d'au moins un oxyde transparent déposée sur le
 support.

9- Composition selon la revendication 8, caractérisée en ce que l'oxyde transparent est
 la silice ou un mélange silice-alumine.
10- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend en outre une couche à base d'au moins un composé du zinc, notamment de l'oxyde de zinc, déposée sur le support.

11- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend en outre du fluor.

12- Procédé de préparation d'une composition selon l'une des revendications précédentes, caractérisé en ce qu'on effectue une attaque avec un acide de la surface du support précité et en ce qu'on fait éventuellement suivre cette attaque d'une neutralisation.

13- Procédé selon la revendication 12, caractérisé en ce qu'on effectue l'attaque avec l'acide et, éventuellement, la neutralisation dans un milieu alcoolique.

14- Procédé selon l'une des revendications 12 ou 13 pour la préparation d'une composition qui comprend en outre une couche à base d'au moins un oxyde transparent, caractérisé en ce que, postérieurement à l'attaque acide du support et à l'éventuelle neutralisation, on met en contact le support et un précurseur de l'oxyde transparent et on précipite l'oxyde transparent sur ledit support.

15- Procédé selon l'une des revendications 12 à 13 pour la préparation d'une composition qui comprend une couche à base d'au moins un composé du zinc, caractérisé en ce que, postérieurement à l'attaque acide du support et à l'éventuelle neutralisation, on met en contact ledit support, un précurseur du zinc, de l'ammoniaque et/ou un sel d'ammonium et on dépose le composé de zinc sur le support.

16- Procédé selon l'une des revendications 12 à 15, caractérisé en ce qu'on soumet le support ou la composition à un traitement de fluoruration.

17- Procédé selon l'une des revendications 12 à 16, caractérisé en ce qu'on effectue l'attaque acide en présence d'un oxydant

18- Utilisation d'une composition selon l'une des revendications 1 à 10 ou obtenue par un procédé selon l'une des revendications 12 à 17, comme pigment colorant.

19- Utilisation selon la revendication 18, caractérisée en ce que la composition est employée comme pigment dans des matières plastiques, des peintures, des lasures,
des caoutchoucs, des céramiques, des glacures, des papiers, des encres, des produits cosmétiques, des teintures, des cuirs, des revêtements stratifiés et des matériaux à base ou obtenus à partir d'au moins un liant minéral.

20- Compositions de matière colorées notamment du type plastiques, peintures, lasures, caoutchoucs, céramiques, glacures, papiers, encres, produits cosmétiques, teintures, cuirs, revêtements stratifiés ou du type à base ou obtenus à partir d'au moins un liant minéral, caractérisées en ce qu'elles comprennent, comme pigment colorant, une composition selon l'une des revendications 1 à 10 ou obtenue par un procédé selon l'une des revendications 12 à 17.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C01F17/00 C09C1/00 C08K3/30 C09D7/12

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols):
IPC 7 C01F C09C C08K C09D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched:
Electronic data base consulted during the international search (name of data base and, where practical, search terms used):
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 2 758 545 A (RHONE POULENC CHIMIE) 24 July 1998 (1998-07-24) claim 7</td>
<td>1,4-11, 18-20</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 628 608 A (RHONE POULENC CHIMIE) 14 December 1994 (1994-12-14) page --; claim 36</td>
<td>1,4-11, 18-20</td>
</tr>
<tr>
<td>X</td>
<td>FR 2 755 971 A (RHONE POULENC CHIMIE) 22 May 1998 (1998-05-22) page 3, line 21 - line 23; claims</td>
<td>1,4-11, 18-20</td>
</tr>
<tr>
<td>X</td>
<td>FR 2 767 129 A (RHONE POULENC CHIMIE) 12 February 1999 (1999-02-12) the whole document</td>
<td>1,4-11, 18-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
* A* document defining the general state of the art which is not considered to be of particular relevance
* E* earlier document but published on or after the international filing date
* L* document which may throw doubts on priori claims or which is cited to establish the publication date of another citation or other special reason (as specified)
* O* document referring to an oral disclosure, use, exhibition or other means
* P* document published prior to the international filing date but later than the priority date claimed

* * later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* * document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* * document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
* * document member of the same patent family

Date of the actual completion of the international search: 10 July 2001
Date of mailing of the international search report: 19/07/2001

Name and mailing address of the ISA
European Patent Office, P.B. 5816 Patentlaan 2 NL-2280 HN Theil Tel. (+31-70) 340-2040, Tx 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer
Zalm, W
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 620 254 A (RHONE POULENC CHIMIE) 19 October 1994 (1994-10-19) the whole document</td>
<td>2,12</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 138407 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 672688 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6336794 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2125447 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69400196 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69400196 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 628608 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2087799 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3020331 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7011162 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 163218 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5501733 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9403293 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5123698 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0948459 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9822391 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000505039 T</td>
</tr>
<tr>
<td>FR 2767129 A</td>
<td>12-02-1999</td>
<td>AU 8989898 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1271332 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9907639 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 142241 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 664945 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5937094 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9401500 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2121428 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69400456 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69400456 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 620254 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2094628 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3021771 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2579282 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7011050 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 188370 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5401309 A</td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 C01P17/00 C09C1/00 C08K3/30 C09D7/12

Selon la classification internationale des brevets (CIB) ou a la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE
Documentation minimale consultée (système de classification suit des symboles de classement)
CIB 7 C01F C09C C08K C09D

Documentation consultée autre que la documentation minimale dans la mesure ou ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERES COMME PERTINENTS

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 2 758 545 A (RHONE POULENCE CHIMIE) 24 juillet 1998 (1998-07-24) revendication 7</td>
<td>1,4-11, 18-20</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 628 608 A (RHONE POULENCE CHIMIE) 14 décembre 1994 (1994-12-14) page --; revendication 36</td>
<td>1,4-11, 18-20</td>
</tr>
<tr>
<td>X</td>
<td>FR 2 755 971 A (RHONE POULENCE CHIMIE) 22 mai 1998 (1998-05-22) page 3, ligne 21 - ligne 23; revendications</td>
<td>1,4-11, 18-20</td>
</tr>
<tr>
<td>X</td>
<td>FR 2 767 129 A (RHONE POULENCE CHIMIE) 12 février 1999 (1999-02-12) le document en entier</td>
<td>1,4-11, 18-20</td>
</tr>
</tbody>
</table>

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

Date a laquelle la recherche internationale a été effectivement achevée 10 juillet 2001

Date d'expédition du présent rapport de recherche internationale 19/07/2001

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentaan 2 NL-2280 HV Riviwijk
Tel. (+31-70) 340-2040, Tx 31 651 epos nl
Fax. (+31-70) 340-2016

Fonctionnaire autorisé Zalm, W
<table>
<thead>
<tr>
<th>Categorie</th>
<th>Identification des documents cités, avec le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
</table>
| A | EP 0 620 254 A (RHONE POULENC CHIMIE)
19 octobre 1994 (1994-10-19)
le document en entier | 2,12 |
<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 0628608 A</td>
<td>14-12-1994</td>
<td>FR 2706476 A</td>
<td>23-12-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 138407 T</td>
<td>15-06-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 672688 B</td>
<td>10-10-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6336794 A</td>
<td>15-12-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2125447 A</td>
<td>10-12-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69400196 D</td>
<td>27-06-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69400196 T</td>
<td>05-12-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 628608 T</td>
<td>29-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2087799 T</td>
<td>16-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 302031 T</td>
<td>30-09-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7011162 A</td>
<td>13-01-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 163218 B</td>
<td>15-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5501733 A</td>
<td>26-03-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9403293 A</td>
<td>12-01-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5123698 A</td>
<td>10-06-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0948459 A</td>
<td>13-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9822391 A</td>
<td>28-05-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000505039 T</td>
<td>25-04-2000</td>
</tr>
<tr>
<td>FR 2767129 A</td>
<td>12-02-1999</td>
<td>AU 8989898 A</td>
<td>01-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1271332 T</td>
<td>25-10-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9907639 A</td>
<td>18-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 142241 T</td>
<td>15-09-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 664945 B</td>
<td>07-12-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5937094 A</td>
<td>20-10-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9401500 A</td>
<td>07-03-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2121428 A</td>
<td>17-10-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69400456 D</td>
<td>10-10-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69400456 T</td>
<td>06-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 620254 T</td>
<td>23-09-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2094628 T</td>
<td>16-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3021771 T</td>
<td>28-02-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2579282 B</td>
<td>05-02-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7011050 A</td>
<td>13-01-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 188370 B</td>
<td>01-06-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5401309 A</td>
<td>28-03-1995</td>
</tr>
</tbody>
</table>