(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 31 January 2008 (31.01.2008)

(10) International Publication Number WO 2008/012283 Al

(51) International Patent Classification: **C07C 213/08** (2006.01) **C07C 217/72** (2006.01)

(21) International Application Number:

PCT/EP2007/057559

(22) International Filing Date: 23 July 2007 (23.07.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

061 17708.5 24 July 2006 (24.07.2006)

(71) **Applicant** (for all designated States except US): JANSSEN PHARMACEUTICA NV [BE/BE]; Turnhoutseweg 30, B-2340 Beerse (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FILLIERS, Walter Ferdinand Maria [BE/BE]; Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse (BE). BROECKX, Rudy Laurent Maria [BE/BE]; Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse (BE).

(74) Common Representative: JANSSEN PHARMACEU¬ TICA NV; Turnhoutseweg 30, B-2340 Beerse (BE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(U))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(Hi))
- of inventor ship (Rule 4.17(iv))

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2008/012283 PCT/EP2007/057559

PREPARATION OF (2R,3R)-3-(3-METHOXYPHENYL)-N,N,2-TRIMETHYLPENTANAMINE

5 The present invention relates to an improved process for the preparation of (2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine which is an intermediate for the preparation of the analgesic tapentadol.

Tapentadol is the INN (International Non-proprietary Name) of *3-[(lR,2R)-3-* (dimethylamino)-1-ethyl-2-methylpropyl]phenol monohydrochloride which compound is represented by the formula :

10

20

The chemical structure of tapentadol has been disclosed in EP-A-0,693,475 as compound (+21). The synthesis of tapentadol is described in Example 1 and Example 24 steps 1 to 3 and is outlined below using the compound numbers as mentioned in said EP-A-0,693,475.

OCH₃

$$\begin{array}{c}
OCH_3 \\
\hline
Br
\end{array}$$

$$\begin{array}{c}
OCH_3 \\
\hline
THF
\end{array}$$

$$\begin{array}{c}
OCH_3 \\
\hline
(2S,3S) + (2R,3R)
\end{array}$$

$$\begin{array}{c}
OCH_3 \\
\hline
\end{array}$$

$$\begin{array}{c}
OCH_3 \\
\hline
\end{array}$$

$$\begin{array}{c} \begin{array}{c} \text{Chiral separation} \\ \hline \text{Chiralcel OD} \end{array} \begin{array}{c} \begin{array}{c} \text{OCH}_3 \\ \text{(+1)} \\ \end{array} \end{array} \begin{array}{c} \text{SOCl}_2 \end{array} \begin{array}{c} \text{OCH}_3 \\ \text{(+22)} \\ \end{array} \\ \begin{array}{c} \text{(2R,3R)} \end{array} \end{array}$$

anhydr.
$$ZnCl_2$$
NaBH₄

$$(+23)$$

$$(2R.3R)$$

$$HBr$$

$$\Delta T$$

$$(+21)$$

$$(1R.2R)$$

The synthetic precursor of tapentadol in the above scheme is (2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine (intermediate (+23) in the above scheme) which can be obtained by removing the tertiary hydroxy group of (2\(\mathbb{S}(3^{\lambda})\)-l-(dimethylamino)-3-(3-methoxyphenyl)-2-methyl-3-pentanol by consecutive conversion into the corresponding halogenide with thionyl chloride and subsequent removal of the Cl by treatment with zinc borohydride, zinc cyanoborohydride and/or tin cyanoborohydride. This procedure has the disadvantage that the halogenide compound is prepared using an excess amount of thionyl chloride which is an aggressive chlorinating agent. Moreover the hydrogenation reagents such as zinc borohydride, zinc cyanoborohydride and tin cyanoborohydride present a considerable fire and health danger when used on an industrial scale.

5

10

WO-2004/108658 discloses an alternative process for obtaining (2R,3R)-3-(3-methoxy-phenyl)-N,N,2-trimethylpentanamine by converting (2S,3S)-1-(dimethylamino)-3-(3-methoxyphenyl)-2-methyl-3-pentanol into a mixture of (2R,3R) and (2R,3S)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine as outlined below.

20 OCH₃ acid OCH₃ catalyst
$$H_2$$
 OCH₃ H_2 OCH₃

The resulting mixture of (2R.3R) and (2R,3S)-3-(3-methoxyphenyl)-N,N,2-trimethyl-pentanamine has to be separated into its individual stereoisomers in order to obtain the desired (2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine, which can then be converted into tapentadol by e.g. heating with concentrated hydrobromic acid as described in EP-A-0,693,475.

WO-2005/000788 discloses an alternative process for obtaining (2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine by converting (2S,3S)-1-(dimethylamino)-3-(3-methoxyphenyl)-2-methyl-3-pentanol into a mixture of (2R,3R) and (2R,3S)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine as outlined below.

5

10

15

20

OCH₃
heterogeneous catalyst

(2S,3S)
$$(Z)\text{-(2S)} + (E)\text{-(2S)}$$

$$\text{catalyst}$$

$$\text{H}_2$$

$$\Delta T / \Delta P$$

$$\text{OCH}_3$$
1) heterogeneous catalyst
2) catalyst / $\text{H}_2 / \Delta T / \Delta P$

$$\text{"one pot synthesis"}$$

$$(2R.3R)$$

$$(2R.3S)$$

The resulting mixture of (2R,3R) and (2R,3S)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine has to be separated into its individual stereoisomers in order to obtain the desired (2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine, which can then be converted into tapentadol by e.g. heating with concentrated hydrobromic acid as described in EP-A-0,693,475.

Both alternative processes of WO-2004/108658 and WO-2005/00078 have the disadvantage that [3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine is obtained as a mixture of the (2R,3R) and (2R,3S) stereoisomers which have to be separated in order to obtain the desired (2R,3R) stereoisomer. The undesired (2R,3S) stereoisomer cannot be converted into the desired (2R,3R) stereoisomer and has to be disposed of as chemical waste, which is economically undesirable for any industrial scale production.

The object of the present invention is to provide an improved method for the synthesis of (2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine which is more convenient and more efficient than the previously known methods.

The present invention achieves this object by providing an improved process for the preparation of (2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine, or an acid addition salt thereof, which is characterized by the steps of

a) acylating (2.\$3R)-1-(dimethylamino)-3-(3-methoxyphenyl)-2-methyl-3-pentanol

$$(R) = OCH_3$$

$$(R) = OH$$

$$(II)$$

with an acylating agent;

5

10

15

20

25

b) stereoselective hydrogenolysis of the thus obtained compound (III)

$$\begin{array}{c}
OCH_3 \\
(R) \\
\hline{ } O-acyl \\
\hline{ } (S) \\
N
\end{array}$$
(III)

using a suitable catalyst in a reaction-inert solvent in the presence of hydrogen; and c) optionally converting the thus obtained (2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine

$$(IV)$$

into an acid addition salt.

The acylating agent of step a) is an organic acyl halide or organic acid anhydride selected from acetic anhydride, acetyl chloride, trifluoroacetic anhydride, chloroacetic anhydride, chloroacetic anhydride, trichloroacetic anhydride, benzoic anhydride, benzoic anhydride, benzoic anhydride, phthalic anhydride, phtaloyl dichloride, terephthaloyldichloride, succinic anhydride, succinyl chloride, ethyl oxalyl chloride, methyl oxalyl chloride, Meldrum's acid, ethyl chloroformate, methylchloroformate,

acetylsalicyloyl chloride, or any other suitable acylating agent.

The acylation reaction of step a) may be performed in the presence of a suitable base, such as e.g. sodium carbonate, potassium carbonate or triethylamine, to capture the acid liberated during the reaction

5 The catalyst of step b) is selected from a palladium catalyst, or any other suitable catalyst such as e.g. Raney nickel, platinum, platinum on carbon, ruthenium or rhodium on carbon.

10

15

20

25

30

35

The palladium (Pd) catalyst may be a homogeneous Pd catalyst, such as for example Pd(OAc)₂, PdCl₂, Pd(PPh₃)₄, Pd(PPh₃)₂Cl₂, Pd₂(dba)₃ (tris(dibenzylidene acetone) dipalladium), palladium thiomethylphenylglutaramide metallacycle and the like, or a heterogeneous Pd catalyst, such as for example palladium on charcoal, palladium on metal oxides, palladium on zeolites. Preferably, the palladium catalyst is a heterogeneous Pd catalyst, more preferably palladium on charcoal or palladium on carbon (Pd/C). Pd/C is a recoverable catalyst, is stable and relatively inexpensive. It can be easily separated (filtration) from the reaction mixture thereby reducing the risk of Pd traces in the final product. The use of Pd/C also avoids the need for ligands, such as for example phosphine ligands, which are expensive, toxic and contaminants of the synthesized products.

The reaction-inert solvent of step b) is selected from diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran or mixtures thereof.

In an embodiment of the present invention, steps a) and b) are executed as a "one pot synthesis" procedure.

The present invention also relates to novel compounds of formula (III)

$$(R) = OCH_3$$

$$(R) = O-acyl$$

$$(III)$$

The acyl group in compounds of formula (III) represents CH3-CO-, CF3-CO-, CH₂Cl-CO-, CHCl₂-CO-, CCl₃-CO-, CH₃O-CO-, CH₃O-CO-, CH₃CH₂O-CO-, CH₃CH₂O-CO-, or meta-CH₃COO-phenyl-CO- when the acylating agent used to prepared the compounds of formula (III) as set out above is selected from acetic anhydride, acetyl chloride, trifluoroacetic anhydride, chloroacetic anhydride,

10

25

chloro acetylchloride, dichloroacetic anhydride, trichloroacetic anhydride, methyl oxalyl chloride, ethyl oxalyl chloride, methyl chloroformate, ethyl chloroformate, benzoic anhydride, benzoyl chloride, or acetylsalicyloyl chloride.

The starting material for the process of the present invention, i.e. (2S, 3R)-I- (dimethylamino)-3-(3-methoxyphenyl)-2-methyl-3-pentanol (compound 4), was prepared by reacting (2S)-3-(dimethylairrino)-l-(3-methoxyphenyl)-2-methyl-1-propanone (compound 3) with ethylmagnesium chloride in THF under Grignard reaction conditions.

OCH₃

$$+ EtMgCl$$

$$(R)$$

$$(S)$$

$$(4)$$

$$(4)$$

The reaction of the Grignard reagent with the ketone compound (3) introduces a second asymmetric carbon atom. The Grignard reaction of (2S)-3-(dimethylamino)-1-(3-methoxyphenyl)-2-methyl-1-propanone (compound 3) with an ethylmagnesium halide is highly stereospecific. The optical purity of the starting compound (3) was found to be 98.0%. Compound (4) was analysed to comprise 96.8% of the desired (2S,3R) enantiomer, less than 0.4% of the (2S,3S) enantiomer and 3.0% of the (2R,3S) enantiomer. Table 1 lists the stereoisomeric purity of the compound (4) when prepared as outlined above.

Compound (4) can be converted into compound (5) by acylating compound (4) with trifluoroacetic anhydride and subsequent hydrogenolysis over a palladium catalyst, using 2-methyltetrahydrofuran as a solvent, in a "one pot synthesis" procedure.

The optical purity of starting compound (4) was 96.8% enantiomer (2S,3R). It was found that hydrogenolysis after acylation of compound (4) is highly stereospecific to

WO 2008/012283 PCT/EP2007/057559 - 7 -

give the desired enantiomer (2R,3R)-enantiomer of compound (5) with an optical purity of 96.3%.

Additional salt formation of compound (5) further improves the optical purity of compound (5). For example, a diastereomeric excess of > 99% was achieved by converting compound (5) to its hydrochloric acid salt compound (6) using 2-propanol as crystallization solvent.

$$(R) \qquad HCI \qquad (R) \qquad HCI \qquad (R) \qquad HCI \qquad (S) \qquad (6)$$

<u>Table 1</u>: stereoisomeric purity of compounds (4), (5) and (6)

		Optical	l purity	
Compound (3)	2S-enantic	omer: 98.0	2R-enanti	omer : 2.0
	2S,3R	28,38	2R,3R	2R,3S
Compound (4)	96.8	< 0.4	~	3.0
Compound (5)	~	< 2.5	96.3	1.2
Compound (6)	~	~	99.7	0.3

15 Experimental part.

Example 1 : Synthesis of 3-(dimethylamino)-l-(3-methoxyphenyl)-2-methyl-l-propanone (1)

20

5

10

A mixture of 1-(3-methoxyphenyl)-1-propanone (240 g) in 2-propanol (584 ml) is stirred at ambient temperature. Dimethylamine hydrochloride (238.3 g) is added, followed by paraformaldehyde (109.5 g) and an aqueous HCl solution (26.5 ml, 35% w/w). The reaction mixture is heated to reflux temperature and stirred and

refluxed for 5 hours. The reaction mixture is allowed to cool to 20°C, and water (730 ml) and toluene (146 ml) are added. The upper organic layer is discarded and an aqueous NaOH solution (50% w/w, 175.2 ml) is added to the water layer while stirring for 10 minutes and keeping the temperature below 25°C. After 10 minutes the layers are allowed to separate, the upper organic layer is isolated and washed with water (219 ml). The organic layer is isolated and concentrated to obtain 3-(dimethylamino)-l-(3-methoxyphenyl)-2-methyl-l-propanone as on oily residue (294.9 g).

Example 2 : Synthesis and isolation of (2S)-3-(dimethylamino)-l-(3-methoxyphenyl)-2-methyl-l-p ropanone (3)

5

10

15

20

25

a) Compound (1) (114.7 g) in ethanol (50 ml) is added to a solution of L-(-)-dibenzoyl-tartaric acid monohydrate (188.2 g) in ethanol (950 ml) and the reaction mixture is warmed to 38°C and stirred for 48 hours at 38°C. The reaction mixture is then allowed to cool to 22°C and stirred for 14 hours at 22°C. The precipitate is filtered off, washed twice with ethanol (50 ml) and dried in vacuo at a temperature of 40° C, yielding compound (2) (207.5 g).

b) Compound (2) (202.9 g) is suspended in methyl-*tert-buty*lether (1050 ml) and diethylamine (72.4 ml) is added. The suspension is stirred for 3 hours at ambient temperature and the precipitate is removed by filtration. The filtrate is concentrated under reduced pressure, yielding (2S)-3-(dimethylamino)-l-(3-methoxyphenyl)-2-methyl-1-propanone (3) as an oil (73.9 g).

An alternative procedure to procedure b:

c) Compound (2) (312.8 g) is suspended in 2-methyltetrahydrofuran (405 ml) and water (540 ml). Aqueous NH_4OH (93 ml, 51% w/w) is added and the mixture is then allowed to stir for 30 minutes. The layers are separated and the isolated upper organic layer is washed with water (100 ml), then concentrated under reduced pressure, yielding (2S)-3-(dimethylamino)-l-(3-methoxyphenyl)-2-methyl-l-propanone (3) as a yellow oil (109.0 g).

Compound (3) prepared according to procedure of Example 2 typically has an enantiomeric purity of 97% or higher.

Example 3: Synthesis of (2£3/?)-l-(dimethylamino)-3-(3-methoxyphe nvl)-2-methyl-3-pentanol (4)

OCH₃

$$+ EtMgCl$$

$$THF$$

$$(3)$$

$$(4)$$

15

20

25

5

10

A solution of EtMgCl in THF (242 ml, 2M) was stirred and cooled to 2° C. Compound (3) (101.3 g, 0.44 mole) was slowly added over a period of 50 minutes while the temperature of the reaction mixture was kept below 25° C. The mixture was stirred for 3 hours at 22° C, then slowly quenched in a mixture of ice-water (352 ml) and acetic acid (63.9 ml). The mixture was stirred for 30 minutes at ambient temperature, then aqueous NH₄OH (98.8 ml, 51% w/w) was added and then allowed to stir for 10 minutes at ambient temperature.

The layers are separated and the isolated upper organic layer is then washed with water (44 ml), then concentrated under reduced pressure to dryness, yielding (2S,3R)-1-(dimethylamino)-3-(3-methoxyphenyl)-2-methyl-3-pentanol (4) as a yellow oil which solidifies upon standing at ambient temperature (112.0 g).

Compound (4) prepared according to the procedure of Example 4, comprises 96.8% of the desired (2S,3R) enantiomer, less than 0.4% of the (2S,3S) enantiomer and 3.0% of the (2R,3S) enantiomer.

Example 4 : Synthesis of (2f1,3/O-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine (5)

5

a) A solution of compound (4) (50.3 g) dissolved in 2-methyltetrahydrofuran (120 ml) was stirred and cooled to 5°C. Then trifluoroacetic anhydride (30.6 ml) was added slowly over a period of 10 minutes while the temperature of the reaction mixture was kept below 20^{0} C. After addition, the reaction mixture was allowed to stir for 1 hour at 20^{0} C.

10

15

b) Palladium 10% on activated carbon (50% wetted) (2.52 g) was added and the reaction mixture was stirred at 800 rpm and pressurized to 2 atmosphere (202.65 kPa) with hydrogen gas. The reaction mixture was heated to 40°C and stirred for 4 hours at 40°C. The mixture was allowed to cool to 20°C and filtered under nitrogen atmosphere. The filter was washed with 2-methyltetrahydrofuran (10 ml). Water (160 ml) was added to the filtrate and the mixture was stirred, then an aqueous NaOH solution (28.6 ml, 50% w/w) was added over a period of 10 minutes while the temperature was kept below 20°C. The organic and water layer were allowed to separate, the organic layer was isolated and washed with water (50 ml), and concentrated under reduced pressure to dryness, yielding (2i?,3i?)-3-(3-methoxyphenyl)-N,N,2-trimethyl-pentanamine (5) as a colourless oil (46.10 g).

20

25

Compound (5) prepared according to the procedure of Example 5 comprises 96.3% of the desired (2R,3R) enantiomer, 2.5% of the (2S,3S) enantiomer and 1.2% of the (2R,3S) enantiomer.

30

Using an analogous procedure as described in a) but replacing trifluoroacetic anhydride with acetyl chloride or ethyl oxalyl chloride and adding triethylamine to the reaction mixture, yielded compounds (7) and (8) respectively. Said compounds (7) and (8) were converted into compound (8) using the above procedure b).

WO 2008/012283 PCT/EP2007/057559 - 11 -

$$OCH_3$$

$$O$$

$$O$$

$$(R)$$

$$OCH_3$$

Example 5 : Synthesis of (2fl,3/O-3-(3-methoxyphenyl)-N,N,2trimethylpentanamine monohydrochloride (6)

5

Compound (5) (23.0 g) was dissolved in 2-propanol (50 ml) and stirred at ambient temperature. Then a solution of HCl in 2-propanol (20.3 g , 17.9% w/w) was added slowly over a period of 5 minutes. The mixture was seeded with compound (6) (10 mg) and the reaction mixture was allowed to stir at ambient temperature for 1 hour. The mixture was cooled to a temperature of 0^{0} C and stirred for 4 hours. The precipitate was filtered off, washed with 2-propanol (5 ml) and dried under vacuo, yielding (2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine monohydrochloride (6) as a white solid (22.9 g).

15

10

Compound (6) prepared according to the procedure of Example 6 comprises 99.7% of the desired (2R,3R) enantiomer, and 0.3% of the (2R,3S) enantiomer.

Claims

5

1. A process for preparing (2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethyl-pentanamine, or an acid addition salt thereof, comprising the steps of

a) acylating (2S,3^)-l-(dimethylamino)-3-(3-methoxyphenyl)-2-methyl-3-pentanol

$$(II)$$

$$(R)$$

$$(II)$$

with an acylating agent;

b) hydrogenolysis of the thus obtained compound (III)

$$\begin{array}{c}
OCH_3 \\
\hline
(R) \\
\hline
(S) \\
N
\end{array}$$
(III)

using a suitable catalyst in a reaction-inert solvent in the presence of hydrogen; and

c) optionally converting the thus obtained (2i?,3i?)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine

$$(IV)$$

20

into an acid addition salt.

2. A process according to claim 1 wherein the acylating agent of step a) is an organic
 acyl halide or organic acid anhydride.

- 3. A process according to claim 2 wherein the organic acyl halide or organic acid anhydride is selected from acetic anhydride, acetyl chloride, trifluoroacetic anhydride, chloroacetic anhydride, chloro acetylchloride, dichloroacetic anhydride, trichloroacetic anhydride, benzoic anhydride, benzoyl chloride, phthalic anhydride, phtaloyl dichloride, terephthaloyldichloride, succinic anhydride, succinyl chloride, ethyl oxalyl chloride, methyl oxalyl chloride, Meldrum's acid, ethyl chloroformate, methylchloroformate, or acetylsalicyloyl chloride.
- 4. A process according to claim 3 wherein the acid anhydride is trifluoroacetic anhydride.

5

20

35

- 5. A process according to claim 3 wherein the organic acyl halide is acetyl chloride or ethyl oxalyl chloride.
- 6. A process according to any of claims 1 to 5 wherein the catalyst of step b) is selected from Raney nickel, palladium, palladium on carbon, platinum, platinum on carbon, ruthenium or rhodium on carbon, or any other suitable catalyst.
 - 7. A process according to claim 6 wherein the catalyst is palladium on carbon.
 - 8. A process according to any of claims 1 to 7 wherein the reaction-inert solvent of step b) is selected from diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran or mixtures thereof.
- 9. A process according to any of claims 1 to 8 wherein (2i?,3i?)-3-(3-methoxyphenyl)-N,N,2-trimethylpentanamine is converted into its corresponding hydrochloric acid addition salt.
- 10. A process according to any of the preceding claims wherein steps a) and b) are carried out in a one-pot reaction.
 - 11. A compound of formula (III) wherein acyl represents CH3-CO-, CF3-CO-, CH₂Cl-CO-, CHCl₂-CO-, CCl₃-CO-, CH₃O-CO-, CH₃CH₂O-CO-, CH₃O-CO-CO, CH₃CH₂O-CO-CO-, phenyl-CO-, or meta-CH₃COO-phenyl-CO-.

OCH₃

$$(R) = 0$$

$$(R) = 0$$

$$(R) = 0$$

$$(\pi i)$$

- 12. A compound of formula (III) as claimed in claim 11 wherein acyl represents ${\rm CF_3\text{-}CO\text{-}}.$
- 13. A compound of formula (III) as claimed in claim 11 wherein acyl represents
 5 CH₃-CO- or CH₃CH₂O-CO-CO-.

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2007/057559

A. CLASSIFICATION OFSUBJECT INV. C07C213/08 MATTER C07C217/72 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) C07C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal , CHEM ABS Data, BEILSTEIN Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category' Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No A US 6 344 558 Bl (BUSCHMANN HELMUT [DE] ET 1 - 13AL) 5 February 2002 (2002-02-05) cited in the application claims 1-8; examples 1,2,24,26 Α WO 2005/000788 A (GRUENENTHAL GMBH [DE]; 1-13 JAGUSCH UTZ-PETER [DE]; HOELDERICH WOLFGANG [DE) 6 January 2005 (2005-01-06) cited in the application examples 1-4 Α WO 2004/108658 A (GRUENENTHAL GMBH [DE]; 1-13 HELL WOLFGANG [DE]; KEGEL MARKUS [DE]; AKTERIES) 16 December 2004 (2004-12-16) cited in the application claim 1 X Further documents are listed in the continuation of Box C X See patent family annex Special categories of cited documents ¹T" later document published after the international filing date or pnority date and not in conflict with the application but cited to understand the principle or theory underlying the ¹A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X' document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to filing date $^1L^1$ document which may throw doubts on pno πty claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an Inventive step when the document is taken alone "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled 'O1 document referring to an oral disclosure, use, exhibition or other means In the art ¹P" document published prior to the international filing date but later than the priority date claimed "&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the International search report 7 November 2007 15/11/2007 Name and mailing address of the ISA/ Authorized officer European Patent Office PB 5818 Patentlaan 2 NL- 22a0 HV R/Jswijk Tel (+31-70) 340-2040, Tx 31 651 epo nl, VOYIAZOGLOU, D Fax (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2007/057559

_		
ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
1	US 5 811 582 A (BUSCHMANN HELMUT HEINRICH [DE] ET AL) 22 September 1998 (1998-09-22) claims 1-6	1-13
A	DATABASE BEILSTEIN [Online] Beil stein Institut zur Förderung der Chemischen Wissenschaften, Farnkfurtam Main, DE; 1986, XP002423029 Database accession no. RID:2562465 & Synthesis 1986(8),645-647 abstract	1-13
A	DATABASE BEILSTEIN [CD-ROM] Beil stein Institut zur F δ rderung der Chemischen Wissenschaften, Frankfurt am Main, DE; 2004, XP002423030 Database accession no. RID:9554854 & Tetrahedron Letters, 45(15), 2004, 3031-3034 abstract	1-13
A	DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; SPALVA, E. A.: "Relations between structure and anesthetic activity of some esters of aralkanols" XP002423028 retrieved from STN Database accession no. 1964:85583 abstract & FARMAKOLOGIYA I TOKSIKOLOGIYA (MOSCOW) , 26(5), 606-11 CODEN: FATOAO; ISSN: 0014-8318, 1963,	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/EP2007/057559

ited	in search report		date		member(s)		date
US (6344558	Bl	05-02-2002	US	RE39593	El	24-04-2007
				US	2002010178	Al	24-01-2002
wo 2005000788	A	06-01-2005	CN	1809527	Α	26-07-200	
				DE	10328316	Al	20-01-2005
				EP	1636169	Al	22-03-2006
				US	2006167318	Al	27-07-2006
wo	2004108658	A	16-12-2004	AU	2004245223	Al	16-12-2004
				BR	PI0411268	A	01-08-200
				CA	2528087	Al	16-12-2004
				CN	1829681	A	06-09-200
				DE	10326097	Al	05-01-2003
				EP	1633697	Al	15-03-2000
				JР	2006527178	T	30-11-200
				KR	20060036923	A	02-05-200
				MX	PA05013193	A	09-03-200
	د که اسا ست کار پست که پیسا شده آده ست مین پد			US	2006194988	Al	31-08-200
US	5811582	A	22-09-1998	AT	258544	T	15-02-2004
				AT	223888	T	15-09-2002
				AT	263140	T	15-04-2004
				AU	725430	B2	12-10-200
				AU	1625197	A	18-09-199
				BR	9700369	A	27-10-199
				CA	2199679	Al	13-09-199
				CN	1163884	A	05-11-199
				CZ	9700759	A3	15-04-199
				DE	19609847	Al	18-09-199
				DK	1069106	T3	19-04-2004
				DK	799819	T3	02-12-200
				EP	0799819	Al	08-10-199
				ES	2213526	T3	01-09-200
				ES	2183030	T3	16-03-200
				ES	2218924	T3	16-11-200
				HK	1026197	Al	28-01-200
				HK	1031864	Al	19-11-200
				HU	9700574	A2	28-10-199
				IL	120430	A	28-01-200
				JP	10007624	A	13-01-199
				NO	971137	A	15-09-199
				NZ	314384	A	29-06-199
				PL	318922	Al	15-09-199
				PT	1069106	T	30-06-200
				PT	799819	T	31-01-200
				PT	983995	T	31-08-200
				RU	2167146	C2	20-05-200 10-12-199
				SK	32197	A3	10-12-199
				ZA	9702147	A	17-09-199