wo 2012/143760 A1 || NF 1 000000 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(43) International Publication Date

(19) World Intellectual Property

Organization
International Bureau

—~
é

=

\

(10) International Publication Number

WO 2012/143760 A1

(51

eay)

(22)

(25)
(26)
1

(72)
(73)

31

International Filing Date:
20 April 2011 (20.04.2011)

English
Publication Language: English

Applicant (for all designated States except US): FREES-
CALE SEMICONDUCTOR, INC. [US/US]; 6501 Willi-
am Cannon Drive West, Austin, Texas 78735 (US).

Filing Language:

Inventors; and

Inventors/Applicants (for US only): IVAN, Radu-Marian
[RO/RO]; Valea Ialomitei 3-7, R-061962 Bucharest (RO).
IONESCU, Razvan [RO/RO]; Aleea Cricovul Dulce 2-4,
R-041524 Bucharest (RO). VICOVAN, Ionut-Valentin
[RO/RO]; Banu Manta 22, R-011226 Bucharest (RO).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

26 October 2012 (26.10.2012) WIPOIPCT
International Patent Classification:
GO6F 9/44 (2006.01) GO6F 9/06 (2006.01)
GO6F 9/30 (2006.01)
International Application Number:
PCT/IB2011/051732

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: METHOD AND APPARATUS FOR GENERATING RESOURCE EFFICIENT COMPUTER PROGRAM CODE

300

\

305
START
RECEIVE AST/SOURCE CODE

315\{ PERFORM OPTIMIZATION ANALYSIS }._ g:;m@@rgsg

POTENTIAL
OPTIMIZATIONS?

310 320

NO

335

| ~a30

Ne OPTIMIZATION

DESIRED?

| DETERMINE POTENTIAL QPTIMIZATION OPTIONS }/345

!

-
OUTPUT PROPOSED CPTIMIZATION CPTICONS TC D\SPLAY’/SJO

/ USER INTERFACE FOR VIEWING BY USER

| IMPLEMENT (SELECTED) OPTIMIZATION IN SOURCE CODE }IGGO

-
| CREATE AND SAVE DE-GPTIMIZATION INFORMATION |f363

| MARK PERFORMED OPTIMIZATION IN SQURCE CODE |/370

-375

FIG. 3

(57) Abstract: A method (300) for generating resource efficient computer
program code is described. The method comprises receiving at an input of an
apparatus for creating program code of a representation of source code for
computer program code to be generated (310), analysing by the apparatus by
the apparatus the received representation of source code to determine sec-
tions within the source code for which potential optimizations are available
(315); and upon determining at least one section within the source code for
which at least one potential optimization is available, identifying by the ap-
paratus the at least one potential optimization for the at least one determined
section within the source code, and implementing by the apparatus the at
least one potential optimization within the source code (360).

10

15

20

25

30

35

40

WO 2012/143760 PCT/1IB2011/051732
-1-

Title: METHOD AND APPARATUS FOR GENERATING RESOURCE EFFICIENT COMPUTER
PROGRAM CODE

Description

Field of the invention

The field of this invention relates to a method and apparatus for generating resource efficient

computer program code.

Background of the invention

In the field of computers and other programmable machines, the need for efficient
applications has lead to compiler optimization of computer program code. Compiler optimization
encompasses the process of ‘tuning’ the output of a compiler, e.g. object code, in order to minimize
or to maximize some attributes of the executable computer program. The most common
requirement is to minimize the time taken to execute a program. However, for some applications,
such as applications targeted at running within embedded systems, etc., minimizing the amount of
memory occupied by the executable computer program code, and/or the power consumption of,
say, a CPU (central processing unit) executing the program code, may additionally/alternatively be
a requirement. Compiler optimization typically comprises heuristic methods for improving resource
usage, for example reducing the number of processing cycles, memory space, etc., required by the
executable computer program. Additionally, such conventional compiler optimizations often utilise
information that is gathered by a profiler during testing of previous versions of the executable
computer program (referred to as profiler-guided optimization) in order to further optimize the
computer program code.

A problem with conventional compiler optimization techniques is that they provide limited
visibility and control to the user of the optimizations that are performed. For many applications, and
in particular for applications intended for use within embedded real-time systems, where program
code size, power consumption and real time execution constraints are all required to be tightly met,
programmers typically require close control of optimizations that are made in order to achieve the
required balance between the various constraints of the target systems.

Furthermore, conventional compiler optimizations are compiler/profiler specific. Thus,
compiler optimizations are typically not consistent across multiple target platforms for which
different compilers/profilers are required. In addition, conventional compiler optimizations require
full project builds in order to compile the program code. In this manner, in order for a programmer
to assess any optimizations made thereby, it is necessary for a full project build to be performed
beforehand. As will be appreciated, such full project builds can be time consuming, thereby greatly
delaying the assessment of any improvement from performing such optimizations, and thus the
development of optimized code.

Further problems that arise out of conventional compiler based optimization techniques

include, for example, the optimizations made by the compiler resulting in the subsequent binary

10

15

20

25

30

35

40

WO 2012/143760 PCT/1IB2011/051732
2.

code not doing exactly what the programmer intended. Additionally and/or alternatively,
optimizations made by the compiler that are intended to optimize the number of executed
instructions (which in theory may reduce execution time) detrimentally affect other aspects of the

execution such as power consumption, memory requirements, etc.

Summary of the invention

The present invention provides a method for generating resource efficient computer program
code, an apparatus for generating computer program code, a non-transitory computer program
product and an integrated circuit device as described in the accompanying claims.

Specific embodiments of the invention are set forth in the dependent claims.

These and other aspects of the invention will be apparent from and elucidated with reference

to the embodiments described hereinafter.

Brief description of the drawings

Further details, aspects and embodiments of the invention will be described, by way of
example only, with reference to the drawings. In the drawings, like reference numbers are used to
identify like or functionally similar elements. Elements in the figures are illustrated for simplicity and
clarity and have not necessarily been drawn to scale.

FIG. 1 shows a simplified block diagram of an example of an apparatus for creating
computer program code.

FIG. 2 shows a simplified block diagram of an example of a programmable device.

FIG. 3 shows a simplified flowchart of an example of a method for generating resource

efficient computer program code.

Detailed description

Referring first to FIG. 1, there is illustrated a simplified block diagram of an example of an
apparatus 100 for creating computer program code, such as may be implemented by way of one or
more personal computers, workstations, etc. The apparatus 100 comprises a user interface 110,
for example comprising one or more display devices, one or more input devices, etc. The
apparatus 100 further comprises one or more processing units 120, for example one or more CPUs
(central processing units), arranged to execute application programs and the like, for example
under the control of an operating system (not shown) running on the processing unit(s). The
apparatus 100 further comprises primary memory 130, for example in a form of RAM (random
access memory), into which may be loaded program code to be executed by the processing unit(s)
120, and data to be accessed during the execution of such program code. The apparatus 100 may
further comprise secondary memory 140, for example comprising one or more magnetic disc drives
or the like, in which program code to be executed, and data therefor, may be stored, and from
which such program code and data may be loaded into the primary memory 130 when required. In
addition, the apparatus 100 may comprise one or more communication interfaces 150, for example

to enable the apparatus to be connected to a network (not shown), such as a local area network

10

15

20

25

30

35

40

WO 2012/143760 PCT/IB2011/051732
-3-

(LAN), wireless area network (WAN), the Internet, etc. The apparatus 100 may also comprise one
or more storage unit interfaces 160 to enable access to removable storage devices, illustrated
generally at 170, such as removable, e.g. USB (universal serial bus), Flash memory devices,
optical memory devices such as CD (compact disc) and/or DVD (digital video/versatile disc)
memory devices, etc. Communication between the various components of the apparatus 100 may
be provided by way of, say, an address/data bus 180 or the like.

In some examples, the apparatus 100 is adapted for creating computer program code.
Accordingly, in the illustrated example, the apparatus 100 is arranged to execute by way of the
processing unit(s) 120 one or more application programs for enabling the creation of computer
program code. Specifically in the illustrated example, the apparatus 100 is arranged to execute a
source code editor application program 190 for enabling the creation of computer program source
code. The apparatus 100 may be further arranged to execute additional application programs used
within the creation of computer program code. For example, the apparatus 100 may be arranged
to execute build automation tools 192 for providing compiler functionality, etc., for converting
computer program source code into computer program object code and the like. The apparatus
may be further arranged to execute debugging tools 194 for debugging computer program code.
The various application programs 190, 192, 194 arranged to enable the creation of computer
program code may comprise stand-alone applications, or may comprise parts of an integrated
development environment (IDE), as illustrated generally at 195.

Computer program code is created to run on one or more target programmable devices.
Such a programmable device may comprise a general purpose device such as a personal
computer or a workstation, for example similar to the apparatus 100 illustrated in FIG. 1.
Alternatively, a target programmable device on which computer program code is intended to run
may comprise a more specialised device, such as an embedded programmable device or the like.
FIG. 2 illustrates a simplified block diagram of an example of such a specialised programmable
device 200. The programmable device 200 of FIG. 2 comprises one or more integrated circuit
devices 210 that comprises one or more processing units 220 and one or more primary memory
elements (RAM) 230. The programmable device 200 further comprises secondary memory 240,
which for the illustrated example comprises Flash memory. In the illustrated example, the
secondary memory 240 is provided on a separate integrated circuit device 245 to the processing
units 220 and primary memory 230. However, the secondary memory 240 may be equally
provided within the same integrated circuit device 210 as the processing unit(s) 220 and/or the
primary memory 230. As is typical for many embedded programmable devices, the embedded
programmable device 200 of FIG. 2 comprises a limited power supply 250, for example in a form of
one or more batteries.

For such embedded programmable devices such as the one illustrated in FIG. 2, cost
constraints often result in such devices comprising limited resources, such as limited processing
capabilities and limited memory space (primary and/or secondary), as well as tight power
consumption requirements. As a result, significant constraints are often placed on computer

program code running within such devices. Even tighter constraints are placed on such computer

10

15

20

25

30

35

WO 2012/143760 PCT/1IB2011/051732
-4-

program code when real-time operations are required to be performed. Accordingly, for many
computer program applications, and in particular for applications intended for execution within
embedded real-time systems where program code size, power consumption and real time
execution constraints are all required to be met, programmers typically require close control of
optimizations made to their program code in order to achieve the required balance between the

various constraints of the target systems.

Referring now to FIG. 3, there is illustrated a simplified flowchart 300 of an example of a
method for generating resource-efficient computer program code, for example as may be
implemented by way of an optimization component within, say, the source code editor 190 of the
apparatus 100 of FIG. 1. In summary, the method comprises receiving (at least) a representation
of source code for computer program code to be generated, analysing the received representation
of the source code to determine sections within the source code for which potential optimizations
are available. Upon determining at least one section within the source code for which at least one
potential optimization is available, identifying the at least one potential optimization for the at least
one identified section within the source code, for example by outputting the at least one potential
optimization to a user interface/display for illustrating to a user, and implementing the at least one
potential optimization within the source code, for example upon acceptance by a user thereof.

In this manner, a user (programmer) is provided with high visibility and close control of
optimizations made to the source code. Furthermore, because optimizations are performed directly
on the source code, the optimization may be performed and ‘assessed’ in real-time (i.e. during
programming, without the need to wait for a project build).

In greater detail, the method starts at 305, and moves on to 310 with receipt of at least a
representation of source code for computer program code to be generated. For example, such a
representation may comprise the actual source code itself, or may comprise, say, one or more
abstract syntax tree (AST) representations of the source code. Such an AST representation,
sometimes simply referred to as a syntax tree, is a representation of the abstract syntactic structure
of the source code. The source code, or representation thereof, is then analysed at 315 in order to
determine sections within the source code for which potential optimizations may be available. In
the illustrated example, such analysis is performed in accordance with one or more predefined
optimization parameters. For example, such optimization parameters may comprise one or more
resource usage optimization requirements (e.g. program execution time constraints/requirements,
program code size constraints/requirements, power consumption constraints/requirements, real-
time constraints/requirements, etc.). Additionally and/or alternatively, such resource usage
optimization parameters may comprise parameters relating to one or more target platforms, for
example relating to one or more specific embedded system platforms or the like. Such resource
usage optimization parameters may be user configurable. In this manner, optimization of the
source code may be tailored and/or configured by the user in accordance with the specific

requirements for a target device on which the computer program code is to be executed.

10

15

20

25

30

35

WO 2012/143760 PCT/IB2011/051732
-5-

Having analysed the source code, or a representation thereof, if it is determined that one or
more potential optimizations within the source code are available, at 325, the method moves on to
335 where, for the (or each) potential optimization determined to be available within the source
code illustrated at 330, a user is asked if optimizations are desired. In this manner, the user is
provided with an ability to identify potential optimizations and selectively choose those
optimizations that are desired, thereby providing the user with visibility and control over where in
the source code optimizations are to be implemented. If the user indicates that a potential
optimization is desired at 340, the method moves on to 345, where potential optimization options
are determined. For example, different optimization options may be determined for different
resource constraints/requirements (e.g. program execution time constraints/requirements, program
code size -constraints/requirements, power consumption constraints/requirements, real-time
constraints/requirements, etc.), for different target platforms, etc. The potential optimization options
are then output to a user interface, for example user interface 110 of FIG. 1 that may be in a form
of a visual display, for displaying to a user at 350 thereby enabling the user to select which (if any)
of the determined options is acceptable. Upon selection, for example by the user of an optimization
option at 355, the selected optimization is implemented within the source code at 360 following, say
receiving an acceptance signal, say initiated by the user via the user interface.

In the illustrated example, de-optimization information for the implemented optimization is
then created and saved at 365. In this manner, optimizations implemented may be undone,
thereby allowing the relevant section(s) of the source code to be subsequently reverted back to
its/their previous state. Implemented optimizations may be marked within the source code, for
example by way of tags within the code, thereby identifying where optimizations have been made,
as illustrated at 370. The method then ends at 375. It will, however, be understood that the source
code may be converted into object code using known compiling techniques, and that the object
code may be run by a programmable apparatus, for example directly on machine executable code
or byte code executable through an interpreter.

It is contemplated that any suitable optimization technique may be used in conjunction with
the method illustrated in FIG. 3. For example, it is contemplated that one or more of the following

optimization techniques may be implemented within the method illustrated in FIG. 3.

Simplification of expressions:

Arithmetic expressions which form a program module may be simplified to obtain a new

structure with a lower complexity. For example, the expression:

3 2)
A may be simplified to: e= M
roo4 x(x - l)

®
I

Substitution of common sub-expressions:

10

15

20

25

30

35

WO 2012/143760 PCT/IB2011/051732

Common sub-expressions may be substituted with pre-evaluated variables to reduce the

number of machine cycles. For example, in a case of:

x*x+y*y+z*z

_x*x+y*y+z*z—l
may be replaced with:

a

e= and a=x*x+y*y+z*¥z

a-—1

Simplification of conditional expressions:

Many programs have at least one complex conditional instruction structure using complex
logic to cover a wide range of possibilities. Using decision tables, optimization methodology on
such complex conditional instruction structures may enable such complex conditional instruction
structures to be simplified and replaced with equilibrated conditional structures. For example, the

conditional instruction structure:

if (cpulD <= 200)
fgz = 2 * cpulD / 100;
else
if (cpulD <= 300)
fgz = 2.5 * ¢cpulD / 100;
else
if (cpulD <= 600)
fgz = 3.5 * cpulD / 100;
else
if (cpulD <= 700)
fgz = 4 * cpulD / 100;
else
if (cpulD <= 800)
fgz = 7 * cpulD/ 100;
else

fgz = 10 * cpulD /100;

may be simplified and replaced with the equilibrated conditional structure:

10

15

20

25

30

35

40

WO 2012/143760 PCT/IB2011/051732

if (cpulD <= 600)
if (cpulD <= 300)
if (cpulD <= 200)
fgz = 2 * cpulD / 100;
else
fgz = 2.5 * ¢cpulD / 100;
else
fgz = 3.5 * cpulID / 100;
else
if (cpulD <= 700)
if (cpulD <= 800)
fgz = 7 * cpulD/ 100;
else
fgz = 10 * cpulD /100;
else

fgz = 4 * cpulID / 100;

Invariant removal:

Invariants, which are generated by programming errors or by temporary variables used for
data calculation, may be removed from computer program code. For example, in the code

sequence:

for(int i = 0; i < size; i++) {
sum = 0;

sum+= vect[i];}

the line 'sum = 0’ represents such a programming error since the variable ’sum’ is needlessly set to

‘0. Similarly, in the code sequence:

int rez = 0, z = 45, x = 24, y= 97, temp;
for(int 1 = 0; i < size; i++){
temp = x + y;

rez = z * temp;}

the line ‘temp = x + y’ may be moved outside of the loop because the variables x and y are not

modified in this context.

Optimization of loop sequences:

10

15

20

25

30

35

40

WO 2012/143760 PCT/IB2011/051732

Improvements in loop structures can have a significant impact on the execution of an
application. For example, in a case of loop jamming, where multiple loops are merged into a single
loop, it is possible to improve processing volume; processing volume being the number of high
level instructions executed (i.e. source code level instructions).

For example, the loop:

for (i=0;i<n;i++)Sx+= x[1]; for(i=0;i<n;i++)Sy += yI[i];
which has a processing volume of 2*(1+3n) = 2+6n, may be optimized to:

for (i=0;i<n;i++){Sx += x[i];8y += yI[il;}
which has a reduced processing volume of 1+4n.

Another example of potential improvements in loop structures is loop unrolling, where the
processing effort for each loop iteration is increased, whilst reducing the number of loops. For

example, the loop:

for (int i=0; i<100000; i++)

sum += v[i];
may be ‘unrolled’ to:
for (int i=0; 1<100000/2; i+=2{
sum += v[i];
sum += v[i+1l];}
A still further example of potential improvements in loop structures is the removal of
unnecessary loops, where simple repetition of the instructions to be looped would be more efficient.

For example, the loop:

for (int i = 0; i < 4; i++)

~e

~e

e

10

15

20

25

30

35

40

WO 2012/143760 PCT/IB2011/051732

A still further example of potential improvements in loop structures is the sorting, or ordering,
of nested (imbricate) loops in order to reduce a number of entries within inner loops, and also the

number of exit checks. For example, the loop structure:

int requests = 0;
for(int i=0; i<150; i++)
for (int j=0; j<100; J++)
for(int k=0; k<50; k+t++)

requests++;

may be replaced with:

int requests = 0;
for(int k=0; k<50; k++)
for(int j=0; j<100; j++)
for(int i=0; i<150; i++)

requests++;

Variable definition:

Since the variable types used directly affects the memory size used by a program, and the
processing effort required therefor, optimizing variable definitions can significantly reduce the

memory and processing requirements for a program. For example:

for(int vc = 0; vc < 100; vc++){..}; // 1240 cycles(SC 8156)
for (double ve = 0; vc < 100; ve++){..}; //10593 cycles(SC 8156)

In the above examples, the declaration of the variables as ‘integers’ results in 1240 processing
cycles to perform the specific operations. However, the declaration of the variables as ‘doubles’
results in 10593 processing cycles to perform the specific operations. Furthermore, an integer
variable may require, say, 32 bits of memory, whilst a comparable double variable would require 64
bits of memory. In addition, an operation performed that uses integer variables is typically faster
(e.g. is less processor intensive) than the same operation that is performed using floating point

variables that may require emulations, etc.

Reuse variables:

Often a variable used, say, within an initial part of a code module may be reused for a

different purpose in a subsequent part of the code module, rather than a separate, new variable

10

15

20

25

30

35

WO 2012/143760 PCT/IB2011/051732
-10 -

being declared. Such reuse of variables helps to reduce the memory requirements for the
computer program code.

In addition to code optimization, programming errors may also be detected within source
code, and potential corrections suggested to a user. For example, errors that may be detected
may include, by way of example, use before initialisation, expressions evaluated to zero, unused

variables, etc.

Thus, an example of a method for generating resource-efficient computer program code
has been described. The method provides flexible and controllable optimization of source code,
and providing high levels of visibility of optimization to a user. In this manner, computer program
code for applications, and in particular for applications intended for use within, say, embedded real-
time systems where program code size, power consumption and real time execution constraints
are all required to be tightly met, may be developed with tight control of optimizations made,
thereby enabling the required balance between the various constraints of the target systems to be
achieved.

Furthermore, since optimizations are made directly to the source code, and without profiler
feedback, the optimizations are advantageously not compiler/profiler specific. As such, the
optimizations may be consistent across multiple target platforms, even where different
compilers/profilers are required. In addition, optimization of the source code may be performed
without the need for compiling the code, and without the need for full project builds.

In addition, by enabling potential optimizations to be determined directly on the source code,
potential optimization options may be provided to a user substantially immediately, for example
upon writing the code. In this manner, the user (programmer) is able to assess any proposed
optimization options whilst the program code is fresh in the user's mind.

Thus, by enabling greater visibility, control and flexibility of computer program code to a user
in this manner, the resource usage of computer program code generated may be improved, and/or
the time/resources required for the generation of such code may be reduced. For example, the
computer program code may be optimised to ensure the number of processing cycles required to
execute at least a part of the code is within a required threshold, in order to ensure execution of the
computer program code within a target device, such as the device 200 of FIG. 2, is performed
within required execution speed parameters. Additionally and/or alternatively, the computer
program code may be optimised to ensure that a size of the computer program code ‘image’ is
within a required limit, for example to enable the code to be stored within a tangible computer
program product of limited size, for example the Flash memory 240 of FIG. 2, a removable storage
unit 170 of FIG. 1, etc. Additionally and/or alternatively, the computer program code may be
optimized to ensure that the amount of memory required during the execution thereof, for example
the amount of RAM 230 in FIG. 2, is within a required limit. Additionally and/or alternatively, the
computer program code may be optimized to minimize a power consumption of a processing unit

that is executing the computer program code.

10

15

20

25

30

35

40

WO 2012/143760 PCT/IB2011/051732
-11 -

In this document, the term ‘tangible’ or ‘non-transitory’ computer program product’ may be
used generally to refer to tangible media such as, for example, primary memory 130, 230,
secondary memory 140, 240, removable storage devices 170, etc. These and other forms of
computer-readable media may store one or more instructions for use by a programmable device, to
cause the programmable device to perform specified operations. Such instructions, generally
referred to as ‘computer program code’ (which may be grouped in a form of computer programs or
other groupings), when executed, enable programmable device to perform functions and
operations. Note that the code may directly cause the processor to perform specified operations,
be compiled to do so, and/or be combined with other software, hardware, and/or firmware elements
(e.g., libraries for performing standard functions) to do so.

As will be appreciated by a skilled artisan, code optimization rarely produces "optimal"
output in any true sense; rather, code optimization typically comprises one or more heuristic
methods for improving resource usage in typical programs. Thus, the use of the term ‘optimization’
herein is to be construed accordingly, in line with the common understanding of the term in the
context of computer program code optimization, and is not to be interpreted as referring to the strict
sense of producing ‘optimal’ code.

Because the illustrated embodiments of the present invention may for the most part, be
implemented using electronic components and circuits known to those skilled in the art, details will
not be explained in any greater extent than that considered necessary as illustrated above, for the
understanding and appreciation of the underlying concepts of the present invention and in order not
to obfuscate or distract from the teachings of the present invention.

The invention may also be implemented in a computer program for running on a computer
system, at least including code portions for performing steps of a method according to the invention
when run on a programmable apparatus, such as a computer system or enabling a programmable
apparatus to perform functions of a device or system according to the invention.

A computer program is a list of instructions such as a particular application program and/or
an operating system. The computer program may for instance include one or more of: a subroutine,
a function, a procedure, an object method, an object implementation, an executable application, an
applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other
sequence of instructions designhed for execution on a computer system.

The computer program may be stored internally on computer readable storage medium or
transmitted to the computer system via a computer readable transmission medium. All or some of
the computer program may be provided on computer readable media permanently, removably or
remotely coupled to an information processing system. The computer readable media may include,
for example and without limitation, any number of the following: magnetic storage media including
disk and tape storage media; optical storage media such as compact disk media (e.g., CD-ROM,
CD-R, etc.) and digital video disk storage media; non-volatile memory storage media including
semiconductor-based memory units such as FLASH memory, EEPROM, EPROM, ROM,;
ferromagnetic digital memories; MRAM; volatile storage media including registers, buffers or

caches, main memory, RAM, etc.; and data transmission media including computer networks,

10

15

20

25

30

35

WO 2012/143760 PCT/IB2011/051732
-12 -

point-to-point telecommunication equipment, and carrier wave transmission media, just to name a
few.

A computer process typically includes an executing (running) program or portion of a
program, current program values and state information, and the resources used by the operating
system to manage the execution of the process. An operating system (OS) is the software that
manages the sharing of the resources of a computer and provides programmers with an interface
used to access those resources. An operating system processes system data and user input, and
responds by allocating and managing tasks and internal system resources as a service to users
and programs of the system.

The computer system may for instance include at least one processing unit, associated
memory and a number of input/output (I/O) devices. When executing the computer program, the
computer system processes information according to the computer program and produces
resultant output information via 1/O devices.

In the foregoing specification, the invention has been described with reference to specific
examples of embodiments of the invention. It will, however, be evident that various modifications
and changes may be made therein without departing from the broader spirit and scope of the
invention as set forth in the appended claims.

Those skilled in the art will recognize that the boundaries between logic blocks are merely
illustrative and that alternative embodiments may merge logic blocks or circuit elements or impose
an alternate decomposition of functionality upon various logic blocks or circuit elements. Thus, it is
to be understood that the architectures depicted herein are merely exemplary, and that in fact
many other architectures can be implemented which achieve the same functionality. For example,
the functionality of the specific applications 190, 192, 194 illustrated in FIG. 1 for the development
of computer program code may be distributed over any suitable alternative arrangement of
applications, and is not limited to the specific arrangement of a source code editor application 190,
build automation tools application 192 and debugging tools application 194.

Any arrangement of components to achieve the same functionality is effectively "associated"
such that the desired functionality is achieved. Hence, any two components herein combined to
achieve a particular functionality can be seen as "associated with" each other such that the desired
functionality is achieved, irrespective of architectures or intermediary components. Likewise, any
two components so associated can also be viewed as being "operably connected", or "operably
coupled", to each other to achieve the desired functionality.

Furthermore, those skilled in the art will recognize that boundaries between the above
described operations merely illustrative. The multiple operations may be combined into a single
operation, a single operation may be distributed in additional operations and operations may be
executed at least partially overlapping in time. Moreover, alternative embodiments may include
multiple instances of a particular operation, and the order of operations may be altered in various

other embodiments.

10

15

WO 2012/143760 PCT/IB2011/051732
-13 -

However, other modifications, variations and alternatives are also possible. The
specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a
restrictive sense.

In the claims, any reference signs placed between parentheses shall not be construed as
limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps
then those listed in a claim. Furthermore, the terms “a” or “an”, as used herein, are defined as one
or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in
the claims should not be construed to imply that the introduction of another claim element by the
indefinite articles "a" or "an" limits any particular claim containing such introduced claim element to
inventions containing only one such element, even when the same claim includes the introductory
phrases "one or more" or "at least one" and indefinite articles such as "a" or "an". The same holds
true for the use of definite articles. Unless stated otherwise, terms such as “first” and “second” are
used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are
not necessarily intended to indicate temporal or other prioritization of such elements. The mere fact
that certain measures are recited in mutually different claims does not indicate that a combination

of these measures cannot be used to advantage.

10

15

20

25

30

35

WO 2012/143760 PCT/1IB2011/051732
-14 -

Claims

1. A method (300) for generating resource efficient computer program code, the method
comprising:
receiving at an input of an apparatus for creating program code of a representation of source
code for computer program code to be generated (310):
analysing by the apparatus the received representation of source code to determine sections
within the source code for which potential optimizations are available (315); and
upon determining at least one section within the source code for which at least one
potential optimization is available:
identifying by the apparatus the at least one potential optimization for the at least one
determined section within the source code; and
implementing by the apparatus the at least one potential optimization within the source

code.

2. The method (300) of Claim 1, further comprising outputting in a for humans perceptible form
the at least one potential optimization for the at least one determined section within the source

code to a user interface (350) for illustrating to a user of the computer program code.

3. The method (300) of Claim 2, wherein implementing the at least one potential optimization
comprises implementing the at least one potential optimization within the source code in response

to receiving an acceptance signal, for example from a user thereof (360).

4. The method (300) of any preceding Claim, wherein analysing comprises analysing the received

representation of source code in accordance with at least one optimization parameter (320).

5. The method (300) of any preceding Claim, wherein the at least one optimization parameter is
at least one from a group consisting of: a pre-defined optimization parameter or a user configurable

optimization parameter.

6. The method (300) of any preceding Claim, wherein the at least one optimization parameter
comprises at least one from a group of:
at least one resource usage optimization requirement; and

at least one target platform parameter.

7. The method (300) of any preceding Claim, wherein the method further comprises creating and
saving de-optimization for the at least one potential optimization implemented within the source
code (365).

10

15

WO 2012/143760 PCT/IB2011/051732
-15-

8. The method (300) of any preceding Claim, further comprising converting the source code into

object code.

9. An apparatus (100) for generating computer program code, the apparatus (100) arranged to

perform the method (300) of any preceding Claim.

10. A non-transitory computer program product (130, 140, 170, 230, 240) for optimising code
having executable program code stored therein, the executable program code generated at least

partly by the method (300) of any of preceding Claims 1 to 8.

11. An integrated circuit device arranged to execute program code generated at least partly by the

method (300) of any of preceding Claims 1 to 8.

12. A non-transitory computer program product (130, 140, 170, 230, 240) having executable
program code stored therein for performing a method as claimed in any of Claims 1 to 8 when

executed by a programmable apparatus.

WO 2012/143760 PCT/IB2011/051732

- 172 -
100 110
- USER INTERFACE
120 H
N CPU(s)
L I |
190—_! :
"~ SOURCE CODE EDITOR /] !
192— 1 |
[~ BUILD AUTOMATION TOOLS :
194—_ ! l
"~ DEBUGGING TOOLS i

FIG. 1 o

< I —

I I I [

PRIMARY SECONDARY COMMUNICATION | |STORAGE UNIT
MEMORY MEMORY INTERFACE(s) INTERFACE
(RAM) (HARD DRIVE)
/ ~
/ / 160
150
130 140 170~_| REMOVABLE
STORAGE UNIT

pmmmmmmm e . ~210
220— L PWR
i SUPPLY

1 <
i : 250

230—
N~ RAM |«
FIG. 2 oo ﬁ ----- i
240 —L

245—

WO 2012/143760

300

PCT/IB2011/051732
22 -
305
\(START)
A 4
310N\ " RECEIVE AST/SOURCE CODE 320

\

PARAMETERS

A 4
315N\ I PERFORM OPTIMIZATION ANALYSIS 4_/ OPTIMIZATION

/

325

NO POTENTIAL

OPTIMIZATIONS?

335\ ASK USERS IF OPTIMIZATION DESIRED

340
NO

OPTIMIZATION
DESIRED?

DETERMINE POTENTIAL OPTIMIZATION OPTIONS f345

v
OUTPUT PROPOSED OPTIMIZATION OPTIONS TO DISPLAY /350
/ USER INTERFACE FOR VIEWING BY USER

NO
USER ACCEPTS?

IMPLEMENT (SELECTED) OPTIMIZATION IN SOURCE CODE f360

4
CREATE AND SAVE DE-OPTIMIZATION INFORMATION /365

v
MARK PERFORMED OPTIMIZATION IN SOURCE CODE /370

e

330

INTERNATIONAL SEARCH REPORT International application No.
PCT/1B2011/051732

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/44(20006.01)i, GO6F 9/30(2006.01)i, GO6F 9/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 9/44;, GO6F 9/45

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: source, program, code, optimization, etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2010-0042976 Al (HINES LARRY M.) 18 February 2010 1-12
See abstract, claims 1-8 and figures 1-2.

A US 2002-0147969 Al (RICHARD A. LETHIN et al.) 10 October 2002 1-12
See abstract, claims 1-6 and figures 2-3.

A TP 11-272473 A (TOSHIBA CORP) 08 October 1999 1-12
See abstract, claims 1-4 and figures 1-4.

A JP 10-240543 A (HEWLETT PACKARD CO <HP>) 11 September 1998 1-12
See abstract, claim 1 and figures 1-2.

|:| Further documents are listed in the continuation of Box C. & See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international ~ "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
10 JANUARY 2012 (10.01.2012) 10 JANUARY 2012 (100120 12)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
Government Complex-Daejeon, 189 Cheongsa-ro, Shin, You Chul
Seo-gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8530

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/1B2011/051732

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2010-0042976 A1 18.02.2010 None

US 2002-0147969 A1 10.10.2002 CN 1270348 AO 18.10.2000
CN 1308818 CO 04.04.2007
DE 19945002 A1 04.05.2000
DE 19945002 B4 09.12.2004
JP 03-553834 B2 11.08.2004
JP 2000-132408 A 12.05.2000
US 6463582 B1 08.10.2002

JP 11-272473 A 08.10. 1999 None

JP 10-240543 A 11.09. 1998 US 05915114A A 22.06. 1999

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - wo-search-report
	Page 20 - wo-search-report

