(12) 특허협력조약에 의하여 공개된 국제출원
(19) 세계지식재산권기구
국제사무국
(43) 국제공개일
2013 년 12 월 27 일 (27.12.2013)
WO 2013/191500 A1

제목: MODIFIED SULFUR, METHOD FOR PREPARING SAME, APPARATUS FOR PREPARING SAME, AND USE THEREOF

발명의 명칭: 개질유황, 이의 제조방법, 이의 제조장치 및 이의 용도

(57) Abstract: The present application relates to modified sulfur, to a method for preparing same, and to an apparatus for preparing same. The modified sulfur is radioactive or includes a fine structure such as a fibrous structure, a tubular structure, or a network structure. The modified sulfur may be prepared by a process of inducing polymerization or aging using ultrasonic waves. The modified sulfur may have various excellent characteristics such as anticorrosion, water resistance, strength, and high-speed drying, and such characteristics may be adjusted based on the viscosity or the degree of polymerization. Further, as the modified sulfur has the above-described characteristics, the modified sulfur can be applied to an anticorrosive material or water-resistant material, and the modified sulfur can be used in the production of an anticorrosive material and a water-resistant material having superior workability and hardening properties, resistance to salt spray, weldability, and the like at an optimum level, and particularly having improved adhesion. Further, when the modified sulfur is applied to an asphalt composition, gelation and depression can be reduced, physical properties such as flexural strength and tensile strength can be improved, and excellent work stability at normal temperatures can be ensured.

(57) 요약:
이 출 viện은 개질유향과 그 제조, 제조를 위한 장치와 관련된 것이다. 상기 개질유향은 방사성을 가지거나, 섬유성, 외상, 명백구조와 같은 미세조직을 포함한다. 이러한 개질유향은, 초음파로 종합관을 유도하거나 수성을 하는 과정으로 제조 될 수도 있다. 이러한 개질유향은 방정, 방정, 방수, 강도, 투명성 등 다양한 수수한 특성을 가지며 절도나 중합의 정도에 따라서 그 특성이 조절될 수도 있다. 또한, 상기와 같은 특성으로 인하여, 상기 개질유향은 포함시켜 방정제료 또는 방수제료로 적용할 수 있으며, 작업용이성이 우수하고, 보장성, 유수부분처합성, 용접성 등이 적합한 수준 이상의 특성을 가지며, 특히 접착성이 향상된 방정 및 방수제료를 제조할 수 있다. 나아가, 아스팔트 조성물에 상기 개질유향을 포함하여 적용하는 경우에는 발화현상과 합물현상을 줄이고, 활강도 인장강도 등의 물성이 향상되며, 상온작업안정성이 우수한 아스팔트 조성물을 얻을 수 있다.
명세서
발명의 명칭: 개질유황, 이의 제조방법, 이의 제조장치 및 이의 용도
기술분야
[1] 이하에서 개질유황, 이의 제조방법, 이의 제조장치 및 이의 용도와 관련된 발명에 대해 설명한다. 우수한 물성을 가진 개질유황을 기존의 방법보다 간단한 방식으로 안전하게 제조하며, 연속적으로 개질유황을 대량 생산이 가능한 제조장치에 관해서도 설명한다. 또한, 이러한 개질유황은 다양한 용도에 적응이 가능하며, 예를 들어 방청제료, 방수제료 및 아스프레트 조성물 등으로의 적응도 설명한다.
배경기술
[4] 특히, 다양한 건축 토목 소재에 용용이 가능하나, 상기한 특성으로 인해서 순수한 유황만으로 적응에 한계가 있다. 구체적으로, 취성 파괴(Brittle Fracture) 특성을 지니고 있는 유황 재료의 경우에는 소성상형이 거의 일어나지 않으므로 재료에 가해지는 힘의 모든 그대로 파괴에 사용되어 항복강도 이상의 힘이 가해지면 순간적으로 파괴가 일어나는 현상적인 포טל랜드 콘크리트 특성과 유사한 불안정적인 재료이다.
[7] 특히, 적절한 중합 반응 범위를 넘어서서 반응이 이루어질 경우에는 고무화(rubber like) 현상이 발생할 수 있으며, 이로 인해서 중합반응에 이용하는 반응기의 손상을 초래하는 특성이 있고, 이는 디시클로펜타디엔계 개질제와
유황으로 제조된 유황 개질제의 상업적인 사용을 현저하게 촉진하게 하는 것으로 알려져 있다. 또한, 디시클로렌타디엔 및 유황은 중합 반응 후에도 과냉각 현상 등이 일어나서 제조 및 활용에 비효율적인 요소가 많았다.

한편, 방청 및 방수제료로의 적용에 관하여, 금속과 같이 쉽게 녹슬거나 부식되는 재료들은 장기간에 걸쳐 안정적으로 제 역할을 하기 위하여 방청처리를 할 필요가 있고, 일반적으로 건축물을 포함하는 구조물에는 강수 등으로부터 누수를 방지하고 구조물 자체의 구열이나 내구성 저하를 막기 위한 방수처리가 필요하다. 그러나, 많은 방청 및 방수제료들이 처리 대상인 재료와 접착력이 약하고, 도막형성과정이 번거롭다는 등의 개선점이 있다.

유황과 디시클로렌타디엔계 개질제의 종합으로 제조되는 개질유황은 일반적으로 상온에서 고체이며, 120 ºC 이상의 온도에서 용융시켜 사용한다. 따라서, 개질유황을 방청제료로 사용하기 위하여, 분사기(spray)를 이용하여 개질유황을 고크리트 구조물 혹은 강구조물과 같은 구조물에 분사하기 위해서는 개질유황의 용융을 위한 고온의 전처리가 필요하고, 따라서 분사기 장치에 별도의 개질유황 용융장치가 필요하다는 시공상의 불편함이 있었으며, 작업 현장에서 범용적으로 사용되기는 어려웠다.

또한, 작업을 수분 내로 잡시 동안 중단한다고 하더라도 분사기 내에서 개질유황이 빨리히 고화되기 때문에 분사기를 청소해야 한다는 등의 불편함이 있었고, 다시 작업을 개시하기 위해서는 또 다시 고체인 개질유황을 가열을 시켜야하는 등 시공상의 불편함이 있다. 이는 개질유황을 이용한 방청 및 방수제료의 범용적인 사용을 가로막고 있는 매우 중요한 문제점이다.

나아가, 아스팔트 조성물로의 적용과 관련하여, 일반 아스팔트는 고온에서의 소성 변형 및 저온에서 균열이 발생하는 문제점으로 인하여 아스팔트 포장도로에 사용 가능한 온도 범위가 매우 한정적이다.

개질 아스팔트에 5% 미만의 소량으로 유황을 참가하여 아스팔트와 공중합체의 친화력을 높여라는 노력이 시도되어 왔으며 상분리 안정제로 사용되고 있다. 하지만 개질 아스팔트에 10중량% 이상의 다탕의 유황을 사용할 경우는 젤이 형성되어 젤도가 급격히 상승하여 범용적으로 사용하기 어려운 문제점이 있다.

아스팔트에 다탕의 유황을 참가하는 연구가 많이 진행되어 왔지만 상분리 현상인 젤화(gelation) 현상이 발생하는 이유로 널리 사용되지 못하고 있다.

따라서, 개질 아스팔트에 다탕의 유황이 참가되어도 젤이 형성되지 않고 물성을 향상시키는 아스팔트 조성물에 대한 연구가 진행되었으며, 이와 관련된 중대기술후는 하기와 같다.

미국특허번호 제4,412,019호는 젤 형성을 방지하기 위해서 수소화 처리를 한 부탄디엔-스티렌 불록 공중합체에서 유황을 아스팔트 중량 대비 0 ~ 20% 참가한
개질 아스팔트조성물을 개시하고 있다. 또한 미국특허번호 제5,756,566호는
젠이 형성되지 않는 아스팔트-고분자 화합물의 제조를 위해서 아스팔트
중량비 0.1~5%의 젤 방지제를 사용하여 제조한 개질 아스팔트조성물을
개시하고 있다.

[18] 상기와 같은 연구가 진행되었지만, 개질 아스팔트에 다양의 유황을 첨가했을
경우 젤 방지를 획기적으로 향상시키는 개질 아스팔트조성물이 더욱 요구되는
상황이다.

[19] 한편, 아스팔트 포장도로의 경우에는 여름철의 온도 상승, 폭발적인 교통량,
정체구간의 상승 등의 영향으로 소성변성과 지은 균열 등 포장 파손이
지속적으로 발생하고 있다.

[20] 이러한 문제점을 해결하기 위해서, 미국에서는 1990 년 아스팔트 공용성 품질
(PG Test; Performance Graded)을 국가 규격(ASTM D 6373)으로 제정하여 운영
중이며, 이후 아스팔트 포장품질이 향상되는 고무적인 효과를 얻고 있다.

[21] 이에 따라, 중대에는 아스팔트 100 중량부에 대비하여 개질유황을 5 중량부
정도 소량 첨가하여 사용하였고, 10 중량부 이상으로 사용하면 젤화(gelation)에
의하여 젤도가 급격히 상승하는 문제가 있었다. 따라서, 아스팔트 100 중량부를
기준으로 20 중량부 이하의 개질유황이 첨가되는 것이 일반적이었고,
젤화방지제를 첨가하여야 하므로 그 비용 또한 상당하다.

[22] 또한, 기존에 알려진 방식대로 디시클로렌타디엔과 유황의 중합 반응에 의해서
제조된 개질유황은 상온에 방치하면서 고성장으로 굳어지는 특성이 있기 때문에,
시공하는 과정에서 암물현상이나 나타나는 문제점이 있다. 이는 실험실 수준의
공시께 크기가 아니라 토목현장에서 매우 흔히 큰 플라스틱 개질유황 콘크리트
형태로 시공하는 과정에서 특히 문제가 되는 현상으로, 기프트에 태설된
융용상태의 액체 개질유황이 냉각되는 과정에서, 콘크리트의 중양부분과
외부에서 발생하는 급격한 온도 차이로 인하여 발생하는 현상이다.

[23] 이러한 단점을 개량하기 위하여 유황에 다양한 물질을 첨가하여 물성을 개선한
개질유황에 대한 많은 연구와 개발 노력이 있으나 여전히 유황의 물성상 반응
제어가 곤란하고 상온에서 급격하게 고상화되어 성형할 수 없는 등의 단점을
가지고 있다.

[24] 또한, 기존의 디시클로렌타디엔과 유황의 중합 반응 시 고무화로 인한
제조장치의 손실이 문제가 되기 때문에, 개질유황의 물성향상과 함께
개질유황의 대량생산방법의 개발이 아스팔트조성품에 이용되는 개질유황의
상업적인 대량생산을 위해 필요하다.

발명의 상세한 설명
기술적 과제

[25] 본 발명의 일 실시예에서, 기존의 개질유황 제품들과 비교해서 점착성과
탄성률이 향상하게 우수하고, 방사성이나 미세조직을 가지며, 다양한 분야에
적용할 수 있는 개질유항 및 이의 제조방법을 제공하고자 한다. 또한, 이러한 제조방법의 개질유항을 연속적으로 제조할 수 있는 개질유항 제조장치도 제시하고자 한다. 나아가, 상기 개질유항이 적용될 수 있는 다양한 용도의 재료들, 예를 들어 방청, 방수, 또는 아스팔트 조성물도 제공하고자 한다.

과제 해결 수단

[26] 본 발명의 일 실시예에 따른 개질유항은 섬유상(fiber), 판상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유항이 방산성(spinnability)을 가지는 것이다.

[27] 상기 개질유항은 유방 100 중량부, 그리고 디시클로로펜타디엔계 개질제 1 내지 300 중량부를 포함한다.

[28] 상기 개질유항은, 135℃에서 점도가 3000 내지 200만 cP일 수 있다.

[29] 상기 개질유항은 상기 유방 100 중량부를 기준으로 개질제(initiator) 0.1 내지 200 중량부로 더 포함하는 것일 수 있다.

[31] 상기 개질제는 트랜스 시나말데히드(Trans Cinnamaldehyde), 다미탈리아닐린(Dimethylamiline), 디부틸프탈레이트(Dibutylphthalate), 디아이오도메탄(Diodomethane), 이소부틸알데히드(Isobutyraldehyde), 메타크릴알미드(Methacrylamide), 디에틸아닐린(Diethylaniline), 롱알리트(Rongalite), 나이트로에테인(Nitroethane), 포름알데하이드 하이드레이트(Formaldehyde Hydrate), 페닐아세트아미드(Phenylacetamide), 벤질 아세테이트(Benzyl Acetate), 도데실 벤젠 술포닉 산(Dodecyl benzene sulfonic acid), 트리옥틸아민(Trioctyl amine), 메틸모르필린(Methylmorpholine), 모르필린(Morpholine), 다미탈아닐린(Dimethylamine), 나프탈렌(Naphthalene) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다.

[32] 상기 개질제는 1종이 사용될 수 있고, 서로 다른 개질제가 2종 또는 3종 이상 사용되는 것을 수 있으며, 상기에 예시되지 않은 개질제와 상기 개질제가 함께 사용될 수도 있다.

[33] 상기 개질유항은 재면활성제, 커폴링제, 축매, 가교제, 분산제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 점가제를 더 포함하는 것일 수 있다.

[34] 상기 재면활성제는 음이온 재면활성제, 양이온 재면활성제, 비이온 재면활성제, 암프록시 재면활성제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다.

[35] 상기 커폴링제는 실란계 커폴링제, 탄산염계 커폴링제, 크롬계 커폴링제, 알루미나계 커폴링제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 절개와 상기 개질유황은 용매 하에서 혼합되어 있는 것일 수 있다.
상기 용매는 물, 아민계 용매, 에스테르계 용매, 케톤계 용매, 지방족 또는
방향족 탄화수소계 용매, 에테르계 용매, 알코올계 용매, 플러블 용매, 아미드
용매, 술콤 또는 술복사이드 용매, 아세테이트계 용매, 비수체 무기용매 및
이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 개질유황은 전수성 또는 소수성인 것일 수 있다.
본 발명의 다른 열 실시예에 따른 개질유황의 제조방법은 유황, 그리고
디시클로렌자디엔계 개질유황을 혼합하여 제1혼합물을 제조하는
제1혼합물제조단계; 상기 제1혼합물을 중합 반응시켜 제1반응물을 제조하는
제1중합반응단계; 그리고, 상기 제1반응물이 반응종료 시점에 상기 제1반응물의
중합 반응을 종료시켜서 개질유황을 제조하는 것인 반응완결단계를 포함한다.
상기 제1혼합물은 유황 100 종량부, 그리고 디시클로렌자디엔계 개질제 1 내지
300 종량부를 포함할 수 있다.
상기 제1혼합물제조단계는 120°C 이상의 온도에서 이루어지거나 초음파
처리를 이용하여 이루어질 수 있다.
상기 반응종료 시점은 상기 제1반응물이 방사성(spinnability)를 가지는 시점과
고무화가 일어나는 시점 사이인 것일 수 있고, 상기 개질유황 내에는
섬유상(fiber), 판상(film), 또는 갈축구조(network structure)의 미세조직 형상을
포함하거나 상기 개질유황이 방사성(spinnability)을 가지는 것일 수 있다.
상기 제1혼합물, 상기 제1반응물 및 이들의 조합은 개계제를 더 포함할 수 있다.
상기 개계제의 함량과 개계제의 종류, 투입시점 등에 대한 설명은 본 발명의 일
실시예에 따른 개질유황에서 기재한 것과 동일하므로 기재를 생략한다.
상기 반응종료시점은 제1반응물의 점도가 10,000 cP 이상으로 되는 시점이나
방사성이 생기는 시점일 수 있다. 또한, 상기 반응종료시점은 제1반응물에
섬유상 또는 판상의 미세 조작이 관찰되는 시점일 수 있다.
상기 개질유황의 제조방법은, 상기 제1중합반응단계와 상기 반응완결단계
사이에 숙성(aging)단계를 더 포함할 수 있고, 숙성단계를 포함하는 경우에는
상기 제1반응물의 반응종료시점은 방사성을 가지기 직전으로 조절될 수 있다.
상기 숙성단계는 상기 제1반응물을 40°C 이상의 숙성온도에서 이루어질 수
있고, 80 내지 120°C의 숙성온도에서 이루어지는 것이 있다.
본 발명의 또 다른 열 실시예에 따른 개질유황의 제조방법은, 유황,
디시클로렌자디엔계 개질제, 및 개계제를 포함하는 혼합물을 준비하는
준비단계; 상기 혼합물에 조음과를 조정하여 반응시켜 반응물을 제조하는
초음파처리단계; 그리고 상기 반응물을 40°C 이상의 온도에서 숙성시켜
개질유황을 제조하는 숙성단계를 포함한다.
상기 혼합물은 유황 100 종량부, 디시클로렌자디엔계 개질제 1 내지 300 종량부
및 개계제 0.1 내지 200 종량부를 포함할 수 있다.
상기 개질유황은 점도가 3000 내지 200만 cP이며, 상기 개질유황 내에는
섬유상(fiber), 판상(film), 또는 망구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유항 방사성(spinnability)을 가지는 것일 수 있다.

상기 유항은 120°C 이상의 온도에서 용융되어 액체상일 수 있고, 80°C 이하의 온도에서 고체상인 것일 수 있다.

상기 개질의 종류 등에 대한 설명은 상기 본 발명의 일 실시에 따르 개질유항에 대한 설명과 중복되므로 그 기재를 생략한다.

상기 초응파치리단계는 120°C 이하의 온도에서 이루어지는 것일 수 있다.

상기 초응파치리단계의 반응물은 점도가 10 cP 이하인 것으로 수 있는 것이다.

상기 개질유항은 상기 초응파치리가 이루어지는 반응부, 상기 반응부로부터 도출된 반응물이 유입되는 속성부를 포함하는 연속식 개질유항 제조장치를 이용하여 연속적으로 제조되는 것일 수 있다.

상기 준비단계에서 혼합물의 준비는, 개질유항 제조장치의 제조투입부로 상기 유항 100 중량부, 디시클로렌탐디에스게 개질제 1 내지 300 중량부 및 개질제 0.1 내지 200 중량부를 포함하는 재료가 투입되는 단계일 수 있다.

상기 초응파치리단계는 상기 제조투입부와 연결된 반응부로 상기 재료를 포함하는 혼합물이 유입되고 상기 반응부에 설치된 초응파조사기에서 발생하는 초응파를 상기 혼합물에 조사하여 상기 혼합물의 내에 미세한 기포가 형성되고 상기 기포가 붕괴되는 공통현상에 의하여 상기 혼합물에 포함된 고체 유항이 상기 디시클로렌탐디에스게 개질제와 반응하여 반응물이 형성되도록 하는 단계일 수 있다.

상기 속성단계는 상기 반응부와 연결된 반응물투입부로부터 속성부로 유입되는 반응물을 속성시켜 개질유항을 제조하는 단계이며, 상기 속성단계에서는 반응물투입부로부터 순차로 위치하는 1 이상의 도출부를 이용하여 연속적으로 제조되는 개질유항을 수득하는 것일 수 있다.

본 발명의 또 다른 일 실시에 따른 개질유항 제조장치는, 제조투입부와 반응물투입구를 갖는 제1부유항과 상기 제1부유항 내에 초응파를 조사하는 초응파조사장치를 포함하는 반응부로 구성되어 있고 상기 반응물투입구와 개질유항을 포함하는 제2부유항과 상기 제2부유항 내에 반응물을 보관하는 속성유항을 포함하고, 상기 속성유항 내에 속성을 유지시키는 속성유항장치를 포함하는 속성부로 구성된다.

상기 개질유항투출부는 상기 속성유항의 적어도 일면에 형성되며, 상기 반응물투입구를 기준으로 하였을 때에 서로 다른 거리에 위치하는 2 이상의 도출구를 포함하는 것일 수 있다.

상기 개질유항투출부는 상기 속성유항의 일면에 순차로 형성된 지점도토출부, 중점도토출부 및 고점도토출부를 포함하는 것일 수 있다.

상기 지점도토출부와 상기 개질유항투출부의 거리가 상기 고점도토출부와 상기 개질유항투출부와의 거리보다 짧은 것일 수 있다.

상기 반응부와 속성부 사이에는, 상기 속성부로 유입되는 반응물의 유량을
조절하는 유량조절부가 더 포함될 수 있다.

상기 개질유황 제조장치는 지점도토출부와 연결되어 지점도 개질유황을 저장하는 지점도개질유황저장부, 중점도토출부와 연결되어 중점도 개질유황을 저장하는 중점도개질유황저장부 및 고점도토출부와 연결되어 고점도 개질유황을 저장하는 고점도개질유황저장부를 더 포함하는 것일 수 있다.

상기 개질유황 제조장치는, 상기 제조투입부와 연결된 제조저장부를 더 포함할 수 있고, 상기 제조저장부는 각각 제조투입부와 연결된 2 이상의 악풀탱크를 포함할 수 있으며, 상기 악풀탱크에는 상기 유황과 상기 디시클로렌타디엔계 개질체가 서로 다른 악풀탱크에 보관될 수 있다.

상기 제조투입부는 유황, 디시클로렌타디엔계 개질체, 개시체 또는 이들의 혼합물을 제1화우정대로 일정한 비율로 투입하고, 상기 초음파조사장치는 상기 혼합물에 초음파를 가하여 유황과 디시클로렌타디엔계 개질체의 중합반응을 유도하며, 상기 온도유지장치는 상기 숙성용기 내의 온도를 120℃ 이하의 숙성온도로 유지시키는 것이다.

상기 개질유황 제조장치는 연속적으로 개질유황을 제조하는 것일 수 있다.

상기 개질유황 제조장치는 상기 숙성용기 내의 온도와 상기 숙성용기로 유입되는 반응물 체류 시간을 조절하여 제조되는 개질유황의 점도를 조절하는 것일 수 있다.

상기 숙성부는 상기 숙성용기 내의 온도와 함께 압력을 조절할 수 있는 고압반응기(autoclave)를 포함하는 것일 수 있다.

본 발명의 또 다른 일 실시예에 따른 수경성 자재는 상기 개질유황을 포함한다. 상기 수경성 자재는 도료용 또는 건축용일 수 있다.

상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 방청제료는 섬유상(fiber), 판상(film), 또는 망둑구조(network structure)의 미세조직 형상을 포함하거나 방사성(spinnability)을 가지는 개질유황을 포함한다.

상기 개질유황은 유황 100 중량부, 그리고 디시클로렌타디엔계 개질체 1 내지 300 중량부를 포함하고, 135 ℃에서 점도가 3000 내지 200만 cp인 것일 수 있다.

상기 방청제료는 화학제, 보강제 및 이들의 조합을 더 포함하는 것일 수 있다.

상기 화학제는 이황화탄소, 암모니아(Ammonia), 알코올계 용매, 디-티트-부틸 폴리실화이드(Di-tert-butyl polysulfide), 티트-도테실 폴리실화이드(tert-Dodecyl polysulfide), 티트-노닐 폴리실화이드(tert-Nonyl polysulfide), 아닐린(Aniline), 벤젠(Benzene), 디부틸 푸탈레이트(Dibutyl phthalate), 2,2'-에틸렌레스이소티오우로늄 디브로마이드 (2,2'-Ethylenebisothiouronium dibromide), 디브로모에탄(Dibromoethane, 1,2-Dibromoethane), 아이오도폼(iodoform), 베타-나프톨(2-나프톨)(Beta-naphthol(2-naphthol)), 올리브 오일(Olive oil), 페닐(Phenol), 피리딘(Pyridine), 퀴놀린(Quinoline), 디설폴러디스ulfur dichloride), 톨루엔(Toluene), m-자이렌(m-xylene),
p-자이렌(P-xylene), 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것이 수 있다.

상기 보강제는 미분말 규사, 규조토, 규회석, 점토류, 유리 darm(Chopped glass fiber), 염료, 안료, 알루미늄 설레이트(Aluminum sulfate), 물유리, Ca(OH)2, 산화 아연, 나프탈렌, Mg(OH)2, CaCl2, Al(OH)3, 봉사, CaSO4.2H2O, Fe2O3, 제일라이트, 탄소락, 휘스커(Whisker), Na2SO4, MgSO4.7H2O, 플로이데스, 아크릴 에블진, 액포시, 탈릭스, 탄소락 또는 섬리, 강철섬유, 액상 무기질, 섬유질 중전제, 섬유질 입자, 박편성 입자 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것이 수 있다.

상기 개질유황은 개시제(Initiator)를 유황 100 중량부를 기준으로 0.1 내지 200 중량부로 더 포함하는 것이 수 있다.

상기 방정재료는, 상기 개질유황 100 중량부, 화석 제 1 내지 100 중량부, 및 보강제 1 내지 100 중량부를 포함하는 것이 수 있다.

상기 개질유황 또는 상기 방정재료는 25°C에서 액상인 것일 수 있다.

상기 방정재료는, 25°C에서 상온중의 점도가 1 내지 1,000 cP 및 그 이상 135°C에서 가열중의 점도가 1 내지 10,000 cP인 것일 수 있다.

본 발명의 다른 일 실시예에 따른 방정재료 제조법은 유황 100 중량부, 그리고 디스플로케이션계 개질제 1 내지 300 중량부를 120°C 이상에서 용융 혼합하여 제1혼합물을 제조하는 제1혼합물제조단계; 상기 제1혼합물을 120°C 이상에서 중합 반응시켜 제2반응물제조단계; 그리고, 상기 제2반응물이 반응중료 시점에 상기 제1반응물의 중합 반응을 종료시켜 제조한 개질유황을 포함하는 방정재료를 제조하는 것인 반응완결단계를 포함한다.

상기 반응중료 시점은 상기 제1반응물이 방사성(spinnability)를 가지는 시점과 고무화가 일어나는 시점 사이인 것이며, 상기 개질유황은 섬유상(fiber), 판상(film), 또는 망막구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유황이 방사성(spinnability)을 가지는 것일 수 있다.

상기 방정재료의 제조법은 상기 반응완결단계 이후에 조성물혼합단계를 더 포함하고, 상기 조성물혼합단계는 상기 개질유황과 체가제를 혼합하는 단계이며, 상기 체가제는, 화석제, 보강제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것이 수 있다.

상기 제1혼합물 또는 제1반응물에 개시제를 투입할 수 있고, 상기 개시제의 투입량은 상기 유황 100 중량부를 기준으로 0.1 내지 200 중량부인 것일 수 있다.

상기 개시제는 트랜스 시나말데하이드(Trans Cinnamaldehyde), 디메틸아닐린(Dimethylaniline), 디부틸프탈산트(Dibuthyphthalate), 디아이오도벤치(Diiodomethane), 디메틸포름아미드(dimethylformamide), 모르폴린(Morpholine), 개질유황 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함할 수 있다.

상기 방정재료는 25°C에서 상온중의 점도가 1 내지 1,000 cP 및 그 이상 135°C에서
가열형의 점도가 1 내지 10,000 cP인 것일 수 있다.

[86] 상기 방청제료의 제조방법은, 상기 제1중합반응단계와 상기 반응완결단계 사이에 숙성단계를 더 포함하고, 상기 숙성단계는 상기 제1반응물을 40℃ 이상의온도에서 방치하여 숙성시키는 단계일 것이 다.

[87] 본 발명의 또 다른 일 실시예에 따른 방청제료의 제조방법은 유황 100 중량부,디지털로렌타디에글개결제 1 내지 300 중량부 및 개시제 1 내지 200 중량부를 포함하는 혼합물을 준비하는 준비단계; 상기 혼합물에 초음파를 조사하며반응시켜 반응물을 제조하는 초음파처리단계; 그리고 상기 반응물을 40℃ 이상의온도에서 숙성시켜 개질유충을 포함하는 방청제료를 제조하는
숙성단계를 포함한다.

[88] 상기 개질유충은 섬유상(fiber), 판상(film), 또는 망목구조(network structure)의미세조직 형상을 포함하거나 상기 개질유충이 방사성(spinnability)을 가지는 것일 수 있다.

[89] 상기 초음파처리단계는 반응물의 온도가 120℃ 이하인 조건에서 이루어지는 것을 수 있다.

[90] 상기 방청제료의 제조방법은, 상기 초음파처리가 이루어지는 반응부, 상기 반응부로부터 토출된 반응물이 유입되는 숙성부를 포함하는 연속식 제조장치를 이용하여 연속적으로 제조되는 것일 수 있다.

[91] 상기 방청제료는 연속식 개질유충 제조장치를 이용하여 제조되며, 상기 준비단계에서 혼합물의 준비는, 개질유충 제조장치의 제1투입부로 상기 유황 100 중량부, 디지털로렌타디에글개결제 1 내지 300 중량부, 및 개시제 0.1 내지 200 중량부를 포함하는 제료가 투입되는 단계일 수 있다.

[92] 상기 초음파처리단계는 상기 제1투입부와 연결된 반응부로 상기 재료를포함하는 혼합물이 유입되고 상기 반응부에 설치된 초음파 조사기에서 발생하는 초음파를 상기 혼합물에 조사하여 상기 혼합물의 내에 미세한 기포가 형성되고 상기 기포가 붕괴되는 공동현상에 의하여 상기 혼합물에 포함된 고체유충이 상기 디지털로렌타디에글개결제와 반응하여 반응물이 형성되도록 하는 단계일 수 있다.

[93] 상기 숙성단계는 상기 반응부와 연결된 제2투입부로부터 숙성부로 유입되는 반응물을 숙성시켜 개질유충을 제조하는 단계이며, 상기 숙성단계에서는 제2투입부로부터 순차로 위치하는 1 이상의 토출부를 이용하여 연속적으로 제조되는 개질유충을 수득하는 것일 수 있고, 상기 숙성부의 토출구는 상기 제2투입부로부터 순차로 위치하는 저점도토출부, 중점도토출부, 및고점도토출부를 포함하는 것일 수 있다.

[94] 본 발명의 또 다른 일 실시예에 따른 방청코팅막의 제조방법은 본 발명의일실시예인 방청제료를 구조제에 분사하여 방청코팅막을 형성하는 것이다.

[95] 본 발명의 또 다른 일 실시예에 따른 방청코팅막의 제조방법은 본 발명의다른 일 실시예인 방청제료의 제조방법을 이용하여 제조한 방청제료를 구조제에
분사하여 방청코팅막을 형성하는 것이 될 수 있다.

[96] 상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 방수재료는 섬유상(fiber), 관상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 방사성(spinnability)을 가지는 개질유황을 포함한다.

[97] 상기 개질유황은 유황 100 중량부, 그리고 디시클로펜타디엔계 개질체 1 내지 300 중량부를 포함하고, 135°C에서 점도가 3000 내지 200만 cP인 것일 수 있다.

[98] 상기 방수재료는 회색제, 보강제 및 이들의 조합을 더 포함하는 것이 될 수 있다.

[99] 상기 회색제는 아황화탄소, 알코올계 용제, 디-터트-부틸 폴리스ulfide(Di-tert-butyl polysulfide), 터트-도테일 폴리스ulfide(tert-Dodecyl polysulfide), 터트-노질 폴리스ulfide(tert-Nonyl polysulfide), 아닐린(Aniline), 벤젠(Benzene), 디부틸 푸탈레이트(Dibutyl phthalate), 2,2'-에틸렌비스아이소오르우로늄 디브로마이드 (2,2'-Ethylenebisisothiouronium dibromide), 디브로모에탄(Dibromomethane, 1,2-Dibromoethane), 아이오도폼(iodoform), 베타-나프탈렌(Beta-naphthal(2-naphthol), 올리브 오일(Olive oil), 페닐(Phenol), 피리딘(Pyridine), 퀴놀린(Quinoline), 디셀프 디클로라이드(Disulfur dichloride), 폴루엔(Toluene), m-자이렌(m-xylene), p-자이렌(P-xylene), 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것일 수 있다.

[100] 상기 보강제는 미분할 규사, 규조토, 규화석, 젤토류, 유리ולם(chopped glass fiber), 염료, 안료, 알루미늄 산화물(aluminum sulfate), 물유리, Ca(OH)2, 산화아연, 나프탈렌, Mg(OH)2, CaCl2, Al(OH)3, 봉화, CaSO4.2H2O, Fe3O4, 질화라이트, 탄소섬유, 쉬스커(whisker), Na2SO4, MgSO4.7H2O, 플라이쉬, 아크릴 베타비, 에폭시, 라텍스, 탄소섬유 또는 씽어, 강철 섬유, 엽상 무기질, 섬유질 중전제, 섬유상 입자, 박편상 입자 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것일 수 있다.

[101] 상기 개질유황은 개시제(initiator)를 유황 100 중량부를 기준으로 0.1 내지 200 중량부로 더 포함하는 것일 수 있다.

[102] 상기 방수재료는, 상기 개질유황 100 중량부, 회색제 1 내지 100 중량부, 및 보강제 1 내지 100 중량부를 포함하는 것일 수 있다.

[104] 상기 개질유황 또는 상기 방수재료는 25°C에서 상온형의 점도가 1 내지 1,000 cP, 그리고 135°C에서 가열형의 점도가 1 내지 10,000 cP인 것일 수 있다.

[105] 본 발명의 다른 일 실시예에 따른 방수재료 제조방법은 유황 100 중량부, 그리고 디시클로펜타디엔계 개질체 1 내지 300 중량부를 120°C 이상에서 용융 혼합하여 제1혼합물을 재조는 제1혼합물제조단계; 상기 제1혼합물을 120°C 이상에서 중합 반응시키는 제1반응물을 재조하는 제1 중합반응단계; 그리고, 상기 제1반응물이 반응종료 시점에 상기 제1반응물의 중합 반응을 종료시켜 제조한
개발영향을 포함하는 방수재료를 제조하는 것인 반응합합단계를 포함한다.

상기 반응종료 시점은 상기 제1반응물이 방사성(spinnability)를 가지는 시점과 고무화가 일어나는 시점 사이인 것이며, 상기 개발영향은 섬유양(fiber), 판상(film), 또는 망막구조(network structure)의 미세조직 형상을 포함하거나 상기 개발영향이 방사성(spinnability)을 가지는 것이다.

상기 반응재료의 제조방법은 상기 반응합합단계 이후 조성물혼합단계를 더 포함하고, 상기 조성물혼합단계는 상기 개발영향과 접기에 혼합하는 단계이며, 상기 접기에는, 희석제, 보강제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것이 있다.

상기 제1혼합물 또는 제1반응물에 개시제를 투입할 수 있고, 상기 개시제의 투입량은 상기 유황 100 중량부를 기준으로 0.1 내지 200 중량부인 것일 수 있다.

상기 개시제는 트랜스 시나말데하이드(Trans Cinnamaldehyde), 디메틸아닐린(Dimethylaniline), 디뷰티르포탈레이트(Dibutylphthalate), 디아이오도메탄(Diodomethane), 디메틸포름아미드(dimethylformamide), 모르포린(Morpholine), 개질유황 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다.

상기 반수재료는 25°C에서 상온형의 점도가 1 내지 1,000 cP, 그리고 135°C에서 가열형의 점도가 1 내지 10,000 cP인 것일 수 있다.

상기 반수재료의 제조방법은, 상기 제1종합반응단계와 상기 반응합합단계 사이에 수성단계를 더 포함하고, 상기 수성단계는 상기 제1반응물을 40°C 이상의 온도에서 반응시켜 수성시키는 단계인 것일 수 있다.

본 발명의 또 다른 일 실시예에 따른 반수재료의 제조방법은 유황 100 중량부, 디시클로펜타디엔계 개질제 1 내지 300 중량부, 및 개시제 0.1 내지 200 중량부를 포함하는 혼합물을 준비하는 준비단계; 상기 혼합물에 조음과를 조사하며 반응시켜 반응물을 제조하는 조음과처리단계; 그리고 상기 반응물을 40°C 이상의 온도에서 수성시켜 개질유황을 포함하는 반수재료를 제조하는 수성단계;을 포함한다.

상기 개질유황은 섬유양(fiber), 판상(film), 또는 망막구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유황이 방사성(spinnability)을 가지는 것일 수 있다.

상기 조음과처리단계는 반응물의 온도가 120°C 이하인 조건에서 이루어지는 것일 수 있다.

상기 반수재료의 제조방법은, 상기 조음과처리가 이루어지는 반응부, 상기 반응부로부터 토출된 반응물이 유입되는 수성부를 포함하는 연속식 제조장치를 이용하여 연속식으로 제조되는 것일 수 있다.

상기 반수재료는 연속식 개질유황 제조장치를 이용하여 제조되며, 상기 준비단계에서 혼합물의 준비는, 개질유황 제조장치의 제1투입부로 상기 유황 100 중량부, 디시클로펜타디엔계 개질제 1 내지 300 중량부, 및 개시제 0.1 내지
200 중량부를 포함하는 재료가 투입되는 단계일 수 있다.

118] 상기 조음파처리단계는 상기 제1투입부와 연결된 반응부로 상기 재료를 포함하는 혼합물이 유입되고 상기 반응부에 설치된 조음과 조사기에서 발생하는 조음파를 상기 혼합물에 조사하여 상기 혼합물의 내에 미세한 기포가 형성되고 상기 기포가 붕괴되는 공동현상에 의하여 상기 혼합물에 포함된 고체 유황이 상기 디시클로로펜타디엔계 개질제와 반응하여 반응물이 형성되도록 하는 단계일 수 있다.

119] 상기 속성단계는 상기 반응부와 연결된 제2투입부로부터 속성부로 유입되는 반응물은 속성시켜 개질유황을 제조하는 단계이며, 상기 속성단계에서는 제2투입부로부터 순차로 위치하는 1 이상의 토출부를 이용하여 연속적으로 제조되는 개질유황을 수득하는 것일 수 있고, 상기 속성부의 토출구는 상기 제2투입부로부터 순차로 위치하는 저점도토출부, 중점도토출부, 및 고점도토출부를 포함하는 것일 수 있다.

120] 본 발명의 또 다른 일 실시예에 따른 반수코팅막의 제조방법은 본 발명의 일실시예인 반수재료를 구조재에 분사하여 반수코팅막을 형성하는 것이다.

121] 본 발명의 또 다른 일 실시예에 따른 반수코팅막의 제조방법은 본 발명의 다른 일 실시예인 반수재료의 제조방법을 이용하여 제조한 반수재료를 구조재에 분사하여 반수코팅막을 형성하는 것일 수 있다.

122] 상기 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 아스팔트 조성물은, 심유상(fiber), 판상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 방사성(spinnability)을 가지는 개질유황; 곱게; 그리고 아스팔트;를 포함한다.

123] 상기 개질유황은 유황 100 중량부 및 디시클로로펜타디엔계 개질제 1 내지 300 중량부를 포함하는 것일 수 있다.

124] 상기 개질유황은 135℃에서 정도가 3000 내지 200만 cP인 것일 수 있다.

125] 상기 개질유황은 개시제(initiator)를 유황 100 중량부를 기준으로 0.1 내지 200 중량부로 더 포함하는 것일 수 있다.

126] 상기 아스팔트 조성물은 상기 아스팔트 100 중량부를 기준으로 개질유황을 30 중량부 이상 포함하는 것일 수 있다.

127] 상기 아스팔트 조성물은 상기 아스팔트 100 중량부를 기준으로 상기 곱게를 10 내지 10 중량부로 포함하는 것일 수 있다.

128] 상기 아스팔트 조성물은 상기 아스팔트 100 중량부를 기준으로 상기 곱게를 10 내지 100 중량부로 포함하는 것일 수 있다.

129] 상기 아스팔트는 스테레이트 아스팔트, 회석 아스팔트 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나이고, 상기 회석 아스팔트는 상기 스테레이트 아스팔트를 과라진 중류액, 방향족 유분, 나프테네 유분 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 액체로 회석시킨 것일 수 있다.

130] 상기 아스팔트 조성물은, 필름을 더 포함하고, 상기 필름은 상기 아스팔트 100 중량부를 기준으로 1 내지 20 중량부로 포함되는 것일 수 있다.
상기 젤러는 석면, 포 sufferers 면트, 소색회, 줄바티스, 재단 디스트, 보강재 및 이들의 조합으로 이루어진 구에서 선택된 어느 하나인 것일 수 있다.

본 발명의 다른 일 실시예에 따른 아스팔트 첨가제는 섬유상(fiber), 판상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 방사성(spinnability)을 가지는 개질유황; 및 곱게를 포함하고, 상기 개질유황은 유황 100 중량부 및 디시클로렌타디엔계 개질제 1 내지 300 중량부를 포함한다.

상기 아스팔트 첨가제는 펄릿 형태인 것일 수 있다.

본 발명의 또 다른 실시예에 따른 아스팔트 조성물의 제조방법은 유황 100 중량부, 그리고 디시클로렌타디엔계 개질제 1 내지 300 중량부를 120℃ 이상에서 용융 혼합하여 제1혼합물을 제조하는 제1혼합물제조단계; 상기 제1혼합물을 120℃ 이상에서 중합 반응시켜 제1반응물을 제조하는 제1중합반응단계; 상기 제1반응물이 반응종료 시점에 상기 제1반응물의 중합 반응을 종료시켜서 개질유황을 제조하는 것인 반응완결단계; 그리고 상기 개질유황과 곱게를 혼합하여 펄릿을 제조하는 단계;를 포함한다.

상기 반응종료 시점은 상기 제1반응물이 방사성(spinnability)을 가지는 시점과 고무화가 일어나는 시점 사이인 것이며, 상기 개질유황은 섬유상(fiber), 판상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유황과 방사성(spinnability)을 가지는 것으로 한다.

상기 곱게는 상기 개질유황 100 중량부를 기준으로 10 내지 70 로 포함하는 것일 수 있다.

상기 곱게는 석면, 포 sufferers 면트, 소색회, 줄바티스, 재단 디스트, 보강재 및 이들의 조합으로 이루어진 구에서 선택된 어느 하나인 것일 수 있다.

상기 제1혼합물 또는 제1반응물은 개시제(initiator)를 유황 100 중량부를 기준으로 0.1 내지 200 중량부로 더 포함하는 것일 수 있다.

상기 아스팔트 조성물의 제조방법은, 상기 제1중합반응단계와 상기 반응완결단계 사이에 숙성단계를 더 포함하고, 상기 숙성단계는 상기 제1반응물 40℃ 이상의 온도에서 방치하여 숙성시키는 단계일 수 있다.

본 발명의 또 다른 실시예에 따른 아스팔트 조성물의 제조방법은 유황 100 중량부, 디시클로렌타디엔계 개질제 1 내지 300 중량부, 및 개시제 0.1 내지 200 중량부를 포함하는 혼합물을 준비하는 준비단계; 상기 혼합물에 초음파를 조사하며 반응시켜 반응물을 제조하는 초음파처리단계; 상기 반응물을 40℃ 이상의 온도에서 숙성시켜 개질유황을 제조하는 숙성단계; 그리고 상기 개질유황과 곱게, 및 아스팔트를 혼합하는 혼합단계를 포함한다.

상기 개질유황은 섬유상(fiber), 판상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유황이 방사성(spinnability)을 가지는 것일 수 있다.
상기 아스팔트 조성물을 상기 개질유황을 상기 아스팔트 100 중량부를 기준으로 30 중량부 이상 포함하는 것을 수 있다.

상기 초음파처리단계는 반응물의 온도가 120°C 이하인 조건에서 이루어지는 것일 수 있다.

상기 아스팔트조성물의 제조방법은, 상기 초음파처리가 이루어지는 반응부, 상기 반응부로부터 토출된 반응물이 유입되는 수성부를 포함하는 연속식 제조장치를 이용하여 연속적으로 제조되는 것일 수 있다.

상기 아스팔트조성물은 연속식 개질유황 제조장치를 이용하여 제조되며, 상기 준비단계에서 혼합물의 준비는, 개질유황 제조장치의 제1투입부로 상기 유황 100 중량부, 디시클로ペン타디엔계 개질제 1 내지 300 중량부, 및 개시제 0.1 내지 200 중량부를 포함하는 제료가 투입되는 단계일 수 있다.

상기 초음파처리단계는 상기 제1투입부와 연결된 반응부로 상기 재료를 포함하는 혼합물이 유입되고 상기 반응부에 설치된 초음파 조사기에서 발생하는 초음파를 상기 혼합물에 조사하여 상기 혼합물의 내에 미세한 기포가 형성되고 상기 기포가 붕괴되는 공통한상에 의하여 상기 혼합물에 포함된 고체 유황이 상기 디시클로펜타디엔계 개질제와 반응하여 반응물이 형성되도록 하는 단계일 수 있다.

상기 수성단계는 상기 반응부와 연결된 제2투입부로부터 수성부로 유입되는 반응물을 수성시켜 개질유황을 제조하는 단계이며, 상기 수성단계에서는 제2투입부로부터 순차로 위치하는 1 이상의 토출부를 이용하여 연속적으로 제조되는 개질유황을 수득할 수 있다.

상기 수성부의 토출구는 상기 제2투입부로부터 순차로 위치하는 저점도토출부, 중점도토출부, 및 고점도토출부를 포함하는 것일 수 있다.

본 발명의 또 다른 일 실시예에 따른 아스팔트의 제조방법은 본 발명의 일 실시예인 상기 아스팔트 첨가제를 아스팔트와 혼합하여 아스팔트 조성물을 제조하는 과정을 포함하거나, 본 발명의 또 다른 일 실시예에 따른 상기 아스팔트 조성물의 제조방법을 이용하여 제조한 아스팔트 조성물을 타설하면서 아스팔트를 형성하는 것이다.

이하, 본 발명을 보다 상세하게 설명한다.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 제1, 제2 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는
제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.

[153] 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.

[154] 본 출원에서, "포함하다" 또는 "가진다" 등의 용어는 명제로서 상에 기재된 특정, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지칭하려는 것이지, 하나 또는 그 이상의 다른 특정들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.

[155] 본 발명에서 "연결하다" 또는 "연결되다"라는 표현은, 이들이 직접 연결된다는 한정이 없는 한, 두 개의 구성요소가 직접 연결되는 것으로 한정하는 의미가 아니라, 이들 구성요소들 사이에 다른 구성요소가 더 추가된 형태로 연결되는 것도 포함하는 의미로 해석된다.

[156] 본 발명에서 특별한 언급이 없는 한 실온 또는 상온이라는 용어는 15 내지 25℃의 온도를 의미한다.

[157] 본 발명의 유황은 통상의 유황 단체를 포함하는 것으로, 상기 유황으로는 천연 유황, 또는 석유나 천연 가스의 탄화에 의해 얻어진 유황 등이 있다. 본 발명의 유황으로는 고체 상태의 유황을 반응에 용이하도록 용융점 이상으로 가열하여 사용하거나, 석유화학 등과 같은 관련 업계에서 역상으로 배출되는 유황을 사용할 수 있다.

[158] 본 발명의 디시클로렌탈디엔계 개질제는 시클로렌탈디엔 올리고머를 함유하는 디시클로렌탈디엔계 개질제를 의미하는 것이다. 디시클로렌탈디엔(DCPD, dicyclopentadiene)는 시클로렌탈디엔(cyclopentadiene, CPD)의 이량체로서, 나프타를 열분해하는 과정에서 생성될 수 있으며, 나프타 크랙커(Naphtha cracker)에서 부산물로 얻어지는 C5 유분과 C9+ 유분에 10 내지 20 중량% 포함되어 있는 것이 될 수 있으나, 이에 한정되는 것은 아니며, 상업적으로 판매되는 디시클로렌탈디엔을 포함하는 제품이라면 적용할 수 있다.

[159] 디시클로렌탈디엔계 개질제는, 한국 특허공개 10-2006-101878호에 개시된 것처럼, 개질 성분으로 디시클로렌탈디엔(DCPD)을 포함한다. 이 DCPD 단독으로 사용될 수도 있고, 혹은 상기 DCPD에 시클로렌탈디엔(cyclopentadiene; CPD), DCPD 유도체, CPD 유도체 (예컨대, 메틸 시클로렌탈디엔 (MCP), 메틸 디시클로렌탈디엔(MDCP)) 중 적어도 하나가 첨가된 혼합물이 사용될 수도 있다. 또한, 상기 디시클로렌탈디엔계 개질제는 디펜텐(dipentene), 비닐 톨루엔(vinyl toluene), 스티렌 모노머, 디시클로렌텐(dicyclo pentene) 등의 올레핀(olefin) 화합물과 혼합된 형태로 사용될 수도 있다.
한국 공개 특허공보 제10-2005-26021호에서는 유황 개질제로서 애를 들면 디시클로렌타디엔(DCPD), 테트라하이드로인텐(THI), 혹은 시클로렌타디엔과 그 음리고머(2 내지 5량체 혼합물), 디펜, 비닐 풀루렌, 디시클로렌텐 등의 올레핀 화합물로 이루어지는 균으로부터 선택되는 1종 또는 2종 이상을 사용할 수 있고, 상기 DCPD는, DCPD 단체 혹은 시클로렌타디엔의 단체, 2 내지 5량체를 주로 구성되는 혼합물을 포함하는 뜻이며, 이 혼합물은 DCPD의 함유량이 70 중량% (이를 "순도 70%"라고 한다) 이상의 것을 말한다고 기재하고 있다. 따라서, 본 발명에서 말하는 시클로렌타디엔 개질제는,
디시클로렌타디엔이라고 정하는 대부분의 시판 제품을 사용할 수 있고, 상기 THI는 THI의 단체 혹은 THI와, 시클로렌타디엔의 단체, 시클로렌타디엔 및 부탄디엔의 중합물, 시클로렌타디엔의 2 내지 5량체로 이루어지는 균으로부터 선택되는 1종 또는 2종 이상을 주로 구성되는 것과의 혼합물을 포함하는 것을 의미한다.

본 발명에서 방사성(spinnability)은 예사성, 실험성 등으로 표현될 수 있는 것으로, 방사성(spinnability)을 가지는지 여부는 개질유황의 제조과정에서 용액 상태인 혼합물 또는 반응물에 유리 막대기를 둉었다가 빠는 실험이 하여 판단하며, 용액 상태의 혼합물 또는 반응물로부터 그 일부가 유리 막대기에 이어지며 실험 끝 깔끔 끝나는 현상(1 cm 이상)이 관찰되는 경우를 상기 혼합물 또는 반응물의 방사성, "spinnability"를 가지는 것으로 정의한다.

개질유황

본 발명의 일 실시에 따른 개질유황은, 유황, 디시클로렌타디엔계 개질제를 포함한다. 상기 개질유황은 개질유황을 포함하는 혼합체를 가지는 것을 의미한다.

상기 개질유황은 상기 수실 100중량분을 기준으로 디시클로렌타디엔계 개질제 0.1내지 1000중량분을 포함할 수 있고, 1 내지 300중량분을 포함할 수 있다.

상기 개질유황은 135℃에서 점도가 1 내지 1,000만 cP인 것일 수 있고, 3000 내지 200만 cP인 것일 수 있다. 상기 개질유황의 점도는 상기 개질유황이 포함되는 수실과 디시클로렌타디엔계 개질제의 중합 반응이 종료된 이후에 측정된 것으로, 반응이 종료된 이후의 점도를 의미한다.

상기 개질유황은 수실 100중량분과 디시클로렌타디엔계 개질제 1 내지 300중량분을 포함하는 것일 경우에는, 상대적으로 고가인 디시클로렌타디엔계 개질제를 적절한 함량으로 적응하여서 경제성 있는 개질유황을 제조할 수 있으며, 상기 디시클로렌타디엔계 개질제를 상기 수실 100중량분을 기준으로 100중량분 초과로 사용하는 경우에는 상온에서 액상인 개질유황을 얻을 수 있다.

상기 중합 반응이 완료된 개질유황의 135℃에서 점도가 3,000 내지 200만 cP인 경우에는 탄력성 및 접착성이 현저하게 우수할 수 있다. 상기 개질유황은 기존의
개질유항보다 접착력과 탄성도 등에서 월등하게 우월한 특성을 가질 수 있다.

상기 개질유항은 상기 유항, 상기 디시클로렌타디엔계 개질체 외에 개시체를 더 포함하는 것이 가능하다. 상기 개질유항이 상기 개시체를 더 포함하는 경우에는 상기 개질유항 내의 미세 조직의 발달이 더욱 유리하게 이루어질 수 있고, 특히 방복구조 형상과 같은 미세 조직이 형성될 수 있다. 이러한 특성은 접착성, 탄성도 등의 특성이 개시체를 사용하지 않은 실시에 비해 월등하게 우수한 특성을 가질 수 있다.

또한, 상기 개시체를 더 포함하는 경우에는 120°C를 초과하는 고온에서의 중합반응을 시키는 것이 아니라, 120°C 이하인 저온에서의 반응 및 숙성공정을 통하여 중합반응을 안정적으로 제어하면서 개질유항을 제조할 수 있다. 또한, 상기 저온에서의 반응은 초음과 조사와 함께 이루어질 수 있다. 그러나, 필요에 따라, 보다 빠르게 중합반응을 진행시키기 위해서는 120°C를 초과하는 온도에서도 별 방식의 작용이 가능하므로, 반응온도가 반드시 120°C 이하라고 제한하는 것은 아님이다.

상기 개시체는 작용하는 개시체의 구체적인 종류, 참가량, 투입 시기, 반응 조건 등을 변경하여 제조되는 개질유항의 특성을 조절할 수 있다.

상기 개질유항은 상기 유항 100 중량부를 기준으로 개시체 0.1 내지 200 중량부로 포함될 수 있다.

상기 개시체는 유항, 개질유항, 아스팔트, 황화물, 다황화물, 탄화수소화합물 및 이들의 조합으로 이루어진 곳에서 선택된 어느 하나일 수 있고, 상기 디시클로렌타디엔계 개질체와 동시에 또는 반응이 이루어지는 곳간에 따로 투입될 수 있다. 상기 개시체로 유항이 사용되는 경우에는 반응이 진행되는 곳간에 투입시에 개시체로서 역할을 할 수 있다.

상기 개시체로서는 상기 유항은 원소 항, 결정성 항, 비결정성 항, 클로이말항 및 이들의 혼합물일 수 있다. 또한, 상기 유항은 α-항(사방정계 항), β-항(단방정계 항), γ-항 및 이들의 조합으로 이루어진 곳에서 선택된 어느 하나의 항일 수 있다. 상기 아스팔트는 스트레이트아스팔트 혹은 개질 아스팔트를 의미하고, 상기 황화물(sulfides)은 황을 포함하는 화합물로, 이황화탄소 등을 예시할 수 있으나, 이에 한정되는 것은 아니다. 상기 다황화물(polysulfide, 폴리황화물)로는 폴리황화물변형에폭시수지 등을 예시할 수 있으나, 이에 한정되는 것은 아니다. 상기 탄화수소화합물은 탄소 및 수소가 이루어진 화합물을 의미하는 것으로, 적체형, 분자체형, 환형, 방향족 탄화수소 화합물을 포함한다. 상기 개시체는 미리 중합된 개질유항이 있을 수 있고, 특정한 제조방법으로 제조한 개질유항에 한정되지 않는다.

상기 개시체는, 트랜스 시나말데하이드(Trans Cinnamaldehyde), 디메틸아닐린(Dimethylaniline), 디부틸프탈레이트(Dibutylphthalate), 디아이오도메탄(Diodomethane), 이소부틸알데하이드(Isobutyraldehyde), 메톡릴아미드(Methacrylamide), 디에틸아닐린(Diethylaniline),
홍갈리트(Rongalite), 나이트로에테인(Nitroethane), 포름알데하이드
하이드레이트(Formaldehyde Hydrate), 펜닐아세타이드(Phenylacetamide), 벤질
아세테이트(Benzyl Acetate), 도데실 벤젠 술포닉 산(Dodecyl benzene sulfonic
acid), 트리옥틸아민(Triocetyl amine), 메틸모르필린(Methylmorpholine),
모르필린(Morpholine), 디메틸아닐린(Dimethylaniline), 나프탈렌(Naphthalene) 및
이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다.

상기 개시에는 스트레이트 아스팔트(straight asphalt), 개질 아스팔트(modified
asphalt), 폴리 이소프렌(poly isoprene), SBS(styrene butadiene styrene block
copolymer), 폴리 부틸렌(poly butylene), 스티렌(styrene), 펜타이어 첨,
디메틸아세틸아세토에이트골드-3,
N-메틸피로릴린[dimethyl(acetylacetonate)gold-3, N-methylpyrrolidine], 우레아,
에폭시 수지, 범돌-포름알데히드, 범돌과 폴리에스터 태점, 범돌 수지, 요소 수지,
벤릴 수지, 열경화성 수지류 등이 상기 개시제와 함께 사용될 수 있으나, 이에
한정되는 것은 아니다.

상기 개시제는 단독으로, 또는 2종 이상이 혼합되어 사용될 수 있다.

상기 개시제는 상기 디시플로렌타디엔계 개질제와 상기 유황의 중합 반응을
촉진하거나 조절하는 역할을 할 수 있다. 상기 개시제로 개질유황을 적용하는
경우에는 개시제를 사용하지 아니한 경우보다 접착력, 탄성률이 매우 우수한
개질유황을 얻을 수 있다.

본 발명의 개질유황은 반응이 완결된 후의 개질유황의 미세 구조나 성상에
 있어서 기존의 방법으로 제조한 개질유황과 상당히 다른 특성을 보인다. 즉,
상기 본 발명의 일 실시예에 따른 개질유황은 상기 개질유황 내에 섬유상(fiber),
판상(film), 또는 망막구조(network structure)의 미세조직 형상을 포함할 수 있고,
방사성을 가지는 것이 될 수 있다.

본 발명의 개질유황은 개시제를 포함하고, 계면활성제를 포함하지 않는
경우에는 고무상 또는 단단한 형태이나 접착성이 매우 근 개질유황이 제조될 수
있다.

도 12 및 도 13은 기존의 방법에 따른 제조에 의한 개질유황으로, 본 발명의
반응완료단계보다 먼저 반응을 완결시킨 개질유황의 미세조직 사진(x650)이고,
도 14는 본 발명의 일 실시예에 따라 제조하고, 개질유황에 필름 구조의 판상의
미세조직 형상이 포함되어 있는 개질유황의 미세조직 사진(x650)이며, 도 15는
본 발명의 일 실시예에 따라 제조하고, 개질유황에 필름 구조의 섬유상 조직
형상이 포함되어 있는 개질유황의 미세조직 사진(x650)이다.

상기 도 12 및 도 13을 참조하면, 기존의 방식으로 제조한 도 12 및 도 13의
개질유황은 약 140°C에서 유효시간 유황을 디시플로렌타디엔계 개질제와
혼합하여 제조한 혼합품을 온도의 변화를 제어하면서 중합 반응을 계속한
것으로, 반응의 진행 정도에 따라서 혼합품의 색이 투명에서, 노란색, 포도주색,
적색, 반투명의 암갈색, 그리고 불투명한 흑색으로 변화하는데, 도 12는 노란색인 단계에서 반응을 종료한 개질유황의 미세 조직 사진이고, 도 13은 암갈색의 단계에서 반응을 종료한 개질유황의 미세조직 사진이다.

상기 도 12 및 도 13에서, 노란색 또는 암갈색의 단계에서 반응을 종료한 도 12 또는 도 13의 개질유황의 미세조직 사진에는 비반응의 부정형(brittle) 유황이 산재하여 존재하는 것을 확인할 수 있다. 이러한 미반응의 유황은 유황과 디시클로렌베타디엔계 개질제의 중합 반응 종료 후에 설온(통상, 15 내지 25°C)에 방치하거나 식히는 과정에서 개질유황을 고체로 존재하도록 하고, 고상의 개질유황을 콘크리트 또는 아스팔트 현장 등의 자체와 혼화를 위해서 계용하는 과정에서 다시 개질유황의 반응이 진행되어 점고가 상승해서 시멘트 도거타르 반죽물의 접합도 증가하게 되어 콘크리트의 슬럼프(slump)가 감소되어서 반죽물의 유동성을 저하시키게 되므로 개질유황을 물성 향상 첨가제로 사용하는 본질의 목적에 맞지 않게 되기도 한다.

또한 콘크리트 또는 아스팔트 현장 등의 환경에서는 정밀한 온도계가 어려운 상태에서 개질유황을 단순히 가열하여 계용하는 방식이기 때문에 급격하게 가열할 경우에는 개질유황이 반응되는 경우가 발생하고 이로 인하여 개질유황의 고유 특성인 접착력과 강도가 모두 사라지는 경우가 발생할 수 있다.

또한, 설온에서 고상의 단일상으로 존재하므로, 수성성 재료와의 혼화 및 반응이 어려운 단점도 가지고 있다.

반면에, 본 발명의 일 실시예에 따른 미세조직의 사진을 보여주는 도 14 및 도 15의 사진은 상기 도 12 및 도 13의 사진들과 대비되는 미세조직 특성을 보여준다.

상기 도 14는 유황을 약 140°C에서 용용시킨 유황을 디시클로렌베타디엔계 개질제와 혼화하여 제조한 환합물을 온도의 변화를 제어하면서 중합 반응을 계속한 것으로, 반응의 진행 정도에 따라서, 혼합물의 색이 두명에서, 노란색, 포도주색, 적색, 반투명의 암갈색, 그리고 불투명한 흑색으로 변화하고, 이의 반응을 계속하여 불투명한 흑색까지 반응을 진행하며, 이후에 방사성(spinnability)를 가지는 시점을 지나서 더욱 반응을 진행하여, 고무성(rubberlike) 상태 직전의 상태 즉, 탄성(elasticity)을 가지는 시점까지 반응하여 얻은 개질유황이다.

상기 도 14의 사진을 참고하면, 본 발명의 일 실시예에 따른 개질유황 내에는 도 12 및 도 13의 사진과 다르게 필름 형태의 미세 조직이 발달되어 있는 것을 확인할 수 있다.

상기 도 15는 상기 도 14의 예와 동일하게 제조하나, 방사성(spinnability)이 발생한 시점에서 반응을 종료한 개질유황의 미세조직 사진이다. 상기 도 14를 참고하면, 본 발명의 일 실시예에 따른 개질유황에는 섬유상의 미세조직이 발달되어 있는 것을 확인할 수 있다.

본 발명의 일 실시예에 따른 개질유황의 미세조직의 사진을 보여주는 도 1
내지 도 3의 주사전자현미경 사진을 참고하면, 뚜렷한 망막 형태의 미세구조가 나타나 있다는 점을 확인할 수 있다.

[192] 이러한 본 발명의 개질유황의 미세 조작(도 1 내지 도 3, 도 14 및 도 15)과 선행 기술의 예에서의 개질유황(도 12 및 도 13)에 있어서의 차이점들은 중 하나는, 기존의 개질유황에서 관찰되는 다파의 미반응 유황 입자들이 전혀 관찰되지 않거나 미리하게 관찰되고, 본 발명에서 미세조작 형상이라 부르는 섬유상, 관상 또는 망막구조를 포함하거나, 방사성을 가진다는 점이다.

[193] 상기 개질유황은 방사성(spinnability)을 가지는 것일 수 있다.

[194] 선행기술의 방법에 개시된 발명의 방법에 따라서 제조한 개질유황의 일 예의 사진을 보여주는 도 5의 사진을 참고하면, 선행기술의 방법으로 제조된 개질유황은 본 발명에서 특징하고 있는 개질유황의 미세구조와 다른 형태를 가지고 있다. 이는, 추가실시예에서 선행기술의 방법으로 제조한 개질유황과 이를 속성공정을 거쳐서 방사성을 가지도록 한 본 발명의 일 실시예에 따른 셀룰(추가실시예)의 미세구조를 참고하여도 그 차이점을 확인할 수 있는데, 선행기술의 방법에 의하여 제조된 것(도 25)과 비교하면, 방사성을 가지는 개질유황(도 26)은 주사전자현미경 상으로 미반응의 유황 입자가 관찰되지 않는다는 뚜렷한 차이점을 가진다.

[195] 상기 개질유황은 제면함성체, 커폴링체, 촉매, 가교체, 분산체 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 참가체를 더 포함하는 것일 수 있다.

[196] 상기 제면함성체, 상기 커폴링체, 상기 촉매, 상기 가교체, 및 상기 분산체는 일반적으로 상기 명칭으로 분류되는 물질이라면 적용할 수 있고 특별하게 한정되지 않는다. 상기 참가체들은 상기 개질유황의 분산도를 향상시키거나, 상기 개질유황에 친수성 또는 소수성의 반응기를 형성시킬 수 있으며, 중합 반응으로 생성되는 개질유황에 포함된 고분자들 사이의 가교(cross link)의 지해 또는 촉진하는 역할을 할 수 있다.

[197] 상기 제면함성체는 음이온 제면함성체, 양이온 제면함성체, 비이온 제면함성체, 액체성 제면함성체 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것일 수 있다.

[198] 상기 음이온 제면함성체에는 황산염(sulfate)계 음이온 제면함성체, 슬론산염(sulfonate)계 음이온 제면함성체가 포함된다. 기타 음이온 제면함성체가 포함된다.

[199] 상기 황산염(sulfate)계 음이온 제면함성체에는 알킬 황산염(alkyl sulfate), 알킬-에스테르 황산염(alkyl-ester-sulfate), 알킬 에테르 황산염(alkyl ether sulfate), 알킬-에스테르-에테르-황산염(alkyl-ethoxy-ether-sulfate); 황산염 알카놀아미드(sulfated alkanolamide); 글리세라이드 황산염(glyceride sulfate) 등이 포함될 수 있다.

[200] 상기 슬론산염(sulphonate)계 음이온 제면함성체에는 ABS(알킬벤젠 슬론산염, alkyl benene sulfonate), LAS(리니어 알킬벤젠 슬론산염, linear alkyl benzene
sulfonate)를 포함하는 도테시 벤젠 술혼산염(dodecyl benzene sulfonate); 항수성 성분(hydrotopes), 단코리 알킬-벤젠 술혼산염(short tail alkyl-benzene sulfonate); 알파-올레핀 술혼산염(alpha-olefin sulfonate); 리고노 술혼산염(lignosulfonate); 라우릴 황산 나트륨(sodium lauryl sulfoacetate)를 포함하는 술포-카르복실 화합물(sulfo-carboxylic compound) 등이 포함될 수 있다.

[201] 상기 기타 음이온 계면활성제는 유기인산 계열 계면활성제(organo phosphorized surfactant); 라우릴 사르코시네트(lauryl sarcosinate)를 포함하는 알킬 아미노산(alkyl amino acid), 사르코신(sarcosine) 등을 포함하는 것일 수 있다.

[202] 상기 양이온 계면활성제에는 페티 아미늄(fatty amine)을 포함하는 리니어 알킬-아미늄(linear alkyl-amine), 4기 알킬 암모늄(quaternary alkyl ammonium)을 포함하는 리티어 알킬 암모늄(linear alkyl-ammonium), 리티어 디아민(linear diamine), n-도테실 페리디늄 클로라이드(n-dodecyl pyridinium chloride), 아미다졸(imidazole), 몬포리 화합물(morpholine compound) 등이 포함될 수 있다.

[203] 상기 비이온 계면활성제는 에톡시레이터드 알코올, 알킬페놀, 알칼리성 에스테르, 질소계 비이온성 계면활성제 등이 있다.

[204] 상기 에톡시레이터드 알코올(ethoxylated alcohol) 및 알킬페놀(alkyl phenol)류 비이온 계면활성제로는 에톡시레이터드 리니어 알코올(ethoxylated linear alcohol), 에톡시레이터드 알킬 폐놀(ethoxylated alkyl phenol), 에톡시레이터드 타올(ethoxylated thiol), 노릴페놀, 옥틸페놀 등이 포함될 수 있다.

[205] 상기 지방산 에스테르계 비이온 계면활성제에는 폴리에폭시 에스테르(polyethoxylate ester), 글리세롤 에스테르(glycerol ester), 헥시톨(hexitol), 사이클릭 엘라히드로헥시톨 에스테르(cyclic anhydrohexitol ester) 등이 포함될 수 있다.

[206] 상기 질소계 비이온성 계면활성제(nitrogenated nonionic surfactant)에는 에톡시레이터드 아미늄(ethoxylated amine), 아미다졸(imidazole, cyclic alkyl-diamine), 에톡시레이터드 알킬-아마이드(ethoxylated alkyl-aminde), 3차 산화아민(tertiary amine oxide) 등이 포함될 수 있다.

[207] 상기 양축성 계면활성제로는 아미노 프로포피온산(amino propionic acid), 아미노프로피온산(imo propionic acid), 4기 화합물(quaternized compound) 등이 포함될 수 있으며, 상기 4기 화합물의 에로는 술포베타인(sulfobetaine)계 계면활성제 등이 있다.

[208] 상기 첨가제로 상기 계면활성제를 적용하는 경우에는 비전수성을 가지는 개질유방의 개질화가 가능하고, 전수성의 개질유방을 제조할 수 있다.

[209] 상기 커플링제로는 살란계 커플링제, 탄산염계 커플링제, 크롬제도 커플링제, 알루미네트계 커플링제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나가 사용될 수 있다.

[210] 상기 살란계 커플링제로는 살파이드계 살란 화합물, 머캅도계 살란 화합물, 비닐계 살란 화합물, 아미노계 살란 화합물, 글리시독시계 살란 화합물,
니트로계 실란 화합물, 클로로계 실란 화합물, 메타크릴계 실란 화합물 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나가 사용될 수 있다.

[211] 상기 티탄산업계 커폴링제로는 이소프로필트리오이소테라말티타이트, 이소프로필트리메틸실벤젠сел프니말티타이트, 이소프로필트리(디옥틸필로스페이트)티타이트, 테트라이소프로필티(드리엔실포스페이트)티타이트, 테트라이소프로필티(디옥릴포스페이트)티타이트, 테트라이오토플엑시티탄(디트리엔실포스페이트) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나가 사용될 수 있다.

[212] 상기 알루미네이트계 커폴링제로는 알루미늄 이소프로필레이트, 모노-sec-부록시알루미늄 이소프로필레이트, 알루미늄-sec-부록레이트, 알루미늄트리(에틸아세ร่วมกับ아세테이트), 알루미늄디이소프로필옥사이드(모노올레인아세트아세테이트) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나가 사용될 수 있다.

[213] 상기 커폴링제를 상기 절차제로 더 적용하는 경우에는 상기 개질유황의 계면 접착성을 향상시킬 수 있고, 특히 이종 재료와 혼합하여 적용할 경우에 이종 재료와의 접착성을 향상시킬 수 있으며, 복합 재료 형성에 유리할 수 있다.

[214] 상기 가교제로는 유황계 가교제, 유기 과산화물, 수지 가교제, 산화마그네슘 등의 금속산화물을 사용할 수 있다. 상기 유황계 가교제는 분말 황(S), 불용성 황(S), 침강 황(S), 콜로이드(colloid) 황 등의 무기 가교제와, 테트라메틸티루라미디산화물(tetramethylthiuram disulfide, TMTD), 테트라에틸티루아미디산화물(tetraethylthiuram disulfide, TETD), 니트로디모르포ולד림(dithiodimorpholine) 등의 유기 가교제를 사용할 수 있다. 상기 유황 가교제로는 구체적으로 원소 유황 또는 유황을 만들어 내는 가교제, 예를 들면 아미디산화물(amine disulfide), 고분자 유황 등을 사용할 수 있다. 상기 유기 과산화물은 벤조일페옥사이드, 디.bam하여 피옥사이드, 디-4-tement 풀페옥사이드, 2,5-디메틸-2,5-디(4-tement 풀페옥시)페옥산, 2,5-디메틸-2,5-디(4-tement 풀페옥시)페옥산, 1,3-비스(4-tement 풀페옥시프로필)페옥산, 4-tement 풀페옥시-4-idi소프로필벤젠, 4-tement 풀페옥시-4-idi소프로필벤젠, 4-تمثل로벤조일페옥산, 1,1-디뷰틸페옥시-3,3,5-트리메틸실톡산, n-뷰틸-4,4-디-4-tement 풀페옥시말레레이트 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나를 사용할 수 있다.

[215] 상기 분산제는 상기 개질유황과 상기 제면활성제, 상기 개질유황과 상기 커폴링제, 또는 상기 개질유황과 보강제 등을 혼합하는 경우에 혼화성 향상을 위하여 사용할 수 있다. 상기 분산제는 개질유황과 제면활성제, 커폴링제, 보강제 등을 혼합할 때 분산의 정도를 향상시킬 수 있는 것이라면 적용할 수 있으며, 상기 제면활성제도 분산제로서의 역할을 할 수 있어서 상기 혼합시의
분산의 정도를 향상시킬 수 있는 역할을 하는 한도에서는 분산제로서 작용할 수 있다.

[216] 상기 분산제로, 폴리비닐피플리돈, 폴리에틸렌이민, 폴리아크릴산, 카르복시메틸셀로로스, 폴리아크릴아미드, 폴리비닐알코올, 폴리에틸렌옥시드, 전분, 젤파린 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 고분자 분산제를 적용할 수 있으나 이에 한정되는 것은 아니다.

[217] 상기 케톤활성제, 커플링제, 촘매, 가교제, 분산제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 첨가제는 상기 유황 100 중량부를 기준으로 0.1 내지 200 중량부로 사용될 수 있고, 0.1 내지 50 중량부로 사용될 수 있다. 상기 첨가제의 사용량은 상기 개질유황의 용도, 활용 범위 등을 고려하여 적절하게 변경하여 사용할 수 있으며, 상기 개질된 내역에 한정되지 않는다.

[218] 상기 케톤활성제, 커플링제, 촘매, 가교제, 분산제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 첨가제와 상기 개질유황은 용매 하에서 혼합되어 있는 것일 수 있다.

[219] 상기 용매는 상기 개질유황과 상기 첨가제와의 혼합을 돕고, 상기 개질유황의 중합 반응에 방해가 되지 않는 것이라면 통상의 용매가 적용될 수 있다.

[220] 상기 용매는 물, 아민계 용매, 에스테르계 용매, 케톤계 용매, 지방족 또는 방향족 탄화수소계 용매, 에테르계 용매, 알코올계 용매, 플리올 용매, 아미드 용매, 숙주 또는 숙주사이드 용매, 아세테이트계 용매, 비수체 무기용매 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 아민계 용매가 사용될 수 있다.

[221] 상기 아민계 용매로는 프로필아민, n-부틸아민, 핵실아민, 옥틸아민 등의 1차 아민, 디아프로필아민, di(n-부틸)아민 등의 2차 아민, 트리올צליח, 트리-n-부틸아민 등의 3차 아민, 에틸아민, 프로필아민, 부틸아민, 핵실아민, 옥틸아민, 트리올クリック 등의 알킬아민, 시클릭 아민, 아로마틱 아민 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 아민계 용매가 사용될 수 있다.

[222] 상기 에스테르계 용매로는 PEGMEA, 아세트산에틸, 아세트산n-부틸, γ-부티로락탄, 2,2,4 트리메틸렌탄디올-1,3로도이소부티레이트, 부틸 카비톨 아세테이트, 부틸 옥살레이트, 디부틸 프탈레이트, 디부틸 벤조에이트, 부틸 셀로솔브 아세테이트, 에틸렌 글리콜 디아세테이트, 에틸렌 글리콜 디아세테이트 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 에스테르계 용매가 사용될 수 있다.

[223] 상기 케톤계 용매로는 아세톤, 메틸에틸카보네트, 메틸이소부틸케톤, 1-메틸-2-피플리디논(1-methyl-2-pyrrolidinone), 시클로hex산(cyclohexanone) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 용매가 사용될 수 있다.

[224] 상기 지방족 또는 방향족 탄화수소계 용매로는 투루엔, 자필렌, 아로마술크, 클로로벤젠,_hexane, 헤탄(heptane), 옥탄(octane), 도데كان(dodecane), 시클로헥산, 다칸, 테트라데칸, 해사데칸, 옥타데칸, 옥타데산, 나이트로벤젠, o-나이트로トル루엔, 안이졸(anisole), 메스틸렌(mesitylene) 및 이들의 조합으로
이로되어진 군에서 선택된 어느 하나의 지방족 또는 방향족 탄화수소계 용매가 적용될 수 있다.

상기 에테르계 용매로는 디에틸에테르, 디프로필에테르, 디부틸에테르, 디옥산, 테트라하이드로프uran(tetrahydrofuran), 디이소부틸에테르(diisobutyl ether), 이소프로필에테르(isopropyl ether), 옥탄 에테르, 트리(에틸렌글리콜) 디에틸에테르 및 이들은 조합으로 이루어진 군에서 선택된 어느 하나의 에테르계 용매가 적용될 수 있다.

상기 알코올계 용매로는 메탄올, 에탄올, 1-프로판올, 2-프로판올, 1-부탄올, 2-부탄올, 이소부탄올, 핵산올, 이소프로필 알코올, 에톡시 에탄올, 에틸락테이트, 육타놀 이소프로필알코올, 에틸렌글리콜모노에틸에테르, 벤젠 알코올, 4-하이드록시-3-벤조시벤조알데하이드, 이소씨 צפו, 부틸카비놀, 티퍼라이올(terpineol), 알과 티피네요, 베타-티피네요, 시데올 및 이들의 조합으로 이루어진 군에서 선택된 알코올계 용매가 적용될 수 있다.

상기 폴리올 용매로는 글리세롤, 글리콜, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 테트라에틸렌글리콜, 프로필렌글리콜, 디프로필렌글리콜, 부탄디올, 핵산글리콜, 1,2-페타디올, 1,2-헥사디올, 글리세린, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 에틸렌글리콜모노에틸에테르(에틸셀룰룰), 에틸렌글리콜모노에틸에테르(에틸셀룰룰), 에틸렌글리콜모노부틸에테르(부틸셀룰룰), 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노부틸 에테르 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 폴리올 용매가 적용될 수 있다.

상기 아미드계 용매로는 N-메틸-2-피콜리돈(NMP), 2-피콜리돈, N,N-디메틸 아세트아미드 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 아미드 용매가 사용될 수 있다.

상기 수용 또는 수폭사이드 용매로는, 디에틸수용, 테트라메틸렌 수용, 디메틸수폭사이드, 테트라메틸화수폭사이드 및 이들의 조합으로 이루어진 군에서 선택된 수용 또는 수폭사이드 용매가 적용될 수 있다.

상기 아세테이트계 용매로는 에틸 아세테이트(ethyl acetate), 부틸 아세테이트(butyl acetate), 프로필렌글리콜 메틸에테르 아세테이트(propylene glycol methyl ether acetate) 및 이들의 조합에서 선택된 어느 하나의 아세테이트계 용매가 사용될 수 있다.

상기 비수계 무기용매로는 이황화탄소, 엑세 알모니아 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.

상기 용매로는 바람직하게 물, 알코올류 용매, 캐본류 용매, 스테렌(styrene), 톨루엔(toluene), 벤젠(benzene), 크실렌(Xylene), 퀴놀린(Quinoline), 피롤(pyrrole), 포탈산 디부틸(Dibutyl phthalate), 이황화탄소(CS2), 클로로포름(Chloroform) 및 이들의 혼합물이 적용될 수 있다.
상기 첨가제와 상기 개질유황의 혼합에는 혼합 및 분산이 가능한 공지의 수단이 적용될 수 있다.

상기 개질유황은 상온에서 액상, 고성, 또는 고무상(rubberlike)을 포함하는 것일 수 있고, 이들이 혼합하는 것일 수 있다. 상기 개질유황이 액상인 경우에는 특히 소재와의 혼화성 및 분산성이 우수해질 수 있으며, 수성성 자재와 혼화 시에 별도의 가열 공정이 필요하지 않을 수 있으며, 적은 양으로 사용하여도 우수한 개질 효과를 얻을 수 있다. 또한, 상기 개질유황이 고성이거나 고무상(rubberlike)인 경우에는 도로용 또는 건축용 자재에 적용하기 위해서는 재용용의 과정을 거칠 수 있고, 상기 재용용된 본 발명의 개질유황의 점도는 135℃를 기준으로 1,000 내지 10만 cP일 수 있으며, 기존의 개질유황과 비교하여 현저하게 우수한 접착성, 탄성도 등을 가지는 우수한 물성을 보여줄 수 있다.

상기 개질유황은 친수성 개질유황 또는 소수성 개질유황일 수 있다. 상기 소수성 개질유황은 방사성, 탄성회복률, 연신율, 난연성 등이 뛰어날 수 있고, 상기 친수성 개질유황은 콘크리트 등의 수화반응에 적용되는 유황 개질제, 콘크리트 폐리미 복합제용 친수성 폐리미의 내재용으로 우수하게 적용될 수 있다.

상기 개질유황은 방점 코팅, 방수 코팅, 아스팔트 개보수용 소재, 콘크리트 수조 표면 보수보강용 소재, 우그리트 등의 조성물을 포함될 수 있으며, 방수, 방점, 핫강도, 속성견조특성, 혼화성, 분산성, 등 다양한 특성에서 우수한 성능을 보여준다.

상기와 같이 여러 용도로 사용되는 상기 개질유황을 현장에 적용시킬 경우에도, 현장에서 요구하는 시공 방법과 물성을 충족시키기 위하여 하기와 같이 사용할 수 있으나, 이에 한정되는 것은 아니다.

상기 개질유황이 방점 및 방수재료로 사용될 경우에 보강제는 방점코팅이 형성되었을 때에 방점코팅막의 강도를 향상시킬 수 있는 첨가제를 의미한다.

상기 방점 및 방수재료는 상온분사형, 상온부착형, 가열분사형, 또는 가열미착형 방점 및 방수재료일 수 있고, 이러한 재료는 경화성, 염수분무저항성, 용접성, 접착성 등의 특성이 뛰어나다. 상기 상온분사형은 상기 개질 유황 단독으로 또는 상기 개질 유황에 상기 보강제를 가열하지 않고 혼합한 후에 분사기를 사용하여 분사하는 형식으로서, 복합제 또는 강화제를 포함하여 사용할 수 있고, 상기 상온부착형은 도구 및 기계를 사용하여 도막 표면을 마감하는 형식인 것이에는 상온분사형의 시공방법과 동일하다. 상기 가열분사형 및 가열미착형은 상기 개질 유황 단독으로, 또는 상기 개질 유황에 상기 보강제를 혼합한 것을 가열하여 상기 개질 유황 또는 혼합물을 용융시킨 후에 각각 분사 및 미착하는 형식을 의미한다.

상기 보강제는, 예를 들면 미분말 규사, 규조토, 규회석, 젤토류, 유리종(chopped glass fiber), 염료, 안료, 알루미늄 산화물(aluminum sulfate), 물유리, Ca(OH)₂, 산화 아연, 나프탈렌, Mg(OH)₂, CaCl₂, Al(OH)₃, 봉사, CaSO₄.2H₂O, Fe₂O₃,
제올라이트, 탄소섬유, 휘스커(whisker), Na₂SO₃, MgSO₄, 7H₂O, 플라이애쉬, 아크릴 애멀션, 애פק시, 라텍스, 탄소섬유 또는 씨트, 강철섬유, 액상 무기질, 섬유질 중전제, 섬유성 임과, 박판성 임과 및 이들의 조합으로 이루어진 구에서 선택된 어느 하나일 수 있다. 또한, 상기 보강제는 원료의 성분에 따라 분말형 또는 액성일 수 있다.

[241] 또한, 본 발명의 개질유황을 제조할 때에 사용되는 유황과 디시클로렌타디엔계 개질체 등은 석유화학공업에서 부산물로 배출되는 지가의 원료이기 때문에, 기존의 콘크리트 첨가제와 비교하여 상당히 저렴한 비용으로 초속경성, 고강도, 내열성, 무수축성, 균열저항성을 나타낼 수 있으며, 제품의 용도에 요구되는 특성에 따라 개시제, 첨가제 등의 유무 및 함량, 반응의 조건, 시간 등을 적절하게 조절하여 개질유황과 이를 사용하는 제품의 물성을 향상시킬 수 있으며, 상기 연급한 고강도용 원삼력 전봇대, 초속경 무수축 고강도 침묵용 시멘트 몰탈 등의 콘크리트 2차 제품의 제조에도 적용될 수 있다.

[242] 개질유황의 제조방법

[243] 본 발명의 다른 일 실시예에 따른 개질유황의 제조방법은, 제1혼합물제조단계, 제1중합반응단계, 그리고 반응완결단계를 포함한다.

[244] 상기 제1혼합물제조단계는 유황 및 디시클로렌타디엔계 개질체를 120℃ 이상에서 용융 혼합하여 제1혼합물을 제조하는 과정을 포함한다.

[245] 상기 혼합 및 디시클로렌타디엔계 개질체의 함량에 대한 구체적인 설명, 유황 및 디시클로렌타디엔계 개질체의 함량에 대한 설명 등은 상기 본 발명의 일 실시예에 따른 개질유황에 대한 설명과 중복되므로 그 기재를 생략한다.

[246] 상기 제1중합반응단계는 상기 제1혼합물을 120℃ 이상에서 중합 반응시켜 제1반응물을 제조하는 과정을 포함한다. 상기 중합 반응 과정은 120℃ 이상의 반응온도에서 반응시간 동안 이루어질 수 있으며, 상기 반응온도는 120℃ 내지 200℃일 수 있으며, 130℃ 내지 160℃일 수 있다.

[247] 상기 반응 온도가 120℃ 미만인 경우에는 유황과 디시클로렌타디엔계 개질체의 중합 반응이 미미하거나 일어나지 않을 수 있다. 상기 반응 온도가 200℃를 초과하는 경우에는 폭발적인 반응을 일으키기 어려울 수 있고, 반응기에서 개질유황 또는 그 반응 과정에 있는 물질들이 분출될 수 있으며, 폭발이 일어나거나 개질유황의 탄화가 일어날 수 있다. 상기 반응 온도는 130℃ 내지 160℃일 경우에 반응의 제어가 생산성의 면에서 가장 적합하다.

[248] 상기 중합 반응 과정에서 용융된 유황과 디시클로렌타디엔계 개질체는 서로 혼합되어 증발 및 응화되는 과정을 거치면서 반응이 이루어지며, 혼합물의 색이 투명한 색에서 노랑, 도포주색, 적색, 반투명한 암갈색, 그리고 불투명한 흑색의 순서로 변화하는 제1반응물을 제조하는 제1중합반응단계를 거칠 수 있다.

[249] 상기 개질유황의 제조방법은 상기 이러한 제1중합반응단계에서 급격한 발열 반응에 주의하면서 상기 제1반응물의 중합 반응을 계속해서, 제1반응물이
방사성(spinnability)을 가지는 시점 이후인 반응종료 시점에 상기 제1반응물의 종합 반응을 종료시켜서 개질유형을 제조하는 반응완결단계를 포함한다.

[251] 상기 반응완결단계를 거친 개질유형은 판상, 선유상, 망목구조와 같은 미세구조를 가지는 것일 수 있고, 이는 반응의 종료 시점이나 반응의 온도, 등의 반응의 조건에 따라서 조절될 수 있다.

[252] 상기 반응종료 시점은 상기 제1반응물이 방사성(spinnability)을 가지는 시점과 상기 제1반응물의 고무화가 일어나는 시점 사이의 시점일 수 있다.

[253] 예를 들어, 상기 반응종료 시점 중 방사성을 가지는 시점에 반응을 종료하는 경우에는 필름상의 미세구조를 포함하는 개질유형을 얻을 수 있으며, 점착성 및 단성률이 월등하게 우수한 개질유형을 제조할 수 있다.

[254] 예를 들어, 상기 반응종료 시점으로 방사성(spinnability)을 가지는 시점보다 더 반응을 계속하여서 상기 제1반응물이 탄성(elasticity)을 가지는 시점, 즉 고무상(rubber-like)으로 변화하기 이전에 상기 제1반응물의 종합 반응을 중단할 수 있으며, 이러한 경우에는 섬유상 미세조직 형상 또는 망목구조 미세조직 형상을 포함하는 개질유형을 얻을 수 있다.

[255] 또한, 상기 반응종료시점은 상기 제1반응물의 점도가 10,000 cP 이상으로 되는 시점인 것일 수 있고, 10,000 cP 미지 100만 cP인 것일 수 있다.

[256] 상기 반응완결단계는 상기 반응온도의 조건을 변경해서 상온(15 내지 25°C)으로 상기 제1반응물 즉, 제조된 개질유형을 섞히는 상온화 과정을 포함하여 이루어질 수 있다.

[257] 상기 상온화 과정은 반응완결 시점의 제1반응물을 냉각시키는 과정은 의미하며, 상온에 방치하거나 120°C 이하의 일정한 온도로 유지한 후에 상온으로 냉각하는 숙성(ageing, curing)방법, 상온 또는 냉각된 물에 상기 제1반응물 또는 개질유형을 두하하여 반응을 종료시키는 급병(quenching)방법 등이 적용될 수 있다.

[258] 상기 숙성방법은, 상기 숙성 온도를 40°C 내지 120°C로 유지하면서 이루어질 수 있다. 숙성의 온도를 높고 오래 유지할수록 높은 점도를 가진 개질유형을 얻을 수 있다. 또한, 숙성 방법은 교반기가 설치된 반응기에서 이루어지는 것이 아니라 일반적인 밴고나 보관 용기를 이용하여 이루어질 수 있으며 개질유형의 점도를 의도하는 만큼 높은 값을 가지도록 하면서도 개질유형의 높은 점도나 고무상으로 급격하게 반응하는 경우에도 반응기를 손상시킬 염려 없이 개질유형을 제조할 수 있는 장점이 있다.

[259] 상온으로 온도가 낮아진 개질유형에는 상기 반응온도, 반응시간 등의 조건에 따라서 섬유상(fiber), 판상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 방사성을 가지는 개질유형을 얻을 수 있다.

[260] 상기 제1혼합물, 상기 제1반응물 및 이들의 조합은 개시제를 더 포함할 수 있다. 상기 개시제의 종류, 함량 및 효과에 대한 구체적인 설명은 상기 본 발명의 일 실시예인 개질유형에서 설명한 것과 중복되므로 그 기재를 생략한다.
특히, 개시제의 투입은 상기 제1혼합물제조단계, 상기 제1중합반응단계, 상기 반응완결단계 중에서 하나의 단계에 또는 이들 단계들에 중복해서 투입할 수 있으며, 이러한 투입 시점은 열고자 하는 개질유황의 특성에 따라서 조절될 수 있다.

구체적으로, 상기 제1혼합물제조단계에서 용융 혼합하여 제조하는 상기 제1혼합물의 단계부터, 상기 제1혼합물이 상기 제1중합단계를 거치면서 중합반응이 일어나 노란색, 포도주색, 적색, 반투명한 암갈색, 그리고 불투명한 흑색으로 색이 변화하는 시점의 사이의 어느 시점에 상기 개시제가 투입될 수 있다. 또한, 반응 종료 직전의 시점에 개시제가 투하되어 적용될 수도 있다.

상기 제1혼합물, 제1반응물, 또는 개질유황에는 개질활성제, 커플링제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 첨가제가 더 포함될 수 있다. 상기 개질활성제, 커플링제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 첨가제는 용해 하에서 분산제와, 또는 분산제를 포함하는 다른 첨가제와 함께 혼합 및 분산될 수 있다. 상기 혼합 및 분산은 공지의 수단이 적용될 수 있으나, 강력하고 균일한 분산 효과를 얻기 위해서 바람직하게 초음파(sonication) 처리가 사용될 수 있다.

상기 첨가제 구체적인 종류, 함량 및 효과에 대한 설명은 상기 본 발명의 일 실시예에 따른 개질유황에 대한 설명과 중복되므로 그 기재를 생략한다.

상기 반응이 완료된 개질유황의 점도, 형상, 재용용의 조건에 대한 내용은 상기 본 발명의 일 실시예에 따른 개질유황에 대한 설명과 중복되므로 그 기재를 생략한다. 또한, 상기 반응이 완료된 개질유황의 점도, 형상, 재용용의 조건에 대한 내용은 상기 본 발명의 일 실시예에 따른 개질유황에 대한 설명과 중복되므로 그 기재를 생략한다.

상기 개질유황을 개시제를 더 포함하여 제조하는 경우에는 제조된 개질유황의 접착력, 탄성도 등의 면에서 개시제를 포함하지 않은 경우보다 더 우수한 효과를 보여줄 수 있다. 또한, 개시제의 투입 시점, 종류, 투입량 등을 조절하여서 개질유황의 특성을 조절할 수도 있다.

또한, 상기 개질유황의 제조방법은 기존의 개질유황의 제조방법에서 단점으로 인식되어 왔던, 유독한 난세의 발생을 지감할 수 있다. 따라서, 본 발명의 개질유황의 제조방법을 적용하는 경우에는 발취제 등의 사용 없이도 작업이 가능하며, 제조 과정에서의 편의성이 향상될 수 있다.

본 발명의 또 다른 일 실시예에 따른 개질유황의 제조방법은, 유황, 디시클로렌텐디엔계 개질제 및 개시제를 포함하는 혼합물을 준비하는 준비단계, 상기 혼합물을 초음파를 조사하며 반응시켜 반응물을 제조하는 초음파처리단계; 그리고 상기 반응물을 상기 반응물의 온도가 40℃ 이상인 숙성온도로 숙성시켜 개질유황을 제조하는 숙성단계를 포함한다.

상기 혼합물은 유황 100 중량부, 디시클로렌텐디엔계 개질제 1 내지 300 중량부
및 개시지 0.1 내지 200 중량부를 포함할 수 있으며, 이렇게 제조되는 개질유황의 특성, 제조를 위해 첨가되는 성분들, 그 종류와 함량 등 구체적인 내용들 중에서 위에서 설명한 내용과 중복되는 내용은 그 기재를 생략한다.

상기 중비단계의 유황은 분말 또는 120°C 이상의 온도에서 용융된 것일 수 있다. 상기중비단계의 혼합물은 그 점도가 10 cP 이하인 것일 수 있다.

상기 조음파 조사는, 예를 들어, 20 kHz 내지 1 MHz 주파수 영역의 조음파를 이용할 수 있으나, 이에 한정되는 것은 아니며, 조사는 조음파의 출력이나 반응물의 양, 반응기의 크기에 따라 달라질 수 있으나, 예시적으로 상기 합합물에 10 분 이상 조음파가 조사되도록 할 수 있고, 30분 이상 조사되도록 할 수 있다.

상기 조음파처리단계는, 상기 조음파처리단계가 이루어지는 반응기의 온도가 120°C 이하에서 이루어지는 것일 수 있으며, 상온에서 이루어지는 것일 수 있다. 상기 조음파 조사에 의하여 상기 합합물 내에는 기공이 반복적으로 생겼다 없어지는 과정이 일어날 수 있고, 기공 내에는 충간적으로 고온과 고압의 환경이 형성되며, 이에 의하여 혼합물 내에 용융 상태가 아닌 유황이 포함되어 있더라도, 유황과 다이시클로렌타디엔계 개질제의 반응이 일어날 수 있다. 상기 조음파처리단계의 반응물은 점도가 10 cP 이하인 것일 수 있다.

상기 조음파처리단계에서, 상기 반응기 내에서 조음파조사를 의한 반응이 일어나기 위해서는 유황과 다이시클로렌타디엔계 개질제의 혼합물이 필요하다. 유황, 다이시클로렌타디엔계 개질제 및 개질제에 의한 다른 물질이 추가로 상기 혼합물에 포함되어 반응이 일어나는 것을 재의하는 것은 아니다. 그러나, 혼합물이 조음파조사를 통하여 반응물로 제조되는 과정에서 상기 혼합물이나 반응물이 물을 포함해야 할 필요는 없다.

상기 조음파처리단계는 조음파의 공통 효과로 인하여 낮은 중합 온도에서도 뚜렷한 교반 효과와 개질유황의 반응 속도를 향상시킬 수 있다는 점을 가진다. 이는 전체적인 개질유황의 중합 시간을 단축시키는 효과를 가져올 수 있고, 적은 에너지를 사용하면서도 개질유황 생산 시간을 단축시킬 수 있으므로 생산 비용 절감 효과가 있는 점 환경 방식이라고 할 수 있다.

조음파를 개질유황 혼합물에 조사시키면 조음파에 의하여 혼합물 내에 발생하는 기포가 생성, 성장, 붕괴의 일련의 과정을 반복하여 기체가 된다. 이러한 과정에서 발생하는 공통현상(cavitation)에 의해 조음파가 음파에너지에서 화학적 에너지로 전환되는데, 기포 붕괴시 발생되는 기포의 내·외부 조건은 고온(< 2,000 ~ 5,000 K)·고압(< 500 ~ 1,000 atm) 상태에 이르며 반응물이 기포 내에 직접 유입되어 고온·고압에 의한 열분해를 일으키므로, 개질유황의 중합 반응이 일어나게 된다.

이러한 조음파처리단계는, DCPD와 개새제, 융해(첨가시) 등이 상온 내지 120°C 이하의 온도에서 액체 상태이므로 상온에서 액체 용액에 분말 유황을 단순히 혼합시킨 후에 소닉 조음파 방식을 이용하여 중합 반응을 시키면, 소닉
초음파 영향으로 인하여 단시간 내에 부분적으로 개질유황 반응물의 온도가 상승되면서 단체 유황(elemental sulfur)이 점진적으로 개질화 될 수 있다.

[278] 위에서 설명한 단체 유황의 융용온도인 약 120℃ 이상의 조건에서 유황을 융용시킨 후에 개질제를 혼합하여 약 120℃ 이상에서 중합 반응을 진행시키는 것과 구별되게, 초음파를 이용하는 방식은 위에서 설명한 소닉 초음파 방식의 장점으로 인하여 단체 유황을 융용시키지 않고 단순히 상온 조건에서 상기에 언급한 에폭 융액에 혼합시키는 단순한 방식으로도 개질유황의 중합반응을 유도할 수 있다는 장점을 가지고 있다.

[279] 또한, 초음파를 이용하는 위의 방식(초음파처리단계)은 이하에서 설명할 속성방식(속성단계)을 원통형 인-라인 믹서(in-line mixer) 형식의 제조 장치에 적용하면, 수월하게 연속적 개질유황 제조 장치로 전환될 수 있는 장점을 가지고 있다.

[280] 즉, 연속적 개질유황 제조 장치를 이용하여 개질유황을 제조하는 경우에는, 120℃ 이상의 난은 제조온도가 아닌 상온 내지 100℃ 이하의 온도에서도 연속적으로 개질유황을 제조할 수 있으며 또한 매우 느리게 이동되는 개질유황의 중합도(점도)를 차별화시켜서 임의로 설정된 배출구 라인으로부터 여러 용도의 개질유황 제품들을 균일하게 연속적으로 생산할 수 있다. 즉, 숙성이 진행되면서 완만하게 상승하는 점도 물성을 차별화시켜서, 저점도 개질유황은 분사(spray) 방식을 사용해야 하는 방청기 또는 내산 내알칼리성 콘크리트 보수 보강용 용도로 사용하고, 보다 상승된 점도의 개질유황은 솝크리트용 및 방수용 등으로, 그리고 고점도 개질유황은 아스팔트 용도로 사용할 수 있다.

[281] 그러나, 필요에 의해서 좀 더 빠르게 중합 반응을 진행시키기 위해서는 단체 유황을 100℃ 이상의 온도 조건에서 가열하여 융용된 상태로 본 방식을 적용시킬 수 있으므로 제조 온도를 반드시 100℃ 이하로 제한하는 것은 아니다.

[282] 상기 개질유황은 상기 초음파처리가 이루어지는 반응부, 상기 반응부로부터 토출된 반응물이 융합되는 숙성부를 포함하는 연속적 개질유황 제조장치를 이용하여 연속적으로 제조된 제도 약 100℃ 이상의 온도 조건에서 가열하여 융용된 상태로 본 방식을 적용시킬 수 있으므로 제조 온도를 반드시 100℃ 이하로 제한하는 것은 아니다.

[283] 구체적으로, 상기 준비단계에서 혼합물의 준비는, 개질유황 제조장치의 재료투입부로 상기 유황 100 중량부, 디시클로렌타디엔계 개질제1 내지 300 중량부 및 개시제 0.1 내지 200 중량부를 포함하는 재료가 투입되는 단계일 수 있고, 상기 초음파처리단계는 상기 재료투입부와 연결된 반응부로 상기 재료를 포함하는 혼합물이 융합되고 상기 반응부에 설치된 초음파 조사기에서 발생하는 초음파를 상기 혼합물에 조사하여 상기 혼합물 내에 미세한 기포가 형성되고 상기 기포가 붕괴되는 공동현상에 의하여 상기 혼합물에 포함된 고체 유황이 상기 디시클로렌타디엔계 개질제와 반응하여 반응물이 형성되도록 하는 단계일 수 있으며, 상기 숙성단계는 상기 반응부와 연결된 반응물투입부로부터 숙성부로 융합되는 반응물을 숙성시켜 개질유황을 제조하는 단계이며, 상기
숙성단계에서는 반응물투입부로부터 순차로 위치하는 1 이상의 토출구를 이용하여 연속적으로 제조되는 개질유황을 수득하는 단계일 수 있다.

[284] 상기 개질유황의 제조방법은, 반응세이줄을 적절하게 제어하여 우수한 물성을 가지는 개질유황을 제조할 수 있으며, 특히, 초음파 조사와 숙성이라는 두 가지 방법을 선택적으로 또는 순차로 적용하는 경우에는 고온에서의 폭발적인 반응의 위험 없이 의도하는 물성을 가진 개질유황을 제조할 수 있다. 또한, 숙성의 과정으로 개질유황을 제조하는 경우에는 기존의 방식에 위한 반응기 손상의 염려가 없고, 완만한 반응을 유도할 수 있어서, 의도하는 물성의 개질유황을 제조하기 더욱 용이해졌다.

[285] 또한, 연속반응기를 이용하여 순차로 조성물의 투입과 혼합, 초음파조사, 숙성의 과정을 전체적으로 연결된 제조장비를 이용하여 연속적으로 제조하는 경우에는 각 단계의 조건들을 제어하여 개질유황의 특성을 제어할 수 있고, 숙성과정이 일어나는 반응기 내에서의 개질유황이 이동하는 경로를 따라서 다수의 토출구를 마련하여 서로 다른 점도 값을 가지는 개질유황을 동시에 제조할 수도 있다.

[286] 개질유황 제조장치

[287] 도 16은 본 발명의 일 실시예에 따른 개질유황의 제조방법의 개념을 보여주는 개념도이고, 도 17은 본 발명의 일 실시예에 다른 개질유황 제조장치의 개념도이다. 이하 도 16 및 17을 참고해서 본 발명의 일 실시예인 개질유황제조장치를 설명한다.

[288] 상기 개질유황 제조장치(100)는 제료투입부(21)와 반응물투출구(23)를 갖는 제1하우징(25)과 상기 제1하우징 내에 초음파를 조사하는 초음파조사장치(27)를 포함하는 반응부(20); 그리고 상기 반응물투출구(23)와 연결되는 반응물투입구(41)와 개질유황투출부(43)를 포함하는 제2하우징(45)과 상기 제2하우징(45) 내에 반응물을 보관하는 숙성용기(47)를 포함하고, 상기 숙성용기(47) 내의 온도를 유지시키는 온도유지장치(49)를 포함하는 숙성부(40);를 포함한다.

[289] 상기 개질유황투출부(43)는 상기 숙성용기(47)의 적어도 일면에 형성되며, 상기 반응물투입구(41)를 기준으로 하였을 때로 서로 다른 길이에 위치하는 2 이상의 토출구를 포함하는 것일 수 있다.

[290] 상기 개질유황투출부(43)는 상기 숙성용기(47)의 일면에 순차로 형성된 저점도투출부(54), 중점도투출부(55), 및 고점도투출부(56)를 포함하는 것일 수 있다.

[291] 상기 저점도투출부(54)와 상기 개질유황투출부(43)와의 거리가 상기 고점도투출부(56)와 상기 개질유황투출부(43)와의 거리보다 짧은 것일 수 있다.

[292] 상기 반응부(20)와 숙성부(40) 사이에는, 상기 숙성부(40)로 유입되는 반응물의 유량을 조절하는 유량조절부(60)가 더 포함되는 것일 수 있다.
상기 개질유황 제조장치(100)은 저점도토출부(54)와 연결되어 저점도 개질유황을 저장하는 저점도개질유황저장부(74); 중점도토출부(55)와 연결되어 중점도 개질유황을 저장하는 중점도개질유황저장부(75); 및 고점도토출부(56)와 연결되어 고점도 개질유황을 저장하는 고점도개질유황저장부(76)를 더 포함할 수 있다.

상기 제료투입부(21)는 유황, 디시클로렌타디엔계 개질제, 개질제 또는 이들의 혼합물을 제1하우징(25)내로 일정한 비율로 투입하는 역할을 하고, 상기 초음파조사장치(27)는 상기 혼합물에 초음파를 가하여 유황과 디시클로렌타디엔계 개질제의 중합반응을 유도하며, 상기 운도유지장치(49)는 상기 수성용기(47) 내의 온도를 120°C 이하의 수성온도로 유지시키는 것이다.

상기 개질유황 제조장치(100)은 연속식으로 개질유황을 제조하며, 상기 수성용기(47) 내의 온도와 상기 수성용기(47)로 유입되는 반응물의 채류 시간을 조절하여 제조되는 개질유황의 점도를 조절할 수 있다.

상기 개질유황 제조장치를 이용하면, 상기 개질유황의 제조방법에 의한 개질유황을 배치식 또는 연속식으로 반응시킬 수 있으며, 연속반응을 위한 제조장치로 이용할 경우에는 순차로 조성물의 투입과 혼합, 초음파조사, 수성의 과정을 전체적으로 연결된 제조장비를 이용하여 연속적으로 개질유황을 제조할 수 있다.

예시적으로, 상기 개질유황 제조장치를 이용하여 연속적으로 상기 개질유황은, 구체적으로 상기 제료투입부를 통하여 투입된 유황, 디시클로렌타디엔계 개질제, 개질제 등은 제1하우징 내에서 초음파가 조사되는 공간을 지나면서 반응이 일어나 반응물이 형성되고, 순차적으로 상기 반응물이 수성용기로 이동되어 수성용기 내에서 수성온도로 유지된 환경에서 철저히 이동하면서 수성되는 공정을 거치면서 제조된다. 이때, 개질유황은 반응물을 유입되는 반응물투입부로부터 가까운 쪽은 개질유황의 점도가 비교적 낮고, 반응물투입부로부터 거리가 멀어질수록 개질유황의 점도가 비교적 높아진다. 이는 개질유황이 수성용기에 동과하면서 수성용기에서 수성온도로 유지되는 시간이 길어질수록 더 수성된 상태를 가지기 때문이다. 이때, 수성용기 개질유황의 흐름 방향을 따라서 수개의 토출구를 형성시켜 놓으면, 연속적인 수성과정 중에서 토출구의 위치에 따라 원하는 점도의 범위를 가지는 개질유황을 연속적으로 수득할 수 있으며, 개질유황이 이등하는 목적적으로 사용될 수 있는 점도범위를 가진적으로 하면서 하나의 개질유황 제조장치에서 연속적으로 개질유황을 제조할 수 있다.

상기 본 발명의 일 실시예에 따른 개질유황의 제조방법에서 설명한 각 단계의 조건들을 제어하면서 상기 개질유황 제조장치를 이용하여 개질유황을 제조하면, 필요에 따라서 개질유황의 특성을 제어할 수 있고, 수성과정이 일어나는 반응기 내에서의 개질유황이 이동하는 경로를 따라서 다수의 토출구를 마련하여 서로 다른 점도 값을 가지는 개질유황을 동시에 제조할 수 도
있다.

[300] 솟크리트 조성물
[301] 본 발명의 또 다른 일 실시예에 따른 솟크리트 조성물은 상기 본 발명의 일 실시예에 따른 개질유량과 골체를 포함한다. 상기 개질유량에 대한 설명은 위의 설명과 중복되므로 기재를 생략한다.
[302] 상기 골체는 재활용 산업 폐기물, 강모래, 석석, 석탄회, 해사, 규사, 자갈, 실리카, 석영분, 경량 골체, 점토 광물, 유리 분말 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다.
[303] 상기 재활용 산업 폐기물은, 예시적으로, 골체를 분쇄할 때에 발생하는 석분을 나트륨 아크릴레이트 중합체 고분자 용접제로 침전시킨 폐석분 슬러지(slime)로서, 폐기물로 취급되어 이를 매립하는데 어울을 채고 있는 폐기물을 의미하거나, 상기 골체로 활용될 수 있는 산업 폐기물이라면 상기 재활용 산업 폐기물로 적용될 수 있으며, 폐석분 슬러지에 한정되지 않는다.
[304] 상기 골체는 솟크리트 조성물에 적절한 양으로 포함될 수 있으며, 상기 개질유량 100 중량부를 기준으로 10 내지 70 중량부로 포함될 수 있다.
[305] 상기 골체로 투입 1 내지 10 mm의 간골체를 적응하는 경우에 모르타르로 적용될 수 있고, 상기 골체로 상기 간골체의 입경이 10 내지 18 mm의 굵은 골체가 함께 적응되는 경우에는 콘크리트로 적응될 수 있다.
[306] 상기 솟크리트 조성물은 유리 또는 카본 화이버, 철근, 강철섬유, 섬유질 층재, 섬유상 입자, 박편상 입자 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 보강재를 더 포함할 수 있다. 상기 보강재는 상기 개질유량 100 중량부를 기준으로 0.1 내지 20 중량부로 포함될 수 있다.
[307] 터널공사 주지보재로 사용되는 솟크리트(shotcrete)는 터널발괴와 균착 직후 압반의 이완을 역제하여 터널 안정성을 확보하는 공법으로서, 현재 적용하고 있는 강섬유 솟크리트는 불연속의 짧은 강섬유(steel fiber)를 콘크리트 속에 균등하게 분산시켜서 안정강도, 휘강도, 균열 저항성을 개선시키거나, 강섬유 외에도 금강체, 고유동화제 및 기타 혼합제 등의 값이 비싼 점계재들을 사용하고도 경화 시간이 뚱으며 분사 후 압반에 부착되지 못하는 리바운드율(rebound)이 떨다.
[308] 상기 솟크리트 조성물은, 본 발명의 반응종료 시점과 수성 방식을 사용하여 점도 또는 레怵로스 특성을 둔 차별화 시키는 방법으로도 매우 빠른 경화 시간, 리바운드율을 감소시킬 수 있는 강한 부착력 및 탄성력, 고강도 등을 발휘할 수 있는 효과가 있어서 기존의 방식보다 작업성을 현저하게 높일 수 있는 장점이 있다.
[309] 내산 내알칼리성을 콘크리트 보수 보강용 개질유량 조성물
[310] 본 발명의 또 다른 일 실시예에 따른 콘크리트 보수 보강용 개질유량 조성물은
상기 본 발명의 일 실시예에 따른 개질유황과 무기질 원료를 포함하며 내산성 및 내알칼리성을 가진다. 상기 개질유황에 대한 설명은 위의 설명과 중복되므로 기재를 생략한다.

상기 무기질원료는 미분말 규사, 규조토, 규회석, 유리튬, 케브라 섬유, 탄소섬유 또는 섬트, 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다. 상기 무기질원료는 원료의 성분에 따라 분말형 또는 액상일 수 있다.

상기 무기질 원료는 상기 개질유황 100 중량부에 대하여 10 내지 200 중량부로 사용될 수 있으며, 상기 개질유황과 혼합 또는 용융혼합 후에 구조체에 분사하는 방식 또는 미장하는 방식으로 콘크리트 보강용으로 사용될 수 있다.

교면 도막 방수제용 개질 유황 조성물

본 발명의 또 다른 일 실시예에 따른 교면 도막 방수제용 개질유황 조성물은 상기 본 발명의 일 실시예에 따른 개질유황과 보강재를 포함하며 제설제와 비례(飛來) 염분 또는 해안가 염해에 대한 탁월한 저항성과 빠른 작업성을 가진다. 상기 개질 유황에 대한 설명은 위의 설명과 중복되므로 기재를 생략한다.

상기 개질 유황은, 전술한 바와 같이, 염해 저항성이 탁월하고, 빠른 경화성으로 인하여 신속한 작업이 가능하며, 탁월한 접착력으로 인하여 교면 포장 시 콘크리트 및 아스팔트 부위와의 접착강도가 뛰어나기 때문에 교면용 도막 방수제용 조성물로 포함시켜 적용할 수 있다.

상기 보강재는, 예를 들면 미분말 규사, 규조토, 규회석, 점토류, 유리흙(chopped glass fiber), 염료, 안료, 알루미늄 설레이트(aluminum sulfate), 물유리, Ca(OH)₂, 산화 아연, 나이트래수, Mg(OH)₂, CaCl₂, Al(OH)₃, 봉사, CaSO₄.2H₂O, Fe₂O₃, 계올레인트, 탄소섬유, 위스커(whisker), Na₂SO₄, MgSO₄.7H₂O, 플라이에쉬, 아크릴 애밀전, 애틀리, 레תק스, 탄소섬유 또는 섬트, 강철섬유, 액상 무기질, 섬유질 촉촉제, 섬유상 입자, 박판상 입자 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다. 또한, 상기 보강재는 원료의 성분에 따라 분말형 또는 액상일 수 있다.

상기 보강재와 개질유황이 혼합 또는 용융혼합된 교면 도막 방수제용 조성물은, 교면용 구조체에 분사하는 방식 또는 미장하는 방식으로 사용될 수 있다. 상기 보강재는 상기 개질유황 100 중량부에 대하여 10 내지 200 중량부로 사용될 수 있다.

교면 공사 현장에서는 요구되는 방수재 도막의 두께가 두껍기 때문에, 분사 방식으로는 요구하는 도막 두께를 충족시키기 어렵다. 따라서, 중래에는 미장 방식을 사용하였으나, 본 발명의 교면 도막 방수제용 조성물은 수성 방식을 이용하여 안전하게 점도를 증가시킨 개질유황을 포함하므로, 강력한 압력을 발휘할 수 있는 고 압력 분사를 사용하여 분사 방식으로도 적용이 가능할 수 있다.
또한, 교면 도막 방수재용 조성물은 콘크리트 구조체와 아스팔트 구조체 사이에서 방수재 역할을 할 수 있다. 상기 개질 유형의 뚜껑 난감성과 관성을 때문에, 이 개질 유형이 포함된 교면 도막 방수재용 조성물은 아스팔트 또는 콘크리트 외에 여러 용도로 사용할 수 있고, 교면 도막 방수재용으로도 적합한 물성을 보유하고 있다.

토목, 건축 소재에의 적용

이러한 개질유형은 상기한 뚜껑 난감성으로, 다양한 토목, 건축 소재로 적용될 수 있다. 상기 개질유형은 도로 또는 건축용 개질유형, 보수 보강용 개질유형, 콘크리트 2차 제품용 개질유형 등에 적용될 수 있으며, 이에 한정되는 것은 아니다.

일반적으로 콘크리트는 경화 시간이 오래 걸리고, 안장 강도가 작으며, 건조수축률이 크고, 내약성을 약하다는 등의 단점으로 장기내구성에 보완이 필요하다. 이러한 단점을 보완하기 위해서 여러 가지 수지류 등 첨가제가 적용될 수 있으며, 본 발명의 개질유형도 이러한 콘크리트의 첨가제로 적용될 수 있다.

콘크리트에 적용되는 수지류는 콘크리트 폴리머 복합체(concrete polymer composite) 제조방식에 따라서 2가지로 분류될 수 있다. 제1방식은 시멘트와 물을 사용하지 않고 격리제로 비진수성인 액체성, 폴리우레탄, 폴리 등의 열정화성 수지, 타르우레탄, 타르액체성 등의 타르면성수지, 아스팔트, 메틸메타크릴레이트(MMA수지)와 스테인 등의 비닐모노머, 폴리우레탄을 등을 적용하는 방식이고, 제2방식은 SBR, PAE, EVA 등의 각종 천수성 폴리머들을 액체형 방식으로 적용하거나, 메릴스테인 등의 모노머 저질도 화합을 폴리머 함침제 형식으로 알카리성 유리섬유, 강섬유, 폴리아미드 섬유, 폴리프로필렌 섬유, 폴리에틸렌 섬유, 탄소섬유 등과 같은 각종 보강섬유들과 혼합하여 사용하는 방식이 있다.

상기 콘크리트 폴리머 복합체의 개질을 위해서 본 발명의 개질유형이 적용될 수 있으며, 제1방식에 적용되기 위해서는 소수성 개질유형을, 제2방식에 적용되기 위해서는 천수성 개질유형을 사용하는 것이 바람직하다.

소수성 개질유형은 방수성, 탄성회복성, 연성률, 난연성 등에서 뚜껑 난감성을 발휘할 수 있으며, 접착력의 면에서도 우수한 효과를 보여줄 수 있다. 특히 기존의 제1방식으로 적용하는 콘크리트 폴리머 복합체의 경우는 물에 타는 특성이 있고, 물에 탈 경우 폴리에스테르렌에서 발생하는 유독한 가스와 방치, 그리고 물에 탈 경우에 발생할 수 있는 급격한 강도 약화나 붕괴의 일련으로 인해서 하수관, 수중 등의 특수장장소에만 적용할 수 있었는데, 본 발명의 소수성 개질유형을 이용하여 콘크리트 폴리머 복합체를 제조하는 경우에는 소재 자체의 난연성 특성에 의하여 콘크리트 폴리머 복합체 자체가 난연성을 가지며, 유독한 연기가 발생하지 않아들고, 물에 몰래도 화염을 제거하면 스스로
소화되는 난연 특성을 보여줄 수 있다.

[330] 상기 제2방식의 콘크리트 폴리머 복합체의 개질을 위해서 본 발명의 개질유항이 적용될 수 있으며, 제2방식에 적용되기 위해서는 친수성 개질유항을 적용하는 것이 바람직하다. 상기 친수성 개질유항은 수화 및 중화성, 콘크리트 폴리머 복합체 친수성 폴리머의 대체용으로 사용되기에 우수한 특성을 가질 수 있다.

[331] 상기 도로 건축용 개질유항은 도로공사나, 건축용으로 사용되는 콘크리트 또는 모르타르에 개질제로서 적용되는 것으로, 수성성 개질유항 자체 조성물, 콘크리트 폴리머 복합체, 지오폴리머 콘크리트(geopolymer concrete), 아스팔트 콘크리트, 한중 콘크리트 대체용 콘크리트 등에 개질제로서 적용될 수 있다.

[332] 상기 개질유항은 수성성 재료, 물, 잔물계, 골재 등과 혼합되어서 수성성 개질유항 자체 조성물을 구성할 수 있고, 이러한 수성성 개질유항 자체 조성물은 도로용 또는 건축용 재료로 적용될 수 있으며, 상기 자재는 모르타르 또는 콘크리트일 수 있다.

[333] 상기 수성성 재료는 클라이어, 고로 슬래그 미분말, 실리카 홀, 베타카울린, 황산칼슘, 시멘트료 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것일 수 있고, 상기 시멘트료는 고로 슬래그 시멘트, 공기 연행 시멘트(air-entraining hydraulic cement), 내화성 포트랜드 시멘트(sulfate resisting portland cement), 마그네시아 시멘트(manesia cement, sorel cement), 반창용 시멘트(masonry cement), 백색 포트랜드 시멘트(white portland cement), 보통 포트랜드 셰멘트(ordinary portland cement), 수성성 시멘트(hydraulic cement), 슬래그 시멘트(slag cement), 알루미나 시멘트(high alumina cement), 조강 포트랜드 시멘트(high-early-strength portland cement), 중용열 포트랜드 시멘트(moderate heat portland cement), 천연 시멘트(natural cement), 평창 시멘트(expansive hydraulic cement) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것일 수 있다.

[335] 상기 개질유항이 상기 수성성 개질유항 자체 조성물에 적용되는 경우에는 상기 수성성 재료 100 중량부에 대해서 0.1 내지 10 중량부의 범위로 적용될 경우에 경제적인 범위에서 적절한 개질 효과를 얻을 수 있으나, 이에 한정되는 것은 아니다.

[336] 상기 곱체는 재활용 산업 폐기물, 강모래, 쇄석, 석탄회, 해사, 규사, 자갈, 실리카, 석영분, 경량 곱체, 건축광물, 유리 분말 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있고, 상기 곱체는 상기 도로용 또는 건축용 자체에 적절한 량으로 포함될 수 있으며, 상기 수성성 재료 100 중량부를 기준으로 100 내지 800 중량부로 포함될 수 있다. 상기 곱체로 입경 1 내지 10
mm의 잔골재를 적용하는 경우에 상기 수명성 개질유량 자체 조성물은 모노타르로 적용될 수 있고, 상기 골재로 상기 잔골재와 입경이 10 내지 18 mm의 굵은 골재가 함께 적용되는 경우에는 상기 수명성 개질유량 자체 조성물은 콘크리트로 적용될 수 있다.

[337] 상기 수명성 개질유량 자체 조성물은 철근, 강철섬유, 섬유질 콘크리트, 섬유상 입자, 박편상 입자 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 보강제를 더 포함할 수 있다.

[338] 상기 수명성 개질유량 자체 조성물이 본 발명의 개질유량을 포함하면, 적은 개질유량의 사용량에도 불구하고 수명성 개질유량 자체 조성물의 물성을 향상시킬 수 있다.

[339] 상기 콘크리트 폴리머 복합재로는 폴리머 시멘트 콘크리트, 폴리머 콘크리트, 폴리머 함유 콘크리트 등이 있다. 본 발명의 개질유량은 상기 콘크리트 폴리머 복합재의 개질유량에 개질유량 상기에서 연근한 시멘트와 같은 수명성 재료를 결합재로 사용하지 않고, 결합재로 본 발명의 소수성 개질유량을 사용하는 방식과, 시멘트와 같은 수명성 재료와 물을 함께 사용하는 방식에 점거재로 신수성 개질유량이 적용될 수 있다.

[340] 지오 폴리머 콘크리트(geopolymer concrete)는 CO₂ 발생량이 많은 시멘트를 결합재로 사용하지 않고 잔재수명성을 지니고 있는 천환경적인 원료인 슬레이크, 폴리에스 등을 주원료로 사용하고, 물유리 등의 알카리활성화제를 사용하여 콘크리트를 제작하는 방식을 말한다. 본 발명의 개질유량은 개질유량 자체가 물을 반응하여 경화하는 특성을 발휘할 수 있으므로, 잔재수명성 재료와 반응하면 수화하여 경화되는 반응이 진행될 수 있으므로, 상기 지오폴리머 콘크리트의 개질유량에 적용될 수 있다.

[341] 본 발명의 개질유량은 수화 및 경화 특성 외에 매우 뛰어난 탄성력, 휘어짐, 점착특성을 발휘할 수 있기 때문에, 적절한 보강재(섬유유 또는 콘크리트 등)과 함께 사용하면 함량, 내외장재, 인공복재 대용품 등으로 적용될 수 있다. 또한, 수명성 잔재 수명성 재료와 함께 혼합되어 사용될 제품을 윤활제품으로 제조할 수 있다.

[342] 상기 아스팔트 콘크리트에는 스트레이트(straight) 아스팔트, 불로운(blown) 아스팔트[스트레이트 아스팔트에 공기를 불어넣어 갑은성이 좋게 하고, 접도를 높여 도로 면에 잘 접착되도록 개선한 아스팔트], SBS(Styrene butadiene styrene block copolymer) 개질 아스팔트(polymer modified asphalt)[SBS로 개질하여 온도 변화에 크게 좌우되지 않고 탄성 및 유연성을 유지할 수 있는 아스팔트], CRM 고무 아스팔트(rubberized asphalt)[고무로 개질화시켜서 저온 신도를 개선하여 연화점을 높인 아스팔트], 커틁(cutback) 아스팔트 등의 비천수성(유체형) 아스팔트가 있고, 유화 아스팔트[양이온계(RSC, MSC) 혹은 음이온계(RSA, MSA)를 사용하여 아스팔트를 유효(emulsified)시킨 아스팔트]가 있다.

[343] 본 발명의 개질유량은 상기 유체형인 비천수성 아스팔트에 적용하기 위해서는
비친수성이 개질유황을 단독으로 또는 아스팔트에 일정량을 첨가, 혼합하여 적용할 수 있다. 또한, 본 발명의 개질유황을 상기 유화아스팔트에 적용하기 위해서는 친수성 개질유황을 적용하는 것이 바람직하다.

상기 한층(寒中) 콘크리트 대체용 콘크리트는, 영하 4℃ 이하의 추운 조건에서 일반 콘크리트를 제조하는 경우에는 동해 결정이 발생하기 때문에, 이를 보완하기 위해서 초속경 발열용 특수 시멘트를 이용하여 공사를 하고 있으나, 본 발명의 개질유황은 상기 초속경 발열용 특수 시멘트의 일부 또는 전부를 대체하여 초속경 고강도 개질유황 콘크리트를 제공할 수 있다.

상기 보수보강용 개질유황의 물성 특성을 차별화 시키면 아스팔트 및 콘크리트에 급급 보수용으로 사용되고 있는 고가의 개질 아스팔트(블로운 아스팔트, SBS 개질 아스팔트, 고무 아스팔트 등)과 콘크리트 보수 대체용(LMC 교버포장, 에폭시 주입용, 초속경 시멘트 등), 절연 방열 제료인 에폭시 대체용, 에폭시를 주제로 개질유황을 경화제로 사용하는 에폭시 경화제 대체용, 그리고 개질유황의 내연성, 고점착성, 고방수성 등이 적용될 수 있는 원자력 발전소 해수취수로 또는 정유공장 유류저장탱크에 사용되는 에폭시 대체용 또는 저수지 및 오염수 처리장에서 사용되고 있는 부식방정제 대체용, 고방수성과 고강도 물성을 요구하는 지하철국, 구조물 콘크리트용, 초속경성 활주로용 콘크리트, 무수촉 고강도 특성을 요구하는 교량의 익스텐션 조인트(extension joint) 및 슈(shoe) 대체용, 방수공사 대체용 등에 적용될 수 있다.

상기 방수공사 대체용은 노출형인 에폭시와 우레탄 도막방수재 대체용, 비노출형인 타르우레탄 대체용, 타르우레탄 씌트치, 건식 및 습식 프라이머(primer) 대체용, 무수용인 주입식 저수차수재인 발포우레탄, ARC, 2액형 우레탄 대체용 등에 적용될 수 있다.

특히, 본 발명의 개질유황은 제조과정에서 사용되는 개시제의 종류, 함량, 중합도, 투입시간, 방수 종료시간 등을 차별화하여 최종 제품의 물성이 에폭시에 비슷한 정도로 매우 단단하고 접착력이 강한 경화제 또는 탄성과 연성이 매우 뛰어난 우레탄 대체용으로 적용할 수 있다. 이는 본 발명의 개질유황이 단독으로 또는 다른 재료들과 적절하게 혼합되는 방식으로 적용될 수 있다.

특히 본 발명의 개질유황은 프라이머 전처리 작업을 하지 않고서도 직접 피복재료 표면에 코팅할 때도 강한 접착력이 유지될 수 있을 정도로 우수한 접착력을 보이고 있어서, 위의 용도로의 기존의 제품들을 대체하여 사용할 수 있다.

상기 콘크리트 2차 제품은 일반적인 공사 현장이나 도로 및 건축용 볼딩과 같은 현장에서 타설한 후에 양산하는 것이 아니라, 콘크리트 공장에서 고온고압의 양생기(autoclave)를 이용하여 수 시간 내지 수십 시간 내에 500 내지 800 kg/cm²의 고강도를 발휘하도록 제조하여 이용되는 프리 캐스팅(pre-casting)한 제품으로, 내산성 하수도관, 고강도용 원심력 전봇대, 초속경 무수촉 고강도 침묵용 시멘트 물당, 해수에 대한 염해저항성이 우수한 인공어초, 식생호안블록,
테트라포드 등과 도심지에 사용되는 벽돌, 블록, 보도블럭, 멀호 등에 적용될 수 있다.

국내외에서 화재의 위험성이 없으며 강산성 환경하에서 사용되고 있는 개질유황 내산성 하수도관은 고가로 판매되에도 불구하고 지하 공간에서 하수도관 설치 작업시 개질유황 하수도관 연결 이음부의 충돌로 인하여 파손이 발생하는 경우가 많다. 이는 상업적으로 판매되고 있는 개질유황 내산성 하수도관의 개질유황의 고강도 특성은 우수하나, 내충격에 약한 취성이(Brittle) 특성을 가지고 있기 때문인 것으로 판단된다. 그러나 본 발명의 개질유황은, 고강도 특성과 함께 내충격성에 매우 뛰어난 연성 및 탄성 특성을 동시에 발휘할 수 있어서, 상업적으로 판매되고 있는 개질유황 내산성 하수도관의 약한 취성을 보완할 수 있다.

또한, 물체를 분쇄할 때에 발생하는 석분을 나트륨 아크릴레이트 공중합체 고분자 용접체로 침전시킨 페석분 슬러지(sludge)는 폐기물로 취급되어, 현재 업계에서는 이를 매립하는데 어려움을 겪고 있다. 그러나, 본 발명의 개질유황의 내화성, 고강도, 초숙성 등을 이용하면 상기 해수에 대한 염해저항성이 우수한 인공이어, 석방호안블럭, 테트라포드 등과 도심지에 사용되는 벽돌, 블록, 보도블럭, 멀호 등의 콘크리트 2차 제품에 적용될 수 있다.

나아가, 건축물에 사용되고 있는 물말(mortar)은 시멘트물말, 무수축물말, 황토물말, 레진물말, 수평물말, 방수물말, 단열물말, 에폭시레진물말, 드라이물말 등의 여러 종류가 판매되고 있으며, 특히 최근에는 친환경제품에 대한 선호도가 높아져서 황토물말에 대한 수요가 급증하고 있다. 황토는 천연적으로 땅속에서 산출되고 있는 친환경 원료로서 황토분말, 생황토, 황토모드, 황토석, 황토코트, 황토퍼티, 황토천연트, 황토분, 황토벽돌 등에 적용되고 있다. 황토물말에는 마장용, 조작용, 바닥용, 배지용 등이 있으며, 시공하는 방법은 황토제품에 물만 섞어 반죽을 하여 흙손이나 미장갑로 도장하는 방식과 스프레이를 사용하여 벽면에 코팅하는 방식 등이 있으며, 바름두께는 1 내지 10mm이나, 조작이나 시멘트 마감 벽면에는 5 내지 10mm 두께로 미장하고 있으며, 건조시간은 1일 내지 4일로 이루어지며, 요구되는 물성은 시공균일이 있어야 되며, 강도가 우수해야 되며, 친환경제품이어야 한다.

황토는 하수 산화철과 무수 산화철을 함유한 규토와 황토로 이뤄진 자연 상태의 황토으로 우리나라 전역에서 쉽게 구할 수 있으며 이를 활용하는 황토물말 제품은 가격 면에서나 친환경 측면에서 시멘트물말에 비해서 유리한 특성이 있다. 그러나, 시멘트물말은 특유의 강한 접착력과 강도를 발휘하는 반면에 황토는 황토 자체적으로는 경화성이 약하기 때문에, 시공 후 시간이 지나면서 균열이 발생하는 특성이 있다. 이를 방지하기 위해서 단단계에서는 소량의 시멘트나 유기질결합제를 황토와 혼합하여 사용하고 있는 실정이다.

본 발명의 개질유황은 특유의 향균성, 고강도, 초숙성, 고탄력성, 강한 접착력 및 낮은 수축 특성을 보유하고 있으므로 이를 기반으로 하는 친환경적인
결합제로서 적용될 수 있다. 황토볼탈에 사용되는 미환경 고기능성 개결유황의
적용 형태로는, 분말형 개결유황을 황토와 미리 혼합하여 판매하는 방식이
적용될 수 있고, 황토에 혼합하여 적용할 수 있도록 액상형 개결유황 형태로
적용될 수 있다.

한편 절도 원료를 1200℃ 이상의 고온에서 소성시켜서 제작하는 절도 벽돌은
물연성, 고강도 특성으로 현장에서 많이 사용되고 있으나 고온으로 열처리 하여
되므로 가스 또는 전기 비용이 생산 단가에서 차지하는 비중이 너무 크고 또한
절도의 건조수축 균열 현상으로 인한 제품의 품질이 저하되는 문제점을 지니고
있다.

본 발명의 개결유황은 특유의 경공성, 고강도, 조성성, 고탄력성, 강한 접착력
및 낮은 수축 특성을 등에 경화현상을 나타낼 수 있는 첨가제와 병용 사용하는
방식으로 소성시키지 않고 낮은 수축율을 발휘할 수 있는 벽돌을 제조할 수
있으므로 이를 기반으로 하는 에너지 절약형 결합제로서 적용될 수 있다. 비소성
벽돌에 사용되는 에너지 절약형 개결유황의 형태로는, 무기질 벽돌 원료 100
중량부에 열경화성으로 결합화 시킨 개결유황을 결합제로서 적용될 수 있을
정도의 최소량 즉, 5 내지 20 중량부를 혼합한 후에 약 200℃ 이내의 온도가
유지되는 가열식 프레스 또는 압출기에서 제조하는 방식이 적용될 수 있으나,
이에 한정되는 것은 아니다.

방청제료와 그 제조방법

본 발명의 일 실시예에 따른 방청제료는 심유상(fiber), 판상(film), 또는
망목구조(network structure)의 미세조직 형상을 포함하거나
방사성(spinnability)을 가지는 개결유황을 포함한다.

상기 방청제료는 개결유황으로 이루어진 것일 수 있고, 개결유황에 추가적인
첨가제가 더 포함된 것일 수 있다.

상기 개결유황은 유황 100 중량부, 그리고 디시클로로판타디엔계 개결제 1 내지
300 중량부를 포함하고, 135℃에서 접착가 3000 내지 200만 cp인 것일 수 있고,
개시제(initiator)를 유황 100 중량부를 기준으로 0.1 내지 200 중량부로 더
포함하는 것일 수 있다. 또한, 상온에서 액상일 수도 고상일 수도 있으나, 작업의
편의상 액상인 것이 바람직하다. 그러나, 기타 첨가제나 도막 형성의 조건(예를
d러, 온도)에 따라 고상의 개결유황을 액상의 방청제료로 적용될 수
있으므로, 상기 개결유황은 상온에서 액상인 것에 한정되지 않는다.

상기 개결유황은 상온 또는 135℃에서 방사성을 가지거나 미세조직 형상을
가지는 것일 수 있고, 이러한 특성을 가지는 경우에는 방청제료의 경화성,
염수분무저항성, 용접성(용접저항성), 작업편의성이 우수할 뿐만 아니라
접착성에 대해서 원통하게 향상된 물성을 가질 수 있다.

상기 개결유황에 대한 구체적인 설명은 상기한 개결유황에 대한 설명과
중복되므로 기재를 생략한다.

[365] 상기 방청제료는, 화학적, 보강재 및 이들의 조합을 더 포함하는 것이 일 수 있다.

[366] 상기 회석사는 방청제료의 점도를 음계 하거나 속건성을 풍부하게 하는 것이 적용될 수 있으나, 이에 한정되는 것은 아니며, 상기 개질유황을 녹이거나 분산시키할 수 있는 것이라면 상기 회석재로 사용될 수 있다.

[367] 상기 회석재는, 염을 들어 이황화합소, 알모니아(Ammonia), 알코올계
용매, 디-디트-부틸 폴리스프라이드(tert-Butyl polysulfide), 터트-도데실
폴리스프라이드(tert-Dodecyl polysulfide), 터트-노닐 폴리스프라이드(tert-Nonyl polysulfide), 아닐린(Aniline), 벤젠(Benzene), 디부틸 푸탈레이트(Dibutyphthalate), 2,2'-에틸렌비소이소티오우로늄 디브로마이드
(2,2'-Ethylenebisisothiouronium dibromide), 디브로모에탄(Dibromoethane,
1,2-Dibromoethane), 아이오폴로(iodoform), 베타-나프톨(Beta-naphthol), 올리브 오일(Olive oil), 페놀(Phenol), 피리딘(Pyridine), 큐나린(Quinoline), 디클로로디 클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디 클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디클로로디.club写하지 못함

[368] 상기 회석재는 용매와 함께 사용될 수 있고, 상기 용매는 물, 아민계 용매, 에스테르계 용매, 케톤계 용매, 지방족 또는 탄화수소계 용매, 에테르계 용매, 알코올계 용매, 알코올계 용매, 폴리올 용매, 아미드 용매, 용매 또는 슬포사이드 용매, 아세티트사이드 용매, 비수계 무기용매 및 이들의 조합으로 이루어진 용액에서 선택된 어느 하나일 수 있고, 이를 포함하는 것일 수 있다.

[369] 상기 회석재는 상기 개질유황을 포함하는 방청제료의 점도가 1 내지 1000 cP가 되도록 하는 양으로 사용될 수 있으며, 상기 개질유황 100 중량부를 기준으로 회석재 1 내지 100 중량부가 사용될 수 있다.

[370] 상기 회석재로 인체나 생태계에 무해한 환경회석재가 사용되는 것이 바람직하다.

[371] 상기 보강재는 방청제료로 방청코팅이 형성되었을 때에 방청코팅막의 강도를 향상시킬 수 있는 첨가제를 의미하며, 예를 들면 미분말 규사, 규조적, 규화석, 젤토류, 용리굴(chopped glass fiber), 염료, 연료, 알루미늄 설페이트(aluminum sulfate), 물유리, Ca(OH)₂, 산화 아연, 나프탈렌, Mg(OH)₂, CaCl₂, Al(OH)₃, 농사, CaSO₄,2H₂O, Fe₂O₃, 계올라이트, 탄소 섬유, 취스키(whisker), Na₂SO₄, MgSO₄,7H₂O, 플라이어치, 아크릴 에머진, 에폭시, 라텍스, 탄소 섬유 또는 섬프, 강철절유, 액상 무기질, 섬유질 충전재, 섬유성 입자, 박판성 입자 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다. 또한, 상기 보강재는 원료의 성분에 따라 분량을 또는 액상일 수 있다.

[372] 상기 보강재를 더 포함하는 방청제료는, 방청코팅막의 강도를 더욱 향상시킬 수 있으며, 상기 방청제료의 시공편의성, 개질유황과의 혼화성, 방청제료를
코팅하 구조체의 특성 등을 고려해서 보강제의 종류와 방청제료에 포함되는
함량이 달라질 수 있으나, 마법적하게 상기 보강제는 상기 개질유황 100
중량부를 기준으로 1 내지 100 중량부로 포함될 수 있다.

[373] 상기 방청제료는 상온분사형, 상온미장형, 가열분사형, 또는 가열미장형
방청제료일 수 있고, 정화성, 염수분무저항성, 용접성, 접착성 등의 특성이
뛰어나다. 상기 상온분사형은 상기 개질 유황 단독으로, 또는 상기 개질 유황에
상기 보강제를 가량하지 않고 혼합한 후에 분사기를 사용하여 분사하는
형식으로서, 회석제 또는 경화제를 포함하여 사용할 수 있고, 상온미장형은 도구
및 기계를 사용하여 도막 표면을 마감하는 형식인 것 외에는 상온분사형의
시공방법과 동일하다. 상기 가열분사형 및 가열미장형은 상기 개질 유황을
단독으로, 또는 상기 개질 유황에 상기 보강제를 혼합한 것을 가량하여 상기
개질 유황 또는 혼합물을 응용시킨 후에 각각 분사 및 미장하는 형식을
이미한다.

[374] 상기 개질유황 또는 상기 방청제료는 25℃에서 액상일 수 있고, 상기
방청제료는, 상기 상온형이 25℃에서 점도가 1 내지 1,000 cP일 수 있고, 상기
가열형이 135℃에서 점도가 1 내지 10,000 cP일 수 있다.

[375] 본 발명의 다른 일 실시예에 따른 방청제료의 제조방법은, 유황 100 중량부,
그리고 디시클로로펜타이소개질제 1 내지 300 중량부를 120℃ 이상에서 용융
혼합하여 제1혼합물을 제조하는 제1혼합물제조단계; 상기 제1혼합물을 120℃
이상에서 중합 반응시켜 제1반응물을 제조하는 제1중합반응단계; 그리고, 상기
제1반응물이 반응종료 시점에 상기 제1반응물의 중합 반응을 종료시키켜서
개질유황을 포함하는 방청제료를 제조하는 것인 반응완결단계;를 포함한다.

[376] 상기 반응종료 시점은 상기 제1반응물이 방사성(spinnability)을 가지는 시점과
고무화가 일어나는 시점 사이이다. 다만, 상기 제1반응물이 방사성을 가지는
시점보다 먼저 제1중합반응단계를 종료하게 되는 경우에는 추가적인
숙성단계를 더 가질 수 있다. 상기 숙성단계에 대해서는 후술한다.

[377] 상기 방청제료에 대한 설명과 개질유황에 대한 설명은 위에서 한 설명과
중복되므로 그 기재를 생략한다.

[378] 상기 방청제료의 제조방법은 상기 반응완결단계 이후에 조성물혼합단계를 더
포함할 수 있다.

[379] 상기 조성물혼합단계는 상기 개질유황과 참가제를 혼합하는 단계를 의미한다.

[380] 상기 참가제는, 회석제, 보강제 및 이들의 조합으로 이루어진 것에서 선택된
어느 하나를 포함하는 것일 수 있다.

[381] 또한, 상기 참가제의 종류, 함량, 등의 구체적인 내용은 위에서 설명한 것과 그 내용이
중복되므로 기재를 생략한다.

[382] 제조방법에 대한 설명 중에서 위에서 개질유황의
제조방법에 대한 설명과 중복되는 내용은 기재를 생략한다.
본 발명의 또 다른 일 실시예에 따른 방청제료의 제조방법은 유황 100 중량부, 디시클로펜타디엔계 개질제 1 내지 300 중량부, 및 개질제 0.1 내지 200 중량부를 포함하는 혼합물을 준비하는 준비단계, 상기 혼합물에 초음파를 조사하며 반응시키며 반응물을 제조하는 초음파처리단계, 그리고 상기 반응물을 40℃ 이상의 온도에서 숙성시키기 개질유황을 포함하는 방청제료를 제조하는 숙성단계를 포함한다.

상기 방청제료에 대한 설명과 개질유황에 대한 설명은 위에서 한 설명과 중복되므로 그 기재를 생략한다.

상기 초음파 조사는 20 kHz 내지 1 MHz 영역의 초음파를 상기 반응물에 조사하는 것일 수 있다.

상기 초음파처리단계는 반응물의 온도가 120℃ 이하인 조건에서 이루어질 수 있고, 40℃ 이상의 조건에서 이루어질 수 있다.

또한, 상기 방청제료의 제조방법에 대한 설명 중에서 위에서 개질유황의 제조방법에 대한 설명과 중복되는 내용은 기재를 생략한다.

본 발명의 또 다른 일 실시예에 따른 방청코팅막의 제조방법은 상기 방청제료를 구조체에 분사하는 과정을 포함한다.

상기 구조체는 금속, 콘크리트와 같이 방청특성이 요구되는 표면을 가진 구조물을 의미하며, 방청효과를 필요로 하여 상기 방청코팅막을 표면에 형성할 수 있는 것이라면 상기 구조체에 해당한다. 상기 방청제료에 대한 구체적인 내용은 위에서 설명한 바와 같다.

본 발명의 또 다른 일 실시예에 따른 방청코팅막의 제조방법은 상기 방청제료의 제조방법을 이용하여 제조한 방청제료를 구조체에 분사하여 방청코팅막을 형성하는 과정을 포함한다.

상기 구조체는 금속, 콘크리트와 같이 방청특성이 요구되는 표면을 가진 구조물을 의미하며, 방청효과를 필요로 하여 상기 방청코팅막을 표면에 형성할 수 있는 것이라면 상기 구조체에 해당한다. 상기 방청제료에 대한 구체적인 내용은 위에서 설명한 바와 같다.

방수재료와 그 제조방법

본 발명의 일 실시예에 따른 방수재료는 섬유상(fiber), 판상(film), 또는 망록구조(network structure)의 미세조직 형상을 포함하거나 방사성(spinnability)을 가지는 개질유황을 포함한다.

상기 방수재료는 개질유황으로 이루어진 것이 있고, 개질유황에 추가적인 점가제가 더 포함된 것으로 있다.

상기 개질유황은 유황 100 중량부, 그리고 디시클로펜타디엔계 개질제 1 내지 300 중량부를 포함하고, 135℃에서 압도가 3000 내지 200만 cP인 것으로 있다.
개시제(initiator)를 유황 100 중량부를 기준으로 0.1 내지 200 중량부로 더 포 함하는 것일 수 있다. 또한, 상온에서 액상일 수도 고상일 수도 있으나, 작업의 편의상 액상인 것이 바람직하다. 그러나, 기타 점가제나 도막 형성의 조건(예를 들어, 온도)에 따라서 고상의 개질유황을 액상의 방수제료로 적용될 수 있으므로, 상기 개질유황은 상온에서 액상인 것에 한정되지 않는다.

[400] 상기 개질유황은 상온 또는 135°C에서 방사성을 가지거나 미세조직 형상을 가지는 것일 수 있고, 이러한 특성을 가지는 경우에는 방수제료의 정화성, 염수분무저항성, 용접성(용접저항성), 작업편의성이 우수할 뿐만 아니라 접착성에 대해서 훨씬하게 향상된 물성을 가질 수 있다.

[401] 상기 개질유황에 대한 구체적인 설명은 상기한 개질유황에 대한 설명과 중복되므로 기재를 생략한다.

[402] 상기 방수제료는, 화학제, 보강제 및 이들의 조합을 더 포함하는 것일 수 있다.

[403] 상기 화학제는 방수제료의 점도를 높게 하거나 속성을 부여할 수 있는 것이 적용될 수 있으나, 이에 한정되는 것은 아니며, 상기 개질유황을 녹여거나 분산시킬 수 있는 것이라면 상기 화학제로 사용될 수 있다.

[404] 상기 화학제는, 예를 들어 약화해산, 암모니아(Ammonia), 알코올계 용매, 디-티르-부릴 폴리су프라이드(Di-tert-butyl polysulfide), 티르-도데실 폴리су프라이드(tert-Dodecyl polysulfide), 티르-노닐 폴리су프라이드(tert-Nonyl polysulfide), 아닐린(Aniline), 벤젠(Benzene), 디부틸 페탈레이트(Dibutyl phthalate), 2,2'-에틸렌빈이소프로포로늄 디브로마이드 (2,2'-Ethylenebis(isothiouronium dibromide), 디브로모에탄(Dibromoethane, 1,2-Dibromoethane), 아이오도폼(iodoform), 베타-나프톨(2-나프톨)(Beta-naphthol(2-naphthol)), 올리브 오일(Olive oil), 페놀(Phenol), 피리딘(Pyridine), 쿠크린(Quinoline), 디스ulf 드이클로르라이드(Disulfur dichloride), 툴루엔(Toluene), m-자이렌(m-xylene), p-자이렌(P-xylene), 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있고, 이를 포함하는 것일 수 있다.

[405] 상기 화학제는 용매와 함께 사용될 수 있고, 상기 용매는 물, 아민계 용매, 에스테르계 용매, 캐看계 용매, 지방족 또는 방향족 탄화수소계 용매, 에테르계 용매, 알코올계 용매, 알코올계 용매, 폴리올 용매, 아미드 용매, 슬픈 또는 슬폭사이드 용매, 아세테이트계 용매, 비수계 무기용매 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다.

[406] 상기 화학제는 상기 개질유황을 포함하는 방수제료의 점도가 1 내지 1000 cP가 되도록 하는 양으로 사용될 수 있으며, 상기 개질유황 100 중량부를 기준으로 화학제 1 내지 100 중량부가 사용될 수 있다.

[407] 상기 화학제로 인체나 생태계에 미해한 건환경 화학제가 사용되는 것이 바람직하다.

[408] 상기 보강제는 방수제료로 방수코팅이 형성되었을 때에 방수코팅막의 강도를
향상시킬 수 있는 첨가제를 의미하며, 예를 들면 미분말 규가, 규조트, 규희석, 짐도류, 유리종(chopped glass fiber), 염료, 안료, 알루미늄 살레이트(aluminum sulfate), 분유리, Ca(OH)₂, 산화 а연, 나프탈렌, Mg(OH)₂, CaCl₂, Al(OH)₃, 봉사, CaSO₄·2H₂O, Fe₂O₃, 제올리트, 탄소섬유, 취스커(whisker), Na₂SO₄, MgSO₄·7H₂O, 플라이에쉬, 아크릴 에틸렌, 에폭시, 라텍스, 탄소섬유 또는 석트, 강철섬유, 액상 무기질, 섬유질 총합제, 섬유상 입자, 박판상 입자 및 이들 조합으로 이루어진 구에서 선택된 어느 하나일 수 있다. 또한, 상기 보강제는 원료의 성분에 따라 분말형 또는 응상형이 될 수 있다.

상기 보강제를 더 포함하는 방수제료는, 방수코팅막의 강도를 더욱 향상시킬 수 있으며, 상기 방수제료의 시공편의성, 개질유항과의 환화성, 방수제료를 코팅할 구조체의 특성을 고려해서 보강제의 종류와 방수제료에 포함되는 함량이 달라질 수 있으나, 바람직하게 상기 보강제는 상기 개질유항 100중량부를 기준으로 1 내지 100중량부로 포함될 수 있다.

상기 방수제료는 상온분사형, 상온미장형, 가열분사형, 또는 가열미장형 방수제료일 수 있고, 경화식, 염수분무제형성, 용접식, 접착성 등의 특성이 뛰어나다. 상기 상온분사형은 상기 개질 유항 단독으로, 또는 상기 개질 유항에 상기 보강제를 가열하지 않고 혼합한 후에 분사기를 사용하여 분사하는 형식으로서, 회석제 또는 경화제를 포함하여 사용할 수 있고, 상온미장형은 도구 및 기계를 사용하여 도막 표면을 마감하는 형식인 것 외에는 상온분사형의 시공방법과 동일하다. 상기 가열분사형 및 가열미장형은 상기 개질 유항을 단독으로, 또는 상기 개질 유항에 상기 보강제를 혼합한 것을 가열하여 상기 개질 유항 또는 혼합물을 용융시킨 후에 각각 분사 및 미장하는 형식을 의미한다.

상기 개질유항 또는 상기 방수제료는 25°C에서 흡수할 수 있고, 상기 방수제료는, 상기 상온형이 25°C에서 점도가 1 내지 1,000 cP일 수 있고, 상기 가열형이 135°C에서 점도가 1 내지 10,000 cP일 수 있다.

본 발명의 다른 일 실시에 따른 방수제료의 제조방법은, 유황 100중량부, 그리고 디시클로펜타디엔을 개질체 1 내지 300중량부를 120°C 이상에서 용융 혼합하여 제1혼합물제조단계; 상기 제1혼합물을 120°C 이상에서 중합 반응시켜 제1반응물을 제조하는 제1중합반응단계; 그리고, 상기 제1반응물이 반응종료 시점에서 상기 제1반응물의 중합 반응을 종료시켜서 개질유항을 포함하는 방수제료를 제조하는 것인 반응완결단계;를 포함한다.

상기 반응종료 시점은 상기 제1반응물이 방사성(spinnability)를 가지는 시점과 고무화가 일어나는 시점 사이이다. 다만, 상기 제1반응물이 방사성을 가지는 시점보다 먼저 제1중합반응단계를 종료하게 되는 경우에는 추가적인 숙성단계를 더 거칠 수 있다. 상기 숙성단계에 대해서는 후술한다.

상기 방수제료에 대한 설명과 개질유항에 대한 설명은 위에서 한 설명과
중복되므로 그 기계를 생략한다.

상기 방수제료의 제조방법은 상기 반응완결단계 이후에 조성물혼합단계를 더 포함할 수 있다. 상기 조성물혼합단계는 상기 개질유황과 절가제를 혼합하는 단계를 의미한다. 상기 절가제는, 희석제, 보강제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것이 될 수 있다.

상기 절가제의 종류, 함량, 등의 구체적인 내용은 위에서 설명한 것과 그 내용이 중복되므로 기계를 생략한다.

또한, 상기 방수제료의 제조방법에 대한 설명 중에서 위에서 개질유황의 제조방법에 대한 설명과 중복되는 내용은 기계를 생략한다.

본 발명의 또 다른 일 실시예에 따른 방수재료의 제조방법은 유황 100 중량부, 디시클로페텐디엔계 개질제 1 내지 300 중량부, 및 개시제 0.1 내지 200 중량부를 포함하는 혼합물을 준비하는 준비단계; 상기 혼합물에 초음파를 조사하며 반응시켜 반응물을 제조하는 초음파처리단계; 그리고 상기 반응물을 40°C 이상의 온도에서 숙성시켜 개질유황을 포함하는 방수제료를 제조하는 숙성단계를 포함한다.

상기 방수제료에 대한 설명과 개질유황에 대한 설명은 위에서 한 설명과 중복되므로 그 기계를 생략한다.

상기 초음파 조사는 20 kHz 내지 1 MHz 영역의 초음파를 상기 반응물에 조사하는 것일 수 있다.

상기 초음파처리단계는 반응물의 온도가 120°C 이하인 조건에서 이루어질 수 있고, 40°C 이상의 조건에서 이루어질 수 있다.

또한, 상기 방수재료의 제조방법에 대한 설명 중에서 위에서 개질유황의 제조방법에 대한 설명과 중복되는 내용은 기계를 생략한다.

본 발명의 또 다른 일 실시예에 따른 방수코팅막의 제조방법은 상기 방수재료를 구조체에 분사하는 과정을 포함한다.

상기 구조체는 금속, 콘크리트와 같이 방수특성이 요구되는 표면을 가진 구조물을 의미하며, 방수효과를 필요로 하여 상기 방수코팅막을 표면에 형성할 수 있는 것이라면 상기 구조체에 해당한다. 상기 방수재료에 대한 구체적인 내용은 위에서 설명한 바와 같다.

본 발명의 또 다른 일 실시예에 따른 방수코팅막의 제조방법은 상기 방수재료의 제조방법을 이용하여 제조한 방수재료를 구조체에 분사하여 방수코팅막을 형성하는 과정을 포함한다.

상기 구조체는 금속, 콘크리트와 같이 방수특성이 요구되는 표면을 가진 구조물을 의미하며, 방수효과를 필요로 하여 상기 방수코팅막을 표면에 형성할 수 있는 것이라면 상기 구조체에 해당한다. 상기 방수재료에 대한 구체적인 내용은 위에서 설명한 바와 같다.
아스팔트 조성물과 그 제조방법

본 발명의 일 실시에 따라 아스팔트 조성물은 섬유상(fiber), 판상(film), 또는
망복구조(network structure)의 미세조직 형성을 포함하거나
방사성(spinnability)을 가지는 개질유황을 포함한다.

상기 아스팔트 조성물은 개질유황과 아스팔트를 포함하는 것일 수 있고,
여기에 과제를 더 포함하는 것일 수 있으며, 개질유황과 무기질제로를 혼합하여
페름 현상으로 형성하여 아스팔트 첨가제의 형태로 아스팔트 조성물에
포함되는 것일 수 있다.

상기 개질유황은 유황 100 중량부, 그리고 디시클로ペン타디엔계 개질제 1 내지
300 중량부를 포함하고, 135℃에서 점도가 3000 내지 200만 cP인 것일 수 있고,
개시제(initiator)를 유황 100 중량부를 기준으로 0.1 내지 200 중량부로 더
포함하는 것일 수 있다. 또한, 상온에서 액상일 수도 고상일 수도 있으나, 작업의
편의상 상온에서 액상인 것이 바람직하다. 그러나, 시공의 조건, 기타 첨가제의
적용 여부 등에 따라서 고상의 개질유황을 아스팔트 조성물에 포함될 수 있다.

상기 개질유황은 상온 또는 135℃에서 방사성을 가지거나 미세조직 형상을
가지는 것일 수 있고, 이러한 특성을 가지는 경우에는 아스팔트의
상온적안정성 뿐만 아니라, 합성강, 인장강도 등의 물성이 향상되고, 아스팔트
조성물의 혼화 시에 발생할 수 있는 점화현상, 타설시에 발생할 수 있는
함몰현상 등이 일어나지 않도록 할 수 있다. 또한, 아스팔트와 비교하여
개질유황은 다양 함유하여서 소성변형 저항성을 증가시켜서 도로포장 등
시공에 있어서 포장 파손 및 균열을 최소화할 수 있는 개질유황 아스팔트
조성물은 제공할 수 있다.

상기 개질유황에 대한 구체적인 설명은 상기한 개질유황에 대한 설명과
중복되므로 기재를 생략한다.

상기 아스팔트 조성물은 아스팔트 100 중량부를 기준으로, 개질유황을 30
중앙부 이상 포함할 수 있고, 30 내지 100 중량부로 포함할 수 있다.

상기 아스팔트 조성물은 아스팔트 100 중량부를 기준으로, 골재는 10 내지 70
중앙부로 포함할 수 있다.

상기 아스팔트는 스트레이트 야스팔트(straightrun asphalt), 회석 야스팔트 및
이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것일 수 있고, 상기 회석
야스팔트는 스트레이트 야스팔트를 파라핀 중류에, 방향족 유분, 나프테네 유분
및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 액체로 회석시킨 것일
수 있다.

상기 아스팔트는 스트레이트 야스팔트, 불료온 야스팔트(straight run 야스팔트
에 공기를 불어넣어 검은색이 중계하고, 점도를 높여 도로면에 잘
접착되도록 개선한 야스팔트), SBS(styrene butadiene styrene block copolymer)
개질 야스팔트(polymer modified asphalt)[SBS로 개질하여 온도 변화에 크게

좌우되지 않고 탄성 및 유연성을 유지할 수 있는 아스팔트], CRM 고무 아스팔트(rubberized asphalt)[고무로 개조화시켜서 고온 신도를 개선하여 연화점을 높인 아스팔트], 컷백(cutback) 아스팔트 등의 비전수성(용융성) 아스팔트일 수 있고, 유화 아스팔트[양이온계(RSC, MSC) 혹은 음이온계(RSA, MSA)를 사용하여 아스팔트를 유화시킨 아스팔트]일 수 있으나, 이에 제한되는 것은 아니다.

상기 개질유양을 상기 아스팔트에 적용하기 위해서는 비전수성인 개질 유양을 단독으로 또는 아스팔트에 일정량을 첨가, 혼합하여 적용할 수 있고, 상기 개질유양을 상기 유화 아스팔트에 적용하기 위해서 전수성 개질 유양을 적용하는 것일 수 있다.

이와 관련해서, 상기 아스팔트 조성물은, 기존의 아스팔트 조성물에서 일반 아스팔트를 부분적으로 개질유양으로 대체할 수 있다.

본 발명의 일 실신에 따르 개질유양이 아니라, 기존에 사용되는 개질유양을 아스팔트에 적용하는 경우, 아스팔트 조성물 내에 개질유양의 함량이 너무 적은 경우에는, 아스팔트의 소성변성 지향성 등의 성능이 떨어지기 때문에 일반 아스팔트와 성능이 떨어질 수 있고, 아스팔트 조성물 내에 개질유양의 함량이 일정 수준을 초과하는 경우에는 일반 콘크리트와 유사하게 강성이 큰 콘크리트 기둥을 나타낼 수 있으므로, 아스팔트로써 적합하지 않다.

그리나, 위에서 설명한 아스팔트 조성물에 포함되는 개질유양은, 아스팔트 100 중량부를 기준으로 개질유양 30 중량부 이상일 수 있다. 이는 본 발명에서 적응하고 있는 개질유양의 우수한 특성에 의한 것으로, 기존의 개질유양은 위에서 설명한 문제점을 인하여 아스팔트 100 중량부에 대해서 기존의 개질유양을 20 중량부 이하로만 사용이 가능하였다. 그러나, 본 발명의 일 실신에서 사용하는 개질유양은 방목형과 같은 미세구조를 포함하고 방사성을 발휘할 수 있는 고유한 특성이 있어서, 접착성과 탄성이 우수하고, 아스팔트 조성물에 아스팔트 100 중량부를 기준으로 30 중량부 이상으로 사용하여도 소성변성 지향성, 상분리 문제점 등이 나타나지 않으며, 아스팔트로서 기존의 제품과 동등 이상의 물성을 발휘할 수 있다.

상기 곱게로는 대표적으로 굴은 곱게(coarse aggregation) 및 진곱게(finely divided aggregates)가 사용될 수 있다. 곱게의 폼질 또는 임도는 포장의 성능에 영향을 주며, 산지에 따라 물리적 화학적 특성이 다르다고 알려져 있다.

상기 굴은 곱게는 2.5 mm(No. 8) 층에 남는 곱게를 의미하고, 잔곱게는 2.5 mm 층을 통과하고 0.08(No. 200) 층에 남는 곱게를 의미하는 것이 있다.

상기 곱게에 대한 임도 또는 폼질은 역정 포장용으로 사용하기 위한 굴은 곱게 및 잔곱게에 대해서 규정하고 있는 KS F 2357 규정에 따른다. KS F 2357 규정은 [역정 포장 혼합물용 곱게]에 대한 한국산업규격으로써 곱게의 폼질과 굴은 곱게와 잔 곱게의 임도에 대해서 규정하고 있다. KS F 2357 규정을 참조하면, 굴은 곱게는 부분 곱게(색석) 부분 슬래그, 부분 자갈 등일 수 있고, 잔곱게는
암석, 자갈 등을 개어서 얻어진 부수 모래(스크리니딩), 자연 모래, 또는 이들의 혼합물이다. 굵은 골재, 잔골재 모두 먼지, 검토, 실크, 유기물 등의 유해물질을 함유하지 않는 것이 바람직하다.

상기 골재 성분은 상기 아스팔트 조성물이 적용되는 구체적인 용도, 제조소, 골재의 산지와 성상 등에 따라 적절하게 선택되어 사용될 수 있다.

상기 아스팔트 조성물은 필리지를 더 포함하는 것이 유리하며, 상기 필리지를 아스팔트 100 중량부를 기준으로 1 내지 5 중량부로 포함할 수 있다.

상기 필리지는 석면, 포탈랜드 시멘트, 소석회, 플라이 아스, 회수 디스트, 제생 디스트, 보강재 및 이들의 조합으로 이루어진 군에서 선택된다 어느 하나일 수 있다. 상기 보강재는, 예를 들어 미분말 규사, 규조토, 규화석, 젤트로, 유리즙(chopped glass fiber), 염료, 안료, 알루미늄 설플레이트(aluminum sulfate), 풀유리, Ca(OH)₂, 산화 아연, 나프탈렌, Mg(OH)₂, CaCl₂, Al(OH)₃, 봉사, CaSO₄.2H₂O, Fe₂O₃, 세올라이트, 탄소섬유, 휘스커(whisker), Na₂SO₄, MgSO₄.7H₂O, 플라이아스, 아크릴 엑필름, 에폭시, 라텍스, 탄소섬유 또는 씽, 강철섬유, 액상 무기질, 섬유질 중전제, 섬유상 암자, 박면상 암자 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다. 또한, 상기 보강재는 원료의 성분에 따라 분말형 또는 액상질일 수 있다.

상기 아스팔트 조성물은 위치에 연급한 것 외에 아스팔트 조성물에 사용되는 점가재를 더 포함할 수 있고, 예를 들어 박리방지제, 변유량골 보강재, 동결 지연제, 재생용 점가재 등이 필요에 따라 더 포함될 수 있다.

위에서 설명한 아스팔트 조성물은, 절연확장과 함몰현상이 나타나지 않고, 소성변형 저항성을 증가시키고 흐름강도와 인장강도가 증가되어 외부 및 균열을 최소화할 수 있으며, PG test의 요건도 만족하는 아스팔트를 제조할 수 있다.

본 발명의 다른 기술적 사례에 따른 아스팔트 점가재는 개질유화과 골재를 포함한다. 상기 개질유화와 골재 등 무기질 재료를 포함하여 패브리트와 같은 형태로 제조하는 아스팔트 점가재는, 위치에 설명한 아스팔트 조성물의 특성을 그대로 가지면서 운반과 보관, 그리고 작업의 용이성을 더욱 향상시킬 수 있다.

상기 아스팔트 점가재에 포함되는 개질유화와 골재, 기타 점가재 등에 대한 자체한 설명은 모두 위에서 설명한 것과 동일하여 그 기재를 생략한다.

상기 아스팔트 점가재에서 상기 골재의 함량은 상기 개질유화 100 중량부를 기준으로 10 내지 70 중량부일 수 있고, 이러한 경우 사용되는 개질 유화에 대한 골재의 최대 충전량으로 하여 개질 유화 아스팔트 조성물의 치밀화로 인하여 강도가 향상되는 유리한 효과를 얻을 수 있다.

상기 아스팔트 점가재는 패브리트 형상인 것일 수 있고, 패브리트의 크기나 모양에는 제한이 없다. 상기 아스팔트 점가재를 패브리트 형태로 하는 경우에 따르지하게 상기 골재를 무기질물질이 적용될 수 있고, 상기 무기질물질은 구체적으로 미분말 규사, 규조토, 규회석, 젤트로, 유리즙 등일 수 있으나, 이에 한정되지 않는다.
[458] 상기 젤릿 형태를 제조하는 방법은 상기 개질 유황 제조 과정 중에 또는 제조된 개질 유황에 상기 무기질 분말을 혼합해서 형성하는 방식이며, 형성하는 방식은 상온으로 녹이되면의 속성기반 또는 구명방식을 이용하여 제조될 수 있다.

[459] 즉, 상기 개질 유황 100 중량부에 대하여 상기 무기질 분말을 1 내지 50 중량부를 혼합 성형하여 제작되는 방식으로서, 기존의 성형방식인 압출기 또는 프레스 성형 방식으로 제조될 수 있다.

[460] 본 발명의 또 다른 일 실시예에 따른 아스팔트 조성물의 제조방법은, 유황 100 중량부, 그리고 디시클로ペン타디엔계 개질제 1 내지 300 중량부를 120℃ 이상에서 용융 혼합하여 제1혼합물을 제조하는 제1혼합물제조단계; 상기 제1혼합물을 120℃ 이상에서 중합 반응시키며 제1반응물을 제조하는 제1중합반응단계; 상기 제1반응물이 반응종료 시점에 상기 제1반응물의 중합 반응을 종료시켜서 개질유황을 제조하는 것이 반응완결단계; 그리고 상기 개질유황과 골체를 혼합하여 젤릿을 제조하는 단계;를 포함한다.

[461] 상기 개질유황, 상기 개질유황 조성물 등에 대한 구체적인 설명은 위에서 설명한 내용과 중복되므로, 그 기재를 생략한다.

[462] 상기 개질유황을 제조하는 과정에 대한 구체적인 설명은 상기한 개질유황의 제조방법에서 설명한 내용과 중복되므로 기재를 생략한다.

[463]

[464] 본 발명의 또 다른 일 실시예에 따른 아스팔트 조성물의 제조방법은 유황 100 중량부, 디시클로펜타디엔계 개질제 1 내지 300 중량부, 및 개질제 0.1 내지 200 중량부를 포함하는 혼합물을 준비하는 준비단계; 상기 혼합물을 조제하며 반응시켜 반응물을 제조하는 조제반응처리단계; 그리고 상기 반응물을 40℃ 이상의 온도에서 속성시켜 개질유황을 포함하는 아스팔트 조성물을 제조하는 속성단계;를 포함한다.

[465] 상기 개질유황에 대한 설명, 아스팔트 조성물에 대한 설명 등은 위에서 설명한 것과 중복되므로 그 기재를 생략한다.

[466] 상기 개질유황을 제조하는 과정에 대한 구체적인 설명은 상기한 개질유황의 제조방법에서 설명한 내용과 중복되므로 기재를 생략한다.

[467] 위에서 설명한 두 가지 서로 다른 유형의 아스팔트 조성물의 제조방법에서, 아스팔트를 제외하고, 개질유황과 골체를 포함하여 젤릿과 같은 형태로 제조하면, 위에서 설명한 아스팔트 젤릿제제조자를 제조할 수 있다.

[468]

[469] 본 발명의 또 다른 일 실시예에 따른 아스팔트의 제조방법은 상기한 아스팔트 젤릿제제조자를 아스팔트와 혼합하여 아스팔트 조성물을 제조하는 과정을 포함한다.

[470] 본 발명의 또 다른 일 실시예에 따른 아스팔트의 제조방법은 상기한 아스팔트 조성물의 제조방법을 이용하여 제조한 아스팔트 조성물을 다양하여 아스팔트를 형성하는 과정을 포함한다.
발명의 효과

위에 설명한 개질유황은 접착성과 탄성성을 향상시켜 원료가 우수하고, 제조된 개질유황의 미세조직에 섬유상, 관상, 방목구조 등의 조직을 포함하거나 방사성을 가지는 것으로, 바수, 방청, 강도, 부착성, 탄성률 등이 향상하게 우수한 개질유황을 제공할 수 있다. 또한, 이의 제조방법을 제공하며, 연속식으로 적용가능한 제조방법 및 제조장치도 제공한다.

또한, 위에서 설명한 방청 또는 방수제료는 도포 직전의 가열 과정 없이 도포가 가능하여 작업성이 우수하면서도, 경화성, 염수분무저항성, 융적성 등의 특성이 우수하다. 나아가, 구조체와의 매우 강한 부착 강도를 확보하는 방청 또는 방수코팅막을 형성할 수 있으며, 구조체의 변형에도 방청 또는 방수코팅막이 유지되고, 방청 또는 방수코팅막의 건조도 수초 내지 수분의 빠른 시간 내에 이루어질 수 있다.

추가로, 위에서 설명한 아스팔트 조성물을 이용하여 제조한 아스팔트는, PG test를 함의한 수중의 물성을 가지며, 기존에는 개질유황을 다량 아스팔트와 혼합하였을 때 나타난 절화현상과 함몰현상은 최소화하였으며, 상온작업안정성, 횡강도, 인장강도 등이 향상된 아스팔트를 제공할 수 있다. 또한, 아스팔트에 개질유황을 다량 함유하도록 하여서, 소성변성 저항성을 증가시켜 도로 포장 등 시공에 있어서 피장 파손 및 균열을 최소화할 수 있다.

도면의 간단한 설명

도 1은 본 발명의 개질유황의 제조예를 중에서 제조에 2-5에 의하여 형성된 개질유황의 미세구조를 보여주는 주사현미경 사진이다.

도 2는 본 발명의 개질유황의 제조예를 중에서 제조에 3-1에 의하여 형성된 개질유황의 미세구조를 보여주는 주사현미경 사진이다.

도 3은 본 발명의 개질유황의 제조예를 중에서 제조에 3-2에 의하여 형성된 개질유황의 미세구조를 보여주는 주사현미경 사진이다.

도 4는 실험에 1의 비교에 1인 단체 유황(elemental sulfur)의 미세구조를
보여주는 주사현미경 사진이다.

도 5는 실험에 1의 비교에 2의 개질유형의 미세구조를 보여주는 주사현미경 사진이다.

도 6은 실험에 2의 샘플 2의 주사전자현미경 사진이다.

도 7은 실험에 2의 샘플 3의 주사전자현미경 사진이다.

도 8은 실험에 2의 샘플 1의 시차추가상형측정결과를 나타내는 그래프이다.

도 9는 실험에 2의 샘플 2의 시차추가상형측정결과를 나타내는 그래프이다.

도 10은 실험에 2의 샘플 3의 시차추가상형측정결과를 나타내는 그래프이다.

도 11은 본 반영의 실험에 3의 샘플들의 혈강도 측정 결과를 나타낸 그래프이다.

도 12는 본 반영의 일 실험에 따른 개질유형의 제조방법에 따라서 제1종류반응단계가까지 진행하고, 반응완료단계보다 먼저인 반응물이 노란색으로 변환한 단계에서 반응을 완결시킨 개질유형의 미세조직 사진(x650)이다.

도 13은 본 반영의 일 실험에 따른 개질유형의 제조방법에 따라서 제1종류반응단계가까지 진행하고, 본 반영의 반응완료단계보다 먼저인 반응물이 암갈색인 단계에서 반응을 완결시킨 개질유형의 미세조직 사진(x650)이다.

도 14는 본 반영의 일 실험에 따라 제조하고, 개질유형에 필름 구조의 미세조직 형상이 포함되어 있는 개질유형의 미세조직 사진(x650)이다.

도 15는 본 반영의 일 실험에 따라 제조하고, 개질유형에 필름 구조의 성유상 조직 형상이 포함되어 있는 개질유형의 미세조직 사진(x650)이다.

도 16은 본 반영의 일 실험에 따른 개질유형의 제조방법의 개념을 보여주는 개념도이다.

도 17은 본 반영의 일 실험에 따른 개질유형 제조장치의 개념도이다.

도 18은 실험에 5에서 내산 내알카리성 콘크리트 보수 보강용 개질유화조성물이 분사되고 있는 유리판의 사진이다.

도 19는 실험에 5에서 내산 내알카리성 콘크리트 보수 보강용 개질유화조성물이 분사되고 있는 철판의 사진이다.

도 20은 실험에 6에서 교면 도막 방수재료 조성물로 도막 방수 하기 전의 콘크리트 구조체를 보여주는 사진이다.

도 21은 실험에 6에서 교면 도막 방수재료 조성물로 1차 도포 미지어 도막 방수한 콘크리트 구조체를 보여주는 사진이다.

도 22는 실험에 6에서 아스팔트로 2차 포장한 콘크리트 구조체를 보여주는 사진이다.

도 23은 실험에 7에서 속크리트용 개질유화 조성물이 분사되기 시작할 때의 콘크리트 구조체의 사진이다.

도 24는 실험에 7에서 속크리트용 개질유화 조성물이 분사된 후의 콘크리트 구조체의 사진이다.
도 25는 상기 도 5와 동일한 실험에 1의 비교에 2의 개발유황의 미세구조를 보여주는 사전이다.

도 26은 실시에 1의 비교에 2에 속성공정을 더 거친 개발유황
생물(추가실시예)의 미세구조를 관찰한 사전이다.

도 27과 도 28은 용접 실험(실시예 9)의 실시에의 용접 전 및 후의 사전이다.

도 29와 도 30은 용접 실험(실시예 9)의 비교에의 용접 전 및 후의 사전이다.

도 31과 도 32는 용접 실험(실시예 10)의 실시에 1의 용접 전 및 후의 사전이다.

도 33과 도 34는 용접 실험(실시예 10)의 실시에 2의 용접 전 및 후의 사전이다.

도 35와 도 36은 용접 실험(실시예 8)의 비교에의 용접 전 및 후의 사전이다.

도 37은 실험에 12에서 실시에 3을 이용하여 절곡작업을 하기 전의 사전이다.

도 38은 실험에 12에서 실시에 3을 이용하여 절곡작업을 한 후의 사전이다.

도 39는 실험에 12에서 비교에 2를 이용하여 절곡작업을 하기 전의 사전이다.

도 40은 실험에 12에서 비교에 2를 이용하여 절곡작업을 한 후의 사전이다.

도 41은 본 발명의 제조에 3-1에 의하여 제조된 개발유황의
시차주사연령측정결과를 나타내는 그래프이다.

발명의 실시를 위한 형태

이하, 본 발명이 속하는 기술 분야에서 동상의 지식을 가진 자가 용이하게
실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히
설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며
여기에서 설명하는 실시예에 한정되지 않는다.

개발유황의 제조예 1

1) 제조예 1: 개시제를 사용하지 않은 개발유황의 제조

500 ml 용량의 3구 유리 반응기 내에서 공업용 유황 100 g을 140℃에서
액상으로 녹인 후에 디시 클로젠타디엔 (DCPD) 10 g을 투입하여 교반시켜
주었다. 상기 온도를 유지하면서 4시간 동안 중합반응을 시킨 후에, 유리 막대를
이용한 방사성 테스트를 하여 방사성이 발생하는 시점에서 반응을 종료시켜
제조예 1의 개질유황을 제조하였다.

반응중료시점은 방사성이 발생하는 시점으로서 이의 기준은 반응물에
유리봉을 넣었다가 빼는 과정에서 유리봉에 반응물 일부가 달라붙은 상태로 약
1cm 이상 실차될 길게 뻗어지는 현상이 관찰되는 시점을 기준하였으며, 이때의
개질유황의 점도는 10,000 cP 이상으로 되는 시점이다.

2) 제조예 2-1: 개시제로 1을 사용하는 개발유황의 제조

500 ml 용량의 3구 유리 반응기 내에서 공업용 유황 100 g을 140℃에서
액상으로 녹인 후에 디시 클로젠타디엔 (DCPD) 10 g을 투입하여 교반시켜
주었다. 이후 개시제인 디부틸-프탈레이트 (Dibutyl-phthalate) 5 g을 추가로
투입하여 1시간 내지 6시간 동안 종합반응을 시킨 후에, 방사성이 발생하는
시작에서 반응을 종료시켜 제조에 2-1의 개질유황을 제조하였다.

3) 제조에 2-2: 개시제로 1종을 사용하는 개질유황의 제조
디부틸-프탈레이트(Dibutyl-phthalate) 대신에
디메틸아닐린(NN-dimethylaniline)을 사용한 것을 제외하면 상기 제조에 2-1의
방법과 동일하게 제조에 2-2의 개질유황을 제조하였다.

4) 제조에 2-3: 개시제로 1종을 사용하는 개질유황의 제조
디부틸-프탈레이트(Dibutyl-phthalate) 대신에
트랜스-시나말데히드(Trans-cinnamaldehyde)을 사용한 것을 제외하면 상기
제조에 2-1의 방법과 동일하게 제조에 2-3의 개질유황을 제조하였다.

5) 제조에 2-4: 개시제로 1종을 사용하는 개질유황의 제조
디부틸-프탈레이트(Dibutyl-phthalate) 대신에
디아이오도메탄(Diiodomethane)을 사용한 것을 제외하면 상기 제조에 2-1의
방법과 동일하게 제조에 2-4의 개질유황을 제조하였다.

6) 제조에 2-5: 개시제로 1종을 사용하는 개질유황의 제조
디부틸-프탈레이트(Dibutyl-phthalate) 대신에 메타크릴아미드(Methacrylamide)
5 g을 사용한 것을 제외하면 상기 제조에 2-1의 방법과 동일하게 제조에 2-5의
개질유황을 제조하였다.

7) 제조에 3-1: 개시제 2종류를 사용하는 개질유황의 제조
500 ml 용량의 3구 유리 반응기 내에서 공업용 유황 100 g을 140℃에서
액상으로 녹인 후에 디시클로렌타디엔(DCPD) 5 g을 투입하여 교반시켜 주었다.
개시제로 트랜스 시나말데히드(Trans Cinnamaldehyde) 5 g과
디메틸아닐린(Dimethylaniline) 3 g을 추가로 투입하여 상기 온도를 유지하면서 1
시간 내지 6시간 동안 종합반응을 시작 후에, 방사성이 발생하는 시점에서
반응을 종료시켜 제조에 3-1의 개질유황을 제조하였다.

8) 제조에 3-2: 개시제 3종류를 사용하는 개질유황의 제조
500 ml 용량의 3구 유리 반응기 내에서 공업용 유황 100 g을 140℃에서
액상으로 녹인 후에 디시클로렌타디엔(DCPD) 5 g을 투입하여 교반시켜 주었다.
이후에 개시제로 트랜스 시나말데히드(Trans Cinnamaldehyde) 5 g, 개시제
디메틸아닐린(Dimethylaniline) 3 g 및 SBS(Sterylene butadiene styrene block
copolymer) 5 g을 추가로 투입하여 상기 온도를 유지하면서 1시간 내지 6시간
동안 종합반응을 시작 후에, 방사성이 발생하는 시점에서 반응을 종료시켜
제조에 3-2의 개질유황을 제조하였다.

[549]
[550] 9) 제조에 4: 개질유황을 개시제로 사용하는 개질유황의 제조
[551] 500 ml 용량의 3구 유리 반응기 내에서 공업용 유황 100 g을 140°C에서
액상으로 녹인 후에 디시클로로판타디엔(DCPD) 10 g을 투입하여 교반시켜
주었다. 이 후에 미리 만들어놓은 개질유황(유황 100 g, 디시클로로판타디엔계
개질제 125 g으로 제조) 5 g을 개시제로 추가로 투입하여 1시간 내지 6시간 동안
중합반응을 시킨 후에, 방사성이 발생하는 시점에서 반응을 종료시켜 제조에
4의 개질유황을 제조하였다.

[552]
[553] 10) 제조에 5: 수성공정을 사용하는 개질유황의 제조
[554] 500 ml 용량의 3구 유리 반응기 내에서 공업용 유황 100 g을 140°C에서
액상으로 녹인 후에 디시클로로판타디엔(DCPD) 20 g을 혼합한 혼합물을 교반시켜
주었다. 이 후에 개시제로 디메틸아닐린(Dimethyliniline) 5 g과
모르폴린(Morpholine) 80 g을 추가로 투입하여 약 60분 동안 중합반응을 시켜서
혼합물 내에 전구체가 생성된 이후에 40°C 숙성온도에서 교반하지 않고
반응(숙성)을 시켜서 용도별로 사용되는 개질유황의 중합도에 도달한 후에
반응을 종료시켜 제조에 5의 개질유황을 제조하였다.

[555]
[556] 11) 제조에 6: 수성공정을 사용하는 개질유황의 제조
[557] 500 ml 용량의 3구 유리 반응기 내에서 공업용 유황 100 g을 140°C에서
액상으로 녹인 후에 디시클로로판타디엔(DCPD) 20 g을 투입한 혼합물을 교반시켜
주었다. 이 후에 미리 만들어놓은 개질유황(유황 100 g, 디시클로로판타디엔계
개질제 125 g으로 제조) 40 g을 개시제로 잔기 혼합물을 추가로 투입하여 약 30분
동안 중합반응을 시켜서 전구체가 생성된 80°C 숙성온도에서 교반하지 않고
반응을 시켜서 원하는 용도별로 사용되는 개질유황의 중합도에 도달한 후에
반응을 종료시켜 제조에 6의 개질유황을 제조하였다.

[558]
[559] 12) 제조에 7-1: 소닉 초음파 방식을 사용하는 개질유황의 제조
[560] 500 ml 용량의 유리 반응기 내에서 공업용 유황(단체 유황을 분말 상태) 100 g을
액상 형태의 DCPD 100 g과 NN-디메틸아닐린(NN-dimethyliniline) 1 g을 혼합한
후에 가열하지 않고 상온에서 소닉장치를 사용하여 반응시켰다. 소닉 고압
에너지에 의하여 발생하는 열에 의해 반응물 온도는 80 내지 90°C까지 상승되며
2 내지 7시간 동안 반응을 진행시켰다. 개질유황 반응물에 전구체가 생성된 후에
60 내지 120°C 숙성온도에서 교반하지 않고 반응을 시켜서 용도별로 사용되는
개질유황의 중합도에 도달한 후에 반응을 종료시켜 제조에 7-1의 개질유황을
제조하였다.

[561] 상기에서 사용한 소닉 초음파 장비로는 Sonics Inc. 회사의 Ultrasonicator (모델
VCX 750W)을 사용하였으며, 초음파를 발생시키는 방식은 3초 동안 펄스를 발생시킨 후 1초 동안 펄스 발생을 멈추는 방식을 사용하였다.

또한 상기 개질유황 제조에는 물을 사용하지 않은 상태에서 소닉을 조사한 것이다.

13) 제조에 7-2: 소닉 초음파 방식을 사용하는 개질유황의 제조
500 ml 용량의 3구 유리 반응기 내에서 공업용 유황 100 g을 140℃에서 액상으로 녹인 후에 디시클로펜타디엔(DCPD) 10 g과 디아이오도메탄(Diodomethane) 5 g을 투입한 후에 소닉장치를 사용하여 반응시켰다. 이 후의 공정은 상기 제조에 7-1과 동일하게 하여 제조에 7-2의 개질유황을 제조하였다.

실험에 1: 개질유황의 물성측정
1) 주사전자현미경 사진(SEM Image)을 이용한 개질유황의 미세구조분석
개질유황의 제조에 2-5, 제조에 3-1, 및 제조에 3-2의 미세구조 사진을 측정하여 각각 도 1 내지 도 3에 나타내었고, 실험에 1의 비교에 1로 단체유황(elemental sulfur)의 미세구조 사진을, 비교에 2로 미국식 개질유황(유황 100 증량부와 디시클로펜타디엔계 계질제 5 증량부를 이용하여 미국등록특허 제4,311,826호에 따라서 제조한 개질유황) (이하, 미국 개질유황이라는 약칭과 혼용함)의 미세구조 사진을 측정하여 각각 도 4 및 5에 나타내었다.

상기 도 1 내지 5를 참조하면, 비교에 2의 개질유황과 단체 유황에서는 전혀 나타나지 않은 그물구조의 크복형 형상들이 본 방식으로 제조된 개질유황들에서는 공통적으로 나타나고 있음을 확인할 수 있었다.

전술한 바와 같이 본 발명의 특정한 속성단계는 개질유황의 중합도를 서서히 증가시키면서 취성을 줄여주고 탄성과 접착성을 증가시켜 주고 이로 인해서 중독적으로는 제료 자체의 강도 물성이 향상되는 결과를 가져오는 것으로 생각된다.

따라서, 본 방식으로 제조되는 개질유황이 선행 방식으로 제조되는 개질유황에 비하여 용도 별로 최종 제품으로 제작하기 위하여 추가적으로 사용되는 스트레이트 아스팔트, 규격분말 콘크리트 등과 같은 동일한 재료들을 혼합할 경우에 선행 방식에 비하여 상대적으로 우수한 특성을 발휘할 것으로 생각된다.

실험에 2: 전구체 형성 시기와 전구체의 특성 관찰
속성단계를 이용하여 개질유황을 제조하기 위하여는 숙성단계를 적응하기 전상태인 제1반응물 또는 반응물 내에 전구체가 형성되는 것이 바람직하다. 이 전구체의 적절한 생성 시기와 특성을 확인하기 위하여 하기 실험을 하였다.

단체유황(elemental sulfur)인 실험에 2의 샘플 1과 디시클로펜타디엔계 계질제 20 증량부와 유황 100 증량부를 혼합하여 140℃에서 10분 동안 반응시킨 샘플
2와 샘플 2와 동일한 조건으로 반응시키었으나, 반응시간을 10분이 아닌 30분 반응한 결과를 샘플 3으로 준비하였다.

[577] 샘플 2와 샘플 3의 주사전자현미경 사진을 도 6 및 7에, 각각의 시차주사 열량(Differential Scanning Calorimetry; DSC)을 측정한 결과를 도 8 내지 10에 나타내었다. 샘플 1의 주사전자현미경 사진은 도 4에 나타낸 것과 같다.

[578] 상기 도 4, 6 및 7을 참조하면, 개질유황의 혼합에 사용된 DCPD의 함량에 따라서 개질유황의 전구체 형성 시간은 차이가 있을 수 있으나, DCPD 20%의 경우에는의 SEM image를 관찰한 결과, 중합반응 10분 후에는 개질유황의 독특한 형상인 연질 상이 거의 없이 유황 결정임자만 관찰되었으나 중합반응 30분 후부터는 고무상 같은 연질의 결정상들이 다수 관찰되었다. 또한, DSC 결과를 보여주는 도 8 내지 10을 참조하면, 중합반응 10분 후에서는 전구체 형성 시 나타나는 흡열 및 반열의 특징이 거의 나타나지 않고 단체 유황(elemental sulfur) peak 과 비슷한 형상을 보이고 있으나, 중합반응 30분 후부터는 흡열 구간과 반열구간이 뚜렷하게 나타나서 다른 물성을 보여주는 것으로 중합반응에 의하여 화학적인 변화가 나타난 것으로 판단된다. 이에, 상기의 SEM image 결과와 DSC 결과에서의 일치하는 분석 결과를 바탕으로 특정한 시점에서 숙성공정으로 진행하여도 반응이 계속 일어날 수 있는 전구체가 형성된다는 점을 확인하였고, 위의 1. 제조에에서는 전구체 생성 시기를 30분으로 하여 실험이하였다.

[579]

[580] 실험 3. 숙성 방식을 적용한 개질유황 결합제(binder) 혼강도 결과

[581] 본 실험의 하나의 특징인 숙성단계를 이용한 방식에 대한 물성 항상 효과를 분석하기 위하여, 선행방식으로 제조되는 유황과 DCPD 조성비의 개질유황을 사용하여 동일하게 합강도 공시체를 제작하여 같은 조건에서 함강도를 측정하였다.

[582] 실험 3에서 샘플 1로 사용한 개질유황은, 중합 반응 방식만으로 제작한 개질유황이고, 샘플 2는 상기 샘플 1에 숙성방식을 더 적용한 결과이다. 즉, 상기 샘플 1의 개질유황을 120℃ 숙성로로 이동시키서 교반작업을 하지 않고 단순히 가온만 유지시켜 주는 조건에서 2시간 내지 8시간 동안 숙성을 시켜서 제작한 경우를 샘플 2로 하였다.

[583] 각 샘플들의 조성비는 유황 100 중량부에 대하여 디시클로펜타디엔계 결합제(DCPD)의 첨가량을 각각 1, 5, 10, 20 중량부의 4 종류 조성비로 하였으며, 중합 온도는 모든 경우에서 140℃ 동일하게 하였으며, 중합 반응 종료 기준은 개질유황에서 방사성이 발생되기 직전에서 종료시켰다.

[584] 상기의 중합 반응 종료 시기(방사성이 발생되는 시점)은 반응을 계속 진행시키면 개질유황이 고무화로 전이되는 시점으로서, 반응기에 순상은 주지 않으면서 배치식으로 교반과 함께 반응을 시킬 수 있는 최대 반응시간을 의미하며, 유황 100 중량부를 기준으로 DCPD 1 중량부 사용한 경우는 7시간,
DCPD 5 중량부를 사용한 경우에는 5시간, DCPD 10 중량부를 사용한 경우는 2시간, DCPD 20 중량부를 사용한 경우는 1시간 동안 반응시킨 후 반응을 종료시켰다.

상기 반응 종료 시 개질유항의 점도는 약 10,000 cP 상태이며, 강도 측정기에서 휘강도 측정이 가능한 시기이며 이 시기를 지나치면 개질유항의 탄성이 증가하여 강도 측정이 불가능할 수 있다.

반응종료된 개질유항을 즉시 가로 5, 세로 5, 길이 50 mm의 직사각형 휘강도 몰드 속으로 쏙아 부은 후에 상온에서 자연 냉각시켜 고화되는 방식으로 휘강도 공시체 샘플들을 제작하여 이에 대한 물성결과를 하기 표 1과 동 11에 나타내었다.

표 1

<table>
<thead>
<tr>
<th>DCPD 함량(유항 100 중량부 기준)</th>
<th>1중량부</th>
<th>5중량부</th>
<th>10중량부</th>
<th>20중량부</th>
</tr>
</thead>
<tbody>
<tr>
<td>샘플 1의 휘강도(kgf)</td>
<td>1.3</td>
<td>1.7</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>샘플 2의 휘강도(kgf)</td>
<td>2.2</td>
<td>5.4</td>
<td>5.7</td>
<td>10.5</td>
</tr>
</tbody>
</table>

위의 실험에 3에서, 개질유항 결합제(바인더) 만의 고유 특성을 비교하기 위하여 잔물제 같은 것을 혼합하지 않고 개질유항을 단독으로 사용하였으며, 휘강도 측정은 만능시험기(Instron 회사 모델 4465)로 측정하였으며, 측정 조건은 road: 1KN, speed: 0.5mm/sec 이었다.

상기 표 1 및 11을 참고하면, 샘플 1과 비교하여 샘플 2의 경우가 상대적으로 개질유항의 휘강도 특성이 현저하게 향상된 것을 확인할 수 있고, 특히 DCPD의 함량의 비율이 늘어날수록 그 차이는 현저하게 나타났다.

상기에서 언급한 바와 같이 개질유항 자체의 고유 물성을 비교하기 위하여 잔물제 같은 충진제(pobl)를 사용하지 않고 개질유항 단독으로 제작한 공시체이므로 일반적인 개질유항 콘크리트의 휘강도 물성 값 보다 실시에 및 비교에 결과가 적게 나타났으나 동일한 개질유항을 사용하여 수성방식을 한 경우와 안한 경우의 비교는 동일한 제작방식과 측정방식을 적용한 결과이다.

전술한 바와 같이 본 방법의 특징인 수성 방식은 개질유항의 중합도를 서서히 증가시키면서 취득을 줄여주고 탄성과 접착성을 증가시켜 주고 이로 인해서 중극적으로는 강도 물성이 향상되는 결과를 나타내는 것으로 판단된다.

따라서 수성 방식으로 제조된 개질유항은 수성 방식을 적용하지 않은 경우와 비교하여 상대적으로 우수한 특성을 발휘할 수 있음을 확인할 수 있었다.

실험 4. 개시제를 사용한 개질유항 결합제(binder) 휘강도 결과

개시제를 사용하여 제조한 개질유항의 물성을 분석하기 위하여, 실험 1에서의
비교에 2의 횡강도 결과와 실험에 2의 샘플 2의 횡강도 결과, 제조에 2-3에서 제조된 개질유항을 각각 사용하여 횡강도 공식체를 제작하여 측정한 결과를 하기 표 2에 나타내었다.

<table>
<thead>
<tr>
<th>[596] 표 2 [Table 2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCPD 함량 (유량 100 중량부 기준)</td>
</tr>
<tr>
<td>실험에 1의 비교에 2</td>
</tr>
<tr>
<td>실험에 2의 샘플 2(숙성방식 적용)</td>
</tr>
<tr>
<td>제조에 2-3(개시제 사용, 숙성방식 적용)</td>
</tr>
</tbody>
</table>

[597] 상기 표 2의 결과에서 알 수 있는 바와 같이, 숙성 방식을 적용한 실험에 2의 샘플 2의 경우에는 실험에 1의 비교에 2에 대해서 DCPD 함량에 관계없이 대략 2 내지 3배 정도의 강도 향상이 나타났으며, 제조에 2-3의 경우도 월등하게 향상된 결과를 나타내었다.

[598] 개질유항의 제조에 2

[600] 1) 제조에 10: 개시제를 사용하지 않은 개질유항의 제조

[601] 유항 100 g을 140℃에서 액상으로 녹이고, 디시클로렌타디엔계 개질체를 20 내지 500 g 투입하였다. 상기 온도를 유지하면서 중합반응을 시작하고, 방사성이 발생하는 시점에 반응을 종료시켜 제조에 10의 개질유항을 제조하였다. 상기 방사성이 발생하는 시점은 유리 막대로 실험하였다.

[602] 2) 제조에 20: 개시제를 사용하는 개질유항의 제조

[604] 유항 100 g을 140℃에서 액상으로 녹이고, 디시클로렌타디엔계 개질체를 20 내지 500 g 투입하고, 미리 만들어놓은 개질유항(유량 100 g, 디시클로렌타디엔계 개질체 125 g으로 제조)을 개시제로 사용하여 반응을 계속하였으며, 방사성이 발생하는 시점에 중합반응을 종료하여 제조에 20의 개질유항을 제조하였다.

[605] 실험에 5: 내산 내알칼리성이 요구되는 콘크리트 수조 표면 보수 보강 공사용 분사 및 미장 작업 실험

[607] 상기 제조에 2-1의 개질유항에 용매를 사용하지 않고 약 120℃에서 가열하여
용융한 개질유황 100 중량부에 0.5 내지 1.2 mm 임경의 규사 50 중량부를 혼합
분산시킨내산 네일칼리성이 요구되는 콘크리트 수조 표면 보수 보강 공사용
조성물을 콘크리트 표면보다 더 매끈한 표면인, 표면 거칠기가 거의 없는 유리판
및 철판에 동시에 분사하였다.

[608] 분사에는 시중에서 구입한 시멘트 모르타르 방식용 모르타르 건을 사용하여
유리판에 분사한 모습과 철판에 분사한 모습을 도 18 및 19에 나타내었다.

[609] 상기 도 18 및 19을 참조하면, 본 발명의 실시예들에 의해서 제조되는 개질유황
혼합물은, 이미 형성되어 있는 콘크리트 구조체의 보수 작업 시 분사 후 수 초
이내에 급속하게 건고한 상태로 경화가 일어나서 구조체의 균열보수, 방수 및
방청 성능을 향상시킬 수 있다는 점을 확인할 수 있었고, 콘크리트 표면보다
표면 거칠기가 상당히 더 작은 매끈한 표면인 유리판 및 철판에도 접착이 잘
되는 것으로 보아 콘크리트와의 접착력도 뛰어나다는 점을 확인할 수 있었다.

[610] 또한, 분사 방식이 아닌 미장 작업은 홀손 같은 도구를 사용하여 5 에서 20 mm
두께로 작업하였고, 미장 작업의 경우에는 상온에서 작업을 해야 하기 때문에
상온에서 액상 형태를 유지할 수 있는 개질유황의 제조에 1의 11) 제조에 6 의
개질유황을 상기 두기 접료와 혼합한 조성을 사용하였으며, 건고한 상태로
경화가 일어나서 구조체의 균열보수, 방수 및 방청 성능을 향상시킬 수 있다는
점은 확인할 수 있었다는 점을 확인할 수 있었다.

[611] 실험에 6: 교면 도막 방수재용 분사 및 미장 작업 실험

[613] 상기 제조에 2의 개질유황용 용매를 사용하지 않고 약 120℃에서 가열하여
용융한 젤화 혹은 액상화 시킨 개질유황 100 중량부에 0.5 내지 1.2 mm 임경의
규사 50 중량부를 혼합 분산시킨 교면용 도막 방수재용 조성물을 1차로
콘크리트에 미장하여 경화시켰다. 경화된 콘크리트 구조체에 2차로 아스팔트를
나짐하여 경화시켰다.

[614] 교면 공사의 경우 요구되는 도막 두께가 두꺼워, 분사 방식으로는 요구하는
도막 두께를 충족시키기 어려우므로 미장 방식을 사용하였고, 교면용 도막
방수재는 콘크리트 구조체와 아스팔트 구조체 사이에서 방수재로서 역할을
해야하므로 콘크리트 및 아스팔트에 대하여 실험하였다.

[615] 도막 방수재를 하기 전의 콘크리트 구조체 모습, 1차로 교면용 도막 방수재용
조성물로 도막 방수를 한 후의 모습, 그리고 2차로 아스팔트를 미장하여 포장된
모습을 도 20 내지 22에 나타내었다.

[616] 상기 도 20 내지 22를 참조하면, 본 발명의 실시예들에 의해서 제조되는
개질유황 혼합물은 이미 형성되어 있는 콘크리트 또는 아스팔트 구조체의
교면용 도막 방수 작업 시, 상기 개질유황 혼합물을 분사 후 표면을 평탄하게
미장 작업을 하여 완료하였으며 교면용 도막 방수재로 적용될 수 있음을 확인할
수 있었다.
실험에 7: 솛크리트 조성물 분사 실험

상기 제조에 2-2의 개질유황에 용해를 사용하지 않고 약 120°C에서 가열하여 용한 개질유황 100 중량부에 0.5 내지 1.2 mm 임의의 구사 50 중량부와 유탄 1 중량부를 혼합 분산시킨 솛크리트 조성물을 콘크리트 표면에 분사하였다.

분사는 시중에서 구입한 시멘트 모르타 방식용 모르타 그물을 사용하여 분사하기 시작한 모습과 분사 후의 모습을 도 23 및 24에 나타내었다.

상기 도 23 및 24를 참조하면, 본 분명의 실시에 있어서 제조되는 개질유황 혼합물은 이미 형성되어 있는 콘크리트 구조체의 보수 작업시 분사 후 수조 이내에 급속하게 건조한 상태로 경화가 일어나서 구조체의 균열보수, 가수 및 방정 성능을 향상시킬 수 있다는 점을 확인할 수 있었다.

상기 솛크리트 조성물은, 본 분명의 방용종료 시점과 수행 방식을 사용하여 점도 또는 레오르지 특성을 등을 차별화 시키는 방법으로 매우 빨른 경화 시간, 리바운드율 감소시킬 수 있는 강한 부착력 및 탄성력, 고강도 등을 발휘할 수 있는 효과가 있어서 기존의 방식보다 작업성을 현저하게 높일 수 있는 장점이 있다.

추가설명: 기존의 방법으로 합성한 개질유황이 숙성공정을 거칠 경우 효과
반응종료 시점의 차이에 따라서 중요한 개질유황의 미세구조와 같은 특성이 어떻게 변화되는지를 확인하기 위하여, 선행특허의 방법으로 제조한 비교의 샘플에 본 분명의 숙성공정을 거치도록 하여서 추가설명에의 샘플로 하여 미세구조를 관찰하였다.

숙성공정 전후의 주사전자현미경 사진을 각각 도 25 및 도 26에 나타내었다. 상기 숙성공정은 상기 개질유황의 실시에 1의 비교에 2에서 미국방식으로 합성한 개질유황을 이용하여 120°C의 응용시간 후에 방사성이 생기는 시간까지 숙성을 더 진행시키는 과정으로 이루어졌다.

상기 도 25 및 도 26의 사진을 참조하면, 방사성이 나타나기 전의 시점에 개질유황의 중합반응을 중단한 비교에는, 반응이 종료된 상태에서 진갈색으로 중합도도 높고 상온에서 경화된 후에 육안으로 관찰하였을 때에 표면이 깨끗하고 미반응의 입자가 보이지 않았으나, 도 25에서의 같이 약 1000배로 확대하면, 1 내지 2 um 크기의 유황 입자가 표면에 다량 존재하는 것이 관찰되었다. 또한 약 40 um의 비교적 큰 크기의 미반응 입자가도 관찰되었다.

반면에, 숙성공정을 거친 추가설명에의 샘플의 표면 미세 구조를 관찰한 SEM 사진의 도 26의 사진을 참조하면, 미반응 유황입자가 거의 보이지 않는 깨끗한 형태를 보여주고 있으며, 이는 방사성이 나타나는 단계까지 반응이 진행하여 유황과 디시클로렌타디에게 개질제의 반응이 충분하게 이루어졌기 때문인 것으로 생각된다.

실험에 8: 방청코팅막의 성능 평가
[631] 1) 성능 평가의 기준

[632] 개질 유형 도포시험 물질은 다음과 같은 방법으로 측정하였다.

[633] 부착강도: DeFelsko Corporation의 PosiTector ATA 모델을 이용한 Pull-off test
방식으로 철판 모래에서 도막이 떨어지는 순간의 응력을 측정하는 방식으로서
철판과 개질 유형의 계면 접합 특성을 평가하였다.

[634] 스크래치 지향성: 도포된 도막의 표면을 다이아몬드 펜을 사용하여 바둑판
모양처럼 서로 교차하는 방식으로 금여 도막이 박리되는 정도를 용안 및 optical
microscope를 이용하여 확인하였다.

[635] 다이아몬드 펜으로 도막을 금을 때 한 방향으로 금는 경우보다 바둑판
모양으로 교차시켜서 금을 경우, 교차되는 지점에서의 박막 지향성이
상대적으로 더 강해야만 박리가 일어나지 않기 때문에, 박막의 스크래치
지향성을 판단하는데 정확하므로, 교차 지점에서 박막이 떨어져 나오지 않는
경우를 경우를 합격, 떨어져 나오는 경우를 불합격으로 평가하였다.

[636] 절곡작업 후 시편의 총 약물: 2×10cm의 철판 위에 도포된 박막 시험체의 양
모서리를 펜치(프라이어) 2기를 사용하여 단단히 합은 상태에서 원형 형태가
되도록 뒤틀리게 한 후에 도막과 철판의 접착 상태를 확인한다. 용안으로
판찰하여 접착이 떨어진 것은 상태인 경우를 합격, 박막이 떨어져 나오거나
일부라도 떨어진 경우에는 불합격으로 평가하였다.

[637] 염수분무 시험: KS D 9502에 의거하여, (5±1)% NaCl 수용액에 철판에 도포된
시험체를 장착한 침실 경사 시간 후 35±2℃의 온도에서 3일간 방치한 후 도막의 접착
상태 및 부식 정도를 확인하였다. 부식의 정도를 용안으로 판찰하여 부식된
부분이 전혀 없는 경우를 합격, 그렇지 않은 경우를 불합격으로 평가하였다.

[638] 경화 시간: 개질 유형이 도포된 후 도막이 경화되는 시간을 의미하며, 그 기준은
순가락으로 도막 표면을 문지를 때에 손에 묻어나지 않고 강하게 부착되어 있는
상태에 이른 시간을 평가하였다.

[639] 분사 가능한 최저 도막 두께: 동일한 조건(분사기 종류, 분사 거리, 공기압력량 등)
으로 분사할 때에 가능한 도막의 최저 두께를 측정하였다.

[640] 2) 비교에 1 및 비교에 2

[641] 시중에서 구입한 수성용 방청제(동원크 제조)를 상온에서 가열하지 않고 철판
피도막체에 분사한 도막을 비교에 1, 미국 개질유형을 약 120℃에서 가열하여
용융시킨 개질 유형은 분사한 개질 유형 도막을 비교에 2로 하여 부착강도,
스크래치 지향성, 접착시험, 염수시험, 경화시간, 분사 가능한 최저 도막 두께에
대하여 평가하였고, 그 결과를 표 3에 나타내었다.

[642] 3) 실험에 1 및 실험에 2, 가열하지 않고 분사한 개질 유형 도막

[643] 상기 제조에 2-1의 개질 유형을 이황화탄소 용매에 용해한 개질 유형 혼합물을
상온에서 가열하지 않고 분사한 개질 유형 도막을 실험에 1로 하였고, 상기
제조에 3-1의 개질 유항을 이황화단소 용매에 용해한 개질 유항 혼합물을 상온에서 가열하지 않고 분사한 개질 유항 도막을 실시에 2로 하였으며, 이들의 물성을 상기 비교에 1 내지 2와 동일하게 측정하여 하기 표 3에 나타내였다.

4) 실시에 3 내지 실시에 4. 가열하여 분사한 개질 유항 도막

상기 제조에 2-2의 개질 유항에 용매를 사용하지 않고 개질 유항을 약 120℃에서 가열하여 용융시킨 개질 유항을 분사한 개질 유항 도막을 실시에 3으로 하였고, 상기 제조에 3-1의 개질 유항에 용매를 사용하지 않고 개질 유항을 약 120℃에서 가열하여 용융시킨 개질 유항을 분사한 개질 유항 도막을 실시에 4로 하였으며, 이들의 물성을 상기 비교에 1 내지 2와 동일하게 측정하여 하기 표 3에 나타내었다.

5) 물성측정결과

표 3

<table>
<thead>
<tr>
<th></th>
<th>부착강도(MPa)</th>
<th>스크래치 자향성</th>
<th>접착력</th>
<th>염수시험(KSD 9502)</th>
<th>정화 시간</th>
<th>분사 가능한 최저 도막 두께</th>
</tr>
</thead>
<tbody>
<tr>
<td>비교에 1수성용 방청제를 가열하지 않고 분사</td>
<td>1.14</td>
<td>합격</td>
<td>합격</td>
<td>합격</td>
<td>1일 이상</td>
<td>약 3 mm 이하</td>
</tr>
<tr>
<td>비교에 2</td>
<td>0.53</td>
<td>불량</td>
<td>불량</td>
<td>합격</td>
<td>수분이내</td>
<td>약 3 mm 이하</td>
</tr>
<tr>
<td>비교에 2</td>
<td>1.07</td>
<td>합격</td>
<td>합격</td>
<td>합격</td>
<td>수분이내</td>
<td>약 0.1 mm 이하</td>
</tr>
<tr>
<td>비교에 2</td>
<td>1.17</td>
<td>합격</td>
<td>합격</td>
<td>합격</td>
<td>수분이내</td>
<td>약 0.1 mm 이하</td>
</tr>
<tr>
<td>비교에 3</td>
<td>1.5</td>
<td>합격</td>
<td>합격</td>
<td>합격</td>
<td>수분이내</td>
<td>약 3 mm 이하</td>
</tr>
<tr>
<td>비교에 4</td>
<td>1.38</td>
<td>합격</td>
<td>합격</td>
<td>합격</td>
<td>수분이내</td>
<td>약 3 mm 이하</td>
</tr>
</tbody>
</table>

비교에 1로 적용한 시중에서 구입한 수성용 방청제는 철강엽계에서 범용적으로 사용되고 있는 기존 제품으로서, 정화 시간이 늦은 단점을
제외하고는 모든 항목에서 이미 일부 부분 감준된 효과를 가지기 때문에, 비교에 1의 결과를 기준으로 하여 다른 비교예와 실험에에 의한 도막의 스크래치 지향성, 절곡 작업 등을 시험하였다.

방청제를 도포한 철강 제품의 경우 다시 절단, 절곡, 빗팅, 불등 및 용접 등의 재가공 작업을 펼치 해야 되므로 재가공 작업 시 충격에 견딜 수 있는 상기 물성 항목들에게 적합해야만 한다.

6) 부착강도, 스크래치 지향성, 절곡작업 및 염수시험
부착강도 물성 결과에서는, 가열해서 분사한 실시에 3과 실시에 4 경우에서 수용성 방청제 보다 향상된 부착력을 나타냈으며, 가열하지 않고 분사한 실시에 1과 실시에 2 경우에서 동등 이하의 동등한 정도의 부착력을 나타냈으며 미국방식의 비교에 2의 경우에는 부착력이 제일 약하였다.

스 크래치 지향성 및 절곡작업 후 시편 웜은 여부 물성 결과에서는 미국방식의 비교에 2의 경우에서도만 불합격이 되었으며 나머지 비교에 및 실시에 결과에서는 모두 합격된 물성을 나타내었다.

염수문무 지향성 시험의 경우에서는 모든 시험체가 합격하였는데, 단체 유황의 경우에서는 염수시험을 통과하지 못하였는데 이는 수분이 존재하는 환경에서는 유황과 접이 반응하여 녹이 발생되거나 개질 시기에 개질 유황의 경우에서는 근본적으로 내화성이 매우 강하므로 당연한 물성 결과이다.

7) 경화 시간 및 분사 가능한 최저 도막 두께 평가
경화 시간 물성 결과에서는 수용성 방청제가 1일 경과 후에도 상온에서는 매우 느리게 경화되었으며, 미국 방식 비교에 2와 가열하여 분사시킨 실시에 3과 실시에 4에서 약 5분 이내에서 경화되었으나, 용메를 사용하여 가열하지 않고 상온에서 분사한 실시에 1과 실시에 2에서는 불과 약 10초 이내에서 급속하게 경화되는 현상이 발전되었다.

이는 대기 중에서 가기되기 쉬운 용매가 공기 압력으로 전행 방향으로 분사되는 동시에 대기 중으로 확산 증발 작용이 동시에 발생함으로써 발생하는 현상으로 사료된다.

또한 실시에 1과 실시에 2의 경우처럼 개질 유황에 대한 용매의 종류 및 사용량 등에 의해서 분사에 의해서 제조될 수 있는 최저 도막 두께가 매우 앞게 제조될 수 있음을 발견하였으며 이러한 현상도 도막 경화 시간을 단축시킬 수 있는 중요한 특성이라고 생각된다.

당업계에서는 컨베이어벨트 위에 분사된 철강 제품이 매우 빠른 속도로 이동하면서 연속적으로 제품을 생산하고 있는데, 수성용 방청제료의 경화 시간이 늦어지면 전체적인 생산 경쟁력의 저하를 가져오므로, 경화 시간은 중요한 변수이다.

방청제료의 경화 시간을 줄이기 위하여, 컨베이어 라인에 고주파 건조라인을
설치해서 분사되는 수성용 방청재료 내의 물을 휘발시키는 방식을 사용하고 있으나, 이렇게 빈은 전력비용을 사용하고서도 현재 약 10분 정도에서 간조되고 있다고 하므로, 경화 시간이 줄이는 것은 중요한 과제이다.

또한 도막 두께는 경화 시간과 생산비용 면에서 매우 밀접한 관계가 있으므로 가능하면 않은 도막 두께를 형성하는 것이 좋으나, 수성용 방청재료는 분사 가능한 최저 도막 두께가 약 3mm 정도로 두꺼운 편이다. 그러나, 실시에 중에서 가열하지 않고 분사하는 방식은 모두 현저하게 빈은 두께로 도막의 형성이 가능하다는 점을 확인하였다.

상기에 분석한 모든 요소들을 종합적으로 분석한 결과, 본 발명의 실시예들에 의해서 제조되는 개질 유황 방청재 성능으로는 모든 물성들을 동등 혹은 동등 이상으로 만족시키는 것으로 평가되었다.

응접시험(실시예 9)

: 가열하지 않고 분사한 개질 유황 도막의 응접 실험 결과

상기 실험에 5의 실시에 1의 개질 유황 100중량부에 이황화탄소 용해에 용해한 개질 유황 혼합물을 상온에서 가열하지 않고 분사한 개질 유황 도막을 사용하여 응접 실험한 후의 모습을 실시예로 하고, 상기 실험에 5의 비교에 1의 수성용 방청재료 도막을 사용하여 동일하게 응접 실험한 후의 모습을 비교에 하여 각각 응접 전과 후의 사진을 도 16 내지 19에 나타내었다.

상기도 16 내지 19를 참조하면, 비교예의 경우 응접 후에 응접부분뿐만 아니라 그 주변의 도막도 현저하게 손상된 것을 확인할 수 있었으나, 실시예의 경우에는 눈에 띄는 손상이 나타나지 않은 것을 확인할 수 있었다.

응접시험(실시예 10)

: 가열하여 분사한 개질 유황 도막의 응접 실험 결과

상기 실험에 5의 실시에 3의 개질유황을 가열 응용하여 도막을 형성한 것을 실험에 8의 실시에 1, 상기 실험에 5의 실시에 3의 개질유황에 무기질분반로 알루미늄 설레이트(aluminium sulfate)를 10중량%로 혼합한 후에 약 120℃에서 가열 응용시간 후에 개질유황을 분사하여 방청도막을 형성하여 실험에 8의 실시에 2로 하였다. 상기 실험에 5의 비교에 2의 도막을 실험에 8의 비교예로 하여 상기 실험에 동일하게 실험하였다. 상기 실험에 1, 2와 비교에의 응접시험 전과 후의 사진을 도 16 내지 21로 나타내었다.

상기도 20 내지 25를 참조하면, 비교예, 실시예 1, 실시예 2의 손으로 손상면적이 넓은 것이 확인되어서, 실시예의 경우가 더 우수한 물성을 보여주었다.

 실험에 11: 방수코팅막의 성능 평가

1) 성능 평가의 기준
개질 유형 도포실험 물성은 다음과 같은 방법으로 측정하였다.
부착강도: DeFelsko Corporation의 PosiTest ATA 모델을 이용한 Pull-off test 방식으로 철판 표면에서 도막이 벗어지는 순간의 응력을 측정하는 방식으로써 철판과 개질 유형의 개별 접합 특성을 평가하였다.
스크레치 지향성: 도포된 도막의 표면을 다이아몬드 펜을 사용하여 바둑판 모양처럼 서로 교차하는 방식으로 금세 도막이 벗어지는 정도를 윤란 및 optical microscope를 이용하여 확인하였다.
다이아몬드 펜으로 도막을 금세 한 방향으로 금는 경우보다 바둑판 모양으로 교차시켜서 금을 경우, 교차되는 지점에서의 박막 지향성이 상대적으로 더 강해야만 박리가 일어나지 않기 때문에, 박막의 스크레치 지향성을 판단하는데 정확하므로, 교차 지점에서 박막이 벗어져 나오지 않는 경우를 경우를 함격, 떨어져 나오는 경우를 불합격으로 평가하였다.
전극작업 후 시편 외부: 2×10cm의 철판위에 도포된 박막 시험체의 양모서리를 펜치(프라이어) 2개를 사용하여 단단히 잠은 상태에서 파리 형태가 되도록 뒤틀리게 한 후에 도막과 철판의 접착 상태를 확인한다. 윤란으로 관찰하여 접착이 들뜨지 않은 상태인 경우를 함격, 박막이 벗어져 나오거나 일부라도 들지는 경우에는 불합격으로 평가하였다.
염수분무 시험: KS D 9502에 의거하여, (5±1)% NaCl 수용액에 철판에 도포된 시험체를 완전 침지 시킨 후 35±2°C의 온도에서 3일간 방치한 후 도막의 접착 상태 및 부식 정도를 확인하였다. 부식의 정도를 윤란으로 관찰하여 부식된 부분이 전혀 없는 경우를 함격, 그렇지 않은 경우를 불합격으로 평가하였다.
경화 시간: 개질 유형이 도포된 후 도막이 경화되는 시간은 의미하며 그 기준은 손가락으로 도막 표면을 문지를 때에 손에 묻어나지 않고 강하게 부착되어 있는 상태에 이르는 시간을 평가하였다.
분사 가능한 최저 도막 두께: 동일한 조건 (분사기 종류, 분사 기압, 공기 압력량 등)으로 분사할 때에 가능한 도막의 최저 두께를 측정하였다.
2) 비교에 1 및 비교에 2
시중에서 구입한 수성용 방수제(동원제 제조)를 상온에서 가열하지 않고 철판 피도막제에 분사한 도막을 비교에 1, 미국 개질유형을 약 120°C에서 가열하여 용용시킨 개질 유형을 분사한 개질 유형 도막을 비교에 2로 하여 부착강도, 스크레치 지향성, 절곡작업, 염수시험, 경화시간, 분사 가능한 최저 도막 두께에 대하여 평가하였고, 그 결과를 표 3에 나타내었다.
3) 실험에 1 및 실험에 2, 가열하지 않고 분사한 개질 유형 도막
상기 제조에 2-1의 개질 유형을 이황화연소 용매에 용해한 개질 유형 혼합물을 상온에서 가열하지 않고 분사한 개질 유형 도막을 실험에 1로 하였고, 상기 제조에 3-1의 개질 유형을 이황화연소 용매에 용해한 개질 유형 혼합물을
상온에서 가열하지 않고 분사한 개질 유황 도막을 실시에 2로 하였으며, 이들의 물성을 상기 비교에 1 내지 2와 동일하게 측정하여 하기 표 3에 나타내었다.

4) 실시에 3 내지 실시에 4, 가열하여 분사한 개질 유황 도막
상기 제조에 2-2의 개질 유황에 용매를 사용하지 않고 개질 유황을 약 120℃에서 가열하여 용융시킨 개질 유황을 분사한 개질 유황 도막을 실시에 3로 하였고, 상기 제조에 3-1의 개질 유황에 용매를 사용하지 않고 개질 유황을 약 120℃에서 가열하여 용융시킨 개질 유황을 분사한 개질 유황 도막을 실시에 4로 하였으며, 이들의 물성을 상기 비교에 1 내지 2와 동일하게 측정하여 하기 표 4에 나타내었다.

5) 물성측정결과

<table>
<thead>
<tr>
<th>비교에 1수성용 방수제를 가열하지 않고 분사</th>
<th>부착강도(MPa)</th>
<th>스크래치 지향성</th>
<th>절곡착업</th>
<th>염수시험(KSD 9502)</th>
<th>경화시간</th>
<th>분사가능한 최저도막 두께</th>
</tr>
</thead>
<tbody>
<tr>
<td>비교에 2미국방식을 가열해서 분사</td>
<td>1.14</td>
<td>합격</td>
<td>합격</td>
<td>합격</td>
<td>1일 이상</td>
<td>약 3 mm 이하</td>
</tr>
<tr>
<td>실시에 1가열하지 않고 분사</td>
<td>0.53</td>
<td>불량</td>
<td>불량</td>
<td>합격</td>
<td>수분 이내</td>
<td>약 3 mm 이하</td>
</tr>
<tr>
<td>실시에 2가열하지 않고 분사</td>
<td>1.07</td>
<td>합격</td>
<td>합격</td>
<td>합격</td>
<td>수분 이내</td>
<td>약 0.1 mm 이하</td>
</tr>
<tr>
<td>실시에 3가열해서 분사</td>
<td>1.17</td>
<td>합격</td>
<td>합격</td>
<td>합격</td>
<td>수분 이내</td>
<td>약 0.1 mm 이하</td>
</tr>
<tr>
<td>실시에 4가열해서 분사</td>
<td>1.38</td>
<td>합격</td>
<td>합격</td>
<td>합격</td>
<td>수분 이내</td>
<td>약 3 mm 이하</td>
</tr>
</tbody>
</table>

비교에 1로 적용한 시험에서 구입한 수성용 방수제는 철강업체에서 법용적으로 사용되고 있는 기존 제품으로서, 경화 시간이 짧은 단점을
제외하고는 모든 항목에서 이미 일정 부분 검증된 효과를 가지기 때문에, 비교에 1의 결과를 기준으로 하여 다른 비교예와 실시예들에 의한 도막의 스크래치
저항성, 절곡 작업 등을 시험하였다.

[703]
방수제를 도포한 철강 제품의 경우 다시 절단, 절곡, 밴딩, 불팀 및 용접 등의
제가공 작업을 펼쳐 해야 되므로 제가공 작업 시 충격에 견딜 수 있는 상기 물성
항목들에 혈관해야만 한다.

[704]
[705]
6) 부착강도, 스크래치 저항성, 절곡작업 및 연수시험

[706]
부착강도 물성 결과에서는, 가열해서 분사한 실시에 3과 실시에 4 경우에서
수용성 방수제보다 향상된 부착력을 나타냈으며, 가열하지 않고 분사한 실시에
1과 실시에 2 경우에서 동등 이하의 동등한 정도의 부착력을 나타냈으며
미국방식의 비교에 2의 경우에는 부착력이 제일 약하였다.

[707]
스프레키 저항성 및 절곡작업 후 시편 왜소물 성 결과에서는 미국방식의
비교에 2의 경우에서만 물함력이 되었으며 나머지 비교에 및 실시에 결과에서는
모두 함력된 물성을 나타내었다.

[708]
염수분무 저항성 시험의 경우에는 모든 시험체가 혈관하였는데, 단체 유형의
경우에서는 염수시험을 통과하지 못하였는데 이는 수분이 존재하는 환경에서는
유형과 절이 판반하여 녹이 발생되거나 개질 화성이 개질 유형의 경우에는
근본적으로 내화화성이 매우 강하고, 향연한 물성 결과이다.

[709]
[710]
7) 경화시간 및 분사 가능한 최저 도막 두께 평가

[711]
경화 시간 물성 결과에서는 수용성 방수제가 1일 경과 후에도 상온에서는 매우
느리게 경화되었으며, 미국 방식 비교에 2와 가열하여 분사시킨 실시에 3과
실시에 4에서 약 5분 이내에서 경화되었으나, 용매를 사용하여 가열하지 않고
상온에서 분사한 실시에 1과 실시에 2에서는 불과 약 10초 이내에서 급속하게
경화되는 현상이 발견되었다.

[712]
이는 태이 중에서 기화되기 쉬운 용매가 공기 압력으로 진행 방향으로
분사되는 동시에 태이 중으로 확산 증발 작용이 동시에 발생함으로써 발생하는
현상으로 사료된다.

[713]
또한 실시에 1과 실시에 2의 경우처럼 개질 유형에 대한 용매의 종류 및 사용량
등에 의해서 분사에 의해서 제조될 수 있는 최저 도막 두께가 매우 얇게 제조될
수 있음을 발견하였으며 이러한 현상도 도막 경화 시간을 단축시킬 수 있는
중요한 특성이라고 생각된다.

[714]
강업제에서는 컨베이어벨트 위에 분사된 철강 제품이 매우 빠른 속도로
이동하면서 연속적으로 제품을 생산하고 있는데, 수성용 방수재료의 경화
시간이 늦어지면 전체적인 생산 경쟁력의 저하를 가져오므로, 경화 시간은
중요한 변수이다.

[715]
방수재료의 경화 시간을 줄이기 위하여, 컨베이어 라인에 고주파 건조라인을
설치해서 분사되는 수성용 방수제로 내의 물을 휘발시키는 방식을 사용하고 있으나, 이렇게 많은 전력비용을 사용하고서도 현재 약 10분 정도에서 간조되고 있다고 하므로, 경화 시간을 줄이는 것은 중요한 과제이다.

[716] 또한 도막 두께는 경화 시간과 생산 비용 면에서 매우 밀접한 관계가 있으므로 가능하면 많은 도막 두께를 형성하는 것이 좋으나, 수성용 방수제료는 분사 가능한 최저 도막 두께가 약 3 mm 정도로 두꺼운 편이다. 그러나, 실시에 중에서 가열하지 않고 분사하는 방식은 모두 현저하게 많은 두께로 도막의 형성이 가능하다는 점을 확인하였다.

[717] 상기에 분석한 모든 요소들을 종합적으로 분석한 결과, 본 발명의 실시예들에 의해서 제조되는 개질 유항 방수제 성능으로는 모든 물성들을 동등 혹은 동등 이상으로 만족시키는 것으로 평가되었다.

[718]

[719] 절곡 실험 결과(실험에 12)

[720] 상기 방수코팅막의 성능 평가의 실시예 3를 사용하여 도막의 절곡작업 실험 전 후의 모습을 관찰한 사진과, 상기 방수코팅막의 성능 평가의 비교에 2를 사용하여 도막의 절곡작업 실험 전 후의 모습을 각각 도 16 내지 19에 나타내었다. 상기 도 16 내지 19의 결과를 참조하면, 본 발명의 실시예에 의한 방수도막의 절곡작업 특성이 원형셔 자주할 것을 확인할 수 있다. 구체적으로, 도 19에서는 도막이 전체적으로 벗겨진 모습이 욕안으로 관찰되나, 도 17의 실시예의 절곡 작업 후 사진에서는 도막의 손상이 욕안으로 관찰되지 않았다.

[721]

[722] 실험에 13. 개질유항의 시차주사열량 측정 결과

[723] 본 발명의 제조예 3-1에 의하여 제조된 개질유항의 시차주사열량측정결과를 나타내는 그레프를 도 16에 나타냈다. 상기 도 16의 결과를 참조하면, 개질유항의 DSC 결과가 왜냐하면 방장성이 생기기 전의 유항과 다시클로펜타디엔계 개질제의 반응물질과는 환연하게 다른 결과를 보여주는 것을 확인할 수 있었다.

[724]

[725] 실험에 14. 개질유항 아스팔트의 성능 평가

[726] 1) 성능 평가의 기준

[727] KSF 2389(아스팔트 공용성 등급)을 만족하는 고가의 개질 아스팔트를 대체할 수 있는 아스팔트를 제조하여 그 물성을 실험하였고, 기존의 제품들과 그 물성을 비교하였다. 단, 제조예에서의 개질 유항 조성비는 유항 100 중량부에 대하여 다시클로펜타디엔을 5 중량부로 고정하고, 특정 개시제들을 혼합하여 사용하였다.

[728]

[729] 연화점: KS M 2250에 준하여 본 연구실에서 자체적으로 시험을 실시하였다. 상온 하에서, 가열 중량식 oil bath를 5°C/min 의 속도로 상승 가열하면서
개질유황 아스팔트 혼합물의 중앙에 놓은 강구가 혼합 재료의 바닥 면에 닿는 시간을 기준으로 삼아 연화점을 측정하였다.

단기 산화 시험 (KS M 2259); PG Test 항목에 있는 아스팔트를 점도로써
등급화하는 방법 중 하나인 푸링바막가열오븐(RTFO) 시험 방법으로써, 이동 아스팔트 막에 미치는 열과 공기의 영향을 시험하는 아스팔트 재료의 단기산화 시험을 진행하였다. 개질 유황 아스팔트 조성물을 공기의 순환이 이루어지는 가열 건조기 내에서, 온도를 163℃로 유지하여 75분간 방치한 후 개질 유황 아스팔트 조성물의 점도 및 겔화(gelation)여부를 확인하였다. 유안으로 관찰하여 겔화가 발생한 경우를 불합격, 겔화가 발생하지 않은 경우를 합격으로 평가하였다.

침입도: KS M 2252에 의거하여, 온도가 25℃로 유지되는 황은 수조에서, 개질 유황 아스팔트 조성물을 제거시켜 황은 상태를 유지한 상태로, 무게 50±0.05 g 인 원형 주의 상부에 부착된 무게 2.5±0.02 g 인 비커를 개질 유황 아스팔트 조성물 속으로 칠입하는 침입 길이를 침입도로 평가하였다.

탄성회복률: 실험실에서 개질 유황 단독의 성형체를 동일한 합으로 최대한 잡아당긴 후에 다시 원래의 상태로 되돌아오는 길이에 대한 성형체 원래의 길이의 백분율로 평가하였다.

2) 비교에 1 내지 비교에 5
시중에서 구입한 스트레이트 아스팔트(SK 에너지사의 AP-5 제품)을 비교에 1로 하였고, 상기 스트레이트 아스팔트에 대한 단체 유황은 혼합한 아스팔트 조성물을 비교에 2로 하였으며, 상기 스트레이트 아스팔트에 미국 개질 유황(미국등록특허 제4,311,826호)을 혼합한 아스팔트 조성물을 비교에 3으로 하여 단기산화시험(겔화 발생여부), 탄성회복률, 침입도, 연화점에 대하여 평가하였고, 그 결과를 표 3에 나타내었다.

3) 실험에 1 및 실험에 2
상기 제조 2-2의 개질 유황과 스트레이트 아스팔트를 1:1의 중량비(개질 유황의 비중이 2.07이므로 부피비는 2:1)로 혼합하여 제조한 개질 유황 아스팔트 조성물을 실험이에 1로 하였고, 상기 제조 3-1의 개질 유황과 스트레이트 아스팔트를 1:1의 중량비(개질 유황의 비중이 2.07이므로 부피비는 2:1)로 혼합하여 제조한 개질 유황 아스팔트 조성물을 실험이에 2로 하였으며, 이들의 물성 유용 상기 비교에 1 내지 3과 동일하게 측정하여 하기 표 5에 나타내었다.

4) 물성 측정 결과
表 5
[Table 5]

<table>
<thead>
<tr>
<th></th>
<th>단기산화시험(KSM2259)(163°C-75분)</th>
<th>gelation 발생 여부(130°C)</th>
<th>탄성 회복률(%)</th>
<th>침입도(25°C)</th>
<th>연화점(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>비교예 1</td>
<td>합격</td>
<td>-</td>
<td>10%미만</td>
<td>65</td>
<td>80°C이하</td>
</tr>
<tr>
<td>미혼합</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>비교예 2</td>
<td>불량</td>
<td>발생</td>
<td>30%</td>
<td>60</td>
<td>80°C이하</td>
</tr>
<tr>
<td>단체 유황 혼합</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>비교예 3</td>
<td>불량</td>
<td>발생</td>
<td>10%</td>
<td>80</td>
<td>80°C이하</td>
</tr>
<tr>
<td>미국 개질유황 혼합</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>실시예 1</td>
<td>합격</td>
<td>발생 안 함</td>
<td>20%</td>
<td>80</td>
<td>80°C이하</td>
</tr>
<tr>
<td>개질유황 혼합</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>실시예 2</td>
<td>합격</td>
<td>발생 안 함</td>
<td>70%</td>
<td>20</td>
<td>80°C이상</td>
</tr>
<tr>
<td>개질유황 혼합</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[743]

상기 물성측정결과를 참고하면, 실시예 1 및 2의 아스팔트는 단기산화시험에서 우수한 결과를 보여주었고, 겔화도 발생하지 않았으며, 탄성회복률도 비교적 높은 특성을 보여서 아스팔트로 우수한 특성을 보여준다는 점을 확인할 수 있었다.

[745]

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당사자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
청구범위

[청구항 1] 유황 100 중량부, 그리고 디시클로펜타디엔계 개질제 1 내지 300 중량부를 포함하는 개질유황으로, 135℃에서 점도가 300 내지 200만 cP이며, 상기 개질유황 내에는 섬유상(fiber), 판상(film), 또는 망복구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유황이 방사성이(spinnability)을 가지는 것인, 개질유황.

[청구항 2] 제1항에 있어서,
상기 개질유황은 상기 유황 100 중량부를 기준으로
개시제(initiator) 0.1 내지 200 중량부로 더 포함하는 것인, 개질유황.

[청구항 3] 제2항에 있어서,
상기 개시제는 유황, 개질유황, 아스팔트, 황화물, 다량화물,
탄화수소화합물 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인, 개질유황.

[청구항 4] 제2항에 있어서,
상기 개시제는 트랜스 시나말데하이드(Trans Cinnamaldehyde),
디메틸아닐린(Dimethylaniline),
디부틸프탈레이트(Dibuthylphthalate),
디아이오도메탄(Diodomethane),
이소부틸알데하이드(Isobutyraldehyde),
메타크릴아미드(Methacrylamide), 디에틸아닐린(Diethylaniline),
롱갈리트(Rongalite), 나이트로에테인(Nitroethane),
포름알데하이드 하이드레이트(Formaldehyde Hydrate),
페닐아세트아미드(Phenylacetamide), 벤조 아세테이트(Benzyl Acetate),
도데실 벤젠 솔포닉 산(Dodecyl benzene sulfonic acid),
트리옥시틸아민(Triocetyl amine), 메틸모르플린(Methylmorpholine),
모르핀(Morpholine), 디메틸아닐린(Dimethylaniline),
나프탈렌(Naphthalene) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인, 개질유황.

[청구항 5] 제1항에 있어서,
상기 개질유황은 제면활성제, 커플링제, 촉매, 가교제, 분산제 및
이들의 조합으로 이루어진 군에서 선택된 어느 하나의 점가제를 더 포함하는 것인, 개질유황.

[청구항 6] 제5항에 있어서,
상기 점가제와 상기 개질유황은 용매 하에서 혼합되어 있는 것이고,
상기 용매는 물, 알데지 용매, 에스테르계 용매, 케톤계 용매,
지방족 또는 방향족 탄화수소계 용매, 에테르계 용매, 알코올계 용매, 폴리올 용매, 아미드 용매, 숀폰 또는 숀폴사이드 용매, 아세테이트계 용매, 비수계 무기용매 및 이들의 조합으로 이루어진 균에서 선택된 어느 하나인, 개질유황.

[청구항 7]
상기 개질유황은 전수성 또는 소수성인 것인, 개질유황.

[청구항 8]
유황 100 중량부, 그리고 디시클로펜타디엔계 개질제 1 내지 300 중량부를 120°C 이상에서 용융 혼합하여 제1혼합물을 제조하는 제1혼합물제조단계; 상기 제1혼합물을 120°C 이상에서 중합 반응시켜 제1반응물을 제조하는 제1중합반응단계; 그리고, 상기 제1반응물이 반응종료 시점에 상기 제1반응물의 중합 반응을 종료시켜서 개질유황을 제조하는 것인 반응완결단계를 포함하고, 상기 반응종료 시점은 상기 제1반응물이 방사성(spinnability)을 가지는 시점과 고무화가 일어나는 시점 사이인 것이며, 상기 중합 반응이 완결된 후의 개질유황은 135°C에서 점도가 3000 내지 2000 cP이고, 상기 개질유황 내에는 섬유상(fiber), 판상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유황이 방사성(spinnability)을 가지는 것인, 개질유황의 제조방법.

[청구항 9]
제8항에 있어서,
상기 제1혼합물, 상기 제1반응물 및 이들 조합은 개하시계를 더 포함할 수 있고, 상기 개하시계는 상기 유황 100 중량부를 기준으로 0.1 내지 200 중량부인 것인, 개질유황의 제조방법.

[청구항 10]
제8항에 있어서,
상기 개질유황의 제조방법은, 상기 제1중합반응단계와 상기 반응완결단계 사이에 숙성단계를 더 포함하고, 상기 숙성단계는 상기 제1반응물을 40°C 이상의 온도에서 방지하여 숙성시키는 단계인 것이, 개질유황의 제조방법.

[청구항 11]
제9항에 있어서,
상기 개하시계는 트랜스 시나말데히드(Trans Cinnamaldehyde), 디메틸아닐린(Dimethylaniline), 디부틸프탈레이트(Dibuthylphthalate), 디아이오도메탄(Diodomethane), 이소부틸알데히드(Isobutylaldehyde), 메تا크릴아미드(Methacrylamide), 디에틸아닐린(Diethylaniline), 룡갈리트(Rongalite), 나이트로에테인(Nitroethane), 포름알데히드 하이드레이트(Formaldehyde Hydrate), 폐닐아세트아미드(Phenylacetamide), 벤질 아세테이트(Benzyl
Acetate), 도데실 벤젠 슬포닉 산(Dodecyl benzene sulfonic acid), 트리옥실 아미드(Triocyl amine), 메틸모르폴린(Methylmorpholine), 모르필린(Morpholine), 디메틸아닐린(Dimethylaniline), 나프탈렌(Naphthalene) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것인, 개질유황의 제조방법.

유황 100 중량부, 디스티로펜타디엔계 개질제 1 내지 300 중량부, 및 개시제 0.1 내지 200 중량부를 포함하는 혼합물을 준비하는 준비단계;
상기 혼합물에 조음과를 조사하며 반응시켜 반응물을 제조하는 조음과처리단계; 그리고
상기 반응물을 40°C 이상의 온도에서 숙성시켜 개질유황을 제조하는 숙성단계를 포함하고,
상기 개질유황은 점도가 3000 내지 200만 cP이며, 상기 개질유황 내에는 섬유성(fiber), 판상(film), 또는 망막구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유황이 방사성(spinnability)을 가지는 것인, 개질유황의 제조방법.

[청구항 13]
상기 개시제는 트랜스 시나말테하이드(Trans Cinnamaldehyde), 디메틸아닐린(Dimethylaniline), 디부틸프탈레이트(Dibuthylphthalate), 디아이오도메탄(Diiodomethane), 이소부틸알데하이드(Isobutylaldehyde), 메타크릴아미드(Methacrylamide), 디에틸아닐린(Diethylaniline), 몽갈리트(Rongalite), 나이트로에테인(Nitroethane), 포름알데하이드 하이드레이트(Formaldehyde Hydrate), 폐닐아세타이드(Phenylacetamide), 벤질 아세타이드(Benzyl Acetate), 도데실 벤젠 슬포닉 산(Dodecyl benzene sulfonic acid), 트리옥실 아미드(Triocyl amine), 메틸모르폴린(Methylmorpholine), 모르필린(Morpholine), 디메틸아닐린(Dimethylaniline), 나프탈렌(Naphthalene) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인, 개질유황의 제조방법.

[청구항 14]
제12항에 있어서, 상기 조음과처리단계는 120°C 이하의 온도에서 이루어지는 것인, 개질유황의 제조방법.

[청구항 15]
제12항에 있어서, 상기 유황은 분말 또는 120°C 이상의 온도에서 용융된 것인, 개질유황의 제조방법.

[청구항 16]
제12항에 있어서,
상기 개질유항은 상기 조음파처리가 이루어지는 반응부, 상기 반응부로부터 토출된 반응물이 유입되는 속성부를 포함하는 연속식 개질유항 제조장치를 이용하여 연속적으로 제조되는 것임.
개질유항의 제조방법.
제12항에 있어서,
상기 준비단계에서 혼합물의 준비는, 개질유항 제조장치의 제료투입부로 상기 유항 100 중량부, 디시클로레반디엔게 개질제 1 내지 300 중량부, 및 개시제 0.1 내지 200 중량부를 포함하는 재료가 투입되는 단계이고,
상기 조음파처리단계는 상기 재료투입부와 연결된 반응부로 상기 재료를 포함하는 혼합물이 유입되고 상기 반응부에 설치된 조음파 조사기에서 발생하는 조음파를 상기 혼합물에 조사하여 상기 혼합물의 내에 미세한 기포가 형성되고 상기 기포가 붕괴되는 공동현상에 의하여 상기 혼합물에 포함된 고체 유항이 상기 디시클로레반디엔게 개질제와 반응하여 반응물이 형성되도록 하는 단계이고,
상기 속성단계는 상기 반응부와 연결된 반응물투입부로부터 속성부로 유입되는 반응물을 속성시켜 개질유항을 제조하는 단계이며, 상기 속성단계에서는 반응물투입부로부터 순차로 위치하는 1 이상의 토출부를 이용하여 연속적으로 제조되는 개질유항을 수득하는 단계인 것임, 개질유항의 제조방법.
제료투입부와 반응물투출구를 갖는 제11하우징과 상기 제1하우징 내에 조음파를 조사하는 조음파조사장치를 포함하는 반응부; 그리고
상기 반응물투출구와 연결되는 반응물투입구와
개질유항투출부를 포함하는 제2하우징과 상기 제2하우징 내에 반응물을 보관하는 속성용기를 포함하고, 상기 속성용기 내의 온도를 유지시키는 온도유지장치를 포함하는 속성부,를 포함하는 개질유항 제조장치.
제18항에 있어서,
상기 개질유항투출부는 상기 속성용기의 적어도 일면에 형성되며, 상기 반응물투입구를 기준으로 하였을 때에 서로 다른 거리에 위치하는 2 이상의 토출구를 포함하는 것임, 개질유항 제조장치.
제18항에 있어서,
상기 개질유항투출부는 상기 속성용기의 일면에 순차로 형성된 저점도투출부, 중점도투출부 및 고점도투출부를 포함하고, 상기 저점도투출부와 상기 개질유항투출부와의 거리가 상기 고점도투출부와 상기 개질유항투출부와의 거리보다 짧은 것임,
개질유황 제조장치.

[청구항 21] 제18항에 있어서,
상기 반응부와 속성부 사이에는, 상기 속성부로 유입되는
반응물의 유량을 조절하는 유량조절부가 더 포함되는 것인,
개질유황 제조장치.

[청구항 22] 제20항에 있어서,
상기 개질유황 제조장치는 저온도토출부와 연결되어 저온도
개질유황을 저장하는 저온도개질유황저장부; 중온도토출부와
 연결되어 중온도 개질유황을 저장하는 중온도개질유황저장부; 및
고온도토출부와 연결되어 고온도 개질유황을 저장하는
고온도개질유황저장부;를 더 포함하는, 개질유황 제조장치.

[청구항 23] 제19항에 있어서,
상기 제료투입부는 유황, 디시클로펜타디엔계 개질체, 개시체
또는 이들의 혼합물을 제1하우징 내로 일정한 비율로 투입하고,
상기 초음파조사장치는 상기 혼합물에 초음파를 가하여 유황과
디시클로펜타디엔계 개질체의 중합반응을 유도하며,
상기 유동유지장치는 상기 속성용기 내의 온도를 120°C 이하의
속성온도로 유지시키는 것인, 개질유황 제조장치.

[청구항 24] 제19항에 있어서,
상기 개질유황 제조장치는 연속식으로 개질유황을 제조하며, 상기
속성용기 내의 온도와 상기 속성용기로 유입되는 반응물의 체류
시간을 조절하여 제조되는 개질유황의 점도를 조절하는 것인,
개질유황 제조장치.

[청구항 25] 섬유상(fiber), 관상(film), 또는 망목구조(network structure)의
미세조직 형상을 포함하거나 방사성(spinnability)을 가지는
개질유황을 포함하는, 방청제료.

[청구항 26] 제25항에 있어서,
상기 개질유황은 유황 100 중량부, 그리고 디시클로펜타디엔계
개질체 1 내지 300 중량부를 포함하고, 135°C에서 점도가 3000
내지 200만 cP인 것인, 방청제료.

[청구항 27] 제25항에 있어서,
상기 방청제료는 화학적, 보강제 및 이들의 조합을 더 포함하는
것인, 방청제료.

[청구항 28] 제27항에 있어서,
상기 화학적은 이황화탄소, 암모니아(Ammonia), 알코올계 용매,
디- tert-부틸 폴리су필화(Di-tert-butyl polysulfide), 터트-도데실
폴리달카이드(tert-Dodecyl polysulfide), 터트- 나닐
폴리달카이드(tert-Nonyl polysulfide), 아닐린(Aniline),
벤젠(Benzene), 디부틸 푸탈레이트(Dibutyl phthalate), 2,2'-에틸렌비아이소티오우로늄 디브로마이드 (2,2'-Ethylenebis(isothiouronium dibromide)), 디브로모에탄(Dibromoethane, 1,2-Dibromoethane), 아래에 액포모(Phenol), 올리브 오일(Olive oil), 페닐(Phenol), 피리딘(Pyridine), 퀴놀린(Quinoline), 디스퓨 디스클로라이드(Disulfur dichloride), 톨루엔(Toluene), m-자이렌(m-xylene), p-자이렌(P-xylene), 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것인, 방청제료.

[청구항 29]

상기 보강제는 미분말 규사, 규조토, 규화석, 젤토류, 유리흙(chopped glass fiber), 염료, 안료, 알루미늄 설레이트(aluminum sulfate), 물유리, Ca(OH)₂, 산화 아연, 나프탈렌, Mg(OH)₂, CaCl₂, Al(OH)₃, 봉사, CaSO₄.2H₂O, Fe₂O₃, 케틀라이트, 탄소섬유, 휘스커(whisker), Na₂SO₄, MgSO₄.7H₂O, 플라이쉬, 아크릴 애로פל, 애로프, 라텍스, 탄소섬유 또는 섬트, 강철선유, 액상 무기질, 섬유질 증전제, 섬유상 임차, 박판상 임차 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것인, 방청제료.

[청구항 30]

제25항에 있어서,

상기 방청제료는, 상기 개질유황 100 중량부, 희석제 1 내지 100 중량부, 및 보강제 1 내지 100 중량부를 포함하는 것인, 방청제료.

[청구항 31]

제25항에 있어서,

상기 개질유황 또는 상기 방청제료는 25°C에서 액상인 것인, 방청제료.

[청구항 32]

제25항에 있어서,

상기 방청제료는, 25°C에서 상온형의 점도가 1 내지 1,000 cP, 그리고 135°C에서 가열형의 점도가 1 내지 10,000 cP인 것인, 방청제료.

[청구항 33]

유황 100 중량부, 그리고 디사클로렌타디엔에 개질제 1 내지 300 중량부를 120°C 이상에서 용융 혼합하여 제1혼합물을 제조하는 제1혼합물제조단계; 상기 제1혼합물을 120°C 이상에서 중합 반응시켜 제1반응물을 제조하는 제1중합반응단계; 그리고, 상기 제1반응물이 반응종료 시점에 상기 제1반응물의 중합 반응을 종료시켜 개질유황을 포함하는 방청제료를 제조하는 것인 반응완결단계;를 포함하고,

상기 반응종료 시점은 상기 제1반응물이 방사성(spinnability)를
가지는 시점과 고무화가 일어나는 시점 사이인 것이며, 상기 개질유황은 섬유상(fiber), 관상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유황이 방사성(spinnability)을 가지는 것이, 방청제료의 제조방법.

[청구항 34]
제33항에 있어서,
상기 방청제료의 제조방법은 상기 반응완결단계 이후에 조성물혼합단계를 더 포함하고,
상기 조성물혼합단계는 상기 개질유황과 참가제를 혼합하는 단계이며,
상기 참가제는, 희석제, 보강제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것인, 방청제료의 제조방법.

[청구항 35]
제33항에 있어서,
상기 방청제료는 25°C에서 상온의 점도가 1 내지 1,000 cP, 그리고 135°C에서 가열형의 점도가 1 내지 10,000 cP인 것인, 방청제료의 제조방법.

[청구항 36]
유황 100 중량부, 디시클로로렌타디엔에 개질제 1 내지 300 중량부, 및 개시제 0.1 내지 200 중량부를 포함하는 혼합물을 준비하는 준비단계;
상기 혼합물에 초음파를 조사하여 반응시켜 반응물을 제조하는 초음파처리단계; 그리고
상기 반응물을 40°C 이상의 온도에서 속성시켜 개질유황을 포함하는 방청제료를 제조하는 속성단계를 포함하고,
상기 개질유황은 섬유상(fiber), 관상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유황이 방사성(spinnability)을 가지는 것이, 방청제료의 제조방법.

[청구항 37]
제36항에 있어서,
상기 초음파처리단계는 반응물의 온도가 120°C 이상인 조건에서 이루어지는 것이, 방청제료의 제조방법.

[청구항 38]
제25항에 따른 방청제료를 구조체에 분사하여 방청코팅막을 형성하는, 방청코팅막의 제조방법.

[청구항 39]
제36항에 따른 방청제료의 제조방법을 이용하여 제조한 방청제료를 구조체에 분사하여 방청코팅막을 형성하는 방청코팅막의 제조방법.

[청구항 40]
섬유상(fiber), 관상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 방사성(spinnability)을 가지는 개질유황을 포함하는, 방수제료.

[청구항 41]
제40항에 있어서,
상기 개질유황은 유황 100 중량부, 그리고 디시클로로렌타디엔에
개질제 1 내지 300 중량부를 포함하고, 135℃에서 점도가 3000 내지 200만 cP인 것인, 방수제료.

[청구항 42]
제40항에 있어서,
상기 방수제료는 화학제, 보강제 및 이들의 조합을 더 포함하는 것인, 방수제료.

[청구항 43]
제42항에 있어서,
상기 화학제는 이황화탄소, 알모니아(Ammonia), 알코올계 용매, 디- tert- 부틸 폴리글라파이드(Di-tert- butyl polysulfide), 턴- 토데실 폴리글라파이드(tert- Dodecyl polysulfide), 턴- 노닐 폴리글라파이드(tert- Nonyl polysulfide), 아닐린(Aniline), 벤젠(Benzene), 디부틸 푸탈레이트(Dibutyl phthalate), 2,2'-에틸렌비소이소티오우로늄 디브로마이드(2,2'-Ethylenebisiso thiouronium dibromide), 디브로모에탄(Dibromoethane, 1,2-Dibromoethane), 아이오도폼(iodoform), 베타-나프톨(2-나프톨)(Beta- naphthol(2- naphthol)), 올리브 오일(Olive oil), 체놀(Phenol), 피리딘(Pyridine), 퀴놀린(Quinoline), 디서판 디클로라이드(Disulfur dichloride), 톨루엔(Toluene), m-시키렌(m-xylene), p-시키렌(P-xylene), 및 이들의 조합으로 이루어진 부분에서 선택된 어느 하나를 포함하는 것인, 방수제료.

[청구항 44]
제42항에 있어서,
상기 보강제는 미분말 규사, 규조토, 규획석, 절토류, 유리절차(chopped glass fiber), 염료, 안료, 알루미늄
설바이트(aluminum sulfate), 물유리, Ca(OH)₂, 산화 아연, 나프탈렌, Mg(OH)₂, CaCl₂, Al(OH)₃, 봉사, CaSO₄·2H₂O, Fe₂O₃, 재올라이트, 탄소 섬유, 휘스커(whisker), Na₂SO₃, MgSO₄·7H₂O, 플라이에스, 아크릴 에틸렌, 에폭시, 라텍스, 탄소 섬유 또는 섬, 강철 섬유, 액상 무기질, 섬유질 충전제, 섬유상 입자, 백편상 입자 및 이들의 조합으로 이루어진 부분에서 선택된 어느 하나인 것인, 방수제료.

[청구항 45]
제40항에 있어서,
상기 방수제료는, 상기 개질유황제 100 중량부, 보강제 1 내지 100 중량부, 및 보강제 1 내지 100 중량부를 포함하는 것인, 방수제료.

[청구항 46]
제40항에 있어서,
상기 개질유황 또는 상기 방수제료는 25℃에서 액상인 것인, 방수제료.

[청구항 47]
제40항에 있어서,
상기 방수제료는 25℃에서 상온형의 점도가 1 내지 1,000 cP일 수 있고, 135℃에서 가열형의 점도가 1 내지 10,000 cP인 것인,
방수제료.

유황 100 중량부, 그리고 디시클로렌타디엔계 개질제 1 내지 300 중량부를 120℃ 이상에서 용융 혼합하여 제1혼합물을 제조하는 제1혼합물제조단계; 상기 제1혼합물을 120℃ 이상에서 중합 반응시켜 제1반응물을 제조하는 제1중합반응단계; 그리고, 상기 제1반응물이 반응종료 시점에 상기 제1반응물의 중합 반응을 종료시켜서 개질유황을 포함하는 방수제료를 제조하는 것인 반응완결단계;를 포함하고,
상기 반응종료 시점은 상기 제1반응물이 방사성(spinnability)를 가지는 시점과 고무화가 일어나는 시점 사이인 것이며, 상기 개질유황은 섬유상(fiber), 판상(film), 또는 망막구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유황이 방사성(spinnability)을 가지는 것인, 방수제료의 제조방법.

제48항에 있어서,
상기 방수제료의 제조방법은 상기 반응완결단계 이후에 조성물혼합단계를 더 포함하고,
상기 조성물혼합단계는 상기 개질유황과 첨가제를 혼합하는 단계이며,
상기 첨가제는, 희석제, 보강제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것인, 방수제료의 제조방법.

제48항에 있어서,
상기 방수제료는 25℃에서 상온형의 점도가 1 내지 1,000 cP일 수 있고, 135℃에서 가열형의 점도가 1 내지 10,000 cP인 것인, 방수제료의 제조방법.

유황 100 중량부, 디시클로렌타디엔계 개질제 1 내지 300 중량부, 및 개시제 0.1 내지 200 중량부를 포함하는 혼합물을 준비하는 준비단계;
상기 혼합물에 초음파를 조사하며 반응시켜 반응물을 제조하는 초음파처리단계; 그리고
상기 반응물을 40℃ 이상의 온도에서 숙성시켜 개질유황을 포함하는 방수제료를 제조하는 숙성단계;를 포함하고,
상기 개질유황은 섬유상(fiber), 판상(film), 또는 망막구조(network structure)의 미세조직 형상을 포함하거나 상기 개질유황이 방사성(spinnability)을 가지는 것인, 방수제료의 제조방법.

제51항에 있어서,
상기 초음파처리단계는 반응물의 온도가 120℃ 이상인 조건에서 이루어지는 것인, 방수제료의 제조방법.

제40항에 따른 방수제료를 구조체에 분사하여 방수코팅작업
형성하는, 방수코팅막의 제조방법.
[청구항 54] 제51항에 따른 방수재료의 제조방법을 이용하여 제조한 방수재료를 구조체에 분사하여 방수코팅막을 형성하는 방수코팅막의 제조방법.
[청구항 55] 섬유상(fiber), 판상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 방사성(spinnability)을 가지는 개질유황; 글재; 그리고 아스팔트를 포함하고, 상기 개질유황은 유황 100 중량부 및 디시크로페나디엔게 개질제 1 내지 300 중량부를 포함하는 것인, 아스팔트 조성물.
[청구항 56] 제55항에 있어서, 상기 개질유황은 135°C에서 점도가 3000 내지 200만 cP인 것인, 아스팔트 조성물.
[청구항 57] 제55항에 있어서, 상기 아스팔트 조성물은 상기 아스팔트 100 중량부를 기준으로 개질유황을 30 중량부 이상 포함하는 것인, 아스팔트 조성물.
[청구항 58] 제55항에 있어서, 상기 아스팔트 조성물은 상기 아스팔트 100 중량부를 기준으로 상기 물질을 10 내지 70 중량부로 포함하는 것인, 아스팔트 조성물.
[청구항 59] 제55항에 있어서, 상기 아스팔트는 스트레이트 아스팔트, 화석 아스팔트 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나이고, 상기 화석 아스팔트는 상기 스트레이트 아스팔트를 파라핀 중류액, 방향족 유분, 나프턴계 유분 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 액체로 화석시킨 것인, 아스팔트 조성물.
[청구항 60] 제55항에 있어서, 상기 아스팔트 조성물은, 필러를 더 포함하고, 상기 필러는 상기 아스팔트 100 중량부를 기준으로 1 내지 20 중량부로 포함되는 것인, 아스팔트 조성물.
[청구항 61] 제60항에 있어서, 상기 필러는, 석분, 포틀랜드 시멘트, 소석회, 플라이 았슈, 회수 디스트, 제강 디스트, 보강제 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것인, 아스팔트 조성물.
[청구항 62] 섬유상(fiber), 판상(film), 또는 망목구조(network structure)의 미세조직 형상을 포함하거나 방사성(spinnability)을 가지는 개질유황; 및 물질을 포함하고, 상기 개질유황은 유황 100 중량부 및 디시크로페나디엔개 개질제 1 내지 300 중량부를 포함하는, 아스팔트 점가제.
상기 아스팔트 점성제는 펄릿 형태인 것인, 아스팔트 점성제.

유항 100 중량부, 그리고 디시클로렌타디엔계 개결체 1 내지 300 중량부를 120℃ 이상에서 용융 혼합하여 제1 혼합물을 제조하는 제1 혼합물제조단계;

상기 혼합물을 120℃ 이상에서 중합 반응시켜 제1 반응물을 제조하는 제1 중합반응단계.

상기 제1 반응물이 반응종료 시점에 상기 제1 반응물의 중합 반응을 종료시켜서 개결유황을 제조하는 것인 반응중절단계; 그리고

상기 개결유황과 물질을 혼합하여 펄릿을 제조하는 단계;를 포함하고,

상기 반응종료 시점은 상기 제1 반응물이 방사상(spinnability)를 가지는 시점과 고무화가 일어나는 시점 사이인 것이며, 상기 개결유황은 섬유상(fiber), 판상(film), 또는 망막구조(network structure)의 미세조직 형상을 포함하거나 상기 개결유황이 방사상(spinnability)을 가지는 것인, 아스팔트 조성물의 제조방법.

상기 물질은 상기 개결유황 100 중량부를 기준으로 10 내지 70 로 포함하는 것인, 아스팔트 조성물의 제조방법.

상기 물질은 석면, 포트랜드 시멘트, 소석회, 플라이 에쉬, 회수 다이스, 제강 다이스, 보강재 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것, 아스팔트 조성물의 제조방법.

유항 100 중량부, 디시클로렌타디엔계 개결체 1 내지 300 중량부, 및 개시제 0.1 내지 200 중량부를 포함하는 혼합물을 준비하는 준비단계;

상기 혼합물을 조음료를 조사하며 반응시켜 반응물을 제조하는 초음파처리단계;

상기 반응물을 40℃ 이상의 온도에서 수명시키개결유황을 제조하는 수명단계; 그리고

상기 개결유황, 물질 및 아스팔트를 혼합하는 혼합단계;를 포함하고,

상기 개결유황은 섬유상(fiber), 판상(film), 또는 망막구조(network structure)의 미세조직 형상을 포함하거나 상기 개결유황이 방사상(spinnability)을 가지는 것인, 아스팔트 조성물의 제조방법.

상기 아스팔트 조성물은 상기 개결유황을 상기 아스팔트 100 중량부를 기준으로 30 중량부 이상 포함하는 것인, 아스팔트
조성물의 제조방법.

[청구항 69]
제67항에 있어서,
상기 조음파처리단계는 반응물의 온도가 120℃ 이하인 조건에서 이루어지는 것인, 아스팔트 조성물의 제조방법.

[청구항 70]
제62항에 따른 아스팔트 첨가제를 아스팔트와 혼합하여 아스팔트 조성물을 제조하는 과정을 포함하는, 아스팔트의 제조방법.

[청구항 71]
제67항에 따른 아스팔트 조성물의 제조방법을 이용하여 제조한 아스팔트 조성물을 탄성화하면서 아스팔트를 형성하는, 아스팔트의 제조방법.
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Mode</th>
<th>Det</th>
<th>HV</th>
<th>Mag</th>
<th>WD</th>
<th>40 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/6/2013</td>
<td>8:51:22 PM</td>
<td>SE</td>
<td>ETD</td>
<td>15.00 kV</td>
<td>3,000 x</td>
<td>8.2 mm</td>
<td>KIST</td>
</tr>
</tbody>
</table>
DCPD 함량에 따른 휠강도

[Fig. 11]

[Fig. 12]
[Fig. 16]
Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

The invention of group 1 (claims 1-17 and 25-71): modified sulfur which comprises comprising a fiber-, film-, or network-structure or has spinnability; a preparation method therefor; anti-corrosive materials, waterproof materials, and an asphalt composition, which comprise the modified sulfur, or preparation methods therefor; and a method for preparing an anti-corrosive coating film or a waterproof coating film, which comprise the modified sulfur.

The invention of group 2 (claims 18-24): an apparatus for preparing modified sulfur comprises: a reaction section which includes a first housing having a raw material injection portion and a reactant outlet, and an ultrasonic device for irradiating ultrasonic waves into the first housing; and an ageing section which includes a second housing having a modified sulfur discharge portion and a reactant inlet connected to the reactant outlet, an ageing container for storing reactants in the second housing, and a temperature maintaining device for maintaining the temperature within the ageing container.

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. × As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C01B 17/027(2006.01)i, B01J 19/20(2006.01)i, B82B 1/00(2006.01)i, B82B 3/00(2006.01)i, B82Y 40/00(2011.01)m

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C01B 17/027; B01J 8/26; C08F 8/34; B05D 1/00; B05D 7/00; C08G 75/14; C08G 75/16; B01J 19/20; B82B 1/00; B82B 3/00; B82Y 40/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: sulfur, modification, viscosity, fibrous, plate, network, network, radial, rubberized, ultrasonic waves

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KR 10-2011-0052556 A (CHOE, Mun Son) 18 May 2011 See claims 1, 4, 5, 7, 16, 19, 25, 26 and 28.</td>
<td>1-71</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-0927174 B1 (HUR, Young Woong et al.) 23 December 2009 See claim 1</td>
<td>1-71</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2010-0072538 A (CHOE, Mun Son) 01 July 2010 See claims 1, 3.</td>
<td>1-71</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2011-0061441 A (KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY) 09 June 2011 See abstract and claims 1, 7, 14 and 15.</td>
<td>1-71</td>
</tr>
<tr>
<td>A</td>
<td>US 4311826 A (MCBEE, W. C. et al.) 19 January 1982 See abstract and claims 1, 4.</td>
<td>1-71</td>
</tr>
<tr>
<td>A</td>
<td>CHA, Soo-Won et al., "Manufacture of Modified Sulfur Polymer Binder and Characteristics of Sulfur Concrete", Journal of the Korean Concrete Institute, 2011, vol. 23, no. 6, pages 40-42.</td>
<td>1-71</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X document of particular relevance; the claimed invention cannot be considered new or cannot be considered to involve an inventive step when the document is taken alone
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, each combination being obvious to a person skilled in the art
& document member of the same patent family

Date of the actual completion of the international search
07 OCTOBER 2013 (07.10.2013)

Date of mailing of the international search report
07 OCTOBER 2013 (07.10.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 189 Seonam-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KR 10-1100254 B1</td>
<td>28/12/2011</td>
</tr>
<tr>
<td>KR 10-0927174 B1</td>
<td>23/12/2009</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011-116642 A</td>
<td>16/06/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2012-0081957 A</td>
<td>20/07/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0027644 A3</td>
<td>27/05/1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0027644 B1</td>
<td>11/01/1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 04348313 A</td>
<td>07/09/1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 04391969 A</td>
<td>05/07/1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 81-01147 A1</td>
<td>30/04/1981</td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분류(IPC))
C01B 17/02(2006.01)i, B01J 19/20(2006.01)i, B28B 1/00(2006.01)i, B28B 3/00(2006.01)i, B82Y 40/00(2011.01)n

B. 조사한 분야
조사된 기술분야(국제특허분류를 기재)
C01B 17/021; B01J 8/26; C08F 8/34; B05D 1/00; B05D 7/00; C08G 75/14; C08G 75/16; B01J 19/20; B82B 1/00; B82B 3/00; B82Y 40/00
조사한 기술분야에 속하는 최소문헌의 염두에 듯음
한국특허출원등록공보 및 한국공개출원등록공보: 조사된 최소문헌내기 기재된 IPC
일본특허출원등록공보 및 일본공개출원등록공보: 조사된 최소문헌내기 기재된 IPC
국제조사에 이용된 신상 데이터베이스(데이터베이스의 명칭 및 검색어(검색하는 경우))
eKOMPASS(특허청 내부 검색시스템) & 키워드: 유황, 개질, 점도, 섬유상, 관상, 방사, 방사상, 고무화, 조유화

C. 관련 문헌
카테고리*	인용문헌명 및 관련 구절(해당하는 경우)의 기재	관련 청구항
A	KR 10-2011-0052556 A(최문선) 2011.05.18	1-71
청구항 1, 4, 5, 7, 16, 19, 25, 26, 28 참조.	1-71	
A	KR 10-0927174 B1(회용철 외 1명) 2009.12.23	1-71
청구항 1 참조.	1-71	
A	KR 10-2010-0072538 A(최문선) 2010.07.01	1-71
청구항 1, 3 참조.	1-71	
A	KR 10-2011-0061441 A(한국과학기술연구원) 2011.06.09	1-71
요약 및 청구항 1, 7, 14, 15 참조.	1-71	
A	US 4311826 A(MoBE, W, C 외 1명) 1982.01.19	1-71
요약 및 청구항 1, 4 참조.	1-71	
A	쳐보름 외 2명. "유황개질 비언더의 제조 및 유효 콘크리트의 특성".	1-71
콘크리트학회지, 2011, 제23권, 제6호, 제40-42페이지.	1-71	

[] 추가 문헌이 C(계속)에 기재되어 있습니다. ❌ 대응대비에 관한 별지를 참조하십시오.

* 인용된 문헌의 특별 카테고리:
 "A" 특별한 관련이 없는 것으로 보이는 일반적인 기술수준을 정직한 문헌
 "E" 국제표준이나 보다 높은 수준의 기술을 가리키거나 국제표준이 이후에 공개된 문헌 또는 특허문헌
 "L" 우선권 존재문헌의 문서를 위한 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유(예: 출원일)를 해석하기 위해 인용한 문헌
 "O" 구두 저자, 사용, 검토 또는 기타 수단을 이용하고 있는 문헌
 "P" 우선권 이후에 공개되었거나 국제표준이 이전에 공개된 문헌

국제조사의 실제 완료일
2013년 07월 07일(07.10.2013)
국제조사보고서 발송일
2013년 10월 07일(07.10.2013)

ISA/KR의 변경 및 수령소주
대한민국 특허청
(302-701) 대전광역시 서구 정자로 189, 4층 (동산동, 정부대전청사)
팩스 번호 +82-42-472-7140

서식 PCT/ISA/210 (두 번째 용지) (2009년 7월)
제2기재항 일부 청구항을 조사할 수 없는 경우의 의결(첫 번째 용지의 2의 계속)

PCT 제17조(2)(a)의 규정에 따라 다음과 같은 이유로 일부 청구항에 대하여 본 국제조사보고서가 작성되지 아니하였습니다.

1. ◯ 청구항:
 이 청구항은 본 기관이 조사할 필요가 없는 대상에 관련됩니다. 즉,

2. ◯ 청구항:
 이 청구항은 유효한 국제조사의 수행을 수행할 수 없음을 정도로 소정의 요건을 충족하지 아니하는 국제출원의 부분과 관련됩니다. 구체적으로는,

3. ◯ 청구항:
 이 청구항은 종속청구항이나 PCT규칙 6.4(a)의 두 번째 및 세 번째 문장의 규정에 따라 작성되어 있지 않습니다.

제3기재항 발명의 단일성이 결여된 경우의 의결(첫 번째 용지의 3의 계속)

본 국제조사기록은 본 국제출원이 다음과 같이 다수의 발명이 있다고 합니다.

제1발명군 (청구항 1-17, 25-71): 섬유성(fiber), 판상(film), 또는 냉장구조(network structure)의 미세조직 형상을 포함하거나, 방삭성(spinnability)을 가지는 것인, 개발유형: 그 제조방법: 그 개발유형을 포함하는 방장재료, 방사재료, 이스플트 장성을 또는 그들의 제조방법: 그 개발유형을 포함하는 방정고범락 또는 방수고범락의 제조방법.

1. ◯ 출원인이 모든 추가수수료를 기간 내에 납부하였으므로, 본 국제조사보고서는 모든 조사 가능한 청구항을 대상으로 합니다.

2. ◯ 추가수수료 납부를 요구하지 않고도 모든 조사 가능한 청구항을 조사할 수 있었으므로, 본 기관은 추가수수료 납부를 요구하지 아니하였습니다.

3. ◯ 출원인이 추가수수료의 일부만을 기간 내에 납부하였으므로, 본 국제조사보고서는 수수료가 납부된 청구항만을 대상으로 합니다. 구체적인 청구항은 아래와 같습니다.

4. ◯ 출원인이 기간 내에 추가수수료를 납부하지 아니하였습니다. 따라서 본 국제조사보고서는 청구범위에 처음 기재된 발명에 한정되어 있으며, 해당 청구항은 아래와 같습니다.

이의신청에\n관한 기재

- 출원인의 이의신청 및 이의신청로 납부(해당하는 경우)와 함께 추가수수료가 납부되었습니다.
- 출원인의 이의신청과 함께 추가수수료가 납부되었으나 이의신청이 보정요구서에 명시된 기간 내에 납부되지 아니하였습니다.
- 이의신청 없이 추가수수료가 납부되었습니다.

서식 PCT/ISA/210 (첫 번째 용지의 계속(2)) (2009년 7월)
<table>
<thead>
<tr>
<th>국내조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KR 10-1100254 B1</td>
<td>2011/12/28</td>
</tr>
<tr>
<td>KR 10-0927174 B1</td>
<td>2009/12/23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 10-2010-0072538 A</td>
<td>2010/07/01</td>
<td>KR 10-1017992 B1</td>
<td>2011/03/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011-116642 A</td>
<td>2011/06/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2012-0081957 A</td>
<td>2012/07/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0027644 A3</td>
<td>1981/05/27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0027644 B1</td>
<td>1984/01/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 04348513 A</td>
<td>1982/09/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 04391909 A</td>
<td>1983/07/05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 81-01147 A1</td>
<td>1981/04/30</td>
</tr>
</tbody>
</table>

"서식 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)"