PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7.

GOG6F 3/033 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/60443

12 October 2000 (12.10.00)

(21) International Application Number: PCT/US00/08674

(22) International Filing Date: 31 March 2000 (31.03.00)

(30) Priority Data:
60/127,997
60/128,003

6 April 1999 (06.04.99)
6 April 1999 (06.04.99)

us
(SN

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 98052-6399 (US).

(72) Inventors: ROBERTSON, George, G.; 3803 49th NE, Seattle,
WA 98105 (US). CZERWINSKI, Mary, P.; 14330 178th
Lane NE, Woodinville, WA 98072 (US). HINCKLEY,
Kenneth, P.; Apartment T101, 10916 Forbes CK Dr.,
Kirkland, WA 98033 (US). RISDEN, Kirsten, C.; 11103
174th Street, Bothell, WA 98011 (US). ROBBINS, Daniel,
C.; 115 11th Avenue East, Seattle, WA 98102 (US). VAN
DANTZICH, Maarten, R.; 1814 E. Harrison, Seattle, WA
98112 (US).

(74) Agents: MAGEE, Theodore, M. et al.; Westman, Champlin &
Kelly, P.A., International Center, Suite 1600, 900 Second
Avenue South, Minneapolis, MN 55402-3319 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: METHOD AND APPARATUS FOR HANDLING DISMISSED DIALOGUE BOXES

(57) Abstract

The present invention provides a method and apparatus
for handling a dismissed dialogue box (730) that displays
an animation in which the dialogue box (730) moves to an
off-screen space beyond the perimeter of a computer display.
Based on a later user request to view the dismissed dialogue
box (730), the present invention provides a further animation
that brings the off-screen space (714) and the dialogue box
into view. Under some embodiments, multiple dismissed
dialogue boxes (720, 722) are stored in the off-screen space
(714) and the user can manipulate the boxes when viewing
the off-screen space. In some embodiments, the off-screen
space is brought into view by rotating the space into the user’s
current view. In other embodiments, the user’s current view
is rotated to show the space.

714 SN

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI

CN
Cu

DE
DK

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

FI

FR
GA
GB
GE
GH
GN
GR

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
T
™
TR
TT
UA
uG
us
UzZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/60443 PCT/US00/08674

-1-
METHOD AND APPARATUS FOR HANDLING
DISMISSED DIALOGUE BOXES

BACKGROUND OF THE INVENTION

The present invention relates to computer
5 1interfaces. In particular, the present invention
relates to computer interfaces that utilize dialogue
boxes.
Many computexr systems display images
produced by different applications within different
10 windows on a computer monitor. Examples of operating
systems that generate such windows include Windows
95°, Windows 98°, Windows NT', and Windows® 2000 from
Microsoft Corporation. In such systems, users are
able to interact with multiple applications. For
15 example, a user may have one window open for Word 97
from Microsoft Corporation and a second window open
for Excel from Microsoft Corporation.
Each application, and the operating system
itself, is able to generate dialogue windows or boxes
20 in which the application or operating system provides
error or status information to the user. Such
dialogue boxes usually require that the user press
the "ENTER" key on the keyboard or activate a button
within the dialogue box in order to dismiss the
25 dialogue box. Typically, dialogue boxes prevent the
user from performing any other task on the computer
until the dialogue box has been dismissed.
Although dialogue boxes can contain

important information, users often dismiss the boxes

WO 00/60443

10

15

~ 20

25

30

-2-

before they have read or understood the contents of
the boxes. Under current systems, once the dialogue
box is dismissed, the user has no means to recall the
dialogue box to review its contents.

SUMMARY OF THE INVENTION

The present invention provides a method and
apparatus for handling a dismissed dialogue box that
displays an animation in which the dialogue box moves
to an off-screen space beyond the perimeter of a
computer display. Based on a later user request to
view the dismissed dialogue box, the present
invention provides a further animation that brings
the off-screen space and the dialogue box into view.
Under some embodiments, multiple dismissed dialogue
boxes are stored in the off-screen space and the user
can manipulate the boxes when viewing the off-screen
space.

In some embodiments, the off-screen space
is brought into view by rotating the space into the
user's current view. In other embodiments, the
user's current view is rotated to show the space.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plan view of a general
computing environment in which embodiments of the
invention may be practiced.

FIG. 2 is a top-back perspective view of a
task gallery display of an embodiment of the present
invention.

FIG. 3 is a side perspective view of the

task gallery of FIG. 2.

PCT/US00/08674

WO 00/60443

10

15

20

25

-3-

FIG. 4 is a screen image of a task gallery
user interface generated under an embodiment of the
present invention.

FIG. 5 1is a diagram of a container object
hierarchy under an embodiment of the invention.

FIG. 6 1s a screen image of the task
gallery of FIG. 4 populated by tasks and windows.

FIG. 7 is a diagram showing the
relationship Dbetween mouse movement and object
movement for objects associated with different parts
of the task gallery.

FIGS. 8A-8B show selected frames from the
animated movement of a task on the right side wall of
the task gallery.

FIGS. 9A-9B show selected frames from the
animated movement of a task on the left side wall of
the task gallery.

FIGS. 10A-10B show selected frames from the
animated movement of a task on the floor of the task
gallery.

FIGS. 11A-11B show selected frames from the
animated movement of a task on the ceiling of the
task gallery.

FIGS. 12A-121 show selected frames from the
animated movement of a task as it is moved between
the walls, ceiling and floor of the task gallery.

FIGS. 13A-13E show selected frames from the
animated movement of tasks when focus is shifted to a

new task.

PCT/US00/08674

WO 00/60443

10

15

20

25

-4-

FIGS. 14A-14F show selected frames from the
animated movement of the virtual user and tasks when
focus 1is shifted to a new task using a menu
selection.

FIGS. 15A-15D show selected frames from the
animated movement of a virtual user to the home
viewing area.

FIG. 16 shows a movement control in a task
gallery of one embodiment of the invention. |

FIG. 17 shows a focus task from the
perspective of the home viewing area.

FIGS. 18A-18D show selected frames from the
animated movement of a window from the primary
viewing location to the loose stack.

FIGS. 19A-19C show selected frames from the
animated movement of a window from the ordered stack
to the loose stack.

FIGS. 20A-20C show selected frames from the
animated movement of a window from the ordered stack
to the primary viewing location in place of an
existing window in the primary viewing location.

FIGS. 21A-21C show selected frames from the
animated movement of a window from the loose stack to
the ordered stack.

FIGS. 22A-22C show selected frames from the
animated movement of a window from the loose stack to
the primary viewing location in place of an existing

window in the primary viewing location.

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-5-

FIGS. 23A-23C show selected frames from the
animated movement of a window from the primary
viewing location to the ordered stack.

FIGS. 24A-24C show selected frames from the
dragging of a window within the loose stack.

FIGS. 25A-25C show selected frames from the
animated movement of a window within the loose stack.

FIGS. 26A-26F show selected frames from the
dragging and animated movement of a window within the
ordered stack.

FIG. 27 shows a set of iconic buttons for
controlling movement of windows in an embodiment of
the present invention.

FIGS. 28A-28D show selected frames from the
animated movement of a window from the primary
viewing location to the loose stack using button
icons.

FIGS. 29A-29C show selected frames from the
animated movement of a window from the ordered stack
to the loose stack using button icons.

FIGS. 30A-30C show selected frames from the
animated movement of a window from the ordered stack
to the primary viewing location in place of an
existing window in the primary viewing location using
button icons.

FIGS. 31A-31C show selected frames from the
animated movement of a window from the loose stack to
the primary viewing location in place of an existing
window in the primary viewing location using button

icons.

PCT/US00/08674

WO 00/60443

10

15

20

25

-6-

FIGS. 32A-32C show selected frames from the
animated movement of a window from the loose stack to
the ordered stack using button icons.

FIGS. 33A-33C show selected frames from the
animated movement of a window from the primary
viewing 1location to the ordered stack using button
icons.

FIGS. 34A-34C show selected frames from the
animated movement of a window within the loose stack
using button icons.

FIGS. 35A-35C show selected frames from the
animated movement of a window within the loose stack
using a second embodiment of button icons.

FIGS. 36A-36C show selected frames from the
dragging of a window within the loose stack using
button icons.

FIGS. 37A-37F show selected frames from the
dragging and animated movement of a window within the
ordered stack using button icons.

FIGS. 38A-38J show selected frames from the
animated movement associated with adding windows to
the primary viewing location.

FIGS. 39A-39C show selected frames from an
animated movement associated with glancing at the
left tool space.

FIGS. 40A-40C show selected frames from an
animated movement associated with returning to a
forward view after selecting an application from the

left tool space.

PCT/US00/08674

WO 00/60443

10

15

20

25

-7-

FIGS. 41A-41C show selected frames from an
animated movement associated with glancing at the
right tool space.

FIGS. 42A-42C show selected frames from an
animated movement associated with returning to a
forward view after selecting an application from the
right tool space.

FIGS. 43A-43C show selected frames from an
animated movement associated with glancing at the up
tool space.

FIGS. 44A-44C show selected frames from an
animated movement associated with glancing at the
down tool space.

FIGS. 45A-45E show selected frames from an
animated movement of a dismissed dialog box as it
moves toward the down tool space.

FIGS. 46A-46E show selected frames from an
animated movement of a window from one task to
another.

FIGS. 47A-47B show selected frames from an
animated movement of a window boundary during
resizing.

FIG. 48 is a block diagram of software and
hardware elements of one embodiment of the present
invention.

FIG. 49 is a flow diagram for redirecting
window display data generated by an application.

FIG. 50 is a flow diagram of an animation

loop for rendering redirected window data.

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-8-

FIG. 51 is a flow diagram for redirecting

pointing device input messages.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

FIG. 1 and the related discussion are
intended to provide a brief, general description of a
suitable computing environment in which the invention
may be implemented. Although not required, the
invention will be described, at least in part, in the
general context of computer-executable instructions,
such as program modules, being executed by a personal
computer. Generally, program modules include routine
programs, objects, components, data structures, etc.
that perform particular tasks or implement particular
abstract data types. Moreover, those skilled in the
art will appreciate that the invention may be practiced
with other computer system configurations, including
hand-held devices, multiprocessor systems,
microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe
computers, and the like. The invention may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that
are linked through a communications network. In a
distributed computing environment, program modules may
be located in both local and remote memory storage
devices.

With reference to FIG. 1, an exemplary
system for implementing the invention includes a
general purpose computing device in the form of a

conventional personal computer 20, including a

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-9-

processing unit (CPU) 21, a system memory 22, and a
system bus 23 that couples various system components
including the system memory 22 - to the processing unit
21. The system bus 23 may be any of several types of
bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any
of a variety of bus architectures. The system memory
22 includes read only memory (ROM) 24 and random access
memory (RAM) 25. A basic input/output (BIOS) 26,
containing the basic routine that helps to transfer
information between elements within the personal
computer 20, such as during start-up, is stored in ROM
24. The personal computer 20 further includes a hard
disk drive 27 for reading from and writing to a hard
disk (not shown), a magnetic disk drive 28 for reading
from or writing to removable magnetic disk 29, and an
optical disk drive 30 for reading from or writing to a
removable optical disk 31 such as a CD ROM or other
optical media. The hard disk drive 27, magnetic disk
drive 28, and optical disk drive 30 are connected to
the system bus 23 by a hard disk drive interface 32,
magnetic disk drive interface 33, and an optical drive
interface 34, respectively. The drives and the
associated computer-readable media provide nonvolatile
storage of computer readable instructions, data
structures, program modules and other data for the
personal computer 20.

Although the exemplary environment described
herein employs the hard disk, the removable magnetic

disk 29 and the removable optical disk 31, it should be

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-10-

appreciated by those skilled in the art that other
types of computer readable media which can store data
that is accessible by a computer, such as magnetic
cassettes, flash memory cards, digital video disks,
Bernoulli cartridges, random access memories (RAMs),
read only memory (ROM), and the like, may also be used
in the exemplary operating environment.

A number of program modules may be stored on
the hard disk, magnetic disk 29, optical disk 31, ROM
24 or RAM 25, including an operating system 35, one or
more application programs 36, other program mcdules 37,
and program data 38. A user may enter commands and
information into the personal computer 20 through local
input devices such as a keyboard 40, pointing device 42
and a microphone 43. Other input devices (not shown)
may include a joystick, game pad, satellite dish,
scanner, or the 1like. These and other input devices
are often connected to the processing unit 21 through a
serial port interface 46 that is coupled to the system
bus 23, but may be connected by other interfaces, such
as a sound card, a parallel port, a game port or a
universal serial bus (USB). A monitor 47 or other type
of display device is also connected to the system bus
23 via an interface, such as a video adapter 48. In
addition to the monitor 47, personal computers may
typically include other peripheral output devices, such
as a speaker 45 and printers (not shown).

The personal computer 20 may operate in a
networked environment using logic connections to one or

more remote computers, such as a remote computer 49.

PCT/US00/08674

WO 00/60443

10

15

20

25

-11-~

The remote computer 49 may be another personal
computer, a hand-held device, a server, a router, a
network PC, a peer device or other network node, and
typically includes many or all of the elements
described above relative to the personal computer 20,
although only a memory storage device 50 has been
illustrated in FIG. 1. The logic connections depicted
in FIG. 1 include a local area network (LAN) 51 and a
wide area network (WAN) 52. Such networking
environments are commonplace in offices, enterprise-
wide computer network Intranets, and the Internet.

When used in a LAN networking environment,
the personal computer 20 is connected to the local area
network 51 through a network interface or adapter 53.
When used in a WAN networking environment, the personal
computer 20 typically includes a modem 54 or other
means for establishing communications over the wide
area network 52, such as the Internet. The modem 54,
which may be internal or external, is connected to the
system bus 23 via the serial port interface 46. 1In a
network environment, program modules depicted relative
to the personal computer 20, or portions thereof, may
be stored in the remote memory storage devices. It
will be appreciated that the network connections shown
are exemplary and other means of establishing a
communications link between the computers may be used.
For example, a wireless communication link may be
established between one or more portions of the

network.

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-12-

Under the present invention, a three-dimensional user
interface 1s generated that allows a user to
manipulate and use windows by associating the windows
with separate tasks. In the description below, this
three-dimensional user 1interface 1s referred to
alternatively as a task gallery, a data hallway, and
a data mine. Generally, the three-dimensional user
interface gives the user the perception that they are
within a hallway or gallery consisting of a number of
aligned hallway sections that end with a stage or
display area at an end wall.
TASK GALLERY LAYOUT

FIG. 2 provides a top back perspective view
of a task gallery 200 of one embodiment of the
present invention with the ceiling in the gallery
removed to expose the remainder of the gallery. Task
gallery 200 includes rooms 202, 204, 206 and 208 that
each have walls forming a portion of side walls 210
and 212, and floors that form a portion of gallery
floor 214. Room 208 alsc includes an end wall 216
and a stage 217.

FIG. 3 provides a perspective view from the
side of task gallery 200 of FIG.2. In FIG. 3,
ceiling 202 of task gallery 200 is shown connecting
side walls 210, and 212. Although only four rooms,
202, 204, 206 and 208 are shown in FIGS. 2 and 3,
many task galleries of the present invention are
indefinitely extendable by the |user. In one
embodiment, the user interface automatically

generates additional rooms as the user moves objects

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-13-

out of the last existing room or creates new objects
that necessitate the creation of new rooms. In such
embodiments, the interface also removes back-end
rooms if they no longer contain objects. Thus, the
task gallery may consist of as few as one room.

When the user is using task gallery 200 of
FIG. 3, the three-dimensional image provided to the
user is based upon the combination of the location of
a virtual body, representing the user’s body in the
task gallery and the orientation of a virtual head or
camera representing the wuser’s head in the task
gallery. The user's virtual head is able to rotate
independently of the direction the virtual body is
facing, so that the user can glance up and down and
to the sides as discussed further below.

FIG. 4 provides a screen image representing
the view from the virtual camera when the wvirtual
camera is directed toward end wall 216 and the
virtual body is positioned at a location 220 in FIG.
3. Thus, in FIG. 4, end wall 216 and stage 217 are
shown as being some distance from the user and floor
214, ceiling 218, and walls 210 and 212 can be seen.

In some embodiments, each segment of the
hallway is decorated so as to make it distinct from
other segments of the hallway. For example, the
walls, floor, and ceiling of a segment may be
decorated with unique texture maps to make the
hallway segment look unique. This helps to enhance
the user’s spatial memory of locations for storing or

retrieving objects. Segments of the hallway may also

PCT/US00/08674

WO 00/60443 PCT/US00/08674

-14-

be decorated with three-dimensional landmarks such as
a virtual chair, a chandelier, or other decoratiomn,
to make the hallway segment further visually distinct
and memorable.
5 CONTAINER OBJECTS
In one embodiment of the invention, the
user interface program that generates the three-

dimensional task gallery 1is programmed using an

object-oriented programming language. Under such an
10 embodiment, a container object is defined that
includes a property of containing other objects. The

objects that are contained within a container object
are known as containables. A displayed item
associated with a containable object has 1its
15 appearance and movement defined in part by the
container object that holds the containable object.

In one embodiment, the task gallery is
represented by a container object that contains room
objects. Each room object contains two side wall

20 objects, a floor object and a ceiling object. Each of
these containable objects 1is 1in turn a container
object that contains further objects. This hierarchy
is shown in FIG. 5 where task gallery object 250
contains room objects 251 and 252. Room object 251

25 contains stage object 254, left side wall object 255,
right side wall object 256, end wall object 257,
floor object 258, and ceiling object 260. Room
object 252 contains left side wall object 270, right
side wall object 272, floor object 274, and ceiling

30 object 276. When using a task gallery, the user may

WO 00/60443

10

15

20

25

-15-

add task objects to the wall, floor or ceiling
objects of a room. For example, task objects 262,
and 264 of FIG. 5 have been added to left side wall
object 270 of room object 252. When a task object is
added to a structural object such as a left side wall
object, the image associated with the task object
appears bound to the image of the structure
associated with the structural object.

For example, FIG. 6 shows that a task image
300 appears near left side wall 210 of room 208 when
the task object associated with task image 300 1is
contained within the 1left side wall object of the
room.

The appearance of task 300 in FIG. 6 is
defined in part by the fact that the task object
representing task 300 is contained within the 1left
side wall object. 1In particular, task 300 appears on
a stand 302 and has a title bar 304 placed along its
top edge. The stand helps the user determine the
three-dimensional location of the particular task. In
addition, task 300 does not lie flat against wall
210, but instead extends out into the hallway of the
task gallery.

In FIG. 5, task objects are shown in right
side wall object 252, and ceiling object 260 of room
object 251 and floor object 274 of room 252.
Examples of images associated with such task objects
are shown in FIG. 6 as right side wall task 310,

ceiling task 308, and floor task 306, respectively.

PCT/US00/08674

WO 00/60443

10

15

20

25

-16-

In the embodiment of FIG. 6, floor task 306
appears with the top of the task closer to the end
wall than to the user. In addition, a title bar 312
appears on the top edge of the task and the top edge
is raised slightly from floor 214 to provide a better
view of the task to the user.

Ceiling task 308 has its top edge closer to
the user than to end wall 216. The top edge of task
308 is covered by a title bar 314 and the lower edge
of task 308 is suspended slightly from ceiling 218 to
provide a better view of the task image. All of these
arrangements may be created or changed by the user,
at will, to provide arrangements optimized for
particular uses.

Right side wall task 310 appears on a stand
318 and has a title bar 316. Task 310 does not lie
flat against wall 212, but instead extends out into
the hallway of the task gallery.

Note that the specific appearances of tasks
300, 306, 308, and 310 shown in FIG. 6 are only
examples of one embodiment of the present invention.
The specific appearance of any one of the tasks can
be changed within the scope of the invention. In
particular, tasks on side walls 210 and 212 may lie
flat against the wall and may not appear with a
stand. Under some embodiments, the height of the
stand changes dynamically to accommodate the
placement of the task so that the task always appears

to have a visual link with the floor area below it.

PCT/US00/08674

WO 00/60443

10

-17-

In one embodiment, structural objects such
as left side wall object 255, right side wall object
256, floor object 258, and ceiling object 260 may
each contain multiple task objects. In addition,
task images associated with each task object may be
moved along the image associated with the respective
wall, ceiling or floor object that contains the task
object. Moreover, a task object may be moved between
container objects causing the task image to change in

response to its new container object.

PCT/US00/08674

WO 00/60443

10

15

20

-18-

MOVEMENT OF TASKS WITHIN THE GALLERY

The tasks and windows of FIG. 6 can be
moved by the user. Table 1 below describes the
relationship between certain input key strckes and
pointing device events to the movement of windows and
tasks within a task gallery such as the task gallery
of FIG. 6. The particular effects of each input are
dependent on the location of the cursor. The first
two columns of Table 1 indicate the type of window
underneath the cursor and the task in which that
window is located. The top row of Table 1 indicates
the type of user input provided by the input device.
Although specific wuser inputs have been listed in
Table 1, those skilled in the art will recognize that
other input devices can be used in place of those
chosen and that not all affects shown within a same
column for an input instruction are necessarily
required to be <controlled by the same input
instructions. In other words, simply because two
events occur in the same column in the embodiment of
Table 1 does not necessarily mean that the same
events must be generated for the same input

instructions used in other embodiments.

PCT/US00/08674

PCT/US00/08674

WO 00/60443

-19-

MHIA

ADVLS T J3dd
HONVHD | adyddado HONVHO dONVHO sNo0o4d SNdO04 sSNdOod | 3 SNOO04 JASYL
ON OlL ON ON HOLIMS | HOLIMS HOLIMS -NON | sNDO04
MEIA
ADVYLS ADVLS MAIA *J3dd
45001 HONVYHO IDONVYHO dADONVYHD | ddydado *Jddd NI ADVYLS ASYL
OL ON ON ON | NI dAOW | OL ddv | 3OV'IdHd aaydaayo | sNO0d
JAOVYLS ADVLS
H5001 d5001 MEIA
ADVLS qJ0 J0 ADYLS MHEIA * 49494
dONVYHD | Adydado LNOY4 LNOY4 d5001 " 4ddd NI JOVYLS JSY.L
ON OL | OL 710d | OL T1nd | NI JAOW | Ol ddv¥ | d0VI1dHy dS00T | SNo0o4d
ADVYLS (LNHITO
IONVHD | d3¥Hddo HONYHO JONVYHD HONVHD | HONYHD HONYHO -NON) ASYL
ON OL ON ON ON ON ON 5No04d | sNdod
OITddv¥ (vauv¥
O0171ddvY oIT1ddv OI71ddV¥ OITddv dONVHO Ol DITddv¥y | LNHITO) JASYL
OL SSV¥d | OL SS¥Yd | OL SS¥d | OL S58%d ON SSV¥d | OL SSv¥d SND04d | sNdD04A
A¥ATIVD | AYHATIVD | AYITIED | AYHTTIVD JSYL
NI MSVYL | NI MSVYL | NI 2SV.L | NI ASVL ADNVYHO | ONVYHO SYSY.L 5ND04
JAONW HAOKW HAONW JACK ON ON HOLIMS ¥/N -NON
IONVYHO JONYHO HONVHD HONVYHD YIIWYD | HONVYHD HONVHD JASYL
ON ON ON ON dd4d.LS ON ON ¥/N -NON
LIV ADITO
LHOTIY LAHT NMOd + DVdd LAHIT ADITO
ovdd ovdda OYdd | dN ©VYdd LAHT LAIHS LAHAT MOQNIM JASYL

TABLE 1

WO 00/60443

10

15

20

25

30

-20-

In Table 1, there are seven different types
of input instructions. The first is the left click
instruction in which the left button of a pointing
device 1is clicked by depressing and releasing the
button. The second instruction is a shift-left
click, in which the shift key of the keyboard is
depressed while the 1left button of the pointing
device is clicked. The third input instruction is a
left drag plus "alt" key, in which the left button of
the pointing device and the "alt" key of the keyboard
are depressed while the pointing device 1is moved.
The 1last four instructions are drag up, drag down,
drag left, and drag right. These instructions
involve depressing the left button of the pointing
device and moving the pointing device up, down, left
and right, respectively.

Those ¢gkilled in the art will recognize
that other input instructions are possible under the
present invention. For instance, under one
embodiment, a secondary pointing device such as a
touch pad is used to provide input. In alternative
embodiments, input instructions are indicated by
using a combination of keystrokes with the arrow keys
on the keyboard.

As shown in Table 1, any task that does not
have focus (i.e. any task that is not on stage 217)
may be moved by using a traditional drag technique.
Thus, by positioning a cursor over the desired non-
focus task, and depressing the primary button of the

pointing device, the user can move the selected task

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-21-

by moving the pointing device. When the task is in
the desired position, the user releases the primary
button to "drop" the task in its new location. As
discussed further below, some windows in the focus
task can also be moved using this technique.

During a drag operation, the direction in
which a task moves for a given movement of the
pointing device is dependent upon which container
object the task is contained within. FIG. 7
describes the relationship between movement of the
input pointing device and corresponding movement of a
task contained by objects associated with floor 214,
ceiling 218, stage 217, and walls 216, 210 and 212.
In FIG. 7, the arrows indicate the directions that
objects move along the respective structures and the
words by the arrows indicate the directions of
movement of the pointing device. For walls 216, 210
and 212, movement forward and back with the pointing
device results in movement of the selected task or
window upward and downward, respectively. For a task
on left side wall 210, movement of the input device
to the 1left and right causes the window to move
respectively away from and toward end wall 216. For
a task on right side wall 212, movement of the input
device to the left and right causes the task to move
respectively toward and away from end wall 216. In
essence, the task currently being moved by the user
will appear to stay directly under the cursor.

For a task or window on end wall 216, stage

217, floor 214, and ceiling 218, movement of the

PCT/US00/08674

WO 00/60443

10

15

20

25

-22-

input device left‘and right causes the window or task
to move respectively left and right on the display.
For tasks on stage 217, floor 214 or ceiling 218,
movement of the input device forward and back causes
the displayed window to move respectively toward and
away from end wall 216. In one embodiment, tasks and
windows are restricted from moving freely in all
three dimensions of the virtual space but instead are
restricted to two-dimensional movement on the surface
of a wall, floor or ceiling.

FIGS. 8A and 8B depict the movement of a
task 350 along right side wall 212. In FIG. 8A, task
350 is initially shown near the virtual user. The
user then selects task 350 by positioning the cursor
over task 350 and depressing the primary button of
the pointing device. As the user moves the pointing
device to the left, task 350 recedes toward stage 217
and is eventually dropped by the user at the location
shown in FIG. 8B. Note that because the present
invention provides a three-dimensional user
interface, as task 350 is moved toward stage 217, it
progressively appears smaller.

FIGS. 9A and 9B show the movement of a task
352 along left side wall 210. FIGS. 10A and 10B show
the movement of a task 354 along floor 214 as task
354 is moved toward the user and away from stage 216.
FIGS. 11A and 11B show the movement of a task 356
along ceiling 218 away from stage 216 and toward the

user.

PCT/US00/08674

WO 00/60443 PCT/US00/08674

-23-

In one embodiment of the invention, tasks

may be moved between the side wall, the ceiling and

the floor. Such movements are shown in FIGS. 12A
through 12I. In FIG. 12A, a task 370 is shown on
5 wall 212. In FIG. 12B, task 370 has been moved to
the bottom of wall 212 near floor 214. Continued

movement downward along wall 212 eventually causes
task 370 to be removed from wall 212 and placed onto
floor 214. To avoid the possibility that the task

10 will flip-flop between the floor and the wall during
the transition, one embodiment of the present
invention includes a hysteresis distance along the
floor and the wall. Thus, the mouse must continue to
move a certain distance after the task meets the

15 intersection of the floor and the wall before the
task is moved to the floor. Likewise, the window
will not move from the floor back to the wall until
the mouse is moved a small distance to the right of
the intersection of the floor and the wall.

20 In an object oriented embodiment, such as
the embodiment of FIG. 5, the movement of task 370
from wall 212 to floor 214 involves moving the task
object associated with task 370 from the right side
wall container object to the floor container object.

25 As the task object is transferred, it 1loses the
appearance and movement behavior dictated by the
right side wall container object and adopts the
appearance and movement behavior dictated by the
floor container object. Thus, stand 372, which is

30 shown in FIG. 12A and 12B, disappears in FIG. 12C and

WO 00/60443

10

15

20

25

30

-24-

the orientation of task 370 is changed so that task
370 leans toward stage 216 instead of extending out
into the hallway. In addition, once the task object
has been moved to the floor container object, left
and right movement of the pointing device no longer
moves the task toward and away from stage 216 but
instead moves the task left and right across floor
214. 7

In FIG. 12D, task 370 has been moved across
floor 214 so that it is next to left side wall 210.
Continued movement in this direction causes the task
object associated with task 370 to be transferred
from the floor container object to the left side wall
container object. This causes the appearance of task
370 to change as shown in FIG. 12E where task 370 is
now shown on a stand 374 and is in an upright
position along wall 210. In FIG. 12F, task 370 has
been moved upward along wall 210 toward ceiling 218.
As task 370 is moved upward, stand 374 expands so
that it continues to connect task 370 to floor 214.

In FIG. 112G, task 370 has been moved
further upward along wall 210 causing the task object
associated with task 370 to be removed from the left
wall container object and into the ceiling container
object. Because of this, the appearance of task 370
has changed by removing the stand found in FIGS. 12E
and 12F and leaning the bottom of task 370 toward
stage 216. Other embodiments include further changing
the appearance of each task to suggest a more

realistic relationship between a task and its

PCT/US00/08674

WO 00/60443

10

15

20

25

-25-

location in a particular room. For example, a task
moved to the ceiling area might have its appearance
changed so that it looks like it is hanging from the
ceiling. A task placed on the floor might grow legs
so that it appeared to provide some semantic
consistency with the environment.

In FIG. 12H, task 370 has been moved to the
right across ceiling 218 toward right side wall 212.
Continued movement to the right causes the task
object associated with task 370 to be removed from
the ceiling container object and placed into the
right wall container ©object. This causes a
transformation in the appearance of task 370 as shown
in FIG. 12I. In particular, task 370 1is again
vertical in FIG. 12I and has a stand 376 that extends
from task 370 to floor 214.

OBJECTS ON STAGE

Returning to the hierarchy of FIG. 5, it can
be seen that stage object 254 contains only one task
object 268. In the embodiment shown in FIG. 6, when
a task object is placed in stage object 254, it
becomes the focus task and is associated with an
image that does not have a border around the task nor
a title bar over the task. (Although in some
embodiments, the title of the task can be seen in the
backdrop of the focus task.) In addition, instead of
being a single image element, a task on the stage
consists of multiple window images that can each be

manipulated by the user.

PCT/US00/08674

WO 00/60443

10

15

20

25

-26-

The window images of the focus task have
associated window objects that are grouped into
container objects within task object 268.
Specifically, as shown in FIG. 5, task object 268
contains a number of other container objects
including a loose stack object 270, an ordered stack
object 272, and a primary view object 274. Each of
these objects further contains a collection of window
objects such as window objects 276 and 278 of loose
stack object 270. One of the windows contained by
primary view object 274 is a focus window object 280.
Focus window object 280 1is associated with an
application, which receives keyboard and appropriate
pointer device input values as long as its associated
window object is designated as focus window object
280.

Although multiple window objects are shown
in loose stack 270, ordered stack 272 and primary
view 274, these containers are not required to always
contain a window object. At different times during
the practice of the invention, each of these
containers may be devoid of window objects.

Examples of window images associated with
window objects found in a focus task, such as task
268 of FIG. 5, are shown in FIG. 6. In FIG. 6,
window 320 is an image associated with a focus window
object contained by a primary view object, windows
322 and 324 are associated with window objects

contained by a loose stack object, and windows 326

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-27-

and 328 are associated with window objects contained
by an ordered stack object.

In FIG. 6, window 320 appears closer to the
user than loose stack windows 322 and 324 and ordered
stack windows 326 and 328. Loose stack windows 322
and 324 each appears on stands, and ordered stack
windows 326 and 328 each appears on a podium 330.

Under some embodiments of the invention,
various visual cues are added to each window in order
to further indicate its state. For example, windows
that are not selected, and thus do not allow
application interaction, can be shown with a semi-
transparent pane over the extent of the window.
Additionally an icon in the form of a padlock can be
superimposed over the window to indicate its state.

Under one embodiment of the present
invention, the user may only interact directly with
an application associated with a window if the window
is placed in the primary view associated with the
stage and the window is given focus. Thus, in order
to interact with a window within a task, the user
must first place the task at the stage. Under the
embodiment of Table 1, this is easily achieved by
clicking on the non-focus task that the user wishes
to move to the stage. Based on this clicking, the
user interface of the present invention provides an
animated display showing the removal of the current
task from the stage and its replacement by the
selected task. Selected frames from such an

animation are shown in FIGS. 13A through 13E.

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-28-

FIG. 13A shows an initial state of the user
interface display showing a current task 400 having a
primary viewing window 402 and two loose stack
windows 404 and 406. The initial display of FIG. 13A
also includes a selected task 408, which is the task
the user has “clicked” on to move to the stage.

After the user selects task 408, the user
interface generates a “snapshot” of current task 400.
The snapshot of current task 400 is an image showing
the appearance of task 400 from the home viewing area
before task 408 was selected.

To produce this snap shot while maintaining
the image of the gallery provided to the user, some
embodiments of the invention utilize two image
buffers. Most often, these embodiments change the
typical operation of two image buffers that are
already present in most three-dimensional rendering
systems. During normal operation, one of these
buffers, known as the back buffer, is being filled
with image data while the other buffer is being
accessed by the display driver to generate the
display. The data filling the back buffer represents
the appearance of the gallery from the user's next
position in the gallery. When the back buffer is
full, the two buffers are swapped such that the
current display buffer becomes the new back buffer
and the current back buffer becomes the new display
buffer. The new back buffer is then cleared and
filled with new image data representing the user's

next position in the gallery.

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-29-

This normal operation is changed to create
the snap shot. When the user selects a new task, the
camera's next position is set to the home viewing
area. The image of the task gallery is then rendered
from that position and the rendered image data is
stored in the back buffer. Without swapping the two
buffers, the data in the back buffer is read out into
a separate memory location that holds the snap shot.
The back buffer is then cleared and the position of
the camera is reset to its previous position. Normal
operation of the buffers is then restored. During
this operation, the display buffer is accessed to
produce the display, so the user is unaware of the
temporary change in the camera position.

Once generated, the snapshot is displayed
on a stand as shown in FIG. 13B where a task image
410 has been generated over the stage. After task
image 410 has been generated, task image 410 begins
to move away from the stage. In one embodiment, task
image 410 moves toward its last location in the task
gallery before it was selected to move to stage 217.
In some embodiments, this last location is marked by
a stand, such as stand 412, that supports a "dimmed"
or "faded" image of the task as it appeared before it
was moved to the stage. In other embodiments, the
location is not visibly marked on the display.

At the same time, task image 409 of
selected task 408 begins to move toward stage 217
while stand 411 of selected task 408 and a faded

version of task image 409 remain in place along the

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-30-

right side wall. FIG. 13C shows one frame of the
display during the animated movement of both task
image 410 and selected task 408.

In some embodiments, various visual cues
are placed around the border of the selected task to
indicate that it 1is selected. These can include a
border, brighter background image, or additional
textual cues.

As task image 410 moves from the stage, its
associated task object 1is removed from the stage
container object and is placed in the left side wall
container object. In one embodiment, this occurs as
soon as task image 410 moves far enough left in the
animation to be considered moving along the left side
wall.

In FIG. 13D, task image 410 has returned to
its previous position in the task gallery and
selected task image 409 is positioned over stage 217.
When task image 409 reaches stage 217, the task
object associated with task image 409 is removed from
the side wall container it had been in and is placed
in the stage container. When task image 409 is
placed in the stage container, under one embodiment,
a background image that is shown behind the windows
in task image 409 is expanded to f£ill all of end wall
216. The windows within task image 409 are then
redrawn using current data from the windows'
associated applications. In FIG. 13E, this means
that windows 414, 416 and 418 of selected task 408

are redrawn with the size and location of the windows

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-31-

determined by values stored for those windows when
selected task 408 was last moved from stage 217 to
the task gallery.

SWITCHING TASKS USING A MENU

In many embodiments of the invention, users
may also switch between tasks using a pop-up menu.
Such a technique is shown in FIGS. 14A through 14F.
In FIG. 14A, the user has invoked a pop-up window 420
that provides a "switch task" command. Although only
the "switch task" command is shown in FIG. 14A, those
skilled in the art will recognize that other commands
can also be present above and/or below the "switch
task" command. A secondary pop-up window 422 that
provides a list of tasks available in the task
gallery is shown displayed to the right of pop-up
window 420. The user may select one of the available
tasks by manipulating an input device such as the
keyboard or mouse. Note that in FIG. 14A, the
virtual user is in the home viewing area, which is
centered in front of stage 217 and end wall 216.

After the user has selected a task from
secondary pop-up window 422, the wuser interface
generates an animation that gives the appearance that
the user is moving backward through the task gallery.
This movement continues until the user is far enough
back that the selected task and the dimmed version of
the former current task are fully in view. In FIG.
14B, the task selected by the user is shown as
selected task 424. Although not necessary to the

practice of the present invention, this automatic

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-32-

movement allows the user to see an animated switch of
the tasks so that the user has a better understanding
of which task has actually been selected. In one
embodiment, the automatic movement of the user can be
over-ridden by the user through a user preference.

In FIG. 14C, the user interface generates a
"snapshot" of the current task and produces task
image 426 from that "snapshot". Task image 426 then
begins to move toward a stand 427 at 1its previous
location in the task gallery. At the same time, task
image 425 of selected task 424 begins to move toward
stage 217. FIG. 14D shows one frame during the
middle of this animated motion.

As task image 426 moves, its associated
object is removed from the stage container object and
is placed in the left side wall container object.

When task image 426 has returned to its
original location and selected task 424 has moved to
stage 217, as shown in FIG. 14D, the object
associated with selected task 424 is removed from the
right side wall container object and is placed into
the stage container object. The display then
regenerates each window in selected task 424 above
stage 217. In some embodiments, the virtual user is
then returned to the home viewing area.

VIRTUAL USER MOVEMENT

In the embodiment of the present invention
associated with the input controls of Table_l, the
user may move through the task gallery wusing a

pointing device to indicate the direction and

PCT/US00/08674

WO 00/60443

10

15

20

25

PCT/US00/08674
-33-
duration of each movement. Alternatively or in
addition to the direct movement, the user may

initiate movements to fixed positions within the task
gallery. To facilitate such movement, the task
gallery is divided into rooms with one or more user
positions within each room. By using a single key
stroke, the user may advance forward one room Or
backward one room. In addition, by using a dedicated
key or dedicated combination of keys, the user may
move directly from any location within the task
gallery to the home viewing area in front of stage
217.

These embodiments of the invention provide
a high level of control where a single click on an
appropriate navigational control (button), causes the
virtual user to move swiftly but smoothly from their
current location to a new desired location. In other
words, a discrete action results in transportation of
the virtual user to commonly used and useful
locations. This avoids problems of hand-eye
coordination and the need for well-developed
spatialization skills.

FIGS. 15A through 15D show an animated
motion from a remote location in the task gallery to
the home viewing area. Specifically, in FIG. 15A,
the user is located in the second room of the task
gallery. The user then initiates the command to move
to the home viewing area. FIGS. 15B and 15C show

selected frames in the animated movement towards

WO 00/60443

10

15

20

25

-34-

stage 217 and FIG. 15D shows the view from the home
viewing area.

FIG. 16 shows another embodiment of the
present invention in which a set of movement controls
428 are displayed in the lower 1left corner of the
three-dimensional environment. The movement controls
include a forward arrow control 429, a backward arrow
control 431, a home viewing area control 433, an
overview control 435, an up glance control 437, a
down glance control 439, a left glance control 441, a
right glance control 443 and a human figure 445.
Although the appearance of the buttons and icons in
FIG. 16 are found in several embodiments of the
invention, different designs for the appearance of
the buttons and icons can be used depending on the
intended experience level of the user.

By placing the cursor over a control and
depressing a button on the mouse or keyboard, a user
can select the control and cause the user to move
through the environment or change the direction of
their view of the environment. For instance,
selecting forward arrow control 429 causes the user
to move forward one room in the environment and
selecting backward arrow control 431 causes the user
to move backward one room. Selecting home viewing
area control 433 causes the user to move to the home
viewing area. Selecting overview control 435 causes
the user to move to the back of the task gallery so

that the entire task gallery is visible. Selecting

PCT/US00/08674

WO 00/60443 PCT/US00/08674

-35-

glancing controls 437, 439, 441, and 443 is discussed
below in connection with glances.
Under one embodiment of the present
invention, movement controls 428 are always present
5 on the screen. In other embodiments, movement
controls 428 are only displayed when the user
requests that they be displayed. For example, a
touch-sensitive input device can be used to fade 1in
or fade out the human figure. When the user touches
10 the input device, the figure appears, and when the
user lets go it vanishes. In still other embodiments,
the human figure is always present on the screen but
the movement controls only appear when the user
places the cursor over the figure. In further
15 embodiments of the invention, pausing the cursor over
one of the controls or the human figure generates a
tool-tip that describes the function of the control.
Further embodiments of the invention rely
on input devices that are optimized for the task of
20 navigation. These 1include dedicated keys on the
keyboard, touch-sensitive pads for direction control,
and/or small spring-loaded levers with sensors to
control the primary locomotion interactions.
THE FOCUS TASK
25 FIG. 17 shows a screen display produced
when the user is in the home viewing area in front of
stage 217. In FIG. 17, a task 430 is shown that
contains a focus window 432 in the primary viewing
area, windows 434 and 436 in a loose stack area and

30 windows 438 and 440 1in an ordered stack area.

WO 00/60443

10

15

20

25

30

-36-

Although the screen display of FIG. 17 is described
in connection with a virtual user placed in a three-
dimensional task gallery, the inventive aspects of
the screen display discussed below are not limited to
such an environment. As such, the inventive aspects
of the screen display of FIG. 17 discussed further
below may be practiced in an environment that does
not include a three-dimensional task gallery such as
a simple three-dimensional desktop.

MOVING WINDOWS FROM THE PRIMARY VIEW TO THE

LOOSE STACK

Within the current or focus task, the user
may move windows between the primary viewing area,
the loose stack, and the ordered stack. FIGS. 18A
through 18D show selected frames representing the
movement of a window from the primary viewing area to
the loose stack. In FIG. 18A, the user has placed
the cursor over window 442, which is located in the
primary viewing area. Note that window 442 has focus
in FIG. 18A, and as such, most keyboard and pointing
device inputs are provided directly to the
application corresponding to the focus window. In
order to overcome this default, a combination of
keystrokes may be used as the command to move the
window from the primary viewing area to the loose
stack. For example, in the embodiment associated
with Table 1, the user performs a drag up on the
window in the primary viewing area while depressing
the "alt" key in order to move it to the loose stack.

Alternatively, the command for moving a window to the

PCT/US00/08674

WO 00/60443

10

15

20

25

-37-

loose stack from the primary viewing area can require
that the cursor be positioned in a non-client area
(also known as a window decoration area) in order for
the command input to be directed away £from the
application and to the user interface.

Upon receiving the input corresponding to
the user’s desire to move window 442 to the loose
stack, the user interface begins to push window 442
back toward a loose stack area 450 as shown in FIG.
18B. When window 442 reaches loose stack area 450,
as shown in FIG. 18C, the window object associated
with window 442 is removed from the primary viewing
container and placed into the loose stack container.
Since windows in the 1loose stack have stands that
connect the windows to the floor, a stand is then
drawn below window 442 as shown in FIG. 18D.

MOVING WINDOWS FROM THE ORDERED STACK TO THE
LOOSE STACK

FIGS. 19A through 19C show selected frames
of an animation produced by an embodiment of the
present invention to show the movement of a window
454 from an ordered stack 456 to a loose stack 458.
In FIG. 19A, the user has positioned a cursor 460
over window 454. With the cursor positioned over
window 454, the user provides input corresponding to
a desire to move window 454 to loose stack 458. In
the embodiment of Table 1 this input is a drag to the
right. In other embodiments, any dragging operation

from the ordered stack toward the loose stack will be

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-38-

interpreted as a command to move the selected window
from the ordered stack to the loose stack.

When the user interface receives the drag
right input, it generates an animated movement of the
selected window 454 that shows window 454 moving up
from the ordered stack 456 toward loose stack 458.
In addition, the animation shows the rotation of
window 454 so that the window's orientation matches
the orientation of the loose stack windows. FIG. 19B
shows a frame of this animated movement.

In FIG. 19C, window 454 1is positioned
within loose stack 458. At this point, the object
associated with window 454 has been removed from the
ordered stack container and has been placed in the
loose stack container. As such, window 454 is drawn
in the display with a stand 460 extending from the
bottom of window 454 to the floor. In addition, if
the window removed from the ordered stack was not the
front window, an animation is invoked to re-position
the windows in the ordered stack so that they are a
fixed distance apart from each other.

MOVEMENT OF A WINDOW FROM THE ORDERED STACK TO THE

PRIMARY VIEWING AREA
FIGS. 20A through 20C show separate frames
of an animation created by the present user interface
when the user wishes to replace the window in the
primary viewing area with a window on the ordered
stack. In FIG. 20A, the user has positioned a cursor
462 over a window 464 in an ordered stack 466. With

the cursor in this position, the user indicates their

PCT/US00/08674

WO 00/60443 PCT/US00/08674

-39-

desire to replace window 468 of the primary viewing

area with window 464. In the embodiment of Table 1,

the user indicates their desire for this change by

clicking a primary button of a pointing device such
5 as a mouse or a track ball.

Upon receiving the “click” input, the user
interface simultaneously moves window 464 up toward
the primary viewing area and pushes window 468 back
toward either loose stack 470 or ordered stack 466.

10 In one embodiment, window 468 is pushed back toward
the stack that the window was in before it was moved
to the primary viewing area. When window 464 reaches
the primary viewing area and window 468 reaches loose
stack 470, the object’s associated with these windows

15 are moved into the appropriate container objects.
For example, window 464 1is moved from the ordered
stack container object into the primary viewing area
container object. In addition, window 464 1is
identified as the focus window.

20 Lastly, 1f the window removed from the
ordered stack was not the front window, an animation
is invoked to re-position the windows in the ordered
stack so that they are a fixed distance apart from
each other.

25 MOVING A WINDOW FROM THE LOOSE STACK TO THE ORDERED

STACK
FIGS. 21A through 21C show frames from an
animation generated when the user indicates that they
want to move a window 472 from a loose stack 474 to

30 an ordered stack 476. In one embodiment, the user

WO 00/60443

10

15

20

25

30

-40-

indicates that they wish to move a window from the
loose stack to the ordered stack by placing a cursor
over the window and performing a drag left. In other
embodiments, any dragging operation from the loose
stack to the vicinity of the ordered stack will be
interpreted as a command to move the selected window
from the loose stack to the ordered stack.

After receiving the drag left input, the
user interface generates an animation in which window
472 1is brought forward toward ordered stack 476 and
is rotated so that it is aligned with the other
windows in ordered stack 476. FIG. 21B shows one
frame of that animated movement. Before moving
window 472, stand 478 of FIG. 21A is removed from the
bottom of window 472. When window 472 reaches
ordered stack 476, the object associated with window
472 is removed from the loose stack container object
and is placed in the ordered stack container object.

MOVING A WINDOW FROM THE LOOSE STACK TO
THE PRIMARY VIEWING AREA

FIGS. 22A through 22C show selected frames
from an animation generated by the present interface
when the user wishes to replace a window 484 in the
primary viewing area with a window 480 from a loose
stack 482. In the embodiment of Table 1, the user
initiates this movement by clicking on window 480.
Based on this input, the user interface generates an
animation in which window 480 is brought forward from
loose stack 482 to the primary viewing area and

window 484, which is in the primary viewing area, is

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-41 -

moved back to either the loose stack or the ordered
stack depending on where it was before being placed
in the primary viewing area. For the purposes of
FIGS. 22A through 22C, window 484 was in loose stack
482 before being moved to the primary viewing area.
During the animation, the object associated
with window 480 is removed from the loose stack
container object. This causes stand 486 to disappear
so that window 480 appears unsupported. At the same
time, the object associated with window 484 is
removed from the primary viewing container and placed
into the 1loose stack container. When the object
associated with window 484 is placed in the loose
stack container object, a stand appears below window
484 .
MOVING WINDOWS FROM THE PRIMARY VIEWING AREA TO THE

ORDERED STACK

FIGS. 23A through 23C show selected frames
from an animation created by an embodiment of the
present user interface when the user indicates that
they wish to move a window 490 from the primary
viewing area to ordered stack 492. In one
embodiment, the user indicates that they want to move
window 490 to ordered stack 492 by performing a drag
left while the "alt" key is depressed and the cursor
is positioned over window 490.

Under this embodiment, when the user
interface receives a drag left and "alt" key input
while the cursor is positioned over window 490, the

user interface initiates an animation in which window

PCT/US00/08674

WO 00/60443

10

15

20

25

-42-

490 is pushed backward and rotated slightly to align
itself with ordered stack 492 as shown in FIG. 23B.
When window 490 reaches ordered stack 492, the object
associated with window 490 is placed in the ordered
stack container object and is removed from the
primary viewing area object. The end result of this
animation is shown in the frame of FIG. 23C.
MOVING OBJECTS WITHIN THE LOOSE STACK

Windows within the loose stack inherit
movement properties from the loose stack container
object that allow the user to reposition the windows
freely within the loose stack. In one embodiment,
there are two types of possible movement for a window
within the loose stack. First, the window may be
moved laterally or vertically within the loose stack
as shown in FIGS. 24A through 24C where window 500 in
loose stack 502 is moved by the user from an initial
position shown in FIG. 24A to a second position shown
in FIG. 24B and finally to a third position as shown
in FIG. 24cC. In the movement from the initial
position of FIG. 24A to the second position of FIG.
24B, the user mostly moves the window laterally to
the right. In the second motion, from the second
position of FIG. 24B to the third position of 24C,
the user moves window 500 downward and to the left.
Note that as window 500 is moved, a stand 504 located
below window 500 is adjusted so that it remains below
window 500 and has the appropriate size to connect

window 500 to the floor.

PCT/US00/08674

WO 00/60443 PCT/US00/08674

-43-

In the embodiment of Table 1, the movement
shown in FIGS. 24A through 24C is accomplished by the
user by placing the cursor over window 500 and
performing a drag operation with the "alt" key

5 depressed.

Windows within the loose stack may also be
moved forward and backward within the 1loose stack.
FIGS. 25A through 25C show the movement of a loose
stack window 506 first to the front of the 1loose

10 stack and then to the back of the loose stack. Thus,
in FIG. 25A, window 506 is shown initially positioned
between windows 508 and 510 of loose stack 512. In
FIG. 25B, window 506 has been brought to the front of
loose stack 512 and is now in front of window 508. In

15 FIG. 25C, window 506 has been placed at the back of
the loose stack behind both window 510 and window
508.

In the embodiment of Table 1, the user
indicates that they wish to pull a loose stack window

20 to the front of the loose stack by performing a drag
down. To push a window back in the loose stack, the
user performs a drag up operation.

MOVEMENT WITHIN THE ORDERED STACK

Under the present invention, a user can

25 also reorganize the order of windows in an ordered
stack. Although the user can change the order of the
windows, the precise 1locations of the windows are
determined by the user interface.

For example, in FIGS. 26A through 26F, the

30 user reorders an ordered stack 514 that contains

WO 00/60443

10

15

20

25

30

-44-

windows 516, 518 and 520. In the initial display
shown in FIG. 26A, window 518 1is shown between
windows 516 and 520 in ordered stack 514. By
selecting window 516, the user is able to drag window
516 upward as shown in FIG. 26B and forward of window
520 as shown in FIG. 26C.

Since the user interface automatically
repositions windows in the ordered stack, the user
may release window 518 outside of the ordered stack
as shown in FIG. 26D, where cursor 522 has been moved
from window 518 after the user has released the
primary button of the pointing device.

When the user releases window 518, windows
518 and 520 begin to move. Specifically, window 520
moves backward in ordered stack 514 to assume the
position that window 518 originally had in ordered
stack 6514. At the same time, window 518 moves
downward and back toward ordered stack 514. When the
movement is complete, window 518 occupies the space
that window 520 occupied initially in FIG. 26A. Its
final resting position is shown in FIG. 26F. Thus,
the user is able to reorganize ordered stack 514
without having to expend unnecessary energy in
realigning the windows within ordered stack 514.

MOVEMENT USING ICON CONTROL

Under an alternative embodiment, windows in
the primary task may also be moved by using a set of
selectable button icons such as buttons 524 of FIG.
27. In one embodiment, buttons 524 appear on top of a

window when a cursor crosses into the window. The

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-45-

buttons persist above the window so that the user may
reposition the cursor over one of the buttons. By
clicking on one of the buttons, or by dragging one of
the buttons, the user 1s then able to move the
selected window in any of the manners described
above.

For example, a user can move a window in
the primary viewing area to the 1loose stack by
clicking loose stack button 526 of buttons 524.
FIGS. 28A through 28D show selected frames of an
animation created by an embodiment of the present
invention showing the movement of a window 550 from a
primary viewing area to a loose stack 552 using a set
of buttons 554. In FIG. 28A, button icons 554 have
been generated by the user interface above window 550
based on the location of a cursor 6556 within the
window 550. The user has moved the cursor 556 over
to "loose-stack" button 554 and has clicked on that
button. In FIG. 28B, window 550 has been pushed
backward toward loose stack 552. In FIG. 28C, window
550 has reached loose stack 552 and in FIG. 28D a
stand has appeared below window 550.

Loose stack button 526 may also be used to
move a window from an ordered stack to the 1loose
stack as shown in FIGS. 29A through 29C. In FIG.
29A, the user has caused button icons 560 to appear
above window 562 in ordered stack 564 by placing the
cursor in window 562. The user has then positioned
the cursor over loose stack button 566 of button

icons 560. By clicking on loose button 566, the user

PCT/US00/08674

WO 00/60443

10

15

20

25

-46-

initiates an animation in which window 562 moves to
loose stack 568. FIG. 29B shows one frame during
that animated motion and FIG. 29C shows window 562 in
its final position in loose stack 568.

Button icons 524 of FIG. 27 also include a
primary view button 528, which is used to replace the
current window in the primary view with a selected
window. FIGS. 30A through 30C show the use of a
primary view button 570 to replace a window 572 in
the primary view with a window 574 from an ordered
stack 576. In FIG. 30A, button icons 578 have been
generated when the user moved the cursor over window
574. The user has then moved the cursor over the
primary view button 570. When the user clicks on
primary view button 570, window 572 in the primary
viewing area begins to move back toward loose stack
580 while window 574 moves forward. At the end of the
movement, window 572 1s 1located in loose stack 580
and window 6574 is located in the primary viewing
area.

Primary view button 528 of FIG. 27 can also
be used to move a window from a loose stack to the
primary view. FIGS. 31A through 31C show selected
frames of an animation depicting such an event. In
particular, FIG. 31A shows a cursor 590 placed over a
primary view button 592 of button icons 594. Button
icons 594 were generated by the user interface in
response to cursor 590 being positioned over loose

stack window 596.

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-47-

When the user clicks on primary view button
592, window 596 moves forward and current window 598
moves back toward the loose stack. FIG. 31B shows a
frame during a portion of this movement. FIG. 31C
shows the final orientation of windows 596 and 598.

A user can add additional windows to the
primary viewing area without removing existing
windows from the primary viewing area by using add-
to-selection button 536 of FIG. 27. When the user
selects this button for a window in the loose stack
or the ordered stack, the window moves to the primary
viewing area and the existing windows in the primary
viewing area are moved to accommodate the new window.
In one embodiment, the windows in the primary viewing
area are positioned so that they appear to be the
same size as discussed further below.

Button icons 524 of FIG. 27 also include an
ordered stack button 530 that can be used to move
windows from the primary viewing area to the ordered
stack and from the loose stack to the ordered stack.
FIG. 32A through 32B show selected frames of movement
of a window 600 from the loose stack to the ordered
stack. The movement of window 600 is initiated by
the user clicking on ordered stack button 602 of
button icons 604. FIGS. 33A through 33C show the
movement of a window 606 from the primary viewing
area to ordered stack 608 when the user clicks on
ordered stack button 610 of button icons 612.

Button icons 524 of FIG. 27 also include a

push back/pull forward button 532. As shown in FIGS.

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-48-

34A through 34C, the user can use button 532 to push
a window in a loose stack back or pull the window
forward in the loose stack. In FIG. 34A, the user
has selected push back/pull forward button 616 of
button icons 618, which was displayed when the user
placed the cursor over loose stack window 620. While
depressing the primary button on a pointing device,
the user can pull loose stack window 620 forward in
the 1loose stack by moving the pointing device
backward. The result of such an operation is shown
in FIG. 34B, where loose stack window 620 is shown at
the front of the loose stack. The user may also push
loose stack window 620 to the back of the loose stack
by moving the pointing device forward. The result of
this operation is shown in FIG. 34C.

In an alternative embodiment, push
back/pull forward button 532 of FIG. 27 is divided
into an upper selectable arrow 531 and a lower
selectable arrow 533. As shown in FIG. 35A, when a
window 621 is located in the middle of a loose stack
both the upper selectable arrow and the lower
selectable arrow are shown in push back/ pull forward
button 617 of button icons 619. By positioning the
cursor, the user can select either the upper arrow or
the lower arrow. If the user selects the upper
arrow, window 621 is pushed to the back of the loose
stack as shown in FIG. 35C. If the user selects the
lower arrow, window 621 is pulled to the front of the
stack as shown in FIG. 35B. In one embodiment, the

upper arrow and the lower arrow are rendered in

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-49-

three-dimensional perspective such that the upper
arrow appears smaller than the lower arrow. This
helps to indicate to the user that the upper arrow
will push windows to the back and that the Ilower
arrow will pull windows to the front.

When window 621 1is at the front of the
stack, the lower arrow is removed from button 617 as
shown in FIG. 35B. Similarly, when window 621 is at
the back of the loose stack, the upper arrow is
removed from button 617 as shown in FIG. 35C.

Button icons 524 of FIG. 27 also include a
move button 534, which the user may use to relocate a
window within the loose stack or the ordered stack.
FIGS. 36A through 36C show movement of a loose stack
window 624 using a location button 626 of button
icons 628. In FIG. 36A, the user has selected
location button 626 from button icons 628. While
depressing a primary button on a pointing device, the
user 1is able to move window 624 vertically and
laterally within the loose stack. As shown in FIG.
36B, the user has moved window 624 laterally within
the loose stack. As shown in FIG. 36C, the user has
moved window 624 down and to the 1left within the
loose stack.

The move button may also be used to provide
arbitrary movement in depth while dragging the
button. In one specific embodiment, holding the
shift key while dragging causes the window to move
away from the user and holding the control key while

dragging causes the window to move toward the user.

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-50-

A move button may also be used to reorder
windows within an ordered stack as shown in FIGS. 37A
through 37F. 1In FIG. 37A, the user has selected move
button 630 of button icons 632. While depressing a
primary button on a pointing device, the user can
move window 634 as shown in FIGS. 37B and 37C by
moving the pointing device. In FIG. 37D, the user
has released the primary button of the pointing
device and moved the cursor away from button 630.
This in turn has caused button icons 632 to disappear
in FIG. 37D.

In FIG. 37E, the user interface
automatically moves windows 636 and 634 within the
ordered stack. As shown in FIG. 37E, this involves
moving window 636 back in the ordered stack and
moving window 634 down toward the ordered stack.
FIG. 37F shows the result of the reordering done by
the user and the automatic positioning done by the
user interface.

A user may also close a window using a
close button 537 of icons 524. When a user clicks on
close button 6537, the window associated with the
button icons disappears from the screen along with
the button icons.

The order of the button icons shown in FIG.
27 represents only a single possible embodiment.
Other orders for these buttons are within the scope
of the invention. In addition, the buttons may be
arranged in other possible layouts within the scope

of the present invention. For example, the buttons

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-51-

may be arranged in an arc around one of the corners
of the window. This aids the user in consistently and
quickly acquiring the Dbuttons for purposes of
interaction.

Various embodiments of the present
invention also use a variety of strategies for
attaching the button icons to a window. In one
embodiment, the button row moves in all three
dimensions with the window such that when the window
moves away from the user, the button row appears to
get smaller. In some embodiments, the row of buttons
tilts with the window as the window tilts. In further
embodiments, the button row tilts as the window tilts
but during the tilt operation the buttons are
simultaneously resized and rearranged such that each
button remains a constant size (in pixels) on the
screen and the spacing between the buttons remains
constant in pixels.

When an embodiment is used where the row of
buttons does not tilt or move forward and back with
the window, various visual <cues can be used to
suggest the association between the row of buttons
and the selected window. For example, semi-
transparent geometric objects can stretch between the
boundary of the row of buttons and the top edge of
the selected window. Alternatively, 1lines may be
drawn between each button and an associated location
on the selected window. In further embodiments,
various combinations of lines and planar objects are

used together to further the visual correspondence.

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-52-~

MULTIPLE WINDOWS IN THE PRIMARY VIEWING AREA

Under an embodiment of the present
invention, multiple windows can be placed in the
primary viewing area. FIGS. 38A through 38J depict
selected frames showing the placement of multiple
windows in the primary viewing area. In FIG. 38A,
the user has positioned a cursor 650 over a loose
stack window 652. The user then indicates that they
wish to add window 652 to the primary viewing area.
In the embodiment of Table 1, this is accomplished by
depressing the shift key on the keyboard while
clicking the primary button of the pointing device.
In the pop-up menu embodiment of FIG. 27, this is
accomplished by selecting add window button 536.

In response to this input, the wuser
interface of the present invention pushes current
focus window 654 back in the display while bringing
loose stack window 652 forward in the display. A
frame from this motion is shown in FIG. 38B. As
loose stack window 652 is moved into the primary
viewing area, the object associated with window 652
is removed from the loose stack container object and
is placed into the primary view container object. 1In
addition, window 652 1is designated as the focus
window in the primary viewing area.

When window 652 reaches the primary viewing
area, it is the same distance from the user as window
654 with which it shares the primary viewing area.
Thus, the user does not have to manipulate the shape

or location of either window in order to view both

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-53-

windows in the primary viewing area. The result of
moving window 652 into the primary viewing area is
shown in FIG. 38C. In other embodiments, the windows
are placed at different distances from the user so
that the windows appear the same size to the user and
so that the windows do not obscure each other. In
still, other embodiments, the windows are scaled so
that they appear the same size in the primary viewing
area. In the context of this application, such
scaling can be considered a way of positioning the
windows.

More than two windows may be added to the
primary view. In FIG. 38D the user positions cursor
650 over an ordered stack window 656 and indicates
that they wish to add that window to the preferred
viewing area. Using the embodiment of Table 1, this
involves pressing the shift key while clicking the
primary button of the pointing device. 1In the
embodiment of FIG. 27, this involves selecting the
add-to-selection button 536 of button icons 524. In
response to the user input, the user interface pushes
windows 652 and 654 back in the display while
bringing windows 656 forward and to the right. A
frame from this motion is shown in FIG. 37E. In FIG.
38F, it can be seen that each of the windows 652,
654, and 656 in the primary viewing area are of
generally the same size and shape. The repositioning
of the windows' is done automatically by the user
interface of the present invention so that the user

does not have to manipulate these features of the

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-54-

windows in order to view all of the windows in the
primary viewing area. In one embodiment, window 656
is given focus as it 1is moved into the primary
viewing area.

A fourth window may be added to the primary
viewing area by selecting an additional window to add
to the primary viewing area as shown in FIG. 38G. 1In
FIG. 38G, the user has selected a window 660 to add
to the primary viewing area. In FIGS. 38H and 38I,
window 660 1is moved forward toward a preferred
viewing area defined by windows 652, 654 and 656. In
FIG. 38J window 660 reaches its final position within
the preferred viewing area and is designated as the
focus window.

The present invention is not limited to any
particular number of windows that may be added to the
primary viewing area. For example, in one embodiment
ten windows may be placed in the primary viewing
area.

MOVEMENT OF THE LOOSE STACK AND ORDERED STACK

In some embodiments, the locations of the
ordered stack and/or the loose stack are changed
dynamically as' windows are moved into and out of the
primary viewing area. This movement is designed to
keep at least a part of both the loose stack and the
ordered stack in view when windows are placed in the
primary viewing area.

GLANCES
Embodiments of the present invention

utilize a glancing technique to allow the user to

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-55-

look ephemerally to their left and right and up and
down. For example, under one embodiment, if the user
clicks on left glance control 441 of FIG. 16, an
animation is started that rotates the camera to the
left. The user is then able to see the area to the
left of the virtual user. When the camera has been
rotated ninety-degrees, the image is held for one
second and then a second animation is generated to
simulate the rotation of the camera back to the
forward position. Similar glancing animations can be
invoked to view the spaces to the right, above and
below the wvirtual wuser by clicking on glancing
controls 443, 437 and 439 respectively. Any one of
these glances can be held by clicking and holding on
the respective control. When the control is
released, the rotation animation toward the forward
view is invoked.

In some embodiments, glancing can be used
to expose tool spaces that travel with the virtual
user in the task gallery

In summary, a tool space 1s a container
object that contains and displays images of other
objects. The tool space container object 1is
different from other container objects described
above in that the tool space container object travels
with the wvirtual user and can be seen by using a
glancing technique or by activating a tool space
control. In a glancing technique, the camera
associated with the virtual user is rotated while the

virtual user's body remains in a fixed position. If

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-56-

the virtual user's body is rotated toward the tool
space, the tool space rotates with the user such that
the user does not see the tool space. To invoke a
glance, the user utilizes a glancing gesture, which
can involve a combination of keystrokes, a
combination of keystrokes and pointing device inputs,
just primary pointing device inputs, or the use of a
secondary pointing device such as a touch pad. In
some embodiments, glancing is invoked using movement
controls 428 of FIG. 16. Specifically, glancing
controls 437, 439, 441, and 443 are used to invoke
glances up, down, left, and right, respectively.

In other embodiments, the user displays a
tool space without performing a glancing gesture.
For example, in one embodiment, the user can display
a tool space by selecting the hands of the displayed
figure 445 in FIG. 16. In one such embodiment, the
system displays an animation in which the tool space
rotates into the user's current view. In such cases,
when the user invokes a glance to the left or right
they see the left and right side walls but do not see
a tool space. The tool space can be dismissed by
clicking on the tool space control again or by
selecting an object in the tool space. When the tool
space is dismissed, an animation is displayed in
which the tool space appears to return to the place
it originally came from.

GLANCES TO THE THREE-DIMENSIONAL START PALETTE

FIGS. 39A through 39C show selected frames

from an animated glance toward a left tool space. 1In

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-57-

FIG. 39A, the virtual user is positioned in front of
stage 217 at the home viewing location. Upon
receiving the glance gesture, the wuser interface
rotates the view to the left such that windows 680
and 682 rotate to the right in the display. As the
view rotates left, the left tool space comes into
view. In the embodiment of FIGS. 39A, 39B, and 39C
the left tool space is depicted as a palette 684. In
FIG. 39C, the rotation is complete so that all of
palette 684 can be seen. In the embodiment of FIG.
39C, the user’s hand is shown holding palette 684 to
give the user a sense of depth perception as to the
location of palette 684, and to indicate the size of
palette 684.

Palette 684 of FIG. 39C contains a number
of three-dimensional objects such as objects 688 and
670. Objects 670 and 688 may be moved by placing a
cursor over the object and wusing a dragging
technique.

In one embodiment, palette 684 1is a data
mountain. In such an embodiment, objects, such as
objects 670 and 688 are prevented from being moved
such that one object obscures another object. In
particular, if an object begins to substantially
cover another object, the other object moves to the
side so that it remains in view.

SELECTING AN APPLICATION FROM THE THREE-DIMENSIONAL

START PALETTE
In one embodiment, the objects on a start

palette such as palette 684 represent applications

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-58-

that can run on the same computer that is generating
the three-dimensional computer interface of the
present invention. By clicking on an object such as
object 690 in FIG. 40A, a user of the present
invention <can <cause the application to Dbegin
executing. If the application then opens a window,
the present invention will redirect the window that
is drawn by the application so that the window
appears in the primary viewing area of the current
task. The user interface of the present invention
then dismisses the tool space either by rotating the
tool space out of the user's forward view (non-
glancing tool space embodiments) or by rotating the
user’s view from the side glance (glancing tool space
embodiments) back to the primary task so that the
user may see the newly opened window.

FIG. 40B shows the beginning of a rotation
back to the primary task from a side glance and FIG.
40C shows a return to the full view of the primary
task showing newly opened window 692 which 1is
associated with application 690 of FIG. 40A. Because
palette 684 can 1include a number of objects
representing applications, it serves the function of
current two-dimensional Start Menus and favorites.
Thus, palette 684 <can be viewed as a three-
dimensional Start Menu.

In some embodiments, the user can launch
multiple applications during a single viewing of the
start palette. In one specific embodiment, the user

holds the shift key while selecting individual items.

PCT/US00/08674

WO 00/60443

10

15

20

25

-59-

Instead of launching the selected items, the system
changes the appearance of the icons to mark the icons
as having been selected. When a user clicks on an
already marked item, the tool space is dismissed and
all of the selected applications are launched.

Although the 1left tool space has been
described in connection with palette 684, those
skilled in the art will recognize that the tool space
can take any shape.

GLANCING TO THE RIGHT TOOL SPACE

In one embodiment, the task gallery also
includes a right tool space, which the user can
rotate to using a glancing gesture to the right.
This causes the rotation of the display as shown in
FIGS. 41A, 41B and 41C. FIG. 41A shows an initial
view of the current task on stage 216. FIG. 41B
shows a rotation to the right exposing a portion of a
right tool space 700. FIG. 41C shows the complete
rotation to the right tool space 700.

In the embodiment of FIG. 41C, right tool
space 700 is a single window, which is generated by a
file manager program such as Windows Explorer from
Microsoft Corporation. In FIG. 41C, a hand 702 shown
holding a window of tool space 700. Hand 702 gives
the user some perspective on the size and position of
tool space 700 relative to their viewpoint. As those
skilled in the art will recognize, tool space 700 can
take on many different appearances and the appearance

shown in FIG. 41C is only one example.

PCT/US00/08674

WO 00/60443 PCT/US00/08674

-60-

In an embodiment in which the right tool
space contains a file manager such as the menu
provided by Microsoft Windows Explorer, the user may
invoke an application or open a document simply by

5 selecting the application or document's entry in the
file list.

As shown in FIGS. 42A through 42C, if the
user selects an application or document in the file
list, the application will be started and 1if the

10 application has an associated window, the window will
be put in the primary viewing area of the current
task. For example, in FIG. 42A where the user
selects an entry 704 from file manager 706, the
application associated with that entry 1is started.

15 The user interface then rotates the view back to the
current task as shown in FIGS. 42B and 42C to expose
a window 708, which was created by the selected
application and redirected to the primary viewing
area by the user interface.

20 GLANCING AT THE UP TOOL SPACE

Embodiments of the present invention can
also include an up tool space, which may be accessed
by performing an upward glancing gesture. FIGS. 43A
through 43C depict frames from an animation that is

25 generated when a user performs an upward glancing
gesture. Specifically, FIG. 43A shows an initial
view of a current task on stage 216. Upon receiving
the wupward glancing gesture, the user interface
rotates the view upward causing the windows of the

30 current task to move downward. As shown in FIG. 43B,

WO 00/60443

10

15

20

25

30

-61-

this gradually exposes the up tool space until the
entire up tool space 712 becomes visible as shown in
FIG. 43C.

GLANCING AT THE DOWN TOOL SPACE

Some embodiments of the invention also
include a down tool space, which may be accessed
using a downward glancing gesture. FIGS. 44A through
44C show frames of an animated rotation downward to
expose the down tool space. In particular, FIG. 44A
shows an initial view of a current task on stage 216.
FIG. 44B shows a frame from the middle of the
downward rotation to the down tool space showing a
portion of down tcol space 714. FIG. 44C shows the
result of the full rotation to the down tool space
714.

Down tool space 714 of FIG. 44C includes an
image of shoes 716 and 718 meant to depict the
virtual shoes of the user in the task gallery. In
addition, down tool space 714 includes two past
dialog boxes 720 and 722. Although shoes 716 and 718
and dialog boxes 720 and 722 are shown in down tool
space 714, those skilled in the art will recognize
that none of these items necessarily need to appear
in down tool space 714 and that other items may be
added to down tool space 714 in place of or in
addition to the items shown in FIG. 44C.

MOVEMENT OF PAST DIALOG BOXES TO THE DOWN TOOL SPACE

The present inventors have recognized that
in current operating systems, users may dismiss

dialog boxes that contain valuable information before

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-62-

they really know what the boxes contain.
Unfortunately, once the dialog box is dismissed, the
user is not able to recover the text of the box.

To overcome this problem, an embodiment of
the present invention stores past dialog boxes in the
down tool space. Thus, past dialog boxes 720 and 722
in FIG. 44C are examples of dialog boxes that have
been dismissed by the user.

In further embodiments of the invention,
the user interface generates an animated motion of
the dismissed dialog box toward the down tool space
to indicate to the user that the dialog box has been
moved to this tool space. FIGS. 45A through 45E
provide selected frames of this animated motion.

In FIG. 45A, a dialog box 730 is shown in
the display. After the user dismisses the dialog box
either by hitting enter or by selecting a display
button within the dialog box, the wuser interface
creates an animation in which dialog box 730 slowly
drifts to the bottom of the screen as shown in FIGS.
45B, 45C, and 45D. Eventually, the dialog box drifts
completely out of view as shown in FIG. 45E. If the
user wishes to view the dialog box again, they
execute a downward glancing gesture to access the
down tool space as described above for FIGS. 44A
through 44C.

Under some embodiments, the number or age
of the dismissed dialog boxes displayed in the down
tool space is controlled by the system. Thus, under

one embodiment, dialogue boxes are removed from the

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-63-

down tool space after some period of time. In other
embodiments, the oldest dialogue box is removed when
a new dialogue box enters the down tool space.

Although the dismissed dialogue boxes are
shown drifting to a down tool space, in other
embodiments, the dismissed dialogue boxes move to
other off-screen tool spaces. In addition, although
the placement of dismissed dialogue boxes in a tool
space 1is described in the context of a three-
dimensional task gallery, this aspect of the
invention may be practiced outside of the task
gallery environment.

MOVEMENT OF A WINDOW FROM ONE TASK TO ANOTHER

Under an embodiment of the invention, the
user may move a window from one task to another. 1In
one embodiment, the user initiates such a move by
invoking a menu using a secondary button on a
pointing device. This menu, such as menu 732 in FIG.
46A includes an instruction to move the window. It
also provides a secondary menu 734 that 1lists the
task currently available in the task gallery. By
moving the «cursor over one of the tasks, and
releasing the secondary button of the pointing
device, the user can select the destination task for
the window.

After the user makes their selection, the
menus disappear as shown in FIG. 46B and the virtual
user is moved back in the task gallery to expose the
destination task. In FIG. 46B, the user has selected

task 736 as the destination task. The user interface

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-64 ~

of this embodiment then removes the stand associated
with window 738 as shown in FIG. 46C and moves window
738 to task 736 as shown in FIG. 46D. Window 738 is
then added to the snapshot of task 736 as shown in
FIG. 46E.

In further embodiments of the invention,
the current task is replaced by the task that
received the moved window. In such embodiments, the
user interface provides an animated exchange of the
two tasks as described above 1in connection with
switching the current task.

RESTZING WINDOWS IN THE PRIMARY TASK

Under embodiments of the present invention,
users may resize a window in the primary viewing area
of the current task by positioning the cursor on the
edge of the window until two resizing arrows, such as
resizing arrows 740 and 742 of FIG. 47A, appear.
Once resizing arrows 740 and 742 appear, the user
depresses the primary button on the pointing device
and moves the pointing device to establish the new
location for the window border. Such border movement
is shown in FIG. 47B where border 744 has been moved
to the left with resizing arrows 740 and 742.

The resizing performed under the present
invention differs from resizing performed in most
two-dimensional window based operating systems. In
particular, in most two-dimensional operating
systems, window resizing is performed by the
application itself. However, under many embodiments

of the ©present invention, window resizing is

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-65-

performed by a three-dimensional shell, which creates
the three-dimensional user interface. In particular,
the three-dimensional shell defines a three-
dimensional polygon on which the image of a window is
applied as texture. Thus, upon receiving a resizing
instruction, the three-dimensional shell changes the
size of the polygon and reapplies the window
texturing without conveying to the application that
the application’s window has been resized. Thus,
both the window and the contents of the window are
resized together under this technique of the present
invention.
CODE BLOCK DIAGRAM

The operation of the three-dimensional
shell discussed above 1is more fully described in
connection with the block diagram of FIG. 48 which
shows the hardware and code modules that are used in
the present invention. In FIG. 48, an operating
system 750 such as Windows 2000 from Microsoft
Corporation interacts with a set of applications 752
and a three-dimensional shell 754. Applications 752
are ignorant of the existence of three-dimensional
shell 754 and are not aware that their associated
windows are being displayed in a three-dimensional
environment. To accomplish this, operating system
750 and three-dimensional shell 754 cooperate to
redirect window display data from applications 752
into the three-dimensional environment. The
operating system and three-dimensional shell also

cooperate to modify pointing device messages before

PCT/US00/08674

WO 00/60443

10

15

20

25

-66-

they are delivered to applications 752 unless the
appropriate circumstances exist in the three-
dimensional environment.

The method of generating a three-
dimensional interface of the present invention by
redirecting the window data generated by applications
752 is discussed below with reference to the flow
diagrams of FIGS. 49 and 50 and the block diagram of
FIG. 48. The process of FIG. 49 begins with step 800
in which one of the applications 752 or the operating
system 750 determines that a window should be
repainted on the display. In this context,
repainting the window means regenerating the image
data corresponding to the appearance of the window on
the display.

After it is determined that a window needs
to be repainted, the associated application
regenerates the display data at a step 802. This
display data is then sent to operating system 750.
In operating systems from Microsoft Corporation, the
display data is routed to a graphics device interface
756 (GDI.DLL) within operating system 750. Graphics
device interface 756 provides a standardized
interface to applications and a specific interface to
each of a collection of different types of displays.
Graphics device interface 756 includes a set of
drawing contexts 758 for each window generated by
each of the applications 752. The drawing contexts

758 describe the location in memory where the display

PCT/US00/08674

WO 00/60443

10

15

20

25

30

-67-

data is to be stored so that it can be accessed by a
display driver.

Under the present invention, instead of
directing the display data to a portion of the
display memory, graphics device interface 756
redirects the data to a location in memory denoted as
redirect memory 760 of FIG. 48. The redirection of
the window data is shown as step 804 in FIG. 49.

After graphics device interface 756 has
redirected the window display data, it notifies
three-dimensional shell 754 that certain window data
has been updated and provides a pointer to the
redirected window display data in redirect memory
760. This occurs at step 806 of FIG. 49. At step
808, three-dimensional shell 754 marks the texture
map associated with the update window as being
"dirty".

At step 810, three-dimensional shell 754
stores a new polygon for any window that has had its
shape changed. The polygon associated with a window
determines the location and shape of the window in
the three-dimensional display environment. For
instance, in most of the screen examples described
above, each window is a texture map on a rectangular
polygon. By rotating and moving this polygon within
the three-dimensional environment, and then applying
the associated texture map containing the window
data, the present invention can give the appearance
of a three-dimensional window moving in the three-

dimensional environment.

PCT/US00/08674

WO 00/60443 PCT/US00/08674

-68-

The images of the task gallery and the
windows in the gallery are rendered using a three-
dimensional rendering toolkit 764 such as Direct3D
from Microsoft Corporation. Three-dimensional

5 rendering toolkit 764 is wused during an animation
loop shown in FIG. 50. At step 801 of this loop, the
location of the virtual user and the virtual user's
orientation in the task gallery is determined. The
task gallery and the non-focus tasks are then

10 rendered at step 803 based on this user viewpoint.
At step 805, three-dimensional shell 754 determines
which windows in the focus task are in the current
view. At step 810 three-dimensional shell 754
determines 1f any of the visible windows have had

15 their texture map marked as dirty. If one of the
visible windows has a "dirty" texture map, the
redirected paint data i1s copied into the window's
texture map at step 811. The windows are then
rendered at step 812 by applying each windows texture

20 map to its associated polygon.

The rendering produces display data that is
stored in a back buffer 765 of a display memory 766.
Back buffer 765 1s then swapped with a front buffer
767 of display memory 766 so that back buffer 765

25 becomes the new front or display buffer 765. A
display driver 768 then accesses new display buffer
765 to generate an image on a display 770.

Three-dimensional shell 754 also receives

event notification when an application opens a new

30 window. Such windows include new document windows,

WO 00/60443

10

15

20

25

30

-69-

dialogue boxes and drop-down menus . Three-
dimensional shell 754 selects a position for the new
window based on the position of the window's parent
window and the two-dimensional location indicated for
the new window. Thus, a pull-down menu is positioned
relative to its parent window in the three-
dimensional environment so that it 1is in the same
relative location within the parent window as it
would be if both windows were in a two-dimensional
environment. Likewise, a dialogue box that is
designated by the application to appear in the center
of the screen is positioned relative to its parent
window in the three-dimensional environment.

REDIRECTION OF POINTER DEVICE INPUTS

In addition to redirecting the window
display data created by an application, the present
invention also modifies event data generated by a
pointing device so that the event data reflects the
position of the cursor in the three-dimensional
environment relative to redirected windows that are
displayed in the environment. These modifications are
described with reference to the flow diagram of FIG.
51 and the block diagram of FIG. 48.

In step 820 of FIG. 51, a pointing device
driver 772 of FIG. 48 generates a pointer event
message based on the movement of a pointing device
774. Examples of pointing device 774 include a touch
pad, a mouse, and a track ball. Operating system 750
receives the pointer event message and in step 822

determines screen coordinates for a cursor based on

PCT/US00/08674

WO 00/60443

10

15

20

25

-70-

the pointer event message. In operating systems from
Microsoft Corporation, the screen coordinates are
determined by a dynamic linked library (DLL) shown as
USER.DLL 776 in FIG. 51.

In step 824, operating system 750 notifies
three-dimensional shell 754 that a pointing device
event has occurred. In most embodiments, this
notification 1is Dbased on an event inspection
mechanism (known generally as a low-level hit test
hook) that three-dimensional shell 754 requests.
With the hit test hook notification, operating system
750 includes the screen coordinates of the cursor.

At step 832, three-dimensional shell 754
determines if the cursor is over a redirected window
in the focus task that is displayed on the stage. If
the cursor is not over a window in the focus task,
three-dimensional shell 754 does not change the event
message at step 833 but instead returns the message
to the operating system. The operating system then
posts the unchanged message in the event queue for
three-dimensional shell, which uses the posted event
message as input for changing the three-dimensional
environment at step 834. For example, if the cursor
is over a task located along a side wall, the floor,
or the ceiling of the task gallery, three-dimensional
shell 754 may use the pointer event message as an
input command for moving the task within the task
gallery. Thus, if the user clicks on the task using

the pointer device, three-dimensional shell 754 uses

PCT/US00/08674

WO 00/60443 PCT/US00/08674

-71-

the clicking input as an instruction to make the
selected task the focus task.

If the cursor is over a redirected window

in the current task at step 832, three-dimensional

5 shell 754 determines the two-dimensional position

within the window at a step 836. Since windows

within the current task can be rotated away from the

user, the determination of the two-dimensional

coordinates involves translating the coordinates of

10 the cursor on the display first to a three-
dimensional position in the virtual three-dimensional
environment and then to a two-dimensional point on
the surface of the polygon associated with the
displayed window.

15 After calculating the two-dimensional
position of cursor on the window, three-dimensional
shell 754 determines if the window under the cursor
is in the primary viewing area at step 838. If the
window under the cursor is not in the primary viewing

20 area, three-dimensional shell 754 changes the event
message by replacing the cursor's screen coordinates
with the two-dimensional coordinates of the cursor
within the window at step 840. Three-dimensional
shell 754 also changes the window handle in the event

25 message so that it points at the window under the
cursor and changes the message type to a cursor over
message. In other words, if the pointer event message
indicates a left button down on the pointer device,
three-dimensional shell 754 would change this

30 information into a cursor over message at step 840.

WO 00/60443 PCT/US00/08674

-72-

The reason for converting all pointer event
messages 1into cursor over messages at step 840 is
that applications that are not in the primary viewing
area cannot receive pointer device input under some

5 embodiments of the present invention. Even so, in
many embodiments of the invention, it 1is considered
advantageous to give each application the ability to
change the shape of the cursor as the cursor moves
over the application window. Thus, although an

10 application does not receive button information when
the application’s window is not in the primary
viewing area, it does receive cursor over information
so that it may adjust the shape of the cursor.

If the window is in the primary viewing

15 area at step 828, three-dimensional shell 754
determines if the cursor is in the client area of the
window at step 842. If the cursor is not in the
client area at step 842, the process continues at
step 840 where the two-dimensional window coordinates

20 of the cursor are placed in the event message and a
window identifier that identifies the window below
the cursor is placed in the event message.

After changing the event message at step
840, three-dimensional shell 754 uses the original

25 pointer event message information as input for
changing the three-dimensional environment at step
834. Thus, if the window is not in the primary
viewing area, three-dimensional shell 754 can use the
pointer device message to move a window within the

30 loose stack or ordered stack, or move a window

WO 00/60443 PCT/US00/08674

-73-

between the loose stack, the ordered stack and the
primary view.

If the cursor is in the client area at step
842, the pointer event message is changed by changing

5 the cursor coordinates to the two-dimensional
coordinates o¢f the cursor over the window in the
three-dimensional environment and changing a window
identifier so that it 1identifies the particular
window that the cursor 1is over. Thus, if the

10 criginal pointer event message indicated that the
left button of the pointing device had been clicked
and gave the screen coordinates of the cursor during
that click, three-dimensional shell 754 would replace
the screen coordinates with the two-dimensional
15 coordinates identified by three-dimensional shell
754. This pointer event message is then routed by
operating system 750 to the application associated
with the identified window. Under this embodiment of
the invention, the pointer event message returned by
20 three-dimensional shell 754 appears to the
application to have come from pointing device driver
772. Thus, applications 752 are ignorant of the fact
that three-dimensional shell 754 exists or that their
window 1is being displayed in a three-dimensional
25 shell.

Although the present invention has been
described with reference to particular embodiments,
workers skilled in the art will recognize that
changes may be made in form and detail without

30 departing from the spirit and scope of the invention.

WO 00/60443 PCT/US00/08674

-74-

In particular, although the present invention has
been described with reference to operating systems
from Microsoft Corporation, the components needed
will be similar on other operating systems. For
5 example, a computer system that uses the X Window
System could be wused to implement the present
invention. It is noted that for such other systems
the X server should run on the same machine as the
client applications and the window manager so that

10 bitmap sharing is efficient.

WO 00/60443 PCT/US00/08674

-75-

WHAT IS CLAIMED IS:

1. A method of generating a display on a
computer screen, the method comprising:
displaying a dialogue box;
receiving input from the user to dismiss
the dialogue box;
displaying animated movement of the
dialogue box toward an off-screen
space beyond a perimeter of the
display;
receiving input from the user to view the
off-screen space; and
displaying animated movement that brings
the off-screen space and dialogue box

into view.

2. The method of claim 1 wherein displaying a
dialogue box comprises displaying a dialogue box in a

three-dimensional environment.

3. The method of claim 2 further comprising:
receiving input from the user to change the
point of view of the three-dimensional
environment toward the off-screen
space;
changing the point of view of the three-
dimensional environment toward the

off-screen space; and

WO 00/60443 PCT/US00/08674

-76-

changing the location of the off-screen
space so that it remains beyond the

perimeter of the display.

4. The method of claim 2 wherein displaying
animated movement that brings the off-screen space
into view comprises rotating the off-screen space
into view while otherwise maintaining a same view of

the three-dimensional environment.

5. The method of claim 2 wherein displaying
animated movement that brings the off-screen space
into view comprises rotating the view of the three-

dimensional environment.

6. The method of claim 1 wherein displaying
animated movement of the dialogue box toward an off-
screen space comprises displaying the dialogue box

drifting downward in the display.

7. The method of claim 1 wherein displaying
animated movement that brings the off-screen space
into view <comprises bringing a collection of
dismissed dialogue boxes located in the off-screen

space into view.

8. The method of claim 7 further comprising:
receiving input from the user to move a
dismissed dialogue box within the off-

screen space; and

WO 00/60443 PCT/US00/08674

-77-

moving the dialogue box within the off-
screen space based on the input from

the user.

9. The method of claim 1 wherein displaying
animated movement that brings the off-screen space
and dialogue box into view further comprises
displaying other dialogue boxes 1in the off-screen
space, the other dialogue boxes being previously

dismissed by the user.

10. The method of claim 9 wherein displaying
other dialogue boxes comprises displaying dialogue
boxes that were dismissed within a limited period of
time from the time the input from the user was

received to view the off-screen space.

11. The method of c¢laim 9 wherein displaying
other dialogue boxes comprises displaying a limited
number of dialogue boxes, the 1limited number of
dialogue boxes representing the latest dialogue boxes

to be dismissed.

12. A computer-readable medium having computer-
executable components comprising:

an application component capable of

generating a dialogue window 1in a

computer display to convey information

to a user;

WO 00/60443 PCT/US00/08674

-78-

a dismissal component capable of receiving
input from the user indicating that
the dialogue window is to be removed
from the display and further capable
of displaying the movement of the
dialogue window to an off-screen space
outside of the display; and

a viewing component capable of displaying
the off-screen space based on input

from the user.

13. The computer-readable medium of claim 12
further comprising an environment display component
capable of displaying a three-dimensional environment
such that the dialogue window and the off-screen
space are positioned in the three-dimensional

environment.

14. The computer-readable medium of claim 13
wherein the environment display component displays
the three-dimensional environment from the point of
view of a wvirtual camera in the environment and
wherein the environment control component changes the
position of the virtual camera in the environment

based on input from the user.

15. The computer-readable medium of claim 14
further comprising a space movement component that is
capable of moving the off-screen space when the

environment display component points the virtual

WO 00/60443 PCT/US00/08674

-79-

camera toward the off-screen space so that the off-

screen space remains out of view.

16. The computer-readable medium of claim 15
wherein the viewing component is capable of
displaying the off-screen space by rotating the off-
screen space into view without moving the virtual

camera.

17. The computer-readable medium of claim 15
wherein the viewing component is capable of
displaying the off-screen space by rotating the

virtual camera toward the off-screen space.

18. The computer-readable medium of claim 12
wherein the dismissal component displays the movement
of the dialogue window to the off-screen space by
showing the dialogue window drift toward the bottom

of the display.

19. The computer-readable medium of claim 12
wherein the displaying the off-screen space comprises
displaying a collection of dialogue windows in the

off-screen space.

20. The computer-readable medium of claim 19
further comprising a window movement component
capable of moving dialogue windows in the off-screen

space based on input from the user.

PCT/US00/08674

WO 00/60443

1/40

Z¥ 30I1A3Q oy _\ .mu _ ||._
¥S W3IAOW €% INOHJOHDIN ONLLNIOd MYOSAD
\ N\
oF IOV4YILNI Sp
05 140d 1vIy¥3s NENCERS
AHOWIW | 9¢ snvyo0ud
8E VIV WVHOO0Yd | o s
/€ IINAOW S€ NILSAS "
ob NVYY90ud ONILYYIdO QYdHONOL
Y3LNANOD 09 ¥3AINA SZWvY | 9z soig
3L0W3Y 301A3a »Z NOY
62
22 AHOW3N JOVHO1S
_ 319VAONIY
€z
- 2¢ 4IN| /Z ANNA
MSId AYvH
8z IAINA
€5 €€ 4Nl | visiq o anoww
y3aldvav Py
WHOMLIN .
Ye NI | yio1a volLdo
L oy 7 Teisid
HI1ldvav IvIolldO
HOLINOW oo Ndo
L 0¢ m_m._.Dn_S_OOk

WO 00/60443 PCT/US00/08674

2/40

216 200

S~ 208
206

217

210 | 204
212
S 202

214 FIG. 2

WO 00/60443

200

O
N

3/40

217

202

PCT/US00/08674

FIG. 3

WO 00/60443 PCT/US00/08674

4/40

GALLERY 25

ROOM 251

STAGE 254
TASK 268

LOOSE STACK 270
WINDOW 276 || WINDOW 278

ORDERED STACK 272

WINDOW WINDOW

PRIMARY VIEW 274 __ g0
FOCUS WINDOW
WINDOW

LEFT SIDE WALL 255 RIGHT SIDE WALL 256
TASK TASK
END WALL 258 FLOOR 258
CIELING 260
TASK
ROOM 252
LEFT SIDE WALL 270 RIGHT SIDE WALL 272
TASK 262 | | TASK 264 TASK TASK
FLOOR 274 CIELING 276
TASK TASK TASK TASK

FIG.5

WO 00/60443 PCT/US00/08674

5/40
—
210
216 212
L 217
FIG. 4
304— |
| /7/%. — 318
312
10pS 528 350 c—312¢
- 306
L\

FIG. 6

WO 00/60443 PCT/US00/08674

6/40

218 BACK

LEFT RIGHT 212

—
LEFT RIGHT

WO 00/60443

7/40
—]
— 212 — 350 — 212 350
D M ‘ | —
DUl il
/ / \\
FIG. 8A FIG. 8B
— -
ms % M —
3525 % ' 352\\5\?%]
210 /%] 210 =
FIG. 9A FIG. 9B
—]
— —
ale 216
L — | 1354 % 34
SN g X
=Ry

FIG. 10A FIG. 10B

WO 00/60443 PCT/US00/08674

8/40

(U]
(V4
(o}

%/
=
MS\

=

[\
—
N

gl
|

I_‘
H

TN
FIG. 11A FIG. 11B

WO 00/60443

9/40

PCT/US00/08674

1]
— 212 {370 — 212
' —f370
) %% 2@ %]
1 N [0—372 = e
— L372
FIG. 12A FIG. 12B
1 1]
— 212 370 —
216 210
sl |, 3| gl
28 LB 214
FIG. 12C FIG. 12D
= =T
210 370 QP%
370
&“ @f%] 374\gzlo .
}‘ pZ 214 N
C
7 FIG. 12E FIG. 12F

WO 00/60443 PCT/US00/08674

10/40

370
370

= s 28 = o
210 {216
Qg 212
FIG. 12G FIG. 12H
[:‘ 1
— 370
ST
S— 376
= —1 |22
214 NN

FIG. 121

WO 00/60443

11/40

=i

/
/ 402/ FIG 13A

217

410

J&% 408

414
/
L]
—
216 —

/

25" FIG. 13E

411

4107?

==

NN A\

/

PCT/US00/08674

o

/ /7

SN

FIG. 13B

409

216

S~

-

—— 416

FIG. 13D

WO 00/60443

420

426

427

 emem—
54 SWITCH TASK

L
MR

12/40

21

TASK A

TASK B
TASKC

i

422
IS

FIG. 14A

o

{ 424

FIG. 14C

216

&

S

/AR

SN A\

N

425

426

N

S

PCT/US00/08674

il

424
J

FIG. 14B

0]

425

N
424

/
26 FIG. 14D

]
)

216

T

ciThs
AR Y
S
x ==
4

N Y
\\ _u

N

N

/

FIG. 14D

427

FIG. 14F

WO 00/60443 PCT/US00/08674

13/40

:] 1

—

- 216 il

il e
T Ai\ == =N

FIG. 15A FIG. 15B

216 Ji 2l6

FIG. 15C FIG. 15D

WO 00/60443 PCT/US00/08674

14/40
437
441 443 %Tj
445 11— L
439429
t\lf’gfy:m
58435
£7
431 i FIG. 16

WO 00/60443

15/40

430
434 436 é 432

PCT/US00/08674

! X
Y
4[/
438/ N FIG. 17

WO 00/60443 PCT/US00/08674

16/40
450
/
—/
T B - _E;——442 == —-—-—fif_\\442
FIG. 18A FIG. 18B

450 442

< /442
2 =

7

FIG. 18C FIG. 18D

WO 00/60443 PCT/US00/08674

17/40
458
4 4/170
= LX :‘71 X
4623
w) C FIG.19A . .. FIG.20A
454 456 70
/
B L7
Eq 1

/(468

il =

FIG.19B ,,~ FIG.20B

’/

458 470
s G
— X —— 1 X
454 —
Z:E — 464

N . H .
o 468 —S

L8[y Y [

FIG. 19C FIG. 20C

WO 00/60443

18/40

474 472
/7
{ X
—
X

=y

1

478

7 FIG.21A
476

472

/

.. FIG.21B

| X

7 97 FIG. 21C

472 476

PCT/US00/08674

4gy 480
4/
> 7
= / 2 484

86? FIG. 22A

4
480

/
=) :

/ T 484
N

oI

FIG. 22B

484

/

<

- 480
_S]

7

FI1G. 22C

WO 00/60443 PCT/US00/08674

19/40
== | X X
g—— 490
FIG. 23A
—

— 490

- FIG.23B

w2 = 7 FIG. 23C

490

20/40
502
‘[6;00
, \.l
504
FIG. 24A
502
‘ %7 — 500
N P
o
FIG. 24B

500
<
ST 504

FIG. 24C

PCT/US00/08674

512

510 506 508
;<

/

AR

FIG. 25A

506 508

-

FIG. 25B

508

5}9 / //
2

g
N

FIG. 25C

WO 00/60443 PCT/US00/08674

21/40
—_—_—‘:{ E
518 —/'Z
514 1
522 - f 516 |
1 1
516 99 FIG. 26A 2 9 FIG. 26B
518 520 520 514
= ——
518
518
S S
516
77 FIG. 26C FIG. 26D
520 514
E ‘ :E ‘
__g?fz .
A= 1
7. FIG. 26E 7 %FIG. 26F
522 5200 518

514

WO 00/60443 PCT/US00/08674

o5 55% 22/40 .
N\ 554
i:@@)@ﬁ@@;g_ ; L
<\556 \<
0 T~ 550
L 1L
FIG. 28A FIG. 28B
552
% L 550
T 2 ;y~ 550 T 2 ;/{
1 |
FIG. 28C FIG. 28D

524

S
PEETITN

FIG. 27

WO 00/60443 PCT/US00/08674

23/40

566

20 © G Yoz
|| S ;

570

— 572

é

560 7% FIG. 29A 7< FIG.30A
562 575 576
564
» ;72
— 1 X E(/] ﬁ
562 —] 578> | %_ »\
LN /l:@- 574
FIG. 29B FIG. 30B
568 580
4 L
7 >
1 E i j”‘ | 574
562_5— 572—S T ¢
Al ol
X

FIG. 29C FIG. 30C

WO 00/60443 PCT/US00/08674

24/40
602
592\) 7 4
‘ ®5oe L | con § 686 1
594 -S— 6045 -
596 ~—%é> | 600 —
FIG. 31A FIG. 32A
: N 598)
506—L_S ™ IS 600
FIG. 31B FIG. 32B
598 —
2\\ X 5 TX
\’5—— 596
L
FIG. 31C 7 FIG. 32C

600

WO 00/60443 PCT/US00/08674

25/40

610 612

@(B)Q@@@‘g
= - 1

L 606
_S

./ FIG.33A

— 606

FIG. 33B

2 FIG.33C

606

WO 00/60443 PCT/US00/08674

26/40
616 618 617
/ /
% < 619
e=¢: A ®®ﬂ© ®
H

— 620 ~621

FIG. 34A FIG. 35A

617\
C==q) OfB® ® @p.%a ®
< L6 ’ < L
FIG. 34B FIG. 35B

— 621

WO 00/60443

27/40

0-6:)--@ (%f\)
z- 628

624 —>

©O B6:0 KO
3 —+— 624
J.—S

FIG. 36B

OO ®&KR®
1. S T~624

FIG. 36C

PCT/US00/08674

WO 00/60443 PCT/US00/08674

28/40
630 —
&;;/ P BE OR®
vopdoas._ S| 2
T 634 __S J
FIG. 37A FIG. 37B
5 ® & ®@® ®®
\
634 634
FIG. 37C 6367 FIG. 37D
h \
7Y FIG.37E /] FIG. 37F

636 634 636 634

WO 00/60443

29/40

PCT/US00/08674

650 652 652
5 4
* - |] 654
AN s -) <
FIG. 38A FIG. 38B
654
\
(’\\ 652
N 654 —S| ;’/652
= 3
FIG.38C 67 /' FIG. 38D
5
/654 6/54 ?52
=1 L, b
/ / /
T1—652
@1—656 E N 6%
FIG. 38E FIG. 38F

WO 00/60443 PCT/US00/08674

30/40
654
/ 652
-
7 | 5
A + X
660/§j _'__S——— 656 660*5_?
FIG. 38G FIG. 38H
6/54 6/52 654 652
L Y G
77 7T
660> | | _ 656 | I
d | — d l . Y 660
FIG. 38I / FIG. 38]

656

WO 00/60443 PCT/US00/08674

31/40
682
— § X 684
680 O | [
216
FIG. 39A FIG. 40A
682
——<
JL§™ 680
"5 18 L.
<o :
FIG. 39B FIG. 40B
——= X IX
670 — '
2 — 684 5—692
[
688 —

> FIG.39C FIG. 40C

WO 00/60443 PCT/US00/08674

32/40

|

706 —

]

704 —

||||H||/[|||||‘
I

=
\
//,5
T”’lsm

FIG. 41A FIG. 42A
— S
700 ———— B
__g 708 S —_é
FIG. 41B FIG. 42B
— | —n % X
o 700 == [N e
BY

I

_—702

| MR

[

WO 00/60443

33/40

PCT/US00/08674

— N == N
216 216
FIG. 43A FIG. 44A
TOOLSPACE _| ..,
== AN
% 714 S L5 l—:.
FIG. 43B FIG. 44B
Up 712 ¢ @
TOOLSPACE N\
20— | F—= 714
— 122 STt — S
l (KZ} (’X(Z,/ 716

FI1G. 43C

718

FIG. 44C

WO 00/60443 PCT/US00/08674

34/40
=5 N == N
— 730

=5

FIG. 45A FIG. 45B
—— N = N

— 730
SN

FIG. 45C FIG. 45D

== N

FIG. 45E

WO 00/60443 PCT/US00/08674

35/40
]
738 ~ —
7325—{M0VEWINDOW Eégg | K 5\736
L734 E GP[%?
/

FIG. 46A FIG. 46B

E 736 —J

738 — { - | S 73
1@3 i 1%‘[1%y
S N

FIG.46C ., FIG. 46D

]

— | 738

Qg\ STl S~736
TN

FIG. 46E

WO 00/60443 PCT/US00/08674

36/40
E | X ——— | X
740 | 742 742
g s
__S——744
FIG. 47A 7 FIG. 47B

740

WO 00/60443

37/40

PCT/US00/08674

POINTING DEVICE 774
Y 772
POINTING DEVICE | S
DRIVER
0S
150
2 5——752
TIONS
USER.DLL APPLICATIO
176 . MEMORY
GDI.DLL < A
756 A .
v REDIRECT
CONTEXT ‘ MEMORY
758 3.DSHELL (3754 160
_ 3-D SHELL
) TEXTURE
p I\ MEMORY
3D 162
RENDERING { BACK |FRONT
764 765—> || BUFF. | BUFF.
DISPLAY
MEMORY
166
Y 767
78— | DIspLAY
DRIVER
FIG. 48 770 DISPLAY

WO 00/60443 PCT/US00/08674

38/40

APPLICATION OR OS DETERMIENS L $~800
WINDOW SHOULD BE REPAINTED

APPLICATION REPAINTS THE WINDOW K §™>802

A
OS REDIRECTS PAINT DATA 804

v

OS NOTIFIES 3-D SHELL OF REPAINT AND
GIVES POINTER TO REDIRECTED PAINT ~.S™> 806
DATA

3-D SHELL MARKS TEXTURE MAP AS
"DIRTY" 37808

STORE NEW POLYGON DEFINITIONS FOR L T~810
WINDOWS IF NEEDED

FIG. 49

WO 00/60443 PCT/US00/08674

39/40

801

. DETERMINE LOCATION AND <
| ORIENTATION OF VIRTUAL USER
‘ 803
RENDER TASK GALLERY ANDNON- | S

FOCUS TASKS

y

A
IDENTIFY WINDOWS IN THE FOCUS TASK 5- 805
THAT ARE VISIBLE

810

TEXTURE MAP FOR
VISIBLE WINDOW
"DIRTY"?

NO

811

%

COPY REDIRECTED PAINT DATA INTO
THE WINDOW'S TEXTURE MAP

\ 4

RENDER
WINDOWS

812 — S

FIG. 50

WO 00/60443

40/40

POINTING DEVICE DRIVER CREATES
INPUT EVENT MESSAGE
v

OS DETERMINES SCREEN COORDINATE
FOR CURSOR DURING INPUT EVENT

SCREEN COORDINATE OF CURSOR IS
PASSED TO 3-D SHELL

832 X

PCT/US00/08674

833

S

S CURSOR OVER WINDOW IN NO CHANGES
FOCUS TASK? TOEVENT
; MESSAGE
836
DETERMINE 2.D POSITION OF CURSOR 840
WITHIN WINDOW é
838 SET 2D
S WINDOW IN PREFERRED COORDINATES
VIEWING AREA? AND WINDOW
HANDLE; SET
AS CURSOR
YES
NO OVER
IS CURSOR IN CLIENT AREA? MESSAGE
844 R
< YES USE EVENT
SET 2-D COORDINATES OF CURSOR AND MESSAGE AS
WINDOW HANDLE IN EVENT MESSAGE INPUT FOR
CHANGE TO 3-
334 S D ENV.

INTERNATIONAL SEARCH REPORT

inte. ional Application No

PCT/US 00/08674

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F3/033

According to Intemnational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

ENVIRONMENT INTERACTION"

ISBN: 0-201-32220-7

COMPUTER GRAPHICS PROCEEDINGS.
SIGGRAPH,US,READING, ADDISON WESLEY,
1997, pages 19-26, XP000765798

column 10, line 34 - line 52

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X MINE M R ET AL: "MOVING OBJECTS IN SPACE: 1,2,4,
EXPLOITING PROPRIOCEPTION IN VIRTUAL- 12,13,19

A sections 4.2.1, 4.3.4 3,6,7,18
X US 5 644 737 A (TUNIMAN DAVID CHARLES ET 1,7,9,

AL) 1 July 1997 (1997-07-01) 12,19,20
A column 2, line 16 -column 3, line 59 6,8

-/

m Further documents are listed in the continuation of box C.

E Patent family members are listed in annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0O document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the intemational filing date but
later than the priority date claimed

T* later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu~
me"r:s, :uch combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the intemational search

4 July 2000

Date of mailing of the international search report

10/07/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Kroner, S

Fonmn PCTASA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inte. .onal Application No
PCT/US 00/08674

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

column 3, line 50 —column 5, line 11;
figure 6

Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.
A WO 97 41506 A (SONY ELECTRONICS INC) 1,2,6,
6 November 1997 (1997-11-06) 12,13,
18,19
page 3, line 7 —page 4, line 5
page 13, line 17 -page 14, line 5
page 17, line 12 -page 19, line 22; figure
4A
A US 5 724 492 A (MATTHEWS JOSEPH H ET AL) 1,6,12,
3 March 1998 (1998-03-03) 18

Fomn PCTASA/210 (continuation of second sheet) (July 1962)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte.

ional Application No

PCT/US 00/08674

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5644737 A 01-07-1997 EP 0835484 A 15-04-1998
WO 9639654 A 12-12-1996

WO 9741506 A 06-11-1997 AU 2813897 A 19-11-1997
AU 2813997 A 19-11-1997
AU 2814097 A 19-11-1997
AU 2814197 A 19-11-1997
AU 2925397 A 19-11-1997
CA 2251122 A 06-11-1997
CA 2251124 A 06-11-1997
CA 2251135 A 06-11-1997
CA 2252681 A 06-11-1997
CA 2252769 A 06-11-1997
EP 0896698 A 17-02-1999
GB 2328129 A 10-02-1999
GB 2328130 A 10-02-1999
GB 2328131 A 10-02-1999
GB 2328597 A 24-02-1999
WO 9741547 A 06-11-1997
Wo 9741505 A 06-11-1997
WO 9741507 A 06-11-1997
WO 9741508 A 06-11-1997
us 5745109 A 28-04-1998
us 6002403 A 14-12-1999
us 6005579 A 21-12-1999

US 5724492 A 03-03-1998 NONE

Fom PCTASA/210 (patent family annex) (Juty 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

