

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 June 2003 (19.06.2003)

PCT

(10) International Publication Number
WO 03/050858 A1

(51) International Patent Classification⁷: H01L 21/283, 21/324, 21/335

(21) International Application Number: PCT/US02/39482

(22) International Filing Date: 9 December 2002 (09.12.2002)

(25) Filing Language: English

(26) Publication Language: English

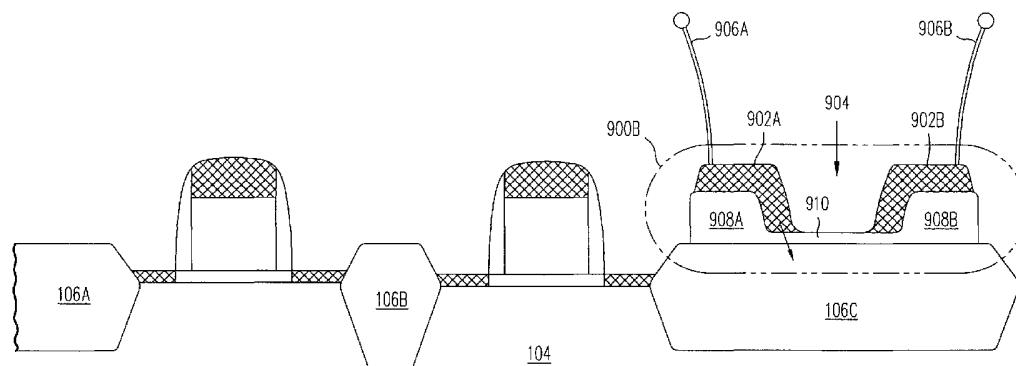
(30) Priority Data: 10/014,064 10 December 2001 (10.12.2001) US

(71) Applicant: ADVANCED MICRO DEVICES, INC. [US/US]; One AMD Place, Mail Stop 68, P.O. Box 3453, Sunnyvale, CA 94088-3453 (US).

(72) Inventors: THURUTHIYIL, Ciby; 40341 Strawflower Way, Fremont, CA 94538 (US). FISHER, Philip, A.; 730 Chebec Lane, Foster City, CA 94404 (US).

(74) Agent: COLLOPY, Daniel, R.; Advanced Micro Devices, Inc., One AMD Place, Mail Stop 68, P.O. Box 3453, Sunnyvale, CA 94088-3453 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.


(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CMOS PROCESS WITH AN INTEGRATED, HIGH PERFORMANCE, SILICIDE AGGLOMERATION FUSE

WO 03/050858 A1

(57) Abstract: A complementary metal oxide semiconductor (CMOS) fabrication process. The process comprises creating a polysilicon layer having a first thickness for a transistor gate area and a second thickness for a fuse area. The first thickness is greater than the second thickness, wherein most of the polysilicon in the fuse area will react with a metal layer to form polysilicide during a rapid thermal anneal (RTA) process.

**CMOS PROCESS WITH AN INTEGRATED, HIGH PERFORMANCE,
SILICIDE AGGLOMERATION FUSE**

FIELD OF THE INVENTION

The present invention relates to integrated circuits and in particular to complementary metal oxide semiconductor (CMOS) integrated circuit processes and devices.

BACKGROUND OF THE INVENTION

Some CMOS integrated circuit processes have attempted to form transistor elements and one-time programmable elements, called "poly fuses," out of silicided polysilicon (also called polysilicide) on a polysilicon layer. These processes have tried to use the phenomenon of silicide "agglomeration" to program the poly fuses. When a sufficiently high current is dissipated in or passed through an unprogrammed poly fuse, the temperature of the fuse material (silicided polysilicon) rises above a certain critical temperature, which causes the silicided polysilicon to change phase. This phase change is commonly called "agglomeration." The silicided polysilicon transitions from a low resistance phase to a high resistance phase, which is called "programming" the fuse. In some cases, the phase change is accompanied by physical movement of the silicided polysilicon away from the hottest point, which can be ascertained by a post-processing physical analysis.

SUMMARY OF THE INVENTION

One-time programmable elements, such as silicide agglomeration fuses, may be used as programmable elements in a wide range of integrated circuit applications. In some applications, Moore's law requires reduced supply voltages, which creates the desire for a high performance fuse that can be programmed at a low voltage.

A CMOS process with an integrated, high performance, silicide agglomeration fuse is provided in accordance with the present invention. The fuse structure in one embodiment of the invention provides optimum performance with low voltage programming. The CMOS process according to one embodiment of the invention may advantageously include all features or comply with all process conditions of a standard state-of-the-art 0.18, 0.13 CMOS process or other CMOS processes. These conditions may include rapid thermal anneal (RTA) processes, temperatures and time periods for silicidation to form transistors. One embodiment of the proposed CMOS process of the invention includes an additional process to optimize the performance of a "poly fuse" programmable by polysilicide agglomeration.

One objective for a high performance, polysilicide agglomeration fuse is to have a post-programming fuse resistance ("blown fuse" resistance) much higher than a pre-programming or unprogrammed fuse resistance ("fresh fuse" resistance). The ratio of post-programming fuse resistance to pre-programming fuse resistance may be called the "figure of merit" of the fuse. The poly fuse according to the present invention may increase this figure of merit by at least a factor of 10 to over 1000, for example. If the figure of merit of a poly fuse is sufficiently large, a sense circuit connected to the poly fuse may read the fuse after programming without any ambiguity.

If a programmed fuse with a very small "figure of merit" value is read by the sense circuit as programmed, the fuse can cause circuit malfunction and reliability issues. If the sense circuit is designed to handle small values of the resistance ratio between a programmed and an unprogrammed fuse (figure of merit), the probability of circuit malfunction and unreliability is high. The improved fuse design of the present invention with a large figure of merit will greatly enhance circuit reliability and give greater flexibility for the designers to make robust sense circuit designs.

The process according to the invention forms a thinner field polysilicon layer (fuse poly) to ensure that the entire fuse poly layer is consumed during silicidation. When the thinner polysilicide is agglomerated during fuse programming, an insulator layer (e.g., TEOS or similar material) underneath the polysilicide is exposed, which forms an ideal open circuit. Thus, the post-programming resistance of this ideal polysilicide agglomeration fuse can be infinitely high.

One aspect of the invention relates to a method of forming an integrated circuit with a transistor and a polysilicide fuse. The method comprises forming a polysilicon layer on a surface of a silicon substrate, the silicon substrate having a first insulator and a second insulator formed at two areas on the surface of the silicon substrate; forming a mask layer over the polysilicon layer, the mask exposing an area of the polysilicon layer over the second insulator; and etching the exposed area of the polysilicon layer a pre-determined amount, such that an unetched portion of the polysilicon layer in the exposed area will react with a metal layer to form polysilicide during a rapid thermal anneal (RTA) process.

Another aspect of the invention relates to a complementary metal oxide semiconductor (CMOS) fabrication process. The process comprises creating a polysilicon layer having a first thickness for a transistor gate area and a second thickness for a fuse area, the first thickness being greater than the second thickness, wherein most of the polysilicon in the fuse area will react with a metal layer to form polysilicide during a rapid thermal anneal (RTA) process.

Another aspect of the invention relates to an integrated circuit. The circuit comprises a silicon substrate; a first insulator and a second insulator formed at two areas on a surface of the silicon substrate; a transistor formed on the silicon substrate between the first and second insulators; and a polysilicide fuse formed over the second insulator, the polysilicide fuse having an active area where polysilicide directly contacts the insulator, wherein the transistor and the polysilicide fuse are formed with a common silicidation process.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates one embodiment of a structure comprising a silicon wafer with formed insulation layers or elements.

Figure 2 illustrates the structure of Figure 1 at another stage of processing, which may be after processing in Figure 1.

Figure 3 illustrates the structure of Figure 1 at another stage of processing, which may be after processing in Figure 2.

Figure 4 illustrates the structure of Figure 1 at another stage of processing, which may be after processing in Figure 3.

Figure 5 illustrates the structure of Figure 1 at another stage of processing, which may be after processing in Figure 2.

Figure 6 illustrates the structure of Figure 1 at another stage of processing, which may be after processing in Figure 2.

Figure 7A illustrates the structure of Figure 1 at another stage of processing, which may be after processing in Figure 6.

Figure 7B illustrates the structure of Figure 1 at another stage of processing, which may be after processing in Figure 5 or Figures 6 and 7A.

Figure 7C illustrates the structure of Figure 1 at another stage of processing, which may be after processing in Figure 5 or Figures 6 and 7A.

Figure 8 illustrates a programmed fuse on the structure of Figure 1 at another stage of processing, which may be after processing in Figure 4.

Figure 9A illustrates a programmed fuse on the structure of Figure 1 at another stage of processing, which may be after cobalt deposition, CoSi formation anneal and stripping unreacted cobalt after processing in Figure 5 or Figures 6 and 7A.

Figure 9B illustrates another programmed fuse on the structure of Figure 1 at another stage of processing, which may be after cobalt deposition, CoSi formation anneal and stripping unreacted cobalt after processing in Figure 5 or Figures 6 and 7A.

Figure 10 is a top view of an unprogrammed fuse at another stage of processing, which may be after cobalt deposition, CoSi formation anneal and stripping un-reacted cobalt after processing in Figure 5 or Figures 6 and 7A.

DETAILED DESCRIPTION

Figure 1 illustrates one embodiment of a structure 100 comprising a silicon wafer 104 with formed insulation layers or elements 106A-106C. The insulators 106A-106C may be formed of any suitable insulation material, such as TEOS, and may be fabricated by either local oxidation of silicon (LOCOS) or shallow trench isolation (STI) according to the design rules of the technology. The structure 100 in Figure 1 may be used to form a CMOS integrated circuit with transistors and fuses. The present invention may be applied to any configuration and any number of transistors and fuses. Two transistors and a fuse are described below with reference to the Figures merely as an example. In addition, the sizes and thicknesses of the elements and layers shown in the Figures are not drawn to scale and are not intended to be limitations.

Any state-of-the-art or future CMOS process, such as 0.18 μ m, 0.13 μ m or 0.10 μ m, may be used to form the elements described below. One or more of the acts described below may be modified or performed in a different sequence.

The surface of the silicon substrate 104 in Figure 1 may be cleaned with a pre-gate-oxide clean process, and a gate oxide layer 102A, 102B may be formed. In one embodiment, the gate oxide layer is less than 2nm thick. Then a polysilicon layer 108 may be deposited.

In one embodiment, the polysilicon layer 108 has a thickness T of about 100 nm to about 150 nm, such as 120 nm or 130 nm. The thickness T is typically a compromise between (1) a desire for increased

margin for a gate patterning process to create a narrow gate, which is facilitated by a thinner poly, and (2) a desire for high dose implants for the transistor source-drain regions, in which a thicker poly will more effectively block source-drain implanted species, particularly Boron, from penetrating the channel. The desire to pattern smaller transistor gates in order to raise transistor drive strength is expected to force the poly thickness T to be reduced every few technology generations.

For example, for a technology (such as a 0.18 μm technology) having a 100 nm transistor gate, a poly thickness of 150 nm to 200 nm may provide adequate process latitude for the gate patterning process. As another example, for a 50-nm transistor gate, a poly thickness of 100 nm to 120 nm may be adequate to achieve a desired process margin. As another example, for a 35-nm transistor gate, a poly thickness of 100 nm may be adequate to achieve a desired process margin. In other embodiments, the thickness T of the poly may be about 50 nm or less, such as 10 nm.

To form an n-type MOS (NMOS) transistor, a mask 110 (called an NMOS implant resist) may be formed for gate pre-doping. Then a pre-doping implant may be applied to a region 112 of the polysilicon layer 108. The mask 110 may be removed for further processing.

Figure 2 illustrates the structure 100 of Figure 1 at another stage of processing, which may be after processing in Figure 1. To form a p-type MOS (PMOS) transistor, a mask (called a PMOS implant resist) 202 in Figure 2 may be formed for gate pre-doping. Then a pre-doping implant may be applied to a region 200 of the polysilicon layer 108. The mask 202 may be removed for further processing.

Figure 3 illustrates the structure 100 of Figure 1 at another stage of processing, which may be after processing in Figure 2. In Figure 3, a bottom anti-reflective coating (BARC) 304 (also called a BARC film or ARC "under resist") may be formed. The surface of the polysilicon layer 108 (Figure 2) may be fairly smooth and facilitate the deposition of a BARC film with a well-controlled thickness and optical properties by chemical vapor deposition (CVD), such as PECVD or LPCVD.

Then a photoresist layer (not shown), such as a photo-sensitive plastic, may be formed on both transistor gate areas and the fuse area. The photoresist may be trimmed to form photoresist structures 306A, 306B, 308 as shown in Figure 3. Without the BARC 304, when the photoresist is exposed, reflections off an interface between the photoresist and the polysilicon layer will cause a resulting post-develop resist profile to be tapered rather than straight.

Using the trimmed photoresist structures 306A, 306B, 308 as defined patterns, portions of the BARC layer 304 and the polysilicon layer 108 in Figure 3 may be etched with a main etch process, a soft landing process and an over-etch process, if desired, to form polysilicon gate areas 310A, 310B and a polysilicon fuse area 312 shown in Figures 3 and 4. In one embodiment, the polysilicon gate areas 310A, 310B in Figure 4 may have widths W3, W4 of about 50nm to 100 nm, such as 60nm or 70nm, for current technologies.

In one embodiment, the gate etch process is designed to prevent any punctures of the gate oxide layers 102A, 102B.

In one embodiment, gate etching is followed by a passivant clean process to remove etch polymer residue, a critical dimension (CD) measurement, an inspection for resist scum, a short oxidation (grows about 2 nm on active region and about 4 nm on sides of gates, and removing the BARC layer 304. Because the

BARC 304 is typically some kind of silicon nitride or oxynitride, removing the BARC 304 may comprise a hot phosphoric acid clean, but plasma etches can be used as well.

In other embodiments, the BARC 304 may be removed much later in the process flow, as long as polysilicon in the gate areas 310A, 310B and silicon 104 in the active regions are exposed when a material such as cobalt is deposited.

In one embodiment, an oxidation process increases the thickness of the gate oxide layers 102A, 102B in Figure 3.

Figure 4 illustrates the structure 100 of Figure 1 at another stage of processing, which may be after processing in Figure 3. After patterning the transistor gate areas 310A, 310B, several masking processes (used to define implant areas) and implant processes may be performed to form transistors 400A, 400B shown in Figure 4. Nitride spacers 402A-402F may be formed on the sides of the etched polysilicon gate areas 310A, 310B and the polysilicon fuse area 312. More implants may be performed.

Underneath the nitride spacers 402A-402F, the oxide layers 102A, 102B are present and may actually be thicker than directly underneath the gate areas 400A, 400B. Portions of the oxide layers 102A, 102B in Figure 3 between the spacers 402A-402F and the insulators 106A-106C (not protected by the spacers and doped gate polysilicon areas 310A, 310B) are eventually removed, for example, by the combined effect of multiple cleaning processes at various points in the flow. Each cleaning process may remove a few angstroms of the oxide layers 102A, 102B between the spacers 402A-402F and the insulators 106A-106C, and eventually these portions of the oxide layer are removed.

In addition, portions of the oxide layers 102A, 102B between the spacers 402A-402F and the insulators 106A-106C may be removed during nitride etching as the nitride spacers 402A-402D are formed and etched. Multiple cleaning processes between spacer definition and cobalt deposition will remove most of the remaining portions of the oxide layers 102A, 102B between the spacers 402A-402F and the insulators 106A-106C.

Portions of the oxide layers 102A, 102B between the spacers 402A-402F and the insulators 106A-106C are removed in order to expose surfaces of the silicon substrate 104 between the spacers 402A-402F and the insulators 106A-106C (unprotected by the spacers 402A-402D and polysilicon gate areas 310A, 310B) before a material such as cobalt is deposited. This may be achieved by including an in-situ sputter clean process in the Co deposition recipe. In one embodiment, a cobalt deposition recipe includes a sputter clean capable of removing about 3 nm of oxide, followed by the Co deposition, followed by a capping layer of about 5 nm of Ti or TiN.

After cleaning, a cobalt layer 404 may be deposited on all elements, as shown in Figure 4. In one embodiment, the cobalt layer 404 is about 150 Å thick and the polysilicon layer 312 is about 1200-1500 Å thick. Other thicknesses may be used in other embodiments. Instead of cobalt, other elements may be used, such as titanium or nickel.

One or more rapid thermal anneal (RTA) processes then turn some of the cobalt layer 404 in contact with the silicon substrate 104 and the polysilicon gate areas 310A, 310B and the polysilicon fuse area 312 into polysilicide areas 406A-406D, 408A-408B, 410 (also called silicided polysilicon). Any unreacted cobalt that

did not react with the silicon 104 or polysilicon areas 310A, 310B, 312 to form CoSi may be stripped or otherwise removed.

In one embodiment, a formation RTA process with a temperature of about 430 - 480° C and about one minute in duration forms CoSi. Then unreacted Co is stripped. Then a second formation RTA with a temperature of about 675 - 775° C and a few seconds in duration is applied to form CoSi₂.

Methods of Forming an Improved Fuse

In one embodiment of the present invention, a polysilicon fuse area is thinner than the polysilicon transistor gate areas, such that substantially all of the polysilicon fuse area is converted to polysilicide during one or more RTA processes. In one embodiment, the polysilicon thickness and the polysilicide thickness are dictated by optimizing transistor performance and ease of 100-nm to 150-nm gate patterning processes.

There are at least two methods of forming different polysilicon thicknesses for a transistor gate area and a fuse area. Figure 5 illustrates one method, and Figures 6 and 7A illustrates another method.

Option One

Figure 5 illustrates the structure 100 of Figure 1 at another stage of processing, which may be after processing in Figure 2. In Figure 5, a patterned mask 500 such as a photoresist for the fuse area is defined and formed. Then a polysilicon thinning etch process may be applied to the polysilicon layer 108 to form an etched fuse area 502. Then the processes described above with reference to Figures 3-4, such as resist trimming, BARC etching and polysilicon etching (main etch, soft landing, over-etch), may be modified to provide multiple polysilicon thicknesses for transistor and fuse areas.

Option Two

If it is difficult to modify polysilicon etching (main etch, soft landing, over-etch) described above with reference to Figures 3-4 to form multiple polysilicon thicknesses for transistor and fuse areas, then another method may be performed instead of the method described above with reference to Figure 5.

Figure 6 illustrates the structure 100 of Figure 1 at another stage of processing, which may be after processing in Figure 2. In Figure 6, a BARC layer 304 is deposited, as in Figure 3. Then a photoresist layer is formed and trimmed to form masks 600A, 600B, 602 that are wider than the structures 306A, 306B, 308 in Figure 3. Instead of defining patterns to etch the transistor and fuse polysilicon areas 310A, 310B, 312 (as in Figures 3 and 4), the structures 600A, 600B, 602 in Figure 6 protect the future polysilicon transistor gate and fuse areas 310A, 310B, 312 for later etching.

Figure 7A illustrates the structure 100 of Figure 1 at another stage of processing, which may be after processing in Figure 6. In Figure 7A, a first etch process may form polysilicon transistor gate structures 310A, 310B and delineate an approximate polysilicon fuse structure 312 in Figure 7A. The approximate polysilicon fuse structure 312 is over-sized to provide some extra material to process an actual polysilicon fuse area 604, as shown in Figures 6 and 7A.

There are two criteria for determining the width of the fuse mask 602 in Figure 6. First, the fuse mask 602 should be sufficiently wide to enclose the actual "fusing" portion 604 of the fuse. In other words, the fuse mask 602 should be wider than the electrically active portion of the fuse. Second, the fuse mask 602 should be enclosed by the poly fuse area 606 such that a poly etch process does not attack active Si. In other words, the fuse mask 602 should be narrower than the outer edges of the poly fuse area 606.

A fuse definition mask 700 in Figure 7A may then be formed to protect the polysilicon transistor gate areas 310A, 310B. Then a thinning etch process is applied to the approximate polysilicon fuse structure 312 to remove some polysilicon material 702 and form the actual polysilicon fuse area 604. In order to facilitate a consistent manufacturable process, this thinning etch may employ interferometric end-point (IEP) techniques to terminate the etch when a specified thickness of polysilicon remains unetched. IEP is a technique available in most state-of-the-art commercial etch tools, e.g. from LAM or AMAT. Thus, separate polysilicon etches are performed for gate and fuse areas.

Thereafter, conventional CMOS processes may be applied, such as implanting, forming spacers 402A-402F (Figure 4), more implants, cobalt deposition, CoSi formation anneal and stripping any unreacted cobalt that did not react to form CoSi.

Figure 7B illustrates the structure of Figure 1 at another stage of processing, which may be after processing in Figure 5 or Figures 6 and 7A. Figure 7B shows a fresh or unprogrammed fuse area that directly contacts the insulator 106C.

Figure 7C illustrates the structure of Figure 1 at another stage of processing, which may be after processing in Figure 5 or Figures 6 and 7A. Figure 7B shows a fresh or unprogrammed fuse area that is separated from the insulator 106C by an acceptably thin layer of polysilicon 750.

Advantages of the Improved Fuse After Programming

After the unreacted cobalt 404 in Figure 4 is removed, the cobalt, titanium or nickel polysilicide (or silicided polysilicon) fuse layer 410 has a low resistance as current may pass from one end of the fuse layer 410 to the other end. The fuse may be called a fresh or pre-programmed fuse. The fuse may be later programmed by agglomeration, as understood by those of ordinary skill in the integrated circuit processing art. In one embodiment, the agglomeration occurs at about 1000 degrees Celsius.

Figure 8 illustrates a programmed fuse 800 on the structure 100 of Figure 1 at another stage of processing, which may be after processing in Figure 4. The programmed fuse 800 in Figure 8 has two polysilicide areas 410A, 410B on the polysilicon layer 312. The two polysilicide areas 410A, 410B are coupled to traces or conductors 804A, 804B. The two polysilicide areas 410A, 410B are separated by an agglomerated region 802, which exposes a part of the underlying polysilicon layer 312.

The programmed fuse 800 in Figure 8 has a post-programming resistance that is higher than a pre-programming resistance because of the agglomerated region 802. But some current still flows through the polysilicon layer 312, as shown by the arrows in Figure 8.

Figure 9A illustrates a programmed fuse 900A on the structure 100 of Figure 1 at another stage of processing, which may be after cobalt deposition, CoSi formation anneal and stripping unreacted cobalt after processing in Figure 5 or Figures 6 and 7A. In Figures 5 and 7A, the polysilicon fuse layer is thinner than in Figure 4 such that substantially all of the polysilicon in the fuse area in Figures 5 and 7A is consumed during silicidation (see Figure 7B).

Figure 9B illustrates another programmed fuse 900B on the structure 100 of Figure 1 at another stage of processing, which may be after cobalt deposition, CoSi formation anneal and stripping unreacted cobalt after processing in Figure 5 or Figures 6 and 7A. In Figure 9B, an acceptable amount 910 of polysilicon is not consumed during silicidation (see Figure 7C), possibly to accommodate other CMOS process conditions.

After programming (agglomeration), the programmed fuses 900A, 900B in Figures 9A and 9B have two polysilicide areas 902A, 902B. The two polysilicide areas 902A, 902B in Figure 9A contact the surface of the insulator 106C. The two polysilicide areas 902A, 902B in Figure 9B contact the acceptable amount 910 of polysilicon.

The two polysilicide areas 902A, 902B in Figures 9A and 9B are coupled to plugs or conductors 906A, 906B. The two polysilicide areas 902A, 902B are separated by an agglomerated region 904, which exposes a part of the insulator layer 106C in Figure 9A and exposes a part of the polysilicon 910 in Figure 9B.

The programmed fuses 900A, 900B in Figures 9A, 9B have a post-programming resistance that is much higher than a pre-programming resistance (high figure of merit) because the agglomerated region 904 exposes the insulator 106C in Figure 9A or a thin layer of polysilicon 910 in Figure 9B. There is no current flowing through the insulator 106C, as shown by the single arrow in Figure 9A. Thus, the programmed fuse 900A in Figure 9A forms an ideal open circuit (i.e., broken circuit). Similarly, there is a negligible amount of current flowing through the insulator 106C and thin polysilicon layer 910 in Figure 9B.

Figure 10 is a top view of an unprogrammed fuse 1000 at another stage of processing, which may be after cobalt deposition, CoSi formation anneal and stripping unreacted cobalt after processing in Figure 5 or Figures 6 and 7A. The fuse length L, width W and shape of the fuse element 1000 are optimized for programming at lower voltages. The contact plugs 1004A, 1004B on the contact pads 1002A, 1002B are used to electrically connect the fuse element 1000 to a power supply voltage, which may be used to program the fuse 1000.

The above-described embodiments of the present invention are merely meant to be illustrative and not limiting. Various changes and modifications may be made without departing from the invention in its broader aspects. The appended claims encompass such changes and modifications within the spirit and scope of the invention.

WHAT IS CLAIMED IS:

1. A method of forming a polysilicide fuse, the method comprising:
 - providing a silicon substrate;
 - providing an insulator overlying the silicon substrate;
 - forming a polysilicon layer on a surface of the silicon substrate directly over the insulator;
 - forming a mask layer over the polysilicon layer, the mask layer exposing a partial area of the polysilicon layer over the insulator;
 - etching the exposed area of the polysilicon layer to a predetermined depth;
 - depositing a metal layer over the etched exposed area of the polysilicon; and
 - annealing the metal layer to form polysilicide.
2. The method of Claim 1, wherein annealing the metal layer leaves a polysilicon layer about 100 to 200 nanometers in thickness.
3. The method of Claim 1, wherein annealing the metal layer leaves a polysilicon layer about 10 to 50 nanometers in thickness.
4. A method of Claim 1, wherein at least a portion of the polysilicide directly contacts the insulator.
5. The method of Claim 1, wherein the metal layer comprises cobalt.
6. The method of Claim 1, wherein the metal layer comprises titanium.
7. The method of Claim 1, wherein the metal layer comprises nickel.
8. The method of Claim 1, wherein the deposited metal layer is about 150Å in thickness.
9. A method of forming a transistor and a polysilicide fuse, the method comprising:
 - providing a silicon substrate;
 - providing a first insulator overlying the silicon substrate;
 - providing a second insulator separate from the first insulator, the second insulator overlying the silicon substrate;
 - forming a polysilicon layer on a surface of the silicon substrate wherein a first region of the polysilicon layer is directly over the first insulator, and a second region of the polysilicon layer is on a surface of the silicon substrate between the first insulator and the second insulator to form a gate area;

forming a mask layer over the polysilicon layers, the mask layer exposing a first area over the first region of the polysilicon layer and exposing a second area over the second region of the polysilicon layer;

etching the exposed first area of the polysilicon layer above the first insulator to a predetermined depth;

depositing a metal layer over the etched exposed first area and the exposed second area of the polysilicon;

annealing the metal layer to form polysilicide; and

forming a drain and source area of the transistor in the silicon substrate.

10. A method of Claim 9, wherein a portion of the polysilicide directly contacts the first insulator.

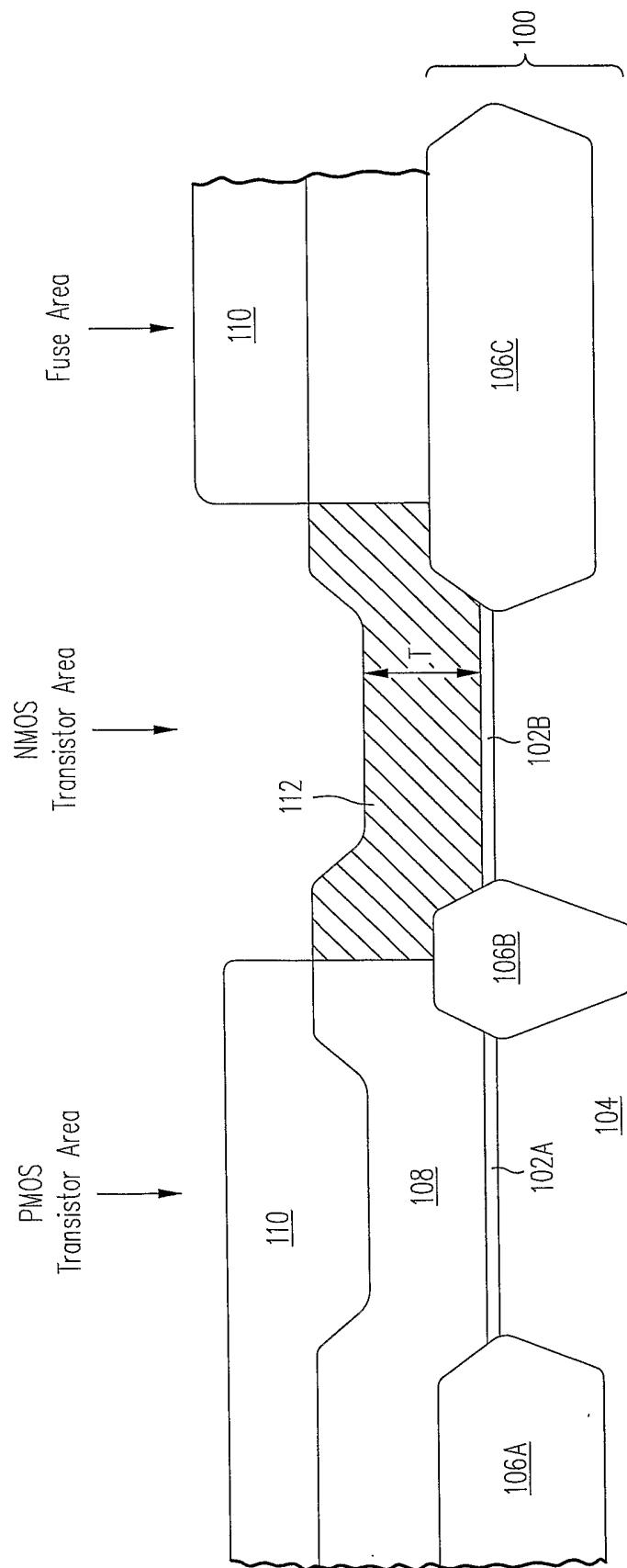


FIG. 1

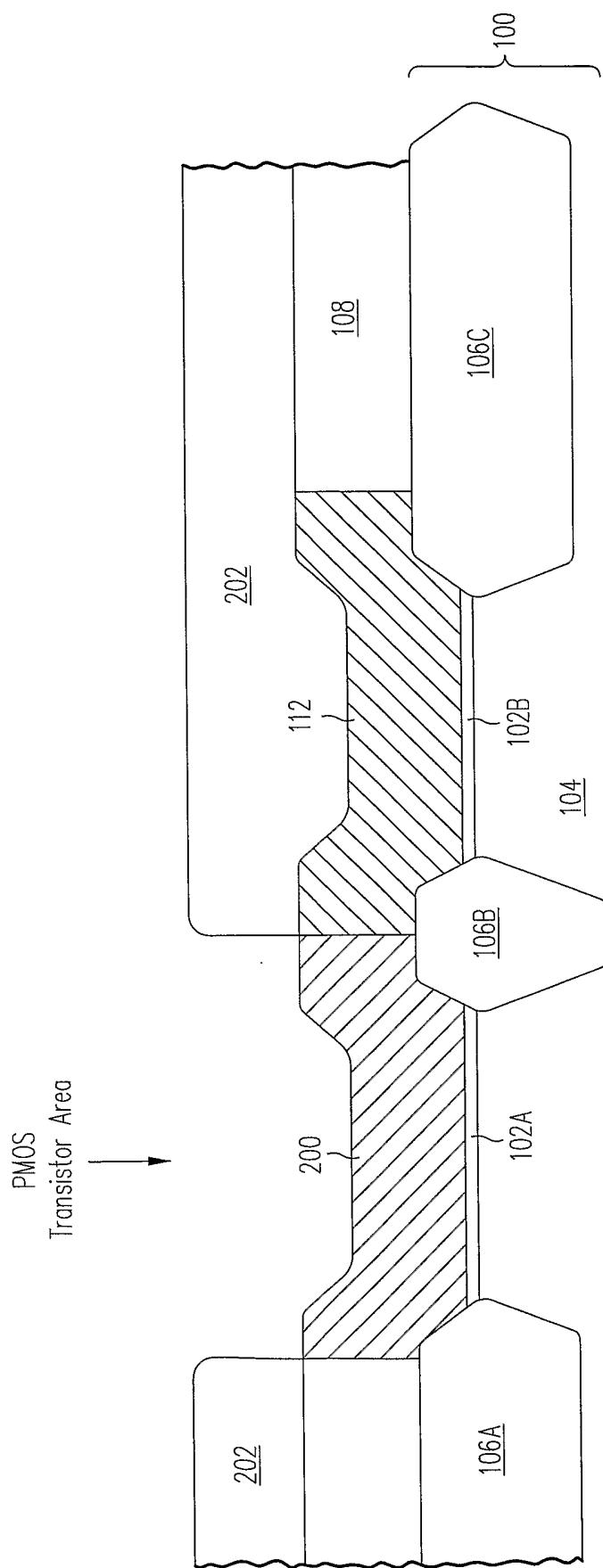


FIG. 2

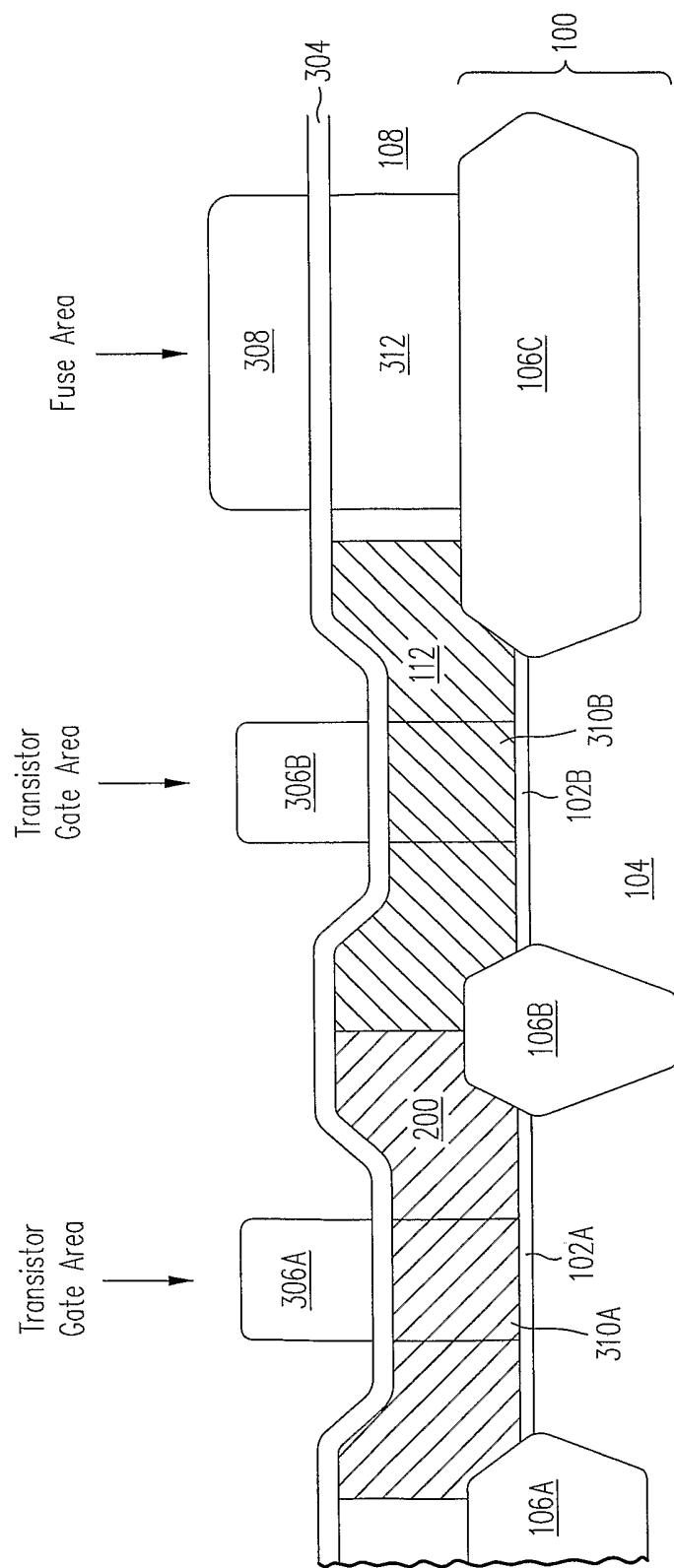


FIG. 3

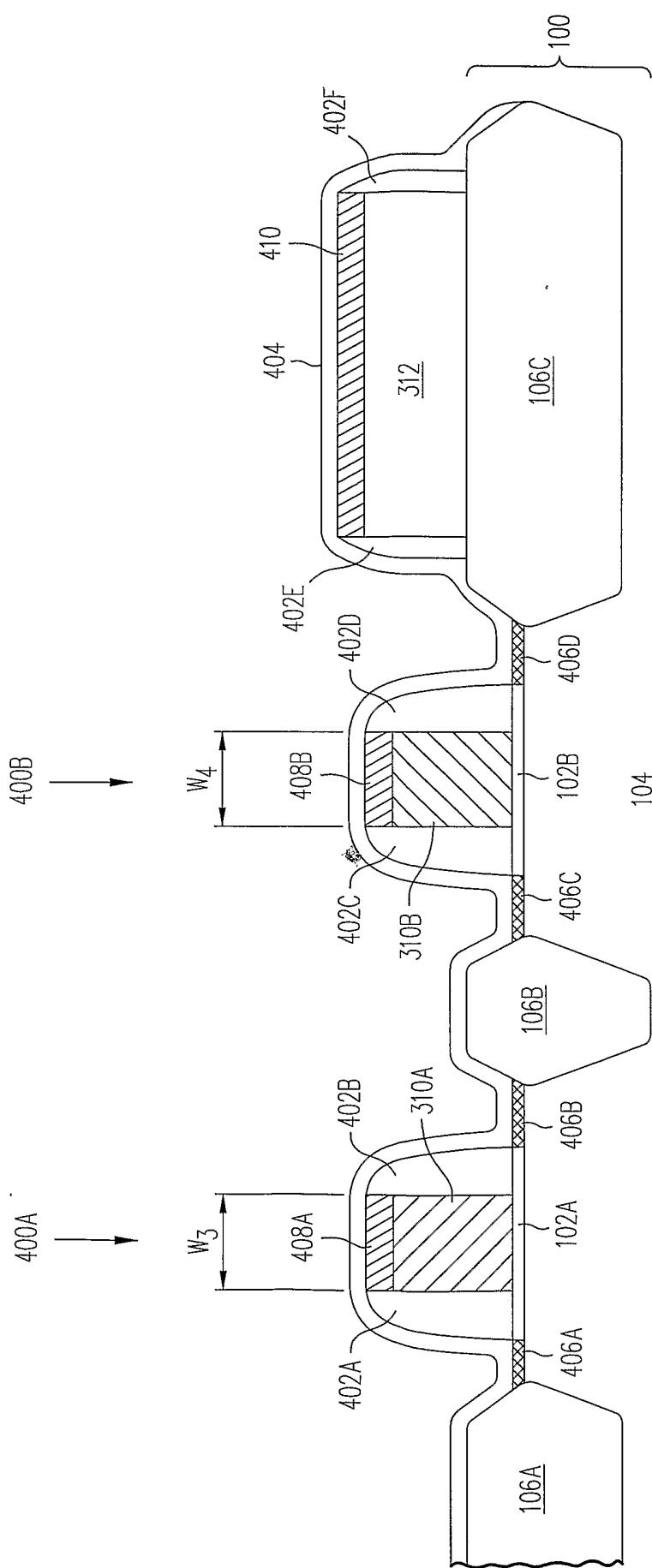


FIG. 4

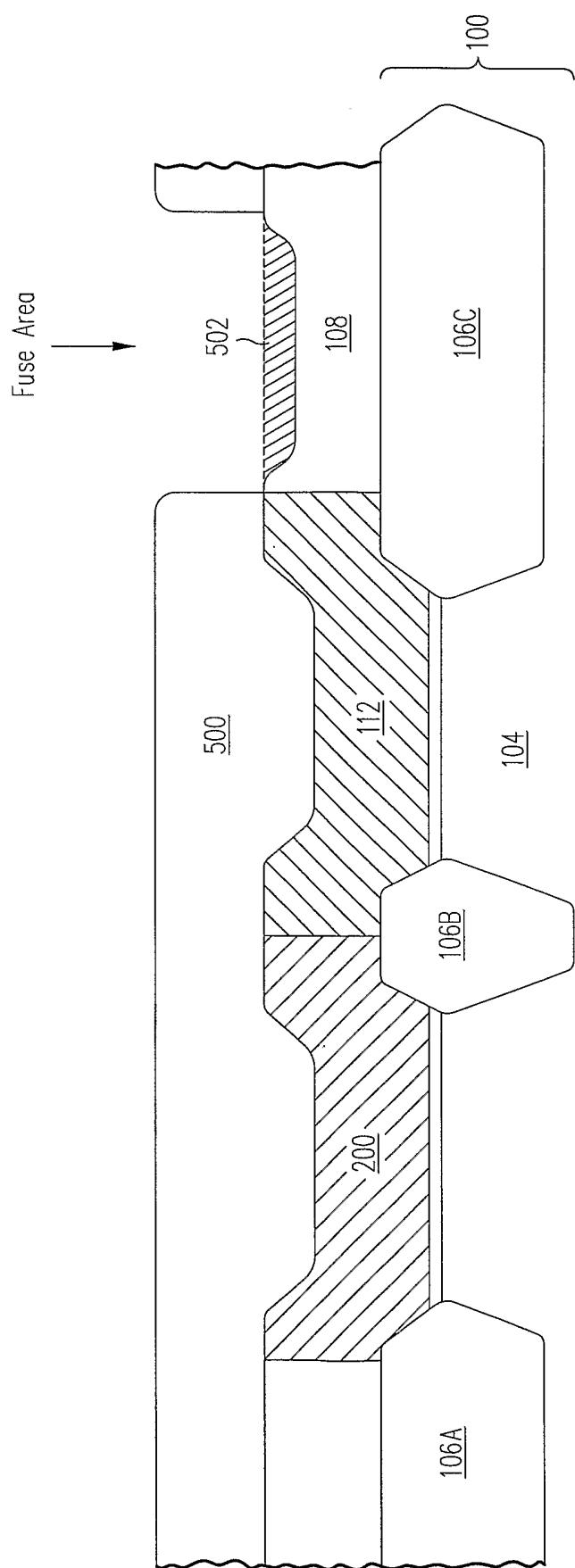


FIG. 5



FIG. 6

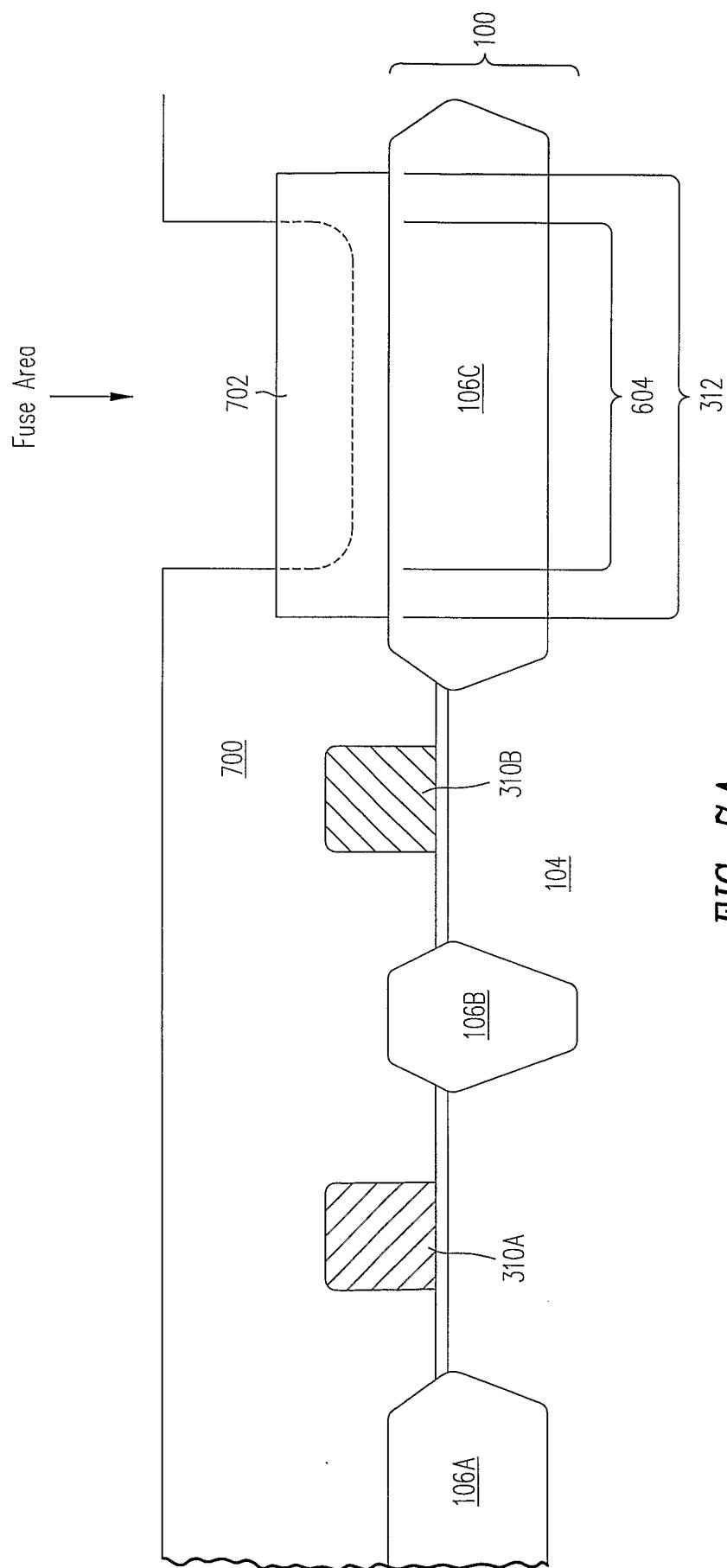


FIG. 7A



FIG. 7B

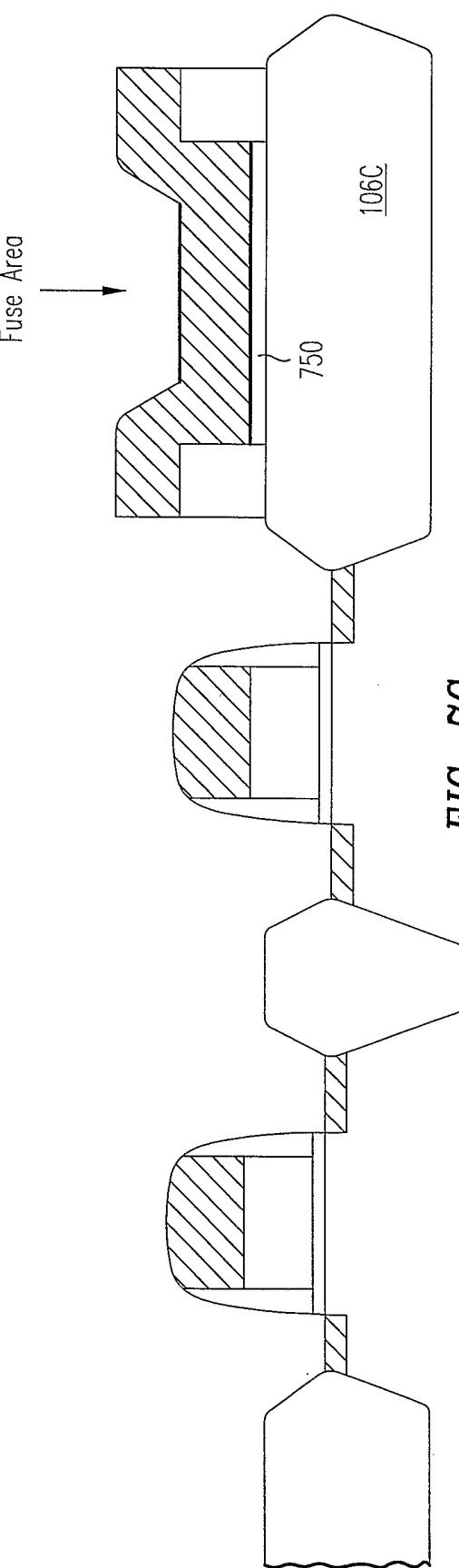


FIG. 7C

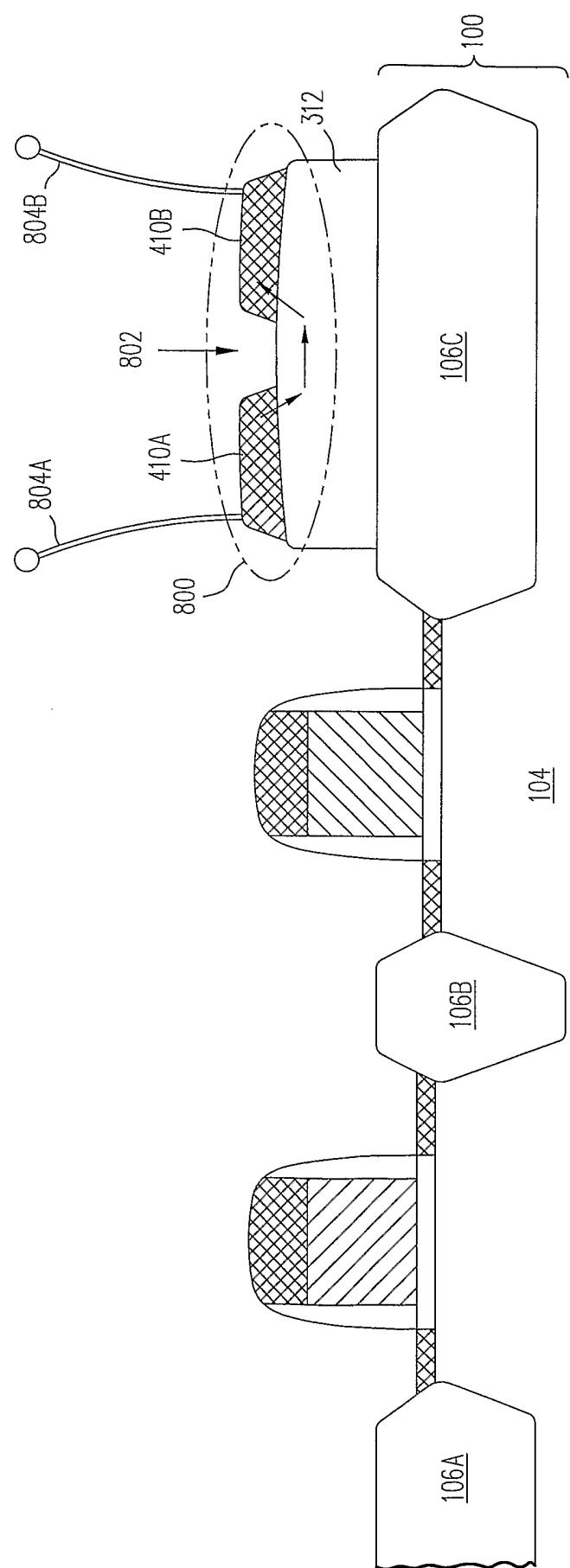


FIG. 8

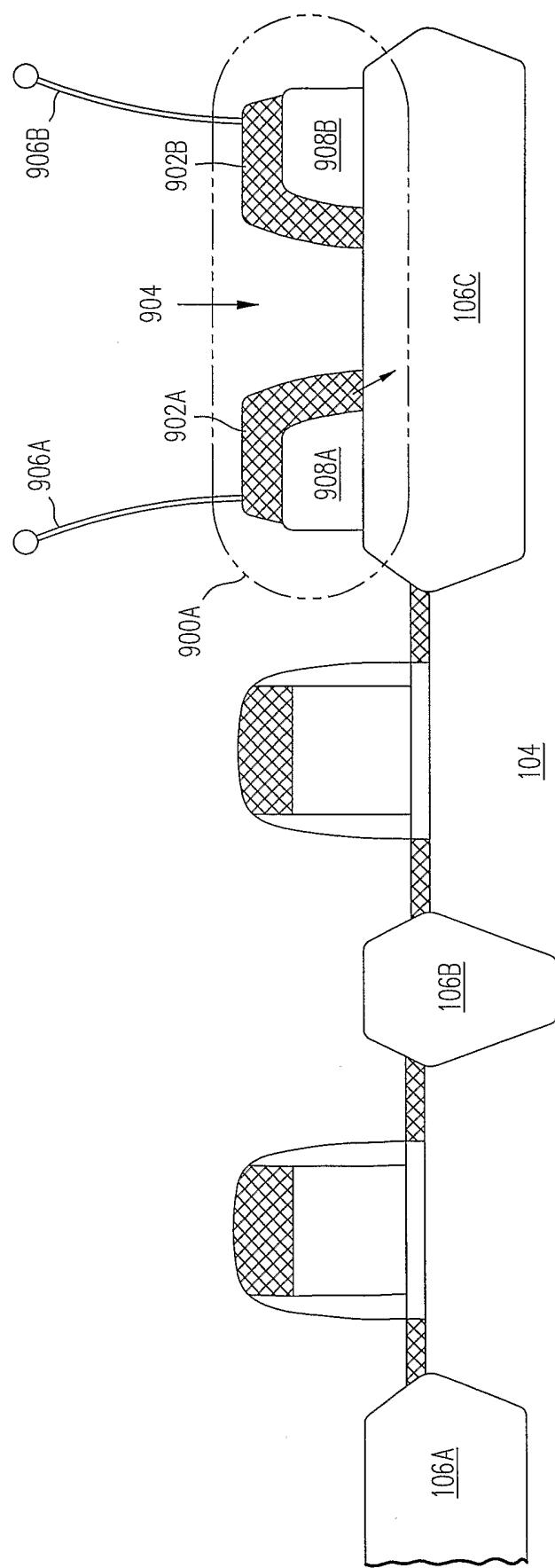


FIG. 9A

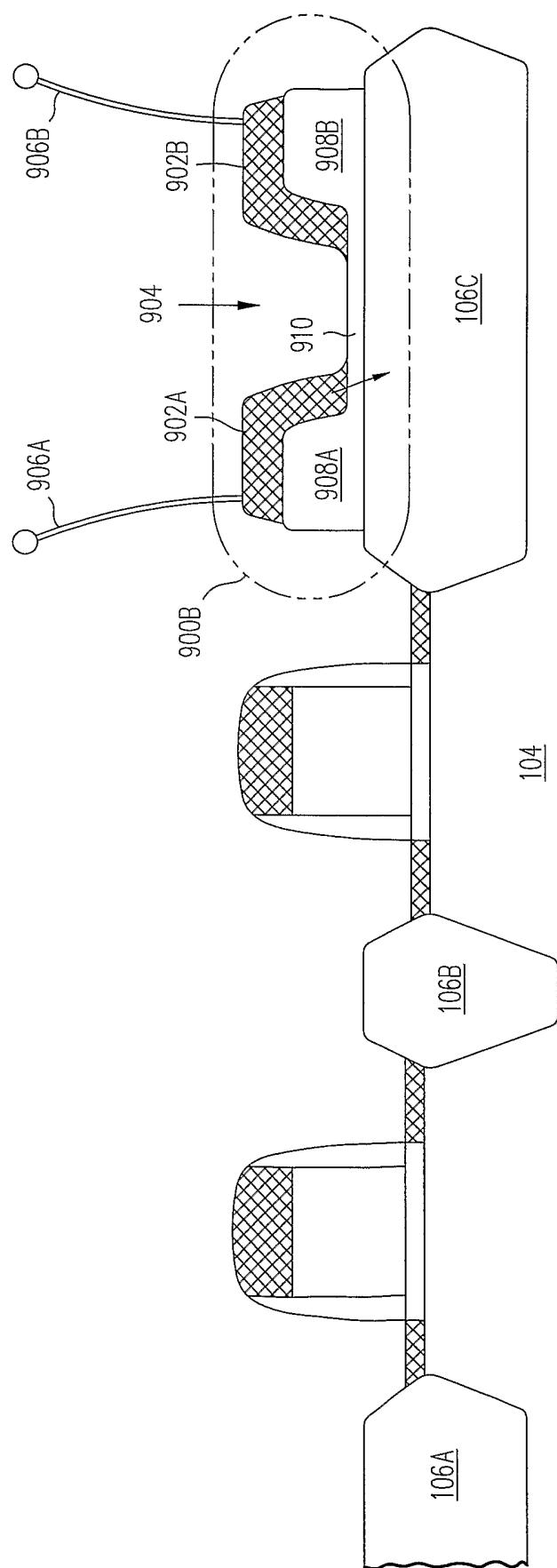


FIG. 9B

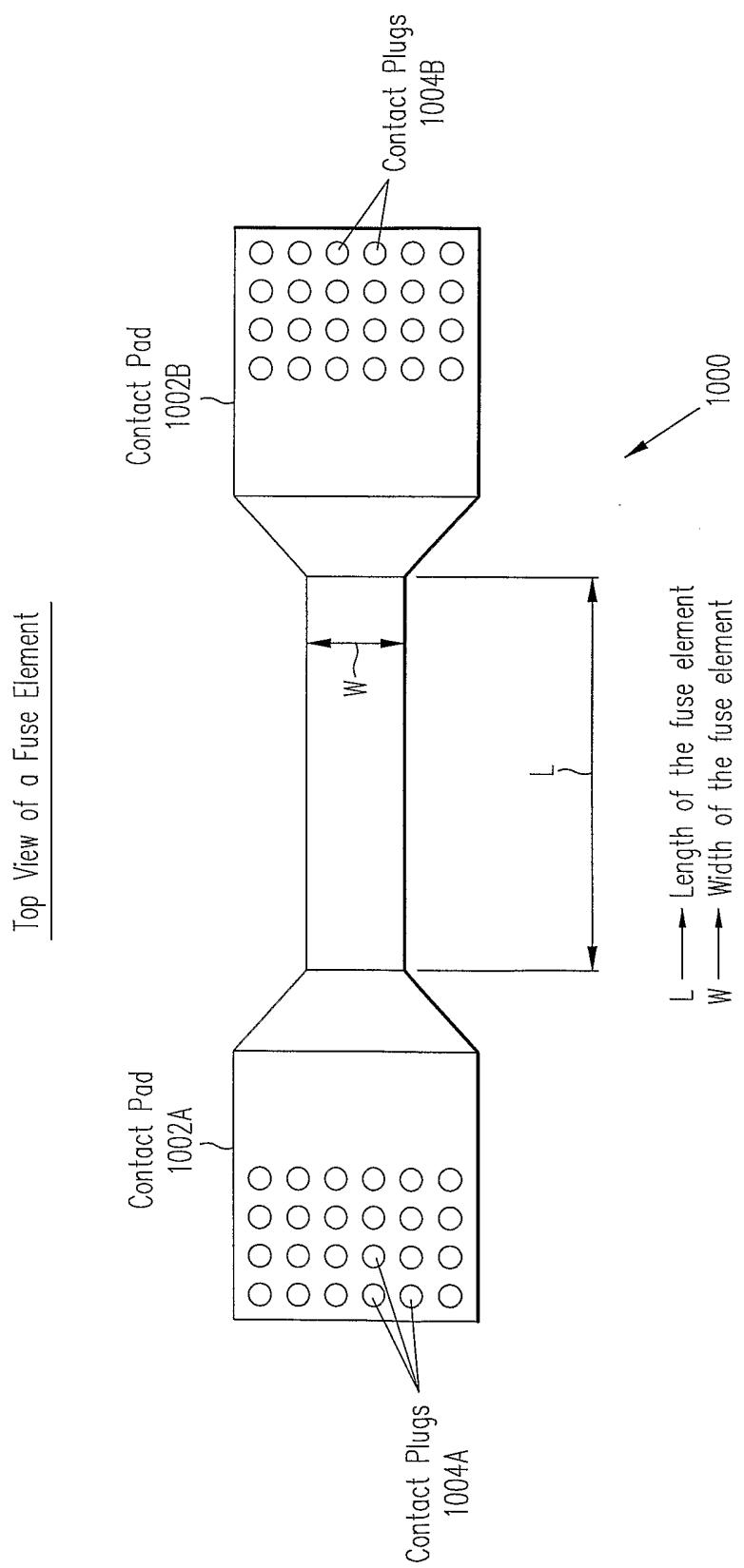


FIG. 10

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 02/39482

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 H01L21/283 H01L21/324 H01L21/335

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EP0-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 98 27595 A (INTEL CORP) 25 June 1998 (1998-06-25) page 5, paragraph 3 abstract; figures 1A,1B	1,2,5-8
A	---	3,4,9,10
Y	US 6 022 775 A (LIANG MONG-SONG ET AL) 8 February 2000 (2000-02-08) column 2, line 4-8 column 2, line 66,67 column 3, line 11-13 abstract	1,2,5-8
A	---	3,4,9,10
Y	US 6 242 790 B1 (MALEY READING ET AL) 5 June 2001 (2001-06-05) column 4, line 33-39	5-7
A	-----	1-4,8-10

 Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

9 April 2003

Date of mailing of the international search report

09 MAY 2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

ERIK MILIANDER/JA A

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 02/39482

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9827595	A 25-06-1998	US	6337507 B1	08-01-2002
		AU	5454798 A	15-07-1998
		DE	19782192 T0	25-11-1999
		GB	2334820 A	01-09-1999
		WO	9827595 A1	25-06-1998
US 6022775	A 08-02-2000	NONE		
US 6242790	B1 05-06-2001	NONE		