20107027824 A2 |1 I 000 O 010 RO A

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization /gy]I) 0M)F 00N 0000100 000K A A0 A
International Bureau S,/ 0
43) Int tional Publication Dat \P'/ (10) International Publication Number
nternational Publication Date N
iy
11 March 2010 (11.03.2010) PCT WO 2010/027824 A2
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 17/00 (2006.01) GO6F 17/30 (2006.01) kind of national protection available): AE, AG, AL, AM,
. o AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA. CH. CL. CN. CO. CR. CU. CZ. DE. DK. DM. DO
PCT/US2009/054965 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
25 August 2009 (25.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. . ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 8G, SK, SL, SM, ST, 8V, §Y, TJ, TM, TN, TR, TT,
TZ, UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . o
12/198,021 25 August 2008 (25.08.2008) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US). DATA GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
DOMAIN, INC. [US/US]; 2929 Campus Drive, Suite ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
250, San Mateo, CA 94430 (US). TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(72) Inventor; and ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(75) Inventor/Applicant (for US only): HSU, Windsor, W. MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
[US/US]; 6967 Serenity Way, San Jose, CA 95120 (US). T I\?I‘QPII\I?%I\?J%SF%S?’ CL CM, GA, GN, GQ, GW,
(74) Agents: VINCENT, Lester, J. ct al.; Blakely, Sokoloff,

Taylor & Zafman LLP, 1279 Oakmead Parkway, Sunny-
vale, CA 94085-4040 (US).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: METHOD AND APPARATUS FOR MANAGING DATA OBJECTS OF A DATA STORAGE SYSTEM

(57) Abstract: Techniques for managing data objects of a data storage system are described herein. According to one embodi-
ment, a perfect hash function is generated for data objects stored in a data storage system. For each of the data objects, a hash op-
eration is performed using the perfect hash function to indicate whether the respective data object is alive. Resources associated
with the respective data object is reclaimed if it is determined that the respective data object is not alive based on a result of the
hash operation using the perfect hash function, where the reclaimed resources are released back to the data storage system as free
resources. Other methods and apparatuses are also described.

WO 2010/027824 PCT/US2009/054965

METHOD AND APPARATUS FOR
MANAGING DATA OBJECTS OF A DATA STORAGE SYSTEM

FIELD OF THE INVENTION

[0001] The present invention relates generally to managing data objects of a data
storage system. More particularly, this invention relates to reclaiming resources from

unused data objects of a data storage system.

BACKGROUND

[0002] Organizations are accumulating large amounts of electronic data. To
facilitate the storage of such data, data storage systems need to manage increasingly
large numbers of data objects (e.g. files, documents, objects, records, etc) and
associate attributes with these objects. Examples of attributes that may be associated
with an object include properties of the object that are visible to a user of the system
(e.g. access control information, last access time, etc) and properties of the object that
are used by the system to manage the object (e.g. location of the object in the system,
checksum of the object, etc).

[0003] For example, when an object is no longer in use, it is desirable to reclaim
resources held by the object and subsequently reuse those resources. To facilitate
reclamation of resources, it is often necessary to associate a count of the number of
references to an object or an indicator of whether the object is still in use (alive). In
many cases, there is a level of indirection (or virtualization) such that an object is used
by reference through another object. For clarity, we will refer to the former as a
physical data object and the latter as a logical object. In such cases, the physical data
object is alive only if the system currently contains a logical object that refers to it.
For example, in a file system, a chunk of data is alive only if it is associated with a file
that currently exists in the file system.

[0004] Some form of index structure is needed to associate attributes with objects.
As the number of objects in a system increases, the index structure becomes very big,
and it becomes difficult and expensive to use the index structure to look up object
attributes quickly. In deduplicating storage systems such as those provided by Data

Domain Inc. of Santa Clara, California, there could be millions of files and billions of

WO 2010/027824 PCT/US2009/054965

chunks (also referred to as segments) of data shared among multiple files and within
each file so that associating attributes with each file and/or segment requires a very
large index.

[0005] To reduce the size of the index structure, one approach is to use
probabilistic index structures that can maintain the correct association between objects
and attributes most of the time. For example, a bloom filter may be used to indicate
whether a segment is alive. The bloom filter, however, is still relatively large when
there are many physical objects and it introduces false positives so that a dead

physical object may be deemed to be alive.

SUMMARY OF THE DESCRIPTION

[0006] Techniques for managing data objects of a data storage system are
described herein. According to one aspect of the invention, a perfect hash function is
generated for data objects stored in a data storage system. For each of the data objects,
a hash operation is performed using the perfect hash function to indicate whether the
respective data object is alive. Resources associated with the respective data object is
reclaimed if it is determined that the respective data object is not alive based on a
result of the hash operation using the perfect hash function, where the reclaimed
resources are released back to the data storage system as free resources.

[0007] According to another aspect of the invention, a perfect hash function is
generated for data objects stored in a data storage system. For each of the data objects,
a hash operation is performed using the perfect hash function, generating a hash value.
The hash value is associated with a predetermined attribute of the data object, such
that the predetermined attribute of the data object is uniquely identified using the
perfect hash function subsequently in response to a request for accessing the
predetermined attribute of the data object.

[0008] Other features of the present invention will be apparent from the

accompanying drawings and from the detailed description which follows.

WO 2010/027824 PCT/US2009/054965

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention is illustrated by way of example and not limitation in
the figures of the accompanying drawings in which like references indicate similar
elements.

[0010] Figure 1 is a block diagram illustrating a system configuration according to
one embodiment of the invention.

[0011] Figure 2 is a block diagram illustrating an example of a management
system of a data storage system according to one embodiment.

[0012] Figure 3 is a flow diagram illustrating a process for reclaiming resources
from unused data objects according to one embodiment.

[0013] Figures 4A-4E are diagrams illustrating a process for reclaiming resources
from unused data objects in a deduplicating storage system according to one
embodiment.

[0014] Figure 5 is a flow diagram illustrating a process for associating an attribute
with a data object using a perfect hash function according to one embodiment.

[0015] Figure 6 is a block diagram illustrating an example of a storage system
which may be used with an embodiment of the invention.

[0016] Figure 7 is a block diagram of a data processing system which may be used

with one embodiment of the invention.

DETAILED DESCRIPTION

[0017] Techniques for managing data objects of a data storage system are
described herein. According to certain embodiments, an efficient mechanism for
reclaiming resources is utilized by analyzing the physical objects currently in a data
storage system to generate a perfect hash function for these objects. The perfect hash
function is used to compactly mark live objects. Thereafter, the resources of the
objects that have not been marked can be reclaimed.

[0018] In the following description, numerous details are set forth to provide a
more thorough explanation of embodiments of the present invention. It will be
apparent, however, to one skilled in the art, that embodiments of the present invention

may be practiced without these specific details. In other instances, well-known

WO 2010/027824 PCT/US2009/054965

structures and devices are shown in block diagram form, rather than in detail, in order
to avoid obscuring embodiments of the present invention.

[0019] Reference in the specification to “one embodiment” or “an embodiment”
means that a particular feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various places in the specification
do not necessarily all refer to the same embodiment.

[0020] Figure 1 is a block diagram illustrating a system configuration according to
one embodiment of the invention. Referring to Figure 1, system configuration 100
includes, but is not limited to, one or more clients 101-102 communicatively coupled
to a server 104 over a network 103 to access data stored in any of storage 105-107
over a network 110. Clients 101-102 may be any type of clients such as a server, a
personal computer, a “thin” client, a personal digital assistant (PDA), a Web enabled
appliance, or a Web enabled cellular phone, etc. Server 104 may include any type of
server or cluster of servers. For example, server 104 may be a storage server used for
any of various different purposes, such as to provide multiple users with access to
shared data and/or to back up mission critical data. Server 104 may be, for example, a
file server (e.g., an appliance used to provide NAS capability), a block-based storage
server (e.g., used to provide SAN capability), a unified storage device (e.g., one which
combines NAS and SAN capabilities), a nearline storage device, a direct attached
storage (DAS) device, a tape backup device, or essentially any other type of data
storage device. Server 104 may have a distributed architecture, or all of its
components may be integrated into a single unit.

[0021] Network 103 may be any type of network such as a local area network
(LAN), a wide area network (WAN) such as Internet, a corporate intranet, a
metropolitan area network (MAN), a storage area network (SAN), a bus, or a
combination thereof. Likewise, network 110. Storage 105-107 may be, for example,
conventional magnetic disks, optical disks such as CD-ROM or DVD based storage,
magnetic tape storage, magneto-optical (MO) storage media, solid state disks, flash
memory based devices, or any other type of non-volatile storage devices suitable for
storing large volumes of data. Storage 105-107 may also be combinations of such
devices. In the case of disk storage media, the storage devices 105-107 may be
organized into one or more volumes of Redundant Array of Inexpensive Disks

(RAID). Server 104 and/or storage 105-107 may be implemented as part of an archive

4

WO 2010/027824 PCT/US2009/054965

and/or backup system such as the deduplicating storage systems available from Data
Domain, Inc. of Santa Clara, California.

[0022] According to one embodiment, server 104 includes a file system 108 and
management processing logic 109 such as resource management logic or data object
management logic. File system 108 may be any kind of file system. A file system
generally refers to a structuring of data and metadata on a storage device, such as
disks, which permits reading/writing of data on those disks and/or the processing logic
to enable such structuring. The metadata is organized in data structures such as
inodes that are used to store information about a logical object (file in this case), while
the data blocks are structures used to store the actual data for the file. The
information contained in an inode may include, for example, ownership of the file,
access permission for the file, size of the file, file type, and references to locations on
disk of the data blocks for the file. The references to the locations of the file data are
provided by pointers in the inode, which may further reference indirect blocks that, in
turn, reference the data blocks, depending upon the quantity of data in the file.

[0023] Management processing logic 109 may be implemented as part of file
system 108 or a separate module communicatively coupled to the file system 108. For
example, management processing logic 109, as well as file system 108, may be part of
deduplicating storage system as shown in Figure 7.

[0024] Figure 2 is a block diagram illustrating an example of a management
system of a data storage system according to one embodiment. For example, system
200 may be implemented as part of file system 108 and/or management processing
logic 109 of Figure 1. Referring to Figure 2, system 200 includes, but is not limited to,
a resource manager 201, a logical object manager 202, a physical object manager 203,
a perfect hash library 204, and a live table 205.

[0025] In one embodiment, resource manager 201 is configured to receive and
process a request for reclaiming resources of unused data objects. Physical object
manager 203 is configured to manage physical data objects. Each physical data object
has an identifier (ID) associated with it. In one embodiment, the ID associated with a
physical object is derived based on the contents of the object. Logical object manager
202 is configured to manage logical data objects (e.g., files) in the system and
maintains a mapping of each logical data object to the physical data objects associated
with it. One or more logical data objects may be associated with a physical data

object. In addition, perfect hash library 204 is used to generate one or more perfect

5

WO 2010/027824 PCT/US2009/054965

hash functions for some or all of the physical objects managed by physical object
manager 203. A perfect hash function may be used to update a live table 205
indicating which of the physical data objects are alive (e.g., associated or referenced
by at least one logical data object).

[0026] A perfect hash function of a set S is a hash function that maps different
elements in S to different numbers. Given a specific set S, a perfect hash function that
can be evaluated quickly (e..g. in constant time) and with values in a “small” range
relative to the number of elements in S (e.g. some constant times the number of
elements in S) can be found by various algorithms such as those described in an article
entitled “Simple and Space-Efficient Minimal Perfect Hash Function,” by Fabiano C.
Botelho et al., Proceedings of the 10th International Workshop on Algorithms and
Data Structures (WADSO07), Springer-Verlag Lecture Notes in Computer Science, vol.
4619, Halifax, Canada, August 2007, which is incorporated by reference herein in its
entirety. In one embodiment, perfect hash library 204 is used to generate one or more
such perfect hash functions.

[0027] According to one embodiment, a minimal perfect hash function is utilized
herein. A minimal perfect hash function is a perfect hash function that maps a set S of
n elements to n consecutive integers -- usually [0..n-1] or [1..n]. A more formal way
of expressing this is: let j and k be elements of some set S. F is a minimal perfect hash
function for S if and only if F(j) =F(k) implies j=k and there exists an integer a such
that the range of F is a..a+ISI-1.

[0028] Referring back to Figure 2, according to one embodiment, resource
manager analyzes the physical objects currently stored in a data storage system to
generate a perfect hash function for these objects. The perfect hash function can be
generated using a variety of algorithms, such as those described in the aforementioned
article entitled “Simple and Space-Efficient Minimal Perfect Hash Function,” by
Fabiano C. Botelho et al. The perfect hash function is then used to compactly mark
live table or tables indicating whether a particular physical data object is alive.
Thereafter, the resources from the objects that have not been marked (e.g., dead data
objects) can be reclaimed by the resource manager 201. Note that a perfect hash
function, as well as the associated live table, may be implemented per system or sub-
system (e.g., disk, volume, or directory) basis.

[0029] Figure 3 is a flow diagram illustrating a process for reclaiming resources

from unused data objects according to one embodiment. Note that process 300 may be

6

WO 2010/027824 PCT/US2009/054965

performed by processing logic which may include software, hardware, or a
combination of both. For example, process 300 may be performed by system 200 of
Figure 2. Referring to Figure 3, at block 301, resource manager receives a request for
reclaiming resources in a data storage system.

[0030] At block 302, the resource manager performs an analysis on the physical
data objects in the system to generate a perfect hash function. For example, the
resource manager asks the physical object manager for the IDs associated with the
physical objects in the system and hands them to the perfect hash library to generate a
perfect hash function that maps each of these IDs to a unique hash value. Various
algorithms can be utilized for generating perfect hash functions as described above. In
one embodiment, a minimal perfect hash function is utilized. A minimal perfect hash
function is a perfect hash function that maps a set of n IDs to a range of n values.
[0031] In one embodiment, the physical objects are assigned to buckets or groups
and a perfect hash function is generated for each bucket. In one embodiment, the
assignment of physical objects to buckets is accomplished by applying a hash function
on the ID associated with each physical data object and using the hash value to select
a bucket.

[0032] In addition, according to one embodiment, it is determined whether a
physical object should be considered for resource reclamation, where a prefect hash
function is generated for only those objects that should be considered for resource
reclamation. In one embodiment, whether an object should be considered for resource
reclamation is determined based on when the object was created and/or when the
object was last modified. In one embodiment, whether an object should be considered
for reclamation is determined based on how much resources can potentially be
reclaimed by processing it. For example, if segments are of different sizes, it might be
advantageous to process large segments first to reclaim storage space quickly. If
physical data objects are stored in units of storage, it might be advantageous to
process objects that are stored in units of storage that contain other objects that are
likely to be dead.

[0033] As described above, the logical object manager manages the logical objects
in the system, and maintains a mapping of each logical object to one or more physical
objects associated with it. At block 303, the logical object manager iterates through
this mapping to determine all of the physical objects that are alive, i.e. associated with

one or more logical objects in the system.

WO 2010/027824 PCT/US2009/054965

[0034] At block 304, the resource manager applies the generated perfect hash
function to the ID associated with each of the physical objects that have been
determined to be alive, and uses the resulting hash value to update a live table. In one
embodiment, the live table is implemented as a bit vector indexed by the hash value
obtained from the perfect hash function. In other words, each physical object in the
system is associated with a unique bit in the bit vector, where location of the bit is
determined by the hash value obtained from the perfect hash function. The bit
corresponding to a physical object is updated to indicate that the object is alive, for
example, by setting a bit value to a logical high or logical low value.

[0035] After all of the physical data objects that are alive have been marked via
the live table, at block 405, the resource manager consults the live table and reclaims
resources from the physical objects that are not alive. In one embodiment, the
resource manager asks the physical object manager for the IDs associated with the
physical objects in the system, applies the perfect hash function to each of these IDs,
and uses the hash value obtained from the perfect hash function to lookup the live
table. If it is determined from the lookup of the live table that a physical object is not
alive, the resource manager reclaims resources from the physical object. In one
embodiment, the resource manager releases the storage space held by the physical
object so that the storage space may be reused. Other operations may also be
performed. In one embodiment, the resource manager overwrites the storage space
held by the physical object at least once to ensure that the contents of the physical
object cannot be recovered.

[0036] The techniques described above can be applied to a variety of storage
systems such as deduplicating storage systems. Figures 4A-4E are diagrams
illustrating a process for reclaiming resources from unused data objects in a
deduplicating storage system according to one embodiment. In this example, as
shown in Figure 4A there are three files in the system — File 1,4 and 5. File 1 is
composed of two segments with IDs A20 and AEO respectively. File 4 is composed
of three segments — AE9, 2D0 and FF5. File 5 is composed of two segments — A20
and CD6. There are currently 7 segments in the system — A20, AE9, 256, CD6, FF5,
BBE, and 2D0, as shown in Figure 4B. Note that in this example, A20, AE9, 256,
CD6, FF5, BBE, and 2D0 are the IDs of the corresponding segments, which may be
generated based on the content of the segments, such as, for example, by performing a

hash operation on the content of the segments.

WO 2010/027824 PCT/US2009/054965

[0037] In response to a request for reclaiming resources, the segments are
analyzed to generate a perfect hash function. In one embodiment, the IDs of the
segments (e.g., A20, AE9, 256, CD6, FF5, BBE, 2D0 and FF5) are used to generate
the perfect hash function. The perfect hash function is used to map each segment ID to
a unique value. This unique value for each segment is used to select an entry in a live
table that indicates whether the segment is alive. For example, the unique value (e.g.,
output of the perfect hash function) may be used as an index value to an entry in a live
table to indicate whether the corresponding segment is alive, as shown in Figure 4C
[0038] For each logical object, its mapping to physical objects is analyzed to
determine the physical objects associated with it. As show in Figure 4D, the perfect
hash function is used to map the ID of each of the associated physical objects to a
unique value which is then used to select and update an entry in the live table to
indicate that the respective physical object is alive.

[0039] Thereafter, the perfect hash function is used to map the ID of each physical
object to a unique value which is then used to select and lookup an entry in the live
table, as shown in Figure 4E. If the live table entry corresponding to a physical object
to has not been updated (e.g., having a value of “N” in this example), the object is
considered dead and the associated resources (e.g. storage space) are reclaimed and
released back to the system as free resources. In this particular example, segments
256 and BBE are dead.

[0040] In one embodiment, reclaiming resources associated with a dead physical
object includes returning the resources to a free pool so that the resources may be
reused. In one embodiment, reclaiming resources includes performing operations on
the storage or memory space occupied by the object to ensure that the object cannot be
subsequently recovered. In one embodiment, the objects are chunks of data stored in a
storage system and reclaiming resources associated with chunks of data that are no
longer in use includes overwriting the storage space holding the chunks of data with at
least one predetermined bit pattern.

[0041] As described above, given the nature of a perfect hash function to hash
without introducing collision, the aforementioned process of marking whether a
particular data object is alive is memory efficient and will not generate a false positive
result. As a result, the resource reclamation process can be performed efficiently.
[0042] According to further embodiments of the invention, a perfect hash function

can also be utilized in other applications of a data storage system. In one embodiment,

9

WO 2010/027824 PCT/US2009/054965

a perfect hash function can be used to associate data objects with certain
characteristics, such as, for example, access control information, location within the
system, indication of whether the object is alive, etc.

[0043] Figure 5 is a flow diagram illustrating a process for associating an attribute
with a data object using a perfect hash function according to one embodiment. Note
that process 500 may be performed by processing logic which may include software,
hardware, or a combination of both. For example, process 500 may be performed by
storage systems as shown in Figure 1 and/or Figure 6.

[0044] Referring to Figure 5, at block 501, processing logic identifies data objects
(e.g., physical or logical data objects) in a data storage system. At block 502, a perfect
hash function is generated based on the identified data objects (e.g., based on the IDs
associated with the data objects). In one embodiment, the IDs of the data objects may
be generated when the respective data objects are stored in the system. Such IDs may
be generated based on content of the data objects, such as, for example, by performing
a hash operation (e.g., SHA-1) on the content of the data objects.

[0045] At block 503, for each data object, processing logic uniquely associates an
attribute with the respective data object using the generated perfect hash function.
Subsequently, in response to a request to access the attribute of a data object, at block
504, processing logic can quickly identify and/or locate the requested attribute using
the perfect hash function. For example, in response to a request for accessing the
attribute of a specified data object, processing logic may perform a hash operation
using the generated perfect hash function on the ID associated with the specified data
object as an input. The output of the perfect hash function may be used to quickly
identify a location in which the requested attribute is stored and the requested attribute
can be quickly retrieved from the identified location.

[0046] According to certain embodiments, a perfect hash function can be
beneficially used in a deduplicating storage system such as those available from Data
Domain, Inc. of Santa Clara, California. Figure 6 is a block diagram illustrating an
example of a storage system which may be used with an embodiment of the invention.
For example, system 600 may be implemented as part of systems as shown in Figures
1-2. In this example, system 600 is a deduplicating storage system. Referring to Figure
6, system 600 includes, but it is not limited to, file service interface 601, content store
manager 602, segment store manager 603 having segment fingerprints 604, and

container manager for managing segments stored in containers in disk or disks 606.

10

WO 2010/027824 PCT/US2009/054965

[0047] According to one embodiment, system 600 breaks a file into variable-
length segments in a content dependent manner and computes a fingerprint for each
segment. System 600 uses the fingerprints both to identify duplicate segments and as
part of a segment descriptor used to reference a segment. It represents files as
sequences of segment fingerprints. During writes, system 600 identifies duplicate
segments and does its best to store only one copy of any particular segment. Before
storing a new segment, system 600 may use a variation of the Ziv-Lempel algorithm
to compress the segment.

[0048] In one embodiment, system 600 supports multiple access protocols which
are layered on a common file services interface 601. Supported protocols include a
network file system (NFS), a common Internet file system (CIFS), and a virtual tape
library interface (VTL), etc.

[0049] When a data stream enters the system, it goes through one of the standard
interfaces to the generic file services layer, which manages the name space and file
metadata. The file services layer forwards write requests to content store 602 which
manages the data content within a file. Content store 602 breaks a data stream into
segments, uses segment store 603 to perform deduplication, and keeps track of the
references for a file (e.g., mapping between logical data objects and physical data
objects). Segment store 603 does the actual work of deduplication. It packs
deduplicated (unique) segments into relatively large units, compresses such units
using a variation of Ziv-Lempel algorithm to further compress the data, and then
writes the compressed results into containers supported by container manager 605.
[0050] To read a data stream from the system, a client drives the read operation
through one of the standard interfaces and the file services layer 601. Content store
602 uses the references to deduplicated segments to deliver the desired data stream to
the client. Segment store prefetches, decompresses, reads and caches data segments
from container manager 605.

[0051] According to one embodiment, content store 602 implements byte-range
writes and reads for deduplicated data objects, where an object is a linear sequence of
client data bytes and has intrinsic and client-settable attributes or metadata. An object
may be a conventional file, a backup image of an entire volume or a tape cartridge.
[0052] To write a range of bytes into an object, content store 602 performs several
operations. First, anchoring partitions the byte range into variable-length segments in

a content dependent manner. Then segment fingerprinting computes a hash such as the

11

WO 2010/027824 PCT/US2009/054965

SHA-1 hash and generates the segment descriptor based on it. Each segment
descriptor contains per segment information of at least fingerprint and size. Further,
segment mapping builds the tree of segments that records the mapping between object
byte ranges and segment descriptors. The goal is to represent a data object using
references to deduplicated segments.

[0053] To read a range of bytes in an object, content store 602 traverses the tree of
segments created by the segment mapping operation above to obtain the segment
descriptors for the relevant segments. It fetches the segments from Segment Store and
returns the requested byte range to the client.

[0054] Segment store 603 is essentially a database of segments keyed by their
segment descriptors 604. To support writes, it accepts segments with their segment
descriptors and stores them. To support reads, it fetches segments designated by their
segment descriptors. To write a data segment, segment store performs several
operations. First, segment filtering determines if a segment is a duplicate. This is the
key operation to deduplicate segments and may trigger disk 1/Os, thus its overhead can
significantly impact throughput performance. Further, container packing adds
segments to be stored to a container which is the unit of storage in the system. The
packing operation also compresses segment data using a variation of the Ziv-Lempel
algorithm. A container, when fully packed, is appended to the Container Manager.
Finally, segment indexing updates the segment index that maps segment descriptors to
the container holding the segment, after the container has been appended to the
container manager 605.

[0055] To read a data segment, segment store 603 performs certain operations.
First, segment lookup finds the container storing the requested segment. This
operation may trigger disk I/Os to look in the on-disk index, thus it is throughput
sensitive. Container retrieval reads the relevant portion of the indicated container by
invoking the container manager 605. Container unpacking decompresses the retrieved
portion of the container and returns the requested data segment.

[0056] The container manager 605 provides a storage container log abstraction,
not a block abstraction, to segment store 603. A container includes a metadata section
having the segment descriptors for the stored segments. They are immutable in that
new containers can be appended and old containers deleted, but containers cannot be
modified once written. When segment store 603 appends a container, the container

manager 605 returns a container ID which is unique over the life of the system.

12

WO 2010/027824 PCT/US2009/054965

[0057] The container manager 605 is responsible for allocating, deallocating,
reading, writing and reliably storing containers. It supports reads of the metadata
section or a portion of the data section, but it only supports appends of whole
containers. If a container is not full but needs to be written to disk, it is padded out to
its full size.

[0058] Container manager 605 is built on top of standard block storage 606.
Advanced techniques such as software RAID-6, continuous data scrubbing, container
verification, and end to end data checks are applied to ensure a high level of data
integrity and reliability.

[0059] The container abstraction offers several benefits: 1) the fixed container size
makes container allocation and deallocation easy; 2) the large granularity of a
container write achieves high disk throughput utilization; and 3) a properly sized
container size allows efficient full-stripe RAID writes, which enables an efficient
software RAID implementation at the storage layer. Further detailed information
regarding system 600 can be found in an article entitled “Avoiding the Disk
Bottleneck in the Data Domain Deduplication File System,” by Zhu et al., which is
incorporated herein in its entirety. Other configurations may also be applied herein.
[0060] According to one embodiment, file service interfaces 601, segment store
manager 603, or both include logic to analyze the data objects stored in system 600, to
generate a perfect hash function for the data objects, and to use the perfect hash
function to process the data objects such as marking whether a particular data object is
alive or alternatively, to uniquely represent or identify a predetermined attribute of a
particular data object, etc., as described above.

[0061] Figure 7 is a block diagram of a data processing system which may be used
with one embodiment of the invention. For example, the system 700 shown in Figure
7 may be used as a client computer system such as clients 101-102 of Figure 1.
Alternatively, the exemplary system 700 may be implemented as a server 104 of
Figure 1.

[0062] Note that while Figure 7 illustrates various components of a computer
system, it is not intended to represent any particular architecture or manner of
interconnecting the components; as such details are not germane to the present
invention. It will also be appreciated that network computers, handheld computers,
cell phones, and other data processing systems which have fewer components or

perhaps more components may also be used with the present invention. The computer

13

WO 2010/027824 PCT/US2009/054965

system of Figure 7 may, for example, be an Apple Macintosh computer or an IBM
compatible PC.

[0063] As shown in Figure 7, the computer system 700, which is in a form of a
data processing system, includes a bus or interconnect 702 coupled to a processor 703
and a ROM 707, a volatile RAM 705, and a non-volatile memory 706. Processor 703
may include multiple processors and/or core logics that constitute central processing
units (CPUs) of the system and thus, control the overall operations of the system.
According to certain embodiments, processor 703 accomplish this by executing
software stored in any of the memories 705-707, such as, for example, applications
and operating system, etc. Processor 703 may include, one or more programmable
general-purpose or special-purpose microprocessors, digital signal processors (DSPs),
programmable controllers, application specific integrated circuits (ASICs),
programmable logic devices (PLDs), or the like, or a combination of such devices.
[0064] The processor 703, which may be, for example, an Intel processor or a
PowerPC processor, is coupled to cache memory 704 as shown in the example of
Figure 7. The bus 702 interconnects these various components together and also
interconnects these components 703 and 705-707 to a display controller and display
device 708, as well as to input/output (I/O) devices 710, which may be mice,
keyboards, modems, network interfaces, printers, and other devices which are well-
known in the art.

[0065] Typically, the input/output devices 710 are coupled to the system through
input/output controllers 709. The volatile RAM 705 is typically implemented as
dynamic RAM (DRAM) which requires power continuously in order to refresh or
maintain the data in the memory. The non-volatile memory 706 is typically a
magnetic hard drive, a magnetic optical drive, an optical drive, a DVD RAM, a Flash
memory, or other type of memory system which maintains data even after power is
removed from the system. Typically, the non-volatile memory will also be a random
access memory, although this is not required.

[0066] While Figure 7 shows that the non-volatile memory is a local device
coupled directly to the rest of the components in the data processing system, it will be
appreciated that the present invention may utilize a non-volatile memory which is
remote from the system, such as a network storage device which is coupled to the data
processing system through a network interface such as a modem or Ethernet interface.

The bus 702 may include one or more buses connected to each other through various

14

WO 2010/027824 PCT/US2009/054965

bridges, controllers, and/or adapters, as is well-known in the art. In one embodiment,
the I/0 controller 709 includes a USB (Universal Serial Bus) adapter for controlling
USB peripherals. Alternatively, I/O controller 709 may include an IEEE-1394
adapter, also known as FireWire adapter, for controlling FireWire devices. Other
components may also be included.

[0067] Thus, techniques for managing data objects of a data storage system have
been described herein. Some portions of the preceding detailed descriptions have been
presented in terms of algorithms and symbolic representations of operations on data
bits within a computer memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art. An algorithm is here,
and generally, conceived to be a self-consistent sequence of operations leading to a
desired result. The operations are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities take the form of electrical
or magnetic signals capable of being stored, transferred, combined, compared, and
otherwise manipulated. It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like.

[0068] It should be borne in mind, however, that all of these and similar terms are
to be associated with the appropriate physical quantities and are merely convenient
labels applied to these quantities. Unless specifically stated otherwise as apparent
from the above discussion, it is appreciated that throughout the description,
discussions utilizing terms such as "processing" or "computing” or "calculating" or
"determining" or "displaying" or the like, refer to the action and processes of a
computer system, or similar electronic computing device, that manipulates and
transforms data represented as physical (electronic) quantities within the computer
system's registers and memories into other data similarly represented as physical
quantities within the computer system memories or registers or other such information
storage, transmission or display devices.

[0069] Embodiments of the present invention also relate to an apparatus for
performing the operations herein. This apparatus may be specially constructed for the
required purposes, or it may comprise a general-purpose computer selectively
activated or reconfigured by a computer program stored in the computer. Such a

computer program may be stored in a computer readable medium. A machine-

15

WO 2010/027824 PCT/US2009/054965

readable medium includes any mechanism for storing or transmitting information in a
form readable by a machine (e.g., a computer). For example, a machine-readable
(e.g., computer-readable) medium includes a machine (e.g., a computer) readable
storage medium (e.g., read only memory (“ROM?”), random access memory (“RAM”),
magnetic disk storage media, optical storage media, flash memory devices, etc.), a
machine (e.g., computer) readable transmission medium (electrical, optical, acoustical
or other form of propagated signals (e.g., carrier waves, infrared signals, digital
signals, etc.)), etc.

[0070] The algorithms and displays presented herein are not inherently related to
any particular computer or other apparatus. Various general-purpose systems may be
used with programs in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to perform the required method
operations. The required structure for a variety of these systems will appear from the
description below. In addition, embodiments of the present invention are not
described with reference to any particular programming language. It will be
appreciated that a variety of programming languages may be used to implement the
teachings of embodiments of the invention as described herein.

[0071] In the foregoing specification, embodiments of the invention have been
described with reference to specific exemplary embodiments thereof. It will be
evident that various modifications may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the following claims. The
specification and drawings are, accordingly, to be regarded in an illustrative sense

rather than a restrictive sense.

16

WO 2010/027824 PCT/US2009/054965

CLAIMS

What is claimed is:

1. A computer-implemented method for managing data objects of a data storage
system, the method comprising:
generating a perfect hash function for a plurality of data objects stored in the
data storage system;
for each of the plurality of data objects, performing a hash operation using the
perfect hash function to indicate whether the respective data object is
alive; and
reclaiming a resource associated with the respective data object if it is
determined that the respective data object is not alive based on a result
of the hash operation using the perfect hash function, wherein the
reclaimed resource is released back to the data storage system as a free

resource.

2. The method of claim 1, further comprising performing an analysis on the
plurality of data objects based on identifiers of the data objects, wherein the perfect

hash function is generated based on a result of the analysis.

3. The method of claim 2, wherein an identifier of a data object is generated
based on content of the data object by performing a hash operation on at least a

portion of the content of the data object.

4. The method of claim 2, wherein the perfect hash function is configured to map
each of the identifiers of a data object to a unique hash value without collision, and
wherein the unique hash value is used to indicate whether a particular data object is

alive.
5. The method of claim 2, wherein the perfect hash function is a minimal perfect

hash function that maps a set of N elements to a range of N values, and wherein an

identifier of a data object is used as an input to the minimal perfect hash function.

17

WO 2010/027824 PCT/US2009/054965

6. The method of claim 1, wherein a plurality of logical data objects is stored in
the data storage system and wherein each of the plurality of logical data objects

comprises one or more of the plurality of data objects.

7. The method of claim 6 wherein at least one of the plurality of data objects is

associated with more than one of the plurality of logical data objects.

8. The method of claim 6, further comprising iterating through the plurality of
logical data objects to determine whether each of the plurality of data objects is alive,
wherein a data object is alive if the data object is associated with one or more of the

plurality of logical data objects.

0. The method of claim 8, further comprising:
maintaining a live table having a plurality of entries, wherein each of the
plurality of data objects is associated with an entry of the live table;
and
in response to determining that a data object is alive, marking the entry of the
live table associated with the data object to indicate that the data object

is alive.

10. The method of claim 8, wherein a resource associated with the respective data
object is reclaimed if the entry of the live table associated with the respective data
object has not been marked, and wherein the resource is reclaimed after all live data

objects have been marked in the live table using the perfect hash function.

11. The method of claim 9, wherein the live table comprises a bit vector having a
plurality of bits, wherein each of the plurality of data objects is associated with a bit in
the bit vector, and wherein the bit vector is indexed based on a hash value obtained

from the perfect hash function.

12. The method of claim 1, wherein the storage space associated with the
respective data object is overwritten with at least one predetermined bit pattern if it is
determined that the respective data object is not alive based on a result of the hash

operation using the perfect hash function.

18

WO 2010/027824 PCT/US2009/054965

13. A machine-readable medium having instructions which when executed by a
machine, cause the machine to perform a method for managing resources of a data
storage system, the method comprising:
generating a perfect hash function for a plurality of data objects stored in the
data storage system;
for each of the plurality of data objects, performing a hash operation using the
perfect hash function to indicate whether the respective data object is
alive; and
reclaiming a resource associated with the respective data object if it is
determined that the respective data object is not alive based on a result
of the hash operation using the perfect hash function, wherein the
reclaimed resource is released back to the data storage system as a free

resource.

14. The machine-readable medium of claim 13, wherein the method further
comprises performing an analysis on the plurality of data objects based on identifiers
of the data objects, wherein the perfect hash function is generated based on a result of

the analysis.

15. The machine-readable medium of claim 13, wherein the method further
comprises storing a plurality of logical data objects in the data storage system and
wherein each of the plurality of logical data objects comprises one or more of the

plurality of data objects.

16. The machine-readable medium of claim 15, wherein the method further
comprises iterating through the plurality of logical data objects to determine whether
each of the plurality of data objects is alive, wherein a data object is alive if the data

object is associated with one or more of the plurality of logical data objects.

17. The machine-readable medium of claim 16, wherein the method further

comprises:

19

WO 2010/027824 PCT/US2009/054965

maintaining a live table having a plurality of entries, wherein each of the
plurality of data objects is associated with an entry of the live table;
and

in response to determining that a data object is alive, marking the entry of the
live table associated with the data object to indicate that the data object

is alive.

18. The machine-readable medium of claim 16, wherein a resource associated with
the respective data object is reclaimed if the entry of the live table associated with the
respective data object has not been marked, and wherein the resource is reclaimed
after all live data objects have been marked in the live table using the perfect hash

function.

19. The machine-readable medium of claim 17, wherein the live table comprises a
bit vector having a plurality of bits, wherein each of the plurality of data objects is
associated with a bit in the bit vector, and wherein the bit vector is indexed based on a

hash value obtained from the perfect hash function.

20. A computer-implemented method for managing data objects of a data storage
system, the method comprising:
generating a perfect hash function for a plurality of data objects stored in the
data storage system;
for each of the plurality of data objects, performing a hash operation on the
data object using the perfect hash function, generating a hash value;
and
associating the hash value with a predetermined attribute of the data object,
such that the predetermined attribute of the data object is uniquely
identified using the perfect hash function subsequently in response to a

request for accessing the predetermined attribute of the data object.
21. The method of claim 20, further comprising storing the data object at a storage

location of the data storage system wherein the storage location is indicated based on a

hash value obtained from the perfect hash function.

20

WO 2010/027824 PCT/US2009/054965

22. The method of claim 20, wherein the data storage system is a deduplicating

storage system.

23. The method of claim 20, wherein the perfect hash function is generated based
on identifiers of the data objects and wherein an identifier of a data object is generated

by hashing at least a portion of the content of the data object.

24. The method of claim 20, wherein the perfect hash function is a minimal
perfect hash function that maps a set of N elements to a range of N values, and
wherein an identifier of a data object is used as an input to the minimal perfect hash

function.

25. A machine-readable medium having instructions which when executed by a
machine, cause the machine to perform a method for managing data objects of a file
storage system, the method comprising:
generating a perfect hash function for a plurality of data objects stored in the
data storage system;
for each of the plurality of data objects, performing a hash operation on the
data object using the perfect hash function, generating a hash value;
and
associating the hash value with a predetermined attribute of the data object,
such that the predetermined attribute of the data object is uniquely
identified using the perfect hash function subsequently in response to a

request for accessing the predetermined attribute of the data object.

26. The machine-readable medium of claim 25, wherein the method further
comprises storing the data object at a storage location of the data storage system and
wherein the storage location is indicated based on a hash value obtained from the

perfect hash function.

27. The machine-readable medium of claim 25, wherein the data storage system is

a deduplicating storage system.

21

WO 2010/027824

1/10

PCT/US2009/054965

Client Client
101 e 102

Network
e.g., LAN, WAN, MAN, SAN, or bus)
103

Management
File System I Processing
108 Logic
109
Server
104

Network
e.g., LAN, WAN, MAN, SAN, or bus)
110

Storage
(e.g., disk,
tape)
105

Storage
(e.g., disk,
tape)
106

FIG. 1

Storage
(e.g., disk,
tape)
107

PCT/US2009/054965

WO 2010/027824

2/10

G0¢
s|qel oA

¢ 'Old

0¢
Alelqi yseH joeped

€0¢
Jobeuepy
100lgO |eoisAyd

20¢
Jabeuey 109[qQ |e01607

o
o
N

10¢

Jebeuey eoinosay

PCT/US2009/054965

WO 2010/027824

3/10

€ 'Old

G0E

‘(e|qge) oAl 8y} uo paseq “ba)
payJew uaaq jou sey ey} j0a(qo |eoaisAyd
UoBo Y)IM PBJBIDOSSE S92JN0SA WIBj0dY

y0E€ —_

"uonouny
ysey 10940.4d ayj Buisn syoalqo |eoisAyd
aAl| 8y} Jo yoea (9|ge} aAl| e ul B a) yuepn

€0€

"(100lgo
[e01b0] e AQ paousialel B o) ane ale
s308[qo |BoIsAyd By} 4O YdIym auIwIB}ep 0}
wajsAs ay) ul sjoalqo |eoibol e ajesownugy

c0€ —_

‘uonouny ysey joapad e ajesousb o} (syoalqo
By} ylm pajeloosse s(| uo paseq “6'9)
wa)sAs ay) ul sjoalqo [eoisAyd |je azAjeuy

L0

‘(woyshs obeuo)s
Buneoldnpap “6:9) weisAs abeio)s ejep
B U] S92JN0sal Wie|joal 0} }sanbal e anle09y

PCT/US2009/054965

WO 2010/027824

4710

a7 "'Old

0ac

3494

G44

9d2

9G¢

63V

ocv

6 Juswbog
Z luswbog
¢ Juswboeg
g Juswboeg
0] uawbag
¥ uswbog
| Juswbag

wia)sAs ayj ul syoalgo |eaisAyd

V¥ "Old

9dd ocv
G444 0dc 63V
63V | 0¢V

Gald

IASIE

| 3l

wa)sAs ayj ul sjoalqo |eo1bo

PCT/US2009/054965

WO 2010/027824

5/10

A

Jv "Old

A

[00z
_ / EiSiS
\ 4 EE!

9ao

9G¢

63V

A A A\

\ ocv

Z|1Z|1Z21Z2|1Z2|1Z21Z2|1Z2|Z2]|Z2)Z

A

o|qe) 9A

uoiouNy ysey weysAs ay) ul
Jo8led sy09lqo |eoisAyd

PCT/US2009/054965
6/10

WO 2010/027824

arv 'old

N

N 9do ocv G od
N

N

N |

N g44 0dc 63V ¥ alld
A [|

P ,

" e / 7

N 63av | 02V L 9|14
e /

a|ge) 9AIT uonoun4 yseH joalued walsAs ayy ul sj08(qo |ea1bo]

PCT/US2009/054965

WO 2010/027824

7/10

3 "Old

0ac

344

EE!

9ao

9G¢
63V

N
N
peap s ol
399 uswbag ﬂ N ww
N
@m%ww%cwmow m/\ N W
A €
A <
A <
N
A |
9|ge) OAIT

uonoun4
UseH 10apad

ocv

wa)sAs ayj ul
s109lqo |eoisAyd

PCT/US2009/054965

WO 2010/027824

8/10

G 'Old

P0G —_

‘uonouny ysey joauad ay) Buisn
a)nguye ay} 9)eoo| Apoinb ‘Ajuenbasgns
109[qo BjEpP B YlM pa)e0oSSE ajnguye
ay} Buissoooe U0y jsanbal e 0} asuodsal u|

€06 —_—+

‘uonouny ysey joauad ay) Buisn
109[qo elep aAnoadsal ay) Yiim ajngune
ue ajeloosse Ajanbiun ‘108lqo ejep yoes 4o

¢0G —_

‘sj00(qo ejep oy} Jo sishjeue ayj Jo Jnsal e
uo paseq uoljouny ysey joapad e ajelausn

10G —

[
(&
L0

‘wo)sAs abe.o)s e Jo s100(qo ejep azAjeuy

PCT/US2009/054965
9/10

o
©

WO 2010/027824

909

9 'OId

(shisia

JebBeueyy Jouieluon

!

€09

09
sjuudiebuig Jabeuepy
juswbog al0)g uswbag

!

09—~

Jebeuely 840)g JusUOD

!

L09

(LA ‘S4ID ‘SN “b8)
S90BUSJU| 90IAIBS 31

PCT/US2009/054965

10/10

WO 2010/027824

N w_n_ (4ound Jo

‘9oBLIa1UI }JOM)BU
lo ‘waspouw
JO ‘pieogAay
Jo ‘esnow “6-9)
(s)eoinaq

OE\ o/

H 801 /

aolnaq Aeldsig ©
Jo|joquo) Aeidsiqg

(she|jonuoD
o/l

602 /

N B

sng
(oAup piey "69) m“_“_MM> NOY 108$8204dOIDIN
Alowap :
3|11B|CAUON
S0. / 101 / €01 / ﬂ
901 /
ayoen

(e
(e
I~

0. \

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings

