3,479,428

Patented Nov. 18, 1969

1

3,479,428 SUNSCREEN COMPOSITION AND METHOD OF USING THE SAME

Douglas Maxwell Bryce and Michael Brian Rooke, Nottingham, England, assignors to Boots Pure Drug Company Limited, Nottingham, England, a British company

No Drawing. Filed July 8, 1964, Ser. No. 381,244 Claims priority, application Great Britain, July 12, 1963, 27,750/63

Int. Cl. A611 23/00

U.S. Cl. 424-60

15 Claims

ABSTRACT OF THE DISCLOSURE

This invention relates to a sunscreen composition comprising a sunscreening agent in castor oil.

This invention relates to improvements in cosmetic 20 preparations. In particular it relates to improved preparations for the protection of the skin from the harmful effect of solar radiation.

In addition to the well-known tanning effect of sunlight on the skin the ultra-violet radiation of wavelength 25 290 to 313 mu may produce a severe erythema especially in fair skinned subjects whose skins contain only small amounts of the protective pigment melanin. Numerous protective agents have been discovered which absorb ultra-violet light of wavelength 290 to 314 mµ while the 30 radiation of longer wavelength is transmitted. The most highly active selective protective agents of this type are so active that a very thin film on the surface of the skin will protect the skin against erythema but will transmit the longer wavelength radiation which imparts the much 35 sought tan to the skin. Such compounds of this class which are pharmaceutically acceptable have been incorporated in creams, lotions, oils and foams for application to the skin to prevent sunburn and throughout this specification are referred to as sunscreen agents. The compositions are 40 generally referred to as protecting the skin against sunlight but it is to be understood that the compositions may equally well be used for protection against ultra-violet radiation of 290 to 313 m μ whatever its source.

It is an object of the present invention to provide im- 45 proved sunscreen compositions which afford a longer period of protection per application.

It is known that the base in which a substance is formulated for application to the skin may have a considerable effect on the amount of substrate remaining on the skin after any given time. A sunscreen agent can only exert its maximum effect if it remains in the surface of the skin for as long a time as possible.

We have now discovered that a high proportion of a sunscreen agent applied to the skin in association with 55 castor oil or certain prepared lanolin fractions remains on the skin surface for a longer time than the same agent associated with conventional carriers. For the purposes of this invention we define the prepared lanolin fractions as those available commercially under the trademark 60 "Fluilan," "Lantrol" and "Westbrook's liquid lanolin" (which are liquid lanolins or lanolin oils produced by low vacuum distillation or fractional solvent crystallization, see de Navarre, Chemistry and Manufacture of Cosmetics, vol. 2, Cosmetic Material (1962), p. 202).

According to the present invention there are provided compositions for the protection of skin against ultraviolet radiation comprising a sunscreen agent and a cosmetically acceptable diluent or carrier comprising not less than 5% of caster oil, and/or a prepared lanolin fraction as herein before defined.

2

The compositions according to the present invention comprise oils, lotions, sprays, creams and foams containing a sunscreen agent within the range of 0.2 to 10% and preferably about 2% of the composition. Suitable sunscreen agents comprise derivatives of benzoic acid, salicyclic acid and benzophenone. We prefer to use esters of N-alkyl p-aminobenzoic acids, particularly ethyl p-dimethylaminobenzoate which in addition to its excellent sunscreen properties, is economic in use, readily available and is readily soluble in the formulation bases.

In addition to the sunscreen agents other compatible, pharmaceutically acceptable, active ingredients may be included, for example insect repellants. Suitable insect repellents which may form part of the compositions according to the present invention include dimethyl phthalate, dibutyl phthalate and N,N-diethyltoluamide.

The essential components of the bases according to the invention are castor oil.

In addition to the essential components, the formulation base may also contain additional solvents, preservatives, antioxidants, emulsifiers, perfumes, colouring matter and water. Any pharmaceutically acceptable solvent may be employed which is compatible with the remaining ingredients. We have found that ethanol is especially useful in those oil compositions containing castor oil as it prevents undue stickiness of the preparation. It is generally desirable to include a preservative in aqueous preparations according to the invention and we have found that esters of p-hydroxybenzoic acid are particularly valuable. Those compositions based on castor oil tend to deteriorate on keeping due to the atmospheric oxidation of the oil. It is desirable to include an anti-oxidant in such compositions to prevent this deterioration and well-known compounds such as butylated hydroxyanisole and butylated hydroxytolune give excellent results. Emulsifying agents which may also be added to the compositions according to the invention include those sold under the trademark "Polawax" which is prepared from cetostearyl alcohol and containing a polyoxyethylene derivative of a fatty acid ester of sorbitan (see Martindale, The Extra Pharmacopoeia, vol. 1, 24th ed., page 698), and the trademark "Lanette Wax SX" which is a mixture of partially sulphated octyl and stearyl alcohols. Cosmetically acceptable perfumes and colouring matter may be added as desired.

The sunscreen oils according to the invention comprise the sunscreen dissolved in the liquid base. It may be desirable to incorporate a thinning agent in castor oil and prepared lanolin fraction formulations and up to 20% of ethanol may be added for this purpose. In castor oil based preparations, which are the preferred compositions about 5 to 10% of ethanol is normally sufficient to give an acceptable composition.

The lotions according to the invention comprise a solution of the sunscreen agent in the oil to which is added aqueous ethanol consistent with complete miscibility. Castor oil is the preferred base for lotions as it is more soluble in alcohol than "Fluilan."

The creams according to the invention contain 0.2 to 10%, preferably about 2% of the sunscreen agent, may be liquid or solid with either water or oil as the continuous phase or they may be vanishing creams or foams. To all of these it is preferable to add a preservative. A liquid water-in-oil cream for example may contain 35 to 85% of total oily phase comprising prepared lanolin fraction or castor oil, together with other oily components such as insect repellants, sunscreen agents and other water insoluble materials, emulsified with water and emulsifying agents where necessary. Liquid oil-in-water creams may contain 5 to 60% of the oil phase together with a suitable emulsifier, for example that available commer-

"Lanbritol Wax M21" cially under the trademark which is a non-ionic self-emulsifying wax prepared from higher fatty alcohols melting at 97° C. (see Martindale, The Extra Pharmacopoeia, vol. 1, 24th edition, p. 1003).

Solid sunscreen creams according to the invention are 5 prepared similarly to the liquid creams but they may contain a higher proportion of the oil phase. Solid water-inoil creams may contain from 35 to 90% of the oil phase and oil-in-water creams may contain 10 to 80% oil. Suitable emulsifiers are included where necessary.

Vanishing cream or sunscreen foams may comprise 5 to 30% of the oil phase emulsified with a suitable emulsifier such as "Polawax," triethanolamine stearate or selfemulsifying glyceryl monostearate. In addition to the additives already mentioned for other cream formulations 15 it may be desirable to incorporate a humectant such as glycerol to reduce drying out of the compositions.

The efficacy of the compositions of the present invention has been demonstrated in the following ways. Sunscreen agents were dissolved in various solvents to 20 give a concentration of 2%, a concentration frequently employed in commercial preparations. The solutions were applied to human skin and, after 5 minutes, the skin was extracted with ethanol and the ethanol solution assayed spectrophotometrically for the content of sunscreen. A 25 similar quantity of sunscreen solution applied to another patch of skin was allowed to remain for 2 hours before extracting with ethanol and assayed for sunscreen content as before. Assuming the figure obtained 5 minutes after application to correspond to the presence of 100% of the screen in the skin the percentage remaining after 2 hours showed the efficiency of the solvent or base in retaining the sunscreen within extractable of the skin surface. This figure is quoted in the following table for a number of solutions of sunscreen agents.

2	Moderate	erythema
---	----------	----------

- Severe erythema without oedema
- Severe erythema with oedema

í	Animal	Sunscreen dissolved in—	Control 3 min. exposure	Treated 9 min. exposure
	ABCD	Dimethyl phthalate	$ \begin{cases} 4 \\ 4 \\ 4 \\ 3 \end{cases} $	3 3 2 1
0	E F G H	Castor oil	\begin{cases} 4 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &	1 2 1 1

Summing the numerical gradings for all the animals on each treatment, the control flanks scored 15 against 8 for those treated with the sunscreen agent dissolved in dimethyl phthalate. The control flanks scored 14 against only 5 for those treated with the same sunscreen agent dissolved in castor oil.

Rectangular areas of 4" x 5" were marked out on the back of each of 4 human volunteers, and test solutions were evenly applied to the areas on each back in random order. After allowing a period of 15 to 30 minutes in the shade to allow the individual preparations to penetrate the skin, each back was exposed to the sun for one hour. The volunteers then remained in the shade, and four hours later definite erythemal response was obtained from surrounding areas, while the treated areas showed little or no reddening. Adjacent areas were compared visually for comparative whiteness, the greater the whiteness the better the protection which had been afforded, and this was scored in favour of that solution giving the best protection from the sun's actinic rays. Where no difference could be seen this was recorded.

Five solutions were prepared, each containing as active

	Percent residual sunscreen agent after 2 hours				
Solvent	Methyl p- dimethyl-amino- benzoate	Ethyl p-di- methyl-amino- benzoate	Ethyl p-di- ethyl-amino- benzoate	2-hydroxy-me- thoxy-4-methyl- benzophenone	
Dimethyl phthalate		51 68	40 65	42 61	
Liquid paraffin		64 85	76 89	Insoluble 78	
Oleyl alcohol		51 -		71 96	
Castor oil +1% polyethylene glycol	. 84	96	100	88	
400 dilaurate Castor oil +1% triethanolamine ole-		87 _			
ate Liquid paraffin/castor oil (2:1) Liquid paraffin/castor oil (1:2)		85 - 84 90	91 90		

A comparison between the effect of 2% solutions of ethyl p-diethylaminobenzoate in dimethyl phthalate and castor oil has been made as follows. The flanks of guinea pigs were shaved, depilated and were irradiated for certain times with ultra-violet radiation from a Kromayer lamp fitted with a Woods glass filter. The wavelength of the transmitted radiation, 290 to 360 mµ approximated to that of normal sunlight in each case the left flank was used as a control area and was irradiated for 3 minutes. Similar areas on the right flank of each animal were treated with standard amounts of sunscreen solution and 2 hours after application they were irradiated for 9 minutes. The degree of erythema was assessed visually after 20 hours and graded numerically as follows:

No effect

Erythema just visible

sunscreen agent 2% w./v. of ethyl p-dimethylaminobenzoate. The cosmetic bases of the sunscreen solutions were as follows:

Solution B-Fluilan (registered trade name)

Solution C-Castor oil

Solution D—Dimethyl phthalate Solution E—Arachis oil

The solutions were compared individually with each other in 10 different ways, and the following table shows whether better protection was given by one or other of a particular pair or whether no difference could be noted.

For example, under the column for the combination C/D the figure 8.0 occurs in the second line. This indicates that for this particular pair of solutions, solution C gave the better protection in 8 tests, and in none of the tests did D give the better protection.

Combination of pairs	B/C	B/D	B/E	C/D	C/E	D/E
No. of times better protection given	3, 3	6, 0	4, 0	8,0	6, 0	1,0
No. of times no difference	5	0	1	3	3	1
Total No. of comparisons	11	6	5	11	9	2

5

It would appear from these tests that castor oil (C) is equal to or slightly better than Fluilan (B) while arachis oil (E) and dimethyl phthalate (D) have the poorest figures for sunscreen agents.

The cream formulations described in Examples 12 and 13 have been tested experimentally on human volunteers as follows. A known amount, about 10 to 20 mg. of the cream was applied with a glass rod to an area of 3 sq. cm. of the inner forearm ensuring that the cream was broken down on application to the skin. At the end of the contact 10period (5 minutes or 2 hours) the treated skin was extracted with three successive 15 ml. quantities of cold ethanol applied to the skin from a wide-mouthed glass container, which was shaken for one minute against the arm. The bulked extractives were made up to 50 ml. with 15 ethanol and the amount of sunscreen agent was determined spectrophotometrically. The compositions described in Examples 9 and 10 were compared with a commercially available sunscreen cream of the following composition.

COMPOSITION A

	ercent	
Stearic acid	. 2	
Wool alcohol	. 1	~ =
Cetyl alcohol	3.5	25
Polawax (registered trademark)	. 5	
Arachis oil		
Ethyl p-dimethylaminobenzoate	1.2	
Ethyl p-diethylaminobenzoate		30
Butylated hydroxytoluene	0.02	30
Glycerol	3	
Sodium citrate	0.05	
Methyl p-hydroxybenzoate		
Silicone fluid MS200 1	. 1	0.7
Perfume oil, v./w.	0.4	35
Water to		

A range of dimethylsiloxane polymers covering a viscosity range of 0.65 to 100,000 centistokes, the Extra Pharmacopoeia, ibid, p. 1005.

With the exception of the perfume oil all percentages are w./w.

The results were as follows:

	Percent w./w.	Percent total s	2 hour recovery as percent of	
Composition	composition	After 5 mins.	After 2 hrs.	5 min. recovery
Example 12		95. 6	89. 4	93. 5
Example 13 Commercial composition	1, 83	87. 5	91.7	104. 0
A	2,02	94, 0	71. 7	76. 3

The following non-limitative examples illustrate our invention. In the examples all percentages are w./w. with the exception of the perfume oil in Examples 8, 9 and 10, where the percentage is v./w.

EXAMPLE 1

A sunscreen oil was prepared from the following
ingredients:
Ethyl p-diethylaminobenzoate 2
Eethyl p-diethylaminobenzoate 2
Castor oil 90
Butylated hydroxytoluene (B.H.T.) 0.02
Ethanol to 100

The sunscreen ester was dissolved in the castor oil 65 together with the antioxidant (B.H.T.) and ethanol was added to 100% with stirring.

EXAMPLE 2

6	
MPLE	3

A sunscreen lotion was prepared by dissolving ethyl p-diethylaminobenzoate and butylated hydroxyanisole in castor oil and adding 90% ethanol to give a lotion with the following composition:

EX/

		rcent
	Ethyl p-diethylaminobenzoate	2
	Castor oil	20
,	Butylated hydroxyanisole	0.02
	90% aqueous ethanolto	100

EXAMPLE 4

A pourable oil-in-water sunscreen cream was prepared 20 from the following ingredients:

		rcent
	Castor oil	10
	"Fluilan (registered trademark)	5
	"Lanbritol Wax M21"	4
5	o/w stabiliser 1	
	Methyl p-hydroxybenzoate	
	B.H.T.	
	Ethyl p-diethylaminobenzoate	2
	Waterto	100

¹Known under the trademark "Myrj 49." polyoxyethylene monostearate (see International Encyclopedia of Cosmetic Ma-terial Tradenames, Moore Publishing Company, 1957, p. 178.

The screening agent and B.H.T. were dissolved in the previously melted castor oil, "Lanbritol Wax" and "Myrj." After adjusting the temperature to 75° C., the water, at the same temperature and containing the dissolved methyl p-hydroxybenzoate, was added with high speed stirring. Stirring was continued until the product was cold.

EXAMPLE 5

By a similar method to that described in Example 4, a more solid cream was prepared from the following in-55 gredients:

	rcent
Castor oil	40
Ethyl p-dimethylaminobenzoate	21
Methyl p-hydroxybenzoate	0.1
B.H.T.	0.02
Waterto	100
	Castor oil

EXAMPLE 6

A cream similar to that described in Example 5 was prepared from the following ingredients:

	Percent
A sunscreen oil was prepared as in Example 1 from the	70 Castor oil 40
following ingredients:	Polyglycol 400 distearate 10
Percent	Methyl p-hydroxybenzoate 0.1
Ethyl p-dimethylaminobenzoate 2	B.H.T 0.02
"Fluilan" 85	Ethyl p-diethylaminobenzoate 2
Ethanolto 100 '	75 Waterto 100

7 EXAMPLE 7

A sunscreen cream in a vanishing base was prepared with the following composition:

Per	rcent
Castor oil	20
Stearic acid	
Triethanolamine	4
Ethyl p-diethylaminobenzoate	2
B.H.T.	0.02
Methyl p-hydroxybenzoate	0.1
Waterto	100

EXAMPLE 8

A soft sunscreen cream was prepared with the following composition:

15 insect repellent is N,N-diethyltoluamide.
6. A composition as claimed in claim

Per	cent
Castor oil	20
Glyceryl monostearate (self-emulsifying)	
Cetyl alcohol	3
Solan E (registered trademark) ¹	5
Ethyl p-dimethylaminobenzoate	2
Methyl p-hydroxybenzoate	
Butylated hydroxytoluene	0.02
Perfume oil, v./w.	0.4
Waterto	100

¹ An ethoxylated lanolin (see International Encyclopedia of Cosmetic Material Tradenames, ibid., p. 245).

EXAMPLE 9

A fluid sunscreen, insect repellant, cream was prepared containing the following ingredients:

Per	rcent
Fluilan (registered trademark). A liquid lanolin	10
preparation	10
N,N-diethyltoluamide	15
Ethyl p-dimethylaminobenzoate	2
Glyceryl monostearate (non self-emulsifying)	10
Stearic acid	2
Polychol 5 (registered trademark) ¹	1
Butylated hydroxytoluene	0.02
Cellosize QP 15000 (registered trademark). A hy-	
droxyethyl cellulose	0.25
Ethyl p-hydroxybenzoate	
Triethanolamine B.P.C.	1
Perfume oil, v./w.	0.5
Waterto	100
¹ An ethoxylated lanolin alcohol preparation (see Int	erna-

¹ An ethoxylated lanolin alcohol preparation (see International Encyclopedia of Cosmetic Material Tradenames, ibid., p. 213).

EXAMPLE 10

A fluid sunscreen, insect repellant, cream was prepared containing the following ingredients:

containing the following ingredients.	
Pe	rcent
Castor oil	10
N,N-diethyltoluamide	15
Ethyl p-dimethylaminobenzoate	2
Glyceryl monostearate (non-self-emulsifying)	10
Stearic acid	2
Polychol 5 (registered trademark), an ethoxylated	
lanolin alcohol preparation	2
Butylated hydroxytoluene	0.02
Cellosize QP 15000 (registered trademark), a hy-	
droxyethyl cellulose	
Methyl p-hydroxybenzoate	0.15
Triethanolamine B.P.C.	1
Perfume oil, v./w	0.5
Water to	100

We claim:

1. A sunscreen composition comprising a sunscreen agent which absorbs ultra-violet radiation of wavelengths in the erythema producing range of about 290 to 313 m μ and a cosmetically acceptable diluent comprising not less than 5% of castor oil.

2. An oily composition as claimed in claim 1 comprising castor oil and comprising also a thinning liquid com-

patible with said castor oil.

3. An oily composition as claimed in claim 2 wherein the thinning liquid is ethanol.

4. A composition as claimed in claim 1 comprising also an insect repellent.

5. A composition as claimed in claim 4 wherein the insect repellent is N.N-diethyltoluamide.

6. A composition as claimed in claim 1 in which the sunscreen agent is present in a concentration of 0.2 to 10 w./w.

7. A composition as claimed in claim 6 wherein the 20 sunscreen agent is ethyl p-dimethylaminobenzoate.

8. A composition as claimed in claim 6 wherein the sunscreen agent is ethyl p-diethylaminobenzoate.

9. A liquid, water-in-oil, sunscreen cream as claimed in claim 1 in which the total oily phase comprising the castor oil comprises 35 to 85% of the composition.

10. A solid, water-in-oil, sunscreen cream as claimed in claim 1 in which the total oil phase comprising the castor oil comprises 35 to 90% of the composition.

11. A liquid, water-in-oil, sunscreen cream as claimed in claim 1 in which the total oily phase comprising the castor oil comprises 5 to 60% of the composition.

12. A solid, water-in-oil, sunscreen cream as claimed in claim 1 in which the total oily phase comprising the castor oil comprises 10 to 80% of the composition.

13. A vanishing cream as claimed in claim 1 in which the total oily phase comprising the castor oil comprises 5 to 30% of the composition.

14. A sunscreen composition as claimed in claim 1 also comprising an effective amount of an antioxidant for said castor oil.

15. A method of protecting the skin from the harmful effect of solar radiation comprising applying to the skin a composition comprising a sunscreen agent which absorbs ultra-violet radiation of wavelengths in the erythema producing range of about 290 to 313 m μ and a cosmetically acceptable diluent therefor comprising not less than 5% of castor oil.

References Cited

UNITED STATES PATENTS

2,698,824	1/1955	Morgulis	167—90
2,853,423	9/1958	Via	16790
3,069,319	12/1962	Stearns et al	167—90

OTHER REFERENCES

Tajkowski et al.: Proceeding of the Scientific Section of the Toilet Goods Assoc., December 1953, No. 20, pp. 1–7, 167–90.

Manufacturing Chemist, 4160, vol. 31, No. 4, pp. 156 to 157.

Stetson American Perfumer and Essential Oil Review, August 1954, vol. 64, No. 2, pp. 97-100.

65 ALBERT T. MEYERS, Primary Examiner D. R. MAHANAND, Assistant Examiner

U.S. Cl. X.R.

70 424—59, 308, 310, 320, 365

55

60