a2 United States Patent

Rosen

US010977861B1

US 10,977,861 B1
Apr. 13, 2021

(10) Patent No.:
45) Date of Patent:

(54) INFERRING QUALITY IN POINT
CLOUD-BASED THREE-DIMENSIONAL
OBJECTS USING TOPOGRAPHICAL DATA
ANALYSIS

(71) Applicant: University of South Florida, Tampa,

OTHER PUBLICATIONS

Edelsbrunner, Herbert, David Letscher, and Afra Zomorodian. “Topo-
logical persistence and simplification.” Proceedings 41st annual

symposium on foundations of computer science. IEEE, 2000. (Year:
2000).*

FL (US) (Continued)

(72) Inventor: Paul Andrew Rosen, Tampa, FL. (US)

Primary Examiner — Daniel F Hajnik

(73) Assignee: UNIVERSITY OF SOUTH
(74) Attorney, Agent, or Firm — Thomas Horstemeyer,

FLORIDA, Tampa, FL (US)

LLP
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. (57) ABSTRACT

(21) Appl. No.: 16/725,051 Disclosed are various embodiments for inferring quality in
point cloud-based three-dimensional objects using topo-
graphical data analysis. A first graph is generated represent-
ing a three-dimensional model, each vertex in the first graph
representing a respective connected component within a

layer of the three-dimensional model and each edge in the

(22) Filed: Dec. 23, 2019
Related U.S. Application Data

(60) Provisional application No. 62/785,454, filed on Dec.

27, 2018.
first graph representing a connection between two respective
(51) Int. CL connected components within two respective layers of the
GO6T 17/20 (2006.01) three-dimensional model. A second graph representing nega-
GO6T 19/00 (2011.01) tive space associated with the three-dimensional model is
(52) US. CL also generated, each vertex in the second graph representing
CPC .o GO6T 17/20 (2013.01); GO6T 19/00 a connected component of a negative space region within the

(2013.01); GO6T 2200/24 (2013.01)

(58) Field of Classification Search
CPC GO6T 17/20; GO6T 19/00; GO6T 2200/24
See application file for complete search history.

layer of the three-dimensional model and each edge in the
second graph representing a connection between two respec-
tive connected components with two respective layers of the
three-dimensional model. A persistent homology analysis is
applied to the first graph to determine whether a hole or
tunnel exists in each vertex of the first graph. An error with
the three-dimensional model can then be identified based at
least in part on the first graph, the second graph, and the

(56) References Cited
U.S. PATENT DOCUMENTS

2016/0059489 Al* 3/2016 WADg w.oooccrrrecrrrenn HO4L 67/l DPersistent homology analysis.
700/119

2016/0110917 A1* 4/2016 IVerson GOG6T 17/205
345/420 18 Claims, 6 Drawing Sheets
(__ Start />

I 403

Receive Three-Dimensional |/
Model and Width

i 406

Generate Positive Space Graph /

l 409

Generate Negative Space 7/
Graph

l 413

Identify Potential Errors in /
Three-Dimensional Model

i 416

Render Within User Interface J
Graphs and Potential Errors

v
C Ed D

US 10,977,861 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Singh, Gurjeet, Facundo Mémoli, and Gunnar E. Carlsson. “Topo-
logical methods for the analysis of high dimensional data sets and
3d object recognition.” SPBG 91 (2007): 100. (Year: 2007).*
Wang, Quan, et al. “A Topology Structure Repair Algorithm for
Triangular Mesh Model.” 2016 13th International Conference on
Embedded Software and Systems (ICESS). IEEE, 2016. (Year:
2016).*

Zhou, Qian-Yi, Tao Ju, and Shi-Min Hu. “Topology repair of solid
models using skeletons.” IEEE Transactions on Visualization and
Computer Graphics 13.4 (2007): 675-685. (Year: 2007).*

Pernot, Jean-Philippe, George Moraru, and Philippe Véron. “Repair-
ing triangle meshes built from scanned point cloud.” Journal of
Engineering Design 18.5 (2007): 459-473.

Zhou, Lu and Weihong Zhang. “Topology optimization method with
elimination of enclosed voids.” Structural and Multidisciplinary
Optimization 60.1 (2019): 117-136.

Telea, Alexandru, and Andrei Jalba. “Voxel-based assessment of
printability of 3D shapes.” International symposium on mathemati-
cal morphology and its applications to signal and image processing.
Springer, Berlin, Heidelberg, 2011.

Oropallo, William, et al. “Point cloud slicing for 3-D printing.”
Computer-Aided Design and Applications 15.1 (2018): 90-97.
Rao, Prahalad K., et al. “Assessment of dimensional integrity and
spatial defect localization in additive manufacturing using spectral
graph theory.” Journal of Manufacturing Science and Engineering
138.5 (2016).

Nelaturi, Saigopal, Walter Kim, and Tolga Kurtoglu. “Manufactur-
ability feedback and model correction for additive manufacturing.”
Journal of Manufacturing Science and Engineering 137.2 (2015).
Liu, Shutian, et al. “An identification method for enclosed voids
restriction in manufacturability design for additive manufacturing
structures.” Frontiers of Mechanical Engineering 10.2 (2015): 126-
137.

Li, Quhao, et al. “Structural topology optimization considering
connectivity constraint” Structural and Multidisciplinary Optimiza-
tion 54.4 (2016): 971-984.

Relvas, Carlos, et al. “Accuracy control of complex surfaces in
reverse engineering.” International Journal of Precision Engineering
and Manufacturing 12.6 (2011): 1035-1042.

Brunton, Alan, et al. “Filling holes in triangular meshes using digital
images by curve unfolding.” International Journal of Shape Mod-
eling 16.01n02 (2010): 151-171.

Wang, Weiming M., Cédric Zanni, and Leif Kobbelt. “Improved
surface quality in 3D printing by optimizing the printing direction.”
Computer graphics forum. vol. 35. No. 2. 2016.

Xia, Chunhong, and Hui Zhang. “A fast and automatic hole-filling
method based on feature line recovery.” Computer-Aided Design
and Applications 14.6 (2017): 751-759.

Cheng, Siyuan, Siquan Liang, and Xiangwei Zhang. “Repairing
Incomplete Measured Data with Haptic Interaction.” 2009 2nd
International Congress on Image and Signal Processing. IEEE,
2009.

Behandish, Morad, Amir M. Mirzendehdel, and Saigopal Nelaturi.
“A Classification of Topological Discrepancies in Additive Manu-
facturing.” Computer-Aided Design 115 (2019): 206-217.

Arrieta, Cristobal, et al. “Quantitative assessments of geometric
errors for rapid prototyping in medical applications.” Rapid Prototyp-
ing Journal (2012).

Robbins, J., et al. “An efficient and scalable approach for generating
topologically optimized cellular structures for additive manufactur-
ing.” Additive Manufacturing 12 (2016): 296-304.

Haertel, Jan HK, and Gregory F. Nellis. “A fully developed flow
thermofluid model for topology optimization of 3D-printed air-
cooled heat exchangers.” Applied thermal engineering 119 (2017):
10-24.

Nelaturi, Saigopal, and Vadim Shapiro. “Representation and analy-
sis of additively manufactured parts.” Computer-Aided Design 67
(2015): 13-23.

* cited by examiner

US 10,977,861 B1

Sheet 1 of 6

Apr. 13,2021

U.S. Patent

601

l "OIld

Aydug RN

ABoodoy aoedy

V/ 901

i

(8]
(e
-—

pagld Jedepanpw

U.S. Patent Apr. 13,2021 Sheet 2 of 6 US 10,977,861 B1

FIG. 2

U.S. Patent Apr. 13,2021 Sheet 3 of 6 US 10,977,861 B1

/N

e /

\ N \ \
N N \ 208
\ \) \

R \ %///
/ \\R \\\ \\\\\3«\%\\\\\ \

FIG. 3

U.S. Patent Apr. 13,2021 Sheet 4 of 6 US 10,977,861 B1

403

Receive Three-Dimensional j
Model and Width

i 406

Generate Positive Space Graph J

i 409

Generate Negative Space /
Graph

l 413

\dentify Potential Errorsin |/
Three-Dimensional Model

i 416

Render Within User Interface /
Graphs and Potential Errors

;

FIG. 4

U.S. Patent Apr. 13,2021 Sheet 5 of 6 US 10,977,861 B1

U.S. Patent Apr. 13,2021 Sheet 6 of 6 US 10,977,861 B1

600
Memory(ies) 606
Procg(s):s%or(s) Machine Readable Machine Readable
== Instructions Instructions
A 609 A
< v ya v >

FIG. 6

US 10,977,861 Bl

1
INFERRING QUALITY IN POINT
CLOUD-BASED THREE-DIMENSIONAL
OBJECTS USING TOPOGRAPHICAL DATA
ANALYSIS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to, and the benefit of, U.S.
Provisional Patent Application No. 62/785.454, entitled
“INFERRING QUALITY IN POINT CLOUD-BASED
THREE-DIMENSIONAL OBJECTS USING TOPO-
GRAPHICAL DATA ANALYSIS” and filed on Dec. 27,
2018, which is incorporated by reference as if set forth
herein in its entirety.

NOTICE OF GOVERNMENT-SPONSORED
RESEARCH

Government sponsorship notice: This invention was made
with government support under Grant Number 11S1513616
awarded by the National Science Foundation. The govern-
ment has certain rights in the invention.

BACKGROUND

Three-dimensional (3D) printing is a popular technology.
However, the quality of three-dimensional models can be
difficult to assess prior to actually 3D printing an object
based on the model. For example, point cloud-based models,
such as those generated by 3D scanners, may not represent
an object with complete fidelity. This can result 3D models
having holes or tunnels where a solid mass should be
located, having two or more components connected when
they should not be connected, having two or more compo-
nents not be connected when they should be connected, as
well as other problems.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better
understood with reference to the following drawings. The
components in the drawings are not necessarily to scale,
with emphasis instead being placed upon clearly illustrating
the principles of the disclosure. Moreover, in the drawings,
like reference numerals designate corresponding parts
throughout the several views.

FIG. 1 is a drawing depicting different object topologies
used by various embodiments of the present disclosure.

FIG. 2 is a drawing illustrating the creation of a graph
representing a three-dimensional model of an object accord-
ing to various embodiments of the present disclosure.

FIG. 3 is a graphical representation of the process for
determining whether two connected components of a three-
dimensional model of an object are connected to each other.

FIG. 4 is a flowchart illustrating one example of func-
tionality implemented as portions of an application or
method to various embodiments of the present disclosure.

FIG. 5 provides a graphical representation of a process for
a topological repair of point cloud-based three-dimensional
printed objects.

FIG. 6 is a schematic block diagram that provides one
example illustration of a computing device used to imple-
ment various embodiments of the present disclosure.

DETAILED DESCRIPTION

Disclosed are various approaches for inferring quality in
point cloud-based three-dimensional (3D) objects using

10

15

20

25

35

40

45

50

55

60

65

2

topographical data analysis. A point-cloud based 3D model
can be divided or segmented into a series of slices along the
vertical or horizontal axis, according to various embodi-
ments of the present disclosure. The width of each slice may
vary according to the particular implementation. For
example, the width may be set to the resolution of a
corresponding 3D printer, such as the z-axis resolution.

Each slice is analyzed to identify the points that fall within
the 3D object. Each discrete or independent group of points
may be identified as a connected component. If there are
multiple independent groups of points within a slice, then
this may indicate that there are multiple connected compo-
nents within the slice, as further described herein.

Several graphs can then be generated from the series of
slices. A first graph may represent the 3D object itself. In this
graph, each connected component can be represented as a
vertex. Edges between vertices indicate that two connected
components adjacent to each other and are connected. A
second graph can be similarly created to represent the
negative space within and surrounding the 3D object. Voids
or other empty spaces within a slice will be represented by
a vertex. Edges between vertices in the second graph indi-
cate that two voids are adjacent to each other and part of a
larger empty space.

FIGS. 1A-1C are examples of the different types of
topologies that can be used by various embodiments of the
present disclosure. FIG. 1A depicts an example of an object
100 segmented into multiple positive-space layers 103. FIG.
1B depicts an example of the negative space 106 surround-
ing the object 100 segmented into multiple negative-space
layers 109. FIG. 1C depicts an example of the topology of
a positive-space layer 103 when viewed along the z-axis.

FIG. 2 depicts a graphical representation of the creation of
a graph 200 according to various embodiments of the
present disclosure. Although the process depicted is used to
generate a graph 200 representing an object 100, a similar
process could be used to generate a graph 200 representing
the negative space 106 surrounding an object 100. As
depicted in the transition from (a) to (b), a three-dimensional
(3D) model 203 (e.g., a point cloud-based model) is sliced
into multiple segments, such as the depicted positive space
layers 103. The width of each segment may be set to a
predefined value (e.g., a user specified value representing the
z-axis resolution of a 3D printer).

As illustrated in (b) at FIG. 2, each positive space layer
103 may include one or more connected components 206. A
connected component 206 includes a contiguous or con-
nected set of points in the 3D model within a positive space
layer 103. Each connected component 206 may be repre-
sented as a vertex 209 of a graph 200, as illustrated in (c).
Edges 213 of the graph 200 represent connected components
206 of adjacent positive-space layers 103.

FIG. 3 depicts a graphical representation of the process
for determining whether two connected components 206 in
adjacent positive-space layers 103 are connected to each
other. Each positive-space layer 103 has a predefined width.
However, each positive-space layer 103 may also have a
buffer zone 303. Where connected components 206 from
adjacent positive-space layers 103 include points in an
overlapping area 306 of a buffer zone 303, then the con-
nected components 206 can be determined to connect to
each other. This connection may be represented by an edge
in the graph 200.

It should be noted that similar processes can be used to
map and model the negative space 106 surrounding an
object 100. For example, points may be added to the
negative space 106 surrounding or within a 3D model.

US 10,977,861 Bl

3

Contiguous or connected sets of points within the negative
space may be grouped together in negative-space layers 109.
These groupings may be represented as vertices and group-
ings in adjacent negative-space layers 109 can be repre-
sented using edges to show that they are connected.

FIG. 4 is a flowchart representing a method according to
various embodiments of the present disclosure. The flow-
chart of FIG. 4 may be considered as a method or sequence
of steps performed by a computer according to various
embodiments of the present disclosure. Likewise, the flow-
chart of FIG. 4 may be considered as a description of logical
blocks of an application executed by the computer according
to various embodiments of the present disclosure.

Beginning at step 403, a three-dimensional (3D) model
203 and a segment width are received. For example, a user
may select or identify a 3D model 203 using a user interface
and input or select a segment width with the user interface.
The 3D model 203 may be a point cloud-based model and
the segment width may represent a resolution of a 3D printer
(e.g., the z-axis resolution).

Next at step 406, a graph 200 representing the 3D model
203 (e.g., a positive-space graph 200) is generated. To
generate the positive space graph 200, the three-dimensional
model 203 is divided into multiple positive-space layers 103
with the predefined width. Any connected components 206
within a positive space-layer 103 are identified and a vertex
209 is created to represent each connected component 206.
To identify which connected components 206 in adjacent
positive-space layers 103 connect to each other, it may be
determined whether the connected components 206 extend
into a buffer zone 303. If an overlapping area 306 for two
connected components 206 exists within a buffer zone 303,
the then connected components 206 may be considered to
connect to each other. Accordingly, an edge 213 may be
created between the respective vertices 209 of the graph
representing the two connected components 206.

In addition, persistent homology approaches may be used
to identity the contours of individual connected components
206. For example, persistent homology approaches may be
used to identify holes, tunnels or other voids within a
connected component 206. This information may be stored
within the vertex 209 of the graph 200 representing the
respective connected component 206.

Then at step 409, a graph 200 representing the negative
space 106 within or surrounding the 3D model 203 can be
generated. To generate such a graph 200, a series of points
may be created in the negative space 106 surrounding the 3D
model 203. These points in the negative space 106 of the 3D
model 203 can then be treated as a model or an object,
allowing the same process as described in step 406 to be
used to create a graph representing the negative space 106
within or surrounding the 3D model 203.

Moving on to step 413, potential errors in the three-
dimensional model 203 can be identified according to vari-
ous criteria. For example, invisible holes or voids within the
three-dimensional model 203 may be identified, as indicated
by the presence of multiple negative-space graphs 200
instead of a single negative space graph 203. As another
example, a series of vertices 209 in a positive-space graph
200 may be indicated as containing one or more holes. If the
series of vertices 209 does not terminate with vertices 209
without any holes or tunnels, this could indicate a hole or
tunnel continuing the length, width, or other distance of the
three-dimensional model 203. Other errors may also be
identified according to various criteria.

Next at step 416, the results may be rendered or displayed
within a user interface. For example, the graphs 200 may be

10

15

20

25

30

35

40

45

50

55

60

65

4

presented to the user, with problematic regions highlighted
to indicate that the user should further investigate these
sections of the model 203. Other renditions or representa-
tions may also be made as appropriate for the various
embodiments of the present disclosure.

FIG. 5 depict a graphical representation of a method or
approach for performing topological repairs of point cloud-
based objects. Once problematic holes are discovered in
point cloud-based data sets, as previously discussed, a user
may select an H1 feature (e.g., a hole in a slice as found by
persistent homology), and have the hole filled with new
interpolated points.

A by-product of calculating the persistent homology, and
using a boundary matrix reduction in particular, is an object
known as a representative generator. The generator
describes a set of simplices that capture a topological
feature. For H1, this generator is a series of edges that form
a closed loop. The representative generator is not guaranteed
to be compact or unique, though methods to find the most
compact generator exist. At (a), an example is shown—
given a set of points, the generator, as identified by persistent
homology, is the series of edges surrounding the hole
(missing points) in the middle of the dataset.

Given that one is working with a single slice of data, the
procedure can be treated as a two-dimensional problem
moving forward, making the generator a two-dimensional
non-convex polygon. For the next step, the points on the
interior, inclusive of the boundary, of the polygon are
identified. The result is also illustrated in (a).

Once the interior points are identified, the interior of the
non-convex polygon is triangulated. One example of a
triangulation technique that may be appropriate is Delaunay
Triangulation, which has a benefit of guaranteeing the shape
of triangles to ensure new points created for the dataset are
well distributed. Step (b) shows an example of the resulting
triangulation.

New points can then be added to the dataset. First, the
longest edge in the Delaunay triangulation is selected, an
example of which is illustrated in step (b). Next, a new point
is inserted at the midpoint of the edge, as illustrated in step
(c). Finally, the polygon is re-triangulated, for example by
using an incremental Delaunay algorithm to efficiently
update the existing triangulation with the new point, as
illustrated in step (d). This process can be repeated as long
as the length of the longest edge of the Delaunay triangu-
lation is above a user-defined threshold, which would typi-
cally be defined based at least in part on the resolution of a
three-dimensional printer. An example of a final repaired
point cloud is illustrated at step (e).

With reference to FIG. 6, shown is a schematic block
diagram a computing device 600. The computing device 600
includes at least one processor circuit, for example, having
a processor 603 and a memory 606, both of which are
coupled to a local interface 609. To this end, the computing
device 600 may include, for example, at least one server
computer or like device. The local interface 609 may
include, for example, a data bus with an accompanying
address/control bus or other bus structure as can be appre-
ciated.

Stored in the memory 606 are both data and several
components that are executable by the processor 603. In
particular, stored in the memory 606 and executable by the
processor 603 are machine-readable instructions that can
cause the computing device 600 to implement various
embodiments of the present disclosure, including the func-
tionality described in FIG. 3. Also stored in the memory 606

US 10,977,861 Bl

5

may be a data store and other data. In addition, an operating
system may be stored in the memory 606 and executable by
the processor 603.

It is understood that there may be other applications that
are stored in the memory 606 and are executable by the
processor 603 as can be appreciated. Where any component
discussed herein is implemented in the form of software, any
one of a number of programming languages may be
employed such as, for example, C, C++, C#, Objective C,
Java®, JavaScript®, Perl, PHP, Visual Basic®, Python®,
Ruby, Flash®, or other programming languages.

A number of software components are stored in the
memory 606 and are executable by the processor 603. In this
respect, the term “executable” means a program file that is
in a form that can ultimately be run by the processor 603.
Examples of executable programs may be, for example, a
compiled program that can be translated into machine code
in a format that can be loaded into a random access portion
of the memory 606 and run by the processor 603, source
code that may be expressed in proper format such as object
code that is capable of being loaded into a random access
portion of the memory 606 and executed by the processor
603, or source code that may be interpreted by another
executable program to generate instructions in a random
access portion of the memory 606 to be executed by the
processor 603, etc. An executable program may be stored in
any portion or component of the memory 606 including, for
example, random access memory (RAM), read-only
memory (ROM), hard drive, solid-state drive, Universal
Serial Bus (USB) flash drive, memory card, optical disc such
as compact disc (CD) or digital versatile disc (DVD), floppy
disk, magnetic tape, or other memory components.

The memory 606 is defined herein as including both
volatile and nonvolatile memory and data storage compo-
nents. Volatile components are those that do not retain data
values upon loss of power. Nonvolatile components are
those that retain data upon a loss of power. Thus, the
memory 606 may include, for example, random access
memory (RAM), read-only memory (ROM), hard disk
drives, solid-state drives, USB flash drives, memory cards
accessed via a memory card reader, floppy disks accessed
via an associated floppy disk drive, optical discs accessed
via an optical disc drive, magnetic tapes accessed via an
appropriate tape drive, or other memory components, or a
combination of any two or more of these memory compo-
nents. In addition, the RAM may include, for example, static
random access memory (SRAM), dynamic random access
memory (DRAM), or magnetic random access memory
(MRAM) and other such devices. The ROM may include,
for example, a programmable read-only memory (PROM),
an erasable programmable read-only memory (EPROM), an
electrically erasable programmable read-only memory (EE-
PROM), or other like memory device.

Also, the processor 603 may represent multiple proces-
sors 603 or multiple processor cores and the memory 606
may represent multiple memories 606 that operate in parallel
processing circuits, respectively. In such a case, the local
interface 609 may be an appropriate network that facilitates
communication between any two of the multiple processors
603, between any processor 603 and any of the memories
606, or between any two of the memories 606. The local
interface 609 may include additional systems designed to
coordinate this communication, including, for example, per-
forming load balancing. The processor 603 may be of
electrical or of some other available construction.

Although the various systems described herein may be
embodied in software or code executed by general purpose

10

15

20

25

30

35

40

45

50

55

60

65

6

hardware as discussed above, as an alternative the same may
also be embodied in dedicated hardware or a combination of
software/general purpose hardware and dedicated hardware.
If embodied in dedicated hardware, each can be imple-
mented as a circuit or state machine that employs any one of
or a combination of a number of technologies. These tech-
nologies may include, but are not limited to, discrete logic
circuits having logic gates for implementing various logic
functions upon an application of one or more data signals,
application specific integrated circuits (ASICs) having
appropriate logic gates, field-programmable gate arrays (FP-
GAs), or other components, etc. Such technologies are
generally well known by those skilled in the art and,
consequently, are not described in detail herein.

FIG. 3 depicts an example embodiment of the present
disclosure. If embodied in software, each block in FIG. 3
may represent a module, segment, or portion of code that
includes program instructions to implement the specified
logical function(s). The program instructions may be
embodied in the form of source code that includes human-
readable statements written in a programming language or
machine code that includes numerical instructions recogniz-
able by a suitable execution system such as a processor 603
in a computer system or other system. The machine code
may be converted from the source code through various
processes. For example, the machine code may be generated
from the source code with a compiler prior to execution of
the corresponding application. As another example, the
machine code may be generated from the source code
concurrently with execution with an interpreter. Other
approaches can also be used. If embodied in hardware, each
block may represent a circuit or a number of interconnected
circuits to implement the specified logical function or func-
tions.

Although the flowchart of FIG. 3 shows a specific order
of'execution, it is understood that the order of execution may
differ from that which is depicted. For example, the order of
execution of two or more blocks may be scrambled relative
to the order shown. Also, two or more blocks shown in
succession in FIG. 3 may be executed concurrently or with
partial concurrence. Further, in some embodiments, one or
more of the blocks shown in FIG. 3 may be skipped or
omitted. In addition, any number of counters, state variables,
warning semaphores, or messages might be added to the
logical flow described herein, for purposes of enhanced
utility, accounting, performance measurement, or providing
troubleshooting aids, etc. It is understood that all such
variations are within the scope of the present disclosure.

Also, any logic or application described herein that
includes software or code can be embodied in any non-
transitory computer-readable medium for use by or in con-
nection with an instruction execution system such as, for
example, a processor 603 in a computer system or other
system. In this sense, the logic may include, for example,
statements including instructions and declarations that can
be fetched from the computer-readable medium and
executed by the instruction execution system. In the context
of the present disclosure, a “computer-readable medium”
can be any medium that can contain, store, or maintain the
logic or application described herein for use by or in
connection with the instruction execution system.

The computer-readable medium can include any one of
many physical media such as, for example, magnetic, opti-
cal, or semiconductor media. More specific examples of a
suitable computer-readable medium would include, but are
not limited to, magnetic tapes, magnetic floppy diskettes,
magnetic hard drives, memory cards, solid-state drives, USB

US 10,977,861 Bl

7

flash drives, or optical discs. Also, the computer-readable
medium may be a random access memory (RAM) including,
for example, static random access memory (SRAM) and
dynamic random access memory (DRAM), or magnetic
random access memory (MRAM). In addition, the com-
puter-readable medium may be a read-only memory (ROM),
a programmable read-only memory (PROM), an erasable
programmable read-only memory (EPROM), an electrically
erasable programmable read-only memory (EEPROM), or
other type of memory device.

Further, any logic or application described herein may be
implemented and structured in a variety of ways. For
example, one or more applications described may be imple-
mented as modules or components of a single application.
Further, one or more applications described herein may be
executed in shared or separate computing devices or a
combination thereof. For example, a plurality of the appli-
cations described herein may execute in the same computing
device 600.

Disjunctive language such as the phrase “at least one of X,
Y, or Z,” unless specifically stated otherwise, is otherwise
understood with the context as used in general to present that
an item, term, etc., may be either X, Y, or Z, or any
combination thereof (e.g., X, Y, or Z). Thus, such disjunctive
language is not generally intended to, and should not, imply
that certain embodiments require at least one of X, at least
one of Y, or at least one of Z to each be present.

It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible
examples of implementations set forth for a clear under-
standing of the principles of the disclosure. Many variations
and modifications may be made to the above-described
embodiments without departing substantially from the spirit
and principles of the disclosure. All such modifications and
variations are intended to be included herein within the
scope of this disclosure and protected by the following
claims.

Therefore, the following is claimed:
1. A system, comprising:
a computing device comprising a processor and a
memory; and
machine-readable instructions stored in the memory that,
when executed by the processor, cause the computing
device to at least:
generate a first graph representing a three-dimensional
model, each vertex in the first graph representing a
respective connected component within a layer of the
three-dimensional model and each edge in the first
graph representing a connection between two respec-
tive connected components within two respective
layers of the three-dimensional model;
generate a second graph representing negative space
associated with the three-dimensional model, each
vertex in the second graph representing a connected
component of a negative space region within the
layer of the three-dimensional model and each edge
in the second graph representing a connection
between two respective connected components with
two respective layers of the three-dimensional
model;
apply a persistent homology analysis to the first graph
to determine whether a hole or tunnel exists in each
vertex of the first graph; and
identify an error with the three-dimensional model
based at least in part on the first graph, the second
graph, and the persistent homology analysis.

5

20

25

30

35

40

50

55

60

65

8

2. The system of claim 1, wherein the machine-readable
instructions further cause the computing device to repair the
error.

3. The system of claim 2, wherein the machine-readable
instructions that cause the computing device to repair the
error further cause the computing device to at least:

identify a two-dimensional, non-convex polygon that

represents the hole or tunnel;

triangulate an interior of the non-convex polygon; and

add additional data points within the interior of the

non-convex polygon based at least in part on triangu-
lating the interior of the non-convex polygon.

4. The system of claim 1, wherein the machine-readable
instructions that cause the computing device to generate the
first graph further cause the computing device to at least:

insert a plurality of points into the negative space region

of the three-dimensional model;

separate the three-dimensional model into a series of

layers, each layer in the series of layers having a
predefined width;

identify a set of connected components in each layer in the

series of layers, each connected component in the set of
connected components representing at least a portion of
the plurality of points in the negative space region of
the three-dimensional model; and

for each connected component in the set of components in

a respective layer, identify a collection of connected
components that touch the connected component.

5. The system of claim 1, wherein the machine-readable
instructions that cause the computing device to generate the
first graph further cause the computing device to at least:

separate the three-dimensional model into a series of

layers, each layer in the series of layers having a
predefined width;

identify a set of connected components in each layer in the

series of layers; and

for each connected component in the set of components in

a respective layer, identify a collection of connected
components that touch the connected component.

6. The system of claim 5, wherein machine readable
instructions further cause the computing device to at least:

receive an input from a user interface specifying the

predefined width, the predefined width being substan-
tially equal to a z-axis resolution of a three-dimensional
printer; and

set the predefined width equal to the input specifying the

predefined width.

7. A method, comprising:

generating a first graph representing a three-dimensional

model, each vertex in the first graph representing a
respective connected component within a layer of the
three-dimensional model and each edge in the first
graph representing a connection between two respec-
tive connected components within two respective lay-
ers of the three-dimensional model;

generating a second graph representing negative space

associated with the three-dimensional model, each ver-
tex in the second graph representing a connected com-
ponent of a negative space region within the layer of the
three-dimensional model and each edge in the second
graph representing a connection between two respec-
tive connected components with two respective layers
of the three-dimensional model;

applying a persistent homology analysis to the first graph

to determine whether a hole or tunnel exists in each
vertex of the first graph; and

US 10,977,861 Bl

9

identifying an error with the three-dimensional model
based at least in part on the first graph, the second
graph, and the persistent homology analysis.

8. The method of claim 7, further comprising repairing the
error in the three-dimensional model.

9. The method of claim 8, wherein repairing the error in
the three-dimensional model further comprises:

identifying a two-dimensional, non-convex polygon that

represents the hole or tunnel;

triangulating an interior of the non-convex polygon; and

adding additional data points within the interior of the

non-convex polygon based at least in part on triangu-
lating the interior of the non-convex polygon.

10. The method of claim 7, wherein generating the second
graph further comprises:

inserting a plurality of points into the negative space

region of the three-dimensional model;

separating the three-dimensional model into a series of

layers, each layer in the series of layers having a
predefined width;

identifying a set of connected components in each layer in

the series of layers, each connected component in the
set of connected components representing at least a
portion of the plurality of points in the negative space
region of the three-dimensional model; and

for each connected component in the set of components in

a respective layer, identifying a collection of connected
components that touch the connected component.

11. The method of claim 7, wherein generating the first
graph further comprises:

separating the three-dimensional model into a series of

layers, each layer in the series of layers having a
predefined width;

identifying a set of connected components in each layer in

the series of layers; and

for each connected component in the set of components in

a respective layer, identifying a collection of connected
components that touch the connected component.

12. The method of claim 11, further comprising:

receiving an input from a user interface specifying the

predefined width, the predefined width being substan-
tially equal to a z-axis resolution of a three-dimensional
printer; and

setting the predefined width equal to the input specifying

the predefined width.

13. A non-transitory computer-readable medium compris-
ing machine-readable instructions that, when executed by
the processor, cause the computing device to at least:

generate a first graph representing a three-dimensional

model, each vertex in the first graph representing a
respective connected component within a layer of the
three-dimensional model and each edge in the first
graph representing a connection between two respec-
tive connected components within two respective lay-
ers of the three-dimensional model,;

generate a second graph representing negative space

associated with the three-dimensional model, each ver-
tex in the second graph representing a connected com-
ponent of a negative space region within the layer of the
three-dimensional model and each edge in the second
graph representing a connection between two respec-

10

15

20

25

40

45

60

10

tive connected components with two respective layers
of the three-dimensional model;

apply a persistent homology analysis to the first graph to

determine whether a hole or tunnel exists in each vertex
of the first graph; and

identify an error with the three-dimensional model based

at least in part on the first graph, the second graph, and
the persistent homology analysis.

14. The non-transitory computer-readable medium of
claim 13, wherein the machine-readable instructions further
cause the computing device to repair the error.

15. The non-transitory computer-readable medium of
claim 14

wherein the machine-readable instructions that cause the

computing device to repair the error further cause the

computing device to at least:

identify a two-dimensional, non-convex polygon that
represents the hole or tunnel;

triangulate an interior of the non-convex polygon; and

add additional data points within the interior of the
non-convex polygon based at least in part on trian-
gulating the interior of the non-convex polygon.

16. The non-transitory computer-readable medium of
claim 13, wherein the machine-readable instructions that
cause the computing device to generate the first graph
further cause the computing device to at least:

insert a plurality of points into the negative space region

of the three-dimensional model;

separate the three-dimensional model into a series of

layers, each layer in the series of layers having a
predefined width;

identify a set of connected components in each layer in the

series of layers, each connected component in the set of
connected components representing at least a portion of
the plurality of points in the negative space region of
the three-dimensional model; and

for each connected component in the set of components in

a respective layer, identify a collection of connected
components that touch the connected component.

17. The non-transitory computer-readable medium of
claim 13, wherein the machine-readable instructions that
cause the computing device to generate the first graph
further cause the computing device to at least:

separate the three-dimensional model into a series of

layers, each layer in the series of layers having a
predefined width;

identify a set of connected components in each layer in the

series of layers; and

for each connected component in the set of components in

a respective layer, identify a collection of connected
components that touch the connected component.

18. The non-transitory computer-readable medium of
claim 17, wherein the machine-readable instructions further
cause the computing device to at least:

receive an input from a user interface specifying the

predefined width, the predefined width being substan-
tially equal to a z-axis resolution of a three-dimensional
printer; and

set the predefined width equal to the input specifying the

predefined width.

#* #* #* #* #*

