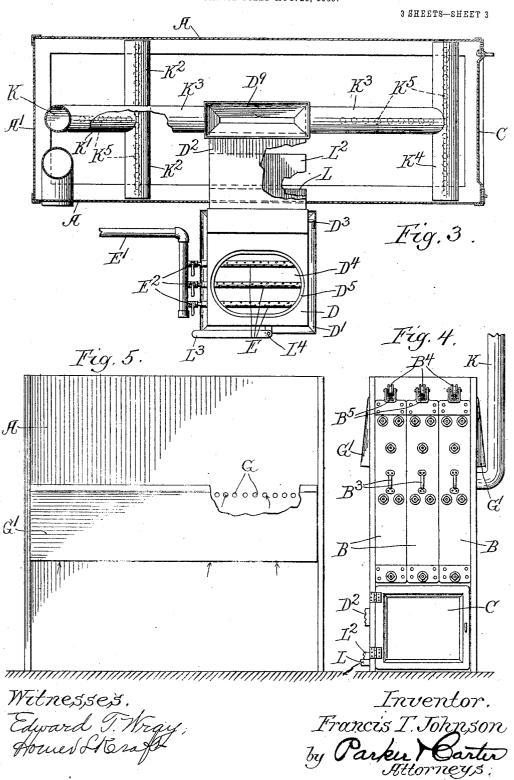

F. T. JOHNSON.
DRIER.
APPLICATION FILED AUG. 28, 1905.

F. T. JOHNSON. DRIER.

APPLICATION FILED AUG. 28, 1905.



Wetnesses, Edward T. Wray, Hound L. Noroff.

Inventor. Francis I. Topuson by Parker Carter Attorneys.

F. T. JOHNSON.
DRIER.

APPLICATION FILED AUG. 28, 1905.

UNITED STATES PATENT OFFICE.

FRANCIS T. JOHNSON, OF CHICAGO, ILLINOIS.

DRIER.

No. 822,953.

Specification of Letters Patent.

Patented June 12, 1906.

Application filed August 28, 1905. Serial No. 275,995.

To all whom it may concern:

Be it known that I, Francis T. Johnson, a citizen of the United States, residing at Chicago, in the county of Cook and State of Illinois, have invented a certain new and useful Improvement in Driers, of which the following is a specification.

My invention relates to driers, and has for its object to provide new and improved con-

10 structions in devices of that class.

The invention is illustrated in the accom-

panying drawings, wherein—

Figure 1 is a side elevation with parts broken away; Fig. 2, a vertical sectional view on line 2 2 of Fig. 1; Fig. 3, a sectional plan on line 3 3 of Fig. 2; Fig. 4, a front elevation with parts shown in section; Fig. 5, a side elevation of a modification; Fig. 6, a detail vertical section through another modified form of apparatus, and Fig. 7 a like view of another modification.

Like letters of reference indicate like parts

in all the drawings.

My invention relates to drying apparatus, 25 and particularly to the circulatory heating and ventilating devices thereof. The invention could be applied to a variety of heaters in fact, to almost any sort of a device for re-moving the moisture from material by evap-30 oration. I have, however, here shown and described my invention as applied to the drying of clothes hung upon racks in an inclosed chamber. This apparatus consists in general of a drying-chamber, a source of heat-35 supply, and an air-circulatory system. The drying-chamber may be made in any desired manner—as, for example, it may be a sheetmetal cabinet formed of the side pieces A A, the back sections A', and the top A². Within 40 the drying-chamber are a number of clothesracks. These are preferably movable and may consist of the front sections B B, which form a closure for the front of the dryingchamber, the back sections B', and between 45 these sections clothes bars or frames B² B², spaced apart conveniently for holding the clothes to be dried. The front sections are provided with hand-grips B³ B³. racks are provided with the trolleys B4, by 50 means of which they are mounted to run on overhead tracks B5, secured to the ceiling of the room in any desired manner—as, for example, by the hangers B. The rack-sections limit the inward movement of the rack-section. The lower part of the front of the drying-chamber is closed by means of a hinged door C. Below the racks is a screen B^s to 60 catch any clothing which may by accident fall from the racks.

The air for drying the clothes may be heated and introduced into the drying-chamber in any preferred manner. I have here shown 65 a gas-stove which is made substantially airtight, except for its communication with the drying-chamber. This stove consists of a simple fire-box D, resting on a base-plate D', provided at the back with a flue D2, the en- 70 trance to which is closed by a damper D³. The top plate of the stove is preferably constructed with an aperture D4 with an offset flange D5, into which fits a cover or lid D6 or into which may be set a boiler or the like. At 75 the back of the fire-box is preferably the deflecting-plate D⁷, and a lighting-door D⁸ is provided at the front. The burners may be of any desired type and are here shown as consisting of three transverse perforated 80 pipes E E E, connected with a supply-pipe E' and controlled by the cocks E² E² E². The air from the stove passes through the flue D2, which extends into the center of the drying-chamber and has the deflector D9, se- 85 cured to the mouth of the flue D² by the braces D¹⁰ D¹⁰, so as to send the hot air in all directions in the drying-chamber. The air thus entering the drying-chamber will of course pass upward through the clothes on 90 the racks and dry the same.

In order to properly ventilate the clothes during the drying process, I introduce fresh cold air into the drying-chamber. It is one of the features of my invention that this cold 95 air is introduced at the top of the chamber. This may be accomplished in various ways, one or more of which may be utilized in given

clothes-drying apparatus.

chamber, the back sections B', and between
these sections clothes bars or frames B' B', spaced apart conveniently for holding the clothes to be dried. The front sections are provided with hand-grips B' B' B'. The racks are provided with the trolleys B', by means of which they are mounted to run on overhead tracks B', secured to the ceiling of the room in any desired manner—as, for example, by the hangers B'. The rack-sections may therefore be separately drawn in and through the chamber are provided, preferably, with a screen F'. I may also introduce 105 the cold air by means of the hood device shown particularly in Figs. 1 and 2. To this end the sides A A of the drying-chamber are perforated at G G, and over these perforations, and extending for a considerable distance down the sides of the drying-chamber, are notched at B', so as to provide a stop to

periment that this form of device for admitting the cold air will practically prevent the escape of heat, while carrying off a considerable quantity of the moisture coming from 5 the clothes on the racks, the hoods serving, in a sense, as condensers. The moisture drips down the hood G', while the hot air is evidently held from escaping in any appreciable amount by its levity and by the incom-ing stream of cold air. This effect seems to be enhanced by the tapering shape of the hood and by arranging the narrow end of the hood close over the apertures G. In Fig. 5 I have shown a slight modification, the intake r5 perforations G and the hood G' being placed lower down on the side of the drying-chamber. In Fig. 6 the drying-chamber is shown as formed by double walls H H, the outer wall being perforated at the bottom, as shown at H', and the inner wall at the top, as shown at H². A slightly-different form of intake for cold air is shown in Fig. 7. I have provided a plurality of pipes lying along the wall of the drying-chamber. One of the pipes (indicated by the letter J) is shown in this figure. The others are arranged parallel therewith.

The air leaves the drying-chamber near the bottom, being carried off through a pipe 30 or flue K. The pipe K is preferably provided with the short lower branch K', having the cross K², and the longer upper branch K³, having the cross K⁴, extending transversely of the drying-chamber at its forward end. 35 The lower portions of these pipes are provided with the perforations K⁵ K⁵.

The stove may be fed with air in any usual manner; but, preferably, I take the air so required from the drying-chamber. To this end an air-duct L is provided leading from the lower part of the drying-chamber into the front of the stove and discharging through the upright pipes L'L', which open immediately under the gas-burners. I may also provide a sliding duct L², connecting the drying-chamber with the fire-box of the stove, this duct being operated by the handle L³, which for convenience is hinged at L⁴. A stop L⁵ on the top of the duct abuts against the desented by the lackward travel

of the duct.

The use and operation of my apparatus are as follows:

As heretofore stated, my invention may be
55 put to a variety of uses in connection with apparatus appropriate to the handling of the
particular material to be treated. I therefore do not limit myself to its use in connection with the drying of clothes described.
60 This application of the invention, however,
will illustrate the principles of heating and
ventilation which make up the subject-matter of my invention. In using this form of
apparatus the clothes-rack sections are
65 pulled forward and the clothes hung on the

bars B2, the sections then being pushed back into the drying-chamber, which is thereby effectively closed. The gas-burners of the stove are then lighted, the damper D³ being of course turned back, so as to allow the 70 heated air to pass from the stove in through the duct D² and upward among the clothes to be dried. The sliding duct will preferably be drawn forward, so that the air coming into the stove is delivered at the forward 75 end and a draft created which carries the heated air backward through the flue D². The heated air will of course rise through the racks of clothing; but insomuch as cold air is being continuously introduced at the upper 80 end of the drying-chamber while the vaporladen air is being carried off from the lower end of the chamber the circulation in general through the drying-chamber will be from top to bottom. This arrangement in- 85 sures a very even temperature through the drying-chamber and also a very perfect and efficient ventilation of the clothes, approximating, if not equaling, the best results obtainable in drying the clothes in the open air, 90 while of course the operation may be much more rapid. The carrying off a portion of the moisture coming from the clothes near the top of the drying-chamber, which is done, as has been stated, without material loss of 95 heat, expedites very considerably the process of drying.

The stove may be used to heat a clothesboiler and at the same time to supply heated air to the drying-chamber, or when it is desired to use it only for heating the boiler or the like the damper D³ may be closed partially or fully and the sliding duct L² pushed back, so that the hot air is directed toward the aperture D⁴, over which the boiler is 105 placed. By means of the lid D⁵ flat-irons may be heated in the same manner.

It will be seen that my invention comprises, generally speaking, a drying-chamber with means for heating such chamber, 110 intakes in the upper part of the chamber for the admission of a ventilating-draft and various devices for discharging the moisture-laden air from such chamber. The heating of the chamber may obviously be accomplished by 115 the direct admission of hot air or by the use I prefer for ecoof a drum or radiator. nomical reasons to admit the air immediately to the chamber, and this may be done provided the right sort of heater is used. It will 120 be observed, however, that my flue D² serves, also, as a drum or radiator, so that the provision for the admission into the chamber of heated air is not absolutely essential. It is very important that the heat should be ad- 125 mitted in the lower part of the chamber, as otherwise it will be necessary to have an artificial draft through the apparatus in order to carry the hot air downward. It is also important that the cold air, which is heaviest, 130

822,953

70

should be admitted near the top of the chamber; but in order to do this it becomes expedient to have some means for preventing the escape of heat from the cold-air intake. I 5 have found from experiment that the various devices which I have shown are well adapted to this end and particularly the hood device, (shown in Fig. 2,) which not only permits the entrance of plenty of cold air, 10 but also serves to conduct off the moisture without allowing the heated air to escape from the chamber. Just how this happens I am not prepared to state, although it is apparently because of the levity of the hot air 15 which is met and forced back by the constant stream of cold air, the contact of the hot moist air with the relatively cool hood and the stream of cold air causing the precipitation of moisture. I have found by experi-20 ment, for example, that the tapering hood, such as shown at G', Fig. 2, works better than one which is wider at the top. The invention furthermore consists of means for drawing the air out of the drying-chamber, such 25 means being preferably located at the bottom of the chamber below the hot-air discharge. While all of these features may not be essential to the working of the apparatus, they certainly do contribute to a certain ex-30 tent to its proper operation. By the construction shown a higher degree of economy and a very perfect ventilation is obtained without any artificial draft and, as it were, automatically.

35 I claim-1. In a drier, the combination of a dryingchamber with a heater connected so as to supply heat thereto, and a duct leading from the chamber into the heater, said duct movable 40 so as to discharge at different places in the

2. In a drier, the combination of a dryingchamber, with a heater connected so as to supply heat thereto, and a sliding duct lead-45 ing from the chamber into the heater.

3. In a clothes-drier, the combination of a drying-chamber with a plurality of clothesracks in said chamber, a gas-stove, a flue leading from the gas-stove and discharging be-50 low the racks, means for admitting a ventilating-draft into the chamber above the racks, and means for discharging the air out of said chamber from below the hot-air flue.

4. In a clothes-drier, the combination of a 55 drying-chamber with a plurality of clothesracks in said drying-chamber, an air-intake at the upper part of said chamber, means for admitting heat to the chamber below the racks and means for causing a ventilating-60 draft of fresh air to pass downwardly through the racks.

5. In a drying apparatus, the combination of a casing forming a drying-chamber, with means for supporting the articles to be dried 65 in said chamber, means for introducing heat

below said supporting means, means for introducing a volume of cold air directly to the upper part of the chamber, and means for discharging air from the lower part of said chamber.

6. In a drying apparatus, the combination of a casing forming a drying-chamber, means for supporting the articles to be dried in said chamber, means for introducing heat below said supporting means, means for introduc- 75 ing a volume of cold air into said chamber, said means comprising air passage-ways leading from outside the drier directly into the upper part of said chamber, and means for discharging air from the lower part of said cham- 80

7. In a drying apparatus, the combination of a casing forming a drying-chamber, means for supporting the articles to be dried in said chamber, means for introducing heat below 85 said supporting means, means for introducing a volume of cold air into said chamber, said means comprising air passage-ways leading from outside the drier directly into the upper part of said chamber, means for dis- 90 charging air from the lower part of said chamber, and means associated with said air passage-ways for preventing the escape of hot air through the same.

8. In a drying apparatus, the combination 95 of a casing forming a drying-chamber and having apertures in the upper part to admit a volume of cold air directly into the upper part of the drying-chamber, with means for supporting the articles to be dried, means for 100 introducing heat below said supporting means, hood devices on the outside of the casing extending over said apertures, and means for discharging air from the lower part of said chamber.

9. In a drying apparatus, the combination of a casing forming a drying-chamber, the lower part of said casing being closed and the upper part provided with air passage-ways to admit a volume of cold air directly to the 110 upper part of said chamber, means for supporting the articles to be dried within the drying-chamber, a heater outside of said casing and connected with the same so as to introduce heat into the drying-chamber below 115 the supporting means, and a flue leading from the bottom of the casing into the heater.

10. In a drying apparatus, the combination of a casing forming a drying-chamber, the lower part of said casing being closed and 120 the upper part provided with air passage-ways to admit a volume of cold air directly to the upper part of said chamber, means for supporting articles to be dried within the drying-chamber, a heater outside of said cas- 125 ing, a flue leading from the heater and opening into the drying-chamber below said supporting means, and a flue leading from the bottom of the casing into the heater.

11. In a drying apparatus, the combina- 130

tion of a casing forming a drying-chamber, the lower part of said casing being closed and the upper part provided with air passage-ways to admit a volume of cold air directly to the upper part of said chamber, means for supporting the articles to be dried within the drying-chamber, a heater outside of said casing and connected with the same so as to introduce heat into the drying-chamber below the supporting means, a flue leading from the bottom of the casing into the heater, and an outlet-pipe extending upward from the lower part of the casing.

12. In a drying apparatus, the combination of a casing forming a drying-chamber, the lower part of said casing being closed and the upper part provided with air passageways to admit a volume of cold air directly to the upper part of said chamber, means for supporting the articles to be dried within the drying-chamber, a heater outside of said casing and connected with the same so as to in-

troduce heat into the drying-chamber below the supporting means, a flue leading from the bottom of the casing into the heater, and an outlet-pipe extending from the lower part of the casing upward through the drying-chamber

13. In a drying apparatus, the combination of a casing closed at the bottom and having apertures at the top, said casing forming a drying-chamber, hood devices on the outside of the casing flaring at the bottom and extending closely over the apertures, means for supporting the articles to be dried in said 35 drying-chamber, means for introducing heat into the chamber below said supporting means, and a discharge-pipe leading upward from below the heat-introducing means.

FRANCIS T. JOHNSON.

Witnesses:
PERCIVAL H. TRUMAN,
HOMER L. KRAFT.