(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2010208112 B2

(54) Title

Processing data using vector fields

(51) International Patent Classification(s)

GO6F 7/00 (2006.01)

(21) Application No: 2010208112

(87) WIPONo: WO10/088523

(30) Priority Data

(31) Number

61/148,888

(32) Date

(43)
(44)

2010.08.05
2015.05.28

Publication Date:
Accepted Journal Date:
(71) Applicant(s)

Ab Initio Technology LLC

(72) Inventor(s)

Gould, Joel;Studer, Scott

(74) Agent/ Attorney

Pizzeys, PO Box 291, WODEN, ACT, 2606

(56) Related Art

US 2008/0256014 A1
US 8069129 B2

US 2007/0050340 A1

US 2006/0294150 A1

2009.01.30

(22) Date of Filing: 2010.01.29

(33) Country
us

wo 2010/088523 A1 |11 K0 0O OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

B

7R o
i T
//A)
T

) %5

VAR OO0
(10) International Publication Number

WO 2010/088523 A1

5 August 2010 (05.08.2010)
(51) International Patent Classification:
GO6F 7/00 (2006.01)
(21) International Application Number:
PCT/US2010/022593
(22) International Filing Date:
29 January 2010 (29.01.2010)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/148,888 30 January 2009 (30.01.2009) Us
(71) Applicant (for all designated States except US): AB INI-
TIO TECHNOLOGY LLC [US/US]; 201 Spring Street,
Lexington, Massachusetts 02421 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): GOULD, Jocl [US/
US]; 50 Thomberry Road, Winchester, Massachusetts
01890 (US). STUDER, Scott [US/US]; 27 Pillsbury
Lane, Georgetown, Massachusctts 01833 (US).
(74) Agents: HENNESSEY, Gilbert, H. et al; Fish &

Richardson P.C., P.O. Box 1022, Minneapolis, MN
55440-1022 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, I, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), Europcan (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HR, HU, [E, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))
with amended claims (Art. 19(1))

(54) Title: PROCESSING DATA USING VECTOR FIELDS

(57) Abstract: Disclosed is a method in-
cluding receiving a rule (152) having at
least one rule case (210a-h) for producing
an output value based on one or more in-
put values, generating a transform (112,
156) for receiving data from an input
dataset (100) and transforming the data
based on the rule (152) including produc-
ing a first scrics of values (813) for at Icast
one output variable (508, 801) in an out-
put dataset (120), at least one value in the
first scrics of valucs (813) including a scc-
ond series of values (816), and providing
an output field corresponding to the at
least one output variable (508, 801) in the

156

158

156a

output dataset (120) for storing the second
series of values (816).

FIG. 2

WO 2010/088523 PCT/US2010/022593

PROCESSING DATA USING VECTOR FIELDS

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Application Serial No. 61/148,888, filed

on January 30, 2009, incorporated herein by reference.

BACKGROUND

This description relates to processing data using vector fields.

Some computing systems provide an interface for specifying rules that are used
for automated decision making in various data processing applications. Decisions
associated with processing data representing credit card transactions or airline frequent
flyer programs, for example, may be governed by a given set of rules. In some cases,
these rules are described in human-rcadable form. The computing systcm may provide
an interface for a user to define or edit these rules, and then incorporate the rules into a

data processing system.

SUMMARY

In one aspect, in general, a method includes receiving a rule having at least one
rule case for producing an output value based on one or more input values, generating a
transform for rccciving data from an input datasct and transforming the data bascd on the
rule including producing a first series of values for at least one output variable in an
output dataset, at least one value in the first series of values including a second series of
values, and providing an output ficld corresponding to the at least one output variable in
the output dataset for storing the second series of values.

Aspccts can include onc or morc of the following featurcs.

The transform can be included in a component of a graph-based application
represented by a graph, with vertices in the graph representing components, and directed
links between vertices in the graph represent flows of data between components.

A first graph component including the transform can provide a flow of data to the

transform from the input dataset.

WO 2010/088523 PCT/US2010/022593

The first graph component can be an executable computation component, and the
graph can include a second graph component that is a data storage component
representing the input dataset.

Producing a first series of values for at least one variable in an output dataset can
include producing rows for an output table, cach row defining a record having values for
a sct of variables including the output variable.

Providing an output ficld for storing the second series of values can include
providing an array for storing a predetermined number of the second series of values, the
predetermined number being a default number that is modifiable to a user-specified
number. The output field can include a cell in a table.

Receiving the rule can include receiving at least a row of a rule table, the row
corresponding to a rule case, and having an output including one or more or a
combination of the input valucs, a predetermined valuce, or a valuc computed from onc or
more of the input values.

The rule case can include one or more of: having an input value equal to a
threshold, having an input value above a threshold, having an input value below a
threshold, having an input value belonging to a set of values, having an input value
matching a pattcrn of valucs, having a rclationship to another input valuc, having a
relationship to an output value of another set of rules, or having a relationship to a value
in a memory.

The input dataset can include records having values for scalar variables and vector
variables. At least one of the records can include an array for storing a predetermined
number of records, the predetermined number being a default number that is modifiable
to a user-specified number. At least one of the records includes an internal reference
table to define key relationships to sub-records in the at least one of the records.

The method can also include, in response to a rule, producing the second series of
values for the output variable in the output dataset based on the key relationships in the
internal reference table.

The method can also include, in response to a rule case in a rule, triggering the

rule casc to producc a valuc for the output variable in the output datasct. Triggering a

WO 2010/088523 PCT/US2010/022593

rule case can include triggering the rule based on a scalar value in the input dataset
satisfying the at least one rule case in the rule.

Triggering a rule case can include triggering the rule based on each value in a
vector in the input dataset satisfying the at least one rule case in the rule.

Triggering a rule case can include triggering the rule case based on an output of
an aggregate function applied to a vector in the input dataset satisfying the at least one
rule case in the rule.

Generating the transform can include converting each of a plurality of rule cases
in the rule to a logical expression to form a plurality of logical expressions, and
compiling the plurality of logical expressions into computer-executable code.

Compiling the plurality of logical expressions can include one or more of
combining expressions, optimizing individual expressions, and optimizing groups of
expressions.

In another aspect, in general, a computer-readable medium storing a computer
program for updating a component in a graph-based computation having data processing
components connected by linking elements representing data flows includes instructions
for causing a computer to receive a rule having at least one rule case for producing an
output valuc bascd on onc or morc input valucs, generate a transform for receiving data
from an input dataset and transforming the data based on the rule including producing a
first series of values for at least one output variable in an output dataset, at least one value
in the first series of values including a second series of values, and provide an output
field corresponding to the at least one output variable in the output dataset for storing the
sccond scrics of valucs.

In another aspect, a system includes a means for receiving a rule having at least
one rule case for producing an output value based on one or more input values, a
processor configured to generate a transform for receiving data from an input dataset and
transforming the data based on the rule including producing a first series of values for at
least one output variable in an output dataset, at least one value in the first series of
values including a second series of values, and a means for providing an output field
corresponding to the at least one output variable in the output dataset for storing the

second series of values.

WO 2010/088523 PCT/US2010/022593

Other features and advantages of the invention will become apparent from the

following description, and from the claims.

DESCRIPTION OF DRAWINGS
Fig. 1 is a schematic depicting an example transform.
Fig. 2 is an example transform generator.
Figs. 3 and 4 are example rule sets.
Fig 5 is an example Fire-Many rule set.
Fig. 6, 7, and 8 are example output, rule, and result tabs.
Fig. 9 1s a schematic depicting computation of scalars and vectors.
Fig. 10A and 10B show an example input record having record vectors.
DESCRIPTION

A business rule can be expressed as a set of criteria that can be used to, for
example, convert data from one format to another, make determinations about data, or
generate new data based on a set of input data. For example, in FIG. 1, a record 102 in a
flight reservation system indicates a passenger’s name 104, miles 106 the passenger has
flown in the current year, class 108 of the passenger’s ticket, and the passenger’s current
row 110 in an airline. A business rule may indicate that such the passenger should be
classified within boarding group “1,” e.g., group 118. A business rule is generally easy
for a human to understand, ¢.g., “first class passengers are in group 1,” but may need to
be translated into language that a computer can understand before it can be used to
manipulate data. Accordingly, to implement the business rule, a transform 112 is
generated to receive an input record, e.g., record 102, from one or more data sources, ¢.g.,
input datasct 100, and producc an output rccord, c.g., record 114, indicating the
passenger’s name 104 and group 118, into an output dataset 120. Input and output

datasets are also referred to as data streams.

To simplify creation of a transform 112 for non-technical users, typically an editor

tool (not shown) is provided to input a set of business rules, referred to as a rule set, or a

WO 2010/088523 PCT/US2010/022593

set of rules, in a format familiar to the users. The set of rules, in turn, instructs a
computer system to generate the transform 112 which further instructs the computer
system what to do with input dataset 100, and what to produce into output dataset 120. A
rule or rule set that corresponds to a single transform can include one or more rule cases
that compute different values for a rule set’s output variables depending on an input
record. When a rule case in a rule is triggered, the rule, and more particularly, the rule
case, is regarded to be fired. For example, only one rule case in a rule can be filed. In
some examples, more than one rule case in a rule can be filed. In some examples, when a
rule case is fired, the entire rule can be regarded as being fired. In some
implementations, a rule case or rule is triggered or fired if, for example, an input scalar or
vector value in an input dataset satisfies one or more conditions in the rule case or rule. A
rule set can also include other rules sets. The other rule sets can produce values for
additional or alternative output variables. For example, a rule set can directly contain or

indirectly refer to other rule sets, referred to as “included” rule sets.

An example transform generation system is shown in FIG. 2. A generator 150
receives as input a rule set 152 from an editor 154 and generates a transform 156. The
generated transform 156 may be provided to a graph-based computation system 158 as a
component to be used in a graph or as an entire graph itself, depending on the system’s
architecture and the purpose of the transform and the business rules. The graph-based
computation systcm 158 can provide a computation cnvironment that allows a
programmier to build a graph-based application by using components as building blocks.
A graph-based application is often represented by a directed graph, with vertices in the
graph representing components (either data storage components or executable
computation components), and the directed links or “edges” in the graph representing
flows of data between components. A dataflow graph (also called simply a “graph™) is a
modular entity. Each graph can be made up of one or more other graphs, and a particular

graph can be a component in a larger graph.

The generator 150 can be, for example, a compiler, a custom-built program, or a
graph-based computation configured using standard tools to receive the rule set 152 and
output the transform 156. Any technique for producing, and subsequently updating the

transform 156 known to those skilled in the art can be used to generate transform 156.

WO 2010/088523 PCT/US2010/022593

For example, a technique for producing transforms is described in U.S. Patent
Application No. 11/733,434, entitled “Editing and Compiling Business Rules,” filed
April, 10, 2007, and incorporated herein by reference in its entirety.

In some examples, the transform 156 generates only one value for an output
variable corresponding to an input record 102. In such a scheme, a rule set can fire at
most only once. Accordingly, some problems, ¢.g., data quality problems, may not be
gasily implemented using the transform 156. In some examples, output variables in an
output datasct 120 can include “Writc-Once Outputs.” In gencral, “Writc-Once Outputs”
are output variables that are typically written to once for a given input record, and store
only one value for the given input record. Rule sets that produce such variables are

called “Fire-Once” rules.

In some examples, a “Fire-Many” rule can produce “accumulator” output
variables, e.g., variables that are capable of receiving a series of values for a given input
record, instead of only one value. A “Fire-Many” rule would fire for every rule case
within a rulc sct that is triggered for that input record, and not just, for cxamplc, the first

rule case that is triggered.

In somc cxamples, a rule sct can be entered in a tabular (or “sprcadshect’) format,
as shown in FIG. 3, with rows and columns that intersect in cells. Trigger columns 202,
204, 206, 208 in table 200 correspond to criteria for available input data values, and rows
210a-h correspond to rule cases, i.¢., sets of criteria that relate to the available input data
values. A cell at the intersection of a trigger column and the applicable rule case row
210n contains a critcrion for that trigger column and rulc casc. A rulc casc 210x applics
to a given record, e.g., 102 in FIG. 1, if data values of the record 102, for each trigger
column in which the rule case has criteria, meets the triggering criteria. If a rule case
210n applies, output is generated based on one or more output columns 212, As
described above, in general, a rule case that has all of its input relationships satisfied may
be referred to as “triggered,” and the rule set is referred to as “fired.” Each output
column 212 corresponds to a potential output variable, and the value in the corresponding
ccll at the intersection of the column 212 and the applicable rule casc row 210n

determines the output, if any, for that variable. In some examples, the cell can contain a

WO 2010/088523 PCT/US2010/022593

value that is assigned to the variable or it can contain an expression that is evaluated to
generate the output value, as discussed below. In some examples, there may be more

than one output column, though only one is shown in FIG. 3.

There may be several different types of trigger columns, including columns that
correspond to a variable, columns that contain expressions but are calculated once and
then treated like variables, and columns that only contain expressions. Columns that only
contain expressions are in some respects simpler than those corresponding to or treated as
variablcs. Such trigger columns can contain, for cxample, onc of the following types of

cell values for defining trigger column criteria:

) An expression. The condition will be considered to be true if the

evaluation of the expression evaluates to a non-zero, or non-NULL value.

o The keyword “any,” or an empty string. The condition is always true. Each

empty cell in a trigger column is equivalent to one explicitly containing the keyword

o The keyword “else.” The condition is true if none of the cells above the

cell containing “else” is true, in rows where all cells to the left are identical.
L The keyword “same”. The condition is true if the cell above is true.

Columns that correspond to a variable (column variables) can have two types of
cells. One type of cell is an expression cell. Those cells behave exactly like cells in a
column that contains only expressions, described above. However, the keyword “this”
can be used in the expression to refer to the column variable. The other type of cell is a

comparison value. An example grammar for comparison values is as follows:

comparison_value ::= compound_ value (“or” compound value)*
compound_value ::=simple_value (“and” simple_value)*

simple value ::=[“not”] (value_expression | simple_ function |
membership_expr)

value expression ;= [operator | value_element
Operator ::: 6£>” | “<77 | “>:” | “<:7’ ‘ “!:’7 | “:77 ‘ “equals”
value element ::= constant | constant | variable | “(“expression ©)”

simple_function ::= “is_null” | “is_blank” | “is_valid” | “is_defined” | “is_bzero”

WO 2010/088523 PCT/US2010/022593

(4

membership expr ::= “in” “[* value element ((<, | “to” | “or”) value element
)* ((]”

23033

where a means a term is repeated zero or more times.

Any suitable programming language or syntax may be used. Examples include C,
Java, DML, or Prolog. The column variable is compared against the comparison value
according to the operator, function, or membership expression. In the example of FIG. 3,
the first two columns 202 and 204 contain comparison values with the “>=" operator.
Accordingly, the criteria is met if the value for that column is greater than or equal to the
corresponding number. If there is no operator, as in the “Class of Seat” column, then
“cquals” is assumed. A constant can be any legal constant in whatcver programming
language or syntax is used in the underlying system. An expression is any legal
expression in the language being used that returns a compatible datatype that will be
compared against the column variable. In some examples, expressions inside comparison

values are enclosed in parenthesis to avoid ambiguity.

In the example of FIG. 3, the first row 210a has criteria in only one column, 202,
which indicates that if the total number of frequent flier miles for a traveler is greater than
1,000,000, then that rule case applies regardless of what value any other columns may
have. In that case, the “Boarding Group” output variable for that user is set to group 1.
Likewise, the second rule case 210b indicates that any flier in first class is in group 1. In
some examples, the rules are evaluated in order, so a traveler having over 1,000,000
miles and a first class ticket will be in group 1, but only the first rule case 210a will be

triggered.

The rule cases 210a-h (FIG. 3) can also be represented as individual simple rules,
cach in their own tablc, as shown in FIG. 4. Rulcs 220a-d corrcsponds to rows 210a-d of
FIG. 3, respectively, while rule 220e¢ has four rule cases corresponding to rows 210e-h
togcether. A user could create these individual rules separately, rather than gencrating the
entire table shown in FIG. 3. Each rule case contains a value (at least implicitly) for every
trigger column and a value for every output column (the value can be blank, i.e.,
effectively set to “any”). When multiple rules generate the same output, the rules are
ordered and they are considered in order until a rule case in one rule triggers on the inputs

and gencrates an output. If no rulc casc in a rule triggers, the next rule that produccs the

WO 2010/088523 PCT/US2010/022593

same output is processed. If no cases in any rule trigger for an output, a default value is

used.

In some examples, a user interface of the editor tool can be used to graphically
identify cells that contain expressions. Accordingly, a user can understand the difference
between an expression that will be evaluated to true or false on its own and an expression
that returns a value that is compared against the column variable. When the user is
typing, he can indicate that a particular cell is to be an expression cell by, for example,

typing an astcrisk at the beginning.

For columns that correspond to output variables, the cells can contain one of the

following:
L A value. The value that will be assigned to the output variable
. An expression. The value of the expression is assigned to the output

variable. If the expression evaluates to NULL then the field gets the NULL value, unless

the output ficld is not-nullable. In which case, an error is generated.

J The keyword “null”. If the output field is nullable, then the field will be

assigned NULL. Otherwise, an error is generated.

) An empty string. If the output field has a default value, then the default

value is assigned. Otherwise, the cell is treated as if it contains the keyword “null”.

o The keyword “samc”. The output ficld is assigned the same valuc

computed in the cell above.

In addition to expressions, users can be allowed to attach comments to any cell in
the rule, which can be displayed in response to user interaction (e.g., clicking or

“hovering” a pointer).

In some implementations, a rule set, ¢.g., the rule set shown below in Table 1, can

include multiple rule cases that generate multiple output records for a single input record.

Trigger: Automobile Option | Trigger: Budget Output: Trim Level
Honda S2000 >= 37000 S2000 CR
Honda S2000 clse S2000

WO 2010/088523 PCT/US2010/022593

Honda Accord Coupe >= 29000 Accord Coupe EX-L V-6
Honda Accord Coupe >= 26000 Accord Coupe EX-L
Honda Civic Sedan >= 24000 Accord Coupe EX
Honda Element any Accord Coupe

Tablc 1

The rule set above considers a family’s automobile options in view of the family’s
budget, and outputs a trim Ievel for the automobile. In some cxamples of such a rulc sct
(referred to as a “normalize rule set”), at least one of the output values is identified as a
key output value, e.g., “S2000 CR.” When the rules that compute the key output value
“S2000 CR” are evaluated, the rule case (Automobile Option: Honda S2000 and Budget:
>=37000) that triggered on the input data record to generate the output value “S2000 CR”
is noted. The rule sct is then cvaluated again with the previously-triggered rule casc
(Automobile Option: Honda S2000 and Budget: >=37000) disabled to see if any other
rule cascs trigger and producc an output valuc. The process described above is repeated
until no additional rule cases are triggered. Each output value is stored as a separate
output record. In some examples, rule cases are grouped, such that if one triggers, others

in its group are also disabled on the next iteration for the same input record.

In some examples, the transform corresponding to the normalize rule set can use
two stages of processing. First, an input record is read and a count is computed, e.g., by
calling a “length” function. The count corresponds to a number of output records that
will be generated. Then, another function, i.e., “normalize” function, is called for each
output record. The normalize function receives a copy of the input record and a current
index from the count produced by the length function and produces output values into
different output records. For example, if the input record had a family size of four (4)
and a budget of $20,000, the transform generates three output records, one for each of the

three suggested cars (Accord Scdan, Civie, and Elecment).

In some implementations, the transform calculates all possible values for the

Automobilc Option, using the “length” function so that the number of output records is

-10-

WO 2010/088523 PCT/US2010/022593

known. Once the transform has calculated all possible Automobile Qutput values, the
transform can then call the “normalize” function as many times as there are output

records, to assign values to each of the output records.

In some implementations, instead of the two stage processing described above,
the transform can calculate all possible values for the Automobile Option by calling the

“normalize” function directly several times until there are no more values to compute.

FIG. 5 is an example rule set 500 for generating multiple values 504 for an output
variable 508. A user may be interested in knowing all of the reasons why a specific
vehicle is considered invalid, not just the first reason. In some examples, as shown in
FIG 6, a first step is for the user to specify, using an output tab 600 in a user interface of

the editor, that the rule set 500 produces multiple output values 504.

As such, the user indicates that the output variable 508 ‘Name Validation
Message” is an accumulator variable for receiving a series of values 504. The Output
Type 604 corresponding to the output variable 508 changes to indicate “accumulator”

608.

In some examples, scalar values corresponding to the output variable 508 can be
“accumulated” for use with “score-card” style rule sets. A score card style rule set refers
to a type of business rule where a user indicates a positive or negative score to be
included into a rules value. Accordingly, rather than storing values corresponding to the
output variable 508 as an output vector, a sum of the values that are accumulated

corresponding to the output variable 508 is stored as a scalar value.

In some examples, the accumulator output variable 508 maps to a variable length
vector or array for each record in the output dataset. As such, if the output variable 508 is
treated as an array, the user can specify a size for the output variable 508. The user can
specify a length of the output variable 508 by changing the Max Count 612 parameter.
Accordingly, ficld 614 indicatcs that thc output variablc 508 is trcatcd as an array for
receiving a certain number (e.g., 20) of values. In some examples, in the absence of a
user-specified size, by default, the output variable 508 can receive unlimited number of
values. As such, the Max Count 612 parameter indicates, for example, “unlimited.” In

some examples, to help distinguish accumulator type output variables from write-once

-11-

WO 2010/088523 PCT/US2010/022593

type output variables, the editor can prohibit users from editing the Max Count 612
parameter for a write-once variable. In some examples, if the user switches from an
accumulator output variable to a write-once output variable, the editor can clear the Max

Count 612 parameter.

FIG. 7 is an example rule tab 700 showing a fire many rule set, e.g., “Validate
Person.” Accumulator output variables 708 are visually distinguished from write-once
outputs 712 by the annotation “Write-Once Outputs” or “Accumulator Outputs.” In
addition, various othcr annotations arc possiblc. For cxample, a type of rule sct, i.c., a
“Fire-Many Rule” (rule which produce accumulator outputs), or a “Fire-Once Rule” (rule
which produces a scalar output) may be indicated at the top 704 of the rule tab 700, or a
vertical annotation 712 on one side indicates “Fire Once” or “Fire Many.” In some
examples, different icons may be used for fire once and fire many rules. In some

cxamplces, all of the rulc cascs that fired may be highlighted for inspection by the uscr.

F1G. 8 is an example results tab 800 showing contents of the accumulator output
variablc 801, “Validation Mcssage.” As shown, the output variable 801 can assumc a
first series of values 813 for cach record, and at least one of the values of the first series
of values 813 (e.g., the value corresponding to “TANGELA SCHEPP”) can assume a
second series of values 816 that are displayed as a collection of comma separated values.
In some examples, a user can “hover” a mouse pointer over an accumulator output value
to uncover a tool tip showing a list of accumulated values. In some examples, when
performing a test including, for example, benchmark data, an output can be marked as
being different if a vector in the benchmark data differs from the vector in the output in
any way. For example, differences can include, the benchmark vector having a different
number of items than the output vector, the benchmark vector having items in a different
order than the output vector, and individual items within each of the vectors being

different.

In operation, an accumulator output variable is used for receiving multiple output
values produced by a Fire-Many rule set as described below. For example, consider the

following rulc sct shown in Tablc 2:

WO 2010/088523 PCT/US2010/022593

Trigger: Budget Trigger: Family Size Output: Automobile Option
>= 35000 <=2 Honda S2000
>= 22000 <=2 Honda Accord Coupe
>= 20000 <=4 Honda Accord Sedan
>= 15000 <=4 Honda Civic Sedan
>= 20000 <=6 Honda Element
>= 28000 <=7 Honda Odyssey
>= 50000 <=4 Acura RL
Table 2

The rule set above considers, for example, a family size of 4 and a budget of
$20,000, to suggest three cars (Accord Sedan, Civic and Element). Accordingly, in this
case, an output variable “Automobile Option” in an output dataset is deemed to be able to
receive multiple values. Each rule case in the rule set is evaluated and any time a rule

casc triggers, a valuce from the rule sct above is added to the accumulator output variable.

The triggers in the rule set above can be any scalar variables (non-vectors)
including input values, lookups and other output values. In some examples, an output
variable can compute another output variable. In some examples, only a non-vector
output can be used as a trigger. In some examples, it is possible to indirectly use one
accumulator output variable to compute another accumulator output variable by using the

aggregation functions. For example, consider the following rule set shown in Table 3:

Trigger Output: Family Members
is_alive Self
is_married and not is_separated Spouse
has_baby Baby
has_teenage girl Daughter
has_teenage boy Son
Table 3

- 13-

WO 2010/088523 PCT/US2010/022593

The rule set above computes an accumulator output variable called “Family

Members.” Now, consider the following rule set shown in Table 4:

Output: Family Size

count_of(Family Members)

Table 4

The rule set in Table 4 computes a scalar (non-vector) called “Family Size,” using
an aggregation function. Accordingly, first, an output vector is computed that includes a
list of all our family members. Then, a count function counts the number of people in the

list. The count is then used as input to compute a list of automobiles.

FIG. 9 illustrates an example implementation using scalars and vectors to compute
valucs for other scalar and vectors using an accumulator output variable. As shown, S1,
S2 and S3 represent scalar variables. V1 and V2 represent vector variables. S1 is used to
compute S2; then S2 is used to compute four different values of V1. Then all four values
of V1 are used to compute S3 (e.g., through the use of an aggregation function). Finally,

S3 is used to compute three values of V2.

In some implementations, the editor can produce validation errors when the user
attempts to carry out any of the following example actions: Marking an output as an
accumulator when the type of the field in any of the datasets is anything other than a
variable length vector; mark an output as “write-once” when the type of the field in any
of the datasets is a vector; provide a default value for an accumulator (in an
implementation in which only write-once outputs can have default-values), use an
accumulator output as a comparison trigger column; mix accumulator and write-once
outputs within a single rule; and input a value other than unlimited or a positive number

in the Max Count parameter of an accumulator output variable.

In some examples, input records can include vectors. FIG. 10A is an example
format of an input record 950 that includes at least two vectors records, i.€., driver record
vector 952, and vehicle record vector 954. FIG. 10B shows example data 956 for the

input record 950.

- 14-

WO 2010/088523 PCT/US2010/022593

An aggregation function can be included in a rule set to convert the record vectors
952, 954 into scalars. For example, the rule set can include a specification “Age of
youngest driver.” In some implementations, the specification is expressed as “minimum
(Driver Age),” or a data manipulation language (DML) function such as “do_minimum
(in0.drivers, ‘age’)” can be used. In response to the rule set, a scalar value is produced,
¢.g., 21 (from Pebbles’ record in FIG. 10B) In some examples, in operation, a function
can loop through all the records in the driver record vector 952 to find the minimum

value for driver age.

Considering another example, the specification in a rule set can be “Number of
points plus one for the youngest male driver.” The specification can be expressed as
“minimum (Driver Age, Driver Sex = Male, Driver Points + 1).” In response to this rule
set, a scalar value is produced, ¢.g., 14 (from BamBam’s record). In some
implementations, the scalar valucs can be assigned to intcrmediate or output variablcs,

which are scalars.

In somc cxamples, a rule can be written for cach clement in a record vector. For

example, consider the following rule set shown in Table 5:

Vehicle has Ssal Bells friggen
Mo]
Mo
Yas

Table 5

The specification in the rule set of Table 5 is “For each car, compute the adjustment to the
car’s value, which is 100 if the car has seat belts, 150 if the car has air bags, and 300 if
the car has both.” As shown, the output variable “Valuc Adjustment” is a vector variable.
In response to the above rule, a vector, e.g., [0, 300, 100] is produced. In some examples,
in opcration, the rulc sct is ecxecuted multiple times, once for cvery record in the vehicle

record vector 954.

In some examples, the rule set can also reference scalar values, or other vectors as
long as the vectors are of the same length. For example, consider the following rule set

shown in Table 6:

- 15-

WO 2010/088523 PCT/US2010/022593

ge {igee

- @

Table 6

The specification in the rule set of Table 6 is “For each car, compute the adjusted value,
which is the sum of the car’s value, its value adjustment and the geographic risk.
Subtract 50 if the car is older than 2 years.” In this rule, “Adjusted Value” is a vector
variable. Accordingly, to avoid a runtime error due to unequal vector lengths, the vector
variable ‘“Value Adjustment” is of same length as the vehicle record vector 954. In

response to this rule set, a vector, e.g., [1030, 1880, 1330] is produced.

In some examples, when XML records are complex, a single input record can be
used to represent many logical records by relating them with key relationships. For
example, each vehicle sub-record in the vehicle record vector 954 can include a foreign
key, e.g., “driver,” to relate to a matching key in the driver record vector 952, ¢.g.,
“name.” In this manner, the record vectors 952, 954 can be implemented as look-up file,
or an internal reference table. For example, an internal reference table associated with
the vehicle record vector 954 can be as follows:

Primary Driver Name (primary key)
Primary Driver Age

Primary Driver Sex
Primary Driver Points

Accordingly, internal reference tables, can be created for each input record by
treating the sub-records in the record vectors as records in the internal reference tables.

In operation, consider for example, a rule set shown in Table 7:

output: &ge of Policy Driver
Srimary Dryver &qe { Polioe Drver §

Table 7

The specification in the rule sct of Table 7 is “Compute the Age of the Policy
Driver, which is the Primary Driver Age found by using the value of Policy Driver as the

key for the associated internal reference table.” The specification returns the value in the

- 16-

WO 2010/088523 PCT/US2010/022593

Primary Driver Age column, which is then assigned to the output variable, “Age of Policy
Driver.” “Age of Policy Driver” is a scalar value. In another example, consider the rule

set shown in Table 8 below:

Age af Purchass {uput] T
Frimary Drlver Age — Vahicks Ags i

EREEEEER PPPPPP PO UH VR Sthiconh S el o~ A I R S R

Table &

The specification in the rule set of Table 8 is “Compute the Age at Purchase,
which is the difference between the vehicle’s age and the age of the vehicle’s primary
driver.” For purposes of illustration, assume that the look-up key is assigned “Vehicle
Primary Driver” by default. The output variable “Age at Purchase” is a vector variable.

Accordingly, in response to the above rule, [31, 19, 27] is produced.

In some examples, the look-up key “Vehicle Primary Driver” can be specified
explicitly in parentheses as follows “Primary Driver Age (Vehicle Primary Driver) —

Vehicle Age.

In some examples, the internal reference tables can be used in aggregation
functions. For example, a specification can be “Compute the average over all the
vehicles of the age of their primary drivers.” This specification can be implemented by
the function, for example, “average (Primary Driver Age (Vehicle Primary Driver)).” In

response to this function, a scalar value is produced, ¢.g., 29.67.

In some implementations, a user can visualize the computations steps in the above
rule sets. For example, in testing mode, it may be useful for a user to be able to examine
values of interest, e.g., intermediate values of input and output variables (both scalar and
vector variables). Various techniques for visualizing the steps known in the art can be
used. For example, a pop-up table having a row for each element in the input record
veetor 952, 954 can be implemented to summarize the intermediate valucs indicating

what items have been filtered out, or computed.

The techniques described above can be implemented using software for execution

on a computer. For instance, the software forms procedures in one or more computer

-17-

WO 2010/088523 PCT/US2010/022593

programs that execute on one or more programmed or programmable computer systems
(which may be of various architectures such as distributed, client/server, or grid) ecach
including at least one processor, at least one data storage system (including volatile and
non-volatile memory and/or storage elements), at least one input device or port, and at
least one output device or port. The software may form one or more modules of a larger
program, for example, that provides other services related to the design and configuration
of computation graphs. The nodes and elements of the graph can be implemented as data
structures stored in a computer readable medium or other organized data conforming to a

data model stored in a data repository.

The software may be provided on a storage medium, such as a CD-ROM,
readable by a general or special purpose programmable computer or delivered (encoded
in a propagated signal) over a communication medium of a network to the computer
wherc it is cxccuted. All of the functions may be performed on a special purposc
computer, or using special-purpose hardware, such as coprocessors. The software may
be implemented in a distributed manner in which different parts of the computation
specified by the software are performed by different computers. Each such computer
program is preferably stored on or downloaded to a storage media or device (e.g., solid
state memory or media, or magnetic or optical media) readable by a general or special
purpose programmable computer, for configuring and operating the computer when the
storage mcdia or device is rcad by the computer system to perform the procedurcs
described herein. The inventive system may also be considered to be implemented as a
computer-readable storage medium, configured with a computer program, where the
storage medium so configured causes a computer system to operate in a specific and

predefined manner to perform the functions described herein.

A number of embodiments of the invention have been described. Nevertheless, it
will be understood that various modifications may be made without departing from the
spirit and scopc of the invention. For cxample, some of the steps described above may be

order independent, and thus can be performed in an order different from that described.

It is to be understood that the forcgoing description is intended to illustratc and

not to limit the scope of the invention, which is defined by the scope of the appended

- 18-

2010208112 01 Apr 2013

claims. For example, a number of the function steps described above may be performed
in a different order without substantially affecting overall processing.

Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise”, and variations such as "comprises” and
"comprising”, will be understood to imply the inclusion of a stated integer or step or group
of integers or steps but not the exclusion of any other integer or step or group of integers or
steps.

The reference to any prior art in this specification is not, and should not be taken as,
an acknowledgement or any form of suggestion that the prior art forms part of the common
general knowledge in Australia.

Other embodiments are within the scope of the following claims.

-19-

2010208112 03 Apr 2015

What is claimed is:

1. A computer-implemented method, including:
via a processor, receiving a rule having at least one rule case for producing an
output value based on one or more input values,
generating a transform for receiving data from an input dataset and transforming the
data based on the rule, where transforming the data based on the rule includes
producing a first series of values for at least one output variable in an output dataset,
and producing at least one value in the first series of values including a second series of
values, and
providing in the output dataset an output field corresponding to the at least one

output variable for storing the second series of values.

2. The method of claim 1 in which the transform is included in a data structure
representing a component of an application represented by a graph, with vertices in the
graph representing components, and directed links between vertices in the graph

representing flows of data between components.

3. The method of claim 2 in which a first graph component including the transform

provides a flow of data to the transform from the input dataset.

4. The method of claim 3 in which the first graph component is an executable
computation component, and the graph includes a second graph component that is a data

storage component representing the input dataset.
5. The method of claim 1 in which producing a first series of values for at least one
variable in an output dataset includes producing rows for an output table, each row defining

a record having values for a set of variables including the output variable.

6. The method of claim 1 in which providing an output field for storing the second

series of values includes providing an array for storing a predetermined number of the

-20-

2010208112 03 Apr 2015

second series of values, the predetermined number being a default number that 1s

modifiable to a user-specified number.

7. The method of claim 1 in which the output field includes a cell in a table.

8. The method of claim 1 in which receiving the rule includes receiving at least a row
of a rule table, the row corresponding to a rule case, and having an output including one or
more or a combination of the input values, a predetermined value, or a value computed

from one or more of the input values.

9. The method of claim 8 in which the rule case includes one or more of: having an
input value equal to a threshold, having an input value above a threshold, having an input
value below a threshold, having an input value belonging to a set of values, having an input
value matching a pattern of values, having a relationship to another input value, having a
relationship to an output value of another set of rules, or having a relationship to a value in

a memory.

10. The method of claim 1 in which the input dataset includes records having values for

scalar variables and vector variables.

11. The method of claim 10 in which at least one of the records includes an array for
storing a predetermined number of records, the predetermined number being a default

number that is modifiable to a user-specified number.

12. The method of claim 10 in which at least one of the records includes an internal

reference table to define key relationships to sub-records in the at least one of the records.
13. The method of claim 12 also including, in response to a rule, producing the second
series of values for the output variable in the output dataset based on the key relationships

in the internal reference table.

14. The method of claim 1 also including, in response to a rule case in a rule, triggering

the rule case to produce a value for the output variable in the output dataset.

-21 -

2010208112 03 Apr 2015

15. The method of claim 14 in which triggering the rule case includes triggering the rule
case based on a scalar value in the input dataset satisfying the at least one rule case in the

rule.

16. The method of claim 14 in which triggering the rule case includes triggering the rule
case based on each value in a vector in the input dataset satisfying the at least one rule case

in the rule.

17. The method of claim 14 in which triggering the rule case includes triggering the rule
case based on an output of an aggregate function applied to a vector in the input dataset

satisfying the at least one rule case in the rule.

18. The method of claim 1 in which generating the transform includes converting each
of a plurality of rule cases in the rule to a logical expression to form a plurality of logical
expressions, and compiling the plurality of logical expressions into computer-executable

code.

19. The method of claim 18 in which compiling the plurality of logical expressions
includes one or more of combining expressions, optimizing individual expressions, and

optimizing groups of expressions.

20. A computer-readable medium, storing a computer program for updating a
component in a graph-based computation having data processing components connected by
linking elements representing data flows, the computer program including instructions for
causing a computer to:

receive a rule having at least one rule case for causing a computation system to
produce an output value based on one or more input values,

generate a data structure including a transform for receiving data into the
computation system from an input dataset and transforming the data based on the rule,
where transforming the data based on the rule includes producing a first series of values for
at least one output variable in an output dataset, and producing at least one value in the first

series of values including a second series of values, and

-22 -

2010208112 03 Apr 2015

provide, in the output dataset, an output field corresponding to the at least one

output variable for storing the second series of values.

21. A system, including:

means for receiving a rule having at least one rule case for producing an output
value based on one or more input values,

a processor configured to generate a transform for receiving data from an input
dataset and transforming the data based on the rule, where transforming the data based on
the rule includes producing a first series of values for at least one output variable in an
output dataset, and producing at least one value in the first series of values including a
second series of values, and

means for providing, in the output dataset, an output field corresponding to the at

least one output variable for storing the second series of values.

22. The method of claim 14 in which triggering the rule case includes satisfying

predefined one or more criteria by the input values.

23. The method of claim 1 also including:

triggering two or more rule cases belonging to the rule in response to the input
values; and

producing, by the transform, two or more output values each corresponding to the

triggered two or more rule cases as the second series of values.

24. The method of claim 23 also including providing to a user an ability to inspect the

two or more rule cases that triggered in response to the input values.
25. The method of claim 1 in which the at least one rule case includes one or more
criteria which when satisfied by the input values causes production by the transform of one

or more output values.

26. The method of claim 1 also including storing a scalar value in the output dataset

corresponding to an operation performed on the second series of values.

-023-

2010208112 03 Apr 2015

27. The method of claim 1 also including displaying the second series of values in a tool

tip upon a cursor being positioned over the output field.

28. The computer-readable medium of claim 20 in which the transform is included in a
component of a graph-based application represented by a graph, with vertices in the graph
representing components, and directed links between vertices in the graph representing

flows of data between components.

29. The computer-readable medium of claim 28 in which a first graph component

including the transform provides a flow of data to the transform from the input dataset.

30. The computer-readable medium of claim 29 in which the first graph component is
an executable computation component, and the graph includes a second graph component

that is a data storage component representing the input dataset.

31. The computer-readable medium of claim 20 in which producing a first series of
values for at least one variable in an output dataset includes producing rows for an output
table, each row defining a record having values for a set of variables including the output

variable.

32. The computer-readable medium of claim 20 in which the computer program
includes instructions for causing the computer to provide an array for storing a
predetermined number of the second series of values, the predetermined number being a

default number that is modifiable to a user-specified number.

33. The computer-readable medium of claim 20 in which the output field includes a cell
in a table.
34. The computer-readable medium of claim 20 in which the computer program

includes instructions for causing the computer to receive at least a row of a rule table, the
row corresponding to a rule case, and having an output including one or more or a
combination of the input values, a predetermined value, or a value computed from one or

more of the input values.

-4 -

2010208112 03 Apr 2015

35. The computer-readable medium of claim 34 in which the rule case includes one or
more of: having an input value equal to a threshold, having an input value above a
threshold, having an input value below a threshold, having an input value belonging to a set
of values, having an input value matching a pattern of values, having a relationship to
another input value, having a relationship to an output value of another set of rules, or

having a relationship to a value in a memory.

36. The computer-readable medium of claim 20 in which the input dataset includes

records having values for scalar variables and vector variables.

37. The computer-readable medium of claim 36 in which at least one of the records
includes an array for storing a predetermined number of records, the predetermined number

being a default number that is modifiable to a user-specified number.

38. The computer-readable medium of claim 36 in which at least one of the records
includes an internal reference table to define key relationships to sub-records in the at least

one of the records.

39. The computer-readable medium of claim 38 in which the computer program also
includes instructions for causing the computer to, in response to a rule, produce the second
series of values for the output variable in the output dataset based on the key relationships

in the internal reference table.

40. The computer-readable medium of claim 20 in which the computer program also
includes instructions for causing a computer to, in response to a rule case in a rule, trigger

the rule case to produce a value for the output variable in the output dataset.
41. The computer-readable medium of claim 40 in which triggering the rule case

includes triggering the rule case based on a scalar value in the input dataset satisfying the at

least one rule case in the rule.

-25-

2010208112 03 Apr 2015

42. The computer-readable medium of claim 40 in which triggering the rule case
includes triggering the rule case based on each value in a vector in the input dataset

satisfying the at least one rule case in the rule.

43. The computer-readable medium of claim 40 in which triggering the rule case
includes triggering the rule case based on an output of an aggregate function applied to a

vector in the input dataset satisfying the at least one rule case in the rule.

44, The computer-readable medium of claim 20 in which the computer program
includes instructions for causing the computer to convert each of a plurality of rule cases in
the rule to a logical expression to form a plurality of logical expressions, and compile the

plurality of logical expressions into computer-executable code.

45. The computer-readable medium of claim 44 in which compiling the plurality of
logical expressions includes one or more of combining expressions, optimizing individual

expressions, and optimizing groups of expressions.

46. The computer-readable medium of claim 40 in which triggering the rule case

includes satisfying predefined one or more criteria by the input values.

47. The computer-readable medium of claim 20, the computer program further
including instructions for causing a computer to:

trigger two or more rule cases belonging to the rule in response to the input values;
and

produce, by the transform, two or more output values each corresponding to the

triggered two or more rule cases as the second series of values.
48. The computer-readable medium of claim 47 also including instructions for causing a

computer to provide to a user an ability to inspect the two or more rule cases that triggered

in response to the input values.

-6 -

2010208112 03 Apr 2015

49. The computer-readable medium of claim 20 in which the at least one rule case
includes one or more criteria which when satisfied by the input values causes production by

the transform of one or more output values.

50. The computer-readable medium of claim 20 also including instructions for causing a
computer to store a scalar value in the output dataset corresponding to an operation

performed on the second series of values.

51. The computer-readable medium of claim 20 also including instructions for causing a
computer to display the second series of values in a tool tip upon a cursor being positioned

over the output field.

52. The system of claim 21 in which the transform is included in a component of a
graph-based application represented by a graph, with vertices in the graph representing
components, and directed links between vertices in the graph represent flows of data

between components.

53. The system of claim 52 in which a first graph component including the transform

provides a flow of data to the transform from the input dataset.

54. The system of claim 53 in which the first graph component is an executable
computation component, and the graph includes a second graph component that is a data

storage component representing the input dataset.

55. The system of claim 21 in which producing a first series of values for at least one
variable in an output dataset includes producing rows for an output table, each row defining

a record having values for a set of variables including the output variable.

56. The system of claim 21 in which providing an output field for storing the second
series of values includes providing an array for storing a predetermined number of the
second series of values, the predetermined number being a default number that 1s

modifiable to a user-specified number.

-27 -

2010208112 03 Apr 2015

57. The system of claim 21 in which the output field includes a cell in a table.

58. The system of claim 21 in which receiving the rule includes receiving at least a row
of a rule table, the row corresponding to a rule case, and having an output including one or
more or a combination of the input values, a predetermined value, or a value computed

from one or more of the input values.

59. The system of claim 58 in which the rule case includes one or more of: having an
input value equal to a threshold, having an input value above a threshold, having an input
value below a threshold, having an input value belonging to a set of values, having an input
value matching a pattern of values, having a relationship to another input value, having a
relationship to an output value of another set of rules, or having a relationship to a value in

a memory.

60. The system of claim 21 in which the input dataset includes records having values

for scalar variables and vector variables.

61. The system of claim 60 in which at least one of the records includes an array for
storing a predetermined number of records, the predetermined number being a default

number that is modifiable to a user-specified number.

62. The system of claim 60 in which at least one of the records includes an internal

reference table to define key relationships to sub-records in the at least one of the records.
63. The system of claim 62 also including, in response to a rule, a means for producing
the second series of values for the output variable in the output dataset based on the key

relationships in the internal reference table.

64. The system of claim 21 also including, in response to a rule case in a rule, a means

for triggering the rule case to produce a value for the output variable in the output dataset.

-8 -

2010208112 03 Apr 2015

65. The system of claim 64 in which triggering the rule case includes triggering the rule
case based on a scalar value in the input dataset satisfying the at least one rule case in the

rule.

66. The system of claim 64 in which triggering the rule case includes triggering the rule
case based on each value in a vector in the input dataset satisfying the at least one rule case

in the rule.

67. The system of claim 64 in which triggering the rule case includes triggering the rule
case based on an output of an aggregate function applied to a vector in the input dataset

satisfying the at least one rule case in the rule.

68. The system of claim 21 in which generating the transform includes converting each
of a plurality of rule cases in the rule to a logical expression to form a plurality of logical
expressions, and compiling the plurality of logical expressions into computer-executable

code.

69. The system of claim 68 in which compiling the plurality of logical expressions
includes one or more of combining expressions, optimizing individual expressions, and

optimizing groups of expressions.

70. The system of claim 64 in which triggering the rule case includes satisfying

predefined one or more criteria by the input values.

71. The system of claim 21 also including:

means for triggering two or more rule cases belonging to the rule in response to the
input values; and

means for producing, by the transform, two or more output values each

corresponding to the triggered two or more rule cases as the second series of values.

72. The system of claim 71 also including a means operable by a user to inspect the two

or more rule cases that triggered in response to the input values.

-29._

2010208112 03 Apr 2015

73. The system of claim 21 in which the at least one rule case includes one or more
criteria which when satisfied by the input values causes production by the transform of one

or more output values.

74. The system of claim 21 also including a means for storing a scalar value in the

output dataset corresponding to an operation performed on the second series of values.

75. The system of claim 21 also including a means for displaying the second series of

values in a tool tip upon a cursor being positioned over the output field.

-30 -

WO 2010/088523 PCT/US2010/022593

111

104 106
\ \ 108\ 110\

Name Miles Class Row 100
102 {|__J.Doe 35.000 First 3

112

N Transform

104\ | | /—118

Name Group 120
114{ J.Doe 1

FIG. 1

WO 2010/088523 PCT/US2010/022593

156

156a g Ié'

FIG. 2

WO 2010/088523

202
\

3/11

PCT/US2010/022593

204 206~ 208
NN e

152

Total frequent

Current year

Class of

Row of||Boarding

/

2108\ flyer miles |frequent flyer miles| seat | seat || Grou
->=1,000,000 1
210b__ [Z first 1
210c _ | >=|at year frequent

>=100,000 flyer miles 2
210d—1— business 2
210e~L else <=10 2
210f — same | <=40 3
210g— same | <=50
210h—L same else)

200

FIG. 3

WO 2010/088523

220a
‘\

PCT/US2010/022593

4/11

220b\

Expression Boarding Expression Boarding
Group Group
Total frequent flyer 1 Class of seats == first 1
miles >= 1,000,000
/’ 220c
Expression Boarding
Group

Total frequent flyer miles .= 100,000 2
and Current year frequent flyer miles
>=Last year frequent flyer miles

220d ~ 2209\
Expression Boarding Row of seat Boarding
Group Group
Class of seats == 2 <=10 2
business <= 40 3
<= 50 4
else 5

> 250

FIG. 4

PCT/US2010/022593

WO 2010/088523

5/11

gmj

00S

G Ol

*

80¢G

anjeA jjnejop SOA Aue Aue Aue Aue ||
_"8INsul 0} P|O 00} SRIYSA, A Aue Aue Aue 0061>| 0l
""" pEY 3AEY 0] PO OQ) S[DIY3BA, N Ul 10]0D Je), Aue Aue G66l>| 6
"B S3J0IYSA wniwald jJuaday, + SOA Aue asfe | g
"B pBY 9ABY 01 P|O O] S|2IYSA,, "3 Y100] en|g, Aue Aue ¥00¢>| 2
"B pey aABY 0} P|O 00} 3IDIYSA,, A = Jabueyd g9. Aue Aue 066lL>| 9
"B pey aAeY 0] pP|O 001 3|0IYBA, 3 A =)oer pod|, Aue Aue 000¢>| ¢
"*9AB| 0O} MO| 00} BN[eA 8|DIYsA, SOA = JBJS UQ, Aue Aue | ¢
e S$8|oIysA wniwaid Jusoay, “"PUIAN JOMOd, SOA Aue ¢
“"9ABY 0] MO| 00} SN|eA S|DIYSA, " |9BYMN JNO4, Aue + r
""9ABY O} MO| 00} 8N|eA 9|OIYsA, ON | = |[eudie|\ 1easS, ON| 000SL>]| ¥002<] |

9|oI1ya anje

sindinQo slebbu|

PCT/US2010/022593

WO 2010/088523

6/11

9 Old

719 809 808
~ \
T Y B]qelLeA MON
piler eweu | C0z) {@0LINWNDYD U 0 bung |abessay uonepiep sweN @| ¢
pIlEA sWeu 80U S SOA, 0 buing PIEA oWeN @] |
«} 188ElE(Q,
1989(] u_mwwwm_ wunon xepy | adA] inding | enjep yneseq Mﬁmwwwozo adf| SIEN

[e21uYo8 |

S -

9 009

4%

¥09

PCT/US2010/022593

WO 2010/088523

711

Auep
ali4

NE\

L Ol

¥

0¥¥8 Aue 9

16 |.Jeyr 8Aey 01 BunoA 00) si [enpialpul, | 0 JoquinN > (Yuig 4O JeeA — 2002). | S

zzg .24nsul 0] BunoA ooj [enpiaipul, 166 L>uuig 10 JesAL | v

€801 .2INsul 0} p|o 00} pijeAU], /€6L>Uug JO JesA, | €

Ll OWeU ISe| pljeAUy, e>(pweN 1seq)yibus| bus, | ¢

€S SWEU JsJij plfeAul, ¢>(sweN isaiq)uyibus| bus, | |
paJld sswi| abessop\ uonepiBA UoSIad p INYl dl
SINdNQ JOJB|INWINJJY sJebb1 |

804 \\

(841 M sesed anu} [IY) AI¥D SASYD A

1Nnoavy @

Y depl[eA,, —18saIny

(#02)

LU0SIad djepljep,, — any Auep aild

swop (@) | Uosiad arepiien B (uewoideg inejed 'd3d P | Lelen aleplien [] sinsed BZ[/|

4 a [uswhoidaq ynejeq|uswAodaq alsa] aji4 :opopy Hmo._._ = _ O Ov _ W n o

[Enjsl= K=

I

didH MOPUIAA S[00] 19S8Ny M3IA }IP3 9|

19sa|ny ajonp ayndwos pue }sanbay sjepijep &,

004 \

PCT/US2010/022593

WO 2010/088523

8/11

8 Ol

"smopuim Jamod saey sAemie ssjolysA wniwasd Jusosy | N INVO1Y TIVANIM | €
€18 “’}8n|q pey sAey 0} _u_mu 00} 3[2IYaA .w._:mc_ 0} PIo 03 BOIYBA .Hm__ma Jlllejsw pey sAey 0} pjo 00} 8joIysA | N dd3HDS | VIIONVYL| ¢
N4 7 .sweulsiypieaul, Al uaisus | adwnat| |
@/_\\w \mmmwwo_\/_ uonepleA BA| awepN jse7 |[ewep 1sdi4
™ 1087
(808) Lojonp ayndwion pue jsanbay ajepijep,, - 19s9|ny s)|nsay jsa] 9|4
X a ﬁ s)nsay M\muuo:o sindwon pue)senbay siepleA 1Sy MF SWOoH @\
« _W_ _ m_m 001 0 LN A b_EmE\Ao_amo uneyeq Juswihoidag _ A159] 9|14 :9pPOA Hmo._._ g _ e _ nxu_ N m @ B & _@
disH MOpPUIAA S|00] 18S8iny MaIA 1P 94
19s9|ny ajond aindwo pue ysanbay ajepijep mw
\.)

008 .\

WO 2010/088523 PCT/US2010/022593

9/11

WO 2010/088523

10/11

record

decimal 1 (2) num_drivers; //
e record

string (20) name; 1
string (1) sex; /!
952< decimal (3) age; /!
decimal (2) points; //
end driver [num_drivers];
. decimal (2) num_vehicles; //
¢ record
decimal (10) value; /
decimal (2) age; /Il
954 < decimal (1) airbag; !
decimal (1) has belt: /!
decimal (20) driver; /!
end driver [num_vehiclesl;
decimal (2) geo_risk; //
end;

PCT/US2010/022593

Number of Drivers
Driver Name 950
Driver Sex

Driver Age ‘)
Driver Points

Number of Vehicles

Vehicle Value

Vehicle Age

Vehicle has Air bag
Vehicle has Seat Belts
Vehicle Primary Driver

Geographic Adjustment

FIG. 10A

PCT/US2010/022593

WO 2010/088523

1111

a0l 'Old

<PAOODI>
<</ 408, =°Nn[eA JSLI 003>
<SO[OTYoA>
</ WM =SISALIP T ~}[q Seq ,0.,=8€q 1€ 9 ,=98€ 005, =oN[eA S[OIYoA>
</ S°1992d . =SISALIp T =3[°q SeY I ,=38q IIe g =338 ,00GT=dN[.A S[OIYoA>
</ POL =SIOALIP ,0,.=7[2] seY ,0.=38eq Jie j =o3e 0001 .,=ON[BA O[IIYdA>
<SO[OIYOA>
<SIOALIP>
</ Je1.=smwiod 7z =o38e JN .=Xos uweguedg —oWeu I9ALIP>
</ JF1.=syutod 17 .=93€] .=X08 _S9[qQo],,=oWRBU JOALIP>
</ .6.=sruod ee —ode J =X08 BUWIIM =OWEU IOALIP>
</ G1.=sutod cg =o3e N ,=XOS Pot =oWEU JOALID>
\w <SIOALIP>
956 <PLOO3d>

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

