ry

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) .

(51) International Patent Classification S :
GOGF 3/033 Al

(11) International Publication Number:

(43) International Publication Date:

WO 92/18927
29 October 1992 (29.10.92)

(21) International Application Number: PCT/US92/03194

(22) International Filing Date: 17 April 1992 (17.04.92)

(30) Priority data:

688,921 19 April 1991 (19.04.91) US

(71) Applicant: HOME ROW, INC. [US/US]; 9123 St. Helens
Road, Suite 100, P.O. Box 889, Clackamas, OR 97015

(74) Agent: STOLOWITZ, Micah, D.; Marger Johnson McCol-

(81) Designated States: AT (European patent), BE (European

lom & Stolowitz, Inc., 650 American Bank Building, 621
S.W. Morrison Street, Portland, OR 97205 (US).

patent), CA, CH (European patent), DE (European pa-
tent), DK (European patent), ES (European patent), FR
(European patent), GB (European patent), GR (Euro-
pean patent), IT (European patent), JP, KR, LU (Euro-
pean patent), MC (European patent), NL (European pa-

(US).

(72) Inventors: FRANZ, Patrick, J. ; 1849 S.E. 43 rd, Portland,
OR 97215 (US). BIEHL, Philip, D. ; 11940 S.W. Carmen
Drive, Tigard, OR 97223 (US). STRAAYER, David, H. ;
23050 Highway 211, Colton, OR 97017 (US). DODIER,
gggert, H. ; 3732 S.E. Grant Court, Portland, OR 97214

).

Published

tent), SE (European patent).

With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: CURSOR TRACKING

(57) Abstract

In a cursor tracking system (Fig. 11), a pointing device includes a plu-
rality of force sensors (304), optionally integrated with a keyswitch on a com-
puter keyboard. The force sensors detect lateral and vertical forces applied to
the keycap (300) by a user (302) for cursor control. Raw force data is
acquired by A/D apparatus (306) and transmitted (310, 312) to a host pro-
cessor. Driver level software in the host linearizes the raw force values (316,
Fig. 12D) to compensate for anomalies and nonlinearities in the force sen-
sors, keyboard mechanics and A/D. The resulting linear force values are ad-
justed (320) to compensate for preloading bias forces (318) on the sensors.
The unbiased, linear force values and sensor configuration (322) are used to
determined a net XY vector (324, Fig. 16). A speed value is determined by a
quatratic mapping of the XY vector magnitude (328), taking mouse button
status into account. The speed value is scaled by a speed factor, clamped ac-
cording to a speed limit value, and the result used to determine a total dis-
placement value which, in turn, is used to scale the XY vectors to determine
X and Y cursor displacement for repositioning the cursor. The quadratic
mapping coefficients, as well as the speed factor and speed limit values, are
user-alterable at run time, to allow customizing the response of the cursor
tracking sytem. The result is a low-cost pointing system having excellent re-
sponsiveness for ergonomic efficiency. The system is useful in most compu-
ter systems, such as IBM AT-compatible systems, to allow pointing opera-
tions without use of a separate pointing device such as a mouse.

302
USER

300

306—') 308—7 310

D) 3‘!2—)

304"

SENSORS|+ A/D |+[ENCODE}+] xMrT Hnsczrvr-:l—,

316
LINEARIZE|

318

322
CONFIG

320~ 324~
330
MOUSE BUTTONS,
a26 USER CONTROLS
D) L 334
MAGNITUDE FORCE-TO— SCALE
EXTRACT [~*| DISPLACEMENT
328
338
./
340
== 00

DISPLAY

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ

BR
CA
CF
cG
CH
Cl

CM

DE
DK

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Bravil

Canada
Central African Republic
Congo
Switzerlund
Cdte d’lvoise
Cameroon
Crechostovakia
Germany
Dentmark
Spain

Fl

FR
GA
GB
GN
GR
HY
IE

Je
KP

KR
Ll
LK
Lu
MC
MG

Finland

France

Gabon

United Kingdom
Guinca

Greece

Hungary

frefand

Ttaly

Japan

Democratic People’s Republic
of Korca

Republic of Korca
L icehtenstein

Sri Lanka
Lusembourg
Monaco
Madagascar

ML
MN
MR
Mw
NL
NO
PL
RO
RU
SD

SN
Su
™D
TG
us

Mali

Mongolia
Mauritania

Malawi
Netherlands
Norway

Poland

Romania

Russian Federation
Sudan

Sweden

Senegal

Sovict Union

Chad

Togo

United States of America

WO 92/18927 PCT/US92/03194

10

15

20

25

30

CURSOR TRACKING

Related Applications

This application is a continuation-in-part of commonly-owned application
Serial No. 07/649,711 entitled INTEGRATED KEYBOARD AND POINTING

DEVICE SYSTEM WITH AUTOMATIC MODE CHANGE, filéd February 1, 1991,
which is a continuation-in-part of commonly-owned application Serial No.
07/412,680 filed September 26, 1989. Application Serial No. 07/649,711 hereby

is incorporated herein in its entirety by this reference.

This application also is a continuation-in-part of commonly-owned
application Serial No. 07/557,546 entitled KEYSWITCH INTEGRATED

POINTING ASSEMBLY, filed July 24, 1990. Application Serial No. 07/557,546
hereby is incorporated herein in its entirety by this reference.

This application also is a continuation-in-part of commonly-owned
application Serial No. 07/672,641 entitied DATA ACQUISITION IN A MULTI-
FUNCTION KEYBOARD, filed March 18, 1991.

Field of the invention

This application relates to cursor control on a display screen such as a
computer display screen, and more particularly, discloses methods and
apparatus for processing pointing data acquired from a pointing device so as to
control cursor motion in a natural and ergonomically efficient manner.

WO 92/18927

10

15

20

25

30

PCT/US92/03194

o

Background of the Invention

In the prior art, discrete pointing devices such as a mouse or trackball are
used to input cursor displacement information. Such input devices sense
displacement, for example changes in orthogonal directions (X,Y), which in tum
is used to reposition a cursor on the display screen. Discrete pointing devices
are ergonomically deficient in that their use requires a user to move his or her
hand away from the usual typing position to begin a pointing operation.
Additionally, prior art devices fail to provide good cursor speed control.

U.S. Patent No. 4,680,577 describes a multipurpose cursor control
keyswitch which may be used in a keyboard as both a keyswitch (or typing
device) to acquire typing (alphanumeric) data and as a pointing device to acquire
pointing (direction) data. That patent discloses sensors coupled to the keycap to
detect lateral forces applied to the keycap by a user. Serial No. 07/557,546
discloses multipurpose keyswitches, i.e. keyswitches that include integrated
force sensors for acquiring pointing data responsive to both lateral and vertical
forces applied to a keycap, so that a user can enter both typing and pointing data

at the same keycap.

Commonly-owned application Serial No. 07/649,711 discloses a typing and
pointing system, as indicated by the title, which automatically switches between
a typing mode of operation and a pointing mode of operation, responsive to the

user's actions, and without requiring an explicit user command to initiate the

mode change.

Acquisition of typing and pointing data from the keyboard in an integrated
or multi-function keyboard system, in a manner transparent to application

software, is disclosed in commonly-owned application Serial No. 07/672,641.

One problem in pointing systems in general is overshoot, i.e. moving a

cursor beyond the destination intended by the user. Many pointing systems

WO 92/18927 PCT/US92/03194

3

seemtoo fast when the user wants slow, careful pointing and, conversely, seem
too slow when the user wants to move the cursor quickly, for example over

several inches.

Summary of the Invention

The present application discloses methods, and apparatus for practicing
the methods, of acquiring and processing pointing data to control a cursor. This
10 is referred to as “cursor tracking". Cursor tracking is not limited in application,
however, to integrated keyboard systems. Cursor tracking as described herein is

useful in any cursor control application, i.e. an application that requires pointing
activities, and need not involve processing alphanumeric or typing data at all.

15 For example, a game control system may include a video display screen
and a pointing device such as a mouse or joystick for acquiring pointing data to
control a cursor on the display. Cursor tracking is essential to such an
application, while typing may be completely absent.

20 A general object of the invention is to improve the "feel" or ergonomic
efficiency of cursor tracking, in part by presenting a model of cursor tracking that
is understandable to non-technical users, and allows users to adjust the "feel* or

response of a cursor tracking system as necessary.

25 Another object of the present invention is to control apparent cursor speed

responsive to the magnitude of forces applied to a pointing device by a user.

Another object of the invention is to automatically correct for non-
linearities inherent in force sensing apparatus, such as force sensing resistors, to

30 improve cursor tracking.

WO 92/18927

10

15

20

25

30

PCT/US92/03194

4

A further object of the invention is to automatically correct for
manufacturing tolerances and for aging in force sensing pointing devices to
improve accuracy and repeatability of cursor tracking.

Yet another object of the invention is run-time ability to modify cursor

tracking characteristics.

The foregoing and other objects, features and advantages of the
invention will become more readily apparent from the following detailed
description of a preferred embodiment which proceeds with reference to the

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an integrated keyboard for input of pointing

and typing data.

FIG. 2 is a cross-sectional view of a keyswitch-integrated pointing device
for use in an integrated keyboard of the type illustrated in FIG. 1.

FIG. 3 is a schematic diagram of an array of force sensing resistors
(FSRs) coupled to a keyboard microprocessor for implementing a charged-

capacitor type of A/D conversion in an integrated keyboard.

FIG. 4 is a schematic diagram of an array of FSRs coupled to a keyboard
microprocessor system that includes an A/D converter for use in an integrated

keyboard.

FIG. 5 is a flowchart of a main control loop of prior art alphanumeric

keyboard software.

WO 92/18927 . PCT/US92/03194

10

15

20

25

30

5

FIG. 6 is a flowchart of main control loop software of an integrated

keyboard according to the present invention.

FIG. 7 is a flowchart of a communications interrupt handler for use in
connection with the main control loop of FIG. 6.

FIG. 8 is a flowchart of a timer interrupt handler for use in connection with
the main control loop of FIG. 6.

FIG. 9 is a conceptual diagram illustrating the hierarchical relationship of
the main control loop of FIG. 6, the interrupt handlers of FIGS. 7 and 8, and
pertinent memory locations.

FIG. 10 is a perspective view of a force sensor array of the type
employed in the pointing device of FIG. 2.

FIG. 11 is a block diagram of a cursor tracking pipeline according to the
present invention.

FIG.12A is a curve illustrating FSR resistance as a function of force
applied to a typical force-sensitive resistor (FSR) used for force sensing in a
pointing device.

FIG. 12B is a curve illustrating A/D output ("counts") as a function of FSR

resistance.

FIG. 12C is a curve illustrating raw force value as a function of A/D
counts.

FIG. 12D is a linearization curve illustrating linear force value as a

function of raw force value.

WO 92/18927

10

15

20

25

30

PCT/US92/03194

6

FIG. 12E is a curve illustrating linearized force value as a function of raw

force value.

FIG. 13A illustrates force vectors in a four-sensor pointing system, each

force vector comprising a bias component and a user component.

FIG. 13B shows the force vectors of FIG. 13A after compensation to

remove the bias components.

FIG. 14 illustrates force vectors in an alternative four-sensor pointing

system.
FIG. 15 illustrates force vectors in a three-sensor pointing system.

FIGS. 16A and 16B illustrate combining X and Y force vectors to

determine a net XY force vector.

FIG. 17 is a flowchart illustrating a method of approximating a magnitude

of a net XY force vector.

FIG. 18 shows illustrative linear, quadratic and composite curves of

cursor displacement as a function of applied force magnitude.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

An integrated keyboard for use in a multi-functional keyboard system
includes an array of directional force sensors positioned under a selected one of
the keys so as to form a pointing assembly. Preferably, the selected key is one
of the usual typing keys on the home row (ASDF-JKL;) of the keyboard.
Alternatively, a special key located alongside the usual array of typing

keyswitches may be provided with force sensors exclusively for pointing, but

WO 92/18927 PCT/US92/03194

10

15

20

25

30

7

such an arrangement is believed less efficient in use than the preferred

arrangement.

The force sensors detect lateral (X and Y axes) and vertical (Z axis) forces
applied to the keycap by a user. The addition of these force sensors do not

affect the normal operation or feel of the keyswitch. Simple, low cost A/D

~ conversion hardware is provided to convert the signals from the force sensors to

digital form for the keyboard microprocessor. Additional software in or available
to the keyboard microprocessor is provided to read the A/D hardware and send
the resulting sensor data to the host computer. Driver software on the host
computer then examines the keyboard data stream and uses the key
press/release information and the sensor data to emulate a mouse.

FIG. 1 is a block diagram of the keyboard hardware 30. It shows an array
of keyswitches 32 coupled to a microprocessor system 34. 31 schematically
indicates an example keyswitch. The microprocessor system, in turn, is coupled
over a communication link 36 to a host processor (computer) as is conventional.
Additionally, an array of force sensors 38 is connected to analog-to-digital (A/D)
conversion means 40. The A/D converter, in turn, is connected over a bus 42 to
the microprocessor. The force sensors, A/D converter and related hardware, and
methods of acquiring pointing data using a keyboard of the type described are

discussed in greater detail below.

Pointing Force Sensors

The J key preferably is used as the pointing key, as it is actuated by the
right hand index finger in the usual typing position. The J key guide is isolated
from other guides, and forces on the keycap are coupled through the force
sensors to a refereﬁce structure. This reference structure is usually a base plate
or PCB. The J key plunger still actuates the J key switch in the normal way.

WO 92/18927

10

15

20

25

30

PCT/US92/03194

8

FIG. 2 illustrates in cross-section an example of a suitable keyswitch fitted
with force sensors. A rigid actuator 42 includes a central aperture that serves as
a plunger guide, and includes specially contoured actuator surfaces or *pads” 43
on its underside for transmitting forces applied to the keycap to force sensors. A
keycap 44 includes a depending plunger 45 for actuating a rubber dome type
switch assembly 46. A force sensor array 47 includes a force sensor located
below each actuator surface to sense forces applied to the keycap by a user. A
perspective view of a force sensor array is shown in FIG. 10. A force distribution
pad 48 is disposed between the actuator surfaces and the force sensors. A
compressible pre-load pad 49 biases the sensors to a predetermined operating
point. Additional details of a keyswitch integrated pointing assembly are

disclosed in the copending application referenced above.

The force sensors may employ any of a variety of force sensing
technologies. Examples include piezo and foil strain gauges, optical, magnetic
and capacitive technologies. Force Sensing Resistors ("FSRs"), a new thick film
contact technology, are preferred as they are easy to use, inexpensive, and
provide a large output signal. FSRs comprise two plastic films, one with a
conductive silver ink and one with a resistive carbon ink. The harder the films are
pressed together, the lower the resistance. Resistances range from 500K Ohms
to 5K Ohms. Since the FSRs are not repeatable under low forces (<150 grams),
the useful range of resistances is limited to 20K to 5K (approximately 150 to 450
grams). FSRs are commercially available from Interlink Electronics, Inc. of

California.

The FSR lays flat on the reference structure and the actuator pads press
on four separate areas. This gives four orthogonal resistance signals
proportional to the forces on the keycap. In some applications, the four areas are
at 45 degree angles to the keyboard, so the signals have to be combined to get
XY data.

WO 92/18927 ' PCT/US92/03194

9

The actuator is preloaded onto the force distribution pad, thereby biasing
the FSR to a point on its force/resistance curve beyond the low force range
where the FSR is unstable. In operation, forces applied by a user's finger cause
some of the FSRs to be loaded beyond the preload point, and others to be

5 unloaded below the preload point. The preload point is arranged so a
approximately 100g force on the keycap causes a maximum FSR unloading that

takes it just to the FSR stability point.

Depending on the particular FSR, the shape of it's force/resistance curve
10 may mean the region of instability, the preload point, and the operating range
may be different. For some FSR configurations, the preload point is
approximately 12K and the operating range is from 5K to 20K. For others, the
curve is shifted upwards, so the preload point might be 30K, with an operating
range of 100K to 10K. This is not a problem; the A/D component values just
15 need to be adjusted accordingly for a particular FSR configuration.

rawar

20 The A/D hardware requirements of the integrated keyboard system are
easily met by many different schemes. One operative example of A/D
conversion hardware is shown in Figure 3, described below. A simpler
alternative A/D circuit is shown in Figure 4, for systems with a standard A/D
converter in the keyboard microprocessor.

25
The general specifications for the "A/D" conversion required are:
1. Typical FSR resistance range to be converted: 5K to 20K. Actual
range is a function of the particular FSR configuration.
30

2. 7 or 8 bit resolution.

WO 92/18927

10

15

20

25

PCT/US92/03194

10

15 conversions/second on each of 4 channels. Three channels are
sufficient in an appropriate configuration. A four-channel system
may be designed to sense failure of one FSR and continue to
operate using the remaining three FSRs.

Conversion linearity is not required, especially if 8 bit resolution is
provided. FSRs are monotonic but strongly nonlinear, and
extensive corrections may be done in host software. Additional
correction due to the A/D conversion may be provided.

To reduce the size and cost of the FSR and keyboard substrate, it
is best to have one side of each of the FSR sensors be connected
in common (5 leads for 4 integrated sensors; 4 leads for 3

integrated sensors).
Part-to-part consistency needs to be within 10%.

Power consumption in operation must be low. Power consumption

at idle must be extremely low for use in battery powered
applications such as lap top or “notebook" computers.

Charged Capacitor A/D

FIG. 3 is a schematic diagram of an FSR sampling circuit 50, coupled to a

keyboard processor 20 for A/D conversion. The basic concept of the sampling
circuitry of FIG. 3 is that, for each FSR, a capacitor is charged through the

30 resistance of the FSR. The amount of time required to charge the FSRto a
threshold voltage is then measured by the keyboard processor. The charge time

is proportional to the FSR resistance.

WO 92/18927

10

15

20

25

30

11

Referring to FIG. 3, each FSR 52, 54, 56, and 58 has one side coupled to
a common node 60. Common node 60 is coupled to a predetermined bias
voltage, for example +5 VDC. The other side of each FSR is coupled to a
capacitor 62, 64, 66, and 68, respectively. Each capacitor is also coupled to the
anode of a corresponding blocking diode 72, 74, 76, and 78, respectively, and to
the input of a buffer which may be, for example, an inverter gate 82, 84, 86, 88.
The output of each inverter/buffer is coupled to a corresponding data input In0,
In1, In2, In3 of the processor 20. The cathodes of the blocking diodes are
connected in common to another inverter 90, which is driven by a processor

output terminal "Out 1".

in operation, all of the capacitors are discharged before each timing cycle
to establish a known reference voltage on the capacitor. As shown, inverter 90 is
used to discharge the capacitors via the blocking diodes.

Thus, there is an FSR, a capacitor, a diode, and a thresholding inverter for
each channel. The inverter used to discharge the capacitors is shared by all four
channels. Depending on the microprocessor used, the thresholding inverters
may not t;e required. To reduce overall A/D time, it is important that the device
used to discharge the capacitors have a low internal resistance. A simple

transistor is sufficient.

In an operative example, the capacitors are 0.047uf, the FSR range is 5K

to 20K ohms, and the maximum charge up time is 1msec. The timing is done in
the keyboard microprocessor software with a 2 instruction loop.

In the embodiment illustrated, there are four sensor channels, one for each
of up, down, left, and right. If physical considerations prevent this configuration,
host software takes care of creating an XY signal from whatever the sensor
configuration may be. In an alternative arrangement, for instance, the FSR
sensors are arranged in the four corners of the keyswitch cell, yielding northeast

PCT/US92/03194

WO 92/18927 PCT/US92/03194

10

15

20

25

30

12

(NE), northwest (NW), southwest (SW), and southeast (SE) signals. We have
also found that fewer than four sensors, for example three sensors arranged in a
triangle, are adequate for acquiring pointing data. In that case, of course, only

three sampling channels are required.

This circuitry is designed for low parts cost and minimal disruption in a
standard keyboard application with an existing keyboard microprocessor. It
provides adequate resolution at an adequate conversion rate. Five bitsof a
parallel I/O port on the keyboard microprocessor are required. An alternative
arrangement using a timer on the microcontroller would use as little as two
parallel port pins and one timer input. Note that using 5 port pins leaves 3 port
pins remaining in a standard 8 bit port, sufficienttoruna3to 8 line decoder, thus

effectively allowing for replacement of the 5 pins used.

This circuitry is not ideal for low power operation unless the capacitors are
very small because the charges on the capacitors are dumped before each cycle.
If the capacitors are small, the time constant will be small and a high speed
counter is needed to get adequate resolution. Note, though, that this circuitry
only needs to be powered while the system is in pointing mode. The distinction
between pointing and typing is explicit, so the sampling circuitry easily could be

arranged to power up only when needed.

Many different sampling and A/D conversion schemes, including the
capacitor charging method described above, may be employed. Other
techniques may be apparent to those skilled in the art in light of this disclosure. It
is preferred, however, that a microcontroller with built-in A/D be used.
Commercially available devices include MC68HC11 (Motorola), S80C552,
S80C752 (Signetics), and others. Using a built-in A/D converter reduces the
conversion time, reduces power consumption, and reduces parts count. A

WO 92/18927 PCT/US92/03194

13

sampling schematic for use with a microcontroller with built in A/D is shown in

Fig. 4, described next.

Referring now to FIG. 4, the sampling circuit first converts the FSR
5 resistance to a voltage by means of a voltage divider, formed as follows. Each
FSR 52, 54, 56, 58 has one side connected to a common node 110. A divider
resistor 112 is connected between common node 110 and ground. Common

node 110 is connected to an A/D input of keyboard microprocessor 100.

10 This fixed leg of the divider should be selected to be near the preloaded
FSR resistance. If the preloaded FSR resistances (with no applied loads from a
user's finger) are about 30K, for instance, the divider resistor 112 should be
about 30K. Since the FSR resistance change is so great and a common divider
resistor is used, the tolerance of the divider resistor is not critical. If the

15 microprocessor 100 has a ratiometric A/D (the MCB8HC11, for instance), it is
best, but not necessary, that the high and low voltage limits correspond to the
maximum and minimum voltages from the divider. The FSR operating range is
limited, so the voltage swing out of the divider will not be all the way to Vee nor all
the way to ground.

20

As shown, each FSR is enabled in turn by existing keyboard scan lines,
designated KB Scanline 1 through KB Scanline 4. The particular arrangement
shown assumes that the scan lines are normally low and pulse high long enough
for the sample and hold in the A/D. It also assumes only one scan line will be

25 high at a time. This is only required when reading the FSRs, not during normal
scanning. For applications in which the keyboard uses normally high scanlines
that pulse low, one could reverse the diodes and connect the divider resistor to

Vcc instead of to ground.

30 It is of course also possible to use four A/D inputs and four divider
resistors. This would eliminate the blocking diodes, any loading the FSRs may
place on keyboard scan lines, and any ioss of A/D range due to voltage drops.

WO 92/18927 PCT/US92/03194

14

The minimum series resistance of the FSR/divider resistor is generally high
enough that loading is not a problem. An important consideration is the
combination of voltage drops across the driver transistors in the keyboard

5 microprocessor 100 and the voltage drops across the blocking diodes. These

voltage drops can reduce A/D range by up to 1.4 volts.

Keyboard Microcontroller Software

10 Known keyboard controller software is represented by the flowchart 140
shown in FIG. 5. This software handles acquisition and communication to the
host of typing data only. Referring to flowchart 140, after initialization 142, the
keyboard microcontroller scans the keyboard 144 and tests for changes in
keyswitch states 146. If a change is detected, the key is determined 148, and

15 enqueued 150. The microcontroller then checks the Queue 152 and transmits
data, if necessary, to the host. Then the basic scan loop 154 is repeated.

FIG. 6 shows a flowchart 170 of integrated keyboard operations according
to the present invention. The upper portion of flowchart 170 is similar to the

20 flowchart 140 of FIG. 5, the same reference numbers being used to identify
common elements. The new flowchart 170, however, includes two additional

steps following the check queue step 152, namely “Scan Sensors?" 172 ahd

*Enqueue or re-Bias" 174.

25 Following check queue 152, the processor checks a scan timer flag (set by
an interrupt routine) to see f it is time to read the A/D converter to determined
force sensor values. If not, control returns, via loop 176, to resume the usual

keyboard scanning for keystrokes.

30 On the other hand, if it is time to do so, the system reads the A/D to
acquire force sensor data. Next, in step 174, the system checks a “rebias” flag to
determine whether to transmit the force sensor data to the host computerin a

WO 92/18927 PCT/US92/03194

10

15

20

25

30

15

data packet, or to use this data to update running bias values for each sensor. If
rebiasing, the data is not enqueued. Running bias values are used to cancel drift

in the sensors, as further described below.

New Keyboard Commands

The present invention requires that the keyboard microprocessor or
microcontroller be arranged to respond to the foliowing new commands from the

host processor:

1. IDENTIFY

This command is used at host driver initialization time for the host
to determine the keyboard hardware. The preferred command
code is DC hex. The keyboard response is described in detail below.

2. START POINTING

A "start sending pointing sensor data" or more simply, start pointing
command. The preferred command code is DA hex. The keyboard
responds with an ACK, sends a bias values data packet, a
standard data packet, and proceeds to send standard data packets
periodically, preferably at 60 millisecond intervals. These data
packets are described in detail below.

3. STOP POINTING

A "stop sending pointing sensor data" or more simply, stop pointing
command. The preferred command code is DB hex. The keyboard
responds with an ACK and stops sending pointing data packets.

WO 92/18927

10

15

20

25

30

PCT/US92/03194

16

At all times the keyboard controller continues it's normal activities of
scanning the key matrix and sending keycodes. (See FIG. 6.) The software on
the host CPU is responsible for all mode change parsing and all key remappings.
The keyboard microcontroller is only responsible for handling the three new

commands above.

Referring to FIG. 7, a flowchart 220 is shown to illustrate a communication
interrupt handler. The communication interrupt handler preferably is
implemented as part of the keyboard software, for communicating with the host
processor. A communication interrupt occurs whenever a bit is ready on the

communications port from the host computer.

In response to a communication interrupt, the keyboard processor first
tests its internal status to determine if it is already receiving (222). If not, the
processor tests (250) to determine if it is already transmitting. If the keyboard
processor currently is neither receiving nor transmitting, the communication link
is idle (254), and the processor next tests (256) to determine whether it is ready
to start receiving a new command. If it is ready to start receiving a new
command, the processor sets up to do so, and exits the communication interrupt

handler (258).

In some keyboard-to-host communications methods, a “hold off* interrupt
may occur when the host wishes to prevent the keyboard from starting to send

anything. Test 260 tests for this standby status.

Referring back to the top of flowchart 220, if the keyboard system is
already receiving when it detects the communication interrupt, it proceeds to
clock in the pending bit 224, and then test whether or not the communication is
complete 226. If not, control returns from the interrupt handler. This loop (222,

224, 226, 258) will be repeated in response to subsequent communication
interrupts to receive subsequent bits until the complete communication, such as

a keyboard command, has been received.

WO 92/18927 PCT/US92/03194

10

15

20

25

30

17

When the communication is complete, the keyboard processor examines
the received command to identify it. If the received command is the IDENTIFY
command, the processor queues up a reply string, and then exits the interrupt
handler. If the received command is the START POINTING command 230, the
processor sets a pointing flag, starts a scan timer and a bias timer, queues up a
bias packet, and then exits. If the command is the STOP POINTING command,
the processor clears the pointing flag and the scan timer, sets the bias flag, and
then exits. If not, test for other commands 234 which are known in the prior art,
and handle them accordingly.

Referring to decision 250, if the keyboard system was transmitting when
the communication interrupt occurred, abort transmission 252 to receive the
pending bit from the host.

These new features, preferably implemented in firmware, are designed to
be as simple, modeless, and transportable as possible. A minimum amount of
code space in the keyboard microcontroller is required, and the code does not
have to change when the user interface is modified.

The IDENTIFY Command

The IDENTIFY command identifies the keyboard as being a multi-function
keyboard, i.e. one having integrated typing and pointing mode capabilities. This
allows the host software to make sure that it can work with the software in the
keyboard.

The keyboard response to the IDENTIFY command preferably comprises a
seven byte sequence. The first byte is a standard ACK (FA), and the second
byte is DC hex to identify the response as being from the DC command. The
third and fourth bytes are keyboard software version numbers. The fifth byte
indicates the sensor type and configuration, while the sixth and seventh bytes

WO 92/18927

10

15

20

25

30

PCT/US92/03194

18

identify the key that is physically to the left of the 'A’ key on the keyboard (the

normal break sequence for the key to the left of A is sent).

The software version is returned in two bytes. Both are encoded values.
The first byte is the major software version plus 85 hex. The second number is
the minor software version plus 85 hex. A software version of 1.02, for example,
would map to encoded software version bytes of 86 87. 85 hex is added to
ensure the host keyboard port does not remap the values. Version number
codes may range, for example, from 85H to E9H, a range of 100 decimal.

The sensor configuration tells the host software what to expect from the
sensors, how many there are, etc. It, too, is encoded by adding 85 hex. For
example, an 85 (hex) may be used to indicate four FSR sensors under the J key,
one in each of the four corners of the key cell. An 86 may indicate four FSR
sensors under a dedicated key that emits 6F/EF when pressed and released.
Again, the sensors are in the corners of the key cell. Other codes may be used
to identify other sensor configurations, for example three FSR sensors instead of
four, as well as to identify other arrangements, such as four sensors orthogonally

arranged in line with the keyswitch array matrix.

The key to the left of A is identified so that it can be used for explicit mode
change operations by the user. Details of both explicit and implicit (automatic)
mode change are described in the commonly-owned applications referenced
above, respectively. On PC/AT keyboards, this key is usually the CONTROL or
the CAPS LOCK key. The upcode sequence (FO nn) is sent so the host does not
mistake the code for a keypress (a mistaken key release is less hazardous).

A typical response to an IDENTIFY command is as follows:
Keyboard Sends: FA DC 86 85 85 FO 58
Host Sees: FA DC 86 85 85 BA

WO 92/18927 PCT/US92/03194

10

15

20

25

30

19

The data is interpreted as follows: "Yes, this is an integrated keyboard" (FA
DC); “the keyboard software version is 1.0" (86 85); "the sensor configuration is
type 0" (85); and "the key to the left of a is caps lock" (FO 58 maps to BA, or
CAPS LOCK up in a standard IBM™ PC/AT'™ or compatible system).

Timing Data Acquisition and Communication

FIG. 8 is a flowchart 270 of a timer interrupt handler for implementing the
present invention. A timer interrupt occurs at a regular predetermined interval,
usually triggered by an internal countdown timer feature in the keyboard
microprocessor. In the prior art, a timer interrupt handler checks internal status
(whether or not the system is currently sending or receiving) and typically
performs actions related to communications. These functions are illustrated in
the top part of flow chart 270, blocks 272, 274, 276, 278, 280 and 282.

If the system is not currently receiving 272, it tests for transmitting 274. If
not transmitting, it tests for pointing mode 275 by checking the pointing flag (see
230in FIG. 7). If pointing mode, a "packet-to-packet" or pointing count down

timer is decremented 284. This is used to pace transmission of sensor data

packets, as follows.

Next, the pointing count down timer value is examined 286 to determine if
it is time to scan the sensors again, indicated by the pointing count down timer
reaching a predetermined value. If so, the system sets the SCAN FLAG and
clears the BIAS FLAG. Ifit is not yet time to scan again, exit 288.

Alternatively, if the system is not pointing (275=NO), a re-bias count down
timer is decremented 290 in response to the timer interrupt. Next, the re-bias
count down timer is examined 292 to determine if it is time to scan the sensors to
update bias values, indicated by the re-bias timer reaching a predetermined
value. If so, the system sets the SCAN FLAG and sets the BIAS FLAG. If not,
exit 288.

WO 92/18927

10

15

20

25

30

PCT/US92/03194

20

The keyboard system thereby scans for new pointing data at a first
predetermined frequency during pointing mode, and scans for new sensor bias
data at a second predetermined frequency during a non-pointing (typing) mode.
The SCAN FLAG indicates that data needs to be acquired by the main loop
shown in flowchart 170. The BIAS FLAG indicates that the data should be used
to update the bias values if set and that the data should be sent to the host if

cleared. The count down timers are reset when they reach their terminal values.

Reading the A/D for Sensor Values

The reading of the sensor values is highly dependent on the sensor type
used, the microprocessor type, and the A/D hardware (on-chip, or one of several
discrete methods). For a typical Intel 8048 class microcontroller and a four-

element FSR sensor, the A/D typically is a simple “how long does it take to
charge a capacitor* type (see FIG. 8). The scanning is done in a two instruction
loop, so the time for each channel is about 10 + (2 * 214) or 438 instructions per
channel (as described later, the data values range from 0 to 213, so there are
214 possible values for each sensor). Considerably less time is required if a

timer input or a built in A/D converter is used (see FIG. 4).

Determining the Sensor Bias Values

If FSR sensors are used, it is important to have an idea of the values from
the A/D when the pointing key is not being used. This is because the FSR
sensors are preloaded approximately to the middle of their operating range (and

the middle of the A/D range), for example by a spring assembly, and any forces
applied by the user tends to load some of the FSRs and unload other of the

WO 92/18927

10

15

20

25

30

21

FSRs. As a user applies forces to the keycap, some sensor readings go up, and
others go down. Typical non use, idle readings are generally around 100 to 120
out of a possible 214.

The preload is variable over an appreciable range (plus or minus 1/4th, or
25% maximum), and to correct for manufacturing tolerances and long term drift,
the host software deducts the no-load sensor readings from the in-use (pointing)
sensor readings to get a net force indication. The keyboard is responsible for
gathering the no-load (bias) readir{gs.

At initialization time, and periodically (every 5 minutes to 15 minutes)
thereafter, the keyboard needs to read the individual sensor values and
individually average them. Each sensor reading should be ignored if it is more
than 12.5% (1/8th) or so different from it's running average. If possible, a reading
should be ignored if the pointing key is operated within some short period of time
(1 second or so) before or after the reading. This should not be necessary if the
running average contains sufficient terms (if the effect of a new reading is
weighted so as to not allow it to change the average by more than a certain
amount, 1/8th or so).

The sensor bias (no-load) values are accumulated and sent at the start of
every pointing session. Bias value data packets may have the same format as
pointing (or current) data packets with the exception of an identifying field in the
second byte. The host detects the presence of a bias value data packet and

updates the host software’s internal bias values.

At power-up, the keyboard controller reads the initial null point values and
establishes the basis bias values. When the keyboard is told to enter pointing
mode and begin scanning, it first sends a data packet which contains the current
null point or bias values. This allows the host software to correct for drift due to
aging and for variability between keyboards. The flags byte on a null point values

packet begins with hex A instead of 9.

PCT/US92/03194

PCT/US92/03194

WO 92/18927
22
Sending Sensor Data Packets
5 When the keyboard receives the command to begin sending sensor data

packets (DA), it does the following:

1. Responds with an ACK (FA), as with any other command (set

typematic, set/reset mode indicators, etc.).

10

2. Send a bias values packet. This is done by enqueuing a bias
values packet for automatic transmission.

15
3. Read the A/D and send a current sensor values packet. This is

effected by setting the scan flag and clearing the bias flag. Later
sensor values packets are then effected by setting the pointing
mode flag and resetting the scan timer.

20

4, At the same time, continue scanning the key matrix, processing

keys, and sending keycodes.

5. Periodically, for example every 60 milliseconds, plus or minus 10
milliseconds (15 times a second) read the A/D again and send a
current sensor values packet. The repeatability of the time between
readings is important- variations will affect the cursor speed.

30

WO 92/18927 PCT/US92/03194

10

15

20

25

30

23

A sensor data packet is 6 bytes long for sensors with 4 elements. The first
byte is an identifier byte of DA, which lets the host know that the next 5 bytes are
sensor data, not keycodes (once the DA is sent, nothing should be sent for the

next 5 bytes but sensor data). The host will attempt to interpret the next 5 bytes
as sensor data, however, if it sees an erroneous value (a value less than 85 hex
or greater than EF hex) it will go back to treating the codes from the keyboard as

keycodes, starting with the erroneous data code.

There are two types of sensor data packets: bias value packets and
current value (pointing) packets. They differ only in the high nibble of the flags

byte (hex A for bias values and hex 9 for data values).
The 6-byte packets are arranged as follows:

First Byte: The identifier byte. The value is DA hex. This identifies the start
of a reply packet. This is a reserved keycode for the IBMm™ PC/AT*™,

Second Byte: The flags byte. The upper 4 bits identifies the packet as
being a current values or bias values packet, and the lower 4 bits are data

value encoding flags, one for each sensor.

If the upper nibble is 9 hex, the packet is a current data values packet. If the
upper nibble is A hex, the packet is a bias values packet.

The lower 4 bits are flags that indicate which half of the encoding the
following data values are from. For 4 element FSR sensors using the 4

corners of the key cell, the NE flag is bit 3, NW bit 2, SW bit 1, and SE bit 0.
This corresponds to the order in which the following data bytes are sent.

Last four bytes: For the last four bytes, the data is encoded as indicated in

the following 'C’ pseudo code:

WO 92/18927 PCT/US92/03194

24

if(value < 0x6B){
encoded = value + 0x85; /* make start at 85H */

clear corresponding bit in flags byte

}
5 else if(value < 0xD6){
encoded = vaiue + 0x1A; /* make start at 85H */
set corresponding bit in flags byte
}
else{
10 encoded = OXEF; /* limit to max data value */
set corresponding bit in flags byte
}

Raw sensor values from 0 to 6A hex (0 to 106 decimal) are mapped to
15 encoded data values of 85 hex to EF hex, with the corresponding bit in the flags
byte cleared. Raw sensor values from 6B to D5 hex (107 to 213 decimal) are
mapped to encoded data values of 85 to EF hex as well, but the corresponding

bit in the flags byte is set instead of cleared.

20 Note that this encoding maps the sensor values to innocuous codes that
are not remapped by the host AT keyboard port (8042) hardware. The codes
used range from 0x85 to OxEF. Values outside this range are typically used or
remapped by the 8042. This encoding allows passing raw data values from 0x00
to 0xD5 (0 to 213) for a total of 214 possible data values.

25
Third Byte: encoded value of NE sensor
Fourth Byte: encoded value of NW sensor
Fifth Byte: encoded value of SW sensor
Sixth Byte: encoded value of SE sensor
30

The keyboard A/D hardware maps low FSR resistances (high forces) to

high values and high FSR resistances (low forces) to low values. The foregoing

WO 92/18927 PCT/US92/03194

10

15

20

25

30

25

encoding requires the 8042 keyboard controller to pass these upcodes
unmodified.

An illustrative set of interactions with the keyboard is the following:
From Host: From Keyboard:

DC FA DC 86 85 85 F0 58

DA FA
DAA0OC5C0C8C6
DA 9189 CoD8 C5

DA90C5C0C7Cs

DB FA
Sampling Rate

We have found 15 samples per second to be a useful sampling rate. This
encoding thus requires 90 characters per second. The "human loop" delay in this
system, i.e. delay for a user to observe an action on the screen (cursor motion or
position) and move his or her finger (press the pointing key) to effect a response
to the observation is on the order of 400 milliseconds. The sampling rate should
be at least sufficient to not add to the human loop delay. A minimum sampling
rate for good performance therefore is about four samples per second.

Faster sampling improves visual feedback to the user of cursor motion.
The cursor motion has a smoother appearance to the user at a sampling rate of,
for example, 20 samples per second. That translates to a sensor data rate of 20
times 6 or 120 bytes per second. For some applications, this rate may be limited

WO 92/18927 PCT/US92/03194

10

15

20

25

30

26

by the communication link bandwidth. Such a limitation may be overcome by

using one or more of the following techniques.
1. “Double up* data packets using a single byte command.

2. Encode only the difference in the sensor data value since the last
packet. In other words, send only a delta value, rather than a
absolute value. This can be done in a smaller packet, thereby

reducing the data rate proportionately.

3. Use of a special code, one byte long, to indicate a repeat of a
preceding byte. A “repeat byte* also is useful to reduce the amount of data

required and therefore reduce the necessary bandwidth.
FIG. 9 is a conceptual diagram, showing the methods illustrated in the
preceding figures surrounding the various shared data items, shown in the

middle. These data items are defined in the following Table:

Table 1. Key to Abbreviations Used in FIG. 9

Abbreviation Definition

Key State Keyboard key scan state

Auto Rpt Auto Repeat State

Xmit Queue Transmit Queue

Xmit Char Transmit Character

Rcv Char Receive Character

Comm Tmr Communications Timer

Mode keyboard mode flag, i.e. typing or
pointing

Scan Flag The flag to indicate to the main loop

WO 92/18927 PCT/US92/03194

27

(FIG. 6) that a sensor scan should be

done.

Bias Flag The flag to indicate whether the scanned
5 sensor data should be transmitted or
used to auto bias.

Bias Timer The timer for the control of bias data

scanning. Invented art.

10
Scan Timer Timer for packet to packet sensor data
timing. Invented art.
Bias n Storage for the current bias values, one
15 for each sensor.
Null Point Sensor Bias Values
20 ~ The keyboard controller keeps a "null point" or bias value for each FSR to
allow for drift correction. Periodically during typing mode, the keyboard controller
will read the FSRs and update the null point values. For each sensor, the new
null point value will be averaged into the running null point value unless the new
null point value is different by more than 12.5% (1/8th). If the difference is more
25 than 12.5%, the new null point value will be assumed to be in error. The

keyboard controller will also ignore new null point values that are taken within a

few seconds of the pointing ()J key being pressed.

30

PCT/US92/03194

WO 92/18927
28
Host Driver Software Overview
The Host Driver Software reads the keyboard port, parsing mode changes
5 between typing and pointing. While in pointing mode, the driver provides a mouse
interface.

While in typing mode, the driver has merely to examine the keyboard data
stream for the sequences that indicate a change to pointing mode. If the

10 keyboard data is anything else (typing data), it is processed in the normal way.

If the keyboard data indicates a change to pointing mode, the driver tells
the keyboard to begin sending A/D data, as described above, and proceeds to
interpret the keyboard data accordingly. The pointing data is processed as

15 detailed below.

Key press and release information is used in pointing mode to emulate
mouse buttons (preferably the F, D, and S keys, though any keys could be used)
and to provide useful new pointing device features. New features include real

20 time cursor speed range changing and useful keys such as INSERT and
DELETE remapped to keys that are reachable from the home row. Selected
other keycodes may be processed as in typing mode. Most other keycodes are

thrown away.

25 While in pointing mode, the driver parses for mode changes back to typing
mode. When one is found, the keyboard is told to stop sending sensor data (by

sending a DB hex command).

Mode changes may be requested, for example, by the following key
30 sequences (where “LOA" means key to the left of 'A’): {LOA down, J down, LOA
up} = enter temporary pointing mode; {J up} then means leave pointing mode.
{ALT down, J down, ALT up} = enter locked in pointing mode; {ALT down, J

WO 92/18927 PCT/US92/03194

10

15

20

25

30

29

down} = leave locked in pointing mode. Alternatively, special methods may be
used to determine if presses of the pointing key are attempts to type or attempts
to point (automatic mode change). Note that the keyboard does not have to

parse these transitions.

While pointing, the F key is the primary mouse button; D is the secondary
mouse button; and S is the third mouse button. Various other keys are
remapped under user control: G is DEL; E is INS; Qis ESC; V is slow down
cursor movement; and SHIFT-V is speed up cursor movement. The ENTER,
SHIFT, CONTROL, ALT, and CAPS LOCK keys are processed normally. All
other keys are ignored. Preferably, the Host Driver software is user configurable
as to key placements and mode changes.

Keyswitch Chording

An integrated system according to the invention may use one or more
unusual key chordings not commonly encountered in normal typing. ltis
important, therefore, that no ghosting or lockout occur during these chordings.

To illustrate, the J key is depressed during all pointing operations. The F
and D keys are used as mouse buttons, so J, F,and D may all be pressed at the
same time. J may also be pressed in conjunction with Tab, QWER,T, A S,
G, Z, X, C, V, and B, as well as the normal chording keys, the space bar, and the
Enter key. Virtually any other keys may be employed in chords for other
purposes. 7

All the added multi-functional keyboard related communications use
keyboard port data values in the range of 85 to EF hex. Normally, these are

WO 92/18927 PCT/US92/03194

30

upcodes. The keyboard, however, is not sending the “up* prefix (FO hex) prior to
these values; it just sends the values. The host computer's 8042 keyboard port

must not remap values in this range.

5 It is a requirement that if the keyboard sends an 85, the keyboard port
gives the host an 85. If the keyboard sends an EF, the keyboard port must give
the host an EF, and so on, for all values between 85 and EF hex.

Introduction to Processing Pointing Data
10
FIG. 11 is an overall block diagram of a cursor tracking system according

to the present invention. The diagram shows a keycap 300 operable by a user's
finger 302. The keycap may be coupled to a keyswitch-integrated pointing
device, such as that illustrated in FIG.2. Alternatively, the keycap may be

15 coupled to a dedicated pointing device, i.e. one having force sensors but no
switch. The keycap is shown coupled to an array of force sensors 304, as
described above with reference to FIG. 2, for detecting lateral as well as vertical

forces applied by the user’s finger.

20 Sensors 304 in turn are coupled to A/D apparatus, for example as
described above with reference to FIGS. 3 and 4, to convert the applied forces to
force sensor data. Specifically, the sensors convert force to resistances, and the
A/D apparatus converts the resistances to data in the form of A/D output
counts, as further described below. These “raw" force sensor values are

25 encoded 308, transmitted from the keyboard to the host processor 310, received
in the host 312, and decoded 314 to recover the force sensor values, as

described above.

Each of the raw force sensor values is linearized 316 to form a
30 corresponding linear force value. Next, in the case of a preloaded system, each
of the linear force values is compensated 320, responsive to a corresponding

force sensor bias value 318, to form a corresponding unbiased, linear force

WO 92/18927 PCT/US92/03194

10

15

20

25

30

31

“value. The next step is computing an X vector and a Y vector (process 324) by

combining the unbiased, linear force values according to their associated
directions. The direction associated with each force value is determined by the
configuration of the force sensors. The configuration information is acquired by

the host from the keyboard, for example during initialization, and stored 322.

The resulting X and Y vectors are combined to form a net XY vector. The
magnitude of the net XY vector is computed, process 326. This magnitude is
used in force-to-displacement computations, process 328, which also takes into
account mouse button status, predetermined speed factor and speed limit values,
and other user controls 330. The force-to-displacement computations in turn
yield a scaling factor. The X and Y vectors are scaled by the scaling factor,
process 334, to form final X and Y cursor displacement values, respectively.
These values are used to move the cursor 336, which results in repositioning the
cursor symbol 340 on the display screen 338. The resulting change in cursor
position will be in the direction of the force applied to the keycap by the user, and
over a distance proportional to that user-applied force.

Linearization

The first step in mapping sensor data is to “linearize" 316 the raw force
values to form linear force values. Linearization is necessary to correct for
anomalies or nonlinearities inherent in the force sensors, the keyswitch-
integrated pointing assembly mechanics, and the A/D conversion. The goal is to
form a set of force vectors (or a net force vector) that is approximately linearly

related to the forces applied to the sensors.

The raw force values represent forces arising from two sources. First are
pointing forces, i.e. forces applied to the keycap 300 by the user. A second
contributor to the force values are bias forces. Bias forces arise essentially from
preloading the sensors, as discussed above. During pointing operations (or

pointing mode), the force sensor values represent both user-applied and bias

WO 92/18927

10

15

20

25

30

PCT/US92/03194

32

forces. During typing mode (or another non-pointing mode), when the user is not
pressing the pointing keycap, the force sensor values represent only bias forces.
The same linearization process is applied in both cases, as all force sensor data
is acquired in the same way and therefore is subject to the same anomalies.
Linearization design requires consideration of the characteristics of the data

acquisition system.

FIG. 12A is a curve illustrating resistance as a function of mechanical force
applied to a typical force-sensitive resistor (FSR) used for force sensingin a
pointing device. This generally Y=1/X shaped curve falls off rapidly at first, and
then stabilizes, as the FSR exhibits a minimum resistance R, despite increased
force. Also significant is that resistance is very high until some minimum or
threshhold force F; is applied. Thus the 1/X curve is shifted upward due to the
minimum resistance, and to the right due to the minimum force. The minimum
force is typically about 50 grams per FSR, and the minimum resistance is
typically about 3K-ohms. The exact shape of this curve will vary depending upon
the particular FSR employed and the mechanical characteristics of the system.
The resulting resistance is measured by the A/D circuits described above (see

FIGS. 3 and 4).

Referring now to FIG. 12B, this curve illustrates an FSR resistance to A/D
counts mapping provided by the data acquisition system. This is a generalized
curve for the A/D response of both a voltage divider A/D (FIG.4) and a charged
capacitor A/D (FIG.3)

The A/D software is arranged to assign high A/D counts to low resistances
(high forces) and to assign low A/D counts to high resistances (low forces).
Thus, the curve of FIG. 12B also is a generally (1/X) shape.

The A/D output or count is limited by the software to a predetermined
maximum value or A/D count limit, indicated as CMAX. This value is selected to
be in a range of about 100% to 200%, preferably about 150%, of the typical

WO 92/18927 PCT/US92/03194

10

15

20

25

30

33

operating force range, so it generally is not reached in normal use. In the
preferred embodiment, CMAX corresponds to about 4K-ohms FSR resistance.
Additionally, the A/D count is forced to a predetermined minimum value CMIN for
all resistance value equal to or greater than a predetermined maximum, indicated
as R.. This resistance value is typically around 50K-ohms. A useful operating
range of forces thus is mapped to an A/D count range of CMIN to CMAX. The
actual numbers will depend upon the particular implementation. In one operative
example, the A/D count range is 0 to 213. See "Sending Sensor Data Packets"

above.

FIG. 12C shows force as a function of A/D counts for an individual sensor.

| This curve is a result of combining the force to FSR resistance curve (FIG. 12A)

and the FSR resistance to A/D counts curve (FIG. 12B). We find that this
function is similar to a section of a parabolic curve, offset upwards from the origin
and limited to the operating range of A/D counts defined above as CMIN to
CMAX. The initial vertical segment S1, in which force increases but the A/D
count stays at zero, reflects a range of undetectable forces, typically about 0 to
50 grams, corresponding to F, in FIG. 12A. Once the FSRs start operating
(force>F,), the curve of FIG. 12C exhibits a generally quadratic relationship

between A/D count and force, i.e. the A/D count squared is proportional to force.

This roughly quadratic relationship holds true until the A/D count limit
(CMAX in FIG. 12B) is encountered. This ensures that user-applied forces are
distinguishable over the useful operating range, but forces beyond that are not.
In practice, this arrangement is useful for discouraging users from applying
excessive forces because they receive no further response. We have found that
providing for excessive cursor speed merely facilitates overshoot and therefore

reduces pointing efficiency.

For most systems, the force sensors are preloaded to a standby operating
point in a range of approximately 40% to 70%, preferably about 60%, of the A/D
count range (CMIN to CMAX). Higher preloading tends to unduly age the

WO 92/18927

10

15

20

25

30

PCT/US92/03194

34

sensors. When a user applies forces to the keycap, the normal range of
operating forces is such that the full range of A/D counts is never reached.
Typical operating forces are in a range of 30 to 60 grams down force and 3 to 50
grams side force, resulting in A/D counts from 20 to 190. At rest (standby
operating point), preloading results in standby A/D counts of 100 to 140,
preferably about 130 (i.e. 60% of full range).

We have found the curve of FIG.12C to be approximately a quadratic
parabolic shape for most combinations of FSR, keyboard mechanics and A/D
hardware. Other curves may be fitted more accurately, but a simple, easy to
calculate quadratic proves to be quite adequate. The variabilities in FSRs,
mechanics and A/D circuitry all tend to cluster around a quadratically fitable

curve.

In view of the above force response characteristics, i.e. a roughly quadratic
function within the allowed operating range of A/D counts, linearization of the
raw force values may be effected by use of a quadratic linearization function,

generally of the form ax+b, stated as follows:
LFV = (RAW2x LINSQ) +LINOFF

where LFV represents the “linearized" or linear force value. RAW represents the
raw force value, i.e. the A/D count to be linearized. LINSQ represents a
linearization square factor, and LINOFF represents a linearization offset factor.
Typically LINOFF is set to 0, as offsets are cancelled during bias compensation,
described below. An example of a linearization function of this type is illustrated
by the curve of FIG. 12D.

Selection of a value of LINSQ is arbitrary and depends upon the selected
range of linearized values. Absolute force values are not important, so arbitrary
units may be selected as convenient for calculation purposes. Preferably, the

coefficient is selected to result in operation in a range of values that provides

WO 92/18927 PCT/US92/03194

35

sufficient resolution yet is convenient to manipulate in, for example, a 16-bit or

32-bit computer such as a personal computer.

In an operative example of a pointing system according to the invention,
5 A/D values fall in a range of 0 to 213. After squaring, this results in values from 0
to 45,369. This range of numbers requires 16 bits for binary representation. We
~have found it convenient to use an LINSQ coefficient of 407 with an implicit
binary point of 18, i.e. the coefficient actually is 407/2'. Ten-bit representation
provides sufficient accuracy and eases subsequent calculations.

10
The linearization calculation described is applied to each raw A/D value to
form a corresponding linear force value (LFV). This value is not necessarily
strictly linear, but the phrase is used to indicate that a linearization calculation
has been done. Referring again to FIG. 11, the linear force values, in the case of
15 bias values, are stored 318 for use in subsequent bias compensation

calculations. Pointing mode linear force values are provided to process 320, bias

compensation, described below.

FIG. 12E shows linear force value as a function of raw force value. This is

20 the result of the linearization illustrated by the curve of FIG. 12D. This function is
approximately linear, offset by the null region corresponding to the minimum

force F, in FIG. 12A, and clamped at a value corresponding to the maximum A/D

count.

25
Bias Compensation
The next step in mapping sensor data is adjusting or compensating each
linear force value to remove the effect of preloading on the corresponding force
30 sensor. As described above, the force sensors are preloaded to establish a

desirable standby operating point. The preload or bias force must be removed
from each linear force value to recover the force applied by the user.

WO 92/18927

10

15

20

25

30

PCT/US92/03194

36

FIG. 13A illustrates a set of four orthogonal force vectors. Each force
vector has a magnitude represented by the corresponding linear force value,
calculated as described above. Each force vector has a associated direction
determined by the orientation of the corresponding physical force sensor relative

to a predetermined origin.

In a keyboard application, it is convenient to define 'a cartesian "keyboard
coordinate system* in which the positive Y or UP direction is toward the top row
of keys as seen by the user. Similarly, positive X or RIGHT direction is toward
the user's right, etc. In this illustration, the four force vectors are 45 degrees
offset from the axes. These vectors correspond to a set of four orthogonal force
sensors arranged in a keyboard 45 degrees offset from the keyboard coordinate
system. Each vector thus may be identified by the corresponding compass point
(NW,NE,SW,SE). The particular coordinate system used is arbitrary, as it will be
communicated to the host and taken into account in cursor tracking, as explained

below.

Each force vector in FIG. 13A comprises two segments, a BIAS segment
and a USER segment. In each case, the BIAS segment begins at the origin and
represents the preloading or bias force applied to the corresponding force
sensor. The USER segment extends from the tip of the BIAS segment, colinear to
it, and represents the user-applied force or, more precisely, a component of the
user-applied pointing force along the direction of the corresponding sensor.

FIG. 13B illustrates the four vectors of FIG. 13A after the BIAS vectors
have been subtracted, leaving only the USER vectors. Since the BIAS and USER
vectors are necessarily colinear, in practice the subtraction may be done by

simple scalar arithmetic, i.e. by subtracting a corresponding bias value from each
linear force value. (The raw bias values for each sensor, it may be recalled, are

measured by the keyboard software and provided to the host processor, for

WO 92/18927 PCT/US92/03194

10

15

20

25

30

37

example, at the outset of each pointing operation.) The results of the bias
compensation step are the net forces being applied by the user to each sensor.

It should be noted that the results of the bias deduction step can be
negative. In other words, the net, linearized force value for a particular sensor
may be negative. For example, when the user pushes up, the net output on the
down sensor is likely to be negative (also indicating "up"). This provides as much
as twice the signal of a strictly positive force system. This is easy to
accomodate, as the 10-bit results discussed above would require only 11 bits if
doubled, plus a sign bit for negative results, for a total of 12 bits, well within the
16-bit word size of most small computers.

Non-preloaded Sensors

In systems having non-preloaded sensors, low user applied forces may not
be detectable. This results in poorer fine cursor positioning control. This can be
partially offset by doubling the effect of the opposing sensor (in a four-sensor
pointing device) when a particular sensor reads zero. [f the "down sensor* in
such a 90-degree configuration reads zero, and the "up sensor" has a valid
reading, doubling the effect of the "up sensor" partially compensates for the part
of the data (the "down sensor" reading) that is lost. This will also tend to smooth
the sudden dropping out of one of the sensors. Drop out occurs when the user is
smoothly shifting the forces on the keycap, but the A/D count suddenly limits to
zero, because force is too low. If this discontinuity is reflected in the cursor
movement, the user will be surprised.

Force Vector Combination to Derive Net X and Y Vectors

The next step in mapping sensor data to cursor control is to combine the

net (or unbiased) linear force values to derive a net X vector and a net Y vector.

WO 92/18927 PCT/US92/03194

38

See step 324 in FIG. 11. Again, since the directions associated with the sensors
relative to an X and Y coordinate system are predetermined, calculating the

corresponding force values requires only scalar arithmetic.

5 Referring now to FIG. 13A, in the case of sensors at 45-degrees, the X and

Y vectors are calculated as follows:
X=(NE+SE)-(NW+SW) Y=(NE+NW)-(SW+SE)

10 Thus, “east* sensor force values are added together, and the combined *west’
sensor total is subtracted, to yield a net “east-west" force value for X. The Y
components cancel out. Likewise, when computing Y, the net “south* value is
subtracted from the net “north* value, giving a net Y force value, and the X

components cancel each other out.

15
In the case of sensors aligned with the XY coordinates, as illustrated in
FIG. 14, the calculation is similar but simpler: A net X is computed by subtracting
LEFT from RIGHT, and a net Y is computer by subtracting DOWN from UP,
where RIGHT, UP and DOWN are the unbiased linear force values acquired from
20 a set of four orthogonal force sensors arranged along the XY axes.

in the case of a three-sensor pointing system, the sensors preferably are
equi-angularly arranged about the origin, with one of the sensors aligned with
one of the X or Y axes, as illustrated in FIG.15. As shown, the A element is on
25 the Y-up axis. For the direction with one element on that axis (here Y), the net
force value is the corresponding sensor force value (A) minus (B+C)cos 60. The
cosine of 80 is 0.5 which is conveniently calculated by a divide by 2 (shift down
once). The other two vectors, B and C in FIG. 15, are 60-degrees off axis, so the
X component value is (C sine 60 - B sine 60). Therefore X=0.866 (C-B).
30
The sine of 60 (0.866) is a more difficult coefficient with which to compute.
A good approximation is to multiply by 887 and divide by 1024 (which equals

WO 92/18927 PCT/US92/03194

39

0.8662). Again, the result is a net X vector and a net Y vector. A net vertical
force (Z component) can be determined by summing all of the sensor force

values, since the user is pushing down on all of the FSR elements.
5 Net XY Vector Magnitude Computation

The next step in mapping sensor data to cursor control is to combine the X

and Y vectors to determine the magnitude of a net XY vector. See step 326 in
FIG. 11. FIG.16 illustrates the vector addition process. It is known that the

10 magnitude of a vector equals the square root of the sum of the squares of the
magnitudes of its component (here X,Y) vectors. Square root computations may
be cumbersome in some applications, however. Fortunately, the magnitude
computation need not be very precise, as it is not as critical as direction is to
ergonomic “feel" of the pointing system.

15

A useful approximation of the magnitude of a net X+Y vector may be
caculated by summing the magnitude of the larger vector with one-half the
magnitude of the smaller vector. FIG. 16A shows an X (horizontal) vector larger

20 © thana'Y (vertical) vector. The magnitude of the net X+Y vector is approximated
by X+Y/2. Similarly, as illustrated in FIG.16B, the magnitude of X+Y is
approximated by Y+X/2 where X<Y.

This approximation method is illustrated by the flowchart of FIG. 17. It
25 shows (1) determining the magnitude of each of the component vectors; (2)
comparing the magnitudes of the two vectors to determine which one is larger;
and (3) calculating an approximation of the magnitude of the sum X+Y vector as
described above. This approximation is very easy to calculate and exhibits a
maximum error of about 11% at the 26 and 64 degree points. lt is also helpful to
30 use IXI and YI in the calculation so that the magnitude is always positive.

WO 92/18927

10

15

20

25

30

PCT/US92/03194

40

Force-to-Displacement Functions

The force-to-displacement functions remap the net XY vector to a new
cursor displacement. First, the magnitude of the net XY vector is used to

compute an intermediate value we will call speed, according to a formula:
speed = SQUARE x (M — NULL)? + LINEAR x (M — NULL)

where SQUARE is a predetermined square term coefficient, M is the magnitude
of the net XY vector, NULL is a predeterrriined minimum force to initiate cursor
motion, and LINEAR is a predetermined linear term coefficient. While this
intermediate value does not literally represent cursor speed, it is proportional to
the apparent cursor speed that results from the user-applied force, as will

become apparent.

This polynomial “speed" evaluation has the following advantages. First,
the null value provides a “dead zone" at low forces to hold the cursor at one
location. This prevents small variabilities in the pointing system from making the
cursor difficult to stop at low user-applied forces (for example forces present due
to the user's finger resting on the pointing keycap). Second, the linear term
provides for smooth, predictable and controllable small force motion. This term
dominates at small forces. And third, the squared term provides for faster
movements at high forces but does not have much effect at small force levels.

This squared term dominates at high forces.

The squared, linear and null term factors or coefficients may be
predetermined and stored in memory. No single set of numbers is ideal for all
pointing operations, however. It is very important to ergonomically efficient
pointing operations to have not one but at least two sets of these coefficients.
For example, a first set of coefficients may be used for dragging operations, i.e.
pointing operations during which a mouse button is pressed. A second, different

WO 92/18927 PCT/US92/03194

41

set of coefficients may be used for repositioning operations, i.e.pointing
operations during which a mouse button is not pressed.

Thus, according to the present invention, the force-to-displacement

5 function further includes the steps of: providing a first value for use as the
SQUARE term coefficient during repositioning operations and a second value for
use as the SQUARE term coefficient during dragging operations; checking
status of the mouse buttohs to determine whether the user is repositioning or
dragging; if repositioning, selecting the first value for use as the SQUARE term

10 coefficient for computing the speed value; and, if dragging, selecting the second
value for use as the SQUARE term coefficient for computing the speed value,
thereby adjusting the cursor tracking responsive to the mouse button status.
Note that this substitution of appropriate coefficients in the tracking response is
done automatically, i.e. without explicit user intervention. The coefficients are

15 adjusted in response to the user's current pointing activity.

bThe linear term coefficient may be selected in the same manner as the

squared term coefficient. Thus the method includes the steps of: providing a first
value for use as the LINEAR term coefficient during repositioning operations and

20 a second value for use as the LINEAR term coefficient during dragging
operations; checking status of the mouse buttons; and selecting one of the first
and second values responsive to the mouse button status for use as the LINEAR
term coefficient in computing the speed value. The null term also may be
selected on the basis of the mouse-button status.

25
Speed Factor and Speed Limit
The next step in the force-to-displacement mappping method is scaling the
30 calculated speed value according to a predetermined speed factor to form a

cursor speed value. The speed factor enables the user to keep the same

WO 92/18927

10

15

20

25

30

PCT/US92/03194

42

“responsiveness” or "feel" of the system but vary the overall apparent cursor

speed. The speed factor is alterable as one of the user controls described below.

Next, the computed cursor speedvalue is compared to a predetermined
cursor speed limitvalue. The cursor speed limit sets a maximum apparent cursor
speed. (Itis actually a maximum cursor displacement per cursor update. Since
the cursor position is updated periodically, i.e. ata fixed frequency, cursor
displacement per update translates to apparent cursor speed.) |f the cursor
speed exceeds the cursor speed limit, the cursor speed is reduced to the cursor
speed limit value. The speed limit prevents the user from moving the cursor
faster than the user can control it. This feature is especially useful on LCD
screens, where the cursor update rate is low because of the LCD response time.

After speed factor scaling and speed limiting, the resulting cursor speed
value is total cursor displacement. In other words, the resulting value is the
magnitude of the cursor repositioning called for in response to the user’s actions.
The cursor position (or repositioning) is controlled by X and Y values, however,
rather than a single vector. It remains therefore to scale the X and Y vectors so
that the resulting total magnitude of a new net XY vector equals the total cursor

displacement value.

The necessary scaling factor is the ratio of the total cursor displacement
value to the magnitude of the net XY vector calculated earlier (process 326 in
FIG. 11). This ratio, called a scaling factor, is the final result of the force-to-
displacement functions 328. The X and Y vectors are scaled according to the
scaling factor, and the resulting Xand Y displacement values are used to move
the cursor, process 336. Details of the actual cursor driver are known. The
result is motion of the cursor image 340 on a the display 338. To summarize, the

net cursor displacements are calculated as follows:

(speed x speed factor) = total cursor displacement {limited to speed

limit};

WO 92/18927 PCT/US92/03194

10

15

20

25

30

43

total cursor displacement / magnitude net XY vector = scaling factor;
scaling factor x tX = X displacement; similarly,
scaling factor x Y = Y displacement.

FIG. 18 shows three curves. Curve A represents the linear term (LINEAR
x (M-NULL) in the speed calculation quadratic equation. Curve B represents the
quadratic term (SQUARE x (M-NULL)?) in the speed calqulation. Curve C
represents the aggregate effect, i.e. it illustrates total cursor displacement as a
function of M, the magnitude of the net X+Y vector, after speed factor scaling and
speed limiting.

User Control of Tracking Functions

It is known in computer science generally to implement mapping or transfer
functions by look-up tables. Look-up tables are not optimal for the present
pointing system, however, because such tables require significant memory
space. More importantly, look-up tables are difficult to modify as desired by a
user. ltis difficult to discern by examination of a table which table values are
appropriate and which require adjustment. What is needed is an intuitive
interface for a user to adjust cursor tracking response.

According to the present invention, run-time controls of the null, linear and
squared coefficients used in calculating speed, as well as the speed factor and
speed limit values, allow the user to control the system behavior in an intuitive
and “user friendly" manner. For example, since the linear term coefficient
dominates tracking response for low-force (slow) pointing operations, it is a
simple matter to adjust low-force response by adjusting the value of the linear
coefficient. This adjustment may be presented to the user not as a technical
matter of adjusting the "linear tracking term coefficient," but simply as adjusting

“slow pointing response".

WO 92/18927 PCT/US92/03194

44

A simple (perhaps graphical) interface can be provided for the user to
select a parameter that requires adjustment, make an adjustment, and then test
the result. For a selected parameter, say high-force response (quadratic
coefficient) or speed limit, the user interface could, for example, display the

5 current setting, an allowable range of settings, and perhaps a default value. The
user could modify parameter values as desired. This arrangement allows
customization of the tracking response at run time, without requiring technical
know-how or modification of source code. Several different parameter settings
may be stored, perhaps one for each of several users. The corresponding

10 settings would be invoked depending upon who logged into the system.

It is also useful to store related sets of predetermined coefficient values.
For example, appropriate values may be stored to allow user selection of low,

medium and high “cursor responsiveness" or “acceleration*.

15
Coefficient Values
NULL LINEAR SQUARE S.F. LIMIT
20 Low 20 1.5 0.3 1.0500.
MEDIUM 1.5 1.75 0.49 1.0900.
HIGH 1.0 1.75 0.60 1.21200.
25

Operative Example of an Embodiment of the Invention

Following is a specific example of an operative embodiment of the

30 invention. The hardware includes the following:

WO 92/18927
Keyboard type:
5 FSR configuration:

10

16

20

25

30

FSR model

A/D type, output range:

Host computer

PCT/US92/03194

45
fi i mpl
IBM PC-AT compatible

four elements, 4 degrees offsef from

cartesian keyboard coordinates

custom configuration depending upon
keyboard mechanics and layout.
includes four FSR elements having 30k to

4k-ohm range

Charged capacitor type;
maps 30k to 4k-ohms FSR resistance

to 0 to 213 output counts microprocessor/
microcontroller: Intel 8051

IBM - AT class compatible

The values received from the A/D converter range from 0 to 213. This

data is linearized, as described above, using the formula:

LFV = (RAW2 x LINSQ) +LINOFF

where LFV represents the linear force value, RAW represents the raw force
value, i.e. the raw A/D count; LINSQ represents the linearization square factor,

and LINOFF represents the linearization offset factor. Since LINOFF gets

cancelled out in the bias step, it is set equal to 0.

During linearization, squaring the 0 to 213 range of A/D counts results in
values that range from 0 to 45,369. LINSQ is set to 476/21¢ or about 0.0018158.

WO 92/18927 PCT/US92/03194

10

15

20

25

30

46

This results in linear force values (LFV) that range from 0 to 82.4. At this stage, it

is necessary to keep values accurate to 2% or so.

In the biasing step, values typically are adjusted to approximately =30.
That is, a linearized bias value is typically about 40, and the linearized overall
force values typically range from 10 to 70. Accordingly, the result after
linearization, i.e. unbiased linear values, typically range from +30 to -30. Note

that this represents an increase or decrease of force on an individual sensor from

the standby bias value, respectively.

In the X+Y vector combination step, the +30 individual sensor values tend
to double, as the system is designed such that if one sensor gets an increased
load, the opposite sensor will get a decreased load. The vector combination step
then typically results in X and Y component values of -60 to +60 for a typical +/-
30 range of individual sensor values. Note that +/-60 generally applies to only
one axis at a time. In other words, when a user applies a force corresponding to
+60 along one axis, it is unlikely to apply a substantial force along the orthogonal
axis. During the vector combination step, it is necessary to keep values accurate
to 1 or 2 percent. This is because accurate control of the angle of cursor

movement is more important than accurate control of cursor speed.

The net X+Y vector magnitude computation step tends to result in values
that range from 0 to +60 for X,Y components that range from -60 to +60, using
the approximation technique described. This is because a large swing on one
axis usually means a small swing on the other axis, resulting in a range of
magnitudes approximately the same as the range of individual input values.
Worst case, of course, the magnitude could be 1.5 times as much as either
magnitude value. In this step, it is desirable to keep the magnitude accurate to
approximately 5%. Recall that it may be off by as much as 11% if the
approximation described above its used. Importantly, the approximation is
continuous. Discontinuous errors, such as those resulting from truncation of real

numbers, are more likely noticed by the user.

WO 92/18927 PCT/US92/03194

47

The force-to-displacement calculation proceeds as follows:
speed = speedfactor (SQUARE(M-NULL)? + LINEAR(M-NULL))

It speed is greater than speed limit, then set speed equal to speed limit.
scale factor =speed /M, where 'M' is the computed magnitude of the XY vector
(typically 0-60 range).

10 Typical fficient Val
Typical values for the coefficients are:

speed factor: 1.0
15 SQUARE: 0.492
NULL: 1.5
LINEAR: 1.75
speed limit: 921, 1/8th mickeys per cursor movement (A
position change).
20
Therefore X+Y input magnitudes of over 42 trigger the speed limit. For a typical
range of input magnitudes from 0 to 60, the speed ranges from 0 to about 22,
peaking at 22 for input magnitudes of about 42.

25 After multiplying the original XY vector by the scale factor, typical results
range from -921 to +921. The resulting total displacement vector (having
components from -921 to +921) represents the number of 1/8ths of a mickey per
cursor movement. In mickeys, the range is about -115 to +115 mickeys in X and
Y. We have found it necessary to hold mickey movements accurate to within

30 about 1/4th of a mickey to ensure good shallow angle tracking. Preferably,
accuracy is within approximately 1/64th mickey.

WO 92/18927

10

15

PCT/US92/03194

48

At 30 cursor updates per second, this results in a maximum of 115*30 or
3450 mickeys per second. On a typical display screen, this corresponds to a
maximum cursor image speed of about 56 inches per second. This cursor speed
exceeds the maximum speed that user's are capable of tracking visually
according to the literature. User’s generally dislike speed limits initially,
perceiving the system to be insufficiently responsive to their pointing actions.
User's sometimes prefer to move the cursor faster than they can track it,

although the resulting overshoot is not most efficient.

Having illustrated and described the principles of my invention in a
preferred embodiment thereof, it should be readily apparent to those skilled in the
art that the invention can be modified in arrangement and detail without departing

from such principles. | claim all modifications coming within the spirit and scope

of the accompanying claims.

WO 92/18927 PCT/US92/03194

10

15

20

25

30

49

CLAIMS

1. In a cursor control system having a force-sensitive pointing device
including a plurality of force sensors each having a predetermined associated
direction, a method of converting force sensor data to cursor displacement data
for controlling cursor motion comprising the steps of:

acquiring sensor data conﬁprising raw force values from each of the
pointing device force sensors;

linearizing each of the raw force values to form a corresponding linear

force value; and then
computing an X vector and a Y vector by combining the linear force values

according to their associated directions.

2. A method according to claim 1 further comprising: compensating
each of the linear force values responsive to a corresponding force sensor bias

value to form a corresponding unbiased, linear force value.

3. A method according to claim 1 further comprising:
combining the X and Y vectors to form a net XY vector;
computing a magnitude of the net XY vector; and
computing a speed value according to a formula:
speed = SQUARE x (M — NULL)? + LINEAR x (M — NULL)
where
SQUARE is a predetermined square term coefficient,
M is the magnitude of the net XY vector,
NULL is a predetermined minimum force to initiate cursor motion, and
LINEAR is a predetermined linear term coefficient, thereby converting the

force sensor data to form the speed value.

WO 92/18927

10

15

20

25

30

PCT/US92/03194

50

4. A method according to claim 3 further comprising:

providing a first value for use as the SQUARE term coefficient during
repositioning operations and a second value for use as the SQUARE term
coefficient during dragging operations;

checking status of the mouse buttons to determine whether the user is
repositioning or dragging; and

if repositioning, selecting the first value for use as the SQUARE term

coefficient for computing the speed value; and
if dragging, selecting the second value for use as the SQUARE term

coefficient for computing the speed value, thereby adjusting the cursor tracking

responsive to the mouse button status.

5. A method according to claim 4 wherein the first value is greater
than the second value so that the computed speed value is greater for a
repositioning operation than for a dragging operation.

6. A method according to claim 3 further comprising:

providing a first value for use as the LINEAR term coefficient during
repositioning operations and a second value for use as the LINEAR term
coefficient during dragging operations;

checking status of the mouse buttons; and

selecting one of the first and second values responsive to the mouse

button status for use as the LINEAR term coefficient in said computing the speed

value.

7. A method according to claim 3 further comprising:

providing a first value for use as the NULL force value during repositioning
operations and a second value for use as the NULL force value during dragging
operations;

checking status of the mouse buttons; and

selecting one of the first and second values responsive to the mouse

button status for use as the NULL force value in said computing the speed value.

WO 92/18927 PCT/US92/03194

10

15

20

25

30

S1

8. A method according to claim 3 further comprising:
providing a predetermined speed factor;
scaling the speed value according to the speed factor to form a cursor

speed value.

9. A method according to claim 8 further combrising:

providing a predetermined cursor speed limit value;

comparing the cursor speed value to the cursor speed limit value; and

if the cursor speed value exceeds the cursor speed limit value, reducing
the cursor speed value to the cursor speed limit value, thereby determining a
total cursor displacement value.

10. A method according to claim 8 further comprising:

determining a ratio of the total cursor displacement value to the magnitude
of the net XY vector, thereby forming a scaling factor;

scaling each of the X and Y vectors by the scaling factor to form X
displacement and Y displacement values, respectively;

updating cursor position by the X and Y displacement values; and

repeating the foregoing steps to control cursor motion responsive to the

acquired sensor data.

11. A method according to claim 1 wherein linearizing each raw force
value to form a linear force value includes:

providing a predetermined linearization square coefficient (LINSQ);

providing a predetermined linearization offset coefficient. (LINOFF); and

computing the linear force value according to the formula:

LFV = (RAW2 x LINSQ) +LINOFF

where LFV represents the linear force value,

RAW represents the raw force value,

LINSQ represents the linearization square factor, and

LINOFF represents the linearization offset factor.

WO 92/18927

10

15

20

25

30

PCT/US92/03194

52

12. A method according to claim1 wherein:
the pointing device has four orthogonal force sensors disposed offset forty-

five degrees from a predetermined cartesian coordinate system, so that each of
the force values corresponds to one of NE,SE,SW and NW directions relative to
the cartesian coordinate system; and wherein
combining the sensor force values to form X and Y vectors includes the
computing the X and Y vectors according to the formulae:
X=(NE+SE)-(NW+SW) and Y=(NE+NW)-(SW+SE).

13. A method according to claim 1 wherein the pointing device has
four orthogonal force sensors aligned with predetermined X-Y axes, s0 that each
of the force sensor values corresponds to one of RIGHT, LEFT, UP and DOWN
directions relative to the X-Y axes; and combining the force values to form X and
Y vectors includes the computing the X and Y vectors according to the formulae:

X=RIGHT-LEFT and Y=UP-DOWN.

14. A method according to claim 1 wherein the pointing device has
three force sensors equi-angularly arranged about an origin and having one of
the three sensors aligned along a predetermined vertical axis; and

combining the force values includes:

computing the Y vector according to the formula Y=A-(B+C)/2 , where AB
and C are the three sensor force values; and

computing the X vector accordingly to the formula X=0.866(C-B).

15. A method according to claim 3 wherein computing the magnitude

of the net XY vector comprises:
determining a larger one of the X vector and the Y vector; and
summing the magnitude of the larger vector together with one-half the
magnitude of the other (smaller) vector to form an approximation of the

magnitude of the net XY vector.

WO 92/18927 PCT/US92/03194

1/14
30
N\
31
| 34
Microprocessor
an— T System

E :36

40
A/D Convert /

/ Sensors
38

Figure 1

WO 92/18927 PCT/US92/03194

2/14

N

45

\\\\\\\\\\\\\\

N
\\\\\\\\\“\

7
j B
/

N\

\
\\\\\
\\\

24
///////////////////////////Il I/// 72 ///I |I// //////////////////%

41
36 49

Figure 2

WO 92/18927 PCT/US92/03194

3/14

In0

{§i2
= {524
54 |
-Jg T -#\74 In1
86
8

607

PYT

In2

0

Out 1

-#78% n3
<]

Figure 3

WO 92/18927 PCT/US92/03194

414
100
/ 110 ha—
AD Input
112 pivider
Resistor . ’
b
! 52 - Micr%oﬁ?r:)ller
FSR 102
o ¢ KB Scanline 1
| 54
FSR 104
° } KB Scanline 2
56
[
FSR 106
o ¢ KB Scanline 3
58
FSR 108
o KB Scanline 4

Figure 4

WO 92/18927

PCT/US92/03194
5/14
140 \
142
Initialize ~
v /1 44
Scan Keyboard |«
l?
No Any Changes" Yos

| | /148

Auto Repeat Vos > Determine Key
No ‘ 150
Enqueue Key Code
Check Queue
\ 152
Figure 5

(Prior Art)

WO 92/18927

170
N\

PCT/US92/03194

No

A 4

Auto Repeat

6/14
142
Initialize
] 144
Scan Keyboard <
{ 146
?
Any Changes" Yos
/1 48
Ves » Determine Key
Enqueue Key Code
v A4
/1 52
Check Queue 1767
y 172
) >
Scan Sensors? No
Yes
i 174
Enqueue or re Bias >

Figure 6

WO 92/18927 PCT/US92/03194

7/14

220 \

222

Receiving?
No ¥
Clock in Bit
Y _-226
Complete? No >
Yesy 228
Identify? >
1) 230
Start Pointing? >
¥ »232
Stop Pointing?
v 234
Other

224

v

v

< 250
Transmitting?

No v 252
Abort >

X 254
Idle

] 1,256
Start New? »
T /260 | /258

Hold Off? > Exit

Figure 7

WO 92/18927

PCT/US92/03194

8/14
270\ .
272
Receiving?
No ¥ 276
Timed Out? »
- - L-274
Transmitting?
Clock Out Bit
¥ _280|
Character Done? >
* 282
Dequeue »
- L.275
Pointing Mode? e
No x 284
Dec. Scan timer d
4
Time to scan again? - 286
Dec. Bias timer |~ 2%9
! L-292
Time to Bias again?
! L 288
Exit

Figure 8

WO 92/18927

PCT/US92/03194

9/14
Main Loop
(See Figure 6)
Xmit Queue Xmit Char Mode
Bit Count Scan F]ag
[Comm Tmr | | Bias Flag
Rcv Char Bias Timer
Bit Count Scan Timer
Key State g ::: ;
Auto Rpt Sie=3
Bias 4

Timer Interrupt
(See Figure 8)

Communications Interrupt
(See Figure 7)

Figure 9

WO 92/18927 PCT/US92/03194

SUBSTITUTE SHEET

WO 92/18927 PCT/US92/03194
11/14

302

USER

306") 308'7 310") o1 2"7
SENSORS|* A/D > ENCODE}+ XMTT-’RECEIVE-W

304
3187 32277
s14 316 » BIAS CONFIG
) u ! I
DECODE |~{LINEARIZE "~ BIAS COMPUTE
COMPENSATE™ X.,Y
320~ 324—
330
- MOUSE BUTTONS,
—USER CONTROLS
326 I'EER —334
MAGNITUDE FORCE-TO- SCALE
™ EXTRACT * DISPLACEMENT [™ X,Y
328
336") 338
MovE 1 I -
CURSOR Iy FIG. 11
=00

DISPLAY

WO 92/18927 PCT/US92/03194

12/14

L A CMAX
: 2
<
(s i @)
LY © Rg
n R (]
Ll 1=~ AN
o s — <| CMIN
F4 APPLIED FORCE FSR RESISTANCE
FIG. 124 FIG.12B
L I}
2 2
o
=3 <3
i Z
@ g
Tl P £
A/D COUNTS RAW FORCE VALUE
FIG.12C FIG.12D
W
2 | SPEED
T | LIMIT
W
EL:J
.}
o
L
i ‘RAW
FORCE VALUE

FIG. 1RFE

WO 92/18927 PCT/US92/03194

13/14
NW | NE
USER
BIAS
BIAS .
S
USER
SwW SE
FIG.134 FIG.13B
,UP
A
LEFT RIGHT
B
DOWN C

FIG.14 FIG.15

WO 92/18927 PCT/US92/03194

14/14

M~)(+2 MRY+ >
X>Y X<y
FIG.716 A4 FIG.16 B
Xp=|X|
‘ -
Yp =|Y|
‘ FIG.17
Xp2 Yp?
—¥o + TP —vo+ P |
M=X L M=Yp +_LT
p+ > pt >
l i |
!-.
o
2 -
=0 B
o<
'-0.
n
o A

MAGNITUDE NET X+Y

FIG.18

INTERNATIONAL SEARCH REPORT

PCT/US 92/03194

International Application No

L. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)é

Int.C1. 5 GO6F3/033

According to International Patent Classification (IPC) or to both National Classification and IPC

II. FIELDS SEARCHED

Minimum Documentation Searched’

Classification System

Classification Symbols

Int.Cl. 5 GO6F ;

GO1L ; GO6K

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched?

1. DOCUMENTS CONSIDERED TO BE RELEVANT®

Category ® Citation of Document, 11 with indication, where appropriate, of the relevant passages 12

Relevant to Claim No1?

see abstract

figure 4

Y W0,A,9 105 304 (HOME
see abstract

see page 15, line 30
see page 23, line 21

see page 26, line 27

see column 2, line 17 - Tine 33
see column 3, line 19 - line 21
see column 4, line 31 - line 40
see column 4, 1ine 60 - column 5, line 42;

cited in the application

see page 25, 1ine 1 = line 10

X DE,C,3 913 648 (BLINKMANN RALF) 11 January 1990 1,3,13

4,6,7

ROW INC.) 18 April 1991 4,6,7

- 1ine 36
- 1ine 29

- line 32
1,3,5

/==

© Special categories of cited documents ;10

later than the priority date claimed

“P* document published ptior to the international filing date but

T later document published after the international filing date
or priority date and not in conflict with the application but

»A* document defining the general state of the art which is not i inci i
considered to be of particular relevance ;:e; t‘i% :nderstand the principle or theory underiying the
“E” earlier document but published on or after the international X" document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
bl :%cument which maybl‘hm;l;lnub;s on prio;ity cl?im(s)hor involve an inventive step
vhich is cited to establish the publication date of another #y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be co:sair:eed to involve an inventive step when the
0 document referring to an oral disclosure, use, exhibition or , document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled

in the art.
& document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

04 SEPTEMBER 1992

Date of Mailing of this International Search Report

17.09. 92

International Searching Authority

Signature of Authorized Officer

EUROPEAN PATENT OFFICE Piero Bravo WO

Form PCT/ISA/210 (sacond theet) (Jamuary 1985)

PCT/US 92/03194

International Application No
(CONTINUED FROM THE SECOND SHEET)

where appropriate, of the relevant passages

. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ® ! Citation of Document, with indication, Relevant to Claim No.

A 1 DE,A,3 523 270 (SIEMENS AG) 8 January 1987 1,3,9,13

see abstract
see column 5, 1ine 36 - column 6, 1ine 14

A PROCEEDINGS OF THE XXTH ANNUAL ALLERTON 1
CONERENCE ON COMMUNICATION, CONTROL, AND

COMPUTING
6 October 1982, MONTICELLO, ILLINOIS, US

pages 343 - 344;
C.E. LINDAHL: 'A digital compensation technique
for pressure transducers’

see abstract
see page 344, line 5 - 1ine 16

Farm PCT/ISA/210 (exira sheet) (Jasaary 1585)

>
ot
Q
&
<]
&
[

ANNEX TO THE INTERNATIONAL SEARCH REPORT

ON INTERNATIONAL PATENT APPLICATION NO. lsli 9203194

60191

This annex lists the patent family members relating to the patent documents cited in the above-mentioned internationai search report.
The members are as contained in the European Pateat Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 04 /09/92

Patent document Publication Patent family Publication
cited in search report date member(s) date
DE-C-3913648 11-01-90 None
W0-A-9105304 18-04-91 UsS-A- 5124689 23-06-92
AU-A- 5440490 28-04-91
EP-A- 044523? 11-09-91
DE-A-3523270 08-01-87 None

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

