
DE60006141T220040826
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 600 06 141 T2 2004.08.26

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 212 678 B1
(21) Deutsches Aktenzeichen: 600 06 141.8
(86) PCT-Aktenzeichen: PCT/FR00/02349
(96) Europäisches Aktenzeichen: 00 958 714.8
(87) PCT-Veröffentlichungs-Nr.: WO 01/014958
(86) PCT-Anmeldetag: 21.08.2000
(87) Veröffentlichungstag

der PCT-Anmeldung: 01.03.2001
(97) Erstveröffentlichung durch das EPA: 12.06.2002
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 22.10.2003
(47) Veröffentlichungstag im Patentblatt: 26.08.2004

(51) Int Cl.7: G06F 9/445
G06F 9/45

(54) Bezeichnung: VERWALTUNGSPROTOKOLL, VERIFIKATIONSVERFAHREN UND TRANSFORMIERUNG EINES
FERNGELADENEN PROGRAMMFRAGMENTS UND KORRESPONDIERENDE SYSTEME

(30) Unionspriorität:
9910697 23.08.1999 FR

(73) Patentinhaber:
Trusted Logic, Versailles, FR

(74) Vertreter:
Heuer, W., Dipl.-Phys. Dr.rer.nat., Pat.-Anw., 82515
Wolfratshausen

(84) Benannte Vertragsstaaten:
AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LI, LU, MC, NL, PT, SE

(72) Erfinder:
LEROY, Xavier, F-78000 Versailles, FR

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/44

DE 600 06 141 T2 2004.08.26
Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zur Verwaltung, ein Verfahren zur Überprüfung, ein Verfahren zur
Umwandlung eines ferngeladenen Programmfragments und die entsprechenden Systeme, genauer gesagt
solche, die für mitgeführte Informatiksysteme bestimmt sind, die über geringe Ressourcen an Speicher und an
Rechenleistung verfügen.
[0002] Allgemein umfassen mit Bezug auf Fig. 1A mitgeführte Informatiksysteme 10 einen Mikroprozessor
11, einen Permanentspeicher wie etwa einen nicht beschreibbaren Speicher 12, der den Code des ausführba-
ren Programms enthält, einen überschreibbaren, nichtflüchtigen, permanenten Speicher 13 vom Typ EE-
PROM, der die in dem System gespeicherten Daten enthält, einen flüchtigen Schreiblesespeicher 14, in wel-
chem das Programm seine Zwischenergebnisse während seiner Ausführung speichert, und Ein-/Ausgabevor-
richtungen 15, die es dem System ermöglichen, mit seiner Umgebung zu wechselwirken. In dem Fall, wo das
mitgeführte Informatiksystem durch eine Mikroprozessorkarte vom Typ Geldkarte oder Scheckkarte gebildet
ist, besteht die Ein-/Ausgabevorrichtung 15 aus einer seriellen Verbindung, die es der Karte ermöglicht, mit ei-
nem Endgerät wie etwa einem Kartenlesegerät zu kommunizieren.
[0003] Bei den herkömmlichen mitgeführten Informatiksystemen wird der Code des von dem System ausge-
führten Programms beim Bau des Systems oder spätestens bei der Personalisierung des letzteren vor Auslie-
ferung an den Endbenutzer festgelegt.
[0004] Es sind weiterentwickelte mitgeführte Informatiksysteme eingesetzt worden, die reprogrammierbar
sind, wie z. B. die Mikroprozessorkarten vom Typ JavaCard. Diese umprogrammierbaren Systeme bieten ge-
genüber den vorhergehenden die zusätzliche Möglichkeit, das Programm nach Inbetriebnahme des Systems
durch eine Operation des Fernladens von Programmfragmenten anzureichern. Diese Programmfragmente, im
Englischen allgemein als „Applets" bezeichnet, werden in der vorliegenden Beschreibung unterschiedslos als
Applets oder Programmfragmente bezeichnet. Für eine detailliertere Beschreibung der JavaCard-Systeme
wird auf die von der Fa. Sun Microsystems Inc. herausgegebene Dokumentation verwiesen, insbesondere auf
die elektronisch verfügbare Dokumentation, Kapitel JavaCard technology auf der Seite W.W.W. (World Wide
Web) http://java.sun.com/products/javacard/index.html, Juni 1999.
[0005] Fig. 1b zeigt die Architektur eines solchen umprogrammierbaren mitgeführten Informatiksystems. Die-
se Architektur ist ähnlich derjenigen eines herkömmlichen mitgeführten Systems, mit dem Unterschied, dass
das umprogrammierbare mitgeführte System ferner Applets über eine seiner Ein-/Ausgabevorrichtungen emp-
fangen und diese dann in seinem Permanentspeicher 13 speichern kann, von wo aus sie anschließend in Er-
gänzung des Hauptprogramms ausgeführt werden können.
[0006] Aus Gründen der Portabilität zwischen verschiedenen mitgeführten Informatiksystemen liegen die Ap-
plets in Form von Code für eine virtuelle Standardmaschine vor. Dieser Code ist nicht direkt vom Mikroprozes-
sor 11 ausführbar, sondern muss softwaremäßig durch eine virtuelle Maschine 16 interpretiert werden, die
durch ein Programm gebildet ist, das im nicht beschreibbaren Permanentspeicher 12 vorliegt. In dem erwähn-
ten Beispiel der JavaCard-Karten ist die verwendete virtuelle Maschine eine Untermenge der virtuellen Ja-
va-Maschine. Für eine Beschreibung der die virtuelle Java-Maschine und die verwendete virtuelle Maschine
betreffenden Spezifikationen wird auf das von Tim Lindholm und Frank Yellin veröffentlichte Werk mit dem Titel
„The Java Virtual Machine Specification", Addison-Wesley 1996 und die von der Fa. Sun Microsystems Inc.
herausgegebene Dokumentation „JavaCard 2.1 Virtual Machine Specification" verwiesen, die auf der Seite
W.W.W.http://java.sun.com/products/javacard/JCVMSpec.pdf, März 1999, elektronisch verfügbar ist.
[0007] Die Operation des Fernladens von Applets in ein mitgeführtes Informatiksystem im Betrieb wirft erheb-
liche Sicherheitsprobleme auf. Ein versehentlich oder gar absichtlich schlecht geschriebenes Applet kann die
in dem System vorhandenen Daten fehlerhaft abändern, das Hauptprogramm daran hindern, korrekt oder zur
gewollten Zeit abzulaufen, oder auch andere zuvor ferngeladene Applets verändern, wodurch diese unbrauch-
bar oder schädlich werden.
[0008] Ein von einem Cyberpiraten geschriebenes Applet kann sogar in dem System gespeicherte vertrauli-
che Informationen verbreiten, wie etwa im Fall einer Scheckkarte z. B. den Zugangscode.
[0009] Gegenwärtig sind drei Lösungen vorgeschlagen worden, um das Problem der Sicherheit der Applets
zu lösen.
[0010] Eine erste Lösung beruht in der Verwendung von kryptographischen Unterschriften, so dass nur App-
lets akzeptiert werden, die von vertrauenswürdigen Personen oder Organisationen herrühren.
[0011] Bei dem genannten Beispiel einer Scheckkarte werden nur die Applets, die die kryptographische Un-
terschrift der Bank tragen, die die Karte ausgegeben hat, von der Karte akzeptiert und ausgeführt, und jedes
andere nicht unterschriebene Applet wird im Laufe der Fernladeoperation zurückgewiesen. Ein böswilliger Be-
nutzer der Karte, der nicht über den Verschlüsselungsschlüssel der Bank verfügt, ist also nicht in der Lage, ein
nicht unterschriebenes und gefährliches Applet auf der Karte ausführen zu lassen.
[0012] Diese erste Lösung ist gut geeignet für den Fall, wo alle Applets von einer gleichen, einzigen Quelle,
im genannten Beispiel der Bank, kommen. Diese Lösung ist schwerlich anwendbar in dem Fall, wo die Applets
2/44

DE 600 06 141 T2 2004.08.26
von mehreren Quellen kommen, wie etwa, bei dem Beispiel einer Scheckkarte, der Hersteller der Karte, die
Bank, die Organisationen, die Dienstleistungen über Scheckkarte verwalten, die großen Handelsorganisatio-
nen, die der Kundschaft Kundenbindungsprogramme anbieten und legitimerweise anbieten, spezielle Applets
auf die Karte zu laden. Gemeinsame Nutzung und gemeinsamer Besitz der für die elektronische Unterzeich-
nung der Applets notwendigen Verschlüsselungsschlüssel durch diese unterschiedlichen Wirtschaftsteilneh-
mer werfen erhebliche technische, wirtschaftliche und juristische Probleme auf.
[0013] Eine zweite Lösung beruht darin, dynamische Kontrollen des Zugangs und der Typisierung während
der Ausführung der Applets durchzuführen.
[0014] Bei dieser Lösung führt die virtuelle Maschine bei Ausführung der Applets eine bestimmte Zahl von
Kontrollen durch, wie etwa:
– Kontrolle des Zugangs zum Speicher: bei jedem Lesen oder Schreiben einer Speicherzone überprüft die
virtuelle Maschine das Recht des Applets, auf die entsprechenden Daten zuzugreifen;
– dynamische Überprüfung der Datentypen: bei jedem Befehl des Applets überprüft die virtuelle Maschine,
dass die Anforderungen an die Datentypen erfüllt sind. Z. B. kann die virtuelle Maschine Daten wie etwa
gültige Speicheradressen gesondert behandeln und verhindern, dass das Applet ungültige Speicheradres-
sen durch Ganzzahlig-/Adresse-Konversionen oder durch arithmetische Operationen an Adressen erzeugt;
– Erfassung des Stacküberlaufs und von illegalen Zugriffen auf den Ausführungsstack der virtuellen Maschi-
ne, die unter bestimmten Bedingungen deren Funktion so stören können, dass die oben genannten Kon-
trollmechanismen umgangen werden.

[0015] Diese zweite Lösung erlaubt die Ausführung eines großen Spektrums von Applets unter befriedigen-
den Sicherheitsbedingungen. Sie hat allerdings den Nachteil einer beträchtlichen Verlangsamung der Ausfüh-
rung, die durch die Menge der dynamischen Überprüfungen hervorgerufen wird. Um eine Verringerung dieser
Verlangsamung zu erreichen, kann ein Teil dieser Überprüfungen von dem Mikroprozessor selbst übernom-
men werden, auf Kosten einer Zunahme der Komplexität des letzteren und damit der Gestehungskosten des
mitgeführten Systems. Solche Überprüfungen erhöhen außerdem den Bedarf an Schreiblesespeicher und Per-
manentspeicher des Systems aufgrund der zusätzlichen Typinformationen, die den gehandhabten Daten zu-
geordnet werden müssen.
[0016] Eine dritte Lösung beruht darin, eine statische Überprüfung des Codes des Applets beim Fernladen
durchzuführen.
[0017] Bei dieser Lösung simuliert diese statische Überprüfung die Ausführung des Applets auf dem Niveau
der Datentypen und stellt ein für allemal fest, dass der Code des Applets die Regeln für Datentypen und Zu-
gangskontrolle, wie von der virtuellen Maschine vorgegeben, erfüllt und keinen Stacküberlauf hervorruft. Wenn
diese statische Überprüfung gelingt, kann das Applet anschließend ausgeführt werden, ohne dass es erforder-
lich wird, dynamisch zu überprüfen, dass die Regel eingehalten wird. In dem Fall, wo der Prozess der stati-
schen Überprüfung scheitert, verwirft das mitgeführte System das Applet und erlaubt dessen spätere Ausfüh-
rung nicht. Für eine genauere Beschreibung der dritten genannten Lösung kann auf das oben zitierte Werk von
Tim Lindholm und Frank Yellin, auf den Artikel von James A. Gosling mit dem Title „Java Intermediate Byte
Codes", Verhandlungen der ACM SIGPLAN, Workshop on Intermediate Representations (IR'95), Seiten
111–118, Januar 1995 und das US Patent 5,748,964, erteilt am 5.5.1998, zurückgegriffen werden.
[0018] Gegenüber der zweiten Lösung hat die dritte Lösung den Vorteil einer wesentlichen schnelleren Aus-
führung der Applets, weil die virtuelle Maschine während der Ausführung keine Überprüfung durchführt.
[0019] Die dritte Lösung hat jedoch den Nachteil eines statischen Codeüberprüfungsprozesses, der kompli-
ziert und kostspielig ist, sowohl hinsichtlich der zur Durchführung des Prozesses erforderlichen Codegröße wie
auch in Bezug auf die Größe des Schreiblesespeichers, der notwendig ist, um die Zwischenergebnisse der
Überprüfung aufzunehmen, wie auch hinsichtlich der Rechenzeit. Als verdeutlichendes Beispiel stellt die in das
von Sun Microsystems vertriebene System Java JDK, integrierte Codeüberprüfung in der Größenordnung von
50 kByte Maschinencode dar, und sein Verbrauch an Schreiblesespeicher ist proportional zu (Tp + Tr) × Nb,
wobei Tp den maximalen Stackraum, Tr die maximale Zahl von Registern und Nb die maximale Zahl von von
einem Unterprogramm, allgemein auch als Methode bezeichnet, verwendeten Sprungzielen des Applets be-
zeichnet. Dieser Speicherbedarf übertrifft bei weitem die Kapazitäten der Ressourcen der Mehrheit der gegen-
wärtigen mitgeführten Informatiksysteme, insbesondere der kommerziell verfügbaren Mikroprozessorkarten.
[0020] Mehrere Varianten der dritten Lösung sind vorgeschlagen worden, bei denen der Herausgeber des Ap-
plets an den Überprüfer neben dem Code des Applets eine bestimmte Zahl von zusätzlichen spezifischen In-
formationen überträgt, wie etwa vorberechnete Datentypen oder ein Vorabbeweis einer korrekten Datentypi-
sierung. Für eine detailliertere Beschreibung der entsprechenden Betriebsmodi kann auf die Artikel von Eva
Rose und Kristoffer Høgsbro Rose, „Lightweight Bytecode Verification", Verhandlungen des Workshop Formal
Underspinning of Java, Oktober 1998 und von George C. Necula „Proof-Carrying Code", Verhandlungen des
24. ACM Symposium Principles of Programming Languages, Seiten 106–119, zurückgegriffen werden.
[0021] Diese zusätzlichen Informationen erlauben es, den Code schneller zu überprüfen und die Größe des
3/44

DE 600 06 141 T2 2004.08.26
Überprüfungsprogrammcodes etwas zu verringern, sie ermöglichen aber keine Verringerung des Bedarfs an
Schreiblesespeicher oder vergrößern diesen sogar in erheblichem Maß im Fall der voretablierten Beweisinfor-
mationen für eine korrekte Datentypisierung.
[0022] Ziel der vorliegenden Erfindung ist, die erwähnten Nachteile des Standes der Technik zu beheben.
[0023] Insbesondere ist ein Gegenstand der vorliegenden Erfindung die Anwendung eines Protokolls zur Ver-
waltung eines ferngeladenen Programmfragments oder Applets, das eine Ausführung des letzteren durch ein
mitgeführtes Informatiksystem ermöglicht, das über geringe Ressourcen verfügt, wie etwa eine Mikroprozes-
sorkarte.
[0024] Ein anderer Gegenstand der Erfindung ist ebenfalls die Anwendung eines Verfahrens zur Überprüfung
eines ferngeladenen Programmfragments oder Applets, bei dem ein Prozess zur statischen Überprüfung des
Codes des Applets bei dessen Fernladen durchgeführt wird, wobei dieser Prozess wenigstens dem Prinzip
nach der dritten oben beschriebenen Lösung angenähert werden kann, bei dem aber neuartige Techniken zur
Überprüfung eingesetzt werden, um die Ausführung dieser Überprüfung mit den Werten der Speichergröße
und der Rechengeschwindigkeit zu ermöglichen, die von den Mikroprozessorkarten und anderen mitgeführten
Informatiksystemen geringer Leistung vorgegeben sind.
[0025] Ein anderes Ziel der vorliegenden Erfindung ist ebenfalls die Anwendung von Verfahren zum Umwan-
deln von Programmfragmenten herkömmlichen Typs, die z. B. durch Anwendung eines Java-Compilers erhal-
ten sind, in normierte Programmfragmente oder Applets, die a priori den Kriterien der Überprüfung des erfin-
dungsgegenständlichen Überprüfungsverfahrens genügen, um den Prozess der Überprüfung und Ausführung
dieser letzteren an den mitgeführten Informatiksystemen oder gegenwärtigen Mikroprozessorkarten zu be-
schleunigen.
[0026] Ein anderes Ziel der vorliegenden Erfindung ist schließlich die Realisierung von mitgeführten Informa-
tiksystemen, die die Anwendung des oben erwähnten Protokolls zur Verwaltung und des Verfahrens zur Über-
prüfung eines ferngeladenen Programmfragments ermöglichen, sowie von Informatiksystemen, die die An-
wendung von Verfahren zur Umwandlung von herkömmlichen Programmfragmenten oder Applets in die er-
wähnten normierten Programmfragmente oder Applets ermöglichen.
[0027] Das erfindungsgegenständliche Protokoll zur Verwaltung eines ferngeladenen Programmfragments
auf einem umprogrammierbaren mitgeführten System ist insbesondere anwendbar auf eine Mikroprozessor-
karte, die mit einem überschreibbaren Speicher ausgestattet ist. Das Programmfragment ist gebildet durch ei-
nen Objektcode, eine Folge von Anweisungen, die durch den Mikroprozessor des mitgeführten Systems über
eine virtuelle Maschine ausführbar ist, die mit einem Ausführungsstack und Registern oder lokalen Variablen
ausgestattet ist, die von diesen Anweisungen manipuliert werden, und die es erlaubt, diesen Objektcode zu
interpretieren. Das mitgeführte System ist an ein Endgerät angeschlossen.
[0028] Es ist bemerkenswert, dass es, wenigstens auf dem Niveau des mitgeführten Systems, darin beruht,
einen Befehl zum Fernladen des Programmfragments zu erfassen. Bei positiver Reaktion auf den Schritt, der
darin beruht, einen Fernladebefehl zu erfassen, beruht es ferner darin, den das Programmfragment bildenden
Objektcode zu lesen und diesen Objektcode zeitweilig in dem überschreibbaren Speicher zu speichern. Der
gesamte gespeicherte Objektcode wird Anweisung für Anweisung einem Überprüfungsprozess unterzogen.
Der Überprüfungsprozess beruht in wenigstens einem Schritt der Initialisierung des Stacks der Typen und der
Tabelle der Typen von Registern, die den Zustand der virtuellen Maschine zu Beginn der Ausführung des zeit-
weilig gespeicherten Objektcodes darstellen, und in einer Folge von Schritten der Überprüfung, Anweisung für
Anweisung, der Existenz, für jede laufende Anweisung, eines Zieles, eines Zieles einer Verzweigungsanwei-
sung, eines Zieles eines Ausnahmeverwaltungsaufrufes, und einer Überprüfung und einer Aktualisierung der
Wirkung der laufenden Anweisung auf den Stack der Typen und die Tabelle der Registertypen. Im Fall einer
nicht gelungenen Überprüfung des Objektcodes beruht das erfindungsgegenständliche Protokoll darin, das
zeitweilig aufgezeichnete Programmfragment zu löschen, ohne dass eine Aufzeichnung des letzteren in dem
Verzeichnis verfügbarer Programme aufgezeichnet ist, und einen Fehlercode an das Lesegerät zu senden.
[0029] Das Verfahren zur Überprüfung eines ferngeladenen Programmfragments in einem mitgeführten Sys-
tem gemäß der Erfindung ist insbesondere anwendbar auf eine mit einem überschreibbaren Speicher verse-
hene Mikroprozessorkarte. Das Programmfragment ist gebildet durch einen Objektcode und umfasst wenigs-
tens ein Unterprogramm, eine Folge von Anweisungen, die durch den Mikroprozessor des mitgeführten Sys-
tems über eine virtuelle Maschine ausführbar sind, die mit einem Ausführungsstack und Registern von durch
diese Anweisungen manipulierten Operanden ausgestattet ist und es erlaubt, diesen Objektcode zu interpre-
tieren. Das mitgeführte System ist an ein Lesegerät angeschlossen.
[0030] Bemerkenswert ist, dass nach der Erfassung eines Fernladebefehls und der Speicherung des das Pro-
grammfragment bildenden Objektcodes in dem überschreibbaren Speicher es darin beruht, für jedes Unterpro-
gramm einen Schritt der Initialisierung des Typenstacks und der Tabelle der Registertypen mit Daten durchzu-
führen, die den Zustand der virtuellen Maschine zu Beginn der Ausführung des zeitweilig gespeicherten Ob-
jektcodes darstellen, eine Überprüfung des zeitweilig gespeicherten Objektcodes, Anweisung für Anweisung,
durch Diskriminieren des Vorhandenseins, für jeden aktuellen Befehl, eines Ziels einer Verzweigungsanwei-
4/44

DE 600 06 141 T2 2004.08.26
sung, eines Zieles eines Ausnahmeverwaltungsaufrufes oder eines Ziels eines Subroutinenaufrufs durchzu-
führen, und eine Aktualisierung der Wirkung der laufenden Anweisung auf die Datentypen des Typenstacks
und die Tabelle der Registertypen in Abhängigkeit vom Vorhandensein eines Verzweigungsanweisungsziels,
eines Subroutinenaufrufziels oder eines Ziels eines Ausnahmeverwaltungsaufrufs, durchzuführen. Die Über-
prüfung ist gelungen, wenn die Tabelle der Registertypen im Laufe einer Überprüfung aller Anweisungen nicht
verändert wird, wobei der Überprüfungsprozess in Abwesenheit einer Veränderung Anweisung für Anweisung
fortgesetzt wird, bis die Tabelle der Registertypen stabil ist. Andernfalls wird der Überprüfungsprozess unter-
brochen.
[0031] Das erfindungsgegenständliche Verfahren zur Umwandlung eines Objektcodes eines Programmfrag-
ments in einen normierten Objektcode für das gleiche Programmfragment ist anwendbar auf einen Objektcode
eines Programmfragments, in welchem die Operanden jeder Anweisung zu den von dieser Anweisung mani-
pulierten Datentypen gehören, der Ausführungsstack kein Überlaufen zeigt, und für jede Verzweigungsanwei-
sung der Stack-Variablentyp in Höhe dieser Verzweigung der gleiche ist wie in Höhe der Ziele dieser Verzwei-
gung. Der erhaltene normierte Objektcode ist derart, dass die Operanden jeder Anweisung zu den von dieser
Anweisung manipulierten Datentypen gehören, der Ausführungsstack kein Überlaufen zeigt und der Ausfüh-
rungsstack bei jeder Verzweigungszielanweisung leer ist.
[0032] Bemerkenswert ist, dass es darin beruht, für die Menge der Anweisungen des Objektcodes jede lau-
fende Anweisung mit dem Datentyp des Ausführungsstacks vor und nach Ausführung dieser Anweisung zu
kommentieren, wobei die Kommentierungsdaten mit Hilfe einer Analyse des auf diese Anweisung bezogenen
Datenstroms berechnet werden, in den Anweisungen und jeder laufenden Anweisung das Vorhandensein von
Verzweigungen, für die der Ausführungsstack nicht leer ist, zu erfassen, wobei die Erfassungsoperation aus-
gehend von den jeder laufenden Anweisung zugeordneten Stack-Variablentyp-Kommentierungsdaten durch-
geführt wird. Ferner beruht es darin, bei Vorliegen eines nicht leeren Ausführungsstacks, Stack-Variablentrans-
fer-Anweisungen jeweils beiderseits dieser Verzweigungen oder dieser Verzweigungsziele einzufügen, um den
Inhalt des Ausführungsstacks vor der Verzweigung in zeitweilige Register zu entleeren und den Ausführungs-
stack anhand dieser zeitweiligen Register nach der Verzweigung wieder herzustellen, und anderenfalls keine
Transferanweisung einzufügen. Durch dieses Verfahren kann so ein normierter Objektcode für das gleiche
Programmfragment erhalten werden, bei dem der Ausführungsstack bei jeder Verzweigungsanweisung und
Verzweigungszielanweisung leer ist, ohne dass die Ausführung des Programmfragments verändert wird.
[0033] Das Verfahren zur Umwandlung eines Objektcodes eines Programmfragments in einen normierten
Objektcode des gleichen Programmfragments gemäß der vorliegenden Erfindung ist ferner anwendbar auf ei-
nen Objektcode eines Programmfragments, in dem die Operanden jeder Anweisung zu den von dieser Anwei-
sung manipulierten Datentypen gehören und ein von einer Anweisung dieses Objektcodes in ein Register ge-
schriebener Operand von gegebenem Typ aus diesem gleichen Register von einer anderen Anweisung dieses
Objektcodes mit dem gleichen gegebenen Datentyp wieder gelesen wird. Der erhaltene normierte Objektcode
ist derart, dass die Operanden zu den von dieser Anweisung manipulierten Datentypen gehören, wobei in dem
gesamten normierten Objektcode ein einziger und gleicher Datentyp einem gleichen Register zugewiesen
wird.
[0034] Bemerkenswert ist, dass es darin beruht, für die Gesamtheit der Anweisungen des Objektcodes jede
laufende Anweisung mit dem Datentyp der Register vor und nach Ausführung dieser Anweisung zu kommen-
tieren, wobei die Kommentierungsdaten mit Hilfe einer Analyse des diese Anweisung betreffenden Daten-
stroms berechnet werden, und eine Neuzuteilung von mit diesen verschiedenen Typen verwendeten Ur-
sprungsregistern durch Aufteilen dieser Ursprungsregister in verschiedene normierte Register vorzunehmen.
Ein normiertes Register wird jedem verwendeten Datentyp zugeteilt. Eine Reaktualisierung der Anweisungen,
die die auf diese normierten Register zugreifenden Operanden manipulieren, wird durchgeführt.
[0035] Das Protokoll zur Verwaltung eines Programmfragments, das Verfahren zur Überprüfung eines Pro-
grammfragments und die Verfahren zur Umwandlung von Objektcode von Programmfragmenten in normierten
Objektcode und die entsprechenden Systeme gemäß der vorliegenden Erfindung werden eingesetzt bei der
Entwicklung von umprogrammierbaren mitgeführten Systemen wie etwa Mikroprozessorkarten, insbesondere
in Java-Umgebung.
[0036] Sie sind besser zu verstehen anhand der Lektüre der Beschreibung und der Betrachtung der beige-
fügten Zeichnungen, bei denen, neben den den Stand der Technik betreffenden Fig. 1a und 1b:
[0037] Fig. 2 ein Flussdiagramm darstellt, welches das Protokoll zur Verwaltung eines ferngeladenen Pro-
grammfragments in einem umprogrammierbaren mitgeführten System veranschaulicht,
[0038] Fig. 3a zur Verdeutlichung ein Flussdiagramm eines Verfahrens zur Überprüfung eines ferngeladenen
Programmfragments gemäß dem Gegenstand der vorliegenden Erfindung zeigt,
[0039] Fig. 3b ein Diagramm darstellt, welches die Datentypen und Untertypisierungsbeziehungen verdeut-
licht, die von dem Verwaltungsverfahren und dem Verfahren zur Überprüfung eines ferngeladenen Programm-
fragments gemäß der vorliegenden Erfindung eingesetzt werden,
[0040] Fig. 3c ein Detail des Überprüfungsverfahrens gemäß Fig. 3a, betreffend die Verwaltung eines Ver-
5/44

DE 600 06 141 T2 2004.08.26
zweigungsbefehls darstellt,
[0041] Fig. 3d ein Detail des Überprüfungsverfahrens gemäß Fig. 3a, betreffend die Verwaltung einer Sub-
routinenaufrufanweisung, darstellt,
[0042] Fig. 3e ein Detail des Überprüfungsverfahrens gemäß Fig. 3a, betreffend die Verwaltung eines Aus-
nahmeverwaltungsziels, darstellt,
[0043] Fig. 3f ein Detail des Überprüfungsverfahrens gemäß Fig. 3a, betreffend die Verwaltung eines Ziels
von inkompatiblen Verzweigungen, darstellt,
[0044] Fig. 3g ein Detail des Überprüfungsverfahrens gemäß Fig. 3a, betreffend die Verwaltung eines Feh-
lens eines Verzweigungsziels, darstellt,
[0045] Fig. 3h ein Detail des Überprüfungsverfahrens gemäß Fig. 3a, betreffend die Verwaltung der Wirkung
der laufenden Anweisung auf den Typenstack, darstellt,
[0046] Fig. 3i ein Detail des Überprüfungsverfahrens gemäß Fig. 3a, betreffend die Verwaltung einer Regis-
terleseanweisung, darstellt,
[0047] Fig. 3j ein Detail des Überprüfungsverfahrens gemäß Fig. 3a, betreffend die Verwaltung einer Regis-
terschreibanweisung, darstellt,
[0048] Fig. 4a ein Flussdiagramm zur Verdeutlichung eines Verfahrens zur Umwandlung eines Objektcodes
eines Programmfragments in einen normierten Objektcode für dieses Bleiche Programmfragment mit Verzwei-
gungsanweisung bzw. Verzweigungszielanweisung mit leerem Stack, darstellt,
[0049] Fig. 4b ein Flussdiagramm zur Veranschaulichung eines Verfahrens zur Umwandlung eines Objekt-
codes eines Programmfragments in einen normierten Objektcode für dieses gleiche Programmfragment, der
auf typisierte Register zugreift, darstellt, wobei jedem Register ein einziger spezifischer Datentyp zugewiesen
ist,
[0050] Fig. 5a ein Detail der Ausführung des in Fig. 4a veranschaulichten Umwandlungsverfahrens darstellt,
[0051] Fig. 5b ein Detail der Ausführung des in Fig. 4b veranschaulichten Umwandlungsverfahrens darstellt,
[0052] Fig. 6 ein Funktionsschema der vollständigen Architektur eines Entwicklungssystems für ein normier-
tes Programmfragment und einer umprogrammierbaren Mikroprozessorkarte darstellt, die die Ausführung des
Verwaltungsprotokolls und des Überprüfungsverfahrens eines Programmfragments gemäß dem Gegenstand
der vorliegenden Erfindung ermöglicht.
[0053] Allgemein wird darauf hingewiesen, dass das Verwaltungsprotokoll, das Überprüfungsverfahren und
das Verfahren zur Umwandlung eines ferngeladenen Programmfragments gemäß der vorliegenden Erfindung
sowie die entsprechenden Systeme mit Hilfe einer Softwarearchitektur für das sichere Fernladen und Ausfüh-
ren von Applets auf einem mitgeführten Informatiksystem mit geringen Ressourcen wie insbesondere Mikro-
prozessorkarten angewendet werden.
[0054] Allgemein wird darauf hingewiesen, dass die nachfolgende Beschreibung die Anwendung der Erfin-
dung im Kontext von umprogrammierbaren Mikroprozessorkarten vom Typ JavaCard betrifft, siehe die zuvor
in der Beschreibung erwähnte, bei der Fa. Sun Microsystems Inc. unter der Rubrik JavaCard Technology elek-
tronisch verfügbare Dokumentation.
[0055] Die vorliegende Erfindung ist jedoch anwendbar auf jedes mitgeführte System, das über ein Fernladen
eines Applets umprogrammierbar ist, das in dem Code einer virtuellen Maschine geschrieben ist, die einen
Ausführungsstack, lokale Register oder Variablen umfasst und dessen Ausführungsmodell stark typisiert ist,
wobei jede Anweisung des Codes des Applets nur für spezifische Datentypen anwendbar ist. Das Protokoll zur
Verwaltung eines ferngeladenen Programmfragments auf einem umprogrammierbaren mitgeführten System
gemäß der vorliegenden Erfindung wird nun in Verbindung mit in Fig. 2 detaillierter beschrieben.
[0056] In Verbindung mit der erwähnten Figur wird darauf hingewiesen, dass der Objektcode, der das Pro-
grammfragment oder Applet bildet, aus einer Folge von Anweisungen besteht, die von dem Mikroprozessor
des mitgeführten Systems über die oben erwähnte virtuelle Maschine ausführbar sind. Die virtuelle Maschine
erlaubt es, den erwähnten Objektcode zu interpretieren. Das mitgeführte System ist z. B. über eine serielle Ver-
bindung an ein Endgerät angeschlossen.
[0057] Mit Bezug auf die erwähnte Fig. 2 beruht das erfindungsgegenständliche Verwaltungsprotokoll auf
dem Niveau des mitgeführten Systems wenigstens darin, in einem Schritt 100a, 100b einen Befehl zum Fern-
laden dieses Programmfragments zu erfassen. So kann der Schritt 100a in einem Schritt des Lesens des oben
erwähnten Befehls und der Schritt 100b in einem Schritt des Testens des gelesenen Befehls und der Überprü-
fung des Vorliegens eines Fernladebefehls beruhen.
[0058] Bei positiver Reaktion auf den oben erwähnten Schritt 100a, 100b der Erfassung eines Fernladebe-
fehls beruht das erfindungsgegenständliche Protokoll anschließend darin, im Schritt 101 den Objektcode zu
lesen, der das betreffende Programmfragment bildet, und den besagten Objektcode zeitweilig in dem Speicher
des mitgeführten Informatiksystems zu speichern. Die besagte Operation des zeitweiligen Speicherns kann in
dem überschreibbaren Speicher oder gegebenenfalls im Schreiblesespeicher des mitgeführten Systems
durchgeführt werden, wenn letzterer eine ausreichende Kapazität aufweist. Der Schritt des Lesens des Objekt-
codes und des zeitweiligen Speicherns des letzteren in dem überschreibbaren Speicher wird in Fig. 2 als La-
6/44

DE 600 06 141 T2 2004.08.26
den des Codes des Applets bezeichnet.
[0059] Auf den besagten Schritt folgt ein Schritt 102, der darin beruht, die Gesamtheit des zeitweilig gespei-
cherten Objektcodes Anweisung für Anweisung einem Prozess der Überprüfung des besagten Objektcodes zu
unterziehen.
[0060] Die Überprüfung beruht in wenigstens einem Schritt der Initialisierung des Typenstacks und der Tabel-
le der Datentypen, die den Zustand der virtuellen Maschine zu Beginn der Ausführung des zeitweilig gespei-
cherten Objektcodes darstellen, sowie in einer Folge von Überprüfungsschritten, Anweisung für Anweisung,
durch Diskriminieren des Vorliegens, für jede mit Ii bezeichnete laufende Anweisung, eines Ziels wie etwa ei-
nes mit CIB bezeichneten Ziels einer Verzweigungsanweisung, eines Ziels eines Ausnahmeverwaltungsaufru-
fes oder eines Zieles eines Subroutinenaufrufs. Eine Überprüfung und eine Aktualisierung der Wirkung der lau-
fenden Anweisung Ii auf den Typenstack und die Tabelle der Registertypen wird durchgeführt.
[0061] Wenn die Überprüfung in Schritt 103a gelungen ist, beruht das erfindungsgegenständliche Protokoll
darin, in Schritt 104 das ferngeladene Programmfragment in ein Verzeichnis von verfügbaren Programmfrag-
menten einzutragen und in Schritt 105 an das Lesegerät eine positive Empfangsbestätigung zu senden.
[0062] Umgekehrt beruht im Fall einer nicht gelungenen Überprüfung des Objektcodes in Schritt 103b das
erfindungsgegenständliche Protokoll darin, in einem Schritt 103c jede Ausführung des zeitweilig gespeicherten
Programmfragments auf dem mitgeführten System zu sperren. Der Schritt des Sperrens 103c kann in unter-
schiedlicher Weise ausgeführt werden. Dieser Schritt kann, als nicht einschränkendes Beispiel, darin beruhen,
in Schritt 106 das zeitweilig aufgezeichnete Programmfragment – bei Fehlen einer Aufzeichnung dieses Pro-
grammfragments im Verzeichnis von verfügbaren Programmfragmenten – zu löschen und in einem Schritt 107
an das Lesegerät einen Fehlercode zu senden. Die Schritte 107 und 105 können sequentiell nach den Schrit-
ten 106 bzw. 104 oder als Multitasking-Operation mit diesen ausgeführt werden.
[0063] Bezogen auf die gleiche Fig. 2 beruht bei negativer Reaktion auf den in der Erfassung eines Fernla-
debefehls beruhenden Schrittes 100b das erfindungsgegenständliche Protokoll darin, in einem Schritt 108 ei-
nen Befehl zur Auswahl eines in einem Verzeichnis von Programmfragmenten verfügbaren Programmfrag-
ments zu erfassen und, bei positiver Reaktion auf den Schritt 108, in welchem die Auswahl eines verfügbaren
Programmfragments erfasst wird, in Schritt 109 dieses ausgewählte verfügbare Programmfragment aufzuru-
fen, um es auszuführen. Auf den Schritt 109 folgt dann ein Schritt 110 des Ausführens des aufgerufenen ver-
fügbaren Programmfragments mit Hilfe der virtuellen Maschine in Abwesenheit jeglicher dynamischer Über-
prüfung von Variablentypen, der Zugriffsrechte auf die von dem aufgerufenen verfügbaren Programmfragment
manipulierten Objekte oder des Überlaufens des Ausführungsstacks bei der Ausführung jeder Anweisung.
[0064] In dem Fall, dass in Schritt 108 eine negative Antwort erhalten wird, wobei dieser Schritt darin beruht,
einen Befehl zur Auswahl eines aufgerufenen verfügbaren Programmfragments zu erfassen, beruht das erfin-
dungsgegenständliche Protokoll darin, in einem Schritt 111 die Verarbeitung der Standardbefehle des mitge-
führten Systems vorzunehmen.
[0065] Was das Fehlen einer dynamischen Überprüfung des Typs oder des Zugriffsrechtes auf Objekte bei-
spielsweise vom Typ JavaCard betrifft, sei gesagt, dass dieses Fehlen einer Überprüfung die Sicherheit der
Karte nicht beeinträchtigt, da der Code des Applets notwendigerweise die Überprüfung erfolgreich durchlaufen
hat.
[0066] Genauer gesagt ist die Überprüfung des Codes, die gemäß dem erfindungsgegenständlichen Verfah-
ren auf der Mikroprozessorkarte oder dem mitgeführten Informatiksystem durchgeführt wird, selektiver als die
übliche Codeüberprüfung für die virtuelle Java-Maschine wie in dem weiter oben in der Beschreibung erwähn-
ten Werk mit dem Titel „The Java Virtual Machine Specification" beschrieben.
[0067] Allerdings kann der gesamte im Sinne des herkömmlichen Java-Überprüfers korrekte Code der virtu-
ellen Java-Maschine in einen äquivalenten Code umgewandelt werden, der in der Lage ist, die auf der Mikro-
prozessorkarte durchgeführte Codeüberprüfung erfolgreich zu durchlaufen.
[0068] Es ist zwar denkbar, Java-Codes, die die oben erwähnten Überprüfungskriterien im Rahmen der An-
wendung des erfindungsgegenständlichen Protokolls erfüllen, direkt zu schreiben, doch ist ein bemerkenswer-
ter Gegenstand dieses Protokolls auch die Anwendung eines automatischen Umwandlungsverfahrens von be-
liebigem Standard-Java-Code in einen normierten Code für das gleiche Programmfragment, der zwangsläufig
den oben zitierten angewendeten Überprüfungskriterien genügt. Das Verfahren zur Umwandlung in normierten
Code und das entsprechende System werden in der Beschreibung später detailliert behandelt.
[0069] Eine genauere Beschreibung des Verfahrens zur Überprüfung eines Programmfragments oder App-
lets gemäß dem Gegenstand der vorliegenden Erfindung wird nun in Verbindung mit Fig. 3a und den folgenden
Figuren gegeben.
[0070] Allgemein ist das erfindungsgegenständliche Überprüfungsverfahren im Rahmen des oben in Verbin-
dung mit Fig. 2 beschriebenen erfindungsgegenständlichen Protokolls zur Verwaltung eines Programmfrag-
ments oder unabhängig davon anwendbar, um jeden für notwendig befundenen Überprüfungsprozess zu ge-
währleisten.
[0071] Allgemein ist ein Programmfragment durch einen Objektcode gebildet, der wenigstens ein Unterpro-
7/44

DE 600 06 141 T2 2004.08.26
gramm, allgemeiner als Methode bezeichnet, umfasst, und bildet eine Folge von von dem Mikroprozessor des
mitgeführten Systems über die virtuelle Maschine ausführbaren Anweisungen.
[0072] Wie in Fig. 3a gezeigt, beruht das Überprüfungsverfahren für jedes Unterprogramm darin, einen
Schritt 200 der Initialisierung des Typenstacks und der Tabelle der Registertypen der virtuellen Maschine mit
Daten durchzuführen, die den Zustand dieser virtuellen Maschine zu Beginn der Ausführung des Objektcodes
darstellen, der Gegenstand der Überprüfung ist. Dieser Objektcode kann, wie oben in Verbindung mit der An-
wendung des erfindungsgegenständlichen Protokolls beschrieben, zeitweilig gespeichert werden.
[0073] Auf den erwähnten Schritt 200 folgt dann ein Schritt 200a, der darin beruht, das Lesen der laufenden
Anweisung Ii mit Index i auf die erste Anweisung des Objektcodes zu positionieren. Auf den Schritt 200a folgt
ein Schritt 201, der darin beruht, eine Überprüfung des besagten Objektcodes Anweisung für Anweisung
durchzuführen, indem für jede mit Ii bezeichnete laufende Anweisung die Existenz eines Verzweigungsanwei-
sungsziels CIB, eines Ziels eines Ausnahmeverwaltungsaufrufes CEM oder eines Zieles eines Subroutinen-
aufrufs CSR diskriminiert wird.
[0074] Auf den Überprüfungsschritt 201 folgt ein Schritt 202 der Überprüfung und Aktualisierung der Wirkung
der laufenden Anweisung Ii auf die Datentypen des Typenstacks und der Tabelle der Registertypen in Abhän-
gigkeit von der Existenz, für die durch eine andere Anweisung anvisierten laufenden Anweisung, eines Ziels
einer Verzweigungsanweisung CIB, eines Ziels eines Subroutinenaufrufs CSR oder eines Ziels eines Ausnah-
meverwaltungsaufrufes CEM.
[0075] Auf den Schritt 202 für die laufende Anweisung Ii folgt ein Schritt 203 des Prüfens, ob die letzte Anwei-
sung erreicht ist, bezeichnet mit
Ii = letzte Anweisung des Objektcodes? Bei negativer Antwort auf den Test 203 geht der Prozess über zur nach-
folgenden Anweisung 204, mit i = i + 1 bezeichnet, und kehrt zu Schritt 201 zurück.
[0076] Die besagte Überprüfung in Schritt 202 ist gelungen, wenn die Tabelle der Registertypen im Laufe ei-
ner Überprüfung aller den Objektcode bildenden Anweisungen Ii nicht verändert wird. Zu diesem Zweck ist ein
Test 205 des Vorliegens eines stabilen Zustandes der Tabelle der Registertypen vorgesehen. Dieser Test ist
bezeichnet:
∃? Stabiler Zustand der Tabelle der Registertypen
[0077] Bei positiver Antwort auf den Test 205 ist die Überprüfung gelungen.
[0078] Im Fall, wohingegen kein Fehlen einer Veränderung festgestellt wird, wird der Überprüfungsprozess
wiederholt und durch Rückkehr zum Schritt 200a neu gestartet. Es lässt sich zeigen, dass das Ende des Pro-
zesses garantiert nach maximal NrxH Iterationen erreicht wird, wobei Nr die Zahl der verwendeten Register
bezeichnet und H eine von der Untertypisierungsbeziehung abhängige Konstante ist.
[0079] Verschiedene Angaben zu den Typen der im Laufe des oben in Verbindung mit Fig. 3a beschriebenen
Überprüfungsprozesses manipulierten Variablen werden nun in Verbindung mit Fig. 3b gemacht.
[0080] Die oben erwähnten Variablentypen umfassen wenigstens Klassenidentifikatoren, die den in dem zu
überprüfenden Programmfragment definierten Klassen von Objekten entsprechen, numerische Variablenty-
pen, die wenigstens einen Typ short, auf p bits ganzzahlig codiert, wobei p den Wert p = 16 annehmen kann,
und einen Typ einer Rückkehradresse einer Sprunganweisung JSR umfasst, wobei dieser Adressentyp mit
retaddr bezeichnet ist, einen Typ null der sich auf Verweise auf ungültige Objekte bezieht, einen Typ object,
der sich auf die eigentliche Objekte bezieht, einen spezifischen Typ ⊥, der die Schnittmenge aller Typen dar-
stellt und den null-Wert Null entspricht, einen anderen spezifischen Typ T, der die Vereinigungsmenge aller Ty-
pen darstellt und jedem Typ von Werten entspricht. Bezogen auf Fig. 3b erfüllt die Menge der oben erwähnten
Variablentypen eine Untertypisierungsbeziehung:
object ∈ T;
short, retaddr ∈ T;
⊥ ∈ null, short, retaddr
[0081] Ein spezifischeres Beispiel eines Überprüfungsprozesses wie in Fig. 3a dargestellt wird nun in Verbin-
dung mit einem ersten Beispiel einer in der im Anhang beigefügten Tabelle T1 darstellten Datenstruktur gege-
ben.
[0082] Besagtes Beispiel betrifft ein in Java-Code geschriebenes Applet.
[0083] Der Überprüfungsprozess greift auf den Code des das zu überprüfende Applet bildenden Unterpro-
gramms über einen Zeiger auf die zu überprüfende Anweisung Ii zu.
[0084] Der Überprüfungsprozess zeichnet die Größe und den Typ des Ausführungsstacks bei der laufenden
Anweisung Ii auf, der in dem Beispiel der besagten Tabelle T1 saload entspricht.
[0085] Der Überprüfungsprozess zeichnet dann die Größe und den Typ des Ausführungsstacks bei der lau-
fenden Anweisung im Typenstack über seinen Typenstackzeiger auf.
[0086] Wie zuvor in der Beschreibung erwähnt, spiegelt dieser Typenstack den Zustand des Ausführungs-
stacks der virtuellen Maschine bei der laufenden Anweisung Ii wieder. In dem in Tabelle T1 dargestellten Bei-
spiel enthält bei der bevorstehenden Ausführung der Anweisung Ii der Stack drei Einträge: einen Verweis auf
ein Objekt der Klasse C, einen Verweis auf eine Tabelle von auf p = 16 bits codierten ganzen Zahlen, den Typ
8/44

DE 600 06 141 T2 2004.08.26
short[], und eine ganze Zahl von p = 16 Bits vom Typ short. Dies ist auch in dem Typenstack dargestellt, der
ebenfalls drei Einträge enthält: C, den Typ der Objekte der Klasse C, short[], den Typ der Tabellen von ganzen
Zahlen von p = 16 bits und short, den Typ der ganzen Zahlen mit p = 16 bits.
[0087] Eine andere bemerkenswerte Datenstruktur ist durch eine Tabelle von Registertypen gebildet, wobei
diese Tabelle den Zustand der Register der virtuellen Maschine, d. h. der Register, die die lokalen Variablen
speichern, wiederspiegelt.
[0088] Wieder bezogen auf das in Tabelle T1 angegebene Beispiel enthält der Eintrag 0 der Registertypenta-
belle den Typ C, d. h., dass bei der bevorstehenden Ausführung der laufenden Anweisung Ii = saload gewähr-
leistet ist, dass das Register 0 einen Verweis auf ein Objekt der Klasse C enthält.
[0089] Die verschiedenen im Laufe der Überprüfung manipulierten und in der Registertypentabelle und dem
Typenstack gespeicherten Typen sind in Fig. 3b dargestellt. Diese Typen umfassen:
– Klassenidentifikatoren CB, die den in dem Applet definierten spezifischen Klassen von Objekten entspre-
chen;
– die Grundtypen, wie etwa short, ganzzahlig auf p = 16 bits codiert, int1 und int2, die jeweils p signifikan-
testen bzw. am wenigstens signifikanten bits von auf z. B. 2p bits codierten ganzen Zahlen, oder retaddr
der Rückkehradresse einer Anweisung, wie oben erwähnt;
– den Typ Null, der Verweise auf ungültige Objekte darstellt.

[0090] Was die Untertypisierungsbeziehung angeht, sei gesagt, dass ein Typ T1 Untertyp eines Typs T2 ist,
wenn jeder gültige Wert des Typs T1 ebenfalls ein gültiger Wert des Typs T2 ist. Die Untertypisierung zwischen
Klassenidentifikatoren spiegelt die Vererbungshierarchie zwischen Klassen des Applets wieder. Für die ande-
ren Typen ist die Untertypisierung definiert durch das in Fig. 3b dargestellte Netzwerk, wobei ⊥ Untertyp aller
Typen ist und alle Typen Untertypisierung von T sind.
[0091] Der Ablauf des Prozesses zur Überprüfung eines ein Applet bildenden Unterprogramms ist, mit Bezug
auf die oben erwähnte Tabelle T1, der folgende.
[0092] Der Überprüfungsprozess wird an jedem Unterprogramm des Applets unabhängig durchgeführt. Für
jedes Unterprogramm führt der Prozess einen oder mehrere Überprüfungsdurchgänge an den Anweisungen
des betreffenden Unterprogramms aus. Der Pseudocode des Überprüfungsprozesses ist in der beigefügten
Tabelle T2 angegeben.
[0093] Der Prozess zur Überprüfung eines Unterprogramms beginnt mit der Initialisierung des Typenstacks
und der Tabelle der Registertypen, wie in Tabelle T1 dargestellt, wobei diese Initialisierung den Zustand der
virtuellen Maschine zu Beginn der Ausführung des untersuchten Unterprogramms darstellt.
[0094] Der Typenstack ist anfangs leer, der Stackzeiger ist gleich Null, und die Registertypen sind mit den
Typen der Parameter des Unterprogramms initialisiert, was der Tatsache entspricht, dass die virtuelle Maschi-
ne die Parameter dieses Unterprogramms in diesen Registern übergibt. Die von dem Unterprogramm zuge-
wiesenen Registertypen werden mit den Datentypen ⊥ initialisiert, was die Tatsache darstellt, dass die virtuelle
Maschine diese Register zu Beginn der Ausführung des Unterprogramms auf Null initialisiert.
[0095] Anschließend werden ein oder mehrere Überprüfungsdurchgänge an den Anweisungen und jeder lau-
fenden Anweisung Ii des Unterprogramms durchgeführt.
[0096] Z. B. am Ende des durchgeführten Überprüfungsdurchgangs oder einer Folge von Durchgängen be-
stimmt der Überprüfungsprozess, ob die in der Tabelle der Registertypen enthaltenen, in der Tabelle T1 des
Anhangs dargestellten Registertypen sich während des Überprüfungsdurchgangs geändert haben. Bei Fehlen
einer Änderung ist die Überprüfung abgeschlossen, und ein Erfolgscode wird an das Hauptprogramm zurück-
gegeben, was es ermöglicht, in Schritt 105 des in Fig. 2 dargestellten Verwaltungsprotokolls die positive Emp-
fangsbestätigung zu senden.
[0097] Bei Vorhandensein einer Veränderung der erwähnten Tabelle der Registertypen wiederholt der Über-
prüfungsprozess den Überprüfungsdurchgang, bis die in der Tabelle der Registertypen enthaltenen Register-
typen stabil sind.
[0098] Der eigentliche Ablauf eines Überprüfungsdurchgangs, der ein oder mehrere Male bis zur Stabilität der
Registertypen durchgeführt wird, wird nun in Verbindung mit den Fig. 3c bis 3j beschrieben.
[0099] Für jede laufende Anweisung Ii werden die folgenden Überprüfungen durchgeführt:
[0100] In Verbindung mit der Fig. 3a in Schritt 201 legt der Überprüfungsprozess fest, ob die laufende Anwei-
sung Ii Ziel einer Verzweigungsanweisung, eines Subroutinenaufrufs oder einer Ausnahmeverwaltung ist, wie
oben erwähnt. Diese Überprüfung erfolgt durch Untersuchen der im Code des Unterprogramms enthaltenen
Verzweigungsbefehle und der diesem Unterprogramm zugeordneten Ausnahmeverwaltungen.
[0101] Wenn, mit Bezug auf die mit dem Schritt 201 beginnende Fig. 3c, die laufende Anweisung Ii Ziel einer
Verzweigungsanweisung ist, wobei diese Bedingung durch einen mit Ii = CIB bezeichneten Test 300 überprüft
wird, wobei die Verzweigung bedingt oder unbedingt ist, vergewissert sich der Überprüfungsprozess durch ei-
nen Test 301, dass der Typenstack an diesem Punkt des Unterprogramms leer ist. Bei positiver Antwort auf
den Test 301, wird der Überprüfungsprozess mit einem Kontextfortsetzungsschritt, bezeichnet als Fortsetzung
9/44

DE 600 06 141 T2 2004.08.26
A, fortgesetzt. Bei negativer Antwort auf den Test 301, wenn der Typenstack nicht leer ist, scheitert die Über-
prüfung, und das Applet wird zurückgewiesen. Dieses Scheitern ist dargestellt durch den Schritt „Scheitern".
[0102] Bezogen auf die mit dem Schritt „Fortsetzung A" beginnende Fig. 3d überprüft, wenn die laufende An-
weisung Ii das Ziel eines Subroutinenaufrufs ist, wobei diese Bedingung durch einen Test 304 Ii = CSR über-
prüft wird, der Überprüfungsprozess in einem Test 305, dass die vorhergehende Anweisung Ii–1 nicht sequen-
tiell weitergeht. Diese Überprüfung wird durchgeführt durch einen Testschritt 305, wenn die vorhergehende An-
weisung eine unbedingte Verzweigung, eine Subroutinenrückkehr oder die Aufhebung einer Ausnahme dar-
stellt. Der Test in Schritt 305 ist folgendermaßen bezeichnet:
Ii–1 = IBunbedingt, Rückkehr RSR oder Aufhebung L-EXCEPT.
[0103] Bei negativer Antwort auf den Test 305 schlägt der Überprüfungsprozess in einem Schritt „Scheitern"
fehl. Bei positiver Antwort auf den Test 305 jedoch reinitialisiert der Überprüfungsprozess den Typenstack so,
dass dieser genau einen Eintrag vom Typ retaddr einer Adresse für die Rückkehr von der oben erwähnten Su-
broutine enthält. Wenn die laufende Anweisung Ii in Schritt 304 nicht das Ziel eines Subroutinenaufrufs ist, wird
der Überprüfungsprozess im Kontext in dem Schritt „Fortsetzung B" fortgesetzt.
[0104] Bezogen auf Fig. 3e wird, wenn die laufende Anweisung Ii Ziel einer Ausnahmeverwaltung ist, wobei
diese Bedingung mit einem mit Ii = CEM bezeichneten Test 307 festgestellt wird, wobei CEM das Ziel einer
Ausnahmeverwaltung darstellt, diese Bedingung über einen Test 307 festgestellt, der mit
Ii = CEM
bezeichnet ist.
[0105] Bei positiver Antwort auf den Test 307 überprüft der Prozess, dass die vorhergehende Anweisung ei-
nen unbedingten Sprungbefehl, eine Rückkehr von einer Subroutine oder die Aufhebung einer Ausnahme über
einen Test 305, bezeichnet mit
Ii–1 = IBunbedingt, Rückkehr RSR oder Aufhebung L-EXCEPT.
[0106] Bei positiver Antwort auf den Test 305 nimmt der Überprüfungsprozess eine Reaktualisierung des Ty-
penstacks in einem Schritt 308 durch einen Eintrag von Ausnahmetypen, mit EXCEPT bezeichnet, vor, wobei
auf den Schritt 308 ein Kontextfortsetzungsschritt C folgt. Bei negativer Reaktion auf den Test schlägt die Über-
prüfung mit dem „Scheitern" bezeichneten Schritt fehl. Das Programmfragment wird dann zurückgewiesen.
[0107] Wenn bezogen auf Fig. 3f die laufende Anweisung Ii das Ziel einer Mehrzahl von inkompatiblen Ver-
zweigungen ist, wird diese Bedingung durch einen Test 309, bezeichnet mit:
Ii = inkompatible XIB
festgestellt, wobei die inkompatiblen Verzweigungen z. B. eine unbedingte Verzweigung und ein Subroutinen-
aufruf oder auch zwei unterschiedliche Ausnahmeverwaltungen sind. Bei positiver Reaktion auf den Test 309,
wenn die Verzweigungen inkompatibel sind, scheitert der Überprüfungsprozess mit einem mit „Scheitern" be-
zeichneten Schritt, und das Programmfragment wird zurückgewiesen. Bei negativer Antwort auf den Test 309
wird der Überprüfungsprozess mit einem mit „Fortsetzung D" bezeichneten Schritt fortgesetzt. Der Test 309
wird eröffnet mit dem zuvor in der Beschreibung erwähnten Schritt „Fortsetzung C".
[0108] Wenn bezogen auf Fig. 3g die laufende Anweisung Ii nicht das Ziel einer Verzweigung ist, wobei diese
Bedingung durch einen Test überprüft wird, der mit der oben erwähnten „Fortsetzung D" beginnt und bezeich-
net ist mit
Ii ∃? Verzweigungsziele,
wobei ∃ das Existenzsymbol bezeichnet, geht der Überprüfungsprozess bei negativer Antwort auf den Test 310
weiter mit einem Übergang zu einer Aktualsierung des Typenstacks in einem Schritt 311, wobei auf den Schritt
311 und auf die positive Antwort auf den Test 310 in Schritt 202 ein Kontextfortsetzungsschritt folgt, wie oben
in der Beschreibung in Verbindung mit Fig. 3a beschrieben.
[0109] Eine detailliertere Beschreibung des Schritts der Überprüfung der Wirkung der laufenden Anweisung
auf den Typenstack im oben beschriebenen Schritt 202 wird nun in Verbindung mit Fig. 3h geliefert.
[0110] Gemäß der erwähnten Figur kann dieser Schritt wenigstens einen Schritt 400 der Überprüfung umfas-
sen, dass der Ausführungstypenstack wenigstens so viele Einträge enthält, wie die laufende Anweisung Ope-
randen hat. Dieser Testschritt 400 ist bezeichnet mit:
Nbep ≥ NOpi,
wobei Nbep die Zahl der Einträge des Typenstacks und NOpi die Zahl von in der laufenden Anweisung enthal-
tenen Operanden bezeichnet.
[0111] Bei positiver Antwort auf den Test 300 folgt auf diesen Test ein Schritt 401 des Entstapelns des Typen-
stacks und der Überprüfung 401b, dass die Typen der Einträge an der Spitze des Stacks Untertypen der Ope-
randentypen der besagten laufenden Anweisung sind. In dem Testschritt 401a sind die Operandentypen der
Anweisung i mit TOpi und die Typen der Einträge an der Spitze des Stacks mit Targs bezeichnet.
[0112] In Schritt 401b entspricht die Überprüfung einer Überprüfung der Untertypisierungsbeziehung "Targs
Untertyp von TOpi".
[0113] Bei negativer Antwort auf den Test 400 und den Test 401b scheitert der Überprüfungsprozess, was
durch Verzweigen zum Schritt "Scheitern" dargestellt ist. Bei positiver Antwort auf den Test 401b jedoch geht
10/44

DE 600 06 141 T2 2004.08.26
der Überprüfungsprozess weiter und beruht darin, einen
– Schritt der Überprüfung der Existenz eines ausreichenden Speicherplatzes auf dem Typenstack zum
Durchführen des Stapelns der Ergebnisse der laufenden Anweisung durchzuführen. Dieser Überprüfungs-
schritt wird durchgeführt mit einem Test 402, bezeichnet mit
Stackplatz ≥ Ergebnisplatz

wobei jedes Element der Ungleichung den entsprechenden Speicherplatz bezeichnet.
[0114] Bei negativer Antwort auf den Test 402 scheitert der Überprüfungsprozess, was durch den Schritt
„Scheitern" dargestellt ist. Bei positiver Antwort auf den Test 402 jedoch führt der Überprüfungsprozess die Sta-
pelung der den Ergebnissen zugeordneten Datentypen in einem Schritt 403 durch, wobei die Stapelung auf
dem diesen Ergebnissen zugeordneten Datentypenstack durchgeführt wird.
[0115] Als nicht einschränkendes Beispiel sei angegeben, dass für die Durchführung, nach Fig. 3h, der Über-
prüfung der Wirkung der laufenden Anweisung auf den Typenstack für eine laufende Anweisung, die durch
eine Java-Anweisung saload gebildet ist, die dem Lesen eines auf p = 16 bits codierten ganzzahligen Elements
in einer Tabelle von ganzen Zahlen entspricht, wobei diese Tabelle von ganzen Zahlen definiert ist durch die
Tabelle von ganzen Zahlen und einem ganzzahligen Index in dieser Tabelle und das Ergebnis durch die an
diesem Index in der Tabelle gelesene ganze Zahl, der Überprüfungsprozess sich vergewissert, dass der Ty-
penstack wenigstens zwei Elemente enthält, dass die zwei Elemente an der Spitze des Typenstacks Unterty-
pen von short[] bzw. short sind, den Entstapelungsprozess und anschließend den Stapelungsprozess mit dem
Datentyp short als Typ des Ergebnisses vornimmt.
[0116] Außerdem beruht mit Bezug auf Fig. 3i für die Durchführung des Schritts der Überprüfung der Wirkung
der laufenden Anweisung auf den Typenstack, wenn die laufende Anweisung Ii eine Anweisung, mit IR be-
zeichnet, zum Lesen eines Adressregisters n ist, wobei diese Bedingung durch einen mit Ii = IRn bezeichneten
Test 404 überprüft wird, bei positiver Antwort auf den besagten Test 404 der Überprüfungsprozess darin, den
Datentyp des Ergebnisses dieses Lesens in einem Schritt 405 durch Abfragen des Eintrags n der Tabelle der
Registertypen zu überprüfen, dann die Wirkung der laufenden Anweisung Ii auf den Typenstack durch eine
Operation 406a des Entstapelns der Einträge des Stacks, die den Operanden dieser laufenden Anweisung ent-
sprechen, und durch Stapeln 406b des Datentyps dieses Ergebnisses zu bestimmen. Die Operanda der An-
weisung Ii werden mit OPi bezeichnet. Auf die Schritte 406a und 406b folgt eine Rückkehr zur Fortsetzung des
Kontexts Fortsetzung F. Bei negativer Antwort auf den Test 404 wird der Überprüfungsprozess fortgesetzt
durch die Fortsetzung des Kontexts Fortsetzung F.
[0117] Mit Bezug auf Fig. 3j besteht, wenn die laufende Anweisung Ii eine mit IW bezeichnete Anweisung zum
Schreiben eines Adressregisters n ist, wobei diese Bedingung durch einen mit Ii = IWm bezeichneten Test über-
prüft wird, der Überprüfungsprozess darin, bei positiver Antwort auf den Test 407 in einem Schritt 408 die Wir-
kung der laufenden Anweisung auf den Typenstack und den Typ t des in das Adressregister n geschriebenen
Operanden zu bestimmen, und dann, in einem Schritt 409, den Eintrag des Typs in der Registertypentabelle
an der Adresse n durch den Typ zu ersetzen, der unmittelbar höher als der zuvor gespeicherte Typ und der
Typ t des in das Adressregister n geschriebenen Operanden ist. Ruf den Schritt 409 folgt eine Rückkehr zur
Fortsetzung des Kontexts Fortsetzung 204. Bei negativer Antwort auf den Test 407 wird der Überprüfungspro-
zess fortgesetzt mit einer Fortsetzung des Kontexts Fortsetzung 204.
[0118] Wenn beispielsweise die laufende Anweisung Ii dem Schreiben eines Werts vom Typ D in ein Register
mit Adresse 1 entspricht und der Typ des Registers 1 vor der Überprüfung der Anweisung C war, wird der Typ
des Registers 1 ersetzt durch den Typ object, der in dem in Fig. 3b dargestellten Typennetz der niedrigste Typ
ist, der höher ist als C und D.
[0119] Wenn z. B. die laufende Anweisung von Ii ein Lesen einer Anweisung aload-0 ist, die darin beruht, den
Inhalt des Registers 0 zu stapeln, und wenn der Eintrag 0 der Tabelle der Registertypen C ist, stapelt der Über-
prüfer C auf dem Typenstack.
[0120] Ein Beispiel der Überprüfung eines in einer Java-Umgebung geschriebenen Unterprogramms wird nun
in Verbindung mit den im Anhang beigefügten Tabellen T3 und T4 gegeben.
[0121] Die Tabelle T3 stellt einen spezifischen JavaCard-Code dar, der dem in dieser Tabelle enthaltenen Ja-
va-Unterprogramm entspricht.
[0122] Die Tabelle T4 veranschaulicht den Inhalt der Registertypentabelle und des Typenstacks vor der Über-
prüfung jeder Anweisung. Die Typenranforderungen für die Operanden der diversen Anweisungen sind alle
eingehalten. Der Stack ist sowohl nach der Verzweigungsanweisung 5 zu der durch den Pfeil symbolisierten
Anweisung 9, als auch vor dem besagten Verzweigungsziel 9 leer. Der Typ des Registers 1, der ursprünglich
1 war, wird null, die obere Schranke von null und ⊥, wenn die Anweisung 1 zum Speichern eines Werts vom
Typ null im Register 1 untersucht wird, und wird dann zum Typ short[], der oberen Schranke des Typs short[]
und des Typs null, wenn die Anweisung 8, das Speichern eines Werts vom Typ short[] im Register 1 verarbeitet
wird. Da sich der Typ des Registers 1 während des ersten Überprüfungsdurchgangs geändert hat, wird ein
11/44

DE 600 06 141 T2 2004.08.26
zweiter Durchgang durchgeführt, wobei die am Ende des ersten erhaltenen Registertypen verteilt werden. Die-
ser zweite Überprüfungsdurchgang gelingt wie der erste und verändert die Registertypen nicht. Der Überprü-
fungsprozess endet somit erfolgreich.
[0123] Verschiedene Bespiele für Fälle des Scheiterns des Überprüfungsprozesses werden nun anhand von
vier Beispielen von inkorrektem Code in Verbindung mit der im Anhang beigefügten Tabelle T5 angegeben:
– Am Punkt a) der Tabelle T5 ist die Aufgabe des als Beispiels angegebenen Codes, zu versuchen, einen
ungültigen Referenzobjektverweis zu erzeugen, indem ein arithmetischer Prozess an Zeigern verwendet
wird. Er wird verworfen durch die Überprüfung der Typen der Argumente der Anweisung 2 sadd, welche
verlangt, dass die zwei Argumente vom Typ short sind.
– An den Punkten b) und c) der Tabelle T5 ist die Aufgabe des Codes, zwei Versuche durchzuführen, eine
beliebige ganze Zahl in einen Objektverweis umzuwandeln. Am Punkt b) wird das Register 0 gleichzeitig
mit dem Typ short, Anweisung 0, und mit dem Typ null, Anweisung 5, verwendet. Folglich ordnet der Über-
prüfungsprozess dem Register 0 den Typ T zu und erfasst einen Typfehler, wenn das Register 0 als Ergeb-
nis mit dem Typ object in Anweisung 7 zurückgegeben wird.
– Am Punkt c) der Tabelle T5 wird eine Anordnung von Verzweigungen vom Typ „if ... then ... else ..." ver-
wendet, um an der Spitze des Stacks ein Ergebnis zu hinterlassen, das durch eine ganze Zahl oder durch
einen Objektverweis gebildet ist. Der Überprüfungsprozess verwirft den Code, weil er erfasst, dass der
Stack in Höhe der durch den Pfeil symbolisierten Verzweigung von der Anweisung 5 zur Anweisung 9 nicht
leer ist.
– Schließlich enthält am Punkt d) der Tabelle T5 der Code eine Schleife, die bei jeder Iteration die Wirkung
hat, dass eine weitere ganze Zahl an der Spitze des Stacks gestapelt wird, und die so nach einer bestimm-
ten Zahl von Iterationen zu einem Stacküberlauf führt. Der Überprüfungsprozess verwirft diesen Code, in-
dem er feststellt, dass der Stack in Höhe der Rückverzweigung von der Anweisung 8 zu Anweisung 0, sym-
bolisiert durch den Rückwärtspfeil, nicht leer ist, d. h., dass der Stack an einem Verzweigungspunkt nicht
leer ist.

[0124] Die verschiedenen oben in Verbindung mit den Tabellen T3, T4 und T5 angegebenen Beispiele zeigen,
dass der Überprüfungsprozess, der den Gegenstand der vorliegenden Erfindung bildet, besonders effektiv ist
und auf Applets und insbesondere auf Unterprogramme der letzteren anwendbar ist, für welche die die Typbe-
dingungen des Stacks bzw. das Leersein des Typenstacks vor und bei Verzweigungsanweisungen oder Ver-
zweigungszielen erfüllt sind.
[0125] Selbstverständlich impliziert ein solcher Prozess die Schreibung von diese Kriterien erfüllenden Ob-
jektcodes, wobei diese Objektcodes dem in der oben erwähnten Tabelle T3 eingeführten Unterprogramm ent-
sprechen können.
[0126] Um die Überprüfung von Applets und von Unterprogrammen von existierenden Applets sicherzustel-
len, die nicht notwendigerweise den Überprüfungskriterien des erfindungsgegenständlichen Verfahrens genü-
gen, insbesondere was die in Java-Umgebung geschriebenen Applets und Unterprogramme angeht, ist Ziel
der Erfindung, Verfahren zur Umwandlung dieser Applets oder Unterprogramme in normierte Applets, die es
erlauben, die Überprüfungstests des erfindungsgegenständlichen Überprüfungsverfahrens erfolgreich zu
durchlaufen, und das ein solches Verfahren verwendende Verwaltungsprotokoll anzugeben.
[0127] Zu diesem Zweck ist Gegenstand der Erfindung die Anwendung eines Verfahrens und eines Pro-
gramms zur Umwandlung eines herkömmlichen, ein Applet bildenden Objektcodes, wobei dieses Verfahren
und dieses Umwandlungsprogramm außerhalb eines mitgeführten Systems oder einer Mikroprozessorkarte
bei der Erzeugung des betreffenden Applets eingesetzt werden können.
[0128] Das Verfahren zur Umwandlung von Code in normierten Code nach der vorliegenden Erfindung wird
nun ausschließlich zu Beispielzwecken im Rahmen der Java-Umgebung beschrieben.
[0129] Die von den existierenden Java-Compilern erzeugten JVM-Codes erfüllen unterschiedliche Kriterien,
die nachfolgend aufgelistet sind:
C1: die Argumente jeder Anweisung gehören zu den von dieser Anweisung erwarteten Typen;
C2: der Stack läuft nicht über;
C'3: für jede Verzweigungsanweisung ist der Typ des Stacks in Höhe dieser Verzweigung derselbe wie in Höhe
der für diese Verzweigung möglichen Ziele;
C'4: ein in einem Register an einem Punkt des Codes geschriebener Wert vom Typ t, der an einem anderen
Punkt des Codes aus dem gleichen Register wieder gelesen wird, wird immer mit dem gleichen Typ t neu ge-
lesen;
Die Ausführung des erfindungsgegenständlichen Überprüfungsverfahrens impliziert, dass die durch den Ob-
jektcode überprüften Kriterien C'3 und C'4 durch die nachfolgenden Kriterien C3 und
C4 ersetzt werden:
C3: der Stack ist bei jeder Verzweigungsanweisung und bei jedem Verzweigungsziel leer;
C4: ein gleiches Register wird im gesamten Code eines Unterprogramms mit einem einzigen Typ verwendet.
12/44

DE 600 06 141 T2 2004.08.26
[0130] Mit Bezug auf die oben genannten Kriterien sei gesagt, dass die Java-Compiler nur die schwächeren
Kriterien C'3 und C'4 garantieren, und dass der erfindungsgegenständliche Überprüfungsprozess und das ent-
sprechende Überprüfungsprotokoll tatsächlich stärker einschränkende Kriterien C3 und C4 garantieren, mit
denen die Ausführung und Verwaltung der Applets gewährleistet werden kann.
[0131] Der Begriff der Normierung, der die Umwandlung der Codes in normierte Codes abdeckt, kann unter-
schiedliche Aspekte aufweisen, insoweit die Ersetzung der Kriterien C'3 und C'4 durch die Kriterien C3 und C4
gemäß dem erfindungsgegenständlichen Überprüfungsprozess unabhängig durchgeführt werden kann, um zu
gewährleisten, dass der Stack bei jeder Verzweigungsanweisung bzw. bei jedem Verzweigungsziel leer ist,
dass die von dem Applet geöffneten Register typisiert sind, wobei jedem offenen Register ein einziger, für die
Ausführung des betreffenden Applets zugewiesener Datentyp entspricht oder umgekehrt, um gemeinsam den
gesamten erfindungsgegenständlichen Überprüfungsprozess zu erfüllen.
[0132] Das Verfahren zur Umwandlung eines Objektcodes in normierten Objektcode gemäß der Erfindung
wird folglich mit zwei verschiedenen Ausführungsmodi beschrieben, einem ersten Ausführungsmodus, der der
Umwandlung eines die Kriterien C1, C2, C'3, C'4 erfüllenden Objektcodes in einen normierten Objektcode ent-
spricht, der die Kriterien C1, C2, C3, C'4 erfüllt, die einem auf eine leere Verzweigungsanweisung oder ein lee-
res Verzweigungsziel normierten Code entsprechen, dann, gemäß einer zweiten Ausgestaltung, bei der der
herkömmliche Objektcode, der den gleichen Ausgangskriterien genügt, in einen normierten Objektcode umge-
wandelt wird, der z. B. die Kriterien C1, C2, C'3, C4 erfüllt, die einem typisierte Register verwendenden nor-
mierten Code entsprechen.
[0133] Die erste Ausgestaltung des erfindungsgegenständlichen Codeumwandlungsverfahrens wird nun in
Verbindung mit Fig. 4a beschrieben. Bei der in Fig. 4a dargestellten Ausgestaltung soll der herkömmliche Aus-
gangscode den Kriterien C1 + C2 + C'3 entsprechen, und der durch die Umwandlung erhaltene normierte Code
soll den Kriterien C1 + C2 + C3 entsprechen.
[0134] Gemäß der erwähnten Figur beruht der Umwandlungsprozess darin, für jede laufende Anweisung Ii

des Codes oder des Unterprogramms jede Anweisung in einem Schritt 500 mit dem Datentyp des Stacks vor
und nach Ausführung dieser Anweisung zu kommentieren. Die Kommentardaten sind mit AIi bezeichnet und
sind der betrachteten laufenden Anweisung durch die Beziehung Ii ↔ AIi zugeordnet. Die Kommentierungsda-
ten werden durch eine Analyse des diese Anweisung betreffenden Datenflusses berechnet. Die Datentypen
vor und nach Ausführung der Anweisung sind mit tbe1 bzw. tae1 bezeichnet. Die Berechnung der Kommentie-
rungsdaten durch Analyse des Datenflusses ist eine dem Fachmann vertraute herkömmliche Rechnung und
wird deshalb nicht im Detail beschrieben.
[0135] Die im Schritt 500 durchgeführte Operation ist in der im Anhang eingeführten Tabelle T6 dargestellt, in
welcher für ein Applet oder ein Applet-Unterprogramm mit zwölf Anweisungen die durch die Typen der Register
und die Typen des Stacks gebildeten Kommentierungsdaten AIi eingeführt sind.
[0136] Auf den besagten Schritt 500 folgt ein Schritt 500a, der darin beruht, den Index i auf die erste Anwei-
sung Ii = I1 zu setzen. Auf den Schritt 500a folgt ein Schritt 501, der darin beruht, unter den Anweisungen und
jeder laufenden Anweisung Ii die Existenz von mit IB bezeichneten Verzweigungen oder Verzweigungszielen
CIB zu erfassen, für welche der Ausführungsstack nicht leer ist. Diese Erfassung 501 wird durchgeführt mit
einem ausgehend von Kommentierungsdaten AIi durchgeführten Test des jeder laufenden Anweisung zuge-
wiesenen Typs von Stackvariablen, wobei der Test für die laufende Anweisung bezeichnet ist mit:
Ii ist IB oder CIB und Stack (AI) ≠ leer.
[0137] Bei positiver Antwort auf den Test 501, d. h. bei Erfassung eines nicht leeren Ausführungsstacks, folgt
auf den erwähnten Test ein Schritt, der darin beruht, Anweisungen zur Übertragung der Stackvariablen beider-
seits dieser Verzweigungen IB oder dieser Verzweigungsziele CIB einzufügen, um den Inhalt des Ausführungs-
stacks vor der Verzweigung in temporäre Register zu entleeren und ausgehend von den temporären Registern
nach der Verzweigung den Ausführungsstack wieder herzustellen. Der Einfügeschritt ist in Fig. 4a mit 502 be-
zeichnet. Auf ihn folgt ein Schritt 503 des Erreichens der letzten Anweisung, bezeichnet mit
Ii = letzte Anweisung?
[0138] Bei negativer Antwort auf den Test 503 wird eine Inkrementierung 504 i = i + 1 für den Übergang zu
nächsten Anweisung und die Rückkehr zum Schritt 501 durchgeführt. Bei positiver Antwort auf den Test 503
wird ein Schritt Ende ausgeführt. Bei negativer Antwort auf den Test 501 wird das Umwandlungsverfahren fort-
gesetzt durch eine Verzweigung zum Schritt 503 in Abwesenheit der Einfügung einer Übertragungsanweisung.
Mit der Ausführung des Verfahrens zur Umwandlung eines herkömmlichen Codes in einen normierten Code
mit Verzweigungsanweisung bei leerem Stack, wie in Fig. 4a dargestellt, kann ein normierter Objektcode für
das gleiche Ausgangsprogrammfragment erhalten werden, in welchem der Stack der Stackvariablen bei jeder
Verzweigungsanweisung und jeder Verzweigungszielanweisung leer ist, ohne dass die Ausführung des Pro-
grammfragments verändert wird. Im Fall einer Java-Umgebung sind die Anweisung zur Übertragung von Daten
zwischen Stack und Register load- und store-Anweisungen der virtuellen Java-Maschine.
[0139] Wiederum bezogen auf das Beispiel der Tabelle T6 erfasst das Umwandlungsverfahren ein Verzwei-
gungsziel, wo der Stack nicht leer ist, bei der Anweisung 9. Es wird also vor der Verzweigungsanweisung 5,
13/44

DE 600 06 141 T2 2004.08.26
die zu der besagten Anweisung 9 führt, eine Anweisung istore 1 eingefügt, um den Inhalt des Stacks in das
Register 1 zu sichern und zu gewährleisten, dass der Stack bei der Verzweigung leer ist. Symmetrisch wird die
Einfügung einer Anweisung iload 1 vor dem Anweisungsziel 9 durchgeführt, um den Inhalt des Stacks identisch
zu seinem Zustand vor der Verzweigung wieder herzustellen. Schließlich wird eine Anweisung istore 1 nach
der Anweisung 8 eingefügt, um das Gleichgewicht des Stacks auf den zwei Wegen zu garantieren, die zu der
Anweisung 9 führen. Das Ergebnis der so durchgeführten Umwandlung in einen normierten Code ist in der Ta-
belle T7 dargestellt.
[0140] Die zweite Ausgestaltung des erfindungsgegenständlichen Umwandlungsverfahrens wird nun in Ver-
bindung mit der Fig. 4b in dem Fall beschrieben, wo der herkömmliche Ausgangsobjektcode die Kriterien C1
+ C'4 und der normierte Objektcode die Kriterien C1 + C4 erfüllt.
[0141] Bezogen auf die erwähnte Fig. 4b sei gesagt, dass das Verfahren bei dieser Ausgestaltung darin be-
ruht, in einem Schritt 500, der im Wesentlichen mit dem in Fig. 4a dargestellten identisch ist, jede laufende
Anweisung Ii mit dem Datentyp der Register vor und nach Ausführung dieser Anweisung zu kommentieren. In
gleicher Weise werden die Kommentierungsdaten AIi mit Hilfe einer Analyse des Datenflusses betreffend die-
ser Anweisung berechnet.
[0142] Auf den Kommentierungsschritt 500 folgt ein Schritt, der darin beruht, eine Neuzuweisung der Regis-
ter, einen mit 601 bezeichneten Schritt, durch Erfassen der mit unterschiedlichen Typen verwendeten Aus-
gangsregister, Aufteilen dieser Ausgangsregister in verschiedene normierte Register, wobei ein normiertes Re-
gister jedem verwendeten Datentyp zugewiesen ist, durchzuführen. Auf den Schritt 601 folgt ein Schritt 602
der Reaktualisierung der Anweisungen, welche die Operanden manipulieren, die auf die erwähnten normierten
Register zugreifen. Auf den Schritt 602 folgt ein Schritt der Fortsetzung des Kontexts 302.
[0143] Mit Bezug auf das in Tabelle T6 angegebene Beispiel sei gesagt, dass das Umwandlungsverfahren
erfasst, dass das Register mit Rang 0, mit r0 bezeichnet, mit den zwei Typen object Anweisung 0 und 1 und
int, Anweisung 9 und folgende, verwendet wird. Es wird dann eine Aufteilung des Ursprungsregisters r0 in zwei
Register vorgenommen, das Register 0 für die Anwendung der object-Typen und das Register 1 für die An-
wendungen vom Typ int. Die Verweise auf das Register 0 vom Typ int werden dann umgeschrieben durch Um-
wandeln in Verweise auf das Register 1, wobei der erhaltene normierte Code in der beigefügten Tabelle T8
angegeben ist.
[0144] Wie man sieht, wird in nichteinschränkender Weise in dem in Verbindung mit der erwähnten Tabelle
T8 eingeführten Beispiel das neue Register 1 sowohl für die Normierung des Stacks als auch für die Erzeugung
von typisierten Registern durch Aufteilung des Registers 0 in zwei Register verwendet.
[0145] Das Verfahren zur Umwandlung eines herkömmlichen Codes in einen normierten Code mit Verzwei-
gungsanweisung bei leerem Stack, wie in Fig. 4a beschrieben, wird nun detaillierter in einer nichteinschrän-
kenden, bevorzugten Ausgestaltung in Verbindung mit Fig. 5a beschrieben.
[0146] Diese Ausgestaltung betrifft den Schritt 501, der darin beruht, in den Anweisungen und jeder laufenden
Anweisung Ii das Vorhandensein einer Verzweigung IB bzw. eines Verzweigungsziels CIB zu erfassen, für die
der Stack nicht leer ist.
[0147] Nach der Bestimmung der Zielanweisungen, wo der Stack nicht leer ist, wobei diese Bedingung in
Schritt 504a mit Ii Stack ≠ leer bezeichnet ist, beruht das Umwandlungsverfahren darin, in dem erwähnten
Schritt 504a diesen Anweisungen eine Menge von neuen Registern, eines pro in Höhe dieser Anweisungen
aktivem Stackplatz zuzuordnen. Wenn somit i den Rang eines Verzweigungsziels bezeichnet, dessen zuge-
ordneter Stacktyp nicht leer ist und vom Typ tpli bis tpni mit n > 0, Stack nicht leer, ist, teilt der Umwandlungs-
prozess n neue, noch nicht verwendete Register r1 bis rn zu und ordnet sie der entsprechenden Anweisung i
zu. Diese Operation wird in Schritt 504a vorgenommen.
[0148] Auf den Schritt 504a folgt ein Schritt 504, der darin beruht, jede erfasste Anweisung mit Rang i zu un-
tersuchen und in einem Testschritt 504 das Vorhandensein eines Verzweigungsziels CIB oder einer Verzwei-
gung IB zu diskriminieren. Der Schritt 504 ist in Form eines Test, bezeichnet mit:
∃?CIB, IB und Ii = CIB
dargestellt.
[0149] In dem Fall, wo die Anweisung vom Rang i ein durch die vorhergehende Gleichung dargestelltes Ver-
zweigungsziel CIB ist und der Stack der Stackvariablen in Höhe dieser Anweisung nicht leer ist, d. h. bei posi-
tiver Antwort auf den Test 504 für eine beliebige vorhergehende Anweisung vom Rang i – 1, die durch eine
Verzweigung, eine Ausnahmeaufhebung oder eine Programmrückkehr gebildet ist, ist diese im Testschritt 505
realisierte Bedingung bezeichnet durch:
Ii–1 = IB, Aufhebung EXCEPT, Programmrückkehr.
[0150] Die erfasste Anweisung von Rang i ist nur durch eine Verzweigung erreichbar. Bei positiver Antwort
auf den erwähnten Test 505 beruht der Umwandlungsprozess darin, einen Schritt 506 durchzuführen, der darin
beruht eine Menge von Ladeanweisungen vom Typ load ausgehend von der Menge von neuen Registern vor
der betreffenden erfassten Anweisung mit Rang i einzufügen. Auf die Einfügeoperation 505 folgt eine Umlen-
kung 507 aller zu der erfassten Anweisung von Rang i führenden Verzweigungen auf die erste eingefügte La-
14/44

DE 600 06 141 T2 2004.08.26
deanweisung load. Die Einfüge- und Umlenkungsanweisungen sind in der im Anhang beigefügten Tabelle T9
dargestellt.
[0151] Für jede sequentiell fortschreitende vorhergehende Anweisung vom Rang i – 1, d. h., wenn die laufen-
de Anweisung vom Rang i sowohl durch eine Verzweigung als auch ausgehend von der vorhergehenden An-
weisung erreichbar ist, wobei diese Bedingung durch den Test 508 überprüft wird und durch die Beziehungen:
Ii–1 → Ii
und
IB → Ii
symbolisiert ist, beruht der Umwandlungsprozess in einem Schritt 509 des Einfügens einer Menge von Siche-
rungsanweisungen store in die Menge von neuen Registern vor der erfassten Anweisung vom Rang i und einer
Menge von Ladeanweisungen load aus dieser Menge von neuen Registern. Auf den Schritt 509 folgt dann ein
Schritt 510 des Umlenkens aller zu der erfassten Anweisung vom Rang i führenden Verzweigungen auf die
erste eingefügte Ladeanweisung load.
[0152] In dem Fall, wo die erfasste Anweisung vom Rang i eine Verzweigung zu einer festgelegten Anweisung
für jede erfasste Anweisung mit Rang i, gebildet durch eine unbedingte Verzweigung, ist, wobei diese Bedin-
gung durch einen mit:
Ii = Ibunbedingt
bezeichneten Test 511 überprüft wird, beruht der Umwandlungsprozess wie in Fig. 5a dargestellt darin, in ei-
nem Schritt 512 bei positiver Antwort auf den Test 511 vor der erfassten Anweisung mit Rang i eine Mehrzahl
von Sicherungsanweisungen store einzufügen. Der Umwandlungsprozess fügt die n store-Anweisungen vor
der Anweisung i ein, wie beispielhaft in Tabelle T11 dargestellt. Die store-Anweisungen adressieren die Regis-
ter r1 bis rn, wobei n die Zahl der Register bezeichnet. Jedem neuen Register wird so die Sicherungsanweisung
zugeordnet.
[0153] Für jede erfasste Anweisung mit Rang i, die durch eine unbedingte Verzweigung gebildet ist, und für
eine Zahl mOp von mehr als 0 von dieser Verzweigungsanweisung manipulierten Operanden, wobei diese Be-
dingung in dem mit:
Ii = IBbedingt
mit mOp > 0
bezeichneten Test 513 überprüft wird, beruht der Umwandlungsprozess bei positiver Antwort auf den erwähn-
ten Test 513 darin, vor dieser erfassten Anweisung mit Rang i in einem Schritt 514 eine mit swap_x bezeichnete
Anweisung zum Permutieren, an der Spitze der Stackvariablen, der mOp Operanden der erfassten Anweisung
mit Rang i und der n nachfolgenden Werte durchzuführen. Durch diese Permutationsoperation kann die Menge
der n der in der Menge von neuen Registern r1 bis rn zu sichernden Werte an die Spitze des Stacks der Stack-
variablen gebracht werden. Auf den Schritt 514 folgt ein Schritt 515, der darin beruht, vor der Anweisung mit
Rang i eine Menge von Operationen store zum Sichern in die Menge der neuen Register r1 bis rn einzufügen.
Auf den besagten Schritt 515 des Einfügens folgt seinerseits ein Schritt 516 des Einfügens, hinter die erfasste
Anweisung mit Rang i, einer Menge von Anweisungen load zum Laden aus der Menge der neuen Register r1

bis rn. Die Menge der entsprechenden Einfügeoperationen ist in der im Anhang eingefügten Tabelle T12 dar-
gestellt.
[0154] Aus Gründen der Vollständigkeit und mit Bezug auf Fig. 5a sei angegeben, dass bei negativer Antwort
auf den Test 504 die Fortsetzung des Umwandlungsprozesses realisiert wird durch einen Schritt der Fortset-
zung des Kontexts Fortsetzung 503, dass auf die negative Antwort auf die Tests 505, 508, 511 und 513 eine
Fortsetzung des Umwandlungsprozesses über einen Kontextfortsetzungsschritt Fortsetzung 503 folgt, und
dass das Gleiche für die Fortsetzung der Operationen nach den erwähnten Umlenkungsschritten 507 und 510
bzw. Einfügeschritten 512 und 516 gilt.
[0155] Eine detailliertere Beschreibung des Normierungs- und Umwandlungsverfahrens eines Objektcodes
in einen normierten Objektcode unter Verwendung von typisierten Registern, wie in Fig. 4b beschrieben, wird
nun in Verbindung mit Fig. 5b gegeben. Diese Ausgestaltung betrifft insbesondere eine bevorzugte, nichtein-
schränkende Ausgestaltung des Schritts 601 der Neuzuweisung der Register durch Erfassen von mit unter-
schiedlichen Typen verwendeten Ursprungsregistern.
[0156] Mit Bezug auf die erwähnte Fig. 5b sei gesagt, dass der erwähnte Schritt 601 darin beruht, in einem
Schritt 603 Lebensdauerintervalle, mit IDj bezeichnet, jedes Registers rj zu bestimmen. Diese Lebensdauerin-
tervalle, englisch als „live range" oder „webs" bezeichnet, sind für ein Register r definiert als maximale Menge
an partiellen Spuren, so dass das Register r an allen Punkten dieser Spuren lebendig (vivant) ist. Für eine de-
taillierte Definition dieser Begriffe kann auf das Werk mit dem Titel „Advanced Compiler Design and Implemen-
tation" herausgegeben von Steven S. Muchnik, Sektion 16.3, Morgan Kaufmann, 1997, zurückgegriffen wer-
den. Der Schritt 603 ist bezeichnet durch die Beziehung:
IDj ↔ rj,
der zufolge jedem Register rj ein entsprechendes Lebensdauerintervall IDj zugeordnet wird.
[0157] Auf den erwähnten Schritt 603 folgt ein Schritt 604, der darin beruht, in Schritt 604 den mit tpj bezeich-
15/44

DE 600 06 141 T2 2004.08.26
neten Hauptdatentyp jedes Lebensdauerintervalls IDj zu bestimmen. Der Hauptdatentyp eines Lebensdauer-
intervalles IDj für ein Register rj ist definiert durch die obere Schranke der in diesem Register rj durch die Si-
cherungsanweisungen store, die zu dem besagten Lebensdauerintervall gehören, gespeicherten Datentypen.
[0158] Auf den Schritt 604 folgt wiederum ein Schritt 605, der darin beruht, einen Graphen von Interferenzen
zwischen den zuvor in den Schritten 603 und 604 definierten Lebensdauerintervallen zu erzeugen, wobei die-
ser Interferenzgraph ein nicht orientierter Graph ist, von dem jeder Knoten durch ein Lebensdauerintervall ge-
bildet ist und dessen Kanten, mit aj1,j2 in Fig. 5b bezeichnet, zwischen zwei Knoten IDj und IDj2 existieren, wenn
ein Knoten eine an das Register des anderen Knotens adressierte Sicherungsanweisung enthält, oder umge-
kehrt. In Fig. 5b ist die Konstruktion des Interferenzgraphen symbolisch dargestellt, wobei diese Konstruktion
anhand von dem Fachmann bekannten Rechentechniken durchgeführt werden kann. Für eine detailliertere
Beschreibung der Konstruktion dieses Typs von Graphen kann man nützlicherweise auf das von Alfred V. Aho,
Ravi Sethi und Jeffrey D. Ullman veröffentlichte Werk mit dem Titel „Compilers: Principles, Techniques and
Tools", Addison-Wesley 1986, Sektion 9.7, zurückgreifen.
[0159] Nach dem Schritt 605 beruht das Normierungsverfahren wie in Fig. 5b dargestellt darin, eine Einheit-
lichkeit eines jedem Register rj zugewiesenen Datentyps im Interferenzgraphen herzustellen, indem Kanten
zwischen allen Paaren von Knoten des Interferenzgraphen eingefügt werden, solange zwei Knoten eines Paa-
res von Knoten nicht den gleichen zugeordneten Hauptdatentyp haben. Es versteht sich, dass die Übersetzung
des Einzigkeitscharakters eines jedem Register zugewiesenen Datentyps selbstverständlich der Übersetzung
und Berücksichtigung des zuvor in der Beschreibung erwähnten Kriteriums C4 in dem Interferenzgraph ent-
spricht. Auf den Schritt 606 folgt dann ein Schritt 607, in welchem eine Instanziierung des Interferenzgraph
durchgeführt wird, die allgemeiner als ein Schritt des Einfärbens (coloriage) des Interferenzgraphen bezeich-
nete Instantiierung nach den üblichen Techniken durchgeführt wird. Im Laufe des Schritts 607 ordnet der Um-
wandlungsprozess jedem Lebensdauerintervall IDjk eine Registernummer rk so zu, dass zwei benachbarte In-
tervalle in dem Interferenzgraphen verschiedene Registernummern bekommen.
[0160] Diese Operation kann ausgehend von einem beliebigen angepassten Prozess durchgeführt werden.
Als nichteinschränkendes Beispiel sei angegeben, dass ein bevorzugter Prozess darin beruhen kann

a) einen Knoten minimalen Grades in dem Interferenzgraphen zu wählen, wobei der minimale Grad definiert
ist als eine minimale Zahl von benachbarten Knoten, und ihn aus dem Graphen zu entfernen. Dieser Schritt
kann wiederholt werden, bis der Graph leer ist.
b) Jeder zuvor entfernte Knoten wird in den Interferenzgraphen in zu seiner Entfernung umgekehrter Rei-
henfolge wieder eingefügt, so dass der zuletzt entfernte der erste wieder eingeführte ist, usw., in entgegen-
gesetzter Reihenfolge zur Reihenfolge der Entfernung. So kann jedem wieder eingefügten Knoten die
kleinste Registernummer zugeordnet werden, die sich von den allen benachbarten Knoten zugeordneten
Registernummern unterscheidet.

[0161] Schließlich schreibt in dem in Fig. 4b dargestellten Schritt 602 der Umwandlungs- und Neuverteilungs-
prozess die in dem Code des Unterprogramms des betreffenden Applets vorkommenden Registerzugriffsan-
weisungen neu. Ein Zugriff auf ein gegebenes Register in einem entsprechenden Lebensdauerintervall wird
ersetzt durch einen Zugriff auf ein anderes Register, dessen Nummer während der auch als Einfärbungsphase
bezeichneten Instanziierungsphase zugeordnet wurde.
[0162] Eine detailliertere Beschreibung eines mitgeführten Informatiksystems, welches die Anwendung des
Verwaltungsprotokolls und des Prozesses der Überprüfung eines Programmfragments oder Applets gemäß
dem Gegenstand der Erfindung erlaubt, und ein Entwicklungssystem für ein Applet werden nun in Verbindung
mit Fig. 6 gegeben.
[0163] Zu dem das Bezugszeichen 10 tragenden mitgeführten System sei gesagt, dass dieses mitgeführte
System vom umprogrammierbaren Typ ist und die wesentlichen Elemente wie in Fig. 1b dargestellt aufweist.
Das erwähnte mitgeführte System wird als mit einem Endgerät durch eine serielle Verbindung verbunden an-
genommen, wobei das Endgerät seinerseits z. B. über ein lokales Netz, gegebenenfalls über ein entferntes
Netz, mit einem Computer zur Entwicklung des Applets mit dem Bezugszeichen 20 verbunden ist. Auf dem
mitgeführten System läuft ein Hauptprogramm, welches die auf der seriellen Verbindung durch das Endgerät
gesendeten Befehle liest und ausführt. Außerdem können die Standardbefehle für eine Mikroprozessorkarte
wie etwa die Standardbefehle des Protokolls ISO 7816, ausgeführt werden, wobei das Hauptprogramm ferner
zwei zusätzliche Befehle erkennt, einen zum Fernladen eines Applets und den anderen zum Auswählen eines
zuvor auf die Mikroprozessorkarte geladenen Applets.
[0164] Gemäß dem Gegenstand der vorliegenden Erfindung ist die Struktur des Hauptprogramms so reali-
siert, dass es wenigstens ein Programmmodul zur Verwaltung und Überprüfung eines ferngeladenen Pro-
grammfragments nach dem zuvor in der Beschreibung mit Bezug auf Fig. 2 beschriebenen Protokolls zur Ver-
waltung eines ferngeladenen Programmfragments aufweist.
[0165] Außerdem umfasst das Programmmodul auch ein Unterprogrammmodul zur Überprüfung eines fern-
geladenen Programmfragments nach dem Überprüfungsverfahren wie zuvor in der Beschreibung in Verbin-
16/44

DE 600 06 141 T2 2004.08.26
dung mit den Fig. 3a bis 3j beschrieben.
[0166] Zu diesem Zweck ist die Struktur der Speicher, insbesondere des nicht überschreibbaren permanen-
ten Speichers bzw. ROM-Speichers so verändert, dass neben dem Hauptprogramm auch ein Modul 17 zur
Protokollverwaltung und Überprüfung, wie zuvor erwähnt, vorhanden ist. Außerdem umfasst der nichtflüchtige
überschreibbare Speicher vom EEPROM-Typ vorteilhafterweise ein Verzeichnis von Applets, mit 18 bezeich-
net, welches die Ausführung des Verwaltungsprotokolls und des Überprüfungsprozesses gemäß der vorliegen-
den Erfindung ermöglicht.
[0167] Mit Bezug auf die gleiche Fig. 6 sei gesagt, dass das System zur Entwicklung des Applets gemäß dem
Gegenstand der vorliegenden Erfindung, welches die Umwandlung eines herkömmlichen Objektcodes, wie
oben in der Beschreibung erwähnt, der den Kriterien C1 + C2 + C'3 + C'4 genügt, im Rahmen der Java-Um-
gebung in einen normierten Objektcode für das gleiche Programmfragment ermöglicht, zugeordnet zu einem
herkömmlichen Java-Compiler ein Codeumwandlungsmodul, mit 22 bezeichnet, umfasst, welches die Um-
wandlung des Codes in normierten Code gemäß der zuvor in der Beschreibung in Verbindung mit den Fig. 4a,
4b und 5a, 5b beschriebenen ersten und zweiten Ausgestaltung vornimmt. Die Normierung des ursprünglichen
Objektcodes zu einem normierten Objektcode mit Verzweigungsanweisung bei leerem Stack und einen nor-
mierten Objektcode, der typisierte Register verwendet, wie oben in Beschreibung erwähnt, erlaubt es, die von
dem erfindungsgegenständlichen Überprüfungsverfahren vorgegeben Überprüfungskriterien C3 und C4 zu er-
füllen.
[0168] Auf das Codeumwandlungsmodul 22 folgt ein JavaCard-Wandler 23, der die Übertragung über ein ent-
ferntes oder lokales Netz an das Endgerät und über die serielle Verbindung an die Mikroprozessorkarte 10 si-
cherzustellen erlaubt. Das in Fig. 6 dargestellte Applet-Entwicklungssystem 20 erlaubt es, die von dem Ja-
va-Compiler 21 ausgehend von den Java-Quellcodes des Applets erzeugten kompilierten Klassendateien in
äquivalente Klassendateien umzuwandeln, die die von dem Verwaltungsprotokoll und dem Überprüfungsmo-
dul 17, die auf der Mikroprozessorkarte 10 mitgeführt sind, vorgegebenen zusätzlichen Anforderungen C3, C4
erfüllen. Diese umgewandelten Klassendateien werden auf der Karte durch den Standard-JavaCard-Wandler
in ein fernladbares Applet konvertiert.
[0169] Diverse besonders bemerkenswerte Elemente aus der Menge der Elemente des Protokolls der Ver-
fahren und der Systeme der vorliegenden Erfindung werden nun zur Erläuterung angegeben.
[0170] In Bezug auf die Überprüfungsprozesse des Standes der Technik, wie in der Einleitung der Beschrei-
bung erwähnt, ist das erfindungsgegenständliche Überprüfungsverfahren insofern bemerkenswert, als es den
Überprüfungsaufwand auf die Typisierungseigenschaften der Operanden konzentriert, die für die Sicherheit
der Ausführung jedes Applets wesentlich sind, d. h. die Einhaltung der jeder Anweisung zugeordneten Typ-Be-
dingungen und das Fehlen eines Stacküberlaufs. Andere Überprüfungen erscheinen im Hinblick auf die Si-
cherheit nicht wesentlich, insbesondere die Überprüfung, dass der Code jedes Register korrekt initialisiert, be-
vor er es zum ersten Mal liest. Im Gegensatz dazu arbeitet das erfindungsgegenständliche Überprüfungsver-
fahren mit der Initialisierung aller Register auf Null ausgehend von der virtuellen Maschine bei der Initialisierung
der Methode, um zu garantieren, dass das Lesen eines nicht initialisierten Registers die Sicherheit der Karte
nicht kompromittieren kann.
[0171] Außerdem garantiert die von dem erfindungsgegenständlichen Überprüfungsverfahren vorgegebene
Anforderung, dass bei jeder Verzweigungsanweisung oder jedem Verzweigungsziel der Stack leer sein soll,
dass der Stack nach Ausführung der Verzweigung und vor Ausführung der Anweisung, zu der das Programm
verzweigt hat, im gleichen Zustand, nämlich leer ist. Dieser Betriebsmodus garantiert, dass der Stack in einem
kohärenten Zustand ist, egal, welcher Ausführungsweg durch den Code des Unterprogramms oder des betref-
fenden Applets verfolgt wird.
[0172] Die Kohärenz des Stacks ist so garantiert, auch bei Vorhandensein einer Verzweigung oder eines Ver-
zweigungsziels. Im Gegensatz zu den herkömmlichen Verfahren und Systemen, bei denen es notwendig ist,
den Typ des Stacks bei jedem Verzweigungsziel im Schreib-Lese-Speicher zu halten, was eine Menge an
Schreiblesespeicher proportional zu Tp × Nb erfordert, dem Produkt aus der maximalen Größe verwendeten
Ausführungsstacks und der Zahl der Verzweigungsziele im Code, benötigt das erfindungsgegenständliche
Überprüfungsverfahren den Typ des Ausführungsstacks nur bei der gerade überprüften Anweisung, und es
speichert nicht den Typ dieses Stacks an anderen Punkten des Codes. Folglich kommt das erfindungsgemäße
Verfahren mit einer Menge an Schreiblesespeicher aus, die proportional zu Tp aber unabhängig von Nb und
damit von der Länge des Codes des Unterprogramms oder Applets ist.
[0173] Die Anforderung des Kriteriums C4, demzufolge ein gegebenes Register mit einem einzigen Typ im
gesamten Code eines Unterprogramms verwendet werden muss, garantiert, dass der erwähnte Code ein Re-
gister nicht inkohärent verwendet, z. B., indem er dort an einem Punkt des Programms eine ganze Zahl short
schreibt und sie an einem anderen Punkt des Programms als einen Objektverweis liest.
[0174] Bei den im Stand der Technik beschriebenen Überprüfungsprozessen, insbesondere in der Java-Spe-
zifikation mit dem Titel „The Java Virtual Machine Specification", herausgegeben von Tim Lindholm und Frank
Yellin, bereits zitiert, ist es zum Garantieren der Kohärenz der erwähnten Verwendungen über die Verzwei-
17/44

DE 600 06 141 T2 2004.08.26
gungsanweisungen hinweg notwendig, eine Kopie der Tabelle der Registertypen bei jedem Verzweigungsziel
im Schreiblesespeicher zu halten. Diese Operation erfordert eine Menge an Schreiblesespeicher proportional
zu Tr × Nb, wobei Tr die Zahl der von dem Unterprogramm verwendeten Register und Nb die Zahl der Verzwei-
gungsziele in dem Code des Unterprogramms ist.
[0175] Im Gegensatz dazu arbeitet der erfindungsgegenständliche Überprüfungsprozess mit einer globalen
Tabelle von Registertypen und ohne Speicherung einer Kopie an verschiedenen Punkten des Codes im
Schreiblesespeicher. Folglich ist der zur Durchführung des Überprüfungsprozesses erforderliche Schreiblese-
speicher proportional zu Tr, aber unabhängig von Nb und damit von der Länge des Codes des betreffenden
Unterprogramms.
[0176] Der Anforderung, der zufolge ein gegebenes Register mit dem gleichen Typ an allen Punkten, d. h. bei
jeder Anweisung des betreffenden Codes, verwendet wird, vereinfacht wesentlich und signifikant die Überprü-
fung der Unterprogramme. Bei den herkömmlichen Überprüfungsprozessen und bei Fehlen einer solchen An-
forderung muss der Überprüfungsprozess sicherstellen, dass die Unterprogramme eine strenge Stack-Diszi-
plin einhalten und muss den Körper der Unterprogramme im Hinblick auf den Typ bestimmter Register in viel-
gestaltiger Weise überprüfen.
[0177] Zusammenfassend erlaubt es der erfindungsgegenständliche Überprüfungsprozess im Vergleich zu
den herkömmlichen Techniken einerseits, die Größe des Programmcodes zu verringern, mit dem das Überprü-
fungsverfahren durchgeführt werden kann, und andererseits den Verbrauch an Schreiblesespeicher bei den
Überprüfungsoperationen zu verringern, wobei der Komplexitätsgrad von der Form O(Tp + Pr) im Fall des er-
findungsgegenständlichen Überprüfungsprozesses ist, anstelle von O(Tp + Tr) × Nb) bei den herkömmlichen
Überprüfungsprozessen, und wobei dennoch die gleichen Garantien im Hinblick auf die Sicherheit der Ausfüh-
rung des überprüften Codes erreicht werden.
[0178] Schließlich wird der Prozess der Umwandlung eines herkömmlichen Ursprungscodes in einen nor-
mierten Code durch lokalisierte Umwandlung des Codes in Abwesenheit der Übertragung von Zusatzinforma-
tionen an das Überprüfungsorgan, d. h. an die Mikroprozessorkarte oder das mitgeführte Informatiksystem,
durchgeführt.
[0179] Was das Verfahren zur Neuzuweisung von Registern, wie in Fig. 4b und 5b beschrieben, angeht, so
unterscheidet sich dieses Verfahren von den insbesondere in dem Patent US 4,571,678 und dem Patent US
5,249,295 beschriebenen bekannten herkömmlichen Verfahren dadurch, dass
– die Registerneuzuweisung gewährleistet, dass ein gleiches Register nicht zwei Intervallen zugeteilt wer-
den kann, die verschiedene Haupttypen besitzen, was garantiert, dass ein gegebenes Register in dem ge-
samten Code mit dem gleichen Typ verwendet wird; und
– dass die existierenden und in den oben zitierten Dokumenten beschriebenen Registerzuweisungsalgo-
rithmen eine feste Zahl von Registern voraussetzen und versuchen, die im Englischen als „spills" bezeich-
neten Übertragungen zwischen Registern und Stack zu minimieren, wohingegen die Neuzuweisung der Re-
gister gemäß dem Gegenstand der vorliegenden Erfindung in einem Rahmen arbeitet, wo die Gesamtzahl
der Register variabel ist, so dass es keine Veranlassung gibt, Übertragungen zwischen Registern und Stack
durchzuführen, wenn ein Prozess zur Minimierung der Gesamtzahl von Registern eingesetzt wird.

[0180] Das Protokoll zur Verwaltung eines ferngeladenen Programmfragments auf einem mitgeführten Sys-
tem und die Verfahren zur Überprüfung dieses ferngeladenen Programmfragments bzw. zur Umwandlung die-
ses Objektcodes eines ferngeladenen Programmfragments gemäß der vorliegenden Erfindung können selbst-
verständlich softwaremäßig eingesetzt werden.
[0181] In diesem Zusammenhang betrifft die Erfindung gleichfalls ein direkt in den internen Speicher eines
programmierbaren mitgeführten Systems ladbares Computerprogrammprodukt, wobei dieses mitgeführte Sys-
tem das Fernladen eines durch einen Objektcode, einer von dem Mikroprozessor des mitgeführten Systems
ausführbaren Folge von Anweisungen, gebildeten Programmfragments über eine virtuelle Maschine erlaubt,
die mit einem Ausführungsstack und Registern oder Variablen ausgestattet ist, die von diesen Anweisungen
manipuliert werden, um die Interpretation dieses Objektcodes zu ermöglichen. Das entsprechende Computer-
programmprodukt umfasst Objektcodeabschnitte zur Ausführung des Protokolls zur Verwaltung eines fernge-
ladenen Programmfragments auf diesem mitgeführten System, wie in den oben in der Beschreibung beschrie-
benen Fig. 2 und 6 dargestellt, wenn das mitgeführte System an ein Terminal angeschlossen ist und dieses
Programm vom Mikroprozessor des mitgeführten Systems über die virtuelle Maschine ausgeführt wird.
[0182] Die Erfindung betrifft auch ein direkt in den internen Speicher eines umprogrammierbaren mitgeführten
Systems wie etwa einer mit einem überschreibbaren Speicher versehenen Mikroprozessorkarte ladbares
Computerprogrammprodukt, wie in Verbindung mit Fig. 6 dargestellt. Dieses Computerprogrammprodukt um-
fasst Objektcodeabschnitte zur Ausführung der Schritte zur Überprüfung eines auf dieses mitgeführte System
ferngeladenen Programmfragments, wie oben in der Beschreibung in Verbindung mit den Fig. 3a und 3j dar-
gestellt und beschrieben. Diese Überprüfung wird ausgeführt, wenn dieses mitgeführte System an ein Endge-
rät angeschlossen ist und dieses Programm von dem Mikroprozessor dieses mitgeführten Systems über die
18/44

DE 600 06 141 T2 2004.08.26
virtuelle Maschine ausgeführt wird.
[0183] Die Erfindung betrifft auch ein Computerprogrammprodukt, wobei dieses Computerprogrammprodukt
Objektcodeabschnitte zur Ausführung der Schritte des Verfahrens zur Umwandlung des Objektcodes eines
Programmfragments in einen normierten Objektcode für das gleiche Programmfragment umfasst, wie in den
Fig. 4a, 4b bzw. 5a, 5b sowie in Fig. 6, wie zuvor in der Beschreibung beschrieben, umfasst.
[0184] Die vorliegende Erfindung betrifft auch ein Computerprogrammprodukt, das auf einem Träger aufge-
zeichnet ist, der in einem umprogrammierbaren mitgeführten System verwendbar ist, z. B. einer mit einem
überschreibbaren Speicher ausgestatteten Mikroprozessorkarte, wobei dieses mitgeführte System das Fern-
laden eines durch einen von dem Mikroprozessor ausführbaren Objektcode gebildeten Programmfragments
über eine virtuelle Maschine erlaubt, die mit einem Ausführungsstack und lokalen Variablen oder Registern
ausgestattet ist, die von diesen Anwei sungen manipuliert werden, um die Interpretation des Objektcodes zu
ermöglichen. Das besagte Computerprogrammprodukt umfasst wenigstens ein Modul von vom Mikroprozes-
sor des mitgeführten Systems über die virtuelle Maschine lesbaren Programmen zum Steuern der Ausführung
einer Verwaltungsprozedur zum Fernladen eines ferngeladenen Programmfragments, wie in Fig. 2 dargestellt
und zuvor in der Beschreibung beschrieben, ein Modul von durch den Mikroprozessor über die virtuelle Ma-
schine lesbaren Programmen zum Steuern der Ausführung einer Überprüfungsprozedur, Anweisung für An-
weisung, des das Programmfragment bildenden Objektcodes, wie in Verbindung mit den Fig. 3a bis 3j in der
vorhergehenden Beschreibung beschrieben und erläutert, und ein Modul von von dem Mikroprozessor dieses
mitgeführten Systems über die virtuelle Maschine lesbaren Programmen zum Steuern der Ausführung eines
ferngeladenen Programmfragments nach oder bei Fehlen einer Umwandlung des Objektcodes dieses Pro-
grammfragments in normierten Objektcode für das gleiche Programmfragment, wie in Fig. 2 dargestellt.
[0185] Das besagte Computerprogrammprodukt umfasst auch ein Modul von durch den Mikroprozessor über
die virtuelle Maschine lesbaren Programmen zum Steuern der Sperrung der Ausführung, auf dem mitgeführten
System, des Programmfragments im Fall einer nicht gelungenen Überprüfungsprozedur des besagten Pro-
grammfragments, wie zuvor in der Beschreibung in Verbindung mit Fig. 2 dargestellt und beschrieben.

ANHÄNGE
TABELLE 1
19/44

DE 600 06 141 T2 2004.08.26
TABELLE 2

Pseudo-Code des Überprüfungsmoduls

PSEUDO-CODE DES ÜBERPRÜFUNGSMODULS

[0186] Verwendete globale Variablen:
Tr von der laufenden Methode deklarierte Registerzahlen
TP von der laufenden Methode deklarierte maximale Stackgröße
tr[Tr] Registertypentabelle (402 in Fig. 4)
tp[Tp] Typenstack (403 in Fig. 4)
pp Stackzeiger (404 in Fig. 4)
chg Flag, welches angibt, ob tr verändert ist
Initialisieren pp ← 0
Initialisieren tp[0] ... tp[n – 1] anhand der Typen der n Argumente der Methode
Initialisieren von tp[n] ... tp[Tr – 1] auf ⊥
Initialisieren von chg auf wahr
Solange chg wahr ist:
chg auf falsch setzen
sich auf erste Anweisung der Methode positionieren solange Ende der Methode nicht erreicht ist:
wenn laufende Anweisung Ziel einer Verzweigungsanweisung ist:
Wenn pp ≠ 0, Scheitern der Überprüfung
wenn laufende Anweisung Ziel eines Subroutinenaufrufs ist:
Wenn vorhergehende Anweisung in Folge weitergeht, Scheitern
Setzen tp[0] ← reatddr und pp ← 1
wenn laufende Anweisung eine Ausnahmeverwaltung der Klasse C ist:
Wenn vorhergehende Anweisung in Folge weitergeht, Scheitern
Setzen tp[0] ← C und pp ← 1
wenn laufende Anweisung ein Ziel unterschiedlicher Arten ist:
Scheitern der Überprüfung
Bestimmen der Typen a1, ..., an der Argumente der Anweisung
Wenn pp < n, Scheitern (Stacküberlauf) für i = 1, ..., n:
wenn tp[pp – n – i – 1] nicht Untertyp von ai ist, Scheitern
Setzen pp ← pp – n
Bestimmen der Typen r1, ..., rm der Ergebnisse der Anweisung
wenn p + m ≥ tp, Scheitern (Stacküberlauf)
für i = 1, ..., m, Setzen tp[pp ÷ i – 1] ← ri
Setzen pp ← pp + m
wenn laufende Anweisung ein Schreiben in ein Register r ist:
Bestimmen des Typs t des in das Register geschriebenen Werts
Setzen tr[r] ← untere Schranke (t, tr[r])
Wenn tr[r] verändert ist, Setzen chg ← wahr
wenn laufende Anweisung eine Verzweigung ist:
Wenn pp ≠ 0, Scheitern der Überprüfung
weiter zur nächsten Anweisung
Zurückgeben eines Codes für erfolgreiche Überprüfung

TABELLE T3
20/44

DE 600 06 141 T2 2004.08.26
TABELLE T4
Erste Iteration über den Code der Methode:

Zweite Iteration über den Code des Verfahrens:

TABELLE T5
(a) Verletzung der Typanforderungen bei den Argumenten einer Anweisung:
21/44

DE 600 06 141 T2 2004.08.26
Inkohärente Verwendung eines Registers:

(c) Verzweigungen, die zu Inkohärenzen am Stack führen:

(d) Stacküberlauf innerhalb einer Schleife:

TABELLE T6
(a) Ursprünglicher Code der Methode, kommentiert mit den Typen der Register und des Stacks:
22/44

DE 600 06 141 T2 2004.08.26
TABELLE T7
(b) Code des Verfahrens nach Normierung des Stacks in Höhe der Verzweigung 5 → 9:

TABELLE T8
(c) Code des Verfahrens nach Neuzuweisung der Register

TABELLE T9
(a) Verzweigungsziel, vorhergehende Anweisung nicht in der
23/44

D E 6 0 0 0 6 1 4 1 T 2 2 0 0 4 .0 8 .2 6
Patentansprüche

1. Protokoll zur Verwaltung eines ferngeladenen Programmfragmentes auf einem mitführbaren umpro-
grammierbaren System wie etwa einer mit einem überschreibbaren Speicher ausgestatteten Mikroprozessor-
karte, wobei das Programmfragment durch einen Objektcode gebildet ist, eine Folge von Anweisungen, die
von dem Mikroprozessor des mitführbaren Systems über eine virtuelle Maschine ausführbar ist, die mit einem
Ausführungs-Stack und von diesen Anweisungen manipulierten lokalen Registern oder Variablen ausgestattet
ist und es erlaubt, diesen Objektcode zu interpretieren, wobei das mitführbare System mit einem Endgerät ver-
bunden ist, dadurch gekennzeichnet, dass das Protokoll wenigstens darin beruht, an dem mitgeführten Sys-
tem:
a) einen Befehl zum Fernladen dieses Programmfragmentes zu erfassen; und bei positiver Antwort auf diesen
in der Erfassung eines Fernladebefehles beruhenden Schrittes
b) den dieses Programmfragment bildenden Objektcode zu lesen und diesen Objektcode zeitweilig zu spei-
chern;
c) den gesamten zeitweilig gespeicherten Objektcode Anweisung für Anweisung einem Überprüfungsprozess
zu unterziehen, wobei dieser Überprüfungsprozess in wenigstens einem Schritt der Initialisierung des Stacks
der Typen auf einen leeren Zustand und der Tabelle von Typen von Registern auf einen Typ, der die Schnitt-

TABELLE T10
(b) Verzweigungsziel, vorhergehende Anweisung in Folge fortlaufend:

TABELLE T11
(c) Unbedingte Verzweigung ohne Argumente:

TABELLE T12
(d) Bedingte Verzweigung mit einem Argument
24/44

DE 600 06 141 T2 2004.08.26
menge aller Typen von Daten darstellt, was einen Zustand der virtuellen Maschine zu Beginn der Ausführung
des zeitweilig gespeicherten Objektcodes darstellt, und in einer Folge von Überprüfungsschritten, Anweisung
für Anweisung, durch Diskriminieren der Existenz, für jede laufende Anweisung, eines Zieles, eines Zieles ei-
ner Verzweigungsanweisung, eines Zieles eines Ausnahmeverwaltungsaufrufes oder eines Zieles eines Sub-
routinenaufrufes, und durch Überprüfung und Aktualisierung der Wirkung der laufenden Anweisung auf den
Stack der Typen und die Tabelle der Registertypen beruht, und im Fall einer gelungenen Überprüfung des Ob-
jektcodes,
d) das ferngeladene Programmfragment in einem Verzeichnis von verfügbaren Programmfragmenten aufzu-
zeichnen, und im Fall einer nicht gelungenen Überprüfung des Objektcodes
e) die Ausführung des Programmfragmentes auf dem mitführbaren System zu sperren.

2. Protokoll nach Anspruch 1, dadurch gekennzeichnet, dass der Schritt e) des Sperrens der Ausführung
darin beruht,
f) das momentan aufgezeichnete Programmfragment zu löschen, ohne Letzteres in dem Verzeichnis von ver-
fügbaren Programmfragmenten aufzuzeichnen, und
g) einen Fehlercode an die Leseeinrichtung zu senden.

3. Protokoll nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei negativer Antwort auf den Schritt
a), der in der Erfassung eines Fernladebefehles beruht, es darin beruht,
b') einen Befehl zur Auswahl eines in einem Verzeichnis von Programmfragmenten verfügbaren Programm-
fragments zu erfassen, und bei positiver Antwort auf diesen in der Erfassung eines Befehles zur Auswahl eines
verfügbaren Programmfragmentes beruhenden Schritt
c') das ausgewählte verfügbare Programmfragment aufzurufen;
d') das aufgerufene verfügbare Programmfragment über die virtuelle Maschine in Abwesenheit jeglicher dyna-
mischer Überprüfung von Variablentypen, von Zugriffsrechten auf die von dem aufgerufenen verfügbaren Pro-
grammfragment manipulierten Objekte, des Überlaufens des Ausführungsstacks bei der Ausführung jeder An-
weisung auszuführen, und bei negativer Antwort auf diesen in der Erfassung eines Befehles zur Auswahl eines
verfügbaren Programmfragmentes beruhenden Schritt
e') zur Verarbeitung der Standardbefehle des mitführbaren Systems überzugehen.

4. Verfahren zur Überprüfung eines ferngeladenen Programmfragmentes auf einem umprogrammierbaren
mitführbaren System wie etwa einer mit einem überschreibbaren Speicher ausgestatteten Mikroprozessorkar-
te, wobei das Programmfragment durch einen Objektcode gebildet ist und wenigstens ein Unterprogramm,
eine Folge von Anweisungen, umfasst, die von dem Mikroprozessor des mitführbaren Systems über eine vir-
tuelle Maschine ausführbar sind, die mit einem Ausführungsstack und mit von diesen Anweisungen manipu-
lierten Operandenregistern ausgestattet ist und es er laubt, diesen Objektcode zu interpretieren, wobei das mit-
geführte System mit einer Leseeinrichtung verbunden ist, dadurch gekennzeichnet, dass das Verfahren darin
beruht, nach der Erfassung eines Fernladebefehles und der Speicherung des dieses Programmfragment bil-
denden Objektcodes in dem überschreibbaren Speicher für jedes Unterprogramm:
α) einen Schritt der Initialisierung des Typenstacks auf einen leeren Zustand und der Tabelle der Registertypen
auf einen Typ, der die Schnittmenge aller Datentypen darstellt, durchzuführen, was den Zustand der virtuellen
Maschine zu Beginn der Ausführung des zeitweilig gespeicherten Objektcodes darstellt;
β) eine Überprüfung des zeitweilig gespeicherten Objektcodes, Anweisung für Anweisung, durch Diskriminie-
rung des Vorhandenseins, für jede laufende Anweisung, eines Zieles, eines Zieles einer Verzweigungsanwei-
sung, eines Zieles eines Ausnahmeverwaltungsaufrufes oder eines Zieles eines Subroutinenaufrufes, durch-
zuführen,
γ) eine Überprüfung und eine Aktualisierung der Wirkung der laufenden Anweisung auf die Datentypen des
Typenstapels und die Tabelle von Registertypen in Abhängigkeit vom Vorhandensein eines Verzweigungsan-
weisungszieles, eines Subroutinenaufrufzieles oder eines Ausnahmeverwaltungsaufrufzieles durchzuführen,
wobei die Überprüfung gelungen ist, wenn die Tabelle der Registertypen im Laufe einer Überprüfung aller An-
weisungen nicht verändert wird, und der Überprüfungsprozess Anweisung für Anweisung fortgesetzt wird, bis
die Tabelle der Registertypen stabil und frei von Modifikation ist, und der Überprüfungsprozess anderenfalls
abgebrochen wird.

5. Überprüfungsverfahren nach Anspruch 4, dadurch gekenn zeichnet, dass die Typen von im Laufe des
Überprüfungsprozesses manipulierten Variablen wenigstens umfassen:
– Klassenidentifikatoren, die den in dem Programmfragment definierten Klassen von Objekten entsprechen;
– numerische Variablentypen, die wenigstens einen Typ short, eine auf p bits codierte ganze Zahl, und einen
Typ retaddr einer Rückkehradresse einer Sprunganweisung JSR umfassen;
– einen Typ null, der sich auf ungültige Objektverweise bezieht;
25/44

DE 600 06 141 T2 2004.08.26
– einen auf Objekte bezogenen Typ object;
– einen ersten spezifischen Typ ⊥, der die Schnittmenge aller Typen darstellt und dem Wert Null, nil, entspricht;
– einen zweiten spezifischen Typ T, der die Vereinigungsmenge aller Typen darstellt und jedem Typ von Wert
entspricht.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Menge der Variablentypen eine Unter-
typisierungsbeziehung erfüllt:
object ∊ T;
short, retaddr ∈ T;
⊥ ∈ null, short, retaddr.

7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass wenn die laufende Anwei-
sung Ziel einer Verzweigungsanweisung ist, das Überprüfungsverfahren darin beruht, zu überprüfen, dass der
Typenstack leer ist, und dass im Fall einer positiven Überprüfung der Überprüfungsprozess für die nächste An-
weisung fortgesetzt wird und anderenfalls der Überprüfungsprozess scheitert und das Programmfragment zu-
rückgewiesen wird.

8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass wenn die laufende Anwei-
sung Ziel eines Subroutinenaufrufes ist, der Überprüfungsprozess überprüft, dass die vorhergehende Anwei-
sung eine unbedingte Verzweigung, eine Subroutinenrückkehr oder eine Ausnahmeaufhebung darstellt, und
dass im Fall einer positiven Überprüfung der Überprüfungsprozess eine Reaktualisierung des Stacks von Va-
riablentypen durch eine Einheit vom Typ retaddr, eine Subroutinen-Rückkehradresse, vornimmt, und dass an-
derenfalls der Überprüfungsprozess scheitert und das Programmfragment zurückgewiesen wird.

9. Verfahren nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass wenn die laufende Anwei-
sung Ziel einer Ausnahmeverwaltung ist, der Überprüfungsprozess überprüft, dass die vorhergehende Anwei-
sung eine unbedingte Verzweigung, eine Subroutinen-Rückkehr oder eine Ausnahmeaufhebung darstellt, und
dass bei positiver Überprüfung der Überprüfungsprozess eine Reaktualisierung des Stacks der Typen durch
einen Eintrag vom Typ der Ausnahmen vornimmt und dass anderenfalls der Überprüfungsprozess scheitert
und das Programmfragment zurückgewiesen wird.

10. Verfahren nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass wenn die laufende An-
weisung Ziel einer Mehrzahl von inkompatiblen Verzweigungen ist, der Überprüfungsprozess scheitert und das
Programmfragment zurückgewiesen wird.

11. Verfahren nach einem der Ansprüche 4 bis 10, dadurch gekennzeichnet, dass wenn die laufende An-
weisung Ziel keiner Verzweigung ist, der Überprüfungsprozess durch Übergehen zu einer Reaktualisierung
des Typenstapels fortgesetzt wird.

12. Verfahren nach einem der Ansprüche 4 bis 11, dadurch gekennzeichnet, dass der Schritt des Überprü-
fens der Wirkung der laufenden Anweisung auf den Typenstack wenigstens umfasst:
– einen Schritt des Überprüfens, dass der Typenausführungsstack wenigstens genausoviel Eintragungen auf-
weist, wie die laufende Anweisung Operanden hat;
– einen Schritt der Entnahme vom Stack und der Überprüfung, dass die Typen der Eintragungen an der Spitze
des Stacks Untertypen der Typen von Operanden dieser Anweisung sind;
– einen Schritt der Überprüfung des Vorhandenseins eines ausreichenden Speicherraumes auf dem Typen-
stack, um die Ergebnisse der laufenden Anweisung auf den Stack legen zu können;
– einen Schritt des Legens der diesen Ergebnissen zugeordneten Datentypen auf den Stack.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass wenn die laufende Anweisung eine An-
weisung zum Lesen eines Registers mit Adresse n ist, der Überprüfungsprozess darin beruht,
– den Datentyp des Ergebnisses dieses Lesens durch Abfragen des Eintrages n der Tabelle der Registertypen
zu überprüfen;
– die Wirkung der laufenden Anweisung auf den Typenstack durch Entnahme der den Operanden dieser lau-
fenden Anweisung entsprechenden Einträge vom Stack und Legen des Datentyps dieses Ergebnisses auf den
Stack zu bestimmen.

14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass, wenn die laufende Anweisung eine An-
weisung zum Schreiben eines Registers mit Adresse m ist, der Überprüfungsprozess darin beruht,
– die Wirkung der laufenden Anweisung auf den Typenstack und den Typ t des in dieses Register mit Adresse
26/44

DE 600 06 141 T2 2004.08.26
m geschriebenen Operanden zu bestimmen;
– die Eintragung des Typs von der Tabelle der Registertypen an der Adresse m durch denjenigen Typ zu er-
setzen, der unmittelbar höher als der zuvor gespeicherte Typ und der Typ t des in dieses Register mit Adresse
m geschriebenen Operanden ist.

15. Verfahren zur Umwandlung eines Objektcodes eines Programmfragmentes, bei dem die Operanden
jeder Anweisung zu den von dieser Anweisung manipulierten Datentypen gehören, der Ausführungsstack kein
Überlaufen zeigt, für jede Verzweigungsanweisung der Stack-Variablentyp in Höhe dieser Verzweigung der
gleiche ist wie in Höhe der Ziele dieser Verzweigung, in einen normierten Objektcode für dieses gleiche Pro-
grammfragment, bei dem die Operanden jeder Anweisung zu den von dieser Anweisung manipulierten Daten-
typen gehören, der Ausführungsstack kein Überlaufen zeigt, der Ausführungsstack bei jeder Verzweigungsan-
weisung und jeder Verzweigungszielanweisung leer ist, dadurch gekennzeichnet, dass das Verfahren darin be-
ruht, für die Menge der Anweisungen des Objektcodes
– jede laufende Anweisung mit dem Datentyp des Stacks vor und nach Ausführung dieser Anweisung zu kom-
mentieren, wobei die Kommentierungsdaten mit Hilfe einer Analyse des auf diese Anweisung bezogenen Da-
tenstroms berechnet werden;
– in den Anweisungen und jeder laufenden Anweisung das Vorhandensein von Verzweigungen bzw. von Ver-
zweigungszielen zu erfassen, für die der Ausführungsstack nicht leer ist, wobei die Erfassungsoperation aus-
gehend von den jeder laufenden Anweisung zugeteilten Stackvariablentyp-Kommentierungsdaten durchge-
führt wird, und bei Erfassung eines nicht leeren Ausführungsstacks
– Stack-Variablentransfer-Anweisungen jeweils beiderseits dieser Verzweigungen bzw. dieser Verzweigungs-
ziele einzufügen, um den Inhalt des Ausführungsstacks vor dem Verzweigen in zeitweilige Register zu entlee-
ren und den Ausführungsstack anhand dieser zeitweiligen Register nach der Verzweigung wiederherzustellen,
und anderenfalls keine Transferanweisung einzufügen, wodurch ein normierter Objektcode für dieses gleiche
Programmfragment erhalten wird, bei dem der Ausführungsstack bei jeder Verzweigungsanweisung und jeder
Verzweigungszielanweisung bei Nichtvorhandensein einer Modifikation der Ausführung des Programmfrag-
mentes leer ist.

16. Verfahren zur Umwandlung eines Objektcodes eines Programmfragmentes, in dem die Operanden je-
der Anweisung zu den von dieser Anweisung manipulierten Datentypen gehören und ein von einer Anweisung
dieses Objektcodes in ein Register geschriebener Operand von festgelegtem Typ aus diesem gleichen Regis-
ter von einer anderen Anweisung dieses Objektcodes mit dem gleichen festgelegten Datentyp gelesen wird,
in einen normierten Objektcode für dieses gleiche Programmfragment, bei dem die Operanden jeder Anwei-
sung zu den von dieser Anweisung manipulierten Datentypen gehören, wobei ein einziger, gleicher Datentyp
einem gleichen Register in dem gesamten normierten Objektcode zugeordnet ist, dadurch gekennzeichnet,
dass das Verfahren darin beruht, für die Menge der Anweisungen dieses Objektcodes:
– jede laufende Anweisung mit dem Datentyp der Register vor und nach Ausführung dieser Anweisung zu kom-
mentieren, wobei die Kommentierungsdaten mit Hilfe einer Analyse des diese Anweisung betreffenden Daten-
stroms berechnet werden;
– eine Neuzuteilung der Register durch Erfassen der mit verschiedenen Typen verwendeten Ursprungsregis-
ter, Aufteilen dieser Ursprungsregister auf unterschiedliche normierte Register, ein normiertes Register für je-
den verwendeten Datentyp, und eine Reaktualisierung der Anweisungen durchzuführen, die die Operanden
manipulieren, die auf diese normierten Register zugreifen.

17. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass der Schritt, der darin beruht, in den An-
weisungen und jeder laufenden Anweisung das Vorhandensein von Verzweigungen bzw. von Verzweigungs-
zielen zu erfassen, für die der Ausführungsstack nicht leer ist, nach der Erfassung jeder Anweisung von ent-
sprechendem Rang i darin beruht,
– jeder Anweisung von Rang i eine Menge von neuen Registern zuzuordnen, wobei in Höhe dieser Anweisung
jeder aktiven Stackvariable ein neues Register zugeordnet wird;
– jede erfasste Anweisung vom Rang i zu untersuchen und das Vorhandensein eines Verzweigungszieles bzw.
einer Verzweigung zu diskriminieren und in dem Fall, wo die Anweisung vom Rang i ein Verzweigungsziel ist
und der Ausführungsstack in Höhe dieser Anweisung nicht leer ist,
– für jede vorhergehende Anweisung vom Rang i – 1, die durch eine Verzweigung, eine Ausnahmeaufhebung
oder eine Programmrückkehr gebildet ist, wenn die erfasste Anweisung vom Rang i nur durch eine Verzwei-
gung zugänglich ist,
– eine Menge von load-Anweisungen ausgehend von der Menge von neuen Registern vor die erfasste Anwei-
sung vom Rang i einzufügen, wobei alle Verzweigungen zu der erfassten Anweisung vom Rang i auf die erste
eingefügte Ladeeinweisung load umgeleitet werden, und
– für jede die Folge fortsetzende vorhergehende Anweisung vom Rang i - 1, wenn die erfasste Anweisung vom
27/44

DE 600 06 141 T2 2004.08.26
Rang i sowohl über eine Verzweigung als auch über die vorhergehende Anweisung vom Rang i - 1 erreichbar
ist,
– eine Menge von Speicheroperationen store in die Menge von neuen Registern vor die erfasste Anweisung
vom Rang i und eine Menge von Ladebefehlen load ausgehend von dieser Menge von neuen Registern ein-
zufügen, wobei alle Verzweigungen zu der erfassten Anweisung vom Rang i auf die erste eingefügte Ladean-
weisung load umgeleitet werden, und in dem Fall, wo die erfasste Anweisung vom Rang i eine Verzweigung
zu einer festgelegten Anweisung ist, und
– für jede erfasste Anweisung vom Rang i, die durch eine unbedingte Verzweigung gebildet ist,
– vor diese erfasste Anweisung vom Rang i eine Mehrzahl von Speicheranweisungen store einzufügen, wobei
jedem neuen Register eine Speicheranweisung zugeordnet ist; und
– für jede erfasste Anweisung vom Rang i, die durch eine bedingte Verzweigung gebildet ist, und für eine Zahl
m > 0 von durch diese bedingte Verzweigungsanweisung manipulierten Operanden,
– vor diese erfasste Anweisung vom Rang i eine Permutationsanweisung swap-x an der Spitze des Ausfüh-
rungsstacks der m Operanden der erfassten Anweisung vom Rang i und der n folgenden Werte einzufügen,
wobei diese Permutationsoperation es erlaubt, die n in der Menge von neuen Registern zu speichernden Werte
an die Spitze des Ausführungsstacks zurückzubringen, und
– vor die Anweisung vom Rang i eine Menge von Speicheroperationen store zum Speichern in der Menge der
neuen Register einzufügen und
– nach der erfassten Anweisung vom Rang i eine Menge von Ladeanweisungen load zum Laden aus der Men-
ge von neuen Registern einzufügen.

18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass der Schritt, der darin beruht, eine Neuzu-
weisung der Register durch Erfassen der mit den verschiedenen Typen verwendeten ursprünglichen Register
vorzunehmen, darin beruht,
– die Lebensdauerintervalle jedes Registers zu bestimmen;
– den Hauptdatentyp jedes Lebensdauerintervalls zu bestimmen, wobei der Hauptdatentyp eines Lebensdau-
erintervalls j für ein Register r definiert ist durch die obere Grenze der in diesem Register r von den zu dem
Lebensdauerintervall j gehörenden Speicheroperationen store gespeicherten Datentypen;
– einen Graph von Interferenzen zwischen den Lebensdauerintervallen aufzustellen, wobei dieser Graph von
Interferenzen aus einem nicht-orientierten Graphen besteht, von dem jeder Knoten durch ein Lebensdauerin-
tervall gebildet ist, und dessen Kanten zwischen zwei Knoten j1 und j2 existieren, wenn ein Knoten eine an das
Register des anderen Knotens adressierte Speicheroperation enthält oder umgekehrt;
– die Eindeutigkeit eines jedem Register zugeordneten Datentyps in dem Interferenzgraphen zu übersetzen
durch Einfügen von Kanten zwischen jedem Knotenpaar des Interferenzgraphen, so lange nicht zwei Knoten
eines Paares von Knoten den gleichen zugeordneten Hauptdatentyp haben;
– eine Instanzierung des Interferenzgraphen durch Zuweisen einer Registernummer zu jedem Lebensdauer-
intervall derart durchzuführen, dass zwei in dem Interferenzgraphen benachbarten Lebensdauerintervallen un-
terschiedliche Registernummern zugeordnet werden.

19. Mitführbares, durch Fernladen von Programmfragmenten umprogrammierbares System mit wenigs-
tens einem Mikroprozessor, einem Schreib-Lesespeicher, einem Ein-/Ausgabemodul, einem elektrisch umpro-
grammierbaren nichtflüchtigen Speicher und einem permanenten Speicher, in dem ein Hauptprogramm und
eine virtuelle Maschine abgelegt sind, die die Ausführung des Hauptprogramms und wenigstens eines Pro-
grammfragmentes über den Mikroprozessor ermöglicht, dadurch gekennzeichnet, dass das mitführbare Sys-
tem wenigstens ein Programmmodul zur Verwaltung und Überprüfung eines leeren Zustandes eines Typen-
stacks für jede Verzweigungsanweisung eines ferngeladenen Programmfragmentes umfasst, wobei das Pro-
gramm zur Verwaltung und Überprüfung im permanenten Speicher abgelegt ist.

20. Mitführbares, durch Fernladen von Programmfragmenten umprogrammierbares System mit wenigs-
tens einem Mikroprozessor, einem Schreib-Lesespeicher, einem Ein-/Ausgabemodul, einem elektrisch umpro-
grammierbaren nichtflüchtigen Speicher und einem permanenten Speicher, in dem ein Hauptprogramm und
eine virtuelle Maschine abgelegt sind, die die Ausführung des Hauptprogramms und wenigstens eines Pro-
grammfragmentes über den Mikroprozessor ermöglicht, dadurch gekennzeichnet, dass das mitführbare Sys-
tem wenigstens ein Programm zur Verwaltung und Überprüfung nach dem Protokoll zur Verwaltung eines fern-
geladenen Programmfragmentes nach einem der Ansprüche 1 bis 3 umfasst, wobei das Verwaltungs- und
Überprüfungs-Programmmodul im permanenten Speicher abgelegt sind.

21. Mitführbares System nach Anspruch 20, dadurch gekennzeichnet, dass es wenigstens ein Unterpro-
grammmodul zur Überprüfung eines ferngeladenen Programmfragmentes nach dem Überprüfungsprozess
nach einem der Ansprüche 4 bis 14 umfasst.
28/44

DE 600 06 141 T2 2004.08.26
22. System zur Umwandlung eines Objektcodes eines Programmfragmentes, in dem die Operanden jeder
Anweisung zu den von dieser Anweisung manipulierten Datentypen gehören, der Ausführungsstack kein Über-
laufen aufweist, für jede Verzweigungsanweisung der Stack-Variablentyp in Höhe dieser Verzweigung der glei-
che wie in Höhe der Ziele dieser Verzweigung ist, und ein durch eine Anweisung dieses Objektcodes in ein
Register geschriebener Operand von festgelegtem Typ aus diesem gleichen Register von einer anderen An-
weisung dieses Objektcodes mit dem gleichen festgelegten Datentyp erneut gelesen wird, in einen normierten
Objektcode für dieses gleiche Programmfragment, in welchem die Operanden jeder Anweisung zu den von
dieser Anweisung manipulierten Datentypen gehören, der Ausführungsstack kein Überlaufen aufweist, der
Ausführungsstack bei jeder Verzweigungsanweisung und jeder Verzweigungszielanweisung leer ist, ein einzi-
ger, gleicher Datentyp einem gleichen Register in dem gesamten normierten Objektcode zugewiesen ist, da-
durch gekennzeichnet, dass das Umwandlungssystem wenigstens, abgelegt im Arbeitsspeicher eines Ent-
wicklungscomputers oder einer Workstation, ein Programmmodul zur Umwandlung dieses Objektcodes in ei-
nen normierten Objektcode nach dem Verfahren gemäß einem der Ansprüche 15 bis 18 umfasst, was es er-
laubt, einen normierten Objektcode für das Programmfragment zu erzeugen, der den Kriterien zur Überprüfung
dieses ferngeladenen Programmfragmentes genügt.

23. Direkt in den internen Speicher eines mitführbaren, umprogrammierbaren Systems wie etwa einer mit
einem überschreibbaren Speicher ausgestatteten Mikroprozessorkarte ladbares Computerprogrammprodukt,
wobei dieses mitführbare System das Fernladen eines Programmfragmentes erlaubt, das durch einen Objekt-
code gebildet ist, eine Folge von Anweisungen, die von dem Mikroprozessor des mitführbaren Systems über
eine virtuelle Maschine ausführbar ist, die mit einem Ausführungsstack und mit von diesen Anweisungen ma-
nipulierten lokalen Registern oder Variablen ausgestattet ist und die es erlaubt, diesen Objektcode zu interpre-
tieren, wobei dieses Computerprogrammprodukt Objektcodeabschnitte für die Ausführung des Protokolls zur
Verwaltung eines ferngeladenen Programmfragmentes auf dem mitführbaren System nach einem der Ansprü-
che 1 bis 3 aufweist, wenn dieses mitführbare System mit einem Endgerät verbunden ist, und das Programm
von dem Mikroprozessor dieses mitführbaren Systems über die virtuelle Maschine ausgeführt wird.

24. Direkt in den internen Speicher eines mitführbaren umprogrammierbaren Systems wie etwa einer mit
einem überschreibbaren Speicher ausgestatteten Mikroprozessorkarte ladbares Computerprogrammprodukt,
wobei dieses mitführbare System das Fernladen eines Programmfragmentes erlaubt, das durch einen Objekt-
code gebildet ist, eine Folge von Anweisungen, die von dem Mikroprozessor des mitführbaren Systems über
eine virtuelle Maschine ausführbar sind, die mit einem Ausführungsstack und mit von diesen Anweisungen ma-
nipulierten Operandenregistern ausgestattet sind und die es erlaubt, diesen Objektcode zu interpretieren, wo-
bei dieses Computerprogrammprodukt Objektcodeabschnitte zur Ausführung der Schritte zur Überprüfung ei-
nes ferngeladenen Programmfragmentes auf dem mitführbaren System nach einem der Ansprüche 4 bis 14
umfasst, wenn das mitführbare System mit einem Endgerät verbunden ist, und das Programm von dem Mikro-
prozessor dieses mitführbaren Systems über die virtuelle Maschine ausgeführt wird.

25. Computerprogrammprodukt mit Objektcodeabschnitten zur Ausführung der Schritte des Verfahrens zur
Umwandlung eines Objektcodes eines ferngeladenen Programmfragmentes in einen normierten Objektcode
für dieses gleiche Programmfragment nach einem der Ansprüche 15 bis 18.

26. Computerprogrammprodukt, aufgezeichnet auf einem in einem umprogrammierbaren mitführbaren
System verwendbaren Träger wie etwa einer mit einem überschreibbaren Speicher ausgestatteten Mikropro-
zessorkarte, wobei dieses mitführbare System das Fernladen eines Programmfragmentes erlaubt, das durch
einen Objektcode gebildet ist, eine Folge von Anweisungen, die durch den Mikroprozessor des mitführbaren
Systems über eine virtuelle Maschine ausführbar sind, die mit einem Ausführungsstack und mit von diesen An-
weisungen manipulierten lokalen Registern oder Variablen ausgestattet ist, und die es erlaubt, diesen Objekt-
code zu interpretieren, wobei dieses Computerprogrammprodukt wenigstens umfasst:
– durch den Mikroprozessor dieses mitführbaren Systems über die virtuelle Maschine lesbare Programm-Mittel
zum Steuern der Ausführung einer Prozedur zur Verwaltung des Fernladens eines ferngeladenen Programm-
fragmentes;
– durch den Mikroprozessor dieses mitführbaren Systems über die virtuelle Maschine lesbare Programm-Mittel
zum Steuern der Ausführung einer Prozedur der Überprüfung, Anweisung für Anweisung, eines leeren Zustan-
des des Typenstacks für jede Verzweigungsanweisung des das Programmfragment bildenden Objektcodes;
– durch den Mikroprozessor dieses mitführbaren Systems über die virtuelle Maschine lesbare Programm-Mittel
zum Steuern der Ausführung eines ferngeladenen Programmfragmentes nach einer oder in Abwesenheit einer
Umwandlung des Objektcodes dieses Programmfragmentes in normierten Objektcode für dieses gleiche Pro-
grammfragment.
29/44

DE 600 06 141 T2 2004.08.26
27. Computerprogrammprodukt nach Anspruch 26, ferner mit durch den Mikroprozessor dieses mitführba-
ren Systems über die virtuelle Maschine lesbaren Programm-Mitteln zum Steuern der Sperrung der Ausfüh-
rung, in dem mitführbaren System, des Programmfragmentes im Fall einer misslungenen Überprüfungsproze-
dur dieses Programmfragmentes.

Es folgen 14 Blatt Zeichnungen
30/44

DE 600 06 141 T2 2004.08.26
Anhängende Zeichnungen
31/44

DE 600 06 141 T2 2004.08.26
32/44

DE 600 06 141 T2 2004.08.26
33/44

DE 600 06 141 T2 2004.08.26
34/44

DE 600 06 141 T2 2004.08.26
35/44

DE 600 06 141 T2 2004.08.26
36/44

DE 600 06 141 T2 2004.08.26
37/44

DE 600 06 141 T2 2004.08.26
38/44

DE 600 06 141 T2 2004.08.26
39/44

DE 600 06 141 T2 2004.08.26
40/44

DE 600 06 141 T2 2004.08.26
41/44

DE 600 06 141 T2 2004.08.26
42/44

DE 600 06 141 T2 2004.08.26
43/44

DE 600 06 141 T2 2004.08.26
44/44

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

