(19) (10 DE 600 06 141 T2 2004.08.26

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97)EP 1 212 678 B1 1) intcl”: GO6F 9/445
(21) Deutsches Aktenzeichen: 600 06 141.8 GO6F 9/45

(86) PCT-Aktenzeichen: PCT/FR00/02349
(96) Europaisches Aktenzeichen: 00 958 714.8
(87) PCT-Verdéffentlichungs-Nr.: WO 01/014958
(86) PCT-Anmeldetag: 21.08.2000
(87) Veroffentlichungstag
der PCT-Anmeldung: 01.03.2001
(97) Erstverdffentlichung durch das EPA: 12.06.2002
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 22.10.2003
(47) Veroffentlichungstag im Patentblatt: 26.08.2004

(30) Unionsprioritat: (84) Benannte Vertragsstaaten:
9910697 23.08.1999 FR AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LI, LU, MC, NL, PT, SE
(73) Patentinhaber:
Trusted Logic, Versailles, FR (72) Erfinder:
LEROY, Xavier, F-78000 Versailles, FR
(74) Vertreter:

Heuer, W., Dipl.-Phys. Dr.rer.nat., Pat.-Anw., 82515
Wolfratshausen

(54) Bezeichnung: VERWALTUNGSPROTOKOLL, VERIFIKATIONSVERFAHREN UND TRANSFORMIERUNG EINES
FERNGELADENEN PROGRAMMFRAGMENTS UND KORRESPONDIERENDE SYSTEME

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte européaische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebuihr entrichtet worden ist (Art. 99 (1) Européisches Patentlibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 600 06 141 T2 2004.08.26

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zur Verwaltung, ein Verfahren zur Uberpriifung, ein Verfahren zur
Umwandlung eines ferngeladenen Programmfragments und die entsprechenden Systeme, genauer gesagt
solche, die fir mitgeflhrte Informatiksysteme bestimmt sind, die tiber geringe Ressourcen an Speicher und an
Rechenleistung verfligen.

[0002] Allgemein umfassen mit Bezug auf Fig. 1A mitgefiihrte Informatiksysteme 10 einen Mikroprozessor
11, einen Permanentspeicher wie etwa einen nicht beschreibbaren Speicher 12, der den Code des ausfiihrba-
ren Programms enthalt, einen Uberschreibbaren, nichtflichtigen, permanenten Speicher 13 vom Typ EE-
PROM, der die in dem System gespeicherten Daten enthalt, einen fllichtigen Schreiblesespeicher 14, in wel-
chem das Programm seine Zwischenergebnisse wahrend seiner Ausfiihrung speichert, und Ein-/Ausgabevor-
richtungen 15, die es dem System ermdglichen, mit seiner Umgebung zu wechselwirken. In dem Fall, wo das
mitgefihrte Informatiksystem durch eine Mikroprozessorkarte vom Typ Geldkarte oder Scheckkarte gebildet
ist, besteht die Ein-/Ausgabevorrichtung 15 aus einer seriellen Verbindung, die es der Karte ermdglicht, mit ei-
nem Endgerat wie etwa einem Kartenlesegerat zu kommunizieren.

[0003] Bei den herkdmmlichen mitgefiuihrten Informatiksystemen wird der Code des von dem System ausge-
fuhrten Programms beim Bau des Systems oder spatestens bei der Personalisierung des letzteren vor Auslie-
ferung an den Endbenutzer festgelegt.

[0004] Es sind weiterentwickelte mitgefiihrte Informatiksysteme eingesetzt worden, die reprogrammierbar
sind, wie z. B. die Mikroprozessorkarten vom Typ JavaCard. Diese umprogrammierbaren Systeme bieten ge-
genulber den vorhergehenden die zusatzliche Maéglichkeit, das Programm nach Inbetriebnahme des Systems
durch eine Operation des Fernladens von Programmfragmenten anzureichern. Diese Programmfragmente, im
Englischen allgemein als ,Applets" bezeichnet, werden in der vorliegenden Beschreibung unterschiedslos als
Applets oder Programmfragmente bezeichnet. Fiur eine detailliertere Beschreibung der JavaCard-Systeme
wird auf die von der Fa. Sun Microsystems Inc. herausgegebene Dokumentation verwiesen, insbesondere auf
die elektronisch verfiigbare Dokumentation, Kapitel JavaCard technology auf der Seite W.W.W. (World Wide
Web) http://java.sun.com/products/javacard/index.html, Juni 1999.

[0005] Fig. 1b zeigt die Architektur eines solchen umprogrammierbaren mitgefihrten Informatiksystems. Die-
se Architektur ist ahnlich derjenigen eines herkémmlichen mitgefihrten Systems, mit dem Unterschied, dass
das umprogrammierbare mitgefiihrte System ferner Applets liber eine seiner Ein-/Ausgabevorrichtungen emp-
fangen und diese dann in seinem Permanentspeicher 13 speichern kann, von wo aus sie anschlie®end in Er-
ganzung des Hauptprogramms ausgefiihrt werden kénnen.

[0006] Aus Grinden der Portabilitat zwischen verschiedenen mitgefuhrten Informatiksystemen liegen die Ap-
plets in Form von Code flr eine virtuelle Standardmaschine vor. Dieser Code ist nicht direkt vom Mikroprozes-
sor 11 ausfuhrbar, sondern muss softwaremaRig durch eine virtuelle Maschine 16 interpretiert werden, die
durch ein Programm gebildet ist, das im nicht beschreibbaren Permanentspeicher 12 vorliegt. In dem erwahn-
ten Beispiel der JavaCard-Karten ist die verwendete virtuelle Maschine eine Untermenge der virtuellen Ja-
va-Maschine. Fur eine Beschreibung der die virtuelle Java-Maschine und die verwendete virtuelle Maschine
betreffenden Spezifikationen wird auf das von Tim Lindholm und Frank Yellin verdéffentlichte Werk mit dem Titel
»1he Java Virtual Machine Specification", Addison-Wesley 1996 und die von der Fa. Sun Microsystems Inc.
herausgegebene Dokumentation ,JavaCard 2.1 Virtual Machine Specification" verwiesen, die auf der Seite
W.W.W.http://java.sun.com/products/javacard/JCVMSpec.pdf, Marz 1999, elektronisch verfugbar ist.

[0007] Die Operation des Fernladens von Applets in ein mitgefihrtes Informatiksystem im Betrieb wirft erheb-
liche Sicherheitsprobleme auf. Ein versehentlich oder gar absichtlich schlecht geschriebenes Applet kann die
in dem System vorhandenen Daten fehlerhaft abandern, das Hauptprogramm daran hindern, korrekt oder zur
gewollten Zeit abzulaufen, oder auch andere zuvor ferngeladene Applets verandern, wodurch diese unbrauch-
bar oder schadlich werden.

[0008] Ein von einem Cyberpiraten geschriebenes Applet kann sogar in dem System gespeicherte vertrauli-
che Informationen verbreiten, wie etwa im Fall einer Scheckkarte z. B. den Zugangscode.

[0009] Gegenwartig sind drei LOsungen vorgeschlagen worden, um das Problem der Sicherheit der Applets
zu lésen.

[0010] Eine erste Lésung beruht in der Verwendung von kryptographischen Unterschriften, so dass nur App-
lets akzeptiert werden, die von vertrauenswirdigen Personen oder Organisationen herriihren.

[0011] Bei dem genannten Beispiel einer Scheckkarte werden nur die Applets, die die kryptographische Un-
terschrift der Bank tragen, die die Karte ausgegeben hat, von der Karte akzeptiert und ausgefiihrt, und jedes
andere nicht unterschriebene Applet wird im Laufe der Fernladeoperation zuriickgewiesen. Ein béswilliger Be-
nutzer der Karte, der nicht Gber den Verschlisselungsschlissel der Bank verfligt, ist also nicht in der Lage, ein
nicht unterschriebenes und gefahrliches Applet auf der Karte ausfiihren zu lassen.

[0012] Diese erste Losung ist gut geeignet fiir den Fall, wo alle Applets von einer gleichen, einzigen Quelle,
im genannten Beispiel der Bank, kommen. Diese Lésung ist schwerlich anwendbar in dem Fall, wo die Applets

2/44

DE 600 06 141 T2 2004.08.26

von mehreren Quellen kommen, wie etwa, bei dem Beispiel einer Scheckkarte, der Hersteller der Karte, die
Bank, die Organisationen, die Dienstleistungen Uber Scheckkarte verwalten, die groRen Handelsorganisatio-
nen, die der Kundschaft Kundenbindungsprogramme anbieten und legitimerweise anbieten, spezielle Applets
auf die Karte zu laden. Gemeinsame Nutzung und gemeinsamer Besitz der fiir die elektronische Unterzeich-
nung der Applets notwendigen Verschlisselungsschlissel durch diese unterschiedlichen Wirtschaftsteilneh-
mer werfen erhebliche technische, wirtschaftliche und juristische Probleme auf.
[0013] Eine zweite Lésung beruht darin, dynamische Kontrollen des Zugangs und der Typisierung wahrend
der Ausfiihrung der Applets durchzufiihren.
[0014] Bei dieser Losung fuhrt die virtuelle Maschine bei Ausfihrung der Applets eine bestimmte Zahl von
Kontrollen durch, wie etwa:
— Kontrolle des Zugangs zum Speicher: bei jedem Lesen oder Schreiben einer Speicherzone uberpruft die
virtuelle Maschine das Recht des Applets, auf die entsprechenden Daten zuzugreifen;
— dynamische Uberpriifung der Datentypen: bei jedem Befehl des Applets tiberpriift die virtuelle Maschine,
dass die Anforderungen an die Datentypen erfillt sind. Z. B. kann die virtuelle Maschine Daten wie etwa
glltige Speicheradressen gesondert behandeln und verhindern, dass das Applet ungiiltige Speicheradres-
sen durch Ganzzahlig-/Adresse-Konversionen oder durch arithmetische Operationen an Adressen erzeugt;
— Erfassung des Stackuberlaufs und von illegalen Zugriffen auf den Ausflihrungsstack der virtuellen Maschi-
ne, die unter bestimmten Bedingungen deren Funktion so stéren kénnen, dass die oben genannten Kon-
trollmechanismen umgangen werden.

[0015] Diese zweite Lésung erlaubt die Ausfiihrung eines groRen Spektrums von Applets unter befriedigen-
den Sicherheitsbedingungen. Sie hat allerdings den Nachteil einer betrachtlichen Verlangsamung der Ausfiih-
rung, die durch die Menge der dynamischen Uberpriifungen hervorgerufen wird. Um eine Verringerung dieser
Verlangsamung zu erreichen, kann ein Teil dieser Uberpriifungen von dem Mikroprozessor selbst iibernom-
men werden, auf Kosten einer Zunahme der Komplexitat des letzteren und damit der Gestehungskosten des
mitgefilhrten Systems. Solche Uberpriifungen erhéhen auRerdem den Bedarf an Schreiblesespeicher und Per-
manentspeicher des Systems aufgrund der zuséatzlichen Typinformationen, die den gehandhabten Daten zu-
geordnet werden mussen.

[0016] Eine dritte Lésung beruht darin, eine statische Uberpriifung des Codes des Applets beim Fernladen
durchzufihren.

[0017] Bei dieser Lésung simuliert diese statische Uberpriifung die Ausfiihrung des Applets auf dem Niveau
der Datentypen und stellt ein fir allemal fest, dass der Code des Applets die Regeln fir Datentypen und Zu-
gangskontrolle, wie von der virtuellen Maschine vorgegeben, erfillt und keinen Stackuberlauf hervorruft. Wenn
diese statische Uberpriifung gelingt, kann das Applet anschlieRend ausgefiihrt werden, ohne dass es erforder-
lich wird, dynamisch zu tberpriifen, dass die Regel eingehalten wird. In dem Fall, wo der Prozess der stati-
schen Uberpriifung scheitert, verwirft das mitgefiihrte System das Applet und erlaubt dessen spétere Ausfiih-
rung nicht. FUr eine genauere Beschreibung der dritten genannten Losung kann auf das oben zitierte Werk von
Tim Lindholm und Frank Yellin, auf den Artikel von James A. Gosling mit dem Title ,Java Intermediate Byte
Codes", Verhandlungen der ACM SIGPLAN, Workshop on Intermediate Representations (IR'95), Seiten
111-118, Januar 1995 und das US Patent 5,748,964, erteilt am 5.5.1998, zurlickgegriffen werden.

[0018] Gegenlber der zweiten Lésung hat die dritte Losung den Vorteil einer wesentlichen schnelleren Aus-
fiihrung der Applets, weil die virtuelle Maschine wahrend der Ausfiihrung keine Uberpriifung durchfiihrt.
[0019] Die dritte Losung hat jedoch den Nachteil eines statischen Codelberprifungsprozesses, der kompli-
ziert und kostspielig ist, sowohl hinsichtlich der zur Durchfiihrung des Prozesses erforderlichen Codegrofie wie
auch in Bezug auf die Grof3e des Schreiblesespeichers, der notwendig ist, um die Zwischenergebnisse der
Uberpriifung aufzunehmen, wie auch hinsichtlich der Rechenzeit. Als verdeutlichendes Beispiel stellt die in das
von Sun Microsystems vertriebene System Java JDK, integrierte Codeulberprifung in der GréRenordnung von
50 kByte Maschinencode dar, und sein Verbrauch an Schreiblesespeicher ist proportional zu (Tp + Tr) x Nb,
wobei Tp den maximalen Stackraum, Tr die maximale Zahl von Registern und Nb die maximale Zahl von von
einem Unterprogramm, allgemein auch als Methode bezeichnet, verwendeten Sprungzielen des Applets be-
zeichnet. Dieser Speicherbedarf tibertrifft bei weitem die Kapazitaten der Ressourcen der Mehrheit der gegen-
wartigen mitgeflhrten Informatiksysteme, insbesondere der kommerziell verfigbaren Mikroprozessorkarten.
[0020] Mehrere Varianten der dritten LOsung sind vorgeschlagen worden, bei denen der Herausgeber des Ap-
plets an den Uberpriifer neben dem Code des Applets eine bestimmte Zahl von zusétzlichen spezifischen In-
formationen Ubertragt, wie etwa vorberechnete Datentypen oder ein Vorabbeweis einer korrekten Datentypi-
sierung. Fir eine detailliertere Beschreibung der entsprechenden Betriebsmodi kann auf die Artikel von Eva
Rose und Kristoffer Hagsbro Rose, ,Lightweight Bytecode Verification", Verhandlungen des Workshop Formal
Underspinning of Java, Oktober 1998 und von George C. Necula ,Proof-Carrying Code", Verhandlungen des
24. ACM Symposium Principles of Programming Languages, Seiten 106-119, zurlickgegriffen werden.
[0021] Diese zusatzlichen Informationen erlauben es, den Code schneller zu Uberprifen und die GréRe des

3/44

DE 600 06 141 T2 2004.08.26

Uberprifungsprogrammcodes etwas zu verringern, sie erméglichen aber keine Verringerung des Bedarfs an
Schreiblesespeicher oder vergréfRern diesen sogar in erheblichem Mal} im Fall der voretablierten Beweisinfor-
mationen fiir eine korrekte Datentypisierung.

[0022] Ziel der vorliegenden Erfindung ist, die erwahnten Nachteile des Standes der Technik zu beheben.
[0023] Insbesondere ist ein Gegenstand der vorliegenden Erfindung die Anwendung eines Protokolls zur Ver-
waltung eines ferngeladenen Programmfragments oder Applets, das eine Ausfiihrung des letzteren durch ein
mitgefihrtes Informatiksystem ermdglicht, das Gber geringe Ressourcen verfligt, wie etwa eine Mikroprozes-
sorkarte.

[0024] Ein anderer Gegenstand der Erfindung ist ebenfalls die Anwendung eines Verfahrens zur Uberpriifung
eines ferngeladenen Programmfragments oder Applets, bei dem ein Prozess zur statischen Uberpriifung des
Codes des Applets bei dessen Fernladen durchgefuihrt wird, wobei dieser Prozess wenigstens dem Prinzip
nach der dritten oben beschriebenen Losung angenahert werden kann, bei dem aber neuartige Techniken zur
Uberpriifung eingesetzt werden, um die Ausfilhrung dieser Uberpriifung mit den Werten der SpeichergroRe
und der Rechengeschwindigkeit zu ermdéglichen, die von den Mikroprozessorkarten und anderen mitgefiihrten
Informatiksystemen geringer Leistung vorgegeben sind.

[0025] Ein anderes Ziel der vorliegenden Erfindung ist ebenfalls die Anwendung von Verfahren zum Umwan-
deln von Programmfragmenten herkdmmlichen Typs, die z. B. durch Anwendung eines Java-Compilers erhal-
ten sind, in normierte Programmfragmente oder Applets, die a priori den Kriterien der Uberpriifung des erfin-
dungsgegenstandlichen Uberpriifungsverfahrens geniigen, um den Prozess der Uberpriifung und Ausfiihrung
dieser letzteren an den mitgeflihrten Informatiksystemen oder gegenwartigen Mikroprozessorkarten zu be-
schleunigen.

[0026] Ein anderes Ziel der vorliegenden Erfindung ist schlieBlich die Realisierung von mitgefuhrten Informa-
tiksystemen, die die Anwendung des oben erwahnten Protokolls zur Verwaltung und des Verfahrens zur Uber-
prufung eines ferngeladenen Programmfragments ermdglichen, sowie von Informatiksystemen, die die An-
wendung von Verfahren zur Umwandlung von herkdbmmlichen Programmfragmenten oder Applets in die er-
wahnten normierten Programmfragmente oder Applets ermdglichen.

[0027] Das erfindungsgegenstandliche Protokoll zur Verwaltung eines ferngeladenen Programmfragments
auf einem umprogrammierbaren mitgeflihrten System ist insbesondere anwendbar auf eine Mikroprozessor-
karte, die mit einem Uberschreibbaren Speicher ausgestattet ist. Das Programmfragment ist gebildet durch ei-
nen Objektcode, eine Folge von Anweisungen, die durch den Mikroprozessor des mitgefiihrten Systems tber
eine virtuelle Maschine ausfuihrbar ist, die mit einem Ausfiuhrungsstack und Registern oder lokalen Variablen
ausgestattet ist, die von diesen Anweisungen manipuliert werden, und die es erlaubt, diesen Objektcode zu
interpretieren. Das mitgeflihrte System ist an ein Endgerat angeschlossen.

[0028] Es ist bemerkenswert, dass es, wenigstens auf dem Niveau des mitgefiihrten Systems, darin beruht,
einen Befehl zum Fernladen des Programmfragments zu erfassen. Bei positiver Reaktion auf den Schritt, der
darin beruht, einen Fernladebefehl zu erfassen, beruht es ferner darin, den das Programmfragment bildenden
Objektcode zu lesen und diesen Objektcode zeitweilig in dem Uberschreibbaren Speicher zu speichern. Der
gesamte gespeicherte Objektcode wird Anweisung fiir Anweisung einem Uberpriifungsprozess unterzogen.
Der Uberpriifungsprozess beruht in wenigstens einem Schritt der Initialisierung des Stacks der Typen und der
Tabelle der Typen von Registern, die den Zustand der virtuellen Maschine zu Beginn der Ausflihrung des zeit-
weilig gespeicherten Objektcodes darstellen, und in einer Folge von Schritten der Uberpriifung, Anweisung fir
Anweisung, der Existenz, fir jede laufende Anweisung, eines Zieles, eines Zieles einer Verzweigungsanwei-
sung, eines Zieles eines Ausnahmeverwaltungsaufrufes, und einer Uberpriifung und einer Aktualisierung der
Wirkung der laufenden Anweisung auf den Stack der Typen und die Tabelle der Registertypen. Im Fall einer
nicht gelungenen Uberpriifung des Objektcodes beruht das erfindungsgegenstandliche Protokoll darin, das
zeitweilig aufgezeichnete Programmfragment zu I6schen, ohne dass eine Aufzeichnung des letzteren in dem
Verzeichnis verfugbarer Programme aufgezeichnet ist, und einen Fehlercode an das Lesegerat zu senden.
[0029] Das Verfahren zur Uberpriifung eines ferngeladenen Programmfragments in einem mitgefiihrten Sys-
tem gemal der Erfindung ist insbesondere anwendbar auf eine mit einem Uberschreibbaren Speicher verse-
hene Mikroprozessorkarte. Das Programmfragment ist gebildet durch einen Objektcode und umfasst wenigs-
tens ein Unterprogramm, eine Folge von Anweisungen, die durch den Mikroprozessor des mitgefiihrten Sys-
tems Uber eine virtuelle Maschine ausflihrbar sind, die mit einem Ausfiihrungsstack und Registern von durch
diese Anweisungen manipulierten Operanden ausgestattet ist und es erlaubt, diesen Objektcode zu interpre-
tieren. Das mitgefihrte System ist an ein Lesegerat angeschlossen.

[0030] Bemerkenswert ist, dass nach der Erfassung eines Fernladebefehls und der Speicherung des das Pro-
grammfragment bildenden Objektcodes in dem liberschreibbaren Speicher es darin beruht, fir jedes Unterpro-
gramm einen Schritt der Initialisierung des Typenstacks und der Tabelle der Registertypen mit Daten durchzu-
fuhren, die den Zustand der virtuellen Maschine zu Beginn der Ausfihrung des zeitweilig gespeicherten Ob-
jektcodes darstellen, eine Uberpriifung des zeitweilig gespeicherten Objektcodes, Anweisung fiir Anweisung,
durch Diskriminieren des Vorhandenseins, firr jeden aktuellen Befehl, eines Ziels einer Verzweigungsanwei-

4/44

DE 600 06 141 T2 2004.08.26

sung, eines Zieles eines Ausnahmeverwaltungsaufrufes oder eines Ziels eines Subroutinenaufrufs durchzu-
fuhren, und eine Aktualisierung der Wirkung der laufenden Anweisung auf die Datentypen des Typenstacks
und die Tabelle der Registertypen in Abhangigkeit vom Vorhandensein eines Verzweigungsanweisungsziels,
eines Subroutinenaufrufziels oder eines Ziels eines Ausnahmeverwaltungsaufrufs, durchzufiihren. Die Uber-
prifung ist gelungen, wenn die Tabelle der Registertypen im Laufe einer Uberpriifung aller Anweisungen nicht
verandert wird, wobei der Uberpriifungsprozess in Abwesenheit einer Veranderung Anweisung fir Anweisung
fortgesetzt wird, bis die Tabelle der Registertypen stabil ist. Andernfalls wird der Uberpriifungsprozess unter-
brochen.

[0031] Das erfindungsgegenstandliche Verfahren zur Umwandlung eines Objektcodes eines Programmfrag-
ments in einen normierten Objektcode fliir das gleiche Programmfragment ist anwendbar auf einen Objektcode
eines Programmfragments, in welchem die Operanden jeder Anweisung zu den von dieser Anweisung mani-
pulierten Datentypen gehéren, der Ausfiihrungsstack kein Uberlaufen zeigt, und fiir jede Verzweigungsanwei-
sung der Stack-Variablentyp in Hohe dieser Verzweigung der gleiche ist wie in H6he der Ziele dieser Verzwei-
gung. Der erhaltene normierte Objektcode ist derart, dass die Operanden jeder Anweisung zu den von dieser
Anweisung manipulierten Datentypen gehéren, der Ausfiihrungsstack kein Uberlaufen zeigt und der Ausfiih-
rungsstack bei jeder Verzweigungszielanweisung leer ist.

[0032] Bemerkenswert ist, dass es darin beruht, fir die Menge der Anweisungen des Objektcodes jede lau-
fende Anweisung mit dem Datentyp des Ausfuhrungsstacks vor und nach Ausflihrung dieser Anweisung zu
kommentieren, wobei die Kommentierungsdaten mit Hilfe einer Analyse des auf diese Anweisung bezogenen
Datenstroms berechnet werden, in den Anweisungen und jeder laufenden Anweisung das Vorhandensein von
Verzweigungen, fur die der Ausfliihrungsstack nicht leer ist, zu erfassen, wobei die Erfassungsoperation aus-
gehend von den jeder laufenden Anweisung zugeordneten Stack-Variablentyp-Kommentierungsdaten durch-
geflhrt wird. Ferner beruht es darin, bei Vorliegen eines nicht leeren Ausfiihrungsstacks, Stack-Variablentrans-
fer-Anweisungen jeweils beiderseits dieser Verzweigungen oder dieser Verzweigungsziele einzufiigen, um den
Inhalt des Ausfiihrungsstacks vor der Verzweigung in zeitweilige Register zu entleeren und den Ausflihrungs-
stack anhand dieser zeitweiligen Register nach der Verzweigung wieder herzustellen, und anderenfalls keine
Transferanweisung einzufligen. Durch dieses Verfahren kann so ein normierter Objektcode fur das gleiche
Programmfragment erhalten werden, bei dem der Ausfiihrungsstack bei jeder Verzweigungsanweisung und
Verzweigungszielanweisung leer ist, ohne dass die Ausfliihrung des Programmfragments verandert wird.
[0033] Das Verfahren zur Umwandlung eines Objektcodes eines Programmfragments in einen normierten
Objektcode des gleichen Programmfragments gemaf der vorliegenden Erfindung ist ferner anwendbar auf ei-
nen Objektcode eines Programmfragments, in dem die Operanden jeder Anweisung zu den von dieser Anwei-
sung manipulierten Datentypen gehéren und ein von einer Anweisung dieses Objektcodes in ein Register ge-
schriebener Operand von gegebenem Typ aus diesem gleichen Register von einer anderen Anweisung dieses
Objektcodes mit dem gleichen gegebenen Datentyp wieder gelesen wird. Der erhaltene normierte Objektcode
ist derart, dass die Operanden zu den von dieser Anweisung manipulierten Datentypen gehéren, wobei in dem
gesamten normierten Objektcode ein einziger und gleicher Datentyp einem gleichen Register zugewiesen
wird.

[0034] Bemerkenswert ist, dass es darin beruht, fir die Gesamtheit der Anweisungen des Objektcodes jede
laufende Anweisung mit dem Datentyp der Register vor und nach Ausflihrung dieser Anweisung zu kommen-
tieren, wobei die Kommentierungsdaten mit Hilfe einer Analyse des diese Anweisung betreffenden Daten-
stroms berechnet werden, und eine Neuzuteilung von mit diesen verschiedenen Typen verwendeten Ur-
sprungsregistern durch Aufteilen dieser Ursprungsregister in verschiedene normierte Register vorzunehmen.
Ein normiertes Register wird jedem verwendeten Datentyp zugeteilt. Eine Reaktualisierung der Anweisungen,
die die auf diese normierten Register zugreifenden Operanden manipulieren, wird durchgefiihrt.

[0035] Das Protokoll zur Verwaltung eines Programmfragments, das Verfahren zur Uberpriifung eines Pro-
grammfragments und die Verfahren zur Umwandlung von Objektcode von Programmfragmenten in normierten
Objektcode und die entsprechenden Systeme gemalR der vorliegenden Erfindung werden eingesetzt bei der
Entwicklung von umprogrammierbaren mitgefuhrten Systemen wie etwa Mikroprozessorkarten, insbesondere
in Java-Umgebung.

[0036] Sie sind besser zu verstehen anhand der Lektiire der Beschreibung und der Betrachtung der beige-
fugten Zeichnungen, bei denen, neben den den Stand der Technik betreffenden Fig. 1a und 1b:

[0037] Fig. 2 ein Flussdiagramm darstellt, welches das Protokoll zur Verwaltung eines ferngeladenen Pro-
grammfragments in einem umprogrammierbaren mitgefihrten System veranschaulicht,

[0038] Fig. 3a zur Verdeutlichung ein Flussdiagramm eines Verfahrens zur Uberpriifung eines ferngeladenen
Programmfragments gemaR dem Gegenstand der vorliegenden Erfindung zeigt,

[0039] Fig. 3b ein Diagramm darstellt, welches die Datentypen und Untertypisierungsbeziehungen verdeut-
licht, die von dem Verwaltungsverfahren und dem Verfahren zur Uberpriifung eines ferngeladenen Programm-
fragments geman der vorliegenden Erfindung eingesetzt werden,

[0040] Fig. 3c ein Detail des Uberpriifungsverfahrens gemaR Fig. 3a, betreffend die Verwaltung eines Ver-

5/44

DE 600 06 141 T2 2004.08.26

zweigungsbefehls darstellt,

[0041] Fig. 3d ein Detail des Uberprifungsverfahrens geman Fig. 3a, betreffend die Verwaltung einer Sub-
routinenaufrufanweisung, darstellt,

[0042] Fig. 3e ein Detail des Uberprifungsverfahrens gemaR Fig. 3a, betreffend die Verwaltung eines Aus-
nahmeverwaltungsziels, darstellt,

[0043] Fig. 3f ein Detail des Uberpriifungsverfahrens gemaR Fig. 3a, betreffend die Verwaltung eines Ziels
von inkompatiblen Verzweigungen, darstellt,

[0044] Fig. 3g ein Detail des Uberpriifungsverfahrens geméaR Fig. 3a, betreffend die Verwaltung eines Feh-
lens eines Verzweigungsziels, darstellt,

[0045] Fig. 3h ein Detail des Uberpriifungsverfahrens geméaR Fig. 3a, betreffend die Verwaltung der Wirkung
der laufenden Anweisung auf den Typenstack, darstellt,

[0046] Fig. 3i ein Detail des Uberpriifungsverfahrens gemaR Fig. 3a, betreffend die Verwaltung einer Regis-
terleseanweisung, darstellt,

[0047] Fig. 3j ein Detail des Uberpriifungsverfahrens gemaR Fig. 3a, betreffend die Verwaltung einer Regis-
terschreibanweisung, darstellt,

[0048] Fig. 4a ein Flussdiagramm zur Verdeutlichung eines Verfahrens zur Umwandlung eines Objektcodes
eines Programmfragments in einen normierten Objektcode fir dieses Bleiche Programmfragment mit Verzwei-
gungsanweisung bzw. Verzweigungszielanweisung mit leerem Stack, darstellt,

[0049] Fig. 4b ein Flussdiagramm zur Veranschaulichung eines Verfahrens zur Umwandlung eines Objekt-
codes eines Programmfragments in einen normierten Objektcode fir dieses gleiche Programmfragment, der
auf typisierte Register zugreift, darstellt, wobei jedem Register ein einziger spezifischer Datentyp zugewiesen
ist,

[0050] Fig. 5a ein Detail der Ausfiihrung des in Fig. 4a veranschaulichten Umwandlungsverfahrens darstellt,
[0051] Fig. 5b ein Detail der Ausfiihrung des in Fig. 4b veranschaulichten Umwandlungsverfahrens darstellt,
[0052] Fig. 6 ein Funktionsschema der vollstandigen Architektur eines Entwicklungssystems fiir ein normier-
tes Programmfragment und einer umprogrammierbaren Mikroprozessorkarte darstellt, die die Ausflihrung des
Verwaltungsprotokolls und des Uberpriifungsverfahrens eines Programmfragments gemaR dem Gegenstand
der vorliegenden Erfindung ermdglicht.

[0053] Allgemein wird darauf hingewiesen, dass das Verwaltungsprotokoll, das Uberpriifungsverfahren und
das Verfahren zur Umwandlung eines ferngeladenen Programmfragments gemaR der vorliegenden Erfindung
sowie die entsprechenden Systeme mit Hilfe einer Softwarearchitektur fiir das sichere Fernladen und Ausfiih-
ren von Applets auf einem mitgeflhrten Informatiksystem mit geringen Ressourcen wie insbesondere Mikro-
prozessorkarten angewendet werden.

[0054] Allgemein wird darauf hingewiesen, dass die nachfolgende Beschreibung die Anwendung der Erfin-
dung im Kontext von umprogrammierbaren Mikroprozessorkarten vom Typ JavaCard betrifft, siehe die zuvor
in der Beschreibung erwahnte, bei der Fa. Sun Microsystems Inc. unter der Rubrik JavaCard Technology elek-
tronisch verfiigbare Dokumentation.

[0055] Die vorliegende Erfindung ist jedoch anwendbar auf jedes mitgeflihrte System, das Uber ein Fernladen
eines Applets umprogrammierbar ist, das in dem Code einer virtuellen Maschine geschrieben ist, die einen
Ausfiuihrungsstack, lokale Register oder Variablen umfasst und dessen Ausfiihrungsmodell stark typisiert ist,
wobei jede Anweisung des Codes des Applets nur fiir spezifische Datentypen anwendbar ist. Das Protokoll zur
Verwaltung eines ferngeladenen Programmfragments auf einem umprogrammierbaren mitgefiihrten System
gemal der vorliegenden Erfindung wird nun in Verbindung mit in Fig. 2 detaillierter beschrieben.

[0056] In Verbindung mit der erwahnten Figur wird darauf hingewiesen, dass der Objektcode, der das Pro-
grammfragment oder Applet bildet, aus einer Folge von Anweisungen besteht, die von dem Mikroprozessor
des mitgeflihrten Systems Uber die oben erwahnte virtuelle Maschine ausfiihrbar sind. Die virtuelle Maschine
erlaubt es, den erwahnten Objektcode zu interpretieren. Das mitgeflihrte System ist z. B. Uiber eine serielle Ver-
bindung an ein Endgerat angeschlossen.

[0057] Mit Bezug auf die erwahnte Fig. 2 beruht das erfindungsgegenstandliche Verwaltungsprotokoll auf
dem Niveau des mitgefiihrten Systems wenigstens darin, in einem Schritt 100a, 100b einen Befehl zum Fern-
laden dieses Programmfragments zu erfassen. So kann der Schritt 100a in einem Schritt des Lesens des oben
erwahnten Befehls und der Schritt 100b in einem Schritt des Testens des gelesenen Befehls und der Uberprii-
fung des Vorliegens eines Fernladebefehls beruhen.

[0058] Bei positiver Reaktion auf den oben erwahnten Schritt 100a, 100b der Erfassung eines Fernladebe-
fehls beruht das erfindungsgegenstandliche Protokoll anschlieRend darin, im Schritt 101 den Objektcode zu
lesen, der das betreffende Programmfragment bildet, und den besagten Objektcode zeitweilig in dem Speicher
des mitgeflihrten Informatiksystems zu speichern. Die besagte Operation des zeitweiligen Speicherns kann in
dem Uberschreibbaren Speicher oder gegebenenfalls im Schreiblesespeicher des mitgefliihrten Systems
durchgefiihrt werden, wenn letzterer eine ausreichende Kapazitat aufweist. Der Schritt des Lesens des Objekt-
codes und des zeitweiligen Speicherns des letzteren in dem Uberschreibbaren Speicher wird in Fig. 2 als La-

6/44

DE 600 06 141 T2 2004.08.26

den des Codes des Applets bezeichnet.

[0059] Auf den besagten Schritt folgt ein Schritt 102, der darin beruht, die Gesamtheit des zeitweilig gespei-
cherten Objektcodes Anweisung fiir Anweisung einem Prozess der Uberpriifung des besagten Objektcodes zu
unterziehen.

[0060] Die Uberpriifung beruht in wenigstens einem Schritt der Initialisierung des Typenstacks und der Tabel-
le der Datentypen, die den Zustand der virtuellen Maschine zu Beginn der Ausfihrung des zeitweilig gespei-
cherten Objektcodes darstellen, sowie in einer Folge von Uberpriifungsschritten, Anweisung fir Anweisung,
durch Diskriminieren des Vorliegens, flr jede mit |, bezeichnete laufende Anweisung, eines Ziels wie etwa ei-
nes mit CIB bezeichneten Ziels einer Verzweigungsanweisung, eines Ziels eines Ausnahmeverwaltungsaufru-
fes oder eines Zieles eines Subroutinenaufrufs. Eine Uberpriifung und eine Aktualisierung der Wirkung der lau-
fenden Anweisung |, auf den Typenstack und die Tabelle der Registertypen wird durchgefihrt.

[0061] Wenn die Uberpriifung in Schritt 103a gelungen ist, beruht das erfindungsgegenstandliche Protokoll
darin, in Schritt 104 das ferngeladene Programmfragment in ein Verzeichnis von verfligbaren Programmfrag-
menten einzutragen und in Schritt 105 an das Lesegerat eine positive Empfangsbestatigung zu senden.
[0062] Umgekehrt beruht im Fall einer nicht gelungenen Uberpriifung des Objektcodes in Schritt 103b das
erfindungsgegenstandliche Protokoll darin, in einem Schritt 103¢ jede Ausfiihrung des zeitweilig gespeicherten
Programmfragments auf dem mitgefiihrten System zu sperren. Der Schritt des Sperrens 103c kann in unter-
schiedlicher Weise ausgeflihrt werden. Dieser Schritt kann, als nicht einschrankendes Beispiel, darin beruhen,
in Schritt 106 das zeitweilig aufgezeichnete Programmfragment — bei Fehlen einer Aufzeichnung dieses Pro-
grammfragments im Verzeichnis von verfligbaren Programmfragmenten — zu I6schen und in einem Schritt 107
an das Lesegerat einen Fehlercode zu senden. Die Schritte 107 und 105 kdnnen sequentiell nach den Schrit-
ten 106 bzw. 104 oder als Multitasking-Operation mit diesen ausgeflihrt werden.

[0063] Bezogen auf die gleiche Fig. 2 beruht bei negativer Reaktion auf den in der Erfassung eines Fernla-
debefehls beruhenden Schrittes 100b das erfindungsgegenstandliche Protokoll darin, in einem Schritt 108 ei-
nen Befehl zur Auswahl eines in einem Verzeichnis von Programmfragmenten verfligbaren Programmfrag-
ments zu erfassen und, bei positiver Reaktion auf den Schritt 108, in welchem die Auswahl eines verfigbaren
Programmfragments erfasst wird, in Schritt 109 dieses ausgewahlte verfigbare Programmfragment aufzuru-
fen, um es auszufiihren. Auf den Schritt 109 folgt dann ein Schritt 110 des Ausflihrens des aufgerufenen ver-
fligbaren Programmfragments mit Hilfe der virtuellen Maschine in Abwesenheit jeglicher dynamischer Uber-
prufung von Variablentypen, der Zugriffsrechte auf die von dem aufgerufenen verfiigbaren Programmfragment
manipulierten Objekte oder des Uberlaufens des Ausfilhrungsstacks bei der Ausfiihrung jeder Anweisung.
[0064] In dem Fall, dass in Schritt 108 eine negative Antwort erhalten wird, wobei dieser Schritt darin beruht,
einen Befehl zur Auswahl eines aufgerufenen verfigbaren Programmfragments zu erfassen, beruht das erfin-
dungsgegenstandliche Protokoll darin, in einem Schritt 111 die Verarbeitung der Standardbefehle des mitge-
fihrten Systems vorzunehmen.

[0065] Was das Fehlen einer dynamischen Uberpriifung des Typs oder des Zugriffsrechtes auf Objekte bei-
spielsweise vom Typ JavaCard betrifft, sei gesagt, dass dieses Fehlen einer Uberpriifung die Sicherheit der
Karte nicht beeintrichtigt, da der Code des Applets notwendigerweise die Uberpriifung erfolgreich durchlaufen
hat.

[0066] Genauer gesagt ist die Uberpriifung des Codes, die gemaR dem erfindungsgegensténdlichen Verfah-
ren auf der Mikroprozessorkarte oder dem mitgefihrten Informatiksystem durchgefiihrt wird, selektiver als die
Ubliche Codeuberpriifung fir die virtuelle Java-Maschine wie in dem weiter oben in der Beschreibung erwahn-
ten Werk mit dem Titel ,The Java Virtual Machine Specification" beschrieben.

[0067] Allerdings kann der gesamte im Sinne des herkdmmlichen Java-Uberpriifers korrekte Code der virtu-
ellen Java-Maschine in einen aquivalenten Code umgewandelt werden, der in der Lage ist, die auf der Mikro-
prozessorkarte durchgefiihrte Codelberprifung erfolgreich zu durchlaufen.

[0068] Es ist zwar denkbar, Java-Codes, die die oben erwéhnten Uberpriifungskriterien im Rahmen der An-
wendung des erfindungsgegenstandlichen Protokolls erflllen, direkt zu schreiben, doch ist ein bemerkenswer-
ter Gegenstand dieses Protokolls auch die Anwendung eines automatischen Umwandlungsverfahrens von be-
liebigem Standard-Java-Code in einen normierten Code fir das gleiche Programmfragment, der zwangslaufig
den oben zitierten angewendeten Uberpriifungskriterien geniigt. Das Verfahren zur Umwandlung in normierten
Code und das entsprechende System werden in der Beschreibung spater detailliert behandelt.

[0069] Eine genauere Beschreibung des Verfahrens zur Uberpriifung eines Programmfragments oder App-
lets gemak dem Gegenstand der vorliegenden Erfindung wird nun in Verbindung mit Fig. 3a und den folgenden
Figuren gegeben.

[0070] Allgemein ist das erfindungsgegensténdliche Uberpriifungsverfahren im Rahmen des oben in Verbin-
dung mit Fig. 2 beschriebenen erfindungsgegenstandlichen Protokolls zur Verwaltung eines Programmfrag-
ments oder unabhéngig davon anwendbar, um jeden fiir notwendig befundenen Uberpriifungsprozess zu ge-
wahrleisten.

[0071] Allgemein ist ein Programmfragment durch einen Objektcode gebildet, der wenigstens ein Unterpro-

7/44

DE 600 06 141 T2 2004.08.26

gramm, allgemeiner als Methode bezeichnet, umfasst, und bildet eine Folge von von dem Mikroprozessor des
mitgeflhrten Systems Uber die virtuelle Maschine ausflihrbaren Anweisungen.

[0072] Wie in Fig. 3a gezeigt, beruht das Uberpriifungsverfahren fiir jedes Unterprogramm darin, einen
Schritt 200 der Initialisierung des Typenstacks und der Tabelle der Registertypen der virtuellen Maschine mit
Daten durchzufiihren, die den Zustand dieser virtuellen Maschine zu Beginn der Ausfiihrung des Objektcodes
darstellen, der Gegenstand der Uberpriifung ist. Dieser Objektcode kann, wie oben in Verbindung mit der An-
wendung des erfindungsgegenstandlichen Protokolls beschrieben, zeitweilig gespeichert werden.

[0073] Auf den erwahnten Schritt 200 folgt dann ein Schritt 200a, der darin beruht, das Lesen der laufenden
Anweisung |, mit Index i auf die erste Anweisung des Objektcodes zu positionieren. Auf den Schritt 200a folgt
ein Schritt 201, der darin beruht, eine Uberpriifung des besagten Objektcodes Anweisung fiir Anweisung
durchzufthren, indem fir jede mit |, bezeichnete laufende Anweisung die Existenz eines Verzweigungsanwei-
sungsziels CIB, eines Ziels eines Ausnahmeverwaltungsaufrufes CEM oder eines Zieles eines Subroutinen-
aufrufs CSR diskriminiert wird.

[0074] Auf den Uberpriifungsschritt 201 folgt ein Schritt 202 der Uberpriifung und Aktualisierung der Wirkung
der laufenden Anweisung |, auf die Datentypen des Typenstacks und der Tabelle der Registertypen in Abhan-
gigkeit von der Existenz, fur die durch eine andere Anweisung anvisierten laufenden Anweisung, eines Ziels
einer Verzweigungsanweisung CIB, eines Ziels eines Subroutinenaufrufs CSR oder eines Ziels eines Ausnah-
meverwaltungsaufrufes CEM.

[0075] Aufden Schritt 202 fur die laufende Anweisung |, folgt ein Schritt 203 des Prifens, ob die letzte Anwei-
sung erreicht ist, bezeichnet mit

|, = letzte Anweisung des Objektcodes? Bei negativer Antwort auf den Test 203 geht der Prozess Uber zur nach-
folgenden Anweisung 204, miti =i+ 1 bezeichnet, und kehrt zu Schritt 201 zurtck.

[0076] Die besagte Uberpriifung in Schritt 202 ist gelungen, wenn die Tabelle der Registertypen im Laufe ei-
ner Uberpriifung aller den Objektcode bildenden Anweisungen |, nicht verandert wird. Zu diesem Zweck ist ein
Test 205 des Vorliegens eines stabilen Zustandes der Tabelle der Registertypen vorgesehen. Dieser Test ist
bezeichnet:

3? Stabiler Zustand der Tabelle der Registertypen

[0077] Bei positiver Antwort auf den Test 205 ist die Uberpriifung gelungen.

[0078] Im Fall, wohingegen kein Fehlen einer Veranderung festgestellt wird, wird der Uberpriifungsprozess
wiederholt und durch Rickkehr zum Schritt 200a neu gestartet. Es Iasst sich zeigen, dass das Ende des Pro-
zesses garantiert nach maximal NrxH Iterationen erreicht wird, wobei Nr die Zahl der verwendeten Register
bezeichnet und H eine von der Untertypisierungsbeziehung abhangige Konstante ist.

[0079] Verschiedene Angaben zu den Typen der im Laufe des oben in Verbindung mit Fig. 3a beschriebenen
Uberpriifungsprozesses manipulierten Variablen werden nun in Verbindung mit Fig. 3b gemacht.

[0080] Die oben erwahnten Variablentypen umfassen wenigstens Klassenidentifikatoren, die den in dem zu
Uberprifenden Programmfragment definierten Klassen von Objekten entsprechen, numerische Variablenty-
pen, die wenigstens einen Typ short, auf p bits ganzzahlig codiert, wobei p den Wert p = 16 annehmen kann,
und einen Typ einer Rickkehradresse einer Sprunganweisung JSR umfasst, wobei dieser Adressentyp mit
retaddr bezeichnet ist, einen Typ null der sich auf Verweise auf ungliltige Objekte bezieht, einen Typ object,
der sich auf die eigentliche Objekte bezieht, einen spezifischen Typ L, der die Schnittmenge aller Typen dar-
stellt und den null-Wert Null entspricht, einen anderen spezifischen Typ T, der die Vereinigungsmenge aller Ty-
pen darstellt und jedem Typ von Werten entspricht. Bezogen auf Fig. 3b erfiillt die Menge der oben erwahnten
Variablentypen eine Untertypisierungsbeziehung:

object e T;

short, retaddr € T,

1 € null, short, retaddr

[0081] Ein spezifischeres Beispiel eines Uberpriifungsprozesses wie in Fig. 3a dargestellt wird nun in Verbin-
dung mit einem ersten Beispiel einer in der im Anhang beigefligten Tabelle T1 darstellten Datenstruktur gege-
ben.

[0082] Besagtes Beispiel betrifft ein in Java-Code geschriebenes Applet.

[0083] Der Uberpriifungsprozess greift auf den Code des das zu Uberpriifende Applet bildenden Unterpro-
gramms Uber einen Zeiger auf die zu Uberprifende Anweisung |, zu.

[0084] Der Uberpriifungsprozess zeichnet die GréRe und den Typ des Ausfihrungsstacks bei der laufenden
Anweisung |, auf, der in dem Beispiel der besagten Tabelle T1 saload entspricht.

[0085] Der Uberpriifungsprozess zeichnet dann die GréRe und den Typ des Ausfiihrungsstacks bei der lau-
fenden Anweisung im Typenstack uber seinen Typenstackzeiger auf.

[0086] Wie zuvor in der Beschreibung erwahnt, spiegelt dieser Typenstack den Zustand des Ausflihrungs-
stacks der virtuellen Maschine bei der laufenden Anweisung |, wieder. In dem in Tabelle T1 dargestellten Bei-
spiel enthalt bei der bevorstehenden Ausfiihrung der Anweisung |, der Stack drei Eintrage: einen Verweis auf
ein Objekt der Klasse C, einen Verweis auf eine Tabelle von auf p = 16 bits codierten ganzen Zahlen, den Typ

8/44

DE 600 06 141 T2 2004.08.26

short[], und eine ganze Zahl von p = 16 Bits vom Typ short. Dies ist auch in dem Typenstack dargestellt, der
ebenfalls drei Eintrage enthalt: C, den Typ der Objekte der Klasse C, short[], den Typ der Tabellen von ganzen
Zahlen von p = 16 bits und short, den Typ der ganzen Zahlen mit p = 16 bits.
[0087] Eine andere bemerkenswerte Datenstruktur ist durch eine Tabelle von Registertypen gebildet, wobei
diese Tabelle den Zustand der Register der virtuellen Maschine, d. h. der Register, die die lokalen Variablen
speichern, wiederspiegelt.
[0088] Wieder bezogen auf das in Tabelle T1 angegebene Beispiel enthalt der Eintrag 0O der Registertypenta-
belle den Typ C, d. h., dass bei der bevorstehenden Ausfiihrung der laufenden Anweisung |, = saload gewahr-
leistet ist, dass das Register 0 einen Verweis auf ein Objekt der Klasse C enthalt.
[0089] Die verschiedenen im Laufe der Uberpriifung manipulierten und in der Registertypentabelle und dem
Typenstack gespeicherten Typen sind in Fig. 3b dargestellt. Diese Typen umfassen:
— Klassenidentifikatoren CB, die den in dem Applet definierten spezifischen Klassen von Objekten entspre-
chen;
— die Grundtypen, wie etwa short, ganzzahlig auf p = 16 bits codiert, int1 und int2, die jeweils p signifikan-
testen bzw. am wenigstens signifikanten bits von auf z. B. 2p bits codierten ganzen Zahlen, oder retaddr
der Rickkehradresse einer Anweisung, wie oben erwahnt;
—den Typ Null, der Verweise auf ungultige Objekte darstellt.

[0090] Was die Untertypisierungsbeziehung angeht, sei gesagt, dass ein Typ T1 Untertyp eines Typs T2 ist,
wenn jeder gultige Wert des Typs T1 ebenfalls ein gliltiger Wert des Typs T2 ist. Die Untertypisierung zwischen
Klassenidentifikatoren spiegelt die Vererbungshierarchie zwischen Klassen des Applets wieder. Fur die ande-
ren Typen ist die Untertypisierung definiert durch das in Fig. 3b dargestellte Netzwerk, wobei 1 Untertyp aller
Typen ist und alle Typen Untertypisierung von T sind.

[0091] Der Ablauf des Prozesses zur Uberpriifung eines ein Applet bildenden Unterprogramms ist, mit Bezug
auf die oben erwahnte Tabelle T1, der folgende.

[0092] Der Uberpriifungsprozess wird an jedem Unterprogramm des Applets unabhangig durchgefiihrt. Fiir
jedes Unterprogramm fiihrt der Prozess einen oder mehrere Uberpriifungsdurchgénge an den Anweisungen
des betreffenden Unterprogramms aus. Der Pseudocode des Uberpriifungsprozesses ist in der beigefiigten
Tabelle T2 angegeben.

[0093] Der Prozess zur Uberpriifung eines Unterprogramms beginnt mit der Initialisierung des Typenstacks
und der Tabelle der Registertypen, wie in Tabelle T1 dargestellt, wobei diese Initialisierung den Zustand der
virtuellen Maschine zu Beginn der Ausfihrung des untersuchten Unterprogramms darstellt.

[0094] Der Typenstack ist anfangs leer, der Stackzeiger ist gleich Null, und die Registertypen sind mit den
Typen der Parameter des Unterprogrammes initialisiert, was der Tatsache entspricht, dass die virtuelle Maschi-
ne die Parameter dieses Unterprogramms in diesen Registern ibergibt. Die von dem Unterprogramm zuge-
wiesenen Registertypen werden mit den Datentypen L initialisiert, was die Tatsache darstellt, dass die virtuelle
Maschine diese Register zu Beginn der Ausfiihrung des Unterprogramms auf Null initialisiert.

[0095] AnschlieRend werden ein oder mehrere Uberpriifungsdurchgénge an den Anweisungen und jeder lau-
fenden Anweisung |, des Unterprogramms durchgefihrt.

[0096] Z. B. am Ende des durchgefiihrten Uberpriifungsdurchgangs oder einer Folge von Durchgéngen be-
stimmt der Uberpriifungsprozess, ob die in der Tabelle der Registertypen enthaltenen, in der Tabelle T1 des
Anhangs dargestellten Registertypen sich wahrend des Uberpriifungsdurchgangs geéndert haben. Bei Fehlen
einer Anderung ist die Uberpriifung abgeschlossen, und ein Erfolgscode wird an das Hauptprogramm zuriick-
gegeben, was es ermdglicht, in Schritt 105 des in Fig. 2 dargestellten Verwaltungsprotokolls die positive Emp-
fangsbestatigung zu senden.

[0097] Bei Vorhandensein einer Veranderung der erwahnten Tabelle der Registertypen wiederholt der Uber-
prifungsprozess den Uberpriifungsdurchgang, bis die in der Tabelle der Registertypen enthaltenen Register-
typen stabil sind.

[0098] Der eigentliche Ablauf eines Uberpriifungsdurchgangs, der ein oder mehrere Male bis zur Stabilitat der
Registertypen durchgefiihrt wird, wird nun in Verbindung mit den Fig. 3c bis 3j beschrieben.

[0099] Fur jede laufende Anweisung |, werden die folgenden Uberprifungen durchgefihrt:

[0100] In Verbindung mit der Fig. 3a in Schritt 201 legt der Uberpriifungsprozess fest, ob die laufende Anwei-
sung |, Ziel einer Verzweigungsanweisung, eines Subroutinenaufrufs oder einer Ausnahmeverwaltung ist, wie
oben erwahnt. Diese Uberpriifung erfolgt durch Untersuchen der im Code des Unterprogramms enthaltenen
Verzweigungsbefehle und der diesem Unterprogramm zugeordneten Ausnahmeverwaltungen.

[0101] Wenn, mit Bezug auf die mit dem Schritt 201 beginnende Fig. 3c, die laufende Anweisung |, Ziel einer
Verzweigungsanweisung ist, wobei diese Bedingung durch einen mit |, = CIB bezeichneten Test 300 Uberpruft
wird, wobei die Verzweigung bedingt oder unbedingt ist, vergewissert sich der Uberpriifungsprozess durch ei-
nen Test 301, dass der Typenstack an diesem Punkt des Unterprogramms leer ist. Bei positiver Antwort auf
den Test 301, wird der Uberpriifungsprozess mit einem Kontextfortsetzungsschritt, bezeichnet als Fortsetzung

9/44

DE 600 06 141 T2 2004.08.26

A, fortgesetzt. Bei negativer Antwort auf den Test 301, wenn der Typenstack nicht leer ist, scheitert die Uber-
prufung, und das Applet wird zurlickgewiesen. Dieses Scheitern ist dargestellt durch den Schritt ,Scheitern”.
[0102] Bezogen auf die mit dem Schritt ,Fortsetzung A" beginnende Fig. 3d Uberprift, wenn die laufende An-
weisung |, das Ziel eines Subroutinenaufrufs ist, wobei diese Bedingung durch einen Test 304 |, = CSR uber-
prift wird, der Uberpriifungsprozess in einem Test 305, dass die vorhergehende Anweisung |, nicht sequen-
tiell weitergeht. Diese Uberpriifung wird durchgefiihrt durch einen Testschritt 305, wenn die vorhergehende An-
weisung eine unbedingte Verzweigung, eine Subroutinenrickkehr oder die Aufhebung einer Ausnahme dar-
stellt. Der Test in Schritt 305 ist folgendermallen bezeichnet:

|1 = 1Binbedings RUCKkehr RSR oder Aufhebung L-EXCEPT.

[0103] Bei negativer Antwort auf den Test 305 schlagt der Uberprifungsprozess in einem Schritt ,Scheitern”
fehl. Bei positiver Antwort auf den Test 305 jedoch reinitialisiert der Uberpriifungsprozess den Typenstack so,
dass dieser genau einen Eintrag vom Typ retaddr einer Adresse fir die Riickkehr von der oben erwahnten Su-
broutine enthalt. Wenn die laufende Anweisung |, in Schritt 304 nicht das Ziel eines Subroutinenaufrufs ist, wird
der Uberpriifungsprozess im Kontext in dem Schritt ,Fortsetzung B" fortgesetzt.

[0104] Bezogen auf Fig. 3e wird, wenn die laufende Anweisung |, Ziel einer Ausnahmeverwaltung ist, wobei
diese Bedingung mit einem mit |, = CEM bezeichneten Test 307 festgestellt wird, wobei CEM das Ziel einer
Ausnahmeverwaltung darstellt, diese Bedingung Uber einen Test 307 festgestellt, der mit

l, = CEM

bezeichnet ist.

[0105] Bei positiver Antwort auf den Test 307 Uberpriift der Prozess, dass die vorhergehende Anweisung ei-
nen unbedingten Sprungbefehl, eine Ruckkehr von einer Subroutine oder die Aufhebung einer Ausnahme tber
einen Test 305, bezeichnet mit

|1 = 1Binpedings RUCKkehr RSR oder Aufhebung L-EXCEPT.

[0106] Bei positiver Antwort auf den Test 305 nimmt der Uberprifungsprozess eine Reaktualisierung des Ty-
penstacks in einem Schritt 308 durch einen Eintrag von Ausnahmetypen, mit EXCEPT bezeichnet, vor, wobei
auf den Schritt 308 ein Kontextfortsetzungsschritt C folgt. Bei negativer Reaktion auf den Test schlégt die Uber-
prufung mit dem ,Scheitern” bezeichneten Schritt fehl. Das Programmfragment wird dann zurtickgewiesen.
[0107] Wenn bezogen auf Fig. 3f die laufende Anweisung |, das Ziel einer Mehrzahl von inkompatiblen Ver-
zweigungen ist, wird diese Bedingung durch einen Test 309, bezeichnet mit:

l; = inkompatible XIB

festgestellt, wobei die inkompatiblen Verzweigungen z. B. eine unbedingte Verzweigung und ein Subroutinen-
aufruf oder auch zwei unterschiedliche Ausnahmeverwaltungen sind. Bei positiver Reaktion auf den Test 309,
wenn die Verzweigungen inkompatibel sind, scheitert der Uberpriifungsprozess mit einem mit ,Scheitern" be-
zeichneten Schritt, und das Programmfragment wird zuriickgewiesen. Bei negativer Antwort auf den Test 309
wird der Uberpriifungsprozess mit einem mit ,Fortsetzung D" bezeichneten Schritt fortgesetzt. Der Test 309
wird eréffnet mit dem zuvor in der Beschreibung erwahnten Schritt ,Fortsetzung C".

[0108] Wenn bezogen auf Fig. 3g die laufende Anweisung |, nicht das Ziel einer Verzweigung ist, wobei diese
Bedingung durch einen Test Uberpriift wird, der mit der oben erwahnten ,Fortsetzung D" beginnt und bezeich-
net ist mit

l; 3?7 Verzweigungsziele,

wobei 3 das Existenzsymbol bezeichnet, geht der Uberpriifungsprozess bei negativer Antwort auf den Test 310
weiter mit einem Ubergang zu einer Aktualsierung des Typenstacks in einem Schritt 311, wobei auf den Schritt
311 und auf die positive Antwort auf den Test 310 in Schritt 202 ein Kontextfortsetzungsschritt folgt, wie oben
in der Beschreibung in Verbindung mit Fig. 3a beschrieben.

[0109] Eine detailliertere Beschreibung des Schritts der Uberpriifung der Wirkung der laufenden Anweisung
auf den Typenstack im oben beschriebenen Schritt 202 wird nun in Verbindung mit Fig. 3h geliefert.

[0110] GemaR der erwahnten Figur kann dieser Schritt wenigstens einen Schritt 400 der Uberpriifung umfas-
sen, dass der Ausfihrungstypenstack wenigstens so viele Eintrage enthalt, wie die laufende Anweisung Ope-
randen hat. Dieser Testschritt 400 ist bezeichnet mit:

Nbep = NOpi,

wobei Nbep die Zahl der Eintrage des Typenstacks und NOpi die Zahl von in der laufenden Anweisung enthal-
tenen Operanden bezeichnet.

[0111] Bei positiver Antwort auf den Test 300 folgt auf diesen Test ein Schritt 401 des Entstapelns des Typen-
stacks und der Uberpriifung 401b, dass die Typen der Eintrdge an der Spitze des Stacks Untertypen der Ope-
randentypen der besagten laufenden Anweisung sind. In dem Testschritt 401a sind die Operandentypen der
Anweisung i mit TOpi und die Typen der Eintradge an der Spitze des Stacks mit Targs bezeichnet.

[0112] In Schritt 401b entspricht die Uberpriifung einer Uberpriifung der Untertypisierungsbeziehung "Targs
Untertyp von TOpi".

[0113] Bei negativer Antwort auf den Test 400 und den Test 401b scheitert der Uberpriifungsprozess, was
durch Verzweigen zum Schritt "Scheitern" dargestellt ist. Bei positiver Antwort auf den Test 401b jedoch geht

10/44

DE 600 06 141 T2 2004.08.26

der Uberpriifungsprozess weiter und beruht darin, einen
— Schritt der Uberpriifung der Existenz eines ausreichenden Speicherplatzes auf dem Typenstack zum
Durchfiihren des Stapelns der Ergebnisse der laufenden Anweisung durchzufiihren. Dieser Uberpriifungs-
schritt wird durchgefiihrt mit einem Test 402, bezeichnet mit
Stackplatz = Ergebnisplatz

wobei jedes Element der Ungleichung den entsprechenden Speicherplatz bezeichnet.

[0114] Bei negativer Antwort auf den Test 402 scheitert der Uberpriifungsprozess, was durch den Schritt
,Scheitern" dargestellt ist. Bei positiver Antwort auf den Test 402 jedoch fiihrt der Uberpriifungsprozess die Sta-
pelung der den Ergebnissen zugeordneten Datentypen in einem Schritt 403 durch, wobei die Stapelung auf
dem diesen Ergebnissen zugeordneten Datentypenstack durchgefiihrt wird.

[0115] Als nicht einschrankendes Beispiel sei angegeben, dass fiir die Durchfiihrung, nach Fig. 3h, der Uber-
prufung der Wirkung der laufenden Anweisung auf den Typenstack fiir eine laufende Anweisung, die durch
eine Java-Anweisung saload gebildet ist, die dem Lesen eines auf p = 16 bits codierten ganzzahligen Elements
in einer Tabelle von ganzen Zahlen entspricht, wobei diese Tabelle von ganzen Zahlen definiert ist durch die
Tabelle von ganzen Zahlen und einem ganzzahligen Index in dieser Tabelle und das Ergebnis durch die an
diesem Index in der Tabelle gelesene ganze Zahl, der Uberpriifungsprozess sich vergewissert, dass der Ty-
penstack wenigstens zwei Elemente enthalt, dass die zwei Elemente an der Spitze des Typenstacks Unterty-
pen von short[] bzw. short sind, den Entstapelungsprozess und anschliefend den Stapelungsprozess mit dem
Datentyp short als Typ des Ergebnisses vornimmt.

[0116] AuRerdem beruht mit Bezug auf Fig. 3i fiir die Durchfilhrung des Schritts der Uberpriifung der Wirkung
der laufenden Anweisung auf den Typenstack, wenn die laufende Anweisung |, eine Anweisung, mit IR be-
zeichnet, zum Lesen eines Adressregisters n ist, wobei diese Bedingung durch einen mit |, = IR, bezeichneten
Test 404 (berpriift wird, bei positiver Antwort auf den besagten Test 404 der Uberpriifungsprozess darin, den
Datentyp des Ergebnisses dieses Lesens in einem Schritt 405 durch Abfragen des Eintrags n der Tabelle der
Registertypen zu Uberprifen, dann die Wirkung der laufenden Anweisung |, auf den Typenstack durch eine
Operation 406a des Entstapelns der Eintrage des Stacks, die den Operanden dieser laufenden Anweisung ent-
sprechen, und durch Stapeln 406b des Datentyps dieses Ergebnisses zu bestimmen. Die Operanda der An-
weisung |, werden mit OP, bezeichnet. Auf die Schritte 406a und 406b folgt eine Riickkehr zur Fortsetzung des
Kontexts Fortsetzung F. Bei negativer Antwort auf den Test 404 wird der Uberpriifungsprozess fortgesetzt
durch die Fortsetzung des Kontexts Fortsetzung F.

[0117] Mit Bezug auf Fig. 3j besteht, wenn die laufende Anweisung |, eine mit IW bezeichnete Anweisung zum
Schreiben eines Adressregisters n ist, wobei diese Bedingung durch einen mit |, = IW_ bezeichneten Test tiber-
pruft wird, der Uberpriifungsprozess darin, bei positiver Antwort auf den Test 407 in einem Schritt 408 die Wir-
kung der laufenden Anweisung auf den Typenstack und den Typ t des in das Adressregister n geschriebenen
Operanden zu bestimmen, und dann, in einem Schritt 409, den Eintrag des Typs in der Registertypentabelle
an der Adresse n durch den Typ zu ersetzen, der unmittelbar hdher als der zuvor gespeicherte Typ und der
Typ t des in das Adressregister n geschriebenen Operanden ist. Ruf den Schritt 409 folgt eine Riickkehr zur
Fortsetzung des Kontexts Fortsetzung 204. Bei negativer Antwort auf den Test 407 wird der Uberpriifungspro-
zess fortgesetzt mit einer Fortsetzung des Kontexts Fortsetzung 204.

[0118] Wenn beispielsweise die laufende Anweisung |, dem Schreiben eines Werts vom Typ D in ein Register
mit Adresse 1 entspricht und der Typ des Registers 1 vor der Uberpriifung der Anweisung C war, wird der Typ
des Registers 1 ersetzt durch den Typ object, der in dem in Fig. 3b dargestellten Typennetz der niedrigste Typ
ist, der hoéher ist als C und D.

[0119] Wenn z. B. die laufende Anweisung von |, ein Lesen einer Anweisung aload-0 ist, die darin beruht, den
Inhalt des Registers 0 zu stapeln, und wenn der Eintrag 0 der Tabelle der Registertypen C ist, stapelt der Uber-
prufer C auf dem Typenstack.

[0120] Ein Beispiel der Uberpriifung eines in einer Java-Umgebung geschriebenen Unterprogramms wird nun
in Verbindung mit den im Anhang beigefiigten Tabellen T3 und T4 gegeben.

[0121] Die Tabelle T3 stellt einen spezifischen JavaCard-Code dar, der dem in dieser Tabelle enthaltenen Ja-
va-Unterprogramm entspricht.

[0122] Die Tabelle T4 veranschaulicht den Inhalt der Registertypentabelle und des Typenstacks vor der Uber-
prufung jeder Anweisung. Die Typenranforderungen fir die Operanden der diversen Anweisungen sind alle
eingehalten. Der Stack ist sowohl nach der Verzweigungsanweisung 5 zu der durch den Pfeil symbolisierten
Anweisung 9, als auch vor dem besagten Verzweigungsziel 9 leer. Der Typ des Registers 1, der urspriinglich
1 war, wird null, die obere Schranke von null und L, wenn die Anweisung 1 zum Speichern eines Werts vom
Typ null im Register 1 untersucht wird, und wird dann zum Typ short[], der oberen Schranke des Typs short[]
und des Typs null, wenn die Anweisung 8, das Speichern eines Werts vom Typ short[] im Register 1 verarbeitet
wird. Da sich der Typ des Registers 1 wahrend des ersten Uberpriifungsdurchgangs geandert hat, wird ein

11/44

DE 600 06 141 T2 2004.08.26

zweiter Durchgang durchgefiihrt, wobei die am Ende des ersten erhaltenen Registertypen verteilt werden. Die-
ser zweite Uberpriifungsdurchgang gelingt wie der erste und verandert die Registertypen nicht. Der Uberprii-
fungsprozess endet somit erfolgreich.
[0123] Verschiedene Bespiele fir Félle des Scheiterns des Uberpriifungsprozesses werden nun anhand von
vier Beispielen von inkorrektem Code in Verbindung mit der im Anhang beigefligten Tabelle T5 angegeben:
— Am Punkt a) der Tabelle T5 ist die Aufgabe des als Beispiels angegebenen Codes, zu versuchen, einen
ungultigen Referenzobjektverweis zu erzeugen, indem ein arithmetischer Prozess an Zeigern verwendet
wird. Er wird verworfen durch die Uberpriifung der Typen der Argumente der Anweisung 2 sadd, welche
verlangt, dass die zwei Argumente vom Typ short sind.
— An den Punkten b) und c) der Tabelle T5 ist die Aufgabe des Codes, zwei Versuche durchzufihren, eine
beliebige ganze Zahl in einen Objektverweis umzuwandeln. Am Punkt b) wird das Register 0 gleichzeitig
mit dem Typ short, Anweisung 0, und mit dem Typ null, Anweisung 5, verwendet. Folglich ordnet der Uber-
prufungsprozess dem Register 0 den Typ T zu und erfasst einen Typfehler, wenn das Register 0 als Ergeb-
nis mit dem Typ object in Anweisung 7 zurtickgegeben wird.
— Am Punkt c) der Tabelle T5 wird eine Anordnung von Verzweigungen vom Typ ,if ... then ... else ..." ver-
wendet, um an der Spitze des Stacks ein Ergebnis zu hinterlassen, das durch eine ganze Zahl oder durch
einen Objektverweis gebildet ist. Der Uberpriifungsprozess verwirft den Code, weil er erfasst, dass der
Stack in Héhe der durch den Pfeil symbolisierten Verzweigung von der Anweisung 5 zur Anweisung 9 nicht
leer ist.
— Schlielich enthalt am Punkt d) der Tabelle T5 der Code eine Schleife, die bei jeder Iteration die Wirkung
hat, dass eine weitere ganze Zahl an der Spitze des Stacks gestapelt wird, und die so nach einer bestimm-
ten Zahl von lterationen zu einem Stackiiberlauf fiinrt. Der Uberpriifungsprozess verwirft diesen Code, in-
dem er feststellt, dass der Stack in Héhe der Ruickverzweigung von der Anweisung 8 zu Anweisung 0, sym-
bolisiert durch den Ruckwartspfeil, nicht leer ist, d. h., dass der Stack an einem Verzweigungspunkt nicht
leer ist.

[0124] Die verschiedenen oben in Verbindung mit den Tabellen T3, T4 und T5 angegebenen Beispiele zeigen,
dass der Uberpriifungsprozess, der den Gegenstand der vorliegenden Erfindung bildet, besonders effektiv ist
und auf Applets und insbesondere auf Unterprogramme der letzteren anwendbar ist, fir welche die die Typbe-
dingungen des Stacks bzw. das Leersein des Typenstacks vor und bei Verzweigungsanweisungen oder Ver-
zweigungszielen erfiillt sind.

[0125] Selbstverstandlich impliziert ein solcher Prozess die Schreibung von diese Kriterien erfullenden Ob-
jektcodes, wobei diese Objektcodes dem in der oben erwahnten Tabelle T3 eingeflhrten Unterprogramm ent-
sprechen kénnen.

[0126] Um die Uberpriifung von Applets und von Unterprogrammen von existierenden Applets sicherzustel-
len, die nicht notwendigerweise den Uberpriifungskriterien des erfindungsgegenstandlichen Verfahrens geni-
gen, insbhesondere was die in Java-Umgebung geschriebenen Applets und Unterprogramme angeht, ist Ziel
der Erfindung, Verfahren zur Umwandlung dieser Applets oder Unterprogramme in normierte Applets, die es
erlauben, die Uberpriifungstests des erfindungsgegensténdlichen Uberpriifungsverfahrens erfolgreich zu
durchlaufen, und das ein solches Verfahren verwendende Verwaltungsprotokoll anzugeben.

[0127] Zu diesem Zweck ist Gegenstand der Erfindung die Anwendung eines Verfahrens und eines Pro-
gramms zur Umwandlung eines herkdmmlichen, ein Applet bildenden Objektcodes, wobei dieses Verfahren
und dieses Umwandlungsprogramm auferhalb eines mitgefiihrten Systems oder einer Mikroprozessorkarte
bei der Erzeugung des betreffenden Applets eingesetzt werden kénnen.

[0128] Das Verfahren zur Umwandlung von Code in normierten Code nach der vorliegenden Erfindung wird
nun ausschlief3lich zu Beispielzwecken im Rahmen der Java-Umgebung beschrieben.

[0129] Die von den existierenden Java-Compilern erzeugten JVM-Codes erfiillen unterschiedliche Kriterien,
die nachfolgend aufgelistet sind:

C1: die Argumente jeder Anweisung gehdren zu den von dieser Anweisung erwarteten Typen;

C2: der Stack lauft nicht Uber;

C'3: fur jede Verzweigungsanweisung ist der Typ des Stacks in Hohe dieser Verzweigung derselbe wie in Hohe
der flr diese Verzweigung mdglichen Ziele;

C'4: ein in einem Register an einem Punkt des Codes geschriebener Wert vom Typ t, der an einem anderen
Punkt des Codes aus dem gleichen Register wieder gelesen wird, wird immer mit dem gleichen Typ t neu ge-
lesen;

Die Ausfiihrung des erfindungsgegensténdlichen Uberpriifungsverfahrens impliziert, dass die durch den Ob-
jektcode uberpriften Kriterien C'3 und C'4 durch die nachfolgenden Kriterien C3 und

C4 ersetzt werden:

C3: der Stack ist bei jeder Verzweigungsanweisung und bei jedem Verzweigungsziel leer;

C4: ein gleiches Register wird im gesamten Code eines Unterprogramms mit einem einzigen Typ verwendet.

12/44

DE 600 06 141 T2 2004.08.26

[0130] Mit Bezug auf die oben genannten Kriterien sei gesagt, dass die Java-Compiler nur die schwacheren
Kriterien C'3 und C'4 garantieren, und dass der erfindungsgegenstandliche Uberpriifungsprozess und das ent-
sprechende Uberprifungsprotokoll tatsichlich starker einschrankende Kriterien C3 und C4 garantieren, mit
denen die Ausfiihrung und Verwaltung der Applets gewahrleistet werden kann.

[0131] Der Begriff der Normierung, der die Umwandlung der Codes in normierte Codes abdeckt, kann unter-
schiedliche Aspekte aufweisen, insoweit die Ersetzung der Kriterien C'3 und C'4 durch die Kriterien C3 und C4
geman dem erfindungsgegenstandlichen Uberpriifungsprozess unabhéngig durchgefiihrt werden kann, um zu
gewabhrleisten, dass der Stack bei jeder Verzweigungsanweisung bzw. bei jedem Verzweigungsziel leer ist,
dass die von dem Applet gedffneten Register typisiert sind, wobei jedem offenen Register ein einziger, flir die
Ausfiihrung des betreffenden Applets zugewiesener Datentyp entspricht oder umgekehrt, um gemeinsam den
gesamten erfindungsgegenstandlichen Uberpriifungsprozess zu erfiillen.

[0132] Das Verfahren zur Umwandlung eines Objekticodes in normierten Objektcode gemal der Erfindung
wird folglich mit zwei verschiedenen Ausfihrungsmodi beschrieben, einem ersten Ausfliihrungsmodus, der der
Umwandlung eines die Kriterien C1, C2, C'3, C'4 erfiillenden Objektcodes in einen normierten Objektcode ent-
spricht, der die Kriterien C1, C2, C3, C'4 erfillt, die einem auf eine leere Verzweigungsanweisung oder ein lee-
res Verzweigungsziel normierten Code entsprechen, dann, gemal einer zweiten Ausgestaltung, bei der der
herkdmmliche Objektcode, der den gleichen Ausgangskriterien gentigt, in einen normierten Objektcode umge-
wandelt wird, der z. B. die Kriterien C1, C2, C'3, C4 erfillt, die einem typisierte Register verwendenden nor-
mierten Code entsprechen.

[0133] Die erste Ausgestaltung des erfindungsgegenstandlichen Codeumwandlungsverfahrens wird nun in
Verbindung mit Fig. 4a beschrieben. Bei der in Fig. 4a dargestellten Ausgestaltung soll der herkdmmliche Aus-
gangscode den Kriterien C1 + C2 + C'3 entsprechen, und der durch die Umwandlung erhaltene normierte Code
soll den Kriterien C1 + C2 + C3 entsprechen.

[0134] Gemal der erwahnten Figur beruht der Umwandlungsprozess darin, fur jede laufende Anweisung |,
des Codes oder des Unterprogramms jede Anweisung in einem Schritt 500 mit dem Datentyp des Stacks vor
und nach Ausfihrung dieser Anweisung zu kommentieren. Die Kommentardaten sind mit Al, bezeichnet und
sind der betrachteten laufenden Anweisung durch die Beziehung li <+ Al, zugeordnet. Die Kommentierungsda-
ten werden durch eine Analyse des diese Anweisung betreffenden Datenflusses berechnet. Die Datentypen
vor und nach Ausfihrung der Anweisung sind mit tbe, bzw. tae, bezeichnet. Die Berechnung der Kommentie-
rungsdaten durch Analyse des Datenflusses ist eine dem Fachmann vertraute herkémmliche Rechnung und
wird deshalb nicht im Detail beschrieben.

[0135] Die im Schritt 500 durchgefiihrte Operation ist in der im Anhang eingefiihrten Tabelle T6 dargestellt, in
welcher firr ein Applet oder ein Applet-Unterprogramm mit zwolf Anweisungen die durch die Typen der Register
und die Typen des Stacks gebildeten Kommentierungsdaten Al, eingefiihrt sind.

[0136] Auf den besagten Schritt 500 folgt ein Schritt 500a, der darin beruht, den Index i auf die erste Anwei-
sung |, = I, zu setzen. Auf den Schritt 500a folgt ein Schritt 501, der darin beruht, unter den Anweisungen und
jeder laufenden Anweisung |, die Existenz von mit IB bezeichneten Verzweigungen oder Verzweigungszielen
CIB zu erfassen, fiir welche der Ausfiihrungsstack nicht leer ist. Diese Erfassung 501 wird durchgefiihrt mit
einem ausgehend von Kommentierungsdaten Al, durchgefiihrten Test des jeder laufenden Anweisung zuge-
wiesenen Typs von Stackvariablen, wobei der Test fur die laufende Anweisung bezeichnet ist mit:

|, ist IB oder CIB und Stack (Al) # leer.

[0137] Bei positiver Antwort auf den Test 501, d. h. bei Erfassung eines nicht leeren Ausflihrungsstacks, folgt
auf den erwahnten Test ein Schritt, der darin beruht, Anweisungen zur Ubertragung der Stackvariablen beider-
seits dieser Verzweigungen IB oder dieser Verzweigungsziele CIB einzufligen, um den Inhalt des Ausfiihrungs-
stacks vor der Verzweigung in temporare Register zu entleeren und ausgehend von den temporaren Registern
nach der Verzweigung den Ausfihrungsstack wieder herzustellen. Der Einflgeschritt ist in Fig. 4a mit 502 be-
zeichnet. Auf ihn folgt ein Schritt 503 des Erreichens der letzten Anweisung, bezeichnet mit

l, = letzte Anweisung?

[0138] Bei negativer Antwort auf den Test 503 wird eine Inkrementierung 504 i = i + 1 fiir den Ubergang zu
nachsten Anweisung und die Riuckkehr zum Schritt 501 durchgefiihrt. Bei positiver Antwort auf den Test 503
wird ein Schritt Ende ausgefiihrt. Bei negativer Antwort auf den Test 501 wird das Umwandlungsverfahren fort-
gesetzt durch eine Verzweigung zum Schritt 503 in Abwesenheit der Einfligung einer Ubertragungsanweisung.
Mit der Ausfihrung des Verfahrens zur Umwandlung eines herkdmmlichen Codes in einen normierten Code
mit Verzweigungsanweisung bei leerem Stack, wie in Fig. 4a dargestellt, kann ein normierter Objektcode fur
das gleiche Ausgangsprogrammfragment erhalten werden, in welchem der Stack der Stackvariablen bei jeder
Verzweigungsanweisung und jeder Verzweigungszielanweisung leer ist, ohne dass die Ausfuhrung des Pro-
grammfragments verandert wird. Im Fall einer Java-Umgebung sind die Anweisung zur Ubertragung von Daten
zwischen Stack und Register load- und store-Anweisungen der virtuellen Java-Maschine.

[0139] Wiederum bezogen auf das Beispiel der Tabelle T6 erfasst das Umwandlungsverfahren ein Verzwei-
gungsziel, wo der Stack nicht leer ist, bei der Anweisung 9. Es wird also vor der Verzweigungsanweisung 5,

13/44

DE 600 06 141 T2 2004.08.26

die zu der besagten Anweisung 9 flihrt, eine Anweisung istore 1 eingefligt, um den Inhalt des Stacks in das
Register 1 zu sichern und zu gewahrleisten, dass der Stack bei der Verzweigung leer ist. Symmetrisch wird die
Einfigung einer Anweisung iload 1 vor dem Anweisungsziel 9 durchgefiihrt, um den Inhalt des Stacks identisch
zu seinem Zustand vor der Verzweigung wieder herzustellen. Schlielich wird eine Anweisung istore 1 nach
der Anweisung 8 eingefligt, um das Gleichgewicht des Stacks auf den zwei Wegen zu garantieren, die zu der
Anweisung 9 fihren. Das Ergebnis der so durchgefiihrten Umwandlung in einen normierten Code ist in der Ta-
belle T7 dargestellt.

[0140] Die zweite Ausgestaltung des erfindungsgegenstandlichen Umwandlungsverfahrens wird nun in Ver-
bindung mit der Fig. 4b in dem Fall beschrieben, wo der herkdmmliche Ausgangsobjektcode die Kriterien C1
+ C'4 und der normierte Objektcode die Kriterien C1 + C4 erfillit.

[0141] Bezogen auf die erwahnte Fig. 4b sei gesagt, dass das Verfahren bei dieser Ausgestaltung darin be-
ruht, in einem Schritt 500, der im Wesentlichen mit dem in Fig. 4a dargestellten identisch ist, jede laufende
Anweisung |, mit dem Datentyp der Register vor und nach Ausfiihrung dieser Anweisung zu kommentieren. In
gleicher Weise werden die Kommentierungsdaten Al, mit Hilfe einer Analyse des Datenflusses betreffend die-
ser Anweisung berechnet.

[0142] Auf den Kommentierungsschritt 500 folgt ein Schritt, der darin beruht, eine Neuzuweisung der Regis-
ter, einen mit 601 bezeichneten Schritt, durch Erfassen der mit unterschiedlichen Typen verwendeten Aus-
gangsregister, Aufteilen dieser Ausgangsregister in verschiedene normierte Register, wobei ein normiertes Re-
gister jedem verwendeten Datentyp zugewiesen ist, durchzufiihren. Auf den Schritt 601 folgt ein Schritt 602
der Reaktualisierung der Anweisungen, welche die Operanden manipulieren, die auf die erwahnten normierten
Register zugreifen. Auf den Schritt 602 folgt ein Schritt der Fortsetzung des Kontexts 302.

[0143] Mit Bezug auf das in Tabelle T6 angegebene Beispiel sei gesagt, dass das Umwandlungsverfahren
erfasst, dass das Register mit Rang 0, mit rO bezeichnet, mit den zwei Typen object Anweisung 0 und 1 und
int, Anweisung 9 und folgende, verwendet wird. Es wird dann eine Aufteilung des Ursprungsregisters r0 in zwei
Register vorgenommen, das Register 0 fiir die Anwendung der object-Typen und das Register 1 fir die An-
wendungen vom Typ int. Die Verweise auf das Register 0 vom Typ int werden dann umgeschrieben durch Um-
wandeln in Verweise auf das Register 1, wobei der erhaltene normierte Code in der beigefligten Tabelle T8
angegeben ist.

[0144] Wie man sieht, wird in nichteinschrankender Weise in dem in Verbindung mit der erwahnten Tabelle
T8 eingefuihrten Beispiel das neue Register 1 sowohl fiir die Normierung des Stacks als auch fiir die Erzeugung
von typisierten Registern durch Aufteilung des Registers 0 in zwei Register verwendet.

[0145] Das Verfahren zur Umwandlung eines herkdbmmlichen Codes in einen normierten Code mit Verzwei-
gungsanweisung bei leerem Stack, wie in Fig. 4a beschrieben, wird nun detaillierter in einer nichteinschran-
kenden, bevorzugten Ausgestaltung in Verbindung mit Fig. 5a beschrieben.

[0146] Diese Ausgestaltung betrifft den Schritt 501, der darin beruht, in den Anweisungen und jeder laufenden
Anweisung |, das Vorhandensein einer Verzweigung IB bzw. eines Verzweigungsziels CIB zu erfassen, fir die
der Stack nicht leer ist.

[0147] Nach der Bestimmung der Zielanweisungen, wo der Stack nicht leer ist, wobei diese Bedingung in
Schritt 504a mit |, Stack * leer bezeichnet ist, beruht das Umwandlungsverfahren darin, in dem erwahnten
Schritt 504a diesen Anweisungen eine Menge von neuen Registern, eines pro in Héhe dieser Anweisungen
aktivem Stackplatz zuzuordnen. Wenn somit i den Rang eines Verzweigungsziels bezeichnet, dessen zuge-
ordneter Stacktyp nicht leer ist und vom Typ tpl, bis tpn, mit n > 0, Stack nicht leer, ist, teilt der Umwandlungs-
prozess n neue, noch nicht verwendete Register r, bis r, zu und ordnet sie der entsprechenden Anweisung i
zu. Diese Operation wird in Schritt 504a vorgenommen.

[0148] Aufden Schritt 504a folgt ein Schritt 504, der darin beruht, jede erfasste Anweisung mit Rang i zu un-
tersuchen und in einem Testschritt 504 das Vorhandensein eines Verzweigungsziels CIB oder einer Verzwei-
gung IB zu diskriminieren. Der Schritt 504 ist in Form eines Test, bezeichnet mit:

3?CIB, IBund |, = CIB

dargestellt.

[0149] In dem Fall, wo die Anweisung vom Rang i ein durch die vorhergehende Gleichung dargestelltes Ver-
zweigungsziel CIB ist und der Stack der Stackvariablen in Héhe dieser Anweisung nicht leer ist, d. h. bei posi-
tiver Antwort auf den Test 504 fiir eine beliebige vorhergehende Anweisung vom Rang i — 1, die durch eine
Verzweigung, eine Ausnahmeaufhebung oder eine Programmruckkehr gebildet ist, ist diese im Testschritt 505
realisierte Bedingung bezeichnet durch:

I_, = 1B, Aufhebung EXCEPT, Programmruckkehr.

[0150] Die erfasste Anweisung von Rang i ist nur durch eine Verzweigung erreichbar. Bei positiver Antwort
auf den erwahnten Test 505 beruht der Umwandlungsprozess darin, einen Schritt 506 durchzufiihren, der darin
beruht eine Menge von Ladeanweisungen vom Typ load ausgehend von der Menge von neuen Registern vor
der betreffenden erfassten Anweisung mit Rang i einzufiigen. Auf die Einfligeoperation 505 folgt eine Umlen-
kung 507 aller zu der erfassten Anweisung von Rang i fihrenden Verzweigungen auf die erste eingefiigte La-

14/44

DE 600 06 141 T2 2004.08.26

deanweisung load. Die Einfiige- und Umlenkungsanweisungen sind in der im Anhang beigeflgten Tabelle T9
dargestellt.

[0151] Furjede sequentiell fortschreitende vorhergehende Anweisung vom Rangi- 1, d. h., wenn die laufen-
de Anweisung vom Rang i sowohl durch eine Verzweigung als auch ausgehend von der vorhergehenden An-
weisung erreichbar ist, wobei diese Bedingung durch den Test 508 iberpriift wird und durch die Beziehungen:
iy 1,

und

IB - |,

symbolisiert ist, beruht der Umwandlungsprozess in einem Schritt 509 des Einfligens einer Menge von Siche-
rungsanweisungen store in die Menge von neuen Registern vor der erfassten Anweisung vom Rang i und einer
Menge von Ladeanweisungen load aus dieser Menge von neuen Registern. Auf den Schritt 509 folgt dann ein
Schritt 510 des Umlenkens aller zu der erfassten Anweisung vom Rang i fuhrenden Verzweigungen auf die
erste eingefligte Ladeanweisung load.

[0152] Indem Fall, wo die erfasste Anweisung vom Rang i eine Verzweigung zu einer festgelegten Anweisung
fur jede erfasste Anweisung mit Rang i, gebildet durch eine unbedingte Verzweigung, ist, wobei diese Bedin-
gung durch einen mit:

Ii = Ibunbedingt

bezeichneten Test 511 Uberprift wird, beruht der Umwandlungsprozess wie in Fig. 5a dargestellt darin, in ei-
nem Schritt 512 bei positiver Antwort auf den Test 511 vor der erfassten Anweisung mit Rang i eine Mehrzahl
von Sicherungsanweisungen store einzufligen. Der Umwandlungsprozess fligt die n store-Anweisungen vor
der Anweisung i ein, wie beispielhaft in Tabelle T11 dargestellt. Die store-Anweisungen adressieren die Regis-
terr, bis r,, wobei n die Zahl der Register bezeichnet. Jedem neuen Register wird so die Sicherungsanweisung
zugeordnet.

[0153] Fur jede erfasste Anweisung mit Rang i, die durch eine unbedingte Verzweigung gebildet ist, und fir
eine Zahl mOp von mehr als 0 von dieser Verzweigungsanweisung manipulierten Operanden, wobei diese Be-
dingung in dem mit:

l; = 1Bpegingt

mit mOp >0

bezeichneten Test 513 Uberpruft wird, beruht der Umwandlungsprozess bei positiver Antwort auf den erwahn-
ten Test 513 darin, vor dieser erfassten Anweisung mit Rang i in einem Schritt 514 eine mit swap_x bezeichnete
Anweisung zum Permutieren, an der Spitze der Stackvariablen, der mOp Operanden der erfassten Anweisung
mit Rang i und der n nachfolgenden Werte durchzufiihren. Durch diese Permutationsoperation kann die Menge
der n der in der Menge von neuen Registern r, bis r, zu sichernden Werte an die Spitze des Stacks der Stack-
variablen gebracht werden. Auf den Schritt 514 folgt ein Schritt 515, der darin beruht, vor der Anweisung mit
Rang i eine Menge von Operationen store zum Sichern in die Menge der neuen Register r, bis r, einzufigen.
Auf den besagten Schritt 515 des Einfligens folgt seinerseits ein Schritt 516 des Einfiigens, hinter die erfasste
Anweisung mit Rang i, einer Menge von Anweisungen load zum Laden aus der Menge der neuen Register r,
bis r,. Die Menge der entsprechenden Einfligeoperationen ist in der im Anhang eingefligten Tabelle T12 dar-
gestellt.

[0154] Aus Griinden der Vollstandigkeit und mit Bezug auf Fig. 5a sei angegeben, dass bei negativer Antwort
auf den Test 504 die Fortsetzung des Umwandlungsprozesses realisiert wird durch einen Schritt der Fortset-
zung des Kontexts Fortsetzung 503, dass auf die negative Antwort auf die Tests 505, 508, 511 und 513 eine
Fortsetzung des Umwandlungsprozesses Uber einen Kontextfortsetzungsschritt Fortsetzung 503 folgt, und
dass das Gleiche flr die Fortsetzung der Operationen nach den erwahnten Umlenkungsschritten 507 und 510
bzw. Einfliigeschritten 512 und 516 gilt.

[0155] Eine detailliertere Beschreibung des Normierungs- und Umwandlungsverfahrens eines Objektcodes
in einen normierten Objektcode unter Verwendung von typisierten Registern, wie in Fig. 4b beschrieben, wird
nun in Verbindung mit Fig. 5b gegeben. Diese Ausgestaltung betrifft insbesondere eine bevorzugte, nichtein-
schrankende Ausgestaltung des Schritts 601 der Neuzuweisung der Register durch Erfassen von mit unter-
schiedlichen Typen verwendeten Ursprungsregistern.

[0156] Mit Bezug auf die erwahnte Fig. 5b sei gesagt, dass der erwahnte Schritt 601 darin beruht, in einem
Schritt 603 Lebensdauerintervalle, mit ID, bezeichnet, jedes Registers r; zu bestimmen. Diese Lebensdauerin-
tervalle, englisch als ,live range" oder ,webs" bezeichnet, sind fir ein Register r definiert als maximale Menge
an partiellen Spuren, so dass das Register r an allen Punkten dieser Spuren lebendig (vivant) ist. Fir eine de-
taillierte Definition dieser Begriffe kann auf das Werk mit dem Titel ,Advanced Compiler Design and Implemen-
tation" herausgegeben von Steven S. Muchnik, Sektion 16.3, Morgan Kaufmann, 1997, zurtickgegriffen wer-
den. Der Schritt 603 ist bezeichnet durch die Beziehung:

ID, &,

dejr qufoIge jedem Register r, ein entsprechendes Lebensdauerintervall ID; zugeordnet wird.

[0157] Auf den erwahnten Schritt 603 folgt ein Schritt 604, der darin beruht, in Schritt 604 den mit tp, bezeich-

15/44

DE 600 06 141 T2 2004.08.26

neten Hauptdatentyp jedes Lebensdauerintervalls ID; zu bestimmen. Der Hauptdatentyp eines Lebensdauer-
intervalles ID, fur ein Register r; ist definiert durch die obere Schranke der in diesem Register r; durch die Si-
cherungsanweisungen store, die zu dem besagten Lebensdauerintervall gehoren, gespeicherten Datentypen.
[0158] Aufden Schritt 604 folgt wiederum ein Schritt 605, der darin beruht, einen Graphen von Interferenzen
zwischen den zuvor in den Schritten 603 und 604 definierten Lebensdauerintervallen zu erzeugen, wobei die-
ser Interferenzgraph ein nicht orientierter Graph ist, von dem jeder Knoten durch ein Lebensdauerintervall ge-
bildet ist und dessen Kanten, mit a;, ,, in Fig. 5b bezeichnet, zwischen zwei Knoten ID; und ID;, existieren, wenn
ein Knoten eine an das Register des anderen Knotens adressierte Sicherungsanweisung enthalt, oder umge-
kehrt. In Fig. 5b ist die Konstruktion des Interferenzgraphen symbolisch dargestellt, wobei diese Konstruktion
anhand von dem Fachmann bekannten Rechentechniken durchgefiihrt werden kann. Fur eine detailliertere
Beschreibung der Konstruktion dieses Typs von Graphen kann man nutzlicherweise auf das von Alfred V. Aho,
Ravi Sethi und Jeffrey D. Ullman veréffentlichte Werk mit dem Titel ,Compilers: Principles, Techniques and
Tools", Addison-Wesley 1986, Sektion 9.7, zurlickgreifen.
[0159] Nach dem Schritt 605 beruht das Normierungsverfahren wie in Fig. 5b dargestellt darin, eine Einheit-
lichkeit eines jedem Register r; zugewiesenen Datentyps im Interferenzgraphen herzustellen, indem Kanten
zwischen allen Paaren von Knoten des Interferenzgraphen eingefligt werden, solange zwei Knoten eines Paa-
res von Knoten nicht den gleichen zugeordneten Hauptdatentyp haben. Es versteht sich, dass die Ubersetzung
des Einzigkeitscharakters eines jedem Register zugewiesenen Datentyps selbstverstandlich der Ubersetzung
und Berticksichtigung des zuvor in der Beschreibung erwahnten Kriteriums C4 in dem Interferenzgraph ent-
spricht. Auf den Schritt 606 folgt dann ein Schritt 607, in welchem eine Instanziierung des Interferenzgraph
durchgefihrt wird, die allgemeiner als ein Schritt des Einfarbens (coloriage) des Interferenzgraphen bezeich-
nete Instantiierung nach den Ublichen Techniken durchgefihrt wird. Im Laufe des Schritts 607 ordnet der Um-
wandlungsprozess jedem Lebensdauerintervall ID,, eine Registernummer rk so zu, dass zwei benachbarte In-
tervalle in dem Interferenzgraphen verschiedene Registernummern bekommen.
[0160] Diese Operation kann ausgehend von einem beliebigen angepassten Prozess durchgefihrt werden.
Als nichteinschrankendes Beispiel sei angegeben, dass ein bevorzugter Prozess darin beruhen kann
a) einen Knoten minimalen Grades in dem Interferenzgraphen zu wahlen, wobei der minimale Grad definiert
ist als eine minimale Zahl von benachbarten Knoten, und ihn aus dem Graphen zu entfernen. Dieser Schritt
kann wiederholt werden, bis der Graph leer ist.
b) Jeder zuvor entfernte Knoten wird in den Interferenzgraphen in zu seiner Entfernung umgekehrter Rei-
henfolge wieder eingefligt, so dass der zuletzt entfernte der erste wieder eingefihrte ist, usw., in entgegen-
gesetzter Reihenfolge zur Reihenfolge der Entfernung. So kann jedem wieder eingefligten Knoten die
kleinste Registernummer zugeordnet werden, die sich von den allen benachbarten Knoten zugeordneten
Registernummern unterscheidet.

[0161] SchlieRlich schreibtin dem in Fig. 4b dargestellten Schritt 602 der Umwandlungs- und Neuverteilungs-
prozess die in dem Code des Unterprogramms des betreffenden Applets vorkommenden Registerzugriffsan-
weisungen neu. Ein Zugriff auf ein gegebenes Register in einem entsprechenden Lebensdauerintervall wird
ersetzt durch einen Zugriff auf ein anderes Register, dessen Nummer wahrend der auch als Einfarbungsphase
bezeichneten Instanziierungsphase zugeordnet wurde.

[0162] Eine detailliertere Beschreibung eines mitgefiihrten Informatiksystems, welches die Anwendung des
Verwaltungsprotokolls und des Prozesses der Uberpriifung eines Programmfragments oder Applets gemaR
dem Gegenstand der Erfindung erlaubt, und ein Entwicklungssystem flr ein Applet werden nun in Verbindung
mit Fig. 6 gegeben.

[0163] Zu dem das Bezugszeichen 10 tragenden mitgefiihrten System sei gesagt, dass dieses mitgefihrte
System vom umprogrammierbaren Typ ist und die wesentlichen Elemente wie in Fig. 1b dargestellt aufweist.
Das erwahnte mitgeflhrte System wird als mit einem Endgerat durch eine serielle Verbindung verbunden an-
genommen, wobei das Endgerat seinerseits z. B. Uber ein lokales Netz, gegebenenfalls Uber ein entferntes
Netz, mit einem Computer zur Entwicklung des Applets mit dem Bezugszeichen 20 verbunden ist. Auf dem
mitgefuhrten System lauft ein Hauptprogramm, welches die auf der seriellen Verbindung durch das Endgerat
gesendeten Befehle liest und ausfiihrt. Aulierdem kénnen die Standardbefehle flir eine Mikroprozessorkarte
wie etwa die Standardbefehle des Protokolls ISO 7816, ausgefiihrt werden, wobei das Hauptprogramm ferner
zwei zusatzliche Befehle erkennt, einen zum Fernladen eines Applets und den anderen zum Auswahlen eines
zuvor auf die Mikroprozessorkarte geladenen Applets.

[0164] Gemal dem Gegenstand der vorliegenden Erfindung ist die Struktur des Hauptprogramms so reali-
siert, dass es wenigstens ein Programmmodul zur Verwaltung und Uberpriifung eines ferngeladenen Pro-
grammfragments nach dem zuvor in der Beschreibung mit Bezug auf Fig. 2 beschriebenen Protokolls zur Ver-
waltung eines ferngeladenen Programmfragments aufweist.

[0165] AuRerdem umfasst das Programmmodul auch ein Unterprogrammmodul zur Uberpriifung eines fern-
geladenen Programmfragments nach dem Uberpriifungsverfahren wie zuvor in der Beschreibung in Verbin-

16/44

DE 600 06 141 T2 2004.08.26

dung mit den Fig. 3a bis 3j beschrieben.

[0166] Zu diesem Zweck ist die Struktur der Speicher, insbesondere des nicht Gberschreibbaren permanen-
ten Speichers bzw. ROM-Speichers so verandert, dass neben dem Hauptprogramm auch ein Modul 17 zur
Protokollverwaltung und Uberpriifung, wie zuvor erwéhnt, vorhanden ist. AuRerdem umfasst der nichtfliichtige
Uberschreibbare Speicher vom EEPROM-Typ vorteilhafterweise ein Verzeichnis von Applets, mit 18 bezeich-
net, welches die Ausfiihrung des Verwaltungsprotokolls und des Uberpriifungsprozesses gemaR der vorliegen-
den Erfindung ermdglicht.

[0167] Mit Bezug auf die gleiche Fig. 6 sei gesagt, dass das System zur Entwicklung des Applets gemaf dem
Gegenstand der vorliegenden Erfindung, welches die Umwandlung eines herkémmlichen Objektcodes, wie
oben in der Beschreibung erwahnt, der den Kriterien C1 + C2 + C'3 + C'4 genuigt, im Rahmen der Java-Um-
gebung in einen normierten Objektcode fiir das gleiche Programmfragment erméglicht, zugeordnet zu einem
herkdmmlichen Java-Compiler ein Codeumwandlungsmodul, mit 22 bezeichnet, umfasst, welches die Um-
wandlung des Codes in normierten Code gemal der zuvor in der Beschreibung in Verbindung mit den Fig. 4a,
4b und 5a, 5b beschriebenen ersten und zweiten Ausgestaltung vornimmt. Die Normierung des urspriinglichen
Objektcodes zu einem normierten Objektcode mit Verzweigungsanweisung bei leerem Stack und einen nor-
mierten Objektcode, der typisierte Register verwendet, wie oben in Beschreibung erwahnt, erlaubt es, die von
dem erfindungsgegenstandlichen Uberpriifungsverfahren vorgegeben Uberpriifungskriterien C3 und C4 zu er-
fullen.

[0168] Aufdas Codeumwandlungsmodul 22 folgt ein JavaCard-Wandler 23, der die Ubertragung (iber ein ent-
ferntes oder lokales Netz an das Endgerat und Uber die serielle Verbindung an die Mikroprozessorkarte 10 si-
cherzustellen erlaubt. Das in Fig. 6 dargestellte Applet-Entwicklungssystem 20 erlaubt es, die von dem Ja-
va-Compiler 21 ausgehend von den Java-Quellcodes des Applets erzeugten kompilierten Klassendateien in
aquivalente Klassendateien umzuwandeln, die die von dem Verwaltungsprotokoll und dem Uberpriifungsmo-
dul 17, die auf der Mikroprozessorkarte 10 mitgefuhrt sind, vorgegebenen zusatzlichen Anforderungen C3, C4
erfullen. Diese umgewandelten Klassendateien werden auf der Karte durch den Standard-JavaCard-Wandler
in ein fernladbares Applet konvertiert.

[0169] Diverse besonders bemerkenswerte Elemente aus der Menge der Elemente des Protokolls der Ver-
fahren und der Systeme der vorliegenden Erfindung werden nun zur Erlauterung angegeben.

[0170] In Bezug auf die Uberpriifungsprozesse des Standes der Technik, wie in der Einleitung der Beschrei-
bung erwahnt, ist das erfindungsgegenstandliche Uberpriifungsverfahren insofern bemerkenswert, als es den
Uberpriifungsaufwand auf die Typisierungseigenschaften der Operanden konzentriert, die fiir die Sicherheit
der Ausfiihrung jedes Applets wesentlich sind, d. h. die Einhaltung der jeder Anweisung zugeordneten Typ-Be-
dingungen und das Fehlen eines Stackiiberlaufs. Andere Uberpriifungen erscheinen im Hinblick auf die Si-
cherheit nicht wesentlich, insbesondere die Uberpriifung, dass der Code jedes Register korrekt initialisiert, be-
vor er es zum ersten Mal liest. Im Gegensatz dazu arbeitet das erfindungsgegenstandliche Uberpriifungsver-
fahren mit der Initialisierung aller Register auf Null ausgehend von der virtuellen Maschine bei der Initialisierung
der Methode, um zu garantieren, dass das Lesen eines nicht initialisierten Registers die Sicherheit der Karte
nicht kompromittieren kann.

[0171] AuRerdem garantiert die von dem erfindungsgegensténdlichen Uberpriifungsverfahren vorgegebene
Anforderung, dass bei jeder Verzweigungsanweisung oder jedem Verzweigungsziel der Stack leer sein soll,
dass der Stack nach Ausfiihrung der Verzweigung und vor Ausfiihrung der Anweisung, zu der das Programm
verzweigt hat, im gleichen Zustand, namlich leer ist. Dieser Betriebsmodus garantiert, dass der Stack in einem
koharenten Zustand ist, egal, welcher Ausfiihrungsweg durch den Code des Unterprogramms oder des betref-
fenden Applets verfolgt wird.

[0172] Die Koharenz des Stacks ist so garantiert, auch bei Vorhandensein einer Verzweigung oder eines Ver-
zweigungsziels. Im Gegensatz zu den herkdmmlichen Verfahren und Systemen, bei denen es notwendig ist,
den Typ des Stacks bei jedem Verzweigungsziel im Schreib-Lese-Speicher zu halten, was eine Menge an
Schreiblesespeicher proportional zu Tp x Nb erfordert, dem Produkt aus der maximalen Grof3e verwendeten
Ausfuhrungsstacks und der Zahl der Verzweigungsziele im Code, bendétigt das erfindungsgegenstandliche
Uberpriifungsverfahren den Typ des Ausfiihrungsstacks nur bei der gerade (iberpriiften Anweisung, und es
speichert nicht den Typ dieses Stacks an anderen Punkten des Codes. Folglich kommt das erfindungsgemaliie
Verfahren mit einer Menge an Schreiblesespeicher aus, die proportional zu Tp aber unabhangig von Nb und
damit von der Lange des Codes des Unterprogramms oder Applets ist.

[0173] Die Anforderung des Kriteriums C4, demzufolge ein gegebenes Register mit einem einzigen Typ im
gesamten Code eines Unterprogramms verwendet werden muss, garantiert, dass der erwdhnte Code ein Re-
gister nicht inkoharent verwendet, z. B., indem er dort an einem Punkt des Programms eine ganze Zahl short
schreibt und sie an einem anderen Punkt des Programms als einen Objektverweis liest.

[0174] Bei den im Stand der Technik beschriebenen Uberpriifungsprozessen, insbesondere in der Java-Spe-
zifikation mit dem Titel ,The Java Virtual Machine Specification", herausgegeben von Tim Lindholm und Frank
Yellin, bereits zitiert, ist es zum Garantieren der Koharenz der erwahnten Verwendungen uber die Verzwei-

17/44

DE 600 06 141 T2 2004.08.26

gungsanweisungen hinweg notwendig, eine Kopie der Tabelle der Registertypen bei jedem Verzweigungsziel
im Schreiblesespeicher zu halten. Diese Operation erfordert eine Menge an Schreiblesespeicher proportional
zu T, x N, wobei T, die Zahl der von dem Unterprogramm verwendeten Register und N, die Zahl der Verzwei-
gungsziele in dem Code des Unterprogramms ist.
[0175] Im Gegensatz dazu arbeitet der erfindungsgegenstandliche Uberpriifungsprozess mit einer globalen
Tabelle von Registertypen und ohne Speicherung einer Kopie an verschiedenen Punkten des Codes im
Schreiblesespeicher. Folglich ist der zur Durchfiihrung des Uberpriifungsprozesses erforderliche Schreiblese-
speicher proportional zu T,, aber unabhangig von N, und damit von der Lange des Codes des betreffenden
Unterprogramms.
[0176] Der Anforderung, der zufolge ein gegebenes Register mit dem gleichen Typ an allen Punkten, d. h. bei
jeder Anweisung des betreffenden Codes, verwendet wird, vereinfacht wesentlich und signifikant die Uberprii-
fung der Unterprogramme. Bei den herkdmmlichen Uberpriifungsprozessen und bei Fehlen einer solchen An-
forderung muss der Uberpriifungsprozess sicherstellen, dass die Unterprogramme eine strenge Stack-Diszi-
plin einhalten und muss den Korper der Unterprogramme im Hinblick auf den Typ bestimmter Register in viel-
gestaltiger Weise Uberprifen.
[0177] Zusammenfassend erlaubt es der erfindungsgegensténdliche Uberpriifungsprozess im Vergleich zu
den herkdmmlichen Techniken einerseits, die GréRe des Programmcodes zu verringern, mit dem das Uberprii-
fungsverfahren durchgefihrt werden kann, und andererseits den Verbrauch an Schreiblesespeicher bei den
Uberpriifungsoperationen zu verringern, wobei der Komplexitatsgrad von der Form O(T, + P,) im Fall des er-
findungsgegenstandlichen Uberprifungsprozesses ist, anstelle von O(T, + T) x N,) bei den herkémmlichen
Uberprifungsprozessen, und wobei dennoch die gleichen Garantien im Hinblick auf die Sicherheit der Ausfih-
rung des Uberpriften Codes erreicht werden.
[0178] SchlieBlich wird der Prozess der Umwandlung eines herkémmlichen Ursprungscodes in einen nor-
mierten Code durch lokalisierte Umwandlung des Codes in Abwesenheit der Ubertragung von Zusatzinforma-
tionen an das Uberpriifungsorgan, d. h. an die Mikroprozessorkarte oder das mitgefiihrte Informatiksystem,
durchgefiihrt.
[0179] Was das Verfahren zur Neuzuweisung von Registern, wie in Fig. 4b und 5b beschrieben, angeht, so
unterscheidet sich dieses Verfahren von den insbesondere in dem Patent US 4,571,678 und dem Patent US
5,249,295 beschriebenen bekannten herkdmmlichen Verfahren dadurch, dass
- die Registerneuzuweisung gewahrleistet, dass ein gleiches Register nicht zwei Intervallen zugeteilt wer-
den kann, die verschiedene Haupttypen besitzen, was garantiert, dass ein gegebenes Register in dem ge-
samten Code mit dem gleichen Typ verwendet wird; und
— dass die existierenden und in den oben zitierten Dokumenten beschriebenen Registerzuweisungsalgo-
rithmen eine feste Zahl von Registern voraussetzen und versuchen, die im Englischen als ,spills" bezeich-
neten Ubertragungen zwischen Registern und Stack zu minimieren, wohingegen die Neuzuweisung der Re-
gister gemal dem Gegenstand der vorliegenden Erfindung in einem Rahmen arbeitet, wo die Gesamtzahl
der Register variabel ist, so dass es keine Veranlassung gibt, Ubertragungen zwischen Registern und Stack
durchzufiihren, wenn ein Prozess zur Minimierung der Gesamtzahl von Registern eingesetzt wird.

[0180] Das Protokoll zur Verwaltung eines ferngeladenen Programmfragments auf einem mitgefiihrten Sys-
tem und die Verfahren zur Uberpriifung dieses ferngeladenen Programmfragments bzw. zur Umwandlung die-
ses Objektcodes eines ferngeladenen Programmfragments gemal der vorliegenden Erfindung kénnen selbst-
verstandlich softwaremaRig eingesetzt werden.

[0181] In diesem Zusammenhang betrifft die Erfindung gleichfalls ein direkt in den internen Speicher eines
programmierbaren mitgefiihrten Systems ladbares Computerprogrammprodukt, wobei dieses mitgefiihrte Sys-
tem das Fernladen eines durch einen Objektcode, einer von dem Mikroprozessor des mitgefiihrten Systems
ausflihrbaren Folge von Anweisungen, gebildeten Programmfragments Gber eine virtuelle Maschine erlaubt,
die mit einem Ausflhrungsstack und Registern oder Variablen ausgestattet ist, die von diesen Anweisungen
manipuliert werden, um die Interpretation dieses Objektcodes zu ermoglichen. Das entsprechende Computer-
programmprodukt umfasst Objektcodeabschnitte zur Ausflihrung des Protokolls zur Verwaltung eines fernge-
ladenen Programmfragments auf diesem mitgefihrten System, wie in den oben in der Beschreibung beschrie-
benen Fig. 2 und 6 dargestellt, wenn das mitgefihrte System an ein Terminal angeschlossen ist und dieses
Programm vom Mikroprozessor des mitgefihrten Systems tber die virtuelle Maschine ausgefiihrt wird.
[0182] Die Erfindung betrifft auch ein direkt in den internen Speicher eines umprogrammierbaren mitgeflihrten
Systems wie etwa einer mit einem Uberschreibbaren Speicher versehenen Mikroprozessorkarte ladbares
Computerprogrammprodukt, wie in Verbindung mit Fig. 6 dargestellt. Dieses Computerprogrammprodukt um-
fasst Objektcodeabschnitte zur Ausfiihrung der Schritte zur Uberpriifung eines auf dieses mitgefiihrte System
ferngeladenen Programmfragments, wie oben in der Beschreibung in Verbindung mit den Fig. 3a und 3j dar-
gestellt und beschrieben. Diese Uberpriifung wird ausgefiihrt, wenn dieses mitgefiihrte System an ein Endge-
rat angeschlossen ist und dieses Programm von dem Mikroprozessor dieses mitgeflihrten Systems Uber die

18/44

DE 600 06 141 T2 2004.08.26

virtuelle Maschine ausgefiihrt wird.

[0183] Die Erfindung betrifft auch ein Computerprogrammprodukt, wobei dieses Computerprogrammprodukt
Objektcodeabschnitte zur Ausflihrung der Schritte des Verfahrens zur Umwandlung des Objektcodes eines
Programmfragments in einen normierten Objektcode fiir das gleiche Programmfragment umfasst, wie in den
Fig. 4a, 4b bzw. 5a, 5b sowie in Fig. 6, wie zuvor in der Beschreibung beschrieben, umfasst.

[0184] Die vorliegende Erfindung betrifft auch ein Computerprogrammprodukt, das auf einem Trager aufge-
zeichnet ist, der in einem umprogrammierbaren mitgeflihrten System verwendbar ist, z. B. einer mit einem
Uberschreibbaren Speicher ausgestatteten Mikroprozessorkarte, wobei dieses mitgefiihrte System das Fern-
laden eines durch einen von dem Mikroprozessor ausfiihrbaren Objektcode gebildeten Programmfragments
Uber eine virtuelle Maschine erlaubt, die mit einem Ausfuhrungsstack und lokalen Variablen oder Registern
ausgestattet ist, die von diesen Anwei sungen manipuliert werden, um die Interpretation des Objektcodes zu
ermoglichen. Das besagte Computerprogrammprodukt umfasst wenigstens ein Modul von vom Mikroprozes-
sor des mitgeflihrten Systems Uber die virtuelle Maschine lesbaren Programmen zum Steuern der Ausfiihrung
einer Verwaltungsprozedur zum Fernladen eines ferngeladenen Programmfragments, wie in Fig. 2 dargestellt
und zuvor in der Beschreibung beschrieben, ein Modul von durch den Mikroprozessor Uber die virtuelle Ma-
schine lesbaren Programmen zum Steuern der Ausfiihrung einer Uberpriifungsprozedur, Anweisung fiir An-
weisung, des das Programmfragment bildenden Objektcodes, wie in Verbindung mit den Fig. 3a bis 3j in der
vorhergehenden Beschreibung beschrieben und erlautert, und ein Modul von von dem Mikroprozessor dieses
mitgeflhrten Systems Uber die virtuelle Maschine lesbaren Programmen zum Steuern der Ausflihrung eines
ferngeladenen Programmfragments nach oder bei Fehlen einer Umwandlung des Objektcodes dieses Pro-
grammfragments in normierten Objektcode flir das gleiche Programmfragment, wie in Fig. 2 dargestellt.
[0185] Das besagte Computerprogrammprodukt umfasst auch ein Modul von durch den Mikroprozessor tiber
die virtuelle Maschine lesbaren Programmen zum Steuern der Sperrung der Ausfiihrung, auf dem mitgefiihrten
System, des Programmfragments im Fall einer nicht gelungenen Uberpriifungsprozedur des besagten Pro-
grammfragments, wie zuvor in der Beschreibung in Verbindung mit Fig. 2 dargestellt und beschrieben.

ANHANGE
TABELLE 1

Code der in Uberpriifung befindlichen Methode

aload 0
aload 1
sconst 3 : — -
saload . Zeiger guf in Ubex_‘prufung
/ putfield C.f befindliche Anweisung
Ii
return
1 short l Typenstack-
short[] short[] zeiger
C C
Tabelle der Registertypen Typenstack

19/44

DE 600 06 141 T2 2004.08.26
TABELLE 2

Pseudo-Code des Uberpriifungsmoduls
PSEUDO-CODE DES UBERPRUFUNGSMODULS

[0186] Verwendete globale Variablen:

T, von der laufenden Methode deklarierte Registerzahlen

T, von der laufenden Methode deklarierte maximale Stackgréfe
tr[T,] Registertypentabelle (402 in Fig. 4)

tp[T,] Typenstack (403 in Fig. 4)

pp Stackzeiger (404 in Fig. 4)

chg Flag, welches angibt, ob tr verandert ist

Initialisieren pp < 0

Initialisieren tp[0] ... tp[n — 1] anhand der Typen der n Argumente der Methode
Initialisieren von tp[n] ... tp[T, — 1] auf L

Initialisieren von chg auf wahr

Solange chg wahr ist:

chg auf falsch setzen

sich auf erste Anweisung der Methode positionieren solange Ende der Methode nicht erreicht ist:
wenn laufende Anweisung Ziel einer Verzweigungsanweisung ist:
Wenn pp * 0, Scheitern der Uberpriifung

wenn laufende Anweisung Ziel eines Subroutinenaufrufs ist:
Wenn vorhergehende Anweisung in Folge weitergeht, Scheitern
Setzen tp[0] < reatddr und pp < 1

wenn laufende Anweisung eine Ausnahmeverwaltung der Klasse C ist:
Wenn vorhergehende Anweisung in Folge weitergeht, Scheitern
Setzen tp[0] < C und pp « 1

wenn laufende Anweisung ein Ziel unterschiedlicher Arten ist:
Scheitern der Uberpriifung

Bestimmen der Typen a,, ..., an der Argumente der Anweisung
Wenn pp < n, Scheitern (Stackuberlauf) furi=1, ..., n:

wenn tp[pp — n —i — 1] nicht Untertyp von a, ist, Scheitern
Setzenpp < pp-n

Bestimmen der Typenr,, ..., r,, der Ergebnisse der Anweisung
wenn p + m 2 t,, Scheitern (Stackiberlauf)

furi=1, .., m, Setzentp[pp +i-1] <,

Setzenpp < pp+m

wenn laufende Anweisung ein Schreiben in ein Register r ist:
Bestimmen des Typs t des in das Register geschriebenen Werts
Setzen tr[r] < untere Schranke (t, tr[r])

Wenn tr[r] verandert ist, Setzen chg < wahr

wenn laufende Anweisung eine Verzweigung ist:

Wenn pp * 0, Scheitern der Uberpriifung

weiter zur nachsten Anweisung

Zuriickgeben eines Codes fiir erfolgreiche Uberpriifung

TABELLE T3

Static short [] meth(short [] Tabelle)

{

short [] Ergebnis = null

if (Tabelle.Lé&nge >= 2) Ergebnis = Tabelle;

return Tabelle

20/44

-] Ut B D N = O

(]
o © 00

=] N B W~ O

—
O o oo

DE 600 06 141 T2 2004.08.26

TABELLE T4
Erste Iteration Gber den Code der Methode:

Code des Tabelle der Typ des Stacks
Verfahrens Registertypen
Loge ae ia m:;nluuc (76 shore 0] T L] l
aconst-m T : shore(Jf ri: L | { null |
as;o:;o : shorzJ| ri: mull | |
2 o‘ - : skertl)l ri: mell | [shezzil]
acTayieners : shert[J; zi: null | [shert |
sconst 2

: shortl)| rl: null | | short | short |
: short(J| rl: null | |

if_scoplt 9 —

aload 01 : shortlJ| ri: mull | [shorz(]]|
astore T short Iri: short] |

aload 1 : short{J|rl: shorti]]| |[shortl]]
areturn . T '

Zweite lteration Uber den Code des Verfahrens:

W o - o

......... [x0: short (] Jz1: short(]] |
aconstmull | [x0: shortlJ jri: shertJ] [aull |
astore 1 | [z0: short(JJri: short(J] |
aload 0 : shorel] |rl: shortl]| [shorti]]
arraylength : shortl)|rl: shortlJ| [short |
sconst 2 : short{J[rl: short(]] [short | short |
if_scmplt 9 — : short(])|rl: shortl)] |
aload 0 : short(J[zi: shore(J] [Shortll]
astore 1 T shortlJ|z1: shortll] |
::::r: : short{] |r1: shortl]] (shorc(}]
TABELLE T5
(a) Verletzung der Typanforderungen bei den Argumenten einer Anweisung:
TR]
R [rO: Object] [Object]
—3d n {30: Object | [Ubject | shozt |
areturn Fehler: der Typ des Stacks entspricht nicht dem von der

Anweisung erwarteten (short, short)

21/44

sload O

.........

" ifeq 6

.........

aconst_null

astore O

aload 0

O U = O

aretuara

DE 600 06 141 T2 2004.08.26

Inkoharente Verwendung eines Registers:

{ r0: short |

| shors |

........ L:O: short | | null |

_

L 1

(c) Verzweigungen, die zu Inkoharenzen am Stack fuhren:

sload 0

ifeq 8

L N)

sconst 1

goto 9

4

aconst_null

Ww 00 O

areturn

L

11:

10:
11:

sload 0O

ifeq 11

o - O

sconst 1

sinc 0 -}

goto O

~

return

[e o)

w 0 W

(a) Urspriinglicher Code der Methode, kommentiert mit den Typen der Register und des Stacks:

aload O

ifoull 8 -

iconst 1

goto 9

iconst 0

ineg

istore 0

iload O

ireturn

Fehler: der Typ des Stacks entspricht nicht dem
von der Anweisung erwarteten (Objekt)

......... [x0: short | [short |
1
{ x0: ahort | | short |

Fehler: Stack an einem Anweisungspunkt nicht leer

(d) Stackuberlauf innerhalb einer Schieife:

........ Lro; short | | short |

------- |

ceees ...LrO: short | [short I
--[(x0: short] [short |

ticht leer

Fehler: Stack an einem Anweisungspunkt nicht leer

TABELLE T6

{z0: Object | [Object]

| r0: Obicct l |

{ 0: Object] [int |

!

| r0: Object] [int |

[r0- Object | [iat |
--------- |
......... | _r0: int | [imt |

22/44

DE 600 06 141 T2 2004.08.26

TABELLE T7
(b) Code des Verfahrens nach Normierung des Stacks in Hohe der Verzweigung 5 - 9:

--------- Lz0: Object | r1: 1 "} |
[TO: Object | ri: L]| [Gbject]
[=0: Object [iz T] |

o - O
[V
(2]
o
I
[
[
[+
|

iconst 1
oMo (z0: Object | r1: L | [imt |
. oro B] [¥0: Object | ri: iat] |
O [z0: Object | zi: imx] |
8 :[istore 1 (0 Bjeer] _FI 7 [
Ny TR - x0: Object | rl: int | |
. rrrram R | £O: Object | ri: int] { int]
10:| istore 0 | [(z0: Objeer T vi: int] [dat]
......... (=0 int [r1: int] |

11: iload O

~-[_x0: dnt T ri:dar] ([dac]

12: ireturn
TABELLE T8
(c) Code des Verfahrens nach Neuzuweisung der Register
uoad o QO: Dbj‘ct l rl: 1 T

1
(x0: Object | i &L] [Object)
-[x0: Object | ri: &+]

iconst 1 — |
4': 'istore 1 (z0: Object | x1: L] [Time]
5:[goto 8" gk gbj“” fl: dac] |
8§:] iconst O Lz P_T“l gi: dse | |
8 :[istore 1 m:‘fj“t | _ri: & | [ioc]
g :[iload 1 Lx0: Gbjece | ri: dat] |
9: j_nes [io; gbj.ct | ri: int] an J
10:| istore 0 wlxQ: Object | ri: dar] [Hae]
11: Tesdo 1 (_x0: int | r1: imt | |
12:[ireturm | [xo: imt | ;1: iat | | iat |
TABELLE T9
(a) Verzweigungsziel, vorhergehende Anweisung nicht in der
Verzweigung Zustand des Verzweigung Zustand des

é !
l -i-IniCht fortl. Anw. Stacks l 'inicht fortl. Anw. Stacks
IAnweisung i. . . load n B

an

Normierung load r;

temrdbmccmbliaa 2

o FAnweisung i.

23/44

DE 600 06 141 T2 2004.08.26

TABELLE T10
(b) Verzweigungsziel, vorhergehende Anweisung in Folge fortlaufend:

Verzweigung p 'Qé&;éiguh_é Fortl Am&
store T2 %m
' fortl. Anw. 5 store r; P
Anweisung i load ny)
: load rp ’
Normierung — 4 [E8
TABELLE T11

(c) Unbedingte Verzweigung ohne Argumente:

?Normierung -
C————~ sStore rz

store 1)

-

[al?]

goto r——— goto

—_— -

Ziel

{

TABELLE T12
(d) Bedingte Verzweigung mit einem Argument

‘ﬁdﬁﬂiem Svap-x 2.1
N n ’ .
gi‘ store ry
v store ry EE
- {a]6]p] .)
— ifeq —{ ifeq
[eT?] (|
. load r; .
- ' - “load r @
Ziel ie] 2 31])
Patentanspriiche

1. Protokoll zur Verwaltung eines ferngeladenen Programmfragmentes auf einem mitfiihrbaren umpro-
grammierbaren System wie etwa einer mit einem Uberschreibbaren Speicher ausgestatteten Mikroprozessor-
karte, wobei das Programmfragment durch einen Objektcode gebildet ist, eine Folge von Anweisungen, die
von dem Mikroprozessor des mitfihrbaren Systems Uber eine virtuelle Maschine ausfihrbar ist, die mit einem
Ausfihrungs-Stack und von diesen Anweisungen manipulierten lokalen Registern oder Variablen ausgestattet
ist und es erlaubt, diesen Objektcode zu interpretieren, wobei das mitfiihrbare System mit einem Endgerat ver-
bunden ist, dadurch gekennzeichnet, dass das Protokoll wenigstens darin beruht, an dem mitgefiihrten Sys-
tem:

a) einen Befehl zum Fernladen dieses Programmfragmentes zu erfassen; und bei positiver Antwort auf diesen
in der Erfassung eines Fernladebefehles beruhenden Schrittes

b) den dieses Programmfragment bildenden Objektcode zu lesen und diesen Objektcode zeitweilig zu spei-
chern;

c) den gesamten zeitweilig gespeicherten Objektcode Anweisung fiir Anweisung einem Uberpriifungsprozess
zu unterziehen, wobei dieser Uberpriifungsprozess in wenigstens einem Schritt der Initialisierung des Stacks
der Typen auf einen leeren Zustand und der Tabelle von Typen von Registern auf einen Typ, der die Schnitt-

24/44

DE 600 06 141 T2 2004.08.26

menge aller Typen von Daten darstellt, was einen Zustand der virtuellen Maschine zu Beginn der Ausfiihrung
des zeitweilig gespeicherten Objektcodes darstellt, und in einer Folge von Uberpriifungsschritten, Anweisung
fur Anweisung, durch Diskriminieren der Existenz, fur jede laufende Anweisung, eines Zieles, eines Zieles ei-
ner Verzweigungsanweisung, eines Zieles eines Ausnahmeverwaltungsaufrufes oder eines Zieles eines Sub-
routinenaufrufes, und durch Uberpriifung und Aktualisierung der Wirkung der laufenden Anweisung auf den
Stack der Typen und die Tabelle der Registertypen beruht, und im Fall einer gelungenen Uberpriifung des Ob-
jektcodes,

d) das ferngeladene Programmfragment in einem Verzeichnis von verfugbaren Programmfragmenten aufzu-
zeichnen, und im Fall einer nicht gelungenen Uberpriifung des Objektcodes

e) die Ausfihrung des Programmfragmentes auf dem mitfihrbaren System zu sperren.

2. Protokoll nach Anspruch 1, dadurch gekennzeichnet, dass der Schritt e) des Sperrens der Ausfiihrung
darin beruht,
f) das momentan aufgezeichnete Programmfragment zu I6schen, ohne Letzteres in dem Verzeichnis von ver-
fugbaren Programmfragmenten aufzuzeichnen, und
g) einen Fehlercode an die Leseeinrichtung zu senden.

3. Protokoll nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei negativer Antwort auf den Schritt
a), der in der Erfassung eines Fernladebefehles beruht, es darin beruht,
b") einen Befehl zur Auswahl eines in einem Verzeichnis von Programmfragmenten verfugbaren Programm-
fragments zu erfassen, und bei positiver Antwort auf diesen in der Erfassung eines Befehles zur Auswahl eines
verfigbaren Programmfragmentes beruhenden Schritt
¢') das ausgewahlte verfiigbare Programmfragment aufzurufen;
d') das aufgerufene verfligbare Programmfragment Uber die virtuelle Maschine in Abwesenheit jeglicher dyna-
mischer Uberpriifung von Variablentypen, von Zugriffsrechten auf die von dem aufgerufenen verfiigbaren Pro-
grammfragment manipulierten Objekte, des Uberlaufens des Ausfiihrungsstacks bei der Ausfiihrung jeder An-
weisung auszufiihren, und bei negativer Antwort auf diesen in der Erfassung eines Befehles zur Auswahl eines
verfigbaren Programmfragmentes beruhenden Schritt
€') zur Verarbeitung der Standardbefehle des mitfiihrbaren Systems Uiberzugehen.

4. Verfahren zur Uberpriifung eines ferngeladenen Programmfragmentes auf einem umprogrammierbaren
mitfihrbaren System wie etwa einer mit einem Uberschreibbaren Speicher ausgestatteten Mikroprozessorkar-
te, wobei das Programmfragment durch einen Objektcode gebildet ist und wenigstens ein Unterprogramm,
eine Folge von Anweisungen, umfasst, die von dem Mikroprozessor des mitfihrbaren Systems Uber eine vir-
tuelle Maschine ausfihrbar sind, die mit einem Ausfihrungsstack und mit von diesen Anweisungen manipu-
lierten Operandenregistern ausgestattet ist und es er laubt, diesen Objektcode zu interpretieren, wobei das mit-
geflhrte System mit einer Leseeinrichtung verbunden ist, dadurch gekennzeichnet, dass das Verfahren darin
beruht, nach der Erfassung eines Fernladebefehles und der Speicherung des dieses Programmfragment bil-
denden Objektcodes in dem Uberschreibbaren Speicher fur jedes Unterprogramm:

a) einen Schritt der Initialisierung des Typenstacks auf einen leeren Zustand und der Tabelle der Registertypen
auf einen Typ, der die Schnittmenge aller Datentypen darstellt, durchzufihren, was den Zustand der virtuellen
Maschine zu Beginn der Ausflihrung des zeitweilig gespeicherten Objektcodes darstellt;

B) eine Uberpriifung des zeitweilig gespeicherten Objektcodes, Anweisung fiir Anweisung, durch Diskriminie-
rung des Vorhandenseins, fir jede laufende Anweisung, eines Zieles, eines Zieles einer Verzweigungsanwei-
sung, eines Zieles eines Ausnahmeverwaltungsaufrufes oder eines Zieles eines Subroutinenaufrufes, durch-
zuflihren,

y) eine Uberpriifung und eine Aktualisierung der Wirkung der laufenden Anweisung auf die Datentypen des
Typenstapels und die Tabelle von Registertypen in Abhangigkeit vom Vorhandensein eines Verzweigungsan-
weisungszieles, eines Subroutinenaufrufzieles oder eines Ausnahmeverwaltungsaufrufzieles durchzufuhren,
wobei die Uberpriifung gelungen ist, wenn die Tabelle der Registertypen im Laufe einer Uberpriifung aller An-
weisungen nicht verandert wird, und der Uberpriifungsprozess Anweisung fiir Anweisung fortgesetzt wird, bis
die Tabelle der Registertypen stabil und frei von Modifikation ist, und der Uberpriifungsprozess anderenfalls
abgebrochen wird.

5. Uberpriifungsverfahren nach Anspruch 4, dadurch gekenn zeichnet, dass die Typen von im Laufe des
Uberpriifungsprozesses manipulierten Variablen wenigstens umfassen:
— Klassenidentifikatoren, die den in dem Programmfragment definierten Klassen von Objekten entsprechen;
— numerische Variablentypen, die wenigstens einen Typ short, eine auf p bits codierte ganze Zahl, und einen
Typ retaddr einer Riickkehradresse einer Sprunganweisung JSR umfassen,;
— einen Typ null, der sich auf unglltige Objektverweise bezieht;

25/44

DE 600 06 141 T2 2004.08.26

— einen auf Objekte bezogenen Typ object;

—einen ersten spezifischen Typ L, der die Schnittmenge aller Typen darstellt und dem Wert Null, nil, entspricht;
— einen zweiten spezifischen Typ T, der die Vereinigungsmenge aller Typen darstellt und jedem Typ von Wert
entspricht.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Menge der Variablentypen eine Unter-
typisierungsbeziehung erflllt:
object e T;
short, retaddr € T,
1 € null, short, retaddr.

7. Verfahren nach einem der Anspriiche 4 bis 6, dadurch gekennzeichnet, dass wenn die laufende Anwei-
sung Ziel einer Verzweigungsanweisung ist, das Uberpriifungsverfahren darin beruht, zu Uberpriifen, dass der
Typenstack leer ist, und dass im Fall einer positiven Uberpriifung der Uberpriifungsprozess fiir die nachste An-
weisung fortgesetzt wird und anderenfalls der Uberpriifungsprozess scheitert und das Programmfragment zu-
rickgewiesen wird.

8. Verfahren nach einem der Anspriiche 4 bis 7, dadurch gekennzeichnet, dass wenn die laufende Anwei-
sung Ziel eines Subroutinenaufrufes ist, der Uberpriifungsprozess (iberpriift, dass die vorhergehende Anwei-
sung eine unbedingte Verzweigung, eine Subroutinenriickkehr oder eine Ausnahmeaufhebung darstellt, und
dass im Fall einer positiven Uberpriifung der Uberpriifungsprozess eine Reaktualisierung des Stacks von Va-
riablentypen durch eine Einheit vom Typ retaddr, eine Subroutinen-Ruckkehradresse, vornimmt, und dass an-
derenfalls der Uberpriifungsprozess scheitert und das Programmfragment zuriickgewiesen wird.

9. Verfahren nach einem der Anspriiche 4 bis 8, dadurch gekennzeichnet, dass wenn die laufende Anwei-
sung Ziel einer Ausnahmeverwaltung ist, der Uberpriifungsprozess Uiberpriift, dass die vorhergehende Anwei-
sung eine unbedingte Verzweigung, eine Subroutinen-Ruckkehr oder eine Ausnahmeaufhebung darstellt, und
dass bei positiver Uberpriifung der Uberpriifungsprozess eine Reaktualisierung des Stacks der Typen durch
einen Eintrag vom Typ der Ausnahmen vornimmt und dass anderenfalls der Uberpriifungsprozess scheitert
und das Programmfragment zuriickgewiesen wird.

10. Verfahren nach einem der Anspriiche 4 bis 9, dadurch gekennzeichnet, dass wenn die laufende An-
weisung Ziel einer Mehrzahl von inkompatiblen Verzweigungen ist, der Uberpriifungsprozess scheitert und das
Programmfragment zuriickgewiesen wird.

11. Verfahren nach einem der Anspriiche 4 bis 10, dadurch gekennzeichnet, dass wenn die laufende An-
weisung Ziel keiner Verzweigung ist, der Uberpriifungsprozess durch Ubergehen zu einer Reaktualisierung
des Typenstapels fortgesetzt wird.

12. Verfahren nach einem der Anspriiche 4 bis 11, dadurch gekennzeichnet, dass der Schritt des Uberprii-
fens der Wirkung der laufenden Anweisung auf den Typenstack wenigstens umfasst:
— einen Schritt des Uberpriifens, dass der Typenausfiihrungsstack wenigstens genausoviel Eintragungen auf-
weist, wie die laufende Anweisung Operanden hat;
— einen Schritt der Entnahme vom Stack und der Uberpriifung, dass die Typen der Eintragungen an der Spitze
des Stacks Untertypen der Typen von Operanden dieser Anweisung sind;
— einen Schritt der Uberpriifung des Vorhandenseins eines ausreichenden Speicherraumes auf dem Typen-
stack, um die Ergebnisse der laufenden Anweisung auf den Stack legen zu kénnen;
— einen Schritt des Legens der diesen Ergebnissen zugeordneten Datentypen auf den Stack.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass wenn die laufende Anweisung eine An-
weisung zum Lesen eines Registers mit Adresse n ist, der Uberpriifungsprozess darin beruht,
—den Datentyp des Ergebnisses dieses Lesens durch Abfragen des Eintrages n der Tabelle der Registertypen
zu Uberprifen;
— die Wirkung der laufenden Anweisung auf den Typenstack durch Entnahme der den Operanden dieser lau-
fenden Anweisung entsprechenden Eintrage vom Stack und Legen des Datentyps dieses Ergebnisses auf den
Stack zu bestimmen.

14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass, wenn die laufende Anweisung eine An-

weisung zum Schreiben eines Registers mit Adresse m ist, der Uberpriifungsprozess darin beruht,
— die Wirkung der laufenden Anweisung auf den Typenstack und den Typ t des in dieses Register mit Adresse

26/44

DE 600 06 141 T2 2004.08.26

m geschriebenen Operanden zu bestimmen;

— die Eintragung des Typs von der Tabelle der Registertypen an der Adresse m durch denjenigen Typ zu er-
setzen, der unmittelbar héher als der zuvor gespeicherte Typ und der Typ t des in dieses Register mit Adresse
m geschriebenen Operanden ist.

15. Verfahren zur Umwandlung eines Objektcodes eines Programmfragmentes, bei dem die Operanden
jeder Anweisung zu den von dieser Anweisung manipulierten Datentypen gehoéren, der Ausflihrungsstack kein
Uberlaufen zeigt, fiir jede Verzweigungsanweisung der Stack-Variablentyp in Hohe dieser Verzweigung der
gleiche ist wie in Hohe der Ziele dieser Verzweigung, in einen normierten Objektcode fir dieses gleiche Pro-
grammfragment, bei dem die Operanden jeder Anweisung zu den von dieser Anweisung manipulierten Daten-
typen gehéren, der Ausfiihrungsstack kein Uberlaufen zeigt, der Ausfiihrungsstack bei jeder Verzweigungsan-
weisung und jeder Verzweigungszielanweisung leer ist, dadurch gekennzeichnet, dass das Verfahren darin be-
ruht, fir die Menge der Anweisungen des Objektcodes
— jede laufende Anweisung mit dem Datentyp des Stacks vor und nach Ausfiihrung dieser Anweisung zu kom-
mentieren, wobei die Kommentierungsdaten mit Hilfe einer Analyse des auf diese Anweisung bezogenen Da-
tenstroms berechnet werden;

—in den Anweisungen und jeder laufenden Anweisung das Vorhandensein von Verzweigungen bzw. von Ver-
zweigungszielen zu erfassen, fur die der Ausfiihrungsstack nicht leer ist, wobei die Erfassungsoperation aus-
gehend von den jeder laufenden Anweisung zugeteilten Stackvariablentyp-Kommentierungsdaten durchge-
fuhrt wird, und bei Erfassung eines nicht leeren Ausfiihrungsstacks

— Stack-Variablentransfer-Anweisungen jeweils beiderseits dieser Verzweigungen bzw. dieser Verzweigungs-
ziele einzufligen, um den Inhalt des Ausfiihrungsstacks vor dem Verzweigen in zeitweilige Register zu entlee-
ren und den Ausfiihrungsstack anhand dieser zeitweiligen Register nach der Verzweigung wiederherzustellen,
und anderenfalls keine Transferanweisung einzufiigen, wodurch ein normierter Objektcode fiir dieses gleiche
Programmfragment erhalten wird, bei dem der Ausfiihrungsstack bei jeder Verzweigungsanweisung und jeder
Verzweigungszielanweisung bei Nichtvorhandensein einer Modifikation der Ausfiihrung des Programmfrag-
mentes leer ist.

16. Verfahren zur Umwandlung eines Objektcodes eines Programmfragmentes, in dem die Operanden je-
der Anweisung zu den von dieser Anweisung manipulierten Datentypen gehéren und ein von einer Anweisung
dieses Objektcodes in ein Register geschriebener Operand von festgelegtem Typ aus diesem gleichen Regis-
ter von einer anderen Anweisung dieses Objektcodes mit dem gleichen festgelegten Datentyp gelesen wird,
in einen normierten Objektcode fiir dieses gleiche Programmfragment, bei dem die Operanden jeder Anwei-
sung zu den von dieser Anweisung manipulierten Datentypen gehéren, wobei ein einziger, gleicher Datentyp
einem gleichen Register in dem gesamten normierten Objektcode zugeordnet ist, dadurch gekennzeichnet,
dass das Verfahren darin beruht, fiir die Menge der Anweisungen dieses Objektcodes:

—jede laufende Anweisung mit dem Datentyp der Register vor und nach Ausfiihrung dieser Anweisung zu kom-
mentieren, wobei die Kommentierungsdaten mit Hilfe einer Analyse des diese Anweisung betreffenden Daten-
stroms berechnet werden;

— eine Neuzuteilung der Register durch Erfassen der mit verschiedenen Typen verwendeten Ursprungsregis-
ter, Aufteilen dieser Ursprungsregister auf unterschiedliche normierte Register, ein normiertes Register fur je-
den verwendeten Datentyp, und eine Reaktualisierung der Anweisungen durchzufiihren, die die Operanden
manipulieren, die auf diese normierten Register zugreifen.

17. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass der Schritt, der darin beruht, in den An-
weisungen und jeder laufenden Anweisung das Vorhandensein von Verzweigungen bzw. von Verzweigungs-
zielen zu erfassen, fir die der Ausfuhrungsstack nicht leer ist, nach der Erfassung jeder Anweisung von ent-
sprechendem Rang i darin beruht,

—jeder Anweisung von Rang i eine Menge von neuen Registern zuzuordnen, wobei in Héhe dieser Anweisung
jeder aktiven Stackvariable ein neues Register zugeordnet wird;

—jede erfasste Anweisung vom Rang i zu untersuchen und das Vorhandensein eines Verzweigungszieles bzw.
einer Verzweigung zu diskriminieren und in dem Fall, wo die Anweisung vom Rang i ein Verzweigungsziel ist
und der Ausfihrungsstack in Hohe dieser Anweisung nicht leer ist,

— fur jede vorhergehende Anweisung vom Rang i — 1, die durch eine Verzweigung, eine Ausnahmeaufhebung
oder eine Programmrickkehr gebildet ist, wenn die erfasste Anweisung vom Rang i nur durch eine Verzwei-
gung zuganglich ist,

— eine Menge von load-Anweisungen ausgehend von der Menge von neuen Registern vor die erfasste Anwei-
sung vom Rang i einzufligen, wobei alle Verzweigungen zu der erfassten Anweisung vom Rang i auf die erste
eingefugte Ladeeinweisung load umgeleitet werden, und

—fiir jede die Folge fortsetzende vorhergehende Anweisung vom Rangi - 1, wenn die erfasste Anweisung vom

27/44

DE 600 06 141 T2 2004.08.26

Rang i sowohl Gber eine Verzweigung als auch Uber die vorhergehende Anweisung vom Rang i - 1 erreichbar
ist,

— eine Menge von Speicheroperationen store in die Menge von neuen Registern vor die erfasste Anweisung
vom Rang i und eine Menge von Ladebefehlen load ausgehend von dieser Menge von neuen Registern ein-
zufiigen, wobei alle Verzweigungen zu der erfassten Anweisung vom Rang i auf die erste eingefiigte Ladean-
weisung load umgeleitet werden, und in dem Fall, wo die erfasste Anweisung vom Rang i eine Verzweigung
zu einer festgelegten Anweisung ist, und

— fir jede erfasste Anweisung vom Rang i, die durch eine unbedingte Verzweigung gebildet ist,

— vor diese erfasste Anweisung vom Rang i eine Mehrzahl von Speicheranweisungen store einzufligen, wobei
jedem neuen Register eine Speicheranweisung zugeordnet ist; und

— fur jede erfasste Anweisung vom Rang i, die durch eine bedingte Verzweigung gebildet ist, und fur eine Zahl
m > 0 von durch diese bedingte Verzweigungsanweisung manipulierten Operanden,

— vor diese erfasste Anweisung vom Rang i eine Permutationsanweisung swap-x an der Spitze des Ausfih-
rungsstacks der m Operanden der erfassten Anweisung vom Rang i und der n folgenden Werte einzufligen,
wobei diese Permutationsoperation es erlaubt, die n in der Menge von neuen Registern zu speichernden Werte
an die Spitze des Ausflhrungsstacks zurlickzubringen, und

— vor die Anweisung vom Rang i eine Menge von Speicheroperationen store zum Speichern in der Menge der
neuen Register einzufiigen und

—nach der erfassten Anweisung vom Rang i eine Menge von Ladeanweisungen load zum Laden aus der Men-
ge von neuen Registern einzufiigen.

18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass der Schritt, der darin beruht, eine Neuzu-
weisung der Register durch Erfassen der mit den verschiedenen Typen verwendeten urspriinglichen Register
vorzunehmen, darin beruht,

— die Lebensdauerintervalle jedes Registers zu bestimmen;

— den Hauptdatentyp jedes Lebensdauerintervalls zu bestimmen, wobei der Hauptdatentyp eines Lebensdau-
erintervalls j fur ein Register r definiert ist durch die obere Grenze der in diesem Register r von den zu dem
Lebensdauerintervall j gehérenden Speicheroperationen store gespeicherten Datentypen;

— einen Graph von Interferenzen zwischen den Lebensdauerintervallen aufzustellen, wobei dieser Graph von
Interferenzen aus einem nicht-orientierten Graphen besteht, von dem jeder Knoten durch ein Lebensdauerin-
tervall gebildet ist, und dessen Kanten zwischen zwei Knoten j, und j, existieren, wenn ein Knoten eine an das
Register des anderen Knotens adressierte Speicheroperation enthalt oder umgekehrt;

— die Eindeutigkeit eines jedem Register zugeordneten Datentyps in dem Interferenzgraphen zu Gbersetzen
durch Einfigen von Kanten zwischen jedem Knotenpaar des Interferenzgraphen, so lange nicht zwei Knoten
eines Paares von Knoten den gleichen zugeordneten Hauptdatentyp haben;

— eine Instanzierung des Interferenzgraphen durch Zuweisen einer Registernummer zu jedem Lebensdauer-
intervall derart durchzufliihren, dass zwei in dem Interferenzgraphen benachbarten Lebensdauerintervallen un-
terschiedliche Registernummern zugeordnet werden.

19. Mitfihrbares, durch Fernladen von Programmfragmenten umprogrammierbares System mit wenigs-
tens einem Mikroprozessor, einem Schreib-Lesespeicher, einem Ein-/Ausgabemodul, einem elektrisch umpro-
grammierbaren nichtflichtigen Speicher und einem permanenten Speicher, in dem ein Hauptprogramm und
eine virtuelle Maschine abgelegt sind, die die Ausfiihrung des Hauptprogramms und wenigstens eines Pro-
grammfragmentes Uber den Mikroprozessor ermoglicht, dadurch gekennzeichnet, dass das mitfihrbare Sys-
tem wenigstens ein Programmmodul zur Verwaltung und Uberpriifung eines leeren Zustandes eines Typen-
stacks fiir jede Verzweigungsanweisung eines ferngeladenen Programmfragmentes umfasst, wobei das Pro-
gramm zur Verwaltung und Uberpriifung im permanenten Speicher abgelegt ist.

20. Mitfuhrbares, durch Fernladen von Programmfragmenten umprogrammierbares System mit wenigs-
tens einem Mikroprozessor, einem Schreib-Lesespeicher, einem Ein-/Ausgabemodul, einem elektrisch umpro-
grammierbaren nichtfliichtigen Speicher und einem permanenten Speicher, in dem ein Hauptprogramm und
eine virtuelle Maschine abgelegt sind, die die Ausfiihrung des Hauptprogramms und wenigstens eines Pro-
grammfragmentes Uber den Mikroprozessor ermoglicht, dadurch gekennzeichnet, dass das mitfihrbare Sys-
tem wenigstens ein Programm zur Verwaltung und Uberpriifung nach dem Protokoll zur Verwaltung eines fern-
geladenen Programmfragmentes nach einem der Anspriiche 1 bis 3 umfasst, wobei das Verwaltungs- und
Uberpriifungs-Programmmodul im permanenten Speicher abgelegt sind.

21. MitfGhrbares System nach Anspruch 20, dadurch gekennzeichnet, dass es wenigstens ein Unterpro-

grammmodul zur Uberpriifung eines ferngeladenen Programmfragmentes nach dem Uberpriifungsprozess
nach einem der Anspriiche 4 bis 14 umfasst.

28/44

DE 600 06 141 T2 2004.08.26

22. System zur Umwandlung eines Objektcodes eines Programmfragmentes, in dem die Operanden jeder
Anweisung zu den von dieser Anweisung manipulierten Datentypen gehéren, der Ausfiihrungsstack kein Uber-
laufen aufweist, fir jede Verzweigungsanweisung der Stack-Variablentyp in Hohe dieser Verzweigung der glei-
che wie in Hohe der Ziele dieser Verzweigung ist, und ein durch eine Anweisung dieses Objektcodes in ein
Register geschriebener Operand von festgelegtem Typ aus diesem gleichen Register von einer anderen An-
weisung dieses Objektcodes mit dem gleichen festgelegten Datentyp erneut gelesen wird, in einen normierten
Objektcode fiir dieses gleiche Programmfragment, in welchem die Operanden jeder Anweisung zu den von
dieser Anweisung manipulierten Datentypen gehéren, der Ausfiihrungsstack kein Uberlaufen aufweist, der
Ausfuhrungsstack bei jeder Verzweigungsanweisung und jeder Verzweigungszielanweisung leer ist, ein einzi-
ger, gleicher Datentyp einem gleichen Register in dem gesamten normierten Objektcode zugewiesen ist, da-
durch gekennzeichnet, dass das Umwandlungssystem wenigstens, abgelegt im Arbeitsspeicher eines Ent-
wicklungscomputers oder einer Workstation, ein Programmmodul zur Umwandlung dieses Objektcodes in ei-
nen normierten Objektcode nach dem Verfahren gemaR einem der Anspriiche 15 bis 18 umfasst, was es er-
laubt, einen normierten Objektcode fiir das Programmfragment zu erzeugen, der den Kriterien zur Uberpriifung
dieses ferngeladenen Programmfragmentes genigt.

23. Direkt in den internen Speicher eines mitflihnrbaren, umprogrammierbaren Systems wie etwa einer mit
einem Uberschreibbaren Speicher ausgestatteten Mikroprozessorkarte ladbares Computerprogrammprodukt,
wobei dieses mitfiihrbare System das Fernladen eines Programmfragmentes erlaubt, das durch einen Objekt-
code gebildet ist, eine Folge von Anweisungen, die von dem Mikroprozessor des mitfihrbaren Systems Utber
eine virtuelle Maschine ausfuhrbar ist, die mit einem Ausfiihrungsstack und mit von diesen Anweisungen ma-
nipulierten lokalen Registern oder Variablen ausgestattet ist und die es erlaubt, diesen Objektcode zu interpre-
tieren, wobei dieses Computerprogrammprodukt Objektcodeabschnitte fiir die Ausfiihrung des Protokolls zur
Verwaltung eines ferngeladenen Programmfragmentes auf dem mitfihrbaren System nach einem der Anspru-
che 1 bis 3 aufweist, wenn dieses mitfliihrbare System mit einem Endgerat verbunden ist, und das Programm
von dem Mikroprozessor dieses mitfiihrbaren Systems Uber die virtuelle Maschine ausgefihrt wird.

24. Direkt in den internen Speicher eines mitfihrbaren umprogrammierbaren Systems wie etwa einer mit
einem Uberschreibbaren Speicher ausgestatteten Mikroprozessorkarte ladbares Computerprogrammprodukt,
wobei dieses mitfiihrbare System das Fernladen eines Programmfragmentes erlaubt, das durch einen Objekt-
code gebildet ist, eine Folge von Anweisungen, die von dem Mikroprozessor des mitfuhrbaren Systems Uber
eine virtuelle Maschine ausfuhrbar sind, die mit einem Ausfiihrungsstack und mit von diesen Anweisungen ma-
nipulierten Operandenregistern ausgestattet sind und die es erlaubt, diesen Objektcode zu interpretieren, wo-
bei dieses Computerprogrammprodukt Objektcodeabschnitte zur Ausfiihrung der Schritte zur Uberpriifung ei-
nes ferngeladenen Programmfragmentes auf dem mitfiihrbaren System nach einem der Anspriiche 4 bis 14
umfasst, wenn das mitfiihrbare System mit einem Endgerat verbunden ist, und das Programm von dem Mikro-
prozessor dieses mitfiihrbaren Systems Uber die virtuelle Maschine ausgefihrt wird.

25. Computerprogrammprodukt mit Objektcodeabschnitten zur Ausfiihrung der Schritte des Verfahrens zur
Umwandlung eines Objektcodes eines ferngeladenen Programmfragmentes in einen normierten Objektcode
fur dieses gleiche Programmfragment nach einem der Anspriiche 15 bis 18.

26. Computerprogrammprodukt, aufgezeichnet auf einem in einem umprogrammierbaren mitfihrbaren
System verwendbaren Trager wie etwa einer mit einem Uberschreibbaren Speicher ausgestatteten Mikropro-
zessorkarte, wobei dieses mitfiihrbare System das Fernladen eines Programmfragmentes erlaubt, das durch
einen Objektcode gebildet ist, eine Folge von Anweisungen, die durch den Mikroprozessor des mitflihrbaren
Systems Uber eine virtuelle Maschine ausfuhrbar sind, die mit einem Ausfihrungsstack und mit von diesen An-
weisungen manipulierten lokalen Registern oder Variablen ausgestattet ist, und die es erlaubt, diesen Objekt-
code zu interpretieren, wobei dieses Computerprogrammprodukt wenigstens umfasst:

— durch den Mikroprozessor dieses mitfiihrbaren Systems tber die virtuelle Maschine lesbare Programm-Mittel
zum Steuern der Ausfihrung einer Prozedur zur Verwaltung des Fernladens eines ferngeladenen Programm-
fragmentes;

— durch den Mikroprozessor dieses mitfiihrbaren Systems lber die virtuelle Maschine lesbare Programm-Mittel
zum Steuern der Ausfiihrung einer Prozedur der Uberpriifung, Anweisung fiir Anweisung, eines leeren Zustan-
des des Typenstacks fir jede Verzweigungsanweisung des das Programmfragment bildenden Objektcodes;
— durch den Mikroprozessor dieses mitfiihrbaren Systems lber die virtuelle Maschine lesbare Programm-Mittel
zum Steuern der Ausflhrung eines ferngeladenen Programmfragmentes nach einer oder in Abwesenheit einer
Umwandlung des Objektcodes dieses Programmfragmentes in normierten Objektcode fir dieses gleiche Pro-
grammfragment.

29/44

DE 600 06 141 T2 2004.08.26

27. Computerprogrammprodukt nach Anspruch 26, ferner mit durch den Mikroprozessor dieses mitfiihrba-
ren Systems Uber die virtuelle Maschine lesbaren Programm-Mitteln zum Steuern der Sperrung der Ausfih-
rung, in dem mitfiihrbaren System, des Programmfragmentes im Fall einer misslungenen Uberpriifungsproze-
dur dieses Programmfragmentes.

Es folgen 14 Blatt Zeichnungen

30/44

DE 600 06 141 T2 2004.08.26

Anhangende Zeichnungen

MITGEFUHRTES SYSTEM

N
10~

N

KOMMUNIKA-1S\\

TION MIT DER

MIKROPRO-
ZESSOR

RAM
(SCHREIB-LESE-
SPEICHER)

AUSSENWELT

(SERIELLE

EIN-/AUSGANGE,

VERBINDUNG)

ROM

(NICHT BESCHREIB;

BARER SPEICHER

! PROGRAMM '

EEPROM_
(NICHTFLUCHTIGE
BESCHREIBBARE

—~»{ SPEICHER)

o e —

| DATEN |
— A

-

-13

F1G.1a. (sTAND DER TECHNIK)

NICHT PROGRAMMIERBARES MITGEFUHRTES SYSTEM

PROGRAMMIERBARES MITGEFUHRTES SYSTEM

10~
ROM 12
MIKROPRO- d |Eaomr™ — -

1 ZESSOR 'PROGRAMM }

VIRTUELLE _} -1-16
14~{=am LMASCHINE _ |

(SCHREIB-LESE-)]

15 SPEICHER) EEPROM 13

===
OMMUNIKA-" - _ DATEN

"FION UND EIN-/AUSGANGE, 'r_ _____]
= »| (SERIELLE < || appLeTs |
FERNLADEN 1 | VERBINDUNG) Lo |

F1G.1b . (STAND DER TECHNIK)

31/44

DE 600 06 141 T2 2004.08.26

SOl

TIOXMOLOYdSONNLIVMYIA

0,

¢Old

\ 4

| _I.I*sllk..!*ll:tl,_

ONNL
. -1IND

Oit
NIONINZNIH SIN |} 3002 NIHOSO _ \
-HOIFZY3A NI 131ddV _-mMszm quaa<ng
ool Ul NJUHNASNY
/ .~~~ | -quvanvLs ¥3qa mmzz%%ﬁﬂmwm
390 Q0L ONNLIFFHVHIA .
N3IHONS
. HYMSNY 131ddVY - SINHOIFZY3A
S300D NINIAVY 13D X * NI 13daVv
_~1 S30 9Nnd4nydy3an >
<0t
0 601

N3av1
S131ddv S3Q 3d00

/

(0}

N3IAVINY34
=1H3439

00k

N3IS3T
‘IH3438

[

32/44

DE 600 06 141 T2 2004.08.26

INITIALISIERUNG DES STACKS o0
UND DER TABELLE DER ¢
REGISTERTYPEN

200a—_| i AUF ERSTE ANWEISUNG
' DES OBJEKTCODES POSI-

TIONIEREN = i

og)—| UBERRUFUNG DER ANWEISUNG i 1
Ii=CIB? Ti=CEM ?
1=CSR ?

0
1= i+ UBERPRUFUNG DER WIRKUNG /202

VON li AUF STACK UND TABELLE:
DER REGISTERTYPEN

li= .
LETZTE ANWEI-

SUNG DES OBJEKT-_
CODES?

FIG.3a. 205
UBERPRUFUNGS- 3 STA-
VERFAHREN BILER ZUSTAND _

DER TABELLE DER
REGISTERTY-

33/44

DE 600 06 141 T2 2004.08.26

| OBJECT
¢ D
E /
[
L

FI(G.3b. DATENTYPEN UND UNTERTYPISIERUNGS-
BEZIEHUNG

TYPEN-

STACK = LEER
?

FK;.BC. UBERPRUFUNG: VERWALTUNG EINER
VERZWEIGUNGSANWEISUNG

34/44

DE 600 06 141 T2 2004.08.26

" L=
_UNBEDINGTE IB;"™
RUCKKEHR RSR ODER

v

AUFHEBUNG

REAKTUALISIERUNG
JDES TYPENSTACKS

DURCH EINTRAG

L_EXCEPT

Fl G 3d : UéERPRUFUNG: VéRWAL-

VOM TYP RETADDR
AN TUNG EINES SUBROUTINENAUFRUFS
306
307

Li_i=

_UNBEDINGTE IB;
RUCKKEHR RSR ODER

l

AUFHEBUNG
L_EXCEPT

REAKTUALISIERUN
DES TYPENSTACKS
DURCH EINTRAG
VOM TYP EXCEPT

FlG .39- UBERPRUFUNG: VERWAL-
TUNG EINES ZIELS EINER AUSNAHME-

ORTS)
C

308. VERWALTUNG

35/44

DE 600 06 141 T2 2004.08.26

INKOMPATIBLE
XIB 309

INKOMPATIBLE
. XIB

F lG ‘ 3F UBERPRUFUNG: VERWALTUNG
DES ZIELS VON INKOMPATIBLEN VERZWEIGUNGEN

310

7.\
ORTS
&)

Z}ﬂ A

AKTUALISIERUNG
DES TYPENSTACKS

F 'G * 39 * UBERPRUFUNG: VERWALTUNG DES
FEHLENS EINES VERZWEIGUNGSZIELS

36/44

DE 600 06 141 T2 2004.08.26

4 400
NI-)ae? _
NOPpI
+ ‘ﬁﬂh

Opi TYP NOpi=Targs

ENTSTAPELN DER
N
1TOpi = TYPEN VON Opi

“ONTERTYPEN

202ﬁ

STACK:
PLATZ > ERGEB™N =
NISPLATZ .~

STAPELN DER DEN ER-
GEBNISSEN ZUGEWIE-
SENEN DATENTYPEN

' SCHEI
TERN

F1G.3h. UBERPRUFUNG: WIRKUNG DER LAUFENDEN
' ANWEISUNG AUF TYPENSTACK

37/44

DE 600 06 141 T2 2004.08.26

404

REGISTER n_~"

405~ JBERPRUFUNG DES DATEN-
TYPS DES LESEERGEBNIS-
SES: ABFRAGEN EINTRAG

n DER TABELLE DER REGIS-

TERTYPEN
406a\
msﬁgng?\lER ENTSTAPELN DER DEN OPE- L
ANWEISUNG RANDEN OPi ENTSPRECHEN-
li AUF DEN DEN EINTRAGE VOM STACK
TYPENSTACK L

STAPELN DES DA-
TENTYPS DES
ERGEBNISSES

e/

F'IG 3, UBERPRUFUNG: VERWALTUNG EINER REGISTER-
*~ " LESEANWEISUNG

38/44

DE 600 06 141 T2 2004.08.26

IwWm
ADRESSRE-

GISTER m

+

408

| BESTIMMUNG DER WIRKUNG
VON li AUF DEN TYPENSTACK] *
UND DEN TYP t DES OPERAN-
DEN OPm

=

ERSETZEN TYPEINTRAG m
DER TABELLE DER REGIS-
TERTYPEN DURCH HOHE-
REN ALS DEN ZUVOR GE-
SPEICHERTEN UND DEN
TYPt

F1G.3]. UBERPRUFUNG. VERWALTUNG EINER
ANWEISUNG ZUM SCHREIBEN EINES
REGISTERS

39/44

DE 600 06 141 T2 2004.08.26

r 1

UMWANDLUNG

4 CODE Cj+Co+C5
v

NORMIERTER CODE
C1+ C2+Cy

\ 1 J
500—] KOMMENTIERUNG

Ii <> AN
ATi={tbe), taei} .

1

S00a—_|
| AUF ERSTE ANWEL-
SUNG POSITIONIEREN
501
Ti
IST IB ODER Cl .
_UND STACK(AL) IST.,
504 LEER
N |
1=+l + /502
' | BEIDERSEITS
EINFUGEN...
Li= 303
-~ LETZTEAN-
WEISUNG
FIG 4a.

VERFAHREN ZUR UMWANDLUNG
EINES CODES IN EINEN NOR-
MIERTEN CODE MIT VERZWEI-
GUNGSANWEISUNG BEI| LEEREM
STACK

40/44

FIG.4b

DE 600 06 141 T2 2004.08.26

UMWANDLUNG
CODE Ci+C%

l .
MIERTER.CODE
C1+C4 3

TiemeATi 900
AIi :{tbei;toe}}

. P

NEUZUTEILUNG DER REGISTER
1 NORMIERTES REGISTER R,, ©1 TYP

REAKTUALISIERUNG DER ANWEI- /602

SUNGEN, DIE DIE OPERANDEN
MANIPULIEREN, DIE R,, VER-

WENDEN

VERFAHREN ZUR UMWANDLUNG EINES CODES
IN EINEN NORMIERTEN CODE, DER TYPENRE-
GISTER VERWENDET

41/44

DE 600 06 141 T2 2004.08.26

r

T Hon_
[(Ua---13) NOA @vO1
=U71---71 N3ON4ANI3

_91G

3

_ T dOA
(Y---lHovn JHOLS
=UGT -~ -ISI N3ON4NIT

\m IS

|

By "Old HOVN

IT YOA X-dVMS
NOJLVLNINY3d N3ONINIA

NIHHV4HIASONNTANVYMAN i
‘BEOId
A ; N@m
A OIS~ IST HOWN I T Hown I
NOA NIONNSIIMZ NOA NIONNOITMZ
F4AA YTV NIINTTAN RIA 3TV NIXNITAN
m_\m . ,
iT _JOA | T HOA|. T OA
(W - - -N)HOVN 1015 (W == -1)HOVN J50LS ?._F._.-E“ 'NOA_GVO1
=UgT- --ISINIONANI3 =UsT -~ -1ST N3ON4NI3 \n 71 -~ NI N3ONINE
mom

xxo:ms_s_éoo. N

337

#MOV1S

QS

SEER M_cs ===

#MOVLS I

W=l

42/44

DE 600 06 141 T2 2004.08.26

IDj¢=>Pj /603

IDj<>tpj . /604

GI IDj ‘
IDix~ —1DJk

-3 3jt j . —605
IDjn—e D2

|

6T I0j1 ,
IDjz— . . j, |—606
1 42 aj1 ik

IDjn e

I0jgrss IOt
IBjk],rk — 607

IDjn,r T
v IDj2, 2

FI1G.5b.

UMWANDLUNGSVERFAHREN
NACH FIG. 4b

43/44

DE 600 06 141 T2 2004.08.26

10
12\ \ MIKROPROZESSORKARTE
\ A
" ROM EEPROM
G N 8
7H-HOBERPRU- || |TAPPLET- I
i IFUNGSMODUL] | | | VERZEICH- ! .
H VRTUETE] SERELE
T e | :—'-‘@———-Jl SERIELLE |TERMINAL
o= T aren 1| | VERBINDUNG
IHAUPT- 1} :
IPROGRAMMj | 1L — _ LOKALES
NETZ
OC | APPLET-ENTWICKLUNGSCOMPUTER Cc
: CODEUM- JAVACARD NETZ
COMPILER| | WANDLUNGS=) UMHAND- | —or - =2 ""_
MODUL LER
_\ \
)20 2 23

FIG.6.

44/44

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

