Scratch resistance depends on Cristallinity

DELTA Gloss (°)

Crystallinity (%)

Delta Gloss after 500 cycles with Taber, W.B.UV 1.1 System

(57) Abstract: A matting agent useful for the preparation of matted coatings comprising, inorganic oxide particulates and wax coated on the inorganic oxide particulates, wherein the wax possesses a crystallinity of about 50% or more.
MATTING AGENT

FIELD OF THE INVENTION
[0001] This invention relates to wax coated inorganic oxide matting agents useful for the production of coatings, coating formulations made therefrom and the resulting matted coatings.

BACKGROUND OF THE INVENTION
[0002] It is well known that micronised waxes will impart desirable features to paint or lacquer film or coatings (e.g., flexibility, feel and gloss). Inorganic oxide particulates have also been used to import matting to the coating. When an inorganic oxide particulate is coated/impregnated with wax a process usually performed by jointly grinding the oxide particulate and wax in a fluid energy mill (microniser), further product benefits are immediately available. The wax can improve compatibility of the oxide particulate with the paint or lacquer preventing interaction with other components in the formulation, but another function is to prevent the formation of hard sediment during storage, which is not redispersible. Whilst the mechanism by which this protection is afforded is still not fully understood, its benefit to the paint or lacquer manufacturer is widely recognized because, if hard sediments that cannot be redispersed are formed, none of the benefits described above can be realized.

[0003] Two types of wax-coated oxide particulates are generally disclosed in the literature. GB Patent No. 798,621 discloses a silica-matting agent produced by co-milling an intermediate density silica gel with a microcrystalline wax in a fluid energy mill. GB Patent No. 1,236,775 teaches a silica matting agent can be prepared by treating precipitated silica with an aqueous emulsion or dispersion of a wax, including thermoplastic materials. The properties of the silica matting agents prepared by the so-called "dry" co-micronising route have been further improved by adding fatty acids (GB Patent No. 1,461,511) or synthetic polyethylene waxes of varying molecular weight (U.S. Patent No. 4,097,302) to the microcrystalline wax before feeding to the fluid energy mill. The former improves the dispersibility of the wax coated products, whereas the latter shows products having enhanced settlement characteristics compared with...
commercially available materials. The "dry" processing routes described above use temperatures in excess of the melting points of the waxes or wax blends whereas GB Patent No. 1,538,474 discloses a process which can produce satisfactory wax coated silicas at micronising temperatures of below 50°C, where functional waxes such as montan acid ester are employed.

[0004] U.S. Patent No. 5,326,395 describes a matting agent that utilizes a ternary blend of waxes, including a hard microcrystalline wax, a plasticizing microcrystalline wax, and a synthetic polyethylene wax, that is coated on a silica particulate. U.S. Patent Application No. 2004/0047792 A1 relates to a wax coated precipitated silica matting agent wherein the wax may include polyethylene waxes, Fischer-Tropsch waxes, or silicone waxes.

[0005] U.S. Patent No. 6,761,764 B2 describes the use of wax particles, without an inorganic oxide component, for use as matting agents in various coatings. The waxes used include a mixture of olefin waxes and various other waxes.

[0006] There remains a need in the coating industry for an inorganic oxide matting agent that provides acceptable matting properties while also providing improved abrasion resistance and chemical stability.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 illustrates the influence by wax crystallinity on abrasion resistance of the coatings according to the present invention.

[0008] FIG. 2 illustrates the abrasion resistance of coatings according to the present invention compared with others.

[0009] FIG. 3 illustrates the matting efficiency of coatings according to the present invention compared with others in wood lacquer.

[0010] FIG. 4 illustrates the matting efficiency of coatings according to the present invention compared with others in UV lacquer.

[0011] FIG. 5 illustrates the chemical resistance of coatings of the present invention as compared to others.
SUMMARY

[0012] The present invention relates to a matting agent useful for the preparation of matted coatings including, inorganic oxide particulates and wax coated on or impregnated in the inorganic oxide particulates, wherein the wax possesses a crystallinity of about 50% or more.

[0013] The present invention also relates to a coating formulation useful for the preparation of matted coatings including inorganic oxide particulates, and wax coated on or impregnated in the inorganic oxide particulates, wherein the wax possesses a crystallinity of about 50% or more.

[0014] The present invention further relates to a matted coating including inorganic oxide particulates, and wax coated on or impregnated in the inorganic oxide particulates, wherein the wax possesses a crystallinity of about 50% or more.

DESCRIPTION OF THE INVENTION

[0015] The terms referred to herein are to be given their accepted meaning in the industry unless otherwise defined herein.

[0016] The term "particulate" is used to refer to solid, either singularly or a collection thereof (e.g., powder) including spheroid(s), granule(s), fragment(s), or pieces(s) of matter having regular or irregular shape or surface.

[0017] The term "inorganic oxides" is used to describe a binary compound of an element and oxygen and include metal and semimetal oxides. Examples of such oxides may comprise SiO₂, Al₂O₃, AlPO₄, MgO, TiO₂, ZrO₂, Fe₂O₃ or mixtures thereof. Mixed inorganic oxides include SiO₂, Al₂O₃, MgO, SiO₂, Al₂O₃, Fe₂O₃ etc., which may be prepared by conventional preparation techniques (e.g., coblending, coprecipitating, cogelling etc.). The oxides may be in a variety of forms, including gelled, precipitated, fumed, colloidal, etc.

[0018] Inorganic oxides may also include natural minerals, processed/activated minerals, montmorillonite, attapulgite, bentonite, palygorskite, Fuller’s earth, diatomite, smectite, horomite, quartz sand, limestone, kaolin, ball clay, talc, pyrophyllite, perlite, sodium silicate, sodium aluminum silicate, magnesium silicate, magnesium aluminum silicate, silica hydrogel, silica gel, fumed silica,
precipitated silica, dialytic silica, alumina zeolite, molecular sieves, diatomaceous earth, reverse phase silica, bleaching clay, and mixtures thereof.

[0019] In one embodiment, the present invention relates to matting agent useful for the preparation of matted coatings comprising inorganic oxide particulates and wax coated on the inorganic oxide particulates, wherein the wax possesses a crystallinity of about 50% or more. The wax may possess a crystallinity of about 55% or more, preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more. In another embodiment, the wax possesses a crystallinity of 90% or more (e.g., 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%). Crystallinity of the polymer is measured by differential scanning calorimetry using ASTM E 793 (1985 (Rev. 1989)).

[0020] Waxes of the present invention having the crystallinity described herein include polymers that possess crystalline and amorphous regions, if the crystallinity is less than 100%. The polymers of the present invention may also be described as isotactic or syndiotactic, as compared to atactic polymers, that is, the polymers possess regular, and not irregular arrangement of its atoms or pendant groups. For example, highly crystalline (e.g., above 50%) polymers include polyolefins, polystyrene, polyamides, polyketones, polyesters, and the like. Preferably, the polymer is a polyolefin, since these polymers melt at lower temperatures. Polyolefins of the present invention may include polyalkylenes, such as polyethylene, polymethylene, polypropylene, polybutene and the like, or mixtures thereof. More preferably, a wax of the present invention may be isotactic and/or syndiotactic polyethylene, polypropylene or mixtures thereof, and are even more preferably of the polyethylene type. Suitable waxes contain regular polymer chains enabling a crystallinity of more than 90%. Suitable waxes have a weight-average molar mass from 1000 to 30000 g/mol, with a drop point of 90 to 140 °C, preferably from 110 °C to 140 °C. The waxes have melt viscosities, measured at a temperature 140 °C of not more than 1000 mPas, preferably from 10 to 500 mPas.

[0021] The polymers of the present invention may be synthesized using any conventional method that provides crystallinity of more than 50%. For example,
polyolefins may be produced using Ziegler-Natta polymerization or by the metal-
organic catalysis polymerization. Preferably, the metal organic catalysis polymerization is of the metalloocene type. Such processes are described, for example, in U.S. Patents Nos. 5,081,322; 5,643,846; 5,919,723; 6,194,341; and 6,750,307.

[0022] The inorganic oxide of the present invention may include a variety of oxides as mentioned herein. However, in one preferred embodiment, the inorganic oxide is silica. A description of this embodiment follows, but any inorganic oxide may also be used instead of silica.

[0023] The silica used to prepare the invention can be that used to prepare conventional porous silica matting agents, provided the silica has a pore volume in the range of 0.8 to 2.4 cc/g. Preferably, the pore volume of the silica is in the range of 0.9-1.2 cc/g. The pore volume referred to herein is determined by nitrogen porosimetry, described later below.

[0024] Silica gels are preferred. Hydrogels, xerogels and aerogels are all suitable. The general procedure to prepare inorganic gels is by the acid neutralization of salt solutions of metals or metalloids, which, thereafter upon standing form hydrogels. The hydrogels must then be washed to remove the relatively high concentration of soluble salts. Treatment during this washing stage determines physical properties, such as porosity, of the final product. The techniques for obtaining those properties are known. For example, final gel pore volumes and surface areas are dependent upon the pH and temperature of the wash solution, the rate of wash, the particle size of the hydrogel, and the duration of wash. Generally, pore volume can be limited by shortening the duration of the washing periods. However, the specific washing conditions can vary depending on the particular inorganic hydrogel used, and are not per se critical to the invention, provided that the aforementioned pore volumes are developed in the final gel. As mentioned above, those skilled in the art are familiar with these washing conditions and are readily able to determine suitable washing conditions in which to form the desired pore volumes for use in this invention. For example,
silica gels washed at a starting pH of 3-5 at 50-90° C. for 5-25 hours form gels (aerogels) having pore volumes in the aforementioned range.

[0025] Particularly suitable silicas include hydrogels used to make commercially available silica matting agents such as the Syloid® matting agents from W. R. Grace & Co.-Conn.

[0026] The wax-containing matting agent of this invention can be prepared by conventional co-milling processes in which the wax is melted simultaneously with the comminution of the silica to the desired particle size of about 2 to 12 microns. Such a process is most effectively carried out in a fluid energy mill or microniser such as the Alpine® mill available from Hosokawa Micron Limited and the Condux® universal mill available from Netzsch, Inc. The operating temperature can then be varied according to the requirements of the wax. The inlet temperature of the air being supplied to the fluid energy mill should at least be high enough to ensure the wax melts within the residence time profile of the milling equipment. The wax is added to the mill so that the final product has a wax content of 15 to 30% by weight.

[0027] Another embodiment according to the present invention relates to a coating formulation useful for the preparation of matted coatings including inorganic oxide particulates, wax coated on the inorganic oxide particulates, and other coating formulation components, wherein the wax possesses a crystallinity of about 50% or more.

[0028] In addition to the inorganic oxide and wax described herein, the coating formulation may include conventional coating components. For example, in the preparation of matting agents with organic material, waxes are generally added in a concentration of 0.1 - 10%. The waxes in the conventional formulations are PE waxes, PP waxes, FT paraffins, natural waxes, montan waxes, macro- and microcrystalline paraffin waxes, amide waxes as well as blends of these. Blends of silica and wax are present as powder mixtures and melt mixtures. These waxes are added in the shape of flakes, pellets, powders, dispersions or micronisates, preferably as a fine micronized powder. Other coating components include binders, such as nitrocellulose, isocyanides, polyoles,
acrylates, etc.; biocides; surfactants; defoamers; thickeners; photoinitiators; UV stabilizers; antioxidants; rheology modifiers; dyes; sequestering agents; biocides; dispersants; pigments, such as, titanium dioxide, organic pigments, carbon black; extenders, such as, calcium carbonate, talc, clays, silicas and silicates; fillers, such as glass or polymeric microspheres, quartz and sand; anti-freeze agents; plasticizers; adhesion promoters such as silanes; coalescents; wetting agents; slip and anti-skid additives; crosslinking agents; defoamers; colorants; tackifiers; waxes; preservatives; freeze/thaw protectors; corrosion inhibitors; anti-flocculants; and solvents and diluents, such as xylene, mineral spirits, gasoline, water, etc.

[0029] Another embodiment of the present invention regards matted coating including inorganic oxide particulates and wax coated on or impregnated in the inorganic oxide particulates, wherein the wax possesses a crystallinity of about 50% or more.

[0030] The coating is prepared by utilizing the coating formulations described herein. Initially, the matting agent of the present invention is prepared by blending the inorganic oxide with the wax in a mixer (e.g., Henschel mixer) for a period of time (e.g., 10 to 20 minutes) and at a speed (e.g., 2000 to 3000 rpm) that uniformly blends the oxide-wax mixture. The mixture is then placed in a mill (e.g., fluid energy mill such as Alpine AFG 100 available from Alpine AG so as to allow the wax to impregnate and coat the oxide, and to provide a uniform and desirable particle size. The milling is typically performed at a temperature of 50 to 200°C for a period of 10 to 15 minutes per 600 gr.

[0031] Subsequent to the formation of the matting agent, the coating formulation is prepared by dispersing the matting agent in ready to use coating, including lacquer, paint, varnish or ink using a mixer (such as a Dispermat CN10-F2 mixer available from VMA-Getzmann GmbH) at a speed (e.g., 1000 to 5000 rpm) and period of time until the matting agent is well dispersed (e.g., for a period of 5 to 30 minutes). The coating may then applied at a typical thickness (e.g., 25 to 100 micron) onto a substrate, such as wood, metal, plastic, etc. using an Erichsen coater, such as a K-Control Coater K101 available from Erichsen GmbH & Co.
KG. The coating is then dried for a period of time (approximately 24 h) at room temperature.

[0032] The matting agent according to the present invention provides improved abrasion resistance over other coatings made with conventional matting agents. For example, reduction in gloss units for a coating including a matting agent of the present invention after subjecting the coating to the Abrasion Test as defined herein is less than 10 units at 60° and 5 units at 20°, preferably less than 7 units at 60° and 4 units at 20°, more preferably less than 5 units at 60° and 3 units at 20°, and even more preferably less than 3 units at 60° and less than 2 units at 20°.

[0033] In addition, the matting agent of the present invention provides equivalent matting efficiency as other conventional matting agents and increased chemical resistance over conventional matting agents.

[0034] While the invention has been described with a limited number of embodiments, these specific embodiments are not intended to limit the scope of the invention as otherwise described and claimed herein. It may be evident to those of ordinary skill in the art upon review of the exemplary embodiments herein that further modifications and variations are possible. All parts and percentages in the examples, as well as in the remainder of the specification, are by weight unless otherwise specified. Further, any range of numbers recited in the specification or claims, such as that representing a particular set of properties, units of measure, conditions, physical states or percentages, is intended to literally incorporate expressly herein by reference or otherwise, any number falling within such range, including any subset of numbers within any range so recited. For example, whenever a numerical range with a lower limit, R_L, and an upper limit R_u, is disclosed, any number R falling within the range is specifically disclosed. In particular, the following numbers R within the range are specifically disclosed: $R = R_L + k(R_u - R_L)$, where k is a variable ranging from 1% to 100% with a 1% increment, e.g., k is 1%, 2%, 3%, 4%, 5%, ... 50%, 51%, 52%, ... 95%, 96%, 97%, 98%, 99%, or 100%. Moreover, any numerical range represented by any two values of R, as calculated above is also specifically
disclosed. Any modifications of the invention, in addition to those shown and described herein, will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims. In addition, any publications or patents cited in this application are incorporated in their entirety herein.

EXAMPLES

[0035] The paragraphs directly following describe the tests and formulations used to evaluate the invention.

A) Nitrogen Surface Area-Pore Volume

[0036] Nitrogen surface area is determined by standard nitrogen porosimetry adsorption methods of Brunauer, Emmett, and Teller (BET) using a multi point method with an ASAP 2400 apparatus by Micromeritics. The samples are degassed under vacuum @ 100° C. for 12 h. Surface area is calculated from the volume of nitrogen gas adsorbed at p/p 0 0.967. This apparatus also provides the pore size distribution from which it is possible to get the pore volume size (D10) for which 10% of the pores are below this pore size. In the same manner, it is possible to get the pore size for which 50% (D 50) and 90% (D 90) of the pores are below this pore size. Additionally the pore volume (ml/g) for a given range of pore size can be obtained from the desorption curve.

B) Viscosity

[0037] Viscosity is measured by a Brookfield RVT DV2 Viscometer of the stock solution or by a Bohlin Rheometer VOR of a formulation to reach 30 units gloss. The formulation is allowed to deaerate for 24 h before measurement.

C) Weight Median Particle Size

[0038] The weight median particle size or "median particle size" referred to herein is determined with a Malvern Mastersizer using a 100-mm path length lens. This instrument uses the principle of Frauenhoffer diffraction utilizing a low power He/Ne laser. Before measurement the samples were dispersed ultrasonically in water for 10 seconds to form an aqueous suspension. The Malvern Mastersizer
measures the weight particle size distribution of the silica. The weight mean particle size (d 50), the 10-percentile (d 10), and the 98-percentile (d 98) are easily obtained from the data generated by the instruments.

D) Carbon Content

[0039] The carbon content of the coated silicas is determined by a LECO SC44 available from Leco Corporation. The carbon present is converted to carbon dioxide at high temperature using the induction furnace. The gas is then detected by an infrared detection system. The wax content (in % w/w) is calculated from the carbon level obtained.

E) Gloss

[0040] Gloss and the matting effect inferred from using the invention was measured by DIN 67530, the contents of which are incorporated herein by reference.

EXAMPLES 1-5

[0041] Wax coated silica matting agents are produced according to the following process. 100 parts of flash dried silica gel made by the process set forth in U.S. Patent No. 4,097,302, and having BET nitrogen surface area of 300 m²/g and a pore volume of 2 ml/g, are mixed with 20 parts of wax in a Henschel mixer at 2500 rpm for a period of 15 minutes. Then the mixture is milled in an AFG 100 fluid energy mill (available from Alpine) for a period of 10 minutes per 600 grams and at a temperature of 130°C. A temperature from 100 to 140°C is high enough to ensure the wax melts within the residence time profile of the milling equipment.

[0042] The different matting agents in Examples 1-5 are dispersed in the lacquer set forth in Table 1 (i.e., Lacquer 1) and a commercial 2K-PU Wood lacquer (i.e., Lacquer 2), Sirca, available from Sirca SpA Industria, using a Dispermat VMA available Getzmann @ 3000 rpm for 10 minutes.
Table 1: Components of Lacquer 1

<table>
<thead>
<tr>
<th>Component</th>
<th>Specified amount</th>
<th>Delivery form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ucecoat 7849 (35%)</td>
<td>61.3</td>
<td>Aqueous. UV-Binder</td>
</tr>
<tr>
<td>Neocryl XK-15 (45%)</td>
<td>20.0</td>
<td>aqueous binder</td>
</tr>
<tr>
<td>Coapur 6050 (50%)</td>
<td>0.2</td>
<td>thickener</td>
</tr>
<tr>
<td>Byk- 025 (19%)</td>
<td>1.5</td>
<td>defoamer</td>
</tr>
<tr>
<td>15 min. 2000 rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byk 346 (46%)</td>
<td>1.0</td>
<td>surfactant</td>
</tr>
<tr>
<td>Irgacure 500</td>
<td>2.0</td>
<td>photoinitiator</td>
</tr>
<tr>
<td>10 min. 2000 rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dowanol DPM</td>
<td>1.0</td>
<td>surfactant</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>3.0</td>
<td>surfactant</td>
</tr>
<tr>
<td>Water</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>5 min. 2000 rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Ucecoat 7849 (available from Surface Specialties, Inc.) and Neocryl XK-15 (DSM NeoResins) are oligomer acrylates. Byk- 025 (available from BYK-Chemie) is a polysiloxane and Byk 346 (also available from BYK-Chemie) is a polyether modified polydimethyilsiloxane. Irgacure 500 (available from Ciba Specialty Chemicals) is 50% benzophenone and 50% 1 hydroxi- cyclohexyl- phenylketone. Dowanol DPM is a glycoletherester from The Dow Chemical Company. Coapur 6050 (available from Coatex SAS) is a polyurethane thickener for aqueous paint/lacquer formulations.

[0043] The lacquer is applied as a film on the black test cards at a thickness of 100μm using a K-Control Coater "K101" available from Erichsen. The film is then dried at 45°C for 20 minutes in a LUT 6050 drier available from Heraeus. Subsequently, the film is irradiated with 2 UV light for 10 minutes using a Polymerization equipment Typ M-20-2*1-TR-Ss-SLC available from IST. After one week at room temperature, the abrasion resistance of the coatings is tested using the Taber test as described herein.

[0044] The Taber Test is performed using a Taber Abraiser 5131 with rubber rollings available from Erichsen. In this device, abrasion is caused by two
abrasive wheels rotating in clockwise fashion at a speed of 60 rpm with a
pressure applied to the test cards of 9N. The abrasion medium on the wheels is
3M Scotch Brite fiber web CF-HP Typ 7498 (F-SFN). The cards are submitted to
500 rpm. The gloss level at 20° and 60° is measured before and after the Taber
Test and the change in gloss units is determined. A small change in gloss units
indicates good abrasion resistance. The results are set forth in Table 2 and in
Fig. 2.

[0045] The abbreviations appearing in the Tables below are defined as follows:
APS—weight median particle size
PV-pore volume
SA-surface area
PE-polyethylene
COMP—comparison

TABLE 2

<table>
<thead>
<tr>
<th>Matting Agent</th>
<th>PV ml/g</th>
<th>SA m²/g</th>
<th>APS µm</th>
<th>Cristallinity %</th>
<th>Abrasion resistance DELTA Gloss*</th>
<th>Wax-content %</th>
<th>Wax-Typ</th>
<th>Commercial Brand</th>
<th>Matting Agent in Lacquer 2 %</th>
<th>Matting Agent in Lacquer 1 UV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invention 1</td>
<td>1.89</td>
<td>320</td>
<td>5.9</td>
<td>95</td>
<td>1.5</td>
<td>1.5</td>
<td>20</td>
<td>PE-metallocene</td>
<td>Licocene PE 4202</td>
<td>5.0</td>
</tr>
<tr>
<td>Invention 2</td>
<td>1.85</td>
<td>290</td>
<td>6.3</td>
<td>45</td>
<td>4.0</td>
<td>7.0</td>
<td>20</td>
<td>PE-metallocene</td>
<td>Licocene PE 3401</td>
<td>5.1</td>
</tr>
<tr>
<td>Comp 1</td>
<td>1.88</td>
<td>350</td>
<td>6.1</td>
<td>15</td>
<td>7.0</td>
<td>18.0</td>
<td>20</td>
<td>PP-metallocene</td>
<td>Licocene PP 1502</td>
<td>5.3</td>
</tr>
<tr>
<td>Comp 2</td>
<td>1.92</td>
<td>310</td>
<td>6.0</td>
<td>10</td>
<td>8.0</td>
<td>17.0</td>
<td>20</td>
<td>PE-Ziegler-Natta</td>
<td>Licowax PE 130</td>
<td>4.9</td>
</tr>
<tr>
<td>Comp 3</td>
<td>1.83</td>
<td>280</td>
<td>6.1</td>
<td>5</td>
<td>11.0</td>
<td>22.0</td>
<td>20</td>
<td>Fischer-Tropsch</td>
<td>Tecero 977</td>
<td>4.7</td>
</tr>
</tbody>
</table>

[0046] The results in Table 2 and Fig. 1 indicate that when particle size and wax
content are kept relatively constant, a matting agent having a high crystallinity
wax in the range of the invention has better abrasion resistance than a matting
agent having a low crystallinity wax outside the range of the invention. Compare
Invention 1 and 2 with COMP 1-3, where the abrasion resistance of the coating
made with the matting agent of the present invention is at least double that of
other matting agents.
[0047] It has also been unexpectedly found that abrasion resistance is enhanced when using matting agents having a smaller APS at the lower end of the particle size range claimed for this invention. See FIG. 2 where coatings having an APS of 6 microns have a much lower abrasion resistance than coatings having an APS of 8 microns.

[0048] FIG. 3 shows that the matting agent of the present invention (red line) provides coatings with matting efficiency at least as equivalent of coatings made with conventional matting agents. The samples are in mixed into Lacquer 2 as described above in Examples 1-5. The light blue line shows the matting efficiency of a commercial organic matting agent, Pergopak M3, available from Deuteron GmbH. The yellow line shows a commercial gel based matting agent, Fuji Sylysia 276, available from Fuji Sylysia Chemical, Ltd., and the green line shows a commercial silica gel matting agent, Syloid ED52, available from W. R. Grace & Co. The dark blue line shows the efficiency of a commercial precipitated silica matting agent, Acematt OK412, available from Degussa AG.

[0049] FIG. 4 shows the matting agent of the present invention (red line) in comparison to other commercial matting agents when used in Lacquer 1. The samples are in mixed into Lacquer 1 as described above in Examples 1-5. The light blue line shows the matting efficiency of a commercial organic matting agent, Pergopak M3, available from Deuteron GmbH. The yellow line shows a commercial gel based matting agent, Fuji Sylysia 276, available from Fuji Sylysia Chemical, Ltd., and the green line shows a commercial silica gel matting agent, Syloid ED52, available from W. R. Grace & Co. The dark blue line shows the efficiency of a commercial precipitated silica matting agent, Acematt OK412 available from Degussa AG.

[0050] The chemical resistance of these different matting agents are tested by dispersing them into Lacquer 1 using a Dispermat VMA available Getzmann @ 3000 rpm for 10 minutes. The amounts of matting agent added depend upon the gloss achieved and are set forth in Table 3. The lacquer is applied as a film on the black test cards at a thickness of 100µm using a K-Control Coater "K101" available from Erichsen. The film is then dried at 45°C for 20 minutes in a LUT.
6050 drier available from Heraeus. Subsequently, the film is irradiated with 2 UV light for 10 minutes using polymerization equipment Typ M-20-2*1-TR-Ss-SLC available from IST. After one week at room temperature, the chemical resistance of the coatings is tested using the different liquids set forth in FIG. 5. The method is described in DIN EN 12720, DIN 68861-1.

Table 3: % matting agent depends on Gloss

<table>
<thead>
<tr>
<th>Matting Agent</th>
<th>FIG. 4 Legend</th>
<th>Percent Matting Agent</th>
<th>Gloss</th>
<th>Chemical Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic MA</td>
<td>Light blue</td>
<td>2.6 %</td>
<td>Gloss 20°</td>
<td>Poor</td>
</tr>
<tr>
<td>Gel based MA</td>
<td>Yellow</td>
<td>2.1 %</td>
<td>Gloss 20°</td>
<td>Poor</td>
</tr>
<tr>
<td>Precipitated MA</td>
<td>Dark blue</td>
<td>2.1 %</td>
<td>Gloss 20°</td>
<td>Fair</td>
</tr>
<tr>
<td>Syloid ED52</td>
<td>green</td>
<td>1.9 %</td>
<td>Gloss 20°</td>
<td>Good</td>
</tr>
<tr>
<td>Invention</td>
<td>red</td>
<td>1.9 %</td>
<td>Gloss 20°</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

[0051] FIG. 5 shows an unexpected effect that the matting agents of the invention provide coatings with improved chemical resistance over coatings made with conventional matting agents. For example, non-matted waterborne coating results in blister formation with water, red wine, and ink; with good resistance against tea, coffee and Na2CO3-solution. A coating made with SYLOID ED52 as the matting agent is very resistant against water, coffee, tea and red wine; and possessed less resistance against ethanol and ink; formed blisters with beer only; and moderate brightening of the stains. Silica gel coatings resulted in the general tendency to form blisters with most test substances. Coatings made with precipitated silica matting agent resulted in the destruction of film by coffee, ink, red wine and water; complete film destruction by ethanol; and the formation of very large blisters. Coatings made from fumed silica matting agent yielded poor resistance against water, coffee, tea, and beer; destruction of film by red wine, ink and ethanol; and the formation of large
number of blisters and white stains. Organic matting agent coatings provided generally poor resistance against most test substances; destruction of film by water, coffee, red wine and beer; and the formation of large number of blisters; and very bright stains. Coatings made from the matting agent of the present invention provides the most improved performance, including high resistance against red wine and beer; good resistance against water, coffee, tea with slightly less resistance against ethanol and ink; no formation of blisters; and moderate brightening of the stains.
What is claimed is:

1. A matting agent useful for the preparation of matted coatings comprising, inorganic oxide particulates; and wax coated on the inorganic oxide particulates, wherein the wax possesses a crystallinity of about 50% or more.

2. A matting agent according to claim 1, wherein said wax possesses a crystallinity of about 55% or more.

3. A matting agent according to claim 1, wherein said wax possesses a crystallinity of about 60% or more.

4. A matting agent according to claim 1, wherein said wax possesses a crystallinity of about 70% or more.

5. A matting agent according to claim 1, wherein said wax possesses a crystallinity of about 80% or more.

6. A matting agent according to claim 1, wherein said wax comprises polyolefin.

7. A matting agent according to claim 1, wherein said wax comprises polyethylene, polypropylene or mixtures thereof.

8. A matting agent according to claim 1, wherein said wax comprises polyethylene, polypropylene or mixtures thereof.

9. A matting agent according to claim 1, wherein said inorganic oxide comprises silica, alumina, magnesia, titania, zirconia, ion oxide or mixtures thereof.
10. A matting agent according to claim 1, wherein said inorganic oxide comprises silica.

11. A matting agent according to claim 1, wherein said inorganic oxide possesses a median particle size of 2-12 microns.

12. A coating formulation useful for the preparation of matted coatings comprising,

- inorganic oxide particulates;
- wax coated on the inorganic oxide particulates; and
- coating formulation components;

wherein the wax possesses a crystallinity of about 50% or more.

13. A coating formulation according to claim 12, wherein said wax possesses a crystallinity of about 50% or more.

14. A coating formulation according to claim 12, wherein said wax possesses a crystallinity of about 60% or more.

15. A coating formulation according to claim 12, wherein said wax possesses a crystallinity of about 70% or more.

16. A coating formulation according to claim 12, wherein said wax possesses a crystallinity of about 80% or more.

17. A coating formulation according to claim 12, wherein said wax comprises polyethylene, polypropylene or mixtures thereof.

18. A coating formulation according to claim 12, wherein said wax comprises polyethylene, polypropylene or mixtures thereof.
19. A coating formulation according to claim 12, wherein said wax comprises polyethylene, polypropylene or mixtures thereof.

20. A coating formulation according to claim 12, wherein said inorganic oxide comprises silica, alumina, magnesia, titania, zirconia, ion oxide or mixtures thereof.

21. A coating formulation according to claim 12, wherein said inorganic oxide comprises silica.

22. A coating formulation according to claim 12, wherein said inorganic oxide comprises possesses a median particle size of 2-12 microns.

23. A matted coating comprising,
 inorganic oxide particulates; and
 wax coated on the inorganic oxide particulates,
wherein the wax possesses a crystallinity of about 50% or more.

24. A matted coating according to claim 23, wherein said wax possesses a crystallinity of about 50% or more.

25. A matted coating according to claim 23, wherein said wax possesses a crystallinity of about 60% or more.

26. A matted coating according to claim 23, wherein said wax possesses a crystallinity of about 70% or more.

27. A matted coating according to claim 23, wherein said wax possesses a crystallinity of about 80% or more.
28. A matted coating according to claim 23, wherein said wax comprises polyethylene, polypropylene or mixtures thereof.

29. A matted coating according to claim 23, wherein said wax comprises polyethylene, polypropylene or mixtures thereof.

30. A matted coating according to claim 23, wherein said inorganic oxide comprises silica, alumina, magnesia, titania, zirconia, ion oxide or mixtures thereof.

31. A matted coating according to claim 23, wherein said inorganic oxide comprises silica.

32. A matted coating according to claim 23, wherein said inorganic oxide possesses a particle size of 2-12 microns.

33. A matted coating according to claim 23, wherein the abrasion resistance of said coating using the FaberTest is less than 10 units of gloss at 60°.

34. A matted coating according to claim 23, wherein the abrasion resistance of said coating using the Faber Test is less than 5 units of gloss at 20°.
Scratch resistance depends on

DELTA
Gloss (°)

Cristallinity

![Graph showing the relationship between Delta Gloss and Cristallinity](image)

Delta Gloss after 500 cycles with Taber, W.B.U.V. I.1, System
FIGURE 3

Matting Efficiency in Commercial 2 K-PU Wood Lacquer (Sirca)

wft = 100 µm

Matting Agent [%]

Gloss 60°
Figure 4

Matting Efficiency in Grace Waterborne Reference Lacquer

Gloss @ 60°

Matting Agent [%]

wft = 100 μm
INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2007/010558

A. CLASSIFICATION OF SUBJECT MATTER

INV. C09D7/00 C09C1/30 C09C3/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. HELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C09C C09D

Documentation searched other than minimum documentation, to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 922 671 A (DEGUSSA [DE]) 16 June 1999 (1999-06-16) page 16, line 47, paragraph 1; claims 1-6; example 6; tables 8-10</td>
<td>1-34</td>
</tr>
<tr>
<td>A</td>
<td>WO 03/042293 A (INEOS SILICAS LTD [GB]; MOREA-SWIFT GEMMA [GB]; GIBSON ROBIN RIYADH [G] 22 May 2003 (2003-05-22) claims 1-11</td>
<td>1-34</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex.

Special categories of cited documents:

'A' document defining the general state of the art which is not considered to be of particular relevance

'E' earlier document but published on or after the international filing date

'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

'O' document referring to an oral disclosure, use, exhibition or other means

'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

'A' document member of the same patent family

Date of the actual completion of the international search: 17 April 2008

Date of mailing of the international search report: 29/04/2008

Name and mailing address of the ISA/European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epi nl, Fax: (+31-70) 340-3016

Authorized officer: Von Kuzenko, Michael
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 195 16 253 A1 (GRACE GMBH [DE]) 31 October 1996 (1996-10-31) claims 1-5</td>
<td>1-34</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 2004071840</td>
<td></td>
<td>P NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 736906</td>
<td>B2 02-06-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 9707698</td>
<td>A 01-07-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BR 9805386</td>
<td>A 07-12-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA 2255456</td>
<td>AI 12-06-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 1231989</td>
<td>A 20-10-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 1644632</td>
<td>A 27-07-2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DE 19755287</td>
<td>AI 08-07-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DK 922671</td>
<td>T3 09-02-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES 2207781</td>
<td>T3 01-06-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID 21514</td>
<td>A 17-06-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 3787446</td>
<td>B2 21-06-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 11240712</td>
<td>A 07-09-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PT 922671</td>
<td>T 31-03-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TR 9802589</td>
<td>A2 21-07-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TW 520345</td>
<td>B 11-02-2003</td>
<td></td>
</tr>
<tr>
<td>WO 03042293</td>
<td>22-05-2003</td>
<td>AT 292658</td>
<td>15-04-2005</td>
</tr>
<tr>
<td></td>
<td>BR 0214003</td>
<td>A 03-11-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 1585800</td>
<td>A 23-02-2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DE 60203642</td>
<td>DI 12-05-2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DE 60203642</td>
<td>T2 09-03-2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 1446447</td>
<td>AI 18-08-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 2005509672</td>
<td>T 07-04-2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KR 2005003796</td>
<td>A 22-04-2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 2005065268</td>
<td>AI 24-03-2005</td>
<td></td>
</tr>
<tr>
<td>US 2005090585</td>
<td>28-04-2005</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 19516253</td>
<td>31-10-1996</td>
<td>AT 181945</td>
<td>15-07-1999</td>
</tr>
<tr>
<td></td>
<td>AU 5760296</td>
<td>A 18-11-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BR 9608182</td>
<td>A 04-05-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA 2219120</td>
<td>AI 31-10-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO 9634062</td>
<td>AI 31-10-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 0822965</td>
<td>AI 11-02-1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 11504354</td>
<td>T 20-04-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 6103004</td>
<td>A 15-08-2000</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)