INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4 : A21D 8/06, 2/02, 2/14
A21D 2/24, 2/28, 2/16

(21) International Application Number: PCT/US89/02897

(22) International Filing Date: 29 June 1989 (29.06.89)

(30) Priority data:
213,075 29 June 1988 (29.06.88) US

(71) Applicant: THE PILLSBURY COMPANY [US/US]; 200 South Sixth Street, Minneapolis, MN 55402 (US).

(11) International Publication Number: WO 90/00010

(43) International Publication Date: 11 January 1990 (11.01.90)

Manhattan, KS 66502 (US). SAGUY, Israel, A. 7250 York Avenue, South, Edina, MN 55435 (US).

(74) Agent: HODGINS, Daniel, S.; Arnold, White & Durkee, P.O. Box 4433, Houston, TX 77210 (US).

(81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CM (OAPI patent), DE, DE (European patent), DK, FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), HU, IT (European patent), JP, KP, KR, LL, LU, LU (European patent), MC, MG, ML (OAPI patent), MR (OAPI patent), MW, NL, NL (European patent), NO, RO, SD, SE, SE (European patent), SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI patent).

Published Without international search report and to be republished upon receipt of that report.

(54) Title: STARCH-BASED PRODUCTS FOR MICROWAVE COOKING OR HEATING

(57) Abstract

The present invention provides treatment means for reducing microwave-induced toughness and/or firmness in microwave cooked or heated bread-like products. The invention permits the maintenance of product identity and the reduction of toughness and/or firmness regardless of the toughness of firmness that the product would exhibit without the treatment means. The treatment means includes added agents as well as processing steps for the reduction of toughness and/or firmness.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NL</td>
<td>Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KP</td>
<td>Democratic People's Republic</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SU</td>
<td>Soviet Union</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Chad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STARCH-BASED PRODUCTS FOR MICROWAVE COOKING OR HEATING

Microwaves are at the lower energy end of the electromagnetic radiation spectrum which includes gamma rays, X-rays, ultraviolet, visible light, near infrared, infrared radiation, microwaves and radio waves. Microwave processing offers advantages over conventional oven heating for some food products because it produces rapid product heating without excessively high surface temperatures. However, this type of heating is "opposite to" conventional cooking of foods with respect to moisture and heat transfer.

Convenience is a major factor in the popularity of microwave ovens. Consumer surveys have shown that microwave market penetration has reached 70% of the households with projections for growth extending through the 1990's. Along with the increase in penetration of the microwave oven into the home has come a demand for microwaveable food products.

There has been a large expansion in the number of microwave foods available on the market. However, typically this has amounted to the inclusion of microwave
directions and not food reformulations for textural attributes. Particularly in the area of bread-like foods, little, if any, improvement in textural attributes has been made in commercially available products. It has thus not been desirable to reheat or cook such products in a microwave oven. Both precooked and uncooked products may exhibit excessive toughening and firming when exposed to microwave radiation.

The present invention relates to solutions for overcoming or reducing at least two problems relating to crumb texture attendant with heating precooked or uncooked bread-like products in a microwave oven. Precooked and uncooked bread-like products may exhibit both toughness and firmness as a result of microwave heating.

A major technical difficulty for microwaving bread-like products is the development of the aforediscussed unacceptable texture. The outer crust layer may become so tough that it is difficult to tear such a product. The inner crumb may become very difficult to chew. Also, the textural quality can deteriorate much faster than that of a conventional oven baked product during the course of cooling. Overcooking in a microwave oven may exacerbate the problem while a reduction in overall cooking or reheating may reduce toughness and firmness.

It has been reported that Oscar Mayer & Co. developed a microwaveable sandwich by using a specific type of starch, and a precise ratio of starch to fat to flour in the dough (Anonymous, 1987). One method of dealing with texture problems is to use a specially designed protein system in the dough (Moore, 1979) which has been reported not to become tough during microwave treatment. Another approach, as disclosed in U.S. Patent No. 4,463,020, requires the use of long grain rice flour in the dough.
An approach described in U.S. Patent No. 4,560,559 requires the addition of starch granules having an average size of less than approximately 20 microns. It has been reported that fat in combination with other substances reduced toughness in microwaveable dough-based items (Kimbrell, 1987). The tenderizing effect of fat has been attributed to the "shortening effect".

Toughness can be defined and assessed in sensory terms as a leathery or rubbery eating texture. For example, a bagel is tough while a croissant is tender. Firmness can be defined and assessed in sensory terms as the force required to bite through the sample without tearing or pulling. A "stale" dough-based product can be characterized as firm while fresh bread immediately after conventional cooking would be considered non-firm.

Whether or not a product is tough or firm or, more accurately, is objectionably tough or firm, depends on the product type and the consumer. For example, the expectation for bread is that it should be soft and not tough. If bread had a bagel texture it would be objectionable because of the toughness. However, a bagel, even though it is tough, is not objectionable since the expectation is for a product that has a tough texture. Thus, the type of product, and the consumer will set the standard for what level of toughness or firmness is objectionable or desirable.

One of the complicating factors in dealing with bread-like systems is that minor changes in the formula or process can change the product identity from one product to another product. For example, further development of a biscuit dough will produce a baked product which is more of a bread, and frying of a yeast leavened product will produce a doughnut while baking of the same yeast leavened
dough will produce a bread-like product. Thus, a careful balance must be made in the processing and the formula to solve product problems and not change the product identity.

Three criteria are the major determining factors for product identity. Those criteria are: the flour type and its protein content; the amount of fat; and the degree of dough development. See Figure 1 for examples.

Additional factors may affect product identity. Some of these factors include, for example: type of fat; type of leavener; dough formation method; method of fat inclusion; method of cooking the product e.g., steaming, frying, baking, etc.; method of assembling the dough product, for example, laminating versus nonlaminating, etc. These and many related factors and principles are discussed in Hoseney (1986).

Further, the same cereal grain can provide major differences in the product. For example, changing from a soft wheat to a hard wheat can significantly change the product identity. Dough-based products may be prepared from one cereal grain flour or mixtures of several cereal grain flours. For dough-based products the cereal flour should be capable of forming a viscoelastic continuous protein matrix upon hydration.

It has surprisingly been found that the present invention easily permits maintenance of product identity while being able to freely manipulate toughness and firmness. Toughness and firmness can be reduced from any point along scales ranging from non-tough and non-firm products to very firm and tough products. More specifically, the present invention involves methods to reduce toughness and firmness to the desired degree.
relative to a similar formula product when heated in a microwave oven. The present invention provides the latitude to manipulate toughness and firmness regardless of the original toughness and firmness for a similar non-invention product.

The present invention involves means and methods to reduce the degree of the above-mentioned toughening and/or firming of bread-like products upon their heating, e.g., reheating or cooking by microwave irradiation.

Additional processing criteria are set forth in a patent applications entitled Method of Microwave Heating of Starch-Based Products by K. H. Anderson et al. and Dough-Based Products for Microwaving by J.L. Weber et al., filed contemporaneously herewith, the entire disclosures of which are incorporated herein by reference.

The present invention also relates to a product composition with gluten of reduced molecular weight to provide a product with improved microwaveability. The present invention includes a product formulation with low pH and/or low ionic strength to provide improved microwaveability. The present invention also describes a dough-based composition containing a surfactant to provide improved microwaveability.

Embodiments of the invention can provide good quality microwaveable bread-like products including unleavened and leavened products. Leavened products include those leavened by microorganisms such as yeast, chemicals, and steam, etc. as is known in the art. By use of the present invention, therefore, a good quality microwaveable product including reconstitutable dry mix, fresh or raw dough, frozen dough or precooked bakery products may be prepared in the microwave oven.
The present invention can be practiced with starch containing or starch-based products. These products can take the form of dough products and non-dough products. Dough products will exhibit toughness and often firmness as a textural problem. Dough-based can be defined as a product which has a continuous matrix of gluten. Preferably such products have at least 4% gluten by weight in the dry flour. More preferably a dough-based product will have 6% or more gluten by weight of dry flour. Non-dough products, hereafter referred to as batter-based products, are characterized in that they have minimal or no gluten matrix in the plasticized mixture of flour and plasticizers. Generally batter-based products have low gluten i.e., less than about 8% gluten by weight of dry flour, and can have no gluten. Batter-based products may exhibit firmness as a result of microwave heating and not toughness because of the lack or low degree of the continuous gluten matrix.

As hereinafter discussed, toughening is predominantly a protein related phenomenon, more specifically a gluten related phenomenon. Also as hereinafter discussed, firming is a predominantly starch related phenomenon. For the practice of the present invention, any cereal grain based product from which a dough or batter can be made, can be utilized. Firming in any of these products may be improved by practice of this invention. Products containing on a dry flour basis, at least 4% gluten may utilize the invention to reduce toughening. Combinations of cereal grains can also be utilized to form a dough or batter. Cereal grains include wheat, corn, rye, barley, oats, sorghum, triticale, etc.

As used herein, bread-like product is not limited to breads as defined in the standards of identity under the Food, Drug and Cosmetic Act. Bread-like products include
such foods as breads, biscuits, cornbread, quickbreads, pastries, sweet rolls, pita bread, pie crust, pizza crust, pasta, dumplings, etc. whether or not the product is made from a dough-based product or batter-based product as defined herein.

As used herein, the term "dough-based product" includes products that are partially cooked or cooked and were in a dough form just prior to cooking by any means. The term "dough-based product" also includes products that are dough prior to cooking or reheating in a microwave oven. Dough may be defined as a viscoelastic substance which is developed or partially developed.

As used herein, the term "batter based product" includes products that are partially cooked or cooked and were in batter form just prior to cooking. The term batter based product also includes products that are batter prior to cooking or reheating in a microwave oven. Batter may be a liquid or can be a pastry material much like "brownie dough" or "cookie dough".

A product intermediate is either a dough based or batter based product in whatever form, for example, in a cooked, partially cooked or uncooked (raw) state just prior to exposure to microwave radiation.

The products when cooked typically have a composition by weight of about 20-85% flour, about 15 to 45% total water, and about 0 to 50% fat. The products in their uncooked condition typically have a composition by weight of about 20 to 80% flour, about 18 to 55% total water, and about 0 - 45% fat.

Dry mix as used herein means a mixture of ingredients normally used to make a dough or batter as is known in the
industry. Such mixes can come in any package size and are generally sold through retail, food service or commercial outlets. The dry mix has added to it liquid ingredients such as water and fats, which are plasticizers, and other optional ingredients such as eggs, etc.

An acceptable texture is more like the texture of a conventionally cooked equivalent or similar product as is known in the industry. Conventional cooking includes convection, conduction, non-microwave irradiation like radiant heat cooking, electrical resistance heating i.e., the food product or bread-like product is used to conduct current, etc. The invention product texture is better than the texture of an equivalent product without using the invention. For purposes of this disclosure, a similar or equivalent product is a product that has substantially the same formula except for the ingredient(s) added or processing for microwave texture improvement as hereinafter described. Such a product is also analogously processed i.e., it is processed in the same way and precooked and or heated the same. However, because some of the agents added can change the amount of work required for developing or mixing, the amount of work input during mixing or development can be changed such that the degree of mixing or development is the same. This is also true for an overdeveloped dough i.e. the formula and other processing conditions are the same except for the degree of development. It is preferred that the improvement in product with the invention relative to a similar product without the invention being distinguishable to a consumer and is at least about 5, preferably at least about 10 or more preferably at least about 15 points on a 0–60 organoleptic relative sensory testing scale (with 60 representing high toughness or firmness) using a trained panel. Such a testing procedure is known in the art. It is preferred that the improvement in the product with the
invention relative to a similar product without the
invention is at least about 10%, preferably at least about
20%, and more preferably at least about 30% improvement
on the relative sensory testing scale as described herein.

The products of the present invention comprise flour
and sufficient plasticizer to form a dough or batter. The
dough or batter can include aqueous and nonaqueous
plasticizers. Nonaqueous plasticizers include fats.

However, in some products, added fat is not necessary, for
example, with French bread. The water content used
herein, unless otherwise indicated is added water. It is
to be understood that flour contains approximately 14%
water by weight of flour.

In accordance with an aspect of the present invention,
a good quality cooked or uncooked microwaveable product
can be produced, such products can be distributed, and/or
stored under conditions such as frozen, refrigerated
(pressurized or unpressurized), and shelf-stable systems.

An advantage of the present invention is that the
treatment means, by way of process and/or additives for
the dough-based or batter-based products is effective in
reducing microwave-induced toughness and firmness a
distinguishable amount.

Another advantage of the present invention is that the
treatment means for reducing toughness and/or firmness
does not require special processing equipment to
effectuate.

Another advantage of the present invention is that the
treatment means is effective for reducing the toughness or
firmness from any level of toughness or firmness for an
equivalent product that does not utilize the treatment means.

Other objects will become apparent from a review of the specification.

The following abbreviations are used in this specification:

10 AU Anson Unit.
B. licheniformis Bacillus licheniformis
B. subtilis Bacillus subtilis
cm centimeter
DATA diacetyl tartaric acid ester
15 HLB hydrophilic/lipophilic balance
Kg kilogram
KIO₃ potassium iodate
kPa kilo Pascal
min minute
20 RH relative humidity
SALP sodium aluminum phosphate
SAPP sodium acid pyrophosphate
SODA baking soda; sodium bicarbonate
SDS sodium dodecyl sulfate
25 SSL sodium stearyl lactylate

Figure 1 Graphically illustrates different product identities and the corresponding product characteristics.

30 Figure 2 shows the effect of a reducing agent on product quality.

Figure 3 shows the effect of an alpha, beta-
35 unsaturated carbonyl compound on product quality.
Figure 4 shows the effect of a fast acting oxidant on product quality.

Figure 5 A and B show the effect of proteolytic enzymes on product quality. Figure 5A shows B. subtilis protease and Figure 5B shows licheniformis protease.

Figure 6 shows the effect of low pH and ionic strength on product quality.

Figure 7 shows the effect of urea on relative firmness as measured by a Kramer shear press.

Figure 8 shows the effect of surfactants on product quality.

Figure 9 shows the effect of overmixing on product quality.

Figure 10 shows the effect of wheat flour type on product quality.

The present invention provides means and methods for controlling toughening and firming in microwaved dough-based and batter-based products. As discussed above, these attributes of the product can, when not properly controlled, cause negative consumer reactions to the products.

It appears that the application of microwave energy to dough-based and batter-based products provides additional or different structures in the resulting cooked or reheated product as compared with conventionally cooked or heated products. In conventionally cooked products, structure building elements such as protein and starch interact to provide the desired structure. Microwave
heating accentuates formation of or enhances this structure, which may cause textural problems. Theories are presented herein concerning potential bases of microwave-induced toughening and firming. These theories are included to more fully envision but not limit uses of the present invention but may eventually prove to be incomplete or inaccurate.

Toughening of dough-based and batter-based products subjected to microwaving is thought to be predominantly a protein related phenomenon. It has been found that such toughening can be significantly reduced by the use of protein interaction inhibitors.

Protein interactions or toughness may be inhibited by treatment means, for example, by processing such as overdevelopment or the inclusion of agents such as preferential binding materials such as surfactants, by reduction in the molecular weight of the protein, by increasing electrostatic repulsion and by using hydrogen bond breakers.

Firming induced by microwaving may be reduced by limiting the starch-starch interaction. This can be done by treatment means, for example, by processing such as overdevelopment or by the inclusion of agents that limit the amount of starch swelling. Exemplary starch swelling inhibitors include surfactants or shortenings. Substances characteristically inhibiting protein-protein interactions have been found to often decrease microwave-induced firming.

As used herein, all percents are by weight and all temperatures are at 21° C unless otherwise designated.
Measuring of a value for toughness with mechanical measuring devices has been difficult. However, toughness can be easily measured by trained taste panels of people and can be reasonably quantified on arbitrary toughness scales. Such techniques are well known in the food industry and are generally referred to as organoleptic testing.

A panel of trained people was used to evaluate products. An initial training session was used to familiarize the panelists with the range of products that would be tested. Reference standards were presented in this session to train the panelists to recognize the differences between the product attributes that were to be measured.

The trained panel marked two reference products used as standards on a 0-60 point line scale with 0 being the low end and 60 the high end. Two standards (low end and high end of the scale) were tasted prior to each evaluation session, and were marked on the score sheets. A separate score sheet as described above was used for the test samples. No more than five test samples were marked on a given score sheet. The presentation of references at each session was used so that responses which occurred at different times could be standardized. The mean score is reported. Evaluations by panelists which were significantly different from the remainder of the panel were eliminated from consideration. This testing procedure is more fully disclosed in Moskowitz (1983), the entire disclosure of which is incorporated herein by reference.

Two major textural attributes were tested: firmness and toughness. Firmness was assessed by the force required to bite through the sample without tearing or
pulling. Toughness was assessed as the rate of breakdown at which the sample came apart during mastication.

Testing by a mechanical apparatus is desirable, but because of the dynamics of eating the food products, there are variables that an apparatus does not have the ability to measure. However, the Kramer Shear Press method has proved fairly successful in measuring firmness on a relative basis for each sample set.

A Kramer Shear Press (Kramer et al., 1951) equipped with a loading cell of 500 kg was attached to an Instron Universal Testing Instrument (Model 1011; Canton, MA). Data were collected using computerized data collection on an IBM PC/XT connected directly to the Instron (Instron, 1987). Twenty points per second were collected. Four to six replicates were measured on for each product. All measurements herein were at room temperature (21°C) unless otherwise indicated.

Crumb samples (4.0 x 4.0 x 1.5 cm) were cut using a template. A crumb sample is a product sample taken from the interior section of the product with no crust. The crosshead speed was 12.7 cm/minute. The stress (kPa) was continuously recorded up to 200% strain. The instrumental results were correlated with assessments of a trained panel. To establish correlations between the sensory scores and the instrumental measurements of maximum stress (kPa) measured with the Kramer Shear Press, twenty different dough products conventionally baked and/or microwaved, were assessed.

The correlation coefficient derived from correlating the sensory score versus the maximum stress yielded this equation: firmness score = 9.4 + 0.03 x maximum stress. Based on the correlation obtained (r=0.81), the maximum
stress was used to express firmness. The relatively high correlation coefficient indicates that the two methods may be utilized interchangeably.

Most grains, including cereal grains, oil seeds, etc., are predominantly comprised of protein, starch and fat, with starch being the major component of all cereal grains. Tests were conducted to investigate causes of microwave-induced toughening. These tests included solvent testing of dough-based products that were precooked and then reheated in a microwave oven. There are three protein interactions that might be involved in the toughening process. Those interactions are covalent bonding, hydrogen bonding, and hydrophobic interaction.

In the case of covalent bonding, solubility tests using sodium dodecyl sulfate (SDS) and mercaptoethanol were conducted as well as electrophoresis testing as known in the industry. The solubility tests showed that very little protein was soluble using SDS alone. However, in the presence of SDS plus mercaptoethanol, substantially all protein was solubilized. This indicated that no significant solubility-inhibiting covalent bonding was occurring except for the disulfide bonding that is characteristic of gluten proteins. This was consistent with the findings reported by Schofield et al. (1983).

It was additionally found that, insofar as protein solubility shows, there was no net increase in the crosslinking of polymers (proteins) by disulfide bonds as a result of the microwave reheating (Table 1).
TABLE 1: PROTEIN SOLUBILITY AS A FUNCTION OF MERCAPTOETHANOL CONCENTRATION

<table>
<thead>
<tr>
<th>Mercaptoethanol (%)</th>
<th>Bread</th>
<th>Crumb</th>
<th>Microwave</th>
<th>Reheated</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>28.9 ± 0.3</td>
<td>28.8 ± 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>42.1 ± 3.3</td>
<td>39.2 ± 3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>53.4 ± 6.0</td>
<td>52.4 ± 10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>85.6 ± 16.5</td>
<td>80.4 ± 21.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>98.2 ± 0.7</td>
<td>100.2 ± 3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>100.9 ± 1.0</td>
<td>102.3 ± 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>100.2 ± 0.3</td>
<td>100.8 ± 1.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrophoresis tests were conducted to determine whether there were shifts in the molecular weight distribution of the gluten proteins. The proteins extracted from microwave reheated bread crumb had the same molecular weight distribution as proteins extracted from conventionally baked, non-reheated bread crumb.

In conclusion, neither the number nor the location of disulfide (covalent) bonds significantly changed as a function of microwave reheating.

To investigate a possible relationship of hydrophobic interactions and toughening or firming, tests with several surfactants were conducted. If surfactants reduced toughening, then it would be sound to conclude that preferential bonding between the surfactant and the protein inhibited protein-protein interactions. The surfactant test indicated a reduction in toughening.
appeared that hydrophobic interactions are a significant cause of toughening in precooked dough-based products.

In regard to raw dough products which are cooked in the microwave oven, additional tests were conducted to determine the cause of toughening. Because raw dough product has a higher moisture content than the cooked product, there is higher mobility of protein molecules. This higher mobility may lead to even more toughening. As in the case of precooked products, the possible causes of toughening in raw dough products cooked in a microwave oven were predominantly protein-protein interactions. Thus, it was surprisingly found that toughening of precooked and uncooked products was predominantly a protein related phenomenon.

Tests were conducted in which the ratio of soft wheat flour and hard wheat flour were used. As shown in Figure 10, the products with higher percentages of soft wheat flour were less tough and firm. Thus, it was surprisingly found that microwave-induced toughening and firming could be reduced by the selection of protein quality, such as soft wheat, or by inhibiting or reducing the protein-protein interactions of proteins having poor microwave-ability (e.g. hard wheat gluten).

Inhibitors of protein-protein interactions include compounds or agents that preferentially react or bind with proteins to minimize these interactions. Sufficient protein interaction inhibitor may be added to dough prior to microwave cooking or reheating to reduce toughening.

According to the present invention, surfactants (emulsifiers) may be used to reduce protein-protein interaction and subsequent toughening induced by microwave irradiation. Surfactants have been used in conventionally
cooked dough products for the purpose of dough conditioning (strengthening dough) and to prevent staling. Usable or potentially usable surfactants include stearyl-2-lactylates; sorbitan mono-fatty acid esters; monoglycerides; 1-propylene glycol mono-fatty acid esters; sucrose fatty acid esters; diacetyl tartaric acid ester of monoglycerides and ethoxylated monoglycerides; polysorbate 60; polysorbate 80, etc. Figure 8 shows that the effect of surfactants is independent of HLB values. HLB values are represented by the following emulsifiers respectively:

<table>
<thead>
<tr>
<th>HLB</th>
<th>Liquid</th>
<th>Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Distilled monoglycerides</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>80% Mono- & Diglycerides</td>
<td>+ 20% Polysorbate 80</td>
</tr>
<tr>
<td>9</td>
<td>DATA</td>
<td></td>
</tr>
<tr>
<td>14.9</td>
<td>Polysorbate 60</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SSL</td>
<td></td>
</tr>
</tbody>
</table>

Another class of interaction inhibitors acts to reduce the molecular weight of the protein. This can be done by the cleavage of gluten disulfide bonds with mixing agents (disulfide reductants), e.g., cysteine (see Figure 2), glutathione from dry yeast, bisulfites, dithiothreitol, and mercaptoethanol.

Gluten disulfide bonds can be broken by mixing and their reformation can be prevented by the addition of alpha, beta-unsaturated carbonyl compounds such as sorbate, maleate, N-ethylmaleimide, cinnamate, ferulate, fumarate, cinnamaldehyde, crotonaldehyde, maleic anhydride and acrolein.

Figure 3 shows the effect of potassium sorbate on the firmness and toughness of biscuits.
Fast acting oxidants such as potassium iodate, calcium iodate or diazocarbonamide represent a class of compounds that may produce alpha, beta-unsaturated carbonyl compounds, for example, during high shear mixing. Figure 4 shows the effect of potassium iodate (KIO₃) on product quality. Any oxidizing agent with reduction potential higher than that of ortho or para-quinones is expected to be functional.

The molecular weight of proteins can also be reduced by the enzymatic hydrolysis of peptide bonds. The bacterial proteases tested were effective at decreasing microwave-induced toughness and firmness. Other plant, animal and microbial proteases are also expected to be effective. One Anson Unit (AU) is the amount of enzyme which, under standard conditions, liberates an amount of TCA soluble product which gives the same color with phenol reagent as one milliequivalent of tyrosine. The standard conditions are: substrate -- denatured hemoglobin, temperature -- 25°C, pH -- 7.5, reaction time -- 10 minutes. Figure 5 shows that the level of enzymes was directly related to product quality. Hence, a preferred group of ingredients are yeast extracts and autolysates which contain both protease and glutathione as a reducing agent.

Hydrogen bonds in gluten can also be broken to reduce protein interactions. These relatively weak bonds can be broken with chemicals such as urea, guanidine, dimethylsulfoxide and N,N-dimethylformamide. Although all the above hydrogen bond-breaking compounds are not food approved, at least some were tested to see if disruption of hydrogen bonds reduced firmness. As shown in Figure 7, increasing concentrations of urea decreases firmness. Since decreases in firmness and toughness
attributes are highly correlated, the firmness results shown probably also represent the reduction in toughness.

Increasing electrostatic repulsion between proteins such as gluten molecules is another way of inhibiting gluten interaction and subsequent toughening. There are two approaches to this, depending upon the optimal pH of the product system. First, for a product with relatively high pH, such as chemically leavened products, a deamidase can be used to hydrolyze asparagine and glutamine to aspartic and glutamic acid residues. Approximately 35% - 40% of the 20 amino acids present in gluten are asparagine and glutamine. Their enzymatic hydrolysis to aspartic acid and glutamic acid, respectively, decreases the isoelectric point of gluten molecules and also decreases their hydrophobicity which reduces hydrophobic interaction. Also, the pH of the product will be higher than the isoelectric point of gluten and in the presence of high electrolyte concentration from leavening agents and added salt, the protein-protein ionic attraction will be minimized.

The second approach for minimizing ionic attraction is to lower the product pH and ionic strength. The high net positive charge on the protein at low pH also results in electrostatic repulsion, particularly at low ionic strength. As shown in Figure 6, an unexpected finding is that by encapsulating soda, the pH and/or ionic strength effect which significantly reduces microwave-induced toughening is magnified. The pH can be lowered using any food grade acid. A preferred group of acids are alpha, beta-unsaturated carboxylic acids. Fruits high in these kinds of acids or even cinnamon which contains alpha, beta-unsaturated aldehydes and acids may be included, too.
The foregoing methods may be utilized to reduce microwave-induced toughness in precooked dough-based products that are reheated in the microwave oven, in products which are cooked from the dough form in a microwave oven, and in products reconstituted from dry mixes and then cooked in a microwave oven.

The rate of firming upon cooling is accelerated by microwave reheating or cooking. The reasons for the accentuation of both toughening and firming is not completely understood. While toughening has been found to be predominantly a protein-related phenomenon, firming has been found to be predominantly a starch-related phenomenon. The solutions for microwave-induced firming can be used for both dough-based and batter-based bread-like products.

Conventionally baked doughs have a continuous protein structure or matrix formed by gluten in wheat flour. Scanning electron microscope data and enzyme digestion studies show that protein is also the continuous phase in microwave heated products. However, the starch granules of microwave heated doughs appear to be swollen to a much greater extent than those in conventionally heated products. It is possible that the starch-starch interactions can occur at a much more rapid rate if the granule is fully swollen. This would result in a product that firms at a much more rapid rate.

Starch-starch interaction can be minimized by a broad class of inhibitors such as surfactants, hydrogen bond breaking agents, and high molecular weight polymers such as gums. Since starch granules are embedded in a gluten film all the gluten interaction inhibitors described above for minimizing toughening development may also minimize firming because the degree of swelling and ensuing starch
interaction is modified by the presence of the gluten film. Examples include low ionic strength and/or pH, chemical reducing agents, surfactants, etc.

Firmness can also be reduced by decreasing the product cooling rate after reheating or cooking in the microwave oven. This can be done by cooling the product in an enclosed plastic pouch after heating or cooking as disclosed by Anderson et al., cited above.

Theoretical calculations based on open structure foams show that decreasing the wall thickness reduces the firmness exponentially (Ashby, 1983). Thus, minor changes in gas cell wall thickness may have a significant effect on product attributes. Gas cell wall thickness is inversely proportional to the number of air cells per unit volume.

The desired product structure can be obtained by processing steps such as chemical or yeast leavening of dough combined with intermittent punching which leads to subdivision of air cells.

Another method or treatment for reducing toughness and firmness in product is by overdevelopment of the dough beyond peak as measured by wattmeter. Overdevelopment is more than 20% preferably more than 30% and most preferably more than 40% of optimal development on a work input basis. It has been found that such overdevelopment will result in a decrease in toughness and firmness. The more the degree of overdevelopment generally the greater reduction in toughness and firmness. It should be understood that extreme overdevelopment should be avoided because of the loss in specific volume of the cooked product. Overdevelopment is normally to be avoided in conventionally cooked product because of loss of cooked
specific volume, however, microwave cooking tends to compensate for this loss probably because of steam generation. A discussion of optimal or peak development can be found in Hoseney (1986) Chapter 10. Figure 9 shows the surprising effect of overdevelopment on product quality.

The foregoing solutions for toughness and firmness are effected either by the addition of ingredients and/or in the methods approaches in amounts sufficient to improve the quality level as set forth above.

The present invention is particularly applicable to those bread like products which, when cooked either by conventional means or microwave radiation, may contain ingredients as described above and other additional ingredients can be contained in the product as are known in the art. The products herein described in their uncooked state i.e., the batter or dough state may contain ingredients as described above and additional ingredients as are known in the art.

Refrigerated doughs are known in the industry. They are raw or fresh dough stored in a sealed container. When pressurized, the gauge pressure is in the range of between about one-half and about 2 atmospheres, preferably about 1 atmosphere. Refrigerated storage temperatures are less than about 5°C and preferably in the range of between about 0°C and about 5°C. Storage time is typically 6-12 weeks.

Frozen doughs are stored at a temperature of less than 0°C and preferably less than about -10°C.

The invention further extends to a refrigerated or frozen dough product suitable for heating or cooking by
microwave irradiation, and to an edible product heated or cooked by microwave irradiation, which products have been produced using any of the methods of this invention.

5 The following examples are intended to illustrate the present invention, and are not to be construed as limiting the invention in any way.

EXAMPLE I

10 This example shows the effect upon microwave-induced firmness and toughness of various additives in chemically leavened fresh dough products. Chemically leavened biscuits were cooked in a microwave oven from raw dough.

15 The doughs had the following formulas:

TABLE 2

Dough Composition
Percent by Weight

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Wheat Flour</td>
<td>57.63</td>
<td>57.624</td>
<td>59.34</td>
<td>54.44</td>
</tr>
<tr>
<td>Water</td>
<td>32.52</td>
<td>32.52</td>
<td>32.52</td>
<td>30.71</td>
</tr>
<tr>
<td>Dextrose</td>
<td>4.04</td>
<td>4.04</td>
<td>4.04</td>
<td>4.04</td>
</tr>
<tr>
<td>Shortening</td>
<td>2.53</td>
<td>2.53</td>
<td>2.53</td>
<td>2.53</td>
</tr>
<tr>
<td>SAPP</td>
<td>1.51</td>
<td>1.51</td>
<td>0</td>
<td>1.51</td>
</tr>
<tr>
<td>Soda</td>
<td>1.11</td>
<td>1.11</td>
<td>0</td>
<td>1.11</td>
</tr>
<tr>
<td>Salt</td>
<td>0.66</td>
<td>0.66</td>
<td>0</td>
<td>0.66</td>
</tr>
<tr>
<td>Cysteine</td>
<td>0</td>
<td>0.006</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encapsulated Soda</td>
<td>0</td>
<td>0</td>
<td>1.57</td>
<td>0</td>
</tr>
<tr>
<td>Urea</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>
The biscuits were made according to the following procedure:

1. **Mixing** - Weigh all ingredients. Preblend all dry ingredients in Hobart bowl with a Model N-50 mixer at low speed (#1) for 1-1/2 min. with dough hook. Add molten shortening while preblending. Add water and mix for additional 2.5 min. Change the speed to high #2 and continue mixing for an additional 10 min.

2. **Sheeting** - Roll dough on lightly floured board. Cut with an elliptical cutter (6.35 cm x 8.26 cm). The resulting dough piece is 0.635 cm thick and weighs 22 g.

3. **Proofing** - Store 30 minutes at 32°C/70% relative humidity on a cookie sheet covered with plastic wrap.

4. **Storage** - The proofed product can be covered and stored frozen or refrigerated until use for microwave baking. For precooked product preparation, the proofed product can be cooked (e.g. 232°C for 7 minutes) in the oven prior to storage.

5. **Cooking and evaluation** - A 5.5°C dough pad was placed on a cardboard pedestal, raised 5 cm off the floor of a Litton Generation II microwave oven and baked for 25 seconds on high. The biscuits were cooled for 10-15 minutes, served to the panel, and evaluated. The results of this evaluation are shown in Table 3. All products from samples B, C and D were judged to have a less tough and less firm texture than the control from sample A.
TABLE 3

Biscuit Evaluation
Sensory Score

<table>
<thead>
<tr>
<th>Sample</th>
<th>Firmness</th>
<th>Toughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>22</td>
</tr>
</tbody>
</table>

These evaluations show that encapsulation of soda and the reduction in ionic strength by removing SAPP and salt (sample C) as well as inclusion of cysteine (sample B) reduce texture problems.

Since urea, a hydrogen bond-breaker, is not an approved food ingredient, instrumental measurement using the Kramer shear press was used instead of organoleptic testing. Several concentrations of urea in the dough were prepared (using corresponding alterations in the amount of flour) and tested, results being shown in Figure 7. Based on these results sample D is an improvement of more than 30% over sample A.

EXAMPLE II

This example shows the effect upon microwave-induced firmness and toughness of various additives in chemically leavened fresh dough product produced under higher shear condition. Chemically leavened biscuits were cooked in the microwave oven from raw dough. The biscuit doughs had the compositions shown in Table 4.
<table>
<thead>
<tr>
<th>Ingredients</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Wheat Flour</td>
<td>57.63</td>
<td>57.60</td>
<td>57.6175</td>
</tr>
<tr>
<td>Water</td>
<td>32.52</td>
<td>32.52</td>
<td>32.52</td>
</tr>
<tr>
<td>Dextrose</td>
<td>4.04</td>
<td>4.04</td>
<td>4.04</td>
</tr>
<tr>
<td>Shortening</td>
<td>2.53</td>
<td>2.53</td>
<td>2.53</td>
</tr>
<tr>
<td>SAPP</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
</tr>
<tr>
<td>Soda</td>
<td>1.11</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>Salt</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>KIO₃</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>K-Sorbate</td>
<td>0</td>
<td>0</td>
<td>0.0125</td>
</tr>
</tbody>
</table>

| Total | 100.00 | 100.00 | 100.00 |

The biscuits were made according to the following procedure:

1. Mixing - Same as in Example I except that a much smaller batch size and a more efficient mixing paddle were used so that the energy input per unit weight of dough is much higher.

2. Sheeting, proofing, storage, and cooking - Same as in Example I.

All products from samples F and G were judged to have less toughness and firmness than the control from sample E which was also softer and less tough than sample A in Example I.
TABLE 5

Sensory Score

<table>
<thead>
<tr>
<th>Sample</th>
<th>Firmness</th>
<th>Toughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>F</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>G</td>
<td>22</td>
<td>27</td>
</tr>
</tbody>
</table>

EXAMPLE III

This example shows the effect of pouching in chemically leavened fresh dough product. Biscuit sample H having the same formula as biscuit sample A in Example I, was microwave-cooked and cooled on a susceptor in a plastic pouch, while sample A was cooked and cooled on a susceptor without the pouch. The cooked products were cooled to different center temperatures and evaluated in the same manner as those in Example I. The pouched product (H) has a lower cooling rate than the unpouched product. The pouched variable at both 48.9°C and 60.0°C was judged more tender with a softer texture than the control (unpouched) at both those temperatures. There was no difference between the pouched and control variables at both 32.2°C and 87.8°C. The results are tabulated as follows:
TABLE 6

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temperature (°C)</th>
<th>Toughness</th>
<th>Firmness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pouched</td>
<td>32.2</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Unpouched</td>
<td>32.2</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Pouched</td>
<td>48.9</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>Unpouched</td>
<td>48.9</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>Pouched</td>
<td>60.0</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>Unpouched</td>
<td>60.0</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>Pouched</td>
<td>87.8</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Unpouched</td>
<td>87.8</td>
<td>19</td>
<td>10</td>
</tr>
</tbody>
</table>

EXAMPLE IV

This example shows the effect of a surfactant on precooked yeast-leavened product. Yeast-leavened breads (Samples I and J) were prepared according to the formula shown in Table 7.
TABLE 7

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Wheat Flour</td>
<td>56.03</td>
<td>55.40</td>
</tr>
<tr>
<td>Water</td>
<td>34.73</td>
<td>34.35</td>
</tr>
<tr>
<td>Sucrose</td>
<td>3.36</td>
<td>3.32</td>
</tr>
<tr>
<td>Non-Fat Milk Solids</td>
<td>2.24</td>
<td>2.22</td>
</tr>
<tr>
<td>Shortening</td>
<td>1.68</td>
<td>1.66</td>
</tr>
<tr>
<td>Yeast</td>
<td>1.12</td>
<td>1.11</td>
</tr>
<tr>
<td>Salt</td>
<td>0.84</td>
<td>0.83</td>
</tr>
<tr>
<td>SSL</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Doughs were prepared according to the straight dough process described by Finney (1984) except a 1500 g batch was prepared using a model N-50 Hobart mixer equipped with a dough hook. From that dough, 300 g loaves were baked in a conventional oven for 24 minutes at 218°C. After cooling, the loaf was cut into 1.25 cm, 18 g slices. The slices were microwaved on high for 25 seconds. The microwaved slices were evaluated using the Kramer Shear Press as described above. Sample J gave consistently lower firmness and toughness values than sample I.
TABLE 8

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sensory score Firmness</th>
<th>Sensory score Toughness</th>
<th>Kramer shear press Firmness (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample I</td>
<td>29</td>
<td>42</td>
<td>764</td>
</tr>
<tr>
<td>Sample J</td>
<td>25</td>
<td>24</td>
<td>642</td>
</tr>
</tbody>
</table>

EXAMPLE V

This example shows the effect of protease on firmness and toughness of frozen dough product. Chemically leavened biscuits were cooked in the microwave oven from frozen raw dough. The biscuits had the following formulas:

TABLE 9

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Percent by Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>L</td>
</tr>
<tr>
<td>Hard Wheat Flour</td>
<td>57.63</td>
<td>57.63</td>
</tr>
<tr>
<td>Water</td>
<td>32.52</td>
<td>32.27</td>
</tr>
<tr>
<td>Dextrose</td>
<td>4.04</td>
<td>4.04</td>
</tr>
<tr>
<td>Shortening</td>
<td>2.53</td>
<td>2.53</td>
</tr>
<tr>
<td>SAPP</td>
<td>1.51</td>
<td>1.51</td>
</tr>
<tr>
<td>Soda</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>Salt</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>B. subtilis protease (0.5 AU/g)</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The biscuits were made according to the following procedure:
1. Mixing - Preblend all dry ingredients in Hobart bowl with a Model N-50 mixer at low speed (#1) for 1 1/2 min with dough hook. Add molten shortening while preblending. Add water and mix for an additional 2 minutes.

2. Sheet ing and proofing - Same as example I. The dough diameter and height ratio was decreased for the samples with protease so that the finished product after microwave heating had the same diameter/height ratio.

3. Storage - The proofed product was stored frozen prior to cooking. The products were microwaved on high for 25 to 35 seconds. Products from sample L were judged to have a less tough and less firm texture than the sample K. The panel determined sensory scores are shown in Table 10.

<p>| Sensory Score |</p>
<table>
<thead>
<tr>
<th>Sample</th>
<th>Firmness</th>
<th>Toughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>39</td>
<td>43</td>
</tr>
<tr>
<td>L</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

Preferred, more preferred and most preferred approximate effective levels of agents of the present invention in doughs are presented in Table 11.
<table>
<thead>
<tr>
<th></th>
<th>Preferred</th>
<th>More Preferred</th>
<th>Most Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>disulfide reductant (micromole/g dough)</td>
<td>0.1-1</td>
<td>0.3-0.8</td>
<td>0.4-0.7</td>
</tr>
<tr>
<td>alpha, beta unsat'd (micromole/g dough)</td>
<td>> 0.4</td>
<td>> 0.5</td>
<td>0.6-1</td>
</tr>
<tr>
<td>protease (milli-AU/g dough)</td>
<td>0.2-8</td>
<td>0.5-5</td>
<td>0.8-4</td>
</tr>
<tr>
<td>surfactant</td>
<td>0.3%-1.5%</td>
<td>0.6%-1.2%</td>
<td>0.8%-1%</td>
</tr>
<tr>
<td>fast acting oxidants (microequivalent/g dough)</td>
<td>0.1-0.6</td>
<td>0.3-0.5</td>
<td>0.3-0.4</td>
</tr>
</tbody>
</table>

REFERENCES CITED

The entirety of each of the following references, plus the references cited therein, are incorporated by reference herein.

U. S. Patent Documents

<table>
<thead>
<tr>
<th>Patent</th>
<th>Date</th>
<th>Inventor</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,463,020</td>
<td>07-31-84</td>
<td>Ottenberg, R.</td>
</tr>
<tr>
<td>4,560,559</td>
<td>12-24-85</td>
<td>Ottenberg, R.</td>
</tr>
</tbody>
</table>

OTHER PUBLICATIONS

Changes may be made in the construction, operation and arrangement of the various parts, elements, steps and procedures described herein without departing from the concept and scope of the invention as defined in the following claims.
CLAIMS

1. A method for producing an edible starch-based bread-like product having a desired degree of toughness, the method comprising the steps of:

forming a dough comprising water, flour and an acidifying agent, the acidifying agent being included in an amount sufficient to provide a degree of toughening of the edible product when subjected to microwave irradiation which is distinguishably less than the degree of toughening generated in an equivalent product which is formed without the acidifying agent;

preparing a product intermediate from said dough; and exposing said product intermediate to microwave irradiation for a time sufficient to produce a desired edible product, said edible product having at least about 15 weight percent total water.

2. A method for producing an edible starch-based bread-like product having a desired degree of toughness, the method comprising the steps of:

forming a dough comprising water, flour and a protein interaction inhibitor agent, the protein interaction inhibitor agent being included in an amount sufficient to provide a degree of toughening of the edible product when subjected to microwave irradiation which is distinguishably less than the degree of toughening generated in an equivalent product which is formed without the protein interaction inhibitor agent;
preparing a product intermediate from said dough; and exposing said product intermediate to microwave irradiation for a time sufficient to produce a desired edible product, said edible product having at least about 15 weight percent total water.

3. A method for producing an edible starch-based bread-like product having a desired degree of toughness, the method comprising the steps of:

forming a dough comprising water, flour and a texturizing agent selected from the group consisting of surfactants, hydrogen bond-breakers, fast acting oxidants, enzymes, and disulfide-reactants, the texturizing agent being included in an amount sufficient to provide a degree of toughening of the edible product when subjected to microwave irradiation which is distinguishably less than the degree of toughening generated in an equivalent product which is formed without the texturizing agent;

preparing a product intermediate from said dough; and exposing said product intermediate to microwave irradiation for a time sufficient to produce a desired edible product, said edible product having at least about 15 weight percent total water.

4. The method of claim 3, wherein the agent interferes with hydrogen-bond formation.
5. The method of claim 3, wherein the agent is a fast acting oxidant.

6. The method of claim 3, wherein the agent is a fast acting oxidant having an reduction potential greater than that of quinone.

7. The method of claim 3, wherein the agent is an enzyme.

8. The method of claim 7, wherein the enzyme is a protease or deamidase.

9. The method according to claim 3, wherein the agent is a surfactant.

10. The method of claim 9, where the surfactant is stearyl lactylates, ethoxylated monoglycerides, a diacetyl ester of mono or diglycerides, a sorbitan mono-fatty acid esters, monoglyceride, 1-propylene glycol mono-fatty acid esters, sucrose mono-fatty acid esters, diacetyl tartaric acid ester of monoglycerides, polysorbate 60 or polysorbate 80.

11. The method of claim 10 where the monoglycerides are mono-stearates.

12. The method of claim 11 where the level of surfactant is about 1% by weight of the dough.
13. The method of claim 6, where the oxidant is potassium iodate, calcium iodate, potassium bromate, calcium bromate or azodicarbonamide.

14. The method of claim 6 where the oxidant is potassium iodate, calcium iodate, or azodicarbonamide.

15. The method of claim 6 where the oxidant is potassium iodate.

16. The method of claim 14 where the level of oxidant is about 0.4 micro equivalents per gram of dough.

17. The method of claim 4, where the hydrogen bond breaker is urea, dimethylsulfoxide, dimethylformamide or guanidine hydrochloride.

18. The method of claim 18, where the level of hydrogen bond breaker is about 1-5 weight percent of dough.

19. The method of claim 2, wherein the protein interaction inhibitor comprises at least one alpha, beta unsaturated carbonyl compound.

20. The method of claim 20 where the alpha, beta unsaturated carbonyl compound is N-ethyl maleimide, fumaric acid, maleic acid, ferulic acid, sorbic acid or cinnamic acid.
21. The method of claim 21 where the level of alpha, beta unsaturated carbonyl compound is at least about 0.5 micromoles per gram of dough.

22. The method of claim 7, where the level of enzyme is from at least about 0.2 to 8 milli-AU per gram of dough.

23. The method of claim 23, where the level of enzyme is about 4 milli-AU per gram of dough.

24. The method of claim 3, wherein the agent is a disulfide reductant.

25. The method of claim 3 wherein the agent is inactive dry yeast.

26. The method of claim 3 wherein the agent is a yeast extract or autolysate comprising protease and glutathione.

27. The method of claim 25, wherein the disulfide reductant is a thiol-containing compound.

28. The method of claim 28 where the thiol-containing compound is cysteine, mercaptoethanol, glutathione or dithiothreitol.

29. The method of claim 29 where the level of thiol-containing compound is from about 0.1 to about 1 micromoles per gram of dough.
30. The method of claim 30, wherein the level of thiol-containing compound is about 0.5 micromoles per gram of dough.

31. A method according to claim 1, claim 2 or claim 3, wherein the degree of toughening is reduced by at least 5 sensory score units.

32. A method according to claim 32, wherein the degree of toughening is reduced by at least about 10 sensory score units.

33. A method according to claim 32, wherein the degree of toughening is reduced by at least about 15 sensory score units.

34. A method according to claim 1, claim 2 or claim 3, wherein the degree of toughening is reduced by at least 10% on a sensory score basis.

35. A method according to claim 35, wherein the degree of toughening is reduced by about 20% on a sensory score basis.

36. A method according to claim 35, wherein the degree of toughening is reduced by about 30% on a sensory score basis.
37. The method of claim 1, claim 2 or claim 3, wherein the step of preparing the product intermediate includes precooking the product intermediate.

38. The method of claim 38, wherein the precooking is effected by conventional cooking.

39. The method of claim 38, wherein the precooking is effected by exposure to microwave irradiation.

40. A method according to claim 1, claim 2 or claim 3, wherein the product intermediate is exposed to microwave irradiation to cook the product intermediate.

41. A method according to claim 1, claim 2 or claim 3, wherein the product intermediate is a cooked product and is exposed to microwave irradiation to reheat the product.

42. A method for producing an edible starch-based bread-like product having a desired degree of toughness, the method comprising the steps of:

forming a dough comprising water and flour, said dough being developed beyond peak development in an amount sufficient to provide a degree of toughening of the edible product when subjected to microwave irradiation which is distinguishably less than the degree of toughening generated in an equivalent product which is formed without such overdevelopment;
preparing a product intermediate from said dough; and
exposing said product intermediate to microwave
irradiation for a time sufficient to produce an
edible product, said edible product having at
least about 15 weight percent total water.

43. A method for producing an edible starch-based bread-
like product having a desired degree of toughness, the
method comprising the steps of:

forming a dough comprising water, flour and an
encapsulated leavening base, the encapsulated
leavening base being included in an amount
sufficient to provide a degree of toughening of
the edible product when subjected to microwave
irradiation which is distinguishably less than
the degree of toughening generated in an
equivalent product which is formed without the
encapsulated leavening base;

preparing a product intermediate from said dough and
storing said product intermediate under
refrigerated frozen conditions; and

exposing said product intermediate to microwave
irradiation for a time sufficient to cook said
product intermediate and produce a desired
edible product, said edible product having at
least about 15 weight percent total water.

44. The method of claim 44 wherein the encapsulated
leavening base is a carbonate or bicarbonate salt.
45. The method of claim 44 wherein the encapsulated leavening base is sodium bicarbonate.

46. The method of claim 44 where a food grade acid is added to lower dough pH by from about 0.1 pH units to about 2.0 pH units.

47. The method of claims 47 wherein the food grade acid is an organic food grade acid.

48. The method of claim 44 where the food grade acid is citric acid, lactic acid, phosphoric acid, propionic acid, succinic acid, adipic acid, fumaric acid, sorbic acid or maleic acid.

49. The method of claim 44 wherein the leavening base is encapsulated in shortening.

50. The method of claim 44 wherein the product intermediate is stored under pressure.

51. The method of claim 44 wherein the base is about 0.5 to about 3 weight percent of the dough.

52. A method for producing a dough-based product having a desired degree of toughness, the method comprising the steps of:
forming a dough comprising water, flour and a
texturizing agent selected from the group
consisting of acidifying agents, surfactants,
hydrogen bond-breakers, fast acting oxidants,
enzymes, and disulfide-reductants, the
texturizing agent being included in an amount
sufficient to provide a degree of toughening of
the edible product when subjected to microwave
irradiation which is distinguishably less than
the degree of toughening generated in an
equivalent product which is formed without the
texturizing agent;

preparing an uncooked product intermediate from said
dough;

storing said product intermediate in a sealed
container at a temperature of less than about
5°C;

removing said product intermediate from said
container; exposing said product intermediate to
microwave irradiation for a time sufficient to
cook said product intermediate to form a desired
cooked edible product, said cooked edible product
having at least about 15 weight percent total
water.

53. A method as set forth in claim 53 wherein said
product intermediate is stored in said container and is
under a gauge pressure of least about one-half atmosphere.

54. A method as set forth in claim 53 wherein said
product intermediate is stored at a temperature in the
range of between about 0°C and about 5°C.
55. A method as set forth in claim 53 wherein said product intermediate is stored at a temperature of less than about 0°C.

56. A method for producing an edible starch-based bread-like product having a desired degree of firmness, the method comprising the steps of:

forming a batter comprising water, flour and an acidifying agent, the acidifying agent being included in an amount sufficient to provide a degree of firming of the edible product when subjected to microwave irradiation which is distinguishably less than the degree of firming generated in an equivalent product which is formed without the acidifying agent;

preparing a product intermediate from said batter;

and exposing said product intermediate to microwave irradiation for a time sufficient to produce a desired edible product, said edible product having at least about 15 weight percent total water.

57. A method for producing an edible starch-based bread-like product having a desired degree of firmness, the method comprising the steps of:

forming a batter comprising water, flour and a starch-starch interaction inhibitor agent, the starch-starch interaction inhibitor agent being included in an amount sufficient to provide a degree of firming of the edible product when subjected to microwave irradiation which is
distinguishably less than the degree of firming generated in an equivalent product which is formed without the starch-starch interaction inhibitor agent;

preparing a product intermediate from said batter; and exposing said product intermediate to microwave irradiation for a time sufficient to produce a desired edible product, said edible product having at least about 15 weight percent total water.

58. A method for producing an edible starch-based bread-like product having a desired degree of firmness, the method comprising the steps of:

forming a batter comprising water, flour and a texturizing agent selected from the group consisting of surfactants, hydrogen bond-breakers, fast acting oxidants, enzymes, and disulfide-reductants, the texturizing agent being included in an amount sufficient to provide a degree of firming of the edible product when subjected to microwave irradiation which is distinguishably less than the degree of firming generated in an equivalent product which is formed without the texturizing agent;

preparing a product intermediate from said batter; and exposing said product intermediate to microwave irradiation for a time sufficient to produce a desired edible product, said edible product having at least about 15 weight percent total water.
59. The method of claim 59, wherein the agent is a fast acting oxidant having an reduction potential greater than that of quinone.

60. The method of claim 59, wherein the agent is an enzyme.

61. The method according to claim 59, wherein the agent is a surfactant.

62. The method of claim 62, where the surfactant is stearyl lactylates, ethoxylated monoglycerides, a diacetyl ester of mono or diglycerides, a sorbitan mono-fatty acid esters, monoglyceride, 1-propylene glycol mono-fatty acid esters, sucrose fatty acid esters, diacetyl tartaric acid ester of monoglycerides, polysorbate 60 or polysorbate 80.

63. The method of claim 61, where the level of enzyme is from at least about 0.2 to 8 milli-AU per gram of batter.

64. A method according to claim 57, claim 58 or claim 59, wherein the degree of firming is reduced by at least 5 sensory score units.

65. A method according to claim 65, wherein the degree of firming is reduced by at least about 10 sensory score units.
66. A method according to claim 65, wherein the degree of firming is reduced by at least about 15 sensory score units.

67. A method according to claim 57, claim 58 or claim 59, wherein the degree of firming is reduced by at least 10% on a sensory score basis.

68. A method according to claim 68, wherein the degree of firming is reduced by about 20% on a sensory score basis.

69. A method according to claim 68, wherein the degree of firming is reduced by about 30% on a sensory score basis.

70. A method for producing an edible starch-based bread-like product having a desired degree of firmness, the method comprising the steps of:

form a batter comprising water, flour and an encapsulated leavening base, the encapsulated leavening base being included in an amount sufficient to provide a degree of firming of the edible product when subjected to microwave irradiation which is distinguishably less than the degree of firming generated in an equivalent product which is formed without the encapsulated leavening base;

preparing a product intermediate from said batter and storing said product intermediate under refrigerated frozen conditions; and
exposing said product intermediate to microwave irradiation for a time sufficient to cook said product intermediate and produce a desired edible product, said edible product having at least about 15 weight percent total water.

71. The method of claim 71 wherein the encapsulated leavening base is a carbonate or bicarbonate salt.

72. The method of claim 72 wherein the leavening base is encapsulated in shortening.

73. A method for producing a dough-based product having a desired degree of firmness, the method comprising the steps of:

forming a dough comprising water, flour and a texturizing agent selected from the group consisting of acidifying agents, surfactants, hydrogen bond-breakers, fast acting oxidants, enzymes, and disulfide-reductants, the texturizing agent being included in an amount sufficient to provide a degree of toughening of the edible product when subjected to microwave irradiation which is distinguishably less than the degree of firming generated in an equivalent product which is formed without the texturizing agent;

preparing an uncooked product intermediate from said dough;
storing said product intermediate in a sealed container at a temperature of less than about 5°C;

removing said product intermediate from said container;

exposing said product intermediate to microwave irradiation for a time sufficient to cook said product intermediate to form a desired cooked edible product, said cooked edible product having at least 15 weight percent total water.
<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>CHEWY CRUMB</th>
<th>TENDER, SHORT CRUMB</th>
<th>VERY SOFT CRUMB</th>
<th>FLAKY, MANY LAYERS</th>
<th>FLAKY, TENDER</th>
<th>TENDER, FLAKY LAYERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEGREE OF DEVELOPMENT</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>LOW-MED.</td>
</tr>
<tr>
<td>FAT INCORP METHOD</td>
<td>FORMULA</td>
<td>FORMULA</td>
<td>FORMULA</td>
<td>LAMINATION</td>
<td>CUT INTO FORMULA OR LAMINATION</td>
<td></td>
</tr>
<tr>
<td>WATER (%)</td>
<td>35-40</td>
<td>30-40</td>
<td>20-30</td>
<td>10-25</td>
<td>16-20</td>
<td>20-35</td>
</tr>
<tr>
<td>FAT (%)</td>
<td>0-1.5</td>
<td>1.5-5.0</td>
<td>10-15</td>
<td>30-45</td>
<td>20-40</td>
<td>2.5-20</td>
</tr>
<tr>
<td>FLOUR TYPE</td>
<td>HARD</td>
<td>HARD</td>
<td>HARD AND SOFT BLENDS</td>
<td>HARD AND SOFT BLENDS</td>
<td>SOFT</td>
<td>HARD AND SOFT BLENDS</td>
</tr>
<tr>
<td>ITEM</td>
<td>FRENCH ITALIAN BREADS</td>
<td>WHITE PAN BREADS</td>
<td>SWEET ROLLS</td>
<td>PASTRIES</td>
<td>PIE CRUST</td>
<td>BISCUITS</td>
</tr>
</tbody>
</table>
FIG. 2

Sensory Score (0-60)

Reducing Agent (micromole/g dough)

- Firmness
- Toughness

FIG. 3

Sensory Score (0-60)

α, β-Unsaturated Compound (micromole/g dough)

- Firmness
- Toughness

SUBSTITUTE SHEET
FIG. 4

SUBSTITUTE SHEET
FIG. 5A

- Sensory Score (0-60) vs Enzyme (milli-AU/g dough)
- Two types of bars: Firmness and Toughness

FIG. 5B

- Sensory Score (0-60) vs Enzyme (milli-AU/g dough)
- Two types of bars: Firmness and Toughness
Fig. 8A

Fig. 8B

SUBSTITUTE SHEET