(54) Title: METHOD AND SYSTEM FOR UNAMBIGUOUS BRAILLE INPUT AND CONVERSION

(57) Abstract

A method and system for the unambiguous input and conversion of Braille into character representations requiring multiple bytes per character, such as Kanji. The system provides both an input means for Braille code and the means to disambiguate the text in its multi-byte character representation, as well as storing the text for subsequent use by both sighted and non-sighted users.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>LS</td>
<td>Lesotho</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>MX</td>
<td>Mexico</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
METHOD AND SYSTEM FOR UNAMBIGUOUS BRAILLE INPUT AND CONVERSION

5 TECHNICAL FIELD

The present invention relates generally to data processing systems and, more particularly, to a method and system for unambiguously inputting multi-byte characters into a computer from a Braille input device.

10 BACKGROUND OF THE INVENTION

Nonsighted or visually-impaired people have had difficulty in being integrated into the workforce due in part to the difficulty of working with computers to perform such tasks as word processing. In order to integrate visually-impaired people into the workforce, conventional systems have been developed that receive Braille input, store it into a computer, and output it to the user.

One such conventional system 100 for inputting Braille into a computer is depicted in Figure 1A. The Braille system 100 comprises a computer 102 with a video display 104 and with a Braille I/O device 106. The Braille I/O device 106 is responsible for inputting Braille to the computer 102 via input keys 108-119 and for outputting Braille to the user via the output array 120. As shown in Figure 1B, each unit of Braille 130 is expressed as a Braille cell having six predefined locations 132-142. Information is conveyed using a Braille cell through the presence or absence of an elevation at the predefined locations 132-142. For example, when Braille is conveyed on a paper medium, a punch behind the paper causes the paper to be elevated at one or more of the predefined locations 132-142. It is the elevations and the absence of elevations at the predefined locations 132-142 that convey meaning to the reader. The depression of the input keys 108-118 causes the computer 102 to receive a signal that a corresponding location 132-142 should be construed to be in an elevated position. Input keys 112, 110, 108, 114, 116, and 118 correspond to predefined locations 132, 134, 136, 138, 140, and 142, respectively. Input key 119 is a space bar which is used to indicate that none of the predefined locations have an
elevation. Therefore, by using keys 108-118, a visually-impaired user can input information into the computer 102.

The output array 120 contains 20 output units (e.g., 122), where each output unit can output one Braille cell. As shown in Figure 1C, each output unit (e.g., 122) contains six apertures 152-162, which correspond to the predefined locations 132-142 of a Braille cell 130, through which the system can provide a protrusion that is perceptible to the human touch. Figure 1D depicts a left side elevational view of output unit 122 and further shows apertures 124 and 128 with a protrusion and aperture 126 without a protrusion. In this manner, the Braille system 100 can output up to twenty individual units of Braille (Braille cells) via the output array 120.

In order to read information from the video display 104, the user uses the arrow keys 122-128 in conjunction with the output array 120. The arrow keys 122-128 manipulate a reference cursor on the video display 104. The reference cursor highlights information on the video display 104 that is then output to the output array 120. For example, if the reference cursor were at the top of a document, the user could depress arrow key 126 to move down a line so that the user could read a line of information by feeling the output array 120. Similarly, the depression of arrow key 124 moves the reference cursor to the right, the depression of arrow key 128 moves the reference cursor to the left, and the depression of arrow key 122 moves the reference cursor up. By using the Braille system 100, a visually-impaired user is able to store Braille information onto the computer 102 and read Braille information from the computer.

When the Braille system 100 is used with the English language, the user can exactly indicate an English language expression because each Braille cell corresponds to exactly one letter of the English language. Therefore, the user can input one letter at a time and can read the output one letter at a time. However, such Braille systems are significantly less helpful when used with multi-byte languages. A "multi-byte language" is a language in which more than one byte is needed to uniquely identify each character of the language. In other words, there are more than 2^8 (or 256) characters in the language. The characters of a multi-byte language are
referred to as multi-byte characters. Multi-byte languages, such as Kanji-based languages like Chinese, Japanese, and Korean, have approximately 40,000 characters.

In Kanji-based languages, the elements of grammar are known as "Kanji characters." The phrase "elements of grammar" refers to units of a given natural language that are capable of comprising parts of speech. For example, the elements of grammar in the English language are words. As such, each Kanji character is a higher-order linguistic symbol that is analogous to a word in the English language. That is, natural languages tend to have three levels of linguistic elements. The lowest of these levels depends on the specific alphabet used and is associated with the sounds of the spoken language. For example, the first and lowest level of linguistic elements in the English language comprises letters. The third level of linguistic elements is the highest level and contains those linguistic elements conveying full creative expression. In the English language, the third level comprises sentences. It is the second level of linguistic elements to which the phrase "elements of grammar" refers. This second level is an intermediate level of linguistic elements and, in the English language, the second level comprises words. In Chinese, the second level comprises Kanji characters.

Because there are approximately 40,000 Kanji characters in Kanji-based languages and only 2^6 (or 64) characters can be uniquely identified by one Braille cell, well-known systems have been devised to map individual Braille cells onto the phonetics of the multi-byte language. The phonetics, usually three, are then combined to identify an intended character, although the identification is inexact. The intended character is inexact because many different characters sound alike, but have different meanings. For example, the following Chinese characters all sound like "wong" and thus are identified using the same Braille input, but each character has a different meaning:

黃王皇蝗蝗

Because many characters sound alike in multi-byte languages, when using Braille to input and output multi-byte characters, there is an inherent problem of ambiguity.
Figure 2 depicts a well-known phonetic mapping scheme for mapping Braille onto the phonetics of the Chinese language spoken in the Cantonese dialect. This phonetic mapping scheme groups all phonetics into three categories: consonants, vowels, and tones. A number of Braille cells are defined to indicate specific consonants, some of which are depicted in Table 202. Table 202 indicates a specific Braille representation, such as "::", that corresponds to a particular consonant, such as "F as in Fay," and indicates the particular representation stored in the computer (e.g., "F"). In this example, when a user inputs "::" via the Braille I/O device, they intend the consonant "F as in Fay." The Braille I/O device sends the input to the computer where it is stored as an F character to indicate the particular Braille input and the phonetic represented by it. Using this system, some sounds have representations in the computer that do not correspond with the sound. For instance, although the sound for Braille input "::" is "G as in Gay," the representation in the computer is "K."

Table 204 contains some sample phonetic mappings of vowels, where the Braille input corresponding to the specific sound and its representation within the computer are depicted. For example, the Braille input "::" corresponds to the vowel "iy as in sight," and is represented in the computer as "%." Likewise, Table 206 depicts the phonetic mapping of various tones. One of these tones is the default tone which is specified by the absence of a Braille cell. Another of the tones is the rising tone, which is similar to the tone used when the speaker wishes to indicate a question. Using this phonetic mapping scheme for mapping Braille onto Cantonese phonetics, a user specifies a specific Kanji character by using usually three Braille cells: one for the consonant, one for the vowel, and one for the tone. In some situations, the user may omit the Braille cell for the tone to indicate that the default tone is desired.

When the Braille system 100 is used with the phonetic mapping scheme described above, the user inputs the Braille into the computer and the computer stores the phonetic representation (e.g., w; which is the computer representation of the phonetics for characters that sound like "wong") and not the actual multi-byte character. Storing the data by its phonetic representation prevents
the data from being used by a sighted user that does not understand these cryptic symbols and, therefore, does little to integrate the visually impaired into the workforce. Another problem with this system is that since the phonetics are mapped onto the characters of the multi-byte language, the Braille does not exactly map to a specific character, because many characters have the same sound but mean completely different things. As such, there is a significant amount of ambiguity which poses a problem. Such ambiguity problems must be overcome to facilitate the use of computers by the visually-impaired. Therefore, it is desirable to improve Braille input systems for multi-byte languages to resolve ambiguities.

SUMMARY OF THE INVENTION

An improved recognition system for translating Braille into multi-byte languages is provided that resolves ambiguities in the translation. By resolving ambiguities in the translation, the improved recognition system helps integrate visually-impaired users into the workforce. Such integration is achieved by providing visually-impaired users with both the means to input Braille for translation into a multi-byte language and the means to disambiguate the translation so that it reflects what the user intended. In this manner, the translation accurately reflects the intentions of the user. Furthermore, the translation is actually stored in the computer in the multi-byte language so that both sighted and nonsighted users alike can utilize the translation.

In accordance with a first aspect of the present invention, a method is provided for translating Braille input into characters of a multi-byte language in a computer system having the Braille input and having a database of entries containing mappings of Braille to phrases containing at least one character of the multi-byte language. In accordance with the first aspect, the method attempts to match the Braille input to at least one of the entries in the database to translate the Braille input into the multi-byte language. When the Braille input does not match at least one of the entries, the method reduces the Braille input by an amount sufficient to represent a character and attempts to match the reduced Braille input to at least one of the entries in the database. When the reduced Braille input does not match at least one of
the entries in the database, the method repeatedly reduces the Braille input and attempts a match until the reduced Braille input matches at least one of the entries in the database to translate the reduced Braille input into the multi-byte language.

In accordance with a second aspect of the present invention, a method is provided for translating input containing portions into characters of a multi-byte language in a computer system. A portion of the input corresponds to a plurality of characters where only a single intended character is intended by a user to be identified by the portion. In accordance with the second aspect, the method receives the input for translation into the multi-byte language where the input contains a user-specified indication of a portion that corresponds to a plurality of characters. The method also utilizes the user-specified indication to unambiguously translate the portion into the single intended character.

In accordance with a third aspect of the present invention, a method is provided for translating input in a first language into a second language in a computer system having a database with entries containing mappings of portions of the input onto phrases of the second language. In accordance with the third aspect, the method receives the input for translation, translates the input into the second language by matching the portions of the input against the database entries to identify matching phrases, and outputs the matching phrases such that a user can discern a distinctness of each matching phrase to facilitate detection of translation errors.

In accordance with a fourth aspect of the present invention, a method is provided for translating phonetic data representing spoken sounds of a language into text of the language in a computer system having a database with entries containing mappings of phonetic data onto phrases of the text. The method receives portions of the phonetic data and translates the phonetic data to text by mapping the received portions of the phonetic data to the phrases in the database entries.

In accordance with a fifth aspect of the present invention, a method for translating Braille input into characters of a multi-byte language in a computer system is provided. The method receives the Braille input, translates the Braille input into text of the multi-byte language, and stores the text into the computer such that the text
is represented as individual characters of the multi-byte language so that the text is understandable to a user that understands the characters of the multi-byte language, but does not understand Braille.

In accordance with a sixth aspect of the present invention, a method is provided for translating input having elements of grammar from a first form into a second form in a computer system. The method receives input in the first form, translates the input into the second form to create translated elements of grammar, and outputs usages of the translated elements of grammar in the second form so that a user can identify translation errors.

In accordance with a seventh aspect of the present invention, a method is provided for phonetically inputting data into a computer system. The method receives input comprising groups of phonetics representing sounds made when a language is spoken where a group of phonetics corresponds to at least one element of grammar of the language. For each of the groups in the received input, the method identifies at least one element of grammar that corresponds to the group of phonetics and outputs usages of the identified element of grammar so that a user can determine if the identified element of grammar is an intended element of grammar.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1A depicts a conventional system for inputting Braille into a computer.

Figure 1B depicts a Braille cell.

Figure 1C depicts an enlarged top plan view of an output unit of the conventional system for inputting Braille of Figure 1A.

Figure 1D depicts a left-side elevational view of the output unit of Figure 1C.

Figure 2 depicts a conventional phonetic mapping scheme for mapping Braille onto the phonetics of the Cantonese dialect of Chinese.

Figure 3 depicts a Braille system that is suitable for practicing a preferred embodiment of the present invention.
Figure 4 depicts a more detailed diagram of the computer in the Braille system of Figure 3.

Figures 5A-5C depict a flowchart of the steps performed by the recognizer depicted in Figure 4.

Figure 6A depicts an example of input to the recognizer program.
Figure 6B depicts an example of an output file displayed by the recognizer program.

Figure 6C depicts an example of phrases recognized by the recognizer program.

Figure 6D depicts an example of usages of a character displayed by the recognizer program.

Figures 6E-6H depict a list of phonetically-equivalent characters displayed by the recognizer program.

Figure 6I depicts usages of a replaced character displayed by the recognizer program.

Figure 6J depicts a corrected output file displayed by the recognizer program.

Figure 6K depicts alternative phrases displayed by the recognizer program.

DETAILED DESCRIPTION OF THE INVENTION

An improved recognition system for translating Braille into multi-byte languages is provided that resolves ambiguities in the translation. By resolving ambiguities in the translation, the improved recognition system helps integrate visually-impaired users into the workforce. Such integration is achieved by providing visually-impaired users with both the means to input Braille for translation into a multi-byte language and the means to disambiguate the translation so that it reflects what the user intended. In this manner, the translation accurately reflects the intentions of the user. Furthermore, the translation is actually stored in the computer in the multi-byte language so that both sighted and nonsighted users alike can utilize the translation.
Overview

In order to translate Braille input into a multi-byte language, the improved recognition system receives lines of Braille input from the user via a Braille input device. When inputting the Braille, which represents phonetics for characters of the multi-byte language, the improved recognition system allows the user to provide assistance in resolving ambiguities. Specifically, the recognition system allows the user to provide an indication of ambiguous input. For example, if the user does not have confidence that the recognition system will translate some of the phonetics into an intended character, the user may provide usage information, such as additional phonetics representing additional characters that together form a phrase, so that the system can correctly translate the phonetics into the intended character by using the context provided by the phrase.

In response to receiving the lines of input, the recognition system translates the input. The recognition system performs this translation by attempting to match each individual line against entries in a database. The recognition system maintains a database with a number of entries containing mappings of Braille to multi-byte language phrases, such as Chinese phrases. Each phrase contains at least one Kanji character. During the translation, the recognition system first attempts to match one entire line to the database entries. If the line does not match an entry in the database, the recognition system truncates the phonetics for one character from the end of the line and attempts another match. If a match is still not found, the recognition system repeatedly truncates the phonetics for the last character and attempts a match until a matching entry is found. Upon finding a matching entry, the phrase is copied into an output file, and thus the output file contains the phrase in the form of the multi-byte language. After finding the matching entry, if any portion of the line remains untranslated, the rest of the line is translated similarly. In this manner, all of the Braille input is translated into the multi-byte language and stored in the output file as multi-byte characters. The improved recognition system stores the translated data in the form of the multi-byte language so that the data can be utilized by both nonsighted users and sighted users that do not understand Braille or the representation of the character phonetics, which helps integrate nonsighted users into
the workforce. Storing the translated data in the form of the multi-byte language is a significant improvement over some conventional systems that store the data using its phonetical representation, which makes the data difficult for sighted users to use.

After the translation process has completed, the recognition system allows the user to proofread the translated text stored in the output file to identify and resolve any ambiguities. This proofreading allows the user to make sure that, although the phonetics for a particular character may match a number of characters, the intended character was chosen by the recognition system. When proofreading the translated text, the phrases that were recognized are displayed such that the user can perceive the distinctness of each phrase. In other words, the translated text is not outputted as a whole; rather, the phrases are outputted separated by spaces so that the user can discern the individuality of each phrase that was recognized by the system. By outputting the phrases so a user can discern their individuality, the amount of proofreading that the user must perform is reduced. That is, the larger the number of characters in a particular phrase, the more confidence the user has that the phrase was translated correctly. Although the chances are fairly good that the phonetics for a single character inexact indicate the character, the chances of the phonetics for two characters inexact indicating a pair of two characters is significantly less. Obviously, as the number of characters indicated by the phonetics increases, the chances that the intended characters were exactly identified also increases. Thus, when the user determines that a phrase has been translated having more than a couple of characters, the user can feel confident that the translation was correct. This functionality allows the user to only proofread the phrases in which they are uncertain as to the correctness of the translation, such as phrases containing only a single character. Additionally, when outputting the phrases, the improved recognition system indicates whether the input for a particular phrase matched more than one entry in the database. In this case, the user can instruct the system to output all matching entries for the phrase so that the user can determine if the system chose the correct or intended phrase.
When proofreading the output, the user scans the output, and when the user believes that a phrase may have been incorrectly translated, the recognition system allows the user to examine usages of each character in the phrase. A “usage of a character” refers to a phrase containing the character combined with one or more additional characters. The system outputs usages of a character so that the user can determine whether the correct character was translated by using the context of the phrase. If the user determines that a translation error occurred such that an incorrect character was translated, the recognition system outputs a list of all phonetically-equivalent characters as well as their usages to the user. A “phonetically-equivalent character” is a character that has a similar sound. The user may then scan the list to identify the correct character to be used in the translation. Upon identifying the correct character, the recognition system replaces the character in the phrase in the output file with the correct character. Additionally, if the correct character were part of a phrase of more than one character, the recognition system stores the updated phrase into the database with the corresponding Braille input so as to assist the system in making a correct translation the next time that the system performs such a translation. By using the improved recognition system, visually-impaired users can unambiguously use Braille to input multi-byte characters into a computer.

Although a preferred embodiment is described below with reference to multi-byte character languages, one skilled in the art will appreciate that the present invention can be used with other languages. For example, the present invention may be used with single-byte languages such as English, Spanish, French, and German, where the elements of grammar are words. Additionally, although a preferred embodiment is described relative to Braille input, one skilled in the art will appreciate that the present invention can also be used with voice input. Furthermore, it should be appreciated by one skilled in the art that the techniques described below can be used to output and proofread an existing file containing multi-byte or other characters.
Implementation Details

Figure 3 depicts a Braille I/O system 300 that is suitable for practicing a preferred embodiment of the present invention. The Braille I/O system 300 contains a computer 302 with a video display 304 and a Braille I/O device 306. The Braille I/O device 306 contains six input keys 310-320, a space bar 321, an output array 308, and four arrow keys 322-328 for manipulating a reference cursor on the video display 304.

Figure 4 depicts a more detailed diagram of the computer 302. The computer 302 contains a memory 402, a secondary storage device 404, a central processing unit (CPU) 406, as well as a connection 412 and 414 to the Braille I/O device and the video display, respectively. The memory 402 contains the recognizer 408, and the secondary storage device 404 contains the database 410. The recognizer 408 is responsible for receiving Braille input from the user via the Braille I/O device 306, mapping the input against the entries in the database 410 to translate the Braille input into a double byte-based language, such as Chinese, and providing the user with the ability to proofread the translation so as to disambiguate the translation. The database 410 contains entries with mappings of Braille onto phrases of at least one Chinese character. Although some examples of the mappings are now provided, one skilled in the art will appreciate that the database may contain thousands of such mappings. For example, the computer representation for the Braille input of the phonetics “wong” is w;'. Thus, the database may contain a mapping of w;’ onto the following wong-sounding character:

Another example of an entry in the database is a mapping of the representation of the Braille input “B@MH,LH1KB,” which means America and in Cantonese sounds like “ah mai lai ka,” onto the following Chinese characters:

亞美利加
Figures 5A-5C depict a flowchart of the steps performed by the recognizer of a preferred embodiment. The first step performed by the recognizer is to receive Braille input from the user via the Braille I/O device (step 502). Figure 6A depicts sample input received from the Braille I/O device. The sample input contains 5 lines of information 602-610. The first line 602 contains the phonetics that together sound like "wong," which corresponds to a number of different characters in the Cantonese dialect of the Chinese language. Line 604 is an example of a line that contains an indication of a possible ambiguity. As stated above, the improved recognition system allows the user to input an indication so that the translation system correctly translates the indicated Braille. This indication takes the form of special characters such as "a" and "." For example, line 604 shows that the special character "a" indicates that the following phonetics up until the trailing "," should be translated into a single character. In this example, a wong-sounding character is being translated. The special characters delineate the phonetics for a number of characters that together provide a usage of the character to be translated so that the system can translate the character correctly from the context. The phonetics of the first character — w;’ — sounds like wong, and the phonetics for the second character —)VA — are the phonetics for a character that sounds like toe. Together, all of the phonetics sound like "wong toe," which uniquely identifies only one phrase of two characters meaning "yellow soil." From this phrase, the system can determine the correct wong-sounding character for the translation. If the first special character ("a") were to indicate that the second phonetic were the character to be translated, the special character would be a "b" and so on. Special characters can also be used by the improved recognition system to indicate to the system that an entire phrase should be translated as a whole. This functionality is provided to prevent the situation from occurring where the phrase is translated together with other characters of the input, which may result in a translation error.

Again, with reference to Figure 6A, line 606 contains the computer representation of the Braille input for four Chinese characters that sound as follows: kong, hay, fat, and choi. This phrase means to wish riches upon someone. Line 608
contains the phonetics for 4 characters: ah, mai, lai, and ka. Together, these 4 characters mean “America.” Line 610 contains a combination of lines 608 and 606 with line 608 occurring before line 606.

After receiving the Braille input, the recognizer selects the next line beginning with the first line (step 504). After selecting the next line, the recognizer attempts to match the entire line against the database entries to determine if the input matches at least one database entry (step 506). If the input does not match at least one database entry, the recognizer truncates the phonetics for one character from the end of the input (step 508) and continues to step 506. This processing of steps 506 and 508 continues until a match is made. After a match of the input to a database entry is made, the recognizer determines if the input matched more than one database entry (step 510). If more than one match was made, the recognizer puts a special character into the output file, such as a “z,” to indicate that more than one match was made (step 512) and stores the most commonly-used entry of the matching entries into the output file (step 514). In the database entries that map onto the same phonetic input, the system maintains a counter that is incremented each time that the entry is used. In this step, the recognizer accesses the counter to determine which matching entry has been used most often. The most often-used entry is then copied into the output file. If it is determined that more than one match has not been found, the recognizer stores the phrase in the matching entry into the output file (step 516).

Based on the processing of steps 514 and 516, the output file contains the translated data in the form of the multi-byte language. Specifically, character codes are stored which uniquely identify the characters of the multi-byte language much like the ASCII code uniquely identifies English letters. A preferred embodiment utilizes the well-known Big 5 character code, although one skilled in the art will appreciate that other character codes like the Unicode character code may be used.

Next, the recognizer determines if the end of the line has been reached (step 518). If the end of the line has not been reached, the recognizer selects the untranslated text remaining in the line and continues to step 506 to complete the translation. If the end of the line has been reached, the recognizer determines if there
are more lines in the input (step 522), and if so, proceeds to step 504. If no more lines are contained in the input, the recognizer displays the translated output file (step 524 in Figure 5B). Figure 6B depicts an output file containing lines 612-620 reflecting the input (lines 602-610 of Figure 6A) after it has been translated. As can be seen from lines 612 and 614 of Figure 6B, the system has recognized the phonetic for the wrong-sounding character of line 602 of Figure 6A to be the character depicted in line 612, since this is the most commonly used of the wrong-sounding characters. However, where the user used the special characters of line 604 in Figure 6A to unambiguously indicate a different wrong-sounding character, the different wrong-sounding character was correctly recognized by the system as reflected by line 614.

After displaying the translated output file, the user may proofread the output file (step 526). If the user indicates to proofread the output file, the recognizer displays the recognized phrases phonetically as depicted in Figure 6C (step 528). The user may then read the phrases by reading the corresponding Braille on the output array to determine the size of the recognized phrases. For example, in line 625, three phrases have been recognized as indicated by the spaces. The first phrase is B@MH,LH1KB, the second phrase is K8HHA, and the third phrase is FT"X". Once the user determines that a phrase containing numerous characters has been recognized, such as line 624, the user knows that the phrase has more than likely been translated correctly. However, when the user determines that a phrase contains only a single character, like in line 621, the user may examine usages of that character to determine if the correct character was translated. Therefore, the user selects the character (step 629) and the recognizer displays all usages of the character as shown in Figure 6D (step 530). In Figure 6D, the phonetics w; 602 are displayed at the top of the screen followed by various usages 626 of that character in phrases so that the user may determine from the context whether the correct character has been recognized. The recognizer determines the usages by searching the database for all phrases with the character. If the user determines that the incorrect character was recognized, the user may indicate to replace the character (step 531).
If the user chooses to replace the character, the recognizer displays all phonetically-equivalent characters and their usages (step 532). Figures 6E-6H contain the entire list 626-632 of all phonetically-equivalent characters and their usages. That is, this list contains all phrases having multiple characters where one of the characters is a wrong-sounding character. After displaying this list, the user reads the list and chooses the phrase that contains the intended character (step 534). After choosing the intended character, the recognizer displays the usages of the intended character as shown in Figure 6I so that the user may verify that the character chosen is the intended character (step 536). If the user believes that the character chosen is the intended character, the user may indicate that the character should be replaced. Upon receiving such an indication, the recognizer will store the intended character into the output file and store the entire phrase, if the character was part of a multi-character phrase, into the database with the corresponding computer representation of the Braille input (step 537). The recognizer stores the entire phrase in the database so that the next time a translation occurs with this input, a correct translation may occur. Next, the recognizer determines if the user wants to perform more proofreading (step 538). If the user wants to perform more proofreading, processing continues to step 528. However, if the user has finished proofreading, processing continues to step 540 in Figure 5C.

When the user has completed proofreading, the system displays the corrected output file as shown in Figure 6J (step 540). As can be seen in Figure 6J, the wrong-sounding character 636 has been changed to the intended character. When performing the proofreading, the user may have noticed a special character (e.g., z) indicating that there were additional matches made in the database for a particular phrase (step 542). If the user noticed that there was such an indication in the output file, the user can instruct the recognizer to display the additional matching entries so that the user can verify that the correct entry for the phrase was chosen (step 544). Figure 6K depicts a phrase 650 that has two matching entries (alternatives) 652 and 654 in the database. Each character of the alternatives 652 and 654 is displayed in a phrase so that the user can unambiguously determine the character of the alternative
phrase. The special characters “a” are used to indicate which of the phonetics represent the character of the alternative phrase and which of the phonetics are used for context. After displaying the alternatives, the user selects an alternative (step 546), the system stores the alternative into the output file (step 548) and the system displays the updated output file. After displaying the output file, processing ends.

While the present invention has been described with reference to a preferred embodiment thereof, those skilled in the art will know of various changes in form that may be made without departing from the spirit and scope of the claimed invention as defined in the appended claims.
CLAIMS

What is claimed is:

1. A method for translating Braille into a multi-byte language with characters in a computer system having a database with entries, each entry containing a mapping of Braille to a phrase comprising at least one character of the multi-byte language, comprising the steps of:

 receiving Braille input that phonetically represents a portion of the multi-byte language, the Braille input comprising lines;

 for each line,

 attempting to match the line to at least one database entry to translate the line;

 when the line does not match at least one database entry,

 truncating an amount of the Braille input sufficient to represent a character from an end of the line and attempting to match the truncated line to at least one database entry;

 when the truncated line does not match at least one database entry,

 repeatedly performing said truncating step until the truncated line matches at least one database entry;

 storing the phrase in the matched database entry into an output file such that the phrase is distinguished from other phrases;

 outputting the output file to a user;

 receiving input from the user indicating a character in a selected phrase in the output file;

 outputting usages of the indicated character so that the user can determine if the indicated character is an intended character; and

 when the user determines that the indicated character is not the intended character,

 outputting phonetically-equivalent characters and usages of the phonetically-equivalent characters to allow the user to select the intended character;
receiving from the user an indication of the intended character;
replacing the indicated character in the selected phrase with the intended character; and
storing an entry in the database with the selected phrase containing the intended character and the corresponding Braille input.

2. The method of claim 1 wherein the step of storing the phrase includes determining if the truncated line matched more than one database entry such that a match was made to at least one additional database entry having an additional phrase, and when it is determined that the truncated line matched more than one database entry, storing a multimatching indication with the phrase to indicate that more than one database entry was matched, and wherein the method further includes the steps of:

receiving input from the user indicating a phrase with a multimatching indication;

outputting the additional phrase in the additional database entry for the indicated phrase to enable the user to determine if the additional phrase is an intended phrase;

receiving from the user an indication to replace the indicated phrase with the additional phrase when the user determines that the additional phrase is the intended phrase; and

replacing the indicated phrase with the additional phrase.

3. The method of claim 2 wherein a plurality of the database entries contain a same Braille input, wherein the database maintains a usage counter with each database entry that contains the same Braille input as another database entry, and wherein the step of storing the phrase includes the steps of:

when it is determined that the truncated line matched more than one database entry, determining which among the indicated phrase and the additional phrase is a more commonly-used phrase by examining the usage counter of the database entries for the indicated phrase and the additional phrase, and storing the more commonly-used phrase into the output file.
4. The method of claim 1 wherein the step of outputting the output file includes outputting the output file on a Braille output device so that the output file may be perceived by a visually-impaired user.

5. A method for translating Braille input into characters of a multi-byte language in a computer system having the Braille input and having a database of entries containing mappings of Braille to phrases containing at least one character of the multi-byte language, comprising the steps of:

 attempting to match the Braille input to at least one of the entries in the database to translate the Braille input into the multi-byte language;

 when the Braille input does not match at least one of the entries, reducing the Braille input by an amount sufficient to represent a character and attempting to match the reduced Braille input to at least one of the entries in the database; and

 when the reduced Braille input does not match at least one of the entries in the database,

 repeatedly performing said reducing step until the reduced Braille input matches at least one of the entries in the database to translate the reduced Braille input into the multi-byte language.

6. The method of claim 5, further including the step of, after repeatedly performing said reducing step, performing the method on a remainder of the Braille input that has not been matched to complete translation of the Braille input into the multi-byte language.

7. The method of claim 5 wherein the step of reducing includes truncating the amount sufficient to represent a character from an end of the Braille input.

8. A method for translating input from a user containing portions into characters of a multi-byte language in a computer system, wherein a portion of the input
corresponds to a plurality of characters although only a single intended character is intended by the user to be identified by the portion, comprising the steps of:

receiving the input for translation into the multi-byte language, the input containing a user-specified indication of a portion that corresponds to a plurality of characters; and

utilizing the user-specified indication to unambiguously translate the portion into the single intended character.

9. The method of claim 8 wherein the input is Braille input.

10. The method of claim 8 wherein the input specifies phonetic characteristics of the characters of the multi-byte language.

11. The method of claim 8 wherein the indication provides usage information for the intended character.

12. The method of claim 11 wherein the usage information comprises at least one additional portion reflecting an additional character which is not translated.

13. The method of claim 12 wherein the indication includes an identifier of which among the portion and the additional portion is to be translated.

14. A method for translating input in a first language into a second language in a computer system having a database with entries containing mappings of portions of the input onto phrases of the second language, comprising the steps of:

receiving the input for translation;

translating the input into the second language by matching the portions of the input against the phrases in the database entries to identify matching phrases; and

outputting the matching phrases such that a user can discern a distinctness of each matching phrase to facilitate detection of translation errors by the user.
15. The method of claim 14 wherein the first language is Braille.

16. The method of claim 14 wherein the second language is a multi-byte language.

17. The method of claim 16 wherein the first language is a phonetic representation of the multi-byte language.

18. A method for translating phonic data representing spoken sounds of a language into text of the language in a computer system having a database with entries containing mappings of phonic data onto phrases of the text, comprising the steps of:
 receiving portions of the phonic data; and
 translating the received portions of the phonic data into text by mapping the received portions to the phrases in the database entries.

19. The method of claim 18 wherein the phonic data is expressed using Braille.

20. The method of claim 18 wherein the language is a multi-byte language.

21. The method of claim 18 wherein the language is Chinese.

22. A method for translating Braille input into a multi-byte language having characters in a computer system, comprising the steps of:
 receiving the Braille input;
 translating the Braille input into text of the multi-byte language, and
 storing the text into the computer such that the text is represented as individual characters of the multi-byte language so that the text is understandable to a user that understands the characters of the multi-byte language but does not understand Braille.

23. The method of claim 22, further including the step of outputting the text to the user.
24. A method for translating input having elements of grammar from a first form into a second form in a computer system, comprising the steps of:
 receiving the input containing the elements of grammar in the first form;
 translating the input into the second form to create translated elements of grammar; and
 outputting usages of the translated elements of grammar in the second form to facilitate identification of translation errors by a user.

25. The method of claim 24 wherein the elements of grammar are words.

26. The method of claim 24 wherein the elements of grammar are Kanji characters.

27. The method of claim 24 wherein the step of outputting usages includes forming the usages such that a usage of a translated element of grammar is formed by combining at least one additional element of grammar with the translated element of grammar to form a phrase.

28. A method for phonetically inputting data into a computer system, comprising the steps of:
 receiving input comprising groups of phonetics representing sounds made when a language is spoken, wherein a group of phonetics corresponds to at least one element of grammar of the language; and
 for each of the groups of phonetics in the received input,
 identifying at least one element of grammar that corresponds to the group of phonetics; and
 outputting usages of the identified element of grammar so that a user can determine if the identified element of grammar is an intended element of grammar.
29. A method in a computer system for translating input in a form other than text into text in a computer system having a database with entries containing mappings of portions of the input onto portions of text, comprising the steps of:

 translating the input into text by matching portions of the input to portions of the text in the database entries;

 outputting the text to enable a user to proofread the text to determine translation errors;

 receiving from the user an indication that a translation error occurred such that an indicated portion of the text was incorrectly translated, the indication containing a replacement portion to be substituted for the indicated portion;

 replacing the indicated portion of the text with the replacement portion to correct the translation error; and

 creating a database entry containing the replacement portion with the corresponding portion of the input to assist in a correct translation of the corresponding portion of the input in a subsequent translation.

30. A Braille to multi-byte language translation system, comprising:

 a Braille I/O device for receiving Braille from a user and for outputting Braille to the user;

 a secondary storage device containing a database with database entries containing mappings of Braille onto phrases of at least one character of the multi-byte language; and

 a memory containing a recognizer program for receiving Braille input from the Braille I/O device, for translating the Braille input into the multi-byte language by matching portions of the Braille input to the database entries to determine matching entries, and for storing the phrases in the matching entries into a file on the secondary storage device such that the phrases are represented in the multi-byte language.

31. The Braille to multi-byte language translation system of claim 30 wherein the recognizer program has a proofreading component that outputs the file to the user, that receives input from the user identifying a character in the file, and that displays
usages of the identified character to enable the user to determine if the identified character is an intended character.

32. The Braille to multi-byte language translation system of claim 31 wherein the recognizer program contains a replacement component that outputs similarly-sounding characters to the user so that the user can select the intended character when the user determines that the identified character is not the intended character, that receives an indication of the intended character from the user, and that replaces the identified character with the intended character.

33. The Braille to multi-byte language translation system of claim 32 wherein the replacement component outputs usages of the similarly-sounding characters.

34. The Braille to multi-byte language translation system of claim 30 wherein the recognizer program has a multimatching component for determining when a portion of the input matches more than one database entry such that the portion of the input matches at least one additional database entry having an additional phrase and for presenting to the user the additional phrase to enable the user to determine if the additional phrase is an intended phrase.

35. The Braille to multi-byte language translation system of claim 30 wherein the multi-byte language is Chinese.

36. The Braille to multi-byte language translation system of claim 30 wherein the phrases are stored in the file using the Big 5 character code.
37. A computer-readable medium containing instructions for controlling a computer system to translate Braille input into characters of a multi-byte language, the computer system having the Braille input and having a database of entries containing mappings of Braille to phrases containing at least one character of the multi-byte language, by performing the steps of:

 attempting to match the Braille input to at least one of the entries in the database to translate the Braille input into the multi-byte language;

 when the Braille input does not match at least one of the entries,

 reducing the Braille input by an amount sufficient to represent a character and attempting to match the reduced Braille input to at least one of the entries in the database; and

 when the reduced Braille input does not match at least one of the entries in the database,

 repeatedly performing said reducing step until the reduced Braille input matches at least one of the entries in the database to translate the reduced Braille input into the multi-byte language.

38. The computer-readable medium of claim 37, further including the step of, after repeatedly performing said reducing step, performing the method on a remainder of the Braille input that has not been matched to complete translation of the Braille input into the multi-byte language.

39. The computer-readable medium of claim 37 wherein the step of reducing includes truncating the amount sufficient to represent a character from an end of the Braille input.
40. A computer-readable medium containing instructions for controlling a computer system to translate input from a user containing portions into characters of a multi-byte language, wherein a portion of the input corresponds to a plurality of characters although only a single intended character is intended by the user to be identified by the portion, by performing the steps of:

receiving the input for translation into the multi-byte language, the input containing a user-specified indication of a portion that corresponds to a plurality of characters; and

utilizing the user-specified indication to unambiguously translate the portion into the single intended character.

41. A computer-readable medium containing instructions for controlling a computer system to translate input in a first language into a second language, the computer system having a database with entries containing mappings of portions of the input onto phrases of the second language, by performing the steps of:

receiving the input for translation;

translating the input into the second language by matching the portions of the input against the phrases in the database entries to identify matching phrases; and

outputting the matching phrases such that a user can discern a distinctness of each matching phrase to facilitate detection of translation errors by the user.

42. A computer-readable medium containing instructions for controlling a computer system to translate phonic data representing spoken sounds of a language into text of the language, the computer system having a database with entries containing mappings of phonic data onto phrases of the text, by performing the steps of:

receiving portions of the phonic data; and

translating the received portions of the phonic data into text by mapping the received portions to the phrases in the database entries.
43. A computer-readable medium containing instructions for controlling a computer system to translate Braille input into a multi-byte language having characters, by performing the steps of:

receiving the Braille input;

translating the Braille input into text of the multi-byte language, and

storing the text into the computer such that the text is represented as individual characters of the multi-byte language so that the text is understandable to a user that understands the characters of the multi-byte language but does not understand Braille.

44. The computer-readable medium of claim 43, further including the step of outputting the text to the user.

45. A computer-readable medium containing instructions for controlling a computer system to translate input having elements of grammar from a first form into a second form, by performing the steps of:

receiving the input containing the elements of grammar in the first form;

translating the input into the second form to create translated elements of grammar; and

outputting usages of the translated elements of grammar in the second form to facilitate identification of translation errors by a user.

46. The computer-readable medium of claim 45 wherein the elements of grammar are words.

47. The computer-readable medium of claim 45 wherein the elements of grammar are Kanji characters.

48. The computer-readable medium of claim 45 wherein the step of outputting usages includes forming the usages such that a usage of a translated element of grammar is formed by combining at least one additional element of grammar with the translated element of grammar to form a phrase.
49. A computer-readable medium containing instructions for controlling a computer system to phonetically input data into the computer system, by performing the steps of:

receiving input comprising groups of phonetics representing sounds made when a language is spoken, wherein a group of phonetics corresponds to at least one element of grammar of the language; and

for each of the groups of phonetics in the received input,

identifying at least one element of grammar that corresponds to the group of phonetics; and

outputting usages of the identified element of grammar so that a user can determine if the identified element of grammar is an intended element of grammar.

50. A computer-readable medium containing instructions for controlling a computer system to translate input in a form other than text into text, the computer system having a database with entries containing mappings of portions of the input onto portions of text, by performing the steps of:

translating the input into text by matching portions of the input to portions of the text in the database entries;

outputting the text to enable a user to proofread the text to determine translation errors;

receiving from the user an indication that a translation error occurred such that an indicated portion of the text was incorrectly translated, the indication containing a replacement portion to be substituted for the indicated portion;

replacing the indicated portion of the text with the replacement portion to correct the translation error; and

creating a database entry containing the replacement portion with the corresponding portion of the input to assist in a correct translation of the corresponding portion of the input in a subsequent translation.
Phonetic Mapping

<table>
<thead>
<tr>
<th>Consonant</th>
<th>Sound</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F as in for</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>H as in hay</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>K as in key</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phonetic Mapping (vowel)

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Sound</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>as in "eh"</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>as in "ee"</td>
<td>I</td>
</tr>
<tr>
<td>O</td>
<td>as in "oh"</td>
<td>O</td>
</tr>
<tr>
<td>Y</td>
<td>as in "y"</td>
<td>%</td>
</tr>
</tbody>
</table>

Phonetic Mapping (other)

<table>
<thead>
<tr>
<th>Sound</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dash</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2
(Cross Ref)
Inl.txt

8/18

:\n'w;'
\aW;')VA}
\b H8HAFT"X<'
\b@MH,LH1KB
\"b@MH,LH1KBH8HAFT"X<'

Fig CA
没有可用的自然文本内容。
W;
\text{aW;'}\text{VA}\}
\text{K8HHAFT"X<'}
\text{K8HHA FT"X<'}
\text{B@MH,LH1KB}
\text{B@MH,LH1KB}
\text{B@MH,LH1KBK8HHAFT"X<'}
\text{B@MH,LH1KB K8HHA FT"X<'}
<table>
<thead>
<tr>
<th>BR</th>
<th>CHN</th>
</tr>
</thead>
<tbody>
<tr>
<td>'A'</td>
<td>番 1</td>
</tr>
<tr>
<td>'B'</td>
<td>番 2</td>
</tr>
<tr>
<td>'C'</td>
<td>番 3</td>
</tr>
<tr>
<td>'D'</td>
<td>番 4</td>
</tr>
<tr>
<td>'E'</td>
<td>番 5</td>
</tr>
<tr>
<td>'F'</td>
<td>番 6</td>
</tr>
<tr>
<td>'G'</td>
<td>番 7</td>
</tr>
<tr>
<td>'H'</td>
<td>番 8</td>
</tr>
<tr>
<td>'I'</td>
<td>番 9</td>
</tr>
<tr>
<td>'J'</td>
<td>番 10</td>
</tr>
</tbody>
</table>

Fig. 6E
<table>
<thead>
<tr>
<th>BR</th>
<th>CHIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>上下</td>
<td>黃大仙</td>
</tr>
<tr>
<td>上中</td>
<td>王位</td>
</tr>
<tr>
<td>上下</td>
<td>湯婆</td>
</tr>
<tr>
<td>上中</td>
<td>黃泉</td>
</tr>
<tr>
<td>上下</td>
<td>蝙蝠</td>
</tr>
<tr>
<td>上中</td>
<td>皇極</td>
</tr>
<tr>
<td>上下</td>
<td>王朝</td>
</tr>
</tbody>
</table>
MS-DOS Prompt - Q BASIC

File dit search ptions OUT.TXT elp

黄
黄
喜喜喜喜
亚美利加
亚美利加喜喜喜

FI=Help Enter=Display Menu Esc=Cancel Arrow=Next Item

图 65
This is the phrase that has duplicates:

50 - K8HHA

Alternatives:

52 - 1) a K8(O2) a H8H4H2O2

54 - 2) - a K8C7"3 - 6H8 H8H2A2
A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 G09B21/00 G06F17/28

According to International Patent Classification (IPC) or to both national classification and IPC

3. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 G09B G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>PATENT ABSTRACTS OF JAPAN vol. 16, no. 65 (P-1313), 18 February 1992 & JP 03 260687 A (NIPPON TELEGR & TELEPH CORP <NTT>), 20 November 1991, see abstract</td>
<td>1-50</td>
</tr>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN vol. 10, no. 124 (P-454), 9 May 1986 & JP 60 251466 A (WAI DEE KEE KK ET AL), 12 December 1985, see abstract</td>
<td>1-50</td>
</tr>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN vol. 10, no. 57 (P-434), 7 March 1986 & JP 60 200361 A (JIYUNICHI HATA), 9 October 1985, see abstract</td>
<td>1-50</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document written in a language other than that of the international search report and which contains a claim and/or a description of the invention in an adequate language

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

24 February 1998

Date of mailing of the international search report

26.03.98

Name and mailing address of the ISA

European Patent Office, P.B. 5816 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 851 epo nl,
Fax. (+31-70) 340-3016

Authorized officer

Abram, R
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KENICHI MORI ET AL: "From kana to kanji: word processing in Japan"</td>
<td>1-50</td>
</tr>
<tr>
<td></td>
<td>IEEE SPECTRUM, vol. 27, no. 8, August 1990, NEW YORK, US, pages 46-48, XP000148305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>MASATO MORISAKI ET AL: "XJp System: An Internationalized Language Interface for</td>
<td>1-50</td>
</tr>
<tr>
<td></td>
<td>the X Window System"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UIST - 4TH INTERNATIONAL SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td></td>
</tr>
</tbody>
</table>