
(12) STANDARD PATENT (11) Application No. AU 2017285429 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Systems and methods for remediating memory corruption in a computer application

(51) International Patent Classification(s)
G06F 21/51 (2013.01) G06F 21/54 (2013.01)

(21) Application No: 2017285429 (22) Date of Filing: 2017.06.16

(87) WIPO No: WO17/218872

(30) Priority Data

(31) Number (32) Date (33) Country
62/350,917 2016.06.16 US

(43) Publication Date: 2017.12.21
(44) Accepted Journal Date: 2022.03.31

(71) Applicant(s)
Virsec Systems, Inc.

(72) Inventor(s)
Gupta, Satya Vrat

(74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
WO 2015038944 Al
BUCK B ET AL, "AN API FOR RUNTIME CODE PATCHING", 2000-01-01,
(2000-01-01), vol. 14, no. 4, pages 317 - 329
WO 2015200046 Al
JP 2005258498 A
Software Instrumentation ED - Wah B, WILEY ENCYCLOPEDIA OF COMPUTER
SCIENCE AND ENGINEE, WILEY, PAGE(S) 1 - 11, (2008-01-01)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
(1) OrganizationIIIIIIIIIIIDIIDIDIIIDIIIIIIDIII

International Bureau (10) International Publication Number

(43) International Publication Date W O 2017/218872 Al
21 December 2017 (21.12.2017) W IPO I PCT

(51) International Patent Classification: (74) Agent: MEAGHER, Timothy, J. et al.; HAMILTON,
G06F21/5i(2013.01) G06F 21/54 (2013.01) BROOK, SMITH & REYNOLDS, P.C., 530 Virginia Rd,

(21) International ApplicationNumber: P.O. Box 9133, Concord, MA 01742-9133 (US).

PCT/US2017/037841 (81) Designated States (unless otherwise indicated, for every

(22) InternationalFilingDate: kind of national protection available): AE, AG, AL, AM,
(22) Intrntina Fihng Dat7 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 16June2017(16.06.2017) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

(25) Filing Language: English DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

(26)PublicationLanguage: English KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

62/350,917 16 June 2016 (16.06.2016) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(71) Applicant: VIRSEC SYSTEMS, INC. [US/US]; 226 Air- TR, TT, TZ,UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
port Parkway, Suite 350, San Jose, CA 95110 (US).

(84) Designated States (unless otherwise indicated, for every
(72) Inventor: GUPTA,Satya,Vrat;9699ZacCourt,Dublin, kind of regional protection available): ARIPO (BW, GH,

CA94568(US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(54) Title: SYSTEMS AND METHODS FOR REMEDIATING MEMORY CORRUPTION IN A COMPUTER APPLICATION

SO.WARE I ENG.

--- --- -- --- --- -- --- --- --............. F A- -4i - USERS UPGRAD SERVER

ENRE
AL I G,. I T r [..A.. .. LA CY

NEV N Ir

NN

N N DI 73ANAL Y SN G N APP.

KENL AN'_1140

NGEN 72* HREA

FIG. 7A

(57) Abstract: In example embodiments, systems and methods extract a model of a computer application during load time and store
the model in memory. Embodiments may insert instructions into the computer application at run time to collect runtime state of the

0 application, and analyze the collected data against the stored model to perform detection of security events. Embodiments may also
instrument an exception handler to detect the security events based on unhandled memory access violations. Embodiments may, based
upon the detection of the security events, dynamically respond, such as by modify a computer routine associated with an active process of
the computer application. Modification may include installing or verifying an individual patch in memory associated with the computer

application.

W O 2017/218872 AAl||

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
- of inventorship (Rule 4.17(iv))

Published:
- with international search report (Art. 21(3))
- before the expiration of the time limitfor amending the

claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

1

SYSTEMS AND METHODS FOR REMEDIATING MEMORY CORRUPTION IN A

COMPUTER APPLICATION

RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Application No.

62/350,917, filed on June 16, 2016. The entire teachings of the above application are

incorporated herein by reference in their entirety.

BACKGROUND

[0002] Any discussion of the prior art throughout the specification should in no way be

considered as an admission that such prior art is widely known or forms part of common

general knowledge in the field.

[0003] Network accessible applications are often vulnerable to memory corruption

attacks triggered remotely by malicious attackers. Malicious attackers have strived hard to

exploit such vulnerability since it gives them unprecedented access to the remote user's

computer network, often with elevated privileges. Once control has been seized, arbitrary

code of the attacker's choosing can be executed by the attacker, as if the remote user owns

the compromised machine. Usually the objective of the malicious attacker is to extract

personal and/or confidential information from the user, but the objective could also include

disrupting personal or business activity of the user for the purpose of inflicting loss of

productivity.

[0004] Preparatory attacks may help to set the stage by placing strategic data in buffers

on the stack, the heap segments, and other jump tables, including imports, exports, virtual

pointers (VPTRs), and system call/system dispatch tables in the memory address space of the

application. This allows subsequently launched attacks to manipulate the flow of execution,

with the ultimate objective of causing code designed by a malicious hacker to execute instead

of code that is natively part of the application. The most sophisticated attackers do not even

need to insert their malicious code directly into the target application's memory space,

instead, the attackers can re-purpose existing code by stitching together selectively chosen

(i.e., cherry picked) chunks of code from the legitimately loaded application code and thereby

-2

execute their nefarious intent. There is an urgent need to protect the application at runtime

from such advanced runtime memory corruption attacks.

[0005] It is an object of the present invention to overcome or ameliorate at least one of

the disadvantages of the prior art, or to provide a useful alternative.

SUMMARY

[0006] Embodiments of the present disclosure are directed to example systems and

methods for protection against malicious attacks that are facilitated through memory

corruption within one or more running processes. In some embodiments, the systems include

one or more instrumentation engines and one or more analysis engines for performing

operations to protect against malicious attacks. The one or more instrumentation engines

may be located on the same or different hardware or computer system as the one or more

analysis engines. In some embodiments, the systems and methods may extract a model of a

computer application as the application code first loads into memory. The model may

include, but is not limited to, building pairs of legal source and destination memory

addresses, transitions, basic block boundary information, code segment bounds, import and

export address table bounds, jump table bounds, or any other type of computer-routine

related information known to one skilled in the art. In some embodiments, the systems and

methods may store the model of the computer application.

[0007] In some embodiments, the systems and methods may insert instructions into the

computer application (optionally, at run time) prior to the computer application instructions

being executed in memory in order to collect data at runtime and/or the execution state of the

application. In some embodiments, the systems and methods may analyze the collected data

at runtime against the stored model of the computer application to perform detection of one

or more security events. In some embodiments, the systems and methods may, based upon

the detection of the one or more security events, modify, in a manner that preserves continued

execution of the computer application, at least one computer routine associated with at least

one active process associated with the computer application (i.e., insert a patch).

[0008] According to some embodiments, the computer routine may be executed in

association with the at least one process. In some embodiments, the one or more detected

security events may be associated with a malicious movement to a different (unusual) code

path within the computer application. Such a malicious movement may include, but is not

-3

limited to, a malicious jump routine, a trampoline to malicious code, an indirect jump vector,

or any other malicious movement known to one skilled in the art.

[0009] In response to receipt of one or more aggregate patches by a user, some

embodiments may perform at least one operation that modifies or removes the at least one

computer routine associated with the computer application, and modifying or removing one

or more individual patches associated with the computer application. According to some

embodiments, modifying may include verifying a patch or configuration associated with the

computer application. According to some embodiments, the systems and methods may

modify the stack associated with the at least one computer routine. In some embodiments,

the systems and methods may modify one or more heaps associated with the at least one

executing computer routine. In some other embodiments, the systems and methods may

modify one or more jump tables.

[0010] Further, in some embodiments, the systems and methods may modify the at least

one computer routine associated with the at least one process, while the at least one active

process is executing the at least one computer routine. As such, some embodiments may

employ hot patching (or live patching, or dynamic software patching/updating). According to

some embodiments, a replacement function (i.e., different function) may be called as a result

of a hot patch. In some embodiments, the systems and methods may, prior to modifying the at

least one computer routine, pause execution of at least one active process (or computer

application). In some embodiments, after modifying the at least one computer instruction, the

systems and methods may resume execution of the at least one active process.

[0011] In some embodiments, the systems and methods may extract a model of a

computer application during load time. According to some embodiments, the systems and

methods may store the model of the computer application. In some embodiments, the

systems and methods may insert instructions into the computer application (optionally, in

memory) prior to the computer application being executed in memory in order to collect data

at runtime. In some embodiments, the systems and methods may analyze the data collected

at runtime against the stored model of the computer application to perform detection of one

or more security events. In some embodiments, the systems and methods may, upon the

detection of the one or more security events, temporarily remediate memory corruption

associated with the computer application (i.e., restore one or more pointers) prior to executing

one or more return instructions. In some embodiments, the systems and methods may report

-4

actionable information (i.e., report information to a vendor to create a patch) based upon the

one or more detected security events. The actionable information may include, but is not

limited to, information such as: where/how a security event occurs, where/how a trampoline

takes place, and where/how the memory in the stack or heap of a vulnerable function is

corrupted.

[0012] In some embodiments, the systems and methods may modify, in a manner that

preserves continued execution of the computer application, at least one computer routine

associated with at least one process. In some embodiments, when a lite or full patch from the

vendor is received by a user, an application runtime monitoring and analysis (ARMAS)

application may be disabled, and new code may be loaded into computer memory associated

with the process (i.e., a different location in memory) without shutting the process down.

Some embodiments may deploy such lite patches released by a vendor as a shared static or

dynamic library. Further, in some embodiments, the systems and methods may modify at

least one computer instruction associated with at least one process, while the at least one

process is executing. In some embodiments, the systems and methods may, prior to

modifying the at least one computer instruction, pause execution of at least one process

associated with the computer application. In some embodiments, after modifying the at least

one computer instruction, the systems and methods may resume execution of the at least one

process.

[0013] Some embodiments may remediate or prevent malicious attacks in real time until

a patch is deployed. Some embodiments may provide an actionable remediation path to

software vendor's developers. Some embodiments may detect heap based code and/or stack

based code trampolines in real time. Some embodiments may hot-deploy lite patches (i.e.,

perform hot patching) without process termination. In other words, some embodiments may

download and verify a lite patch, stop running all threads in the process temporarily, hot

patch a binary, and finally restart all the threads in the process (and/or application). Some

embodiments may tie (i.e., associate) and track state of which patch is tied to which routine in

which parent binary. Such state may include, but not be limited to, a checksum associated

with the lite patch, and the address in the original binary itself. Some embodiments may

untie (i.e., disassociate) a state that is presently associated with the process, either before or

after deploying the patch. Some embodiments may protect a state relationship from hackers.

By modifying one or more states (or associating or disassociating on or more states from a

-5

patch), some embodiments may protect a state relationship from hackers. Some

embodiments include protection, including, but not limited to: (a) verification of a checksum

associated with (or included in) a patch, (b) obtaining another copy of an original patch that is

deleted, and/or (c) encrypting contents of a patch, thereby preventing man-in-the-middle

(MIM) attacks as well as deliberate/ accidental deletion.

[0014] In example embodiments, the systems and methods, for one or more code

vulnerabilities of a computer application, map each of the code vulnerabilities to a respective

system response in a table in memory (e.g., in a security policy database). In some example

embodiments, at least one code vulnerability, and mapped system response, is provided from

developers of the computer application. In some example embodiments, at least one of the

code vulnerabilities and mapped system response is automatically determined by a code

analyzer at load time or runtime of the computer application. The systems and methods next

detect an event accessing a code vulnerability of the computer application.

[0015] The systems and methods, in response to the detection of the event, determine a

system response mapped to the accessed code vulnerability in the table in memory. In some

embodiments, an exception is triggered in response to an inappropriate operation by the

application, such as inappropriately accessing the vulnerable code. The systems and methods

instrument an exception handler to overwrite the kernel mode exception handler. The systems

and methods intercept the triggered exception and associate the code vulnerability by an

instrumented exception handler. In these embodiments, the systems and methods include

querying, by the instrumented exception handler, the associated code vulnerability in the

table. The querying returns the system response, configured as a system callback routine,

mapped to the code vulnerability. The systems and methods execute the determined system

response to prevent the event from exploiting the accessed code vulnerability. For example,

the systems and methods execute the system callback routine to initiate instructions to

prevent the event from exploiting the code vulnerability.

[0016] The system response (e.g., initiated instructions by the system callback routine)

may include one or more of: logging the accessing of the code vulnerability as an error in a

system log, dumping an image of an application process containing the accessed code

vulnerability, restoring a copy of computer application prior to the accessing of the code

vulnerability, dynamically loading one or more remedial patches from memory to modify at

least one computer routine containing the code vulnerability, without restarting the computer

-6

application, continuing execution of the computer application until it terminates (e.g.,

crashes) based on the accessed code vulnerability, and terminating proactively the computer

application.

[0017] According to one aspect of the present invention there is provided a computer

implemented method comprising:

extracting a model of a computer application during load time, the extracted model

including address bounds attributes of the computer application;

storing the model of the computer application;

inserting instructions into the computer application to collect data at runtime;

analyzing the data collected at runtime against the stored model including address

bounds attributes of the computer application to perform detection of one or more security

events, wherein the one or more security events is associated with malicious action outside

the address bounds attributes of the computer application; and

based upon the detection of the one or more security events:

pausing execution of at least one active process or thread associated with the

computer application; and

modifying, in a manner that preserves continued execution of the computer

application, at least one computer routine associated with the at least one active

process or thread associated with the computer application, the modifying creating a

trampoline from vulnerable code to non-vulnerable code.

[0018] According to another aspect of the present invention there is provided a computer

system comprising:

an instrumentation engine configured to:

extract a model of a computer application during load time, the extracted

model including address bounds attributes of the computer application;

store the model of the computer application;

insert instructions into the computer application to collect data at runtime; and

an analysis engine configured to:

analyze the data collected at runtime against the stored model including

address bounds attributes of the computer application to perform detection of one or

more security events, wherein the one or more security events is associated with

-7

malicious action outside the address bounds attributes of the computer

application; and

based upon the detection of the one or more security events:

pause execution of at least one active process or thread associated with

the computer application; and

modify, in a manner that preserves continued execution of the

computer application, at least one computer routine associated with the at least

one active process or thread associated with the computer application, the

modifying creating a trampoline from vulnerable code to non-vulnerable code.

[0019] According to another aspect of the present invention there is provided a computer

implemented method comprising:

extracting a model of a computer application during load time, the extracted model

including address bounds attributes of the computer application;

storing the model of the computer application;

inserting instructions into the computer application to collect data at runtime;

analyzing the data collected at runtime against the stored model including address

bounds attributes of the computer application to perform detection of one or more security

events, wherein the one or more security events is associated with malicious action outside

the address bounds attributes of the computer application;

upon the detection of the one or more security events, temporarily remediating

memory corruption associated with the computer application prior to executing one or more

return instructions;

reporting actionable information based upon the one or more detected security events;

and

based upon the detection of the one or more security events:

pausing execution of at least one active process or thread associated with the

computer application; and

modifying, in a manner that preserves continued execution of the computer

application, at least one computer routine associated with the at least one active

process or thread associated with the computer application, the modifying creating a

trampoline from vulnerable code to non-vulnerable code.

-8

[0020] According to another aspect of the present invention there is provided a computer

system comprising:

an instrumentation engine configured to:

extract a model of a computer application during load time, the extracted

model including address bounds attributes of the computer application;

store the model of the computer application;

insert instructions into the computer application to collect data at runtime; and

an analysis engine configured to:

analyze the data collected at runtime against the stored model including

address bounds attributes of the computer application to perform detection of one or

more security events, wherein the one or more security events is associated with

malicious action outside the address bounds attributes of the computer application;

upon the detection of the one or more security events, temporarily remediate

memory corruption associated with the computer application prior to executing one or

more return instructions;

report actionable information based upon the one or more detected security

events; and

based upon the detection of the one or more security events:

pause execution of at least one active process or thread associated with the

computer application; and

modify, in a manner that preserves continued execution of the computer

application, at least one computer routine associated with the at least one active

process or thread associated with the computer application, the modifying creating a

trampoline from vulnerable code to non-vulnerable code.

[0021] Unless the context clearly requires otherwise, throughout the description and the

claims, the words "comprise", "comprising", and the like are to be construed in an inclusive

sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of

"including, but not limited to".

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] The foregoing will be apparent from the following more particular description of

example embodiments of the invention, as illustrated in the accompanying drawings in which

-9

like reference characters refer to the same parts throughout the different views. The drawings

are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of

the present invention.

[0023] FIG. 1 illustrates an example application infrastructure, according to some

embodiments of the present disclosure.

[0024] FIG. 2 illustrates an example user-interaction with the application infrastructure of

FIG. 1, according to some embodiments.

[0025] FIG. 3A shows an example flow chart of load time operations executed by a

client.

[0026] FIG. 3B illustrates a flowchart of an example method (and system) for protection

against malicious attacks that are facilitated through memory corruption, in embodiments of

the present disclosure.

[0027] FIG. 3C illustrates a flowchart of an example method (and system) for protection

against malicious attacks that exploit code vulnerabilities to cause memory corruption, in

embodiments of the present disclosure.

[0028] FIG. 4A is a block diagram of a memory based attack, according to some

embodiments.

[0029] FIG. 4B is a block diagram of a first stage of stack corruption detection

functionality associated with a binary virtual patching application/probe (also known as

"bvpProbe"), according to some embodiments.

[0030] FIG. 4C is a block diagram of a first stage of heap corruption detection

functionality associated with a binary virtual patching application/probe (also known as

"bvpProbe"), according to some embodiments.

[0031] FIG. 5A illustrates patching of an individual patch of a static or dynamic linked

library (DLL) or shared object in real time, according to some embodiments.

[0032] FIG. 5B illustrates loading a patch at start up, according to some embodiments.

[0033] FIG. 5C illustrates a cycle associated with purging (or removing) one or more

individual lite patches, according to some embodiments.

[0034] FIG. 6 is a block diagram of a patching timeline, according to some embodiments.

[0035] FIG. 7A illustrates an example block diagram of the application runtime

monitoring and analysis solution (ARMAS) in embodiments of the present disclosure.

- 10

[0036] FIG. 7B illustrates an example protocol data unit (PDU) used to transmit data

within the ARMAS infrastructure of FIG. 7A.

[0037] FIG. 8 illustrates a computer network or similar digital processing environment in

which embodiments of the present disclosure may be implemented.

[0038] FIG. 9 illustrates a diagram of an example internal structure of a computer (e.g.,

client processor/device or server computers) in the computer system of FIG. 8.

DETAILED DESCRIPTION

[0039] A description of example embodiments of the invention follows.

In an application infrastructure of a data center for an enterprise, such as the one shown in

FIG. 1, web servers receive incoming web requests (e.g., HTTP requests) from users (or from

other machines through web services). However, the embodiments illustrated in FIG. 1 are

not limited to a web application infrastructure or a data center, and may include, but are not

limited to personal, enterprise, cloud-based and industrial control applications. In response to

a web request, a web server authenticates the web service, and if the authentication is

successful, establishes a session for the remote user to access information from the enterprise

system (via web servers, portals, and application servers) in response to further web requests.

The web service may access information from various applications, such as account services,

trade finance, financial accounting, document management, and any other application without

limitation, executing on computers of the enterprise system.

[0040] The web server internally maintains user and session (i.e., state) related data for

the session, but does not pass on this data to the next server when forwarding an incoming

request to one or more application servers for processing. That is, the user and session data is

terminated at the web server of the web application infrastructure of FIG. 1 in the

demilitarized zones. Then, when the application server sends the web server a response to

the web request, the web server references the user and session data to determine which user

(identified by their user name or IP address) to send the response. A web server may maintain

the user and session data for simultaneously managing thousands of web sessions in this

manner. Some of the thousands of web sessions (user and session data) may belong to

hackers that are attempting to exploit code vulnerabilities in the various applications

executing on the computers of the enterprise system (and corrupt those applications).

- 11

Overview of Malware Attacks

[0041] The National Vulnerability Database (NVD) enumerated approximately 4100

application vulnerabilities in 2011 and approximately 5300 application vulnerabilities in

2012, which are divided into twenty-three attack categories. While a few of the attack

categories result from negligence or misconfiguration, the largest number of attack categories

involve a malicious actor purposely injecting, and later causing execution of, malicious

content in an executing process of an organization. The process of injecting such malicious

content involves identifying and exploiting some poorly designed code that performs

inadequate input validation. For example, if the code lacks in user input size related

validation, the code may allow buffer error style attacks that are included in the Buffer Errors

attack category. In these attacks, the malicious actors are injecting malicious content in an

attempt to infiltrate, determine content of value and then ex-filtrating such content. Malicious

actors may also mutilate such content for profit. Content may include confidential

information, such as credit card data, intellectual property, and social security numbers. The

malicious actor may then use this confidential information to profit by selling this

information to the highest bidder.

Example System Detecting Attacks

[0042] FIG. 2 illustrates example interactions within the web application infrastructure of

FIG. 1. In a web application infrastructure (as shown in FIG. 2), a protected web server

receives a web request (e.g., HTTP requests) from a user (via a web service client). Using

information included in the web request (e.g., URL), the web server authenticates the web

service user, and if the authentication is successful, establishes a connection (or session) for

the web service user to access data within the web application infrastructure.

[0043] While connected to the application, an attacker may obtain access to code in

memory through a trampoline. However, the application runtime monitoring and analysis

(ARMAS) appliance of FIG. 2 communicates with the application to detect such memory

corruption. Once such memory corruption is detected, the ARMAS appliance utilizes the

shadow stack or Function Pointer Jump Table (which has stored the known pre-corruption

state) in order to temporarily restore the application to its known pre-corruption state. The

unauthorized access may then be declared a security attack by a malicious adversary, which

may be reported by the management server on the user interface for attack notification and

- 12

corrective remedial action. Then, the ARMAS appliance, in communication with the

management server, may obtain one or more patches and push the one or more patches out

the affected servers, in order to remediate the corruption caused due to the hacker. In other

embodiments, the ARMAS appliance may instead dynamically execute other responses at the

web service, such as logging an error in relation to the corrupted memory (code instructions),

dump an image of the application process containing the corrupted memory (e.g., a core

dump), allow the corrupted application to continue executing until it terminates in a crash, or

any other system response without limitation.

[0044] FIG. 3A shows the operations that an example client referred to herein as the

Monitoring Agent (also known as "Resolve Client," according to some embodiments) may

perform at load time to prepare for detecting malware activity, in accordance with principles

of the present disclosure. Some embodiments may include one or more corresponding

Application Maps and/or Application Map Databases as described in the "Automated

Runtime Detection of Malware," PCT Application No. US2014/055469 (also PCT

Publication No. W02015/038944, filed September 12, 2014, incorporated herein by reference

in its entirety), or other techniques known in the art. The Path Validation Engine is part of

the Monitoring Agent that can reliably detect malware activity within microseconds from the

point the malware starts to run. The Monitoring Agent first verifies the integrity and then

analyzes each module of the application in order to extract a model of the application. The

model of the application is stored in an Application Map Database that may contain the

following tables: Code Table, Export Table, V Table, Other Table, Basic Block Table, Soft

Spot Table, Memory Operand Table, Transition Table, Disassembly Table, and Critical OS

Functions Table. In the embodiment in FIG. 3A, the Application Map Database is located on

a remote system from the Monitoring Agent. In other embodiments, the Application Map

Database can be saved on the same hardware where the application is executing or on

hardware external to both the Monitoring Agent and Analysis Engine. The Monitoring Agent

uses a Streaming Engine to package the extracted model of the application into Resolve

Protocol Data Units (PDUs) to dispatch the data to be stored in the Application Map

Database on the analysis system.

[0045] After the Monitoring Agent starts processing individual executable components of

the application at load time at 302, the same operations are performed in a loop for each

module of the computer application at 304 and 306. As each module of the application loads

- 13

in memory, the Monitoring Agent examines all the instructions of the given module. The

modules of the application file are in a standard file format, such as a Portable Executable

(PE), Executable and Linkable Format (ELF) or Common Object File Format (COFF). In

this format, the modules of the application are organized into sections that include a code

section, exported data section, v-table section, and many other additional sections. As each

module of the application loads in memory, the Monitoring Agent extracts relevant

information as part of the model of the application. The bounds and access attributes of the

code section of the module are dispatched and saved to the Application Map Database in the

Code Table at 314. Each record in this table is of the form {Start Address, End Address}.

The bounds and number of instructions of each basic block in the code section of the module

are dispatched and saved in the Application Map database in the Basic Block Table at 330.

Each record in this table is of the form {Start Address, End Address, and Number of

instructions}. The bounds and access attributes of the exported data section of the module

are saved in the Application Map database in the Export Table at 318. Each record in this

table is of the form {Start Address, End Address}. The bounds and access attributes of a v

table section (if any) of the module are dispatched and saved in the Application Map database

in the V Table at 322. Each record in this table is of the form {Start Address, End Address}.

The bounds and access attributes of all other sections of the module are dispatched and saved

in the Application Map database in the Other Table at 326. Each record in this table is of the

form {Start Address, End Address, and Protection Attributes}.

[0046] As each module loads into memory, the Monitoring Agent also extracts other

memory mapping data 336 and soft spot data 334 from the modules of the application.

Memory mapping data includes instructions for memory allocation, memory de-allocation,

and memory writes to critical segments of memory. Soft spot data includes instructions for

manipulating large memory buffers (spot spots) including instructions that execute loops

(such as instructions with REP style opcodes). The address of soft spot instructions and the

size of each memory write are dispatched and saved in the Application Map database in the

Soft Spot Table at 334. Each record in this table is of the form {Address, Write size}. The

address and the write size will be stored for memory write instructions where the destination

is a memory operand. This data is stored in the Application Map Database in the Memory

Operand Write Table at 340. Each record in this table is of the form {Source Address,

Memory Write Size}.

- 14

[0047] As each module of the application loads into memory, the Monitoring Agent also

extracts transition mapping data (branch transfer or transition data) from the module. The

transition mapping data can be for a direct transition mapping where transition instructions

for the target address can be presently determined or for an indirect memory mapping where

transition instructions for the target address have run time dependency preventing these

instructions from being fully determined until runtime. The full disassembly of instructions

where indirect transitions occur are dispatched and saved in the Application Map Database in

the Disassembly Table at 324. All the extracted transition mappings are also dispatched and

saved in the Application Map Database in the Transition Table at 324 and 332. Each record

in this table is of the form {Source Address, Destination Address}. In addition, an operator

can manually add Transition Mapping Data into the Map Transition Table prior to runtime at

320. In order to add records manually into the Map Transition Table, an operator may be

required to authenticate themselves using a 2-factor authentication process to eliminate

possible tampering of the Transition Table by malware.

[0048] As each module of the application loads into memory, the Monitoring Agent also

checks the application for integrity at 308. In one embodiment, this is accomplished by

computing a checksum such as the MD5 hash of the code as it is loading and comparing it

against its corresponding known good checksum saved in a Checksum database.

Alternatively, a trusted checksum verification service can also be leveraged. This ensures that

the code of the currently loading module is not already corrupted with malware. The

Monitoring Agent may be configured to throw an alarm if the integrity check fails at 310.

[0049] At load time, particular OS functions and system calls that affect access

permissions and privileges are also identified and their addresses are dispatched and saved in

the Critical OS Functions Table at 312 and 316. The particular OS functions and system calls

dispatched by the Monitoring Agent have long reaching effects on the execution path of the

executable. These administrative and critical OS functions and system calls change access

permissions of memory segments, bump up access privileges, change the no-execute policy,

change the Structured Exception Handler protection, shut down the Address Space Layout

Randomization policy, allocate and de-allocate memory, create a new process, create a new

thread, or are involved in encrypting and decrypting data.

[0050] As each module of the application loads into memory, the Monitoring Agent

additionally instruments instructions that are inserted into the module of the application to

- 15

collect data at runtime. The instrumented code is inserted into the modules of the application

using a dynamic binary analysis engine and/or a byte code instrumentation engine. Soft spot

instructions are instrumented in areas within the modules that malware tend to attack, such as

instructions that execute loops, to collect data to track activities in these areas at runtime at

338. Direct and indirect transition mapping instructions are instrumented in the modules to

collect data to track activities involving transition mappings at runtime at 328. Memory

Operand Write instructions are instrumented in the modules to collect data on memory write

activities at runtime at 336. In the presence of self-modifying code, the basic blocks may

change at run time. Additionally, instructions are instrumented in the application to collect

data for activities involving OS functions and systems calls stored in the Critical OS Function

Table at 312 and 316.

[0051] As a result of the instrumentation inserted at load time, critical information is

generated at run time and collected for analysis. As the transition mapping data related

instrumentation is accessed, the Resolve Client collects the thread ID, current instruction

address, destination instruction address and optionally data contained in each general purpose

register. As the Soft Spot instrumentation is accessed before the instruction is executed, the

Monitoring Agent captures the thread ID and the bounds of the stack through appropriate

registers. As the soft spot instrumentation is completed, the Monitoring Agent captures the

thread ID and a few general purpose registers that allow it to estimate the region of memory

updated by this write operation. As the critical API or OS call instrumentation is accessed

before the call is executed, the Monitoring Agent captures the thread ID, API name or System

Call number and input parameters. As the critical API or OS call instrumentation is accessed

after the call is executed, the Monitoring Agent captures the thread ID, API name or System

Call number and return value. Instrumentation in the OS functions or system calls that

allocate or de-allocate memory helps to track the regions of memory that are currently

involved in the various heaps the application may have created. This memory envelope is

leveraged to track the target of indirect memory writes run time in order to find if the

malware wants to overrun control structures in the heap. In addition, by tracking the bounds

of basic blocks using a cache, the Analysis Engine can determine if the basic block has

changed. When the determination is positive, the Basic Block Table in the model database

can be updated.

- 16

Methods of Preventing Attack

[0052] FIG. 3B illustrates a flowchart of an example method (and system) 300 for

protection against malicious attacks that are facilitated through memory corruption, in

embodiments of the present disclosure. In some embodiments, the systems and methods may

extract 382 a model of a computer application during load time. The model may include, but

is not limited to, source information (e.g., source memory addresses), destination information

(e.g., destination memory addresses), transitions, branch boundary information, basic block

boundary information, code segment bounds, import and export table bounds, jump table

bounds, or any other type of computer-routine-related information known to one skilled in the

art. The systems and methods may store 384 the model of the computer application. The

systems and methods may insert 386 instructions into the computer application to collect data

at runtime. The systems and methods may analyze 388 the data collected at runtime against

the stored model of the computer application to perform detection of one or more security

events. The systems and methods may, based upon the detection of the one or more security

events, modify 389 at least one computer routine associated with at least one active process

associated with the computer application (i.e., insert a patch).

[0053] Embodiments of the method (and system) 300 remedy/protect against various

types of attacks. Those attacks that target process memory at runtime present many serious

technical and operational challenges (which are remedied by some embodiments). For

example, most cyber security solutions do not have the ability to observe operations in

process memory at the granularity that is required to deterministically declare if an attack is

in progress or not. As a result, sophisticated memory based attacks like APTs (advanced

persistent threats) can go undetected for years. Ordinarily, until a process running vulnerable

code is restarted, such code cannot be swapped out for non-vulnerable code. As a result, the

enterprise is forced into one of two unpalatable choices - keep running and become a target

for even the most unsophisticated attacker, or reboot and suffer from discontinuity of

operations and revenue. An attack that leverages sophisticated memory corruption may begin

with the application's control flow being maliciously altered, such that instead of the

application's own code executing thereafter, adversary driven code begins to execute.

Another outcome of application code ceding control may be that in other attack scenarios, the

application may take an unhandled exception and crash. This form of attack is effectively a

denial of service attack.

- 17

[0054] FIG. 3C is a flowchart of an example method (and system) 390 for protection

against malicious attacks that exploit code vulnerabilities to cause memory corruption, in

embodiments of the present disclosure. The method 390 creates 391 a security policy

database in memory of the web service infrastructure of FIG. 2 (or other system

infrastructure). The security policy database includes tables of policies, which map code

vulnerabilities of a computer application to corresponding system responses. The code

vulnerabilities and mapped system responses may be provided by a development team (or

other individuals) associated with the computer application, or automatically or statically

determined by a code analyzer or other such system tool (e.g., of the ARMAS appliance)

analyzing the code of the computer application at load time or runtime. The method 390

detects 392 an event accessing vulnerable code (a code vulnerability) of the computer

application. For example, the accessing of the vulnerable code may cause a memory access

violation or other memory or system violation, which triggers an unhandled hardware or

software exception which would normally cause the thread or process of the application

executing the vulnerable code to terminate (i.e., crash). In other embodiments, the method

390 may compare a saved copy of the computer application to the presently loaded or

executed computer application to detect the memory corruption due to an accessed code

vulnerability. In these embodiments, the method 390 may proactively trigger a hardware or

software exception. The method 390 then detects the accessing of the code vulnerability by

instrumenting an exception handler that intercepts (catches) the triggered hardware or

software exception and associates the code vulnerability prior to the exception causing the

termination of the computer application. To do so, the method 390 overwrites the kernel

mode exception handler with the instrumented exception handler so that the method 390 may

take control of the computer application back from the kernel and initiate a system response

to the triggered exception. Otherwise, the kernel would crash the computer application in

response to the triggered exception.

[0055] The method 390 provides the instrumented exception handler to include one or

more instructions that automatically query the accessed code vulnerability associated with the

exception in the security policy database in response to intercepting the exception. By the

automatic query of the instrumented exception handler, the method 390 determines 393 the

system response mapped to the accessed code vulnerability in a policy contained in the

security policy database. The determined system response is retrieved from the policy in the

- 18

form of a system callback routine. The instrumented exception handler automatically

executes 394 the sysetm response (i.e., system callback routine) to prevent the exploitation of

the accessed code vulnerability. The system callback routine may include, without limitation,

logging the accessing of the code vulnerability as an error in a system log, dumping an image

of the application thread or process containing the accessed code vulnerability, restoring a

saved copy of the computer application prior to accessing the code vulnerability, dynamically

loading one or more remedial patches from memory in the web service infrastructure to

modify the computer routine containing the code vulnerability, continue execution of the

computer application until termination results (i.e., the computer application crashes) due to

the memory violation, immediately terminating the computer application, or any other system

response in relation to the code vulnerability.

ARMAS Probe

[0056] An example of a malicious adversary seizing control from the application is

depicted in FIG. 4A. The code (blocks of instructions) 405 of a function Fooo may include

vulnerabilities that may be exploited by an attacker. As illustrated in FIG. 4A, an adversary

may flood the stack memory 415 of the vulnerable function Fooo. As shown, the stack

memory 415 of Fooo includes local variables, a saved base pointer, a saved return pointer

418, and parameters. When the memory location of saved return pointer of the stack memory

415 of Fooo is determined and overrun by an attacker, then when the Fooo exits (returns

from the stack), the address of the next instruction may be retrieved from the saved return

pointer 418 by the attacker, and the application may come under attack. Attackers may use

such a technique to make a malicious movement to a different code path, such as trampoline

(jump) from the application code into their own malicious code (adversary trampoline code

410).

[0057] In FIG. 4A, the target of an attack may be the Instruction Pointer Register. The

attacker may also target any other register as well. Many function pointers may be declared

in the application code and may be are loaded using indirect memory addresses whose value

is read from various registers. By inserting malicious data in a targeted register, an attacker

may alter the program execution flow. For example, the attacker may target register EAX

(accumulator register) by looking for a ROP (return oriented programming) gadget that

targets an instruction in code 405 of Fooo like:

- 19

move rax, rsp

ret

[0058] This may have the effect of loading an adversary controlled value from the stack

415 into other registers such as RAX. Next, the adversary may trigger a trampoline from

application code 405 of Fooo to their code 410 by executing an instruction such as "call

[RAX]." Regardless of which register is targeted, the effect may be the same - adversary

code may start to execute.

[0059] In response, embodiments include an application include a runtime monitoring

and analysis (ARMAS) Probe/Application. This ARMAS Probe executes instrumented

instructions in line in every thread of the process and collects source and destination

information for branch transfer instructions, such as the function calls (e.g., move rax, rsp

shown above) and return function calls (e.g., rets shown above) that the Probe encounters at

runtime. The instrumented instructions then relay the highly granular information of the

threads to the ARMAS Probe, which may make the determination whether a branch transfer

is really a code trampoline into an adversary's code or not. Embodiments include a smarter

ARMAS Probe, called the binary virtual patching application/probe (or "bvpProbe"), which

overcomes the limitation of constantly reaching out to the ARMAS Appliance for

confirmation.

[0060] According to some embodiments, the operation of the bvpProbe can be broken

into three stages (stages 1 through 3, as illustrated to follow):

Stage 1 Functionality of the bypProbe

[0061] The bvpProbe may protect against stack based and/or heap based attack

trampolines. FIG. 4B is a block diagram of a first stage of stack corruption detection

functionality associated with bvpProbe, according to some embodiments. FIG. 4C is a block

diagram of a first stage of heap corruption detection functionality associated with a bpProbe,

according to some embodiments.

[0062] As illustrated in FIG. 4B, for a stack based trampoline, as a first step (step 1),

some embodiments may save the intended target address 420 of the computer routine. As

illustrated in FIG. 4B, in the next step (step 2), memory corruption 422 may occur by one or

more attackers (e.g., as described in references to FIG. 4A). As illustrated in step 3 of FIG.

4B, some embodiments may check 424 for (detect) the memory corruption. As illustrated in

- 20

step 4 if FIG. 4B, some embodiments may bypass the memory corruption by applying a copy

of the saved target 426 to the target address and executing 428 the saved target. Some

embodiments may handle memory corruption using one or more techniques for memory

corruption handling known to those skilled in the art, including but not limited to techniques

such as the "System and Methods for Run Time Detection and Correction of Memory

Corruption," U.S. Patent No. 8,966,312, or other techniques known in the art. As such, some

embodiments may detect a memory corruption 424 of at least one portion of memory during

run-time and correct the memory corruption of the at least one portion of memory by

replacing the at least one portion of memory with a backup copy of the at least one portion of

memory (i.e., the copy of the saved target 426). In this way, memory corruption may be

corrected in a timely fashion while minimizing security risks.

[0063] As also illustrated in FIG. 4B, for stack based trampoline, instead of simply

dispatching runtime transition data to the ARMAS Appliance, the bvpProbe may save critical

state at the point of entry into a routine. If the bvpProbe determines 424 that the branch

transfer operation on a given thread has been maliciously altered as shown in step 3 of FIG.

4B, it can undo the memory corruption and restores 426-428 the contextually appropriate

destination by restoring the saved intended target 420 back onto the stack from where the

address for the next instruction to be executed is retrieved.

[0064] FIG. 4C illustrates corruption detection and handling for heap based trampolines.

As illustrated in FIG. 4C, as the application runs and executes in step 1 of FIG. 4C, adversary

controlled input is written to an instance (Instance 1) of ObjA in step 2 of FIG. 4C. Instance

1 of ObjA, which contains vulnerable code, was previously declared in the heap section of

application memory. Ordinarily each object (e.g., ObjA and ObjM) of the application has one

or more virtual function pointers (vptrs), such as Function Pointers 1,2...N,...,X, that points

to the common virtual pointer table (vtable) in a read only data section. According to some

embodiments, function pointers may be declared in the read only data section of the

application memory. When the adversary data overwrites a vptr (which correspond to

vulnerable code of ObjA), the pointer from vptr to vtable may be prevented in step 2 of FIG.

4C. At some later point in time, when known good code accesses ObjA in step 3 of FIG. 4C,

instead of executing a known good function pointer, the adversary chosen malicious code

begins to execute as in step 4 of FIG. 4C. The bvpProbe detects the trampoline at step 4 of

FIG. 4C by comparing the destinations (malicious code) with known good destinations.

- 21

Stage 2 Functionality of the bvpProbe

[0065] The bvpProbe may collect deep insight into the vulnerability and provide highly

actionable information to the development team. Once the development team has developed

and tested a non-vulnerable version of the vulnerable function, then the new code for that

function may be packaged into a library and released as an individual patch ("lite" patch).

Once a verifiable and signed version of the "lite" patch is made available at the ARMAS

Dashboard, it can be pushed to one or more affected servers where the bvpProbe may be

provisioned to run. The "lite" patch may be stored in memory at the affected servers, such

that the "lite" patch may be injected, as necessary, from memory into a computer application

(rather than repeatedly accessing from a file on the ARMAS Dashboard or over the network

from a developer site).

[0066] On receiving the individual patch ("lite" patch), the ARMAS probe may save the

configuration data for the corresponding individual patch ("lite" patch). Then, either on user

command (or automatically), or in response to an error, process threads may be suspended.

As illustrated in FIG. 5A, process threads may be suspended in response to a buffer error

(BE) vulnerability hit.

[0067] As illustrated in FIG. 5A, in suspending the process threads, the ARMAS probe

may halt one or more threads in the application using an approach including but not limited to

one or more of the following mechanisms, based on the complexity of the application. The

mechanism may use intrinsics provided by the hardware running the application. A first

example mechanism (method) uses the SuspendThreado API. In this method, a process is

running 505 and branch execution vulnerability is hit 510 by an attacker. Themethod

suspends 515 every thread in the process recursively using the SuspendThreado API. The

method then injects 520 a lite patch DLL (as described above) into the suspended thread of

the process, which patches 525 the vulnerable function and updates 530 the corresponding

configuration file. Once the code has been patched, the probe can call the ResumeThreado

API to resume 535 the process.

[0068] This approach may land a multithreaded application into operational issues due to

timeouts getting truncated, race conditions due to processes waking up out of order and/or

deadlock due to some lower priority thread acquiring a semaphore on being woken up. A

- 22

second example mechanism is the use of one or more system calls (such as

NtSuspendProcess) implemented in the kernel that can suspend a process. A third example

mechanism is the use of the Debugger Interface (DebugActiveProcess() to halt and

DebugActiveProcessStopo to resume, in order to stop the process temporarily.

[0069] As illustrated in FIG. 5A, once the process is "frozen" (i.e., suspended 515) it is

safe to inject 520 new code (i.e., inject a "lite" patch DLL and perform a "hot" patch for the

vulnerable function) and create trampolines from the old vulnerable code to the new non

vulnerable code. These non-malicious trampolines may be implemented using, but not

limited to using, one of the following mechanisms. A first example mechanism is to directly

edit the functionality in the code segment to jump to where the new "lite" functionality is

loaded in memory. The second example mechanism is useful in the case that the affected

functionality is an exported functionality. The second example mechanism changes the

address in the import tables so that instead of the old vulnerable code being called, the new

non-vulnerable code is invoked. A third example mechanism inserts code that creates an

event and tie new code to the event handler.

[0070] As illustrated in FIG. 5A, the bvpProbe may wake up the suspended process (i.e.,

resume 535 the process). However, as also illustrated in FIG. 5A, before waking up the

suspended process, configuration information may be updated 530 in the configuration file.

[0071] The configuration information may include information for multiple patches (i.e.,

multiple "lite" patches). It is important to save configuration related information for the

patch. This configuration information may allow the bvpProbe to tie (associate) one or more

individual ("lite") patches to a specific release of an executable module. Then, until the

configuration is changed, the bvpProbe may reload the one or more individual ("lite") patches

on start up. The configuration file itself may be a target for malicious adversaries. Therefore,

configuration file contents may be encrypted with an endpoint specific "canary" and its file

integrity checksum information may be published, so that the configuration file may be

verified before the bvpProbe starts to utilize it for reloading patches.

[0072] It is also important that the above-mentioned operation of virtual patching (e.g.,

using a "lite" patch, as illustrated in FIG. 5A) may occur without the process being

terminated. This is hugely important in scenarios where the application delivers mission

critical operations to the enterprise, or if the cost to patch the application is large.

- 23

[0073] However, as illustrated in FIG. 5B, if the process is restarted before the full patch

(i.e., aggregate patch, which may include one or more individual or "lite" patches) is

delivered, the "lite" patch insertion preferably occurs at start up. As illustrated in FIG. 5B,

when a power cycle occurs, the bvpProbe application initiates the process 540, and reads 542

the configuration file to retrieve saved configuration information (including but not limited to

patch information). Next, as illustrated in FIG. 5B, the bvpProbe application loads 543 one

or more individual ("lite") patches onto each module of the application, in order to patch 545

potentially vulnerable functions for each module. After loading the desired "lite" patches, the

bvpProbe may start running the application process.

Stage 3 of the bvpProbe

[0074] At some subsequent time, one or more users (such as a software development

team) may release a full patch (i.e., aggregate patch, which may include one or more

individual or "lite" patches) comprising of fixes to multiple vulnerabilities. A full patch may

include one or more lite patches. At that time, one or more in-memory, "lite" patches may be

explicitly removed, as illustrated in FIG. 5C. FIG. 5C illustrates a cycle associated with

purging (or removing) one or more individual patches, according to some embodiments.

[0075] As illustrated in FIG. 5C, one or more communication messages (purge patch

messages) may be dispatched 570 to/from the ARMAS dashboard from/to the ARMAS

bvpProbe, so that the lite patch configuration information may be updated in the

configuration file. The bvpProbe registers 571 the purge patch messages and update 572 the

configuration file, which may include information for multiple lite patches, to reflect the most

recent version(s) of lite patches that are applicable to one or more modules. In this way, the

one or more versions of lite patches that are inapplicable to the one or more modules may not

be loaded onto the module (i.e., "purged," or not loaded). Then, as illustrated in FIG. 5C, the

bvpProbe starts 573 the process and loads 574 each module. Once the modules are loaded,

the bypProbe loads 575 onto each module the applicable lite patches (but not the inapplicable

lite patches), which patches 576 the corresponding potentially vulnerable functions prior to

resuming the process. The bvpProbe then resumes 577 the running of the process. In this

way, some embodiments may the bvpProbe purge the lite patches for which a full patch has

been released.

Virtual Patching Timeline

- 24

[0076] FIG. 6 is a block diagram of a patching timeline, as well as a summary of

bvpProbe functionality (as described herein), according to some embodiments. As illustrated

in the timeline of FIG. 6, after an application is deployed, a memory based attack (i.e., zero

day attack) may occur in the stack of a function, such as stack 415 of function Foo 405, as

described by the memory based attack (or malicious trampoline) of FIG. 4A. As illustrated in

FIG. 6, according to some embodiments, the bvpProbe (in stage 1) may inhibit the malicious

trampoline (adversary trampoline code 410) that otherwise would have executed the zero-day

attack. As illustrated in FIG. 6, according to some embodiments, in Stage 2, the bvpProbe

may load a "lite" patch 580, and in Stage 3 the bvpProbe may revert (or remove or purge) the

loaded "lite" patch 580 in lieu of a full released upgrade 582, which may require a reboot.

Virtual Patching By Exception Handling

[0077] In other embodiments, the ARMAS appliance executes a virtual patching

application that can detect accessing of code vulnerabilities prior to memory corruption. In

these embodiments, as development teams (e.g., application vendors) determine code

vulnerabilities of an application via the use of the ARMAS application or by other means of

dynamic or static code analysis (e.g., code analyzers), the code vulnerabilities of the

application are configured as policies. Each configured policy includes a determined code

vulnerability and a corresponding system response configured as a system callback routine.

When a development team configures a policy for a determined code vulnerability, the team

also programs the corresponding system callback routine to execute a recommended system

response to the determined code vulnerability. The recommended system responses

(programmed as callback routines) include, without limitation, logging the accessing of the

code vulnerability as an error in a system log, dumping an image of the computer application

thread or process containing the accessed code vulnerability, restoring a saved copy of the

stack of the computer application, dynamically loading one or more remedial patches from

memory in the web service infrastructure to modify the computer routine containing the code

vulnerability, continue execution of the computter application until it crashes due to the

memory violation, immediately terminating the computer application, or any other sysetm

response in relation to the code vulnerability. The team may also configure a default policy

for the computer application with a callback routine programmed to execute one of the above

- 25

recommended system responses. The configured policies are stored in tables of a security

policy database that is stored at a network location accessible to the ARMAS appliance.

[0078] The ARMAS appliance instruments a hardware or software exception handler at

the application servers of the network. When an unhandled memory access violation, or

other unhandled memory or system violation, occurs because of an event (e.g., web service

request) accesses vulnerable application code, the hardware or software (e.g., operating

system) executing the application triggers an exception. The hardware or software exception

handler instrumented by the ARMAS appliance intercepts the triggered exception, and

associates the code vulnerability, and queries the security policy database for a policy

containing the associated code vulnerability. To do so, the ARMAS appliance overwrites the

kernel mode exception handler with the instrumented exception handle to take back control

of the application from the kernel in order to initiate a system response to the triggered

exception. Otherwise, the kernel would crash the application in response to the triggered

exception. If a corresponding policy is located in the security policy database, the

instrumented exception handler executes the callback routine of the policy in response to the

accessing of the associated code vulnerability. If no corresponding policy is located, the

instrumented exception handler executes the callback routine from the default policy for the

computer application in the security policy database.

[0079] The callback routine functions as a virtual patch for responding to the

vulnerability in the accessed code until a full patch, provided by the development team of the

computer application, is available for download to the application server. Below is an

example of the exception handle code. Option 5, shown in the example, may comprise

injecting a "lite" patch saved in memory as describe above in reference to FIGs. 5A-5C.

catch (Exception e)

{
virtual patch = Retrieve programmable callback from Security Policy

database routine for code associated with unhandled

memory violation;

Execute virtual patch;

// Executing virtual patch may comprises one of the following

examples:

- 26

/ Option 1: Console.WriteLine("An error occurred: '{0}', e);

/ Option 2: Save process image to disk (core dump);

/ Option 3: Restore Stack and move on;

/ Option 4: Let process continue and crash;

/ Option 5: Patch process without restarting process

// .

// .

// .

/ Option x (without limitation)

}

Application Runtime Monitoring and Analysis (ARMAS) Infrastructure

[0080] FIG. 7A depicts a high level block diagram of an example application runtime

monitoring and analysis (ARMAS) infrastructure. This infrastructure may be configured on a

various hardware including computing devices ranging from smartphones, tablets, laptops,

desktops to high end servers. As shown in this figure, data collection performed by the

Monitoring Agent 702 may be segregated from analysis performed by the Analysis Engine

737 to improve application performance. The infrastructure provides high availability to

prevent hackers from subverting its protection against malware attacks. The Monitoring

Agent 702 interacts with an application to gather load time and runtime data. The

infrastructure of the application 701 includes process memory 703, third-party libraries 704,

kernel services 706, and an instruction pipeline 707. The infrastructure of the Monitoring

Agent 702 includes the Instrumentation & Analysis Engine (instrumentation engine) 705,

graphical user interface (GUI) 711, Client Daemon 708, Configuration database 709, and

Streaming and Compression Engine 710, and central processing unit (CPU) 736. Local or

remote users 750 of the application 701 interact with the application either through devices

like keyboards, mice or similar 1/O devices or over a network through a communication

channel that may be established by means of pipes, shared memory or sockets. In response

the application process 703 dispatches appropriate sets of instructions into the instruction

pipeline 707 for execution. The application may also leverage its own or third party libraries

704 such as libc.so (Linux) or msvcrtxx.dll (Windows). As functionality from these libraries

- 27

is invoked, appropriate instructions from these libraries are also inserted into the instruction

pipeline for execution 707. In addition the application may leverage system resources such as

memory, file I/O etc. from the kernel 706. These sequences of instructions from the

application, libraries and the kernel put together in a time ordered sequence deliver the

application functionality desired by a given user.

[0081] As the application's code begins to load into memory, the instrumentation engine

705 performs several different load time actions. Once all the modules have loaded up, the

instrumented instructions of the application generate runtime data. The Client Daemon 708

initializes the Instrumentation and Analysis Engine 705, the Streaming Engine 710 and the

GUI 711 processes in the CPU at 736 by reading one or more configuration files from the

Configuration database 709. It also initializes intercommunication pipes between the

instrumentation engine, Streaming Engine, GUI, Analysis Engine 737 and itself. The Client

Daemon also ensures that if any Monitoring Agent 702 process, including itself, becomes

unresponsive or dies, it will be regenerated. This ensures that the Monitoring Agent 702 is a

high availability enterprise grade product.

[0082] The Instrumentation and Analysis Engine 737 pushes load and runtime data

collected from the application into the Streaming Engine. The Streaming Engine packages the

raw data from the Monitoring Agent 702 into the PDU. Then it pushes the PDU over a high

bandwidth, low latency communication channel 712 to the Analysis Engine 737. If the

Monitoring Agent 702 and the Analysis Engine 737 are located on the same machine this

channel can be a memory bus. If these entities are located on different hardware but in the

same physical vicinity, the channel can be an Ethernet or Fiber based transport, which allows

remote connections to be established between the entities to transport the load and runtime

data across the Internet.

[0083] The infrastructure of the Analysis Engine 737 includes the Network Interface

Card (NIC) 713, the Packet Pool 714, the Time Stamp Engine 715, the Processor Fabric 716,

the Hashing Engine 717, the TCAM Engine 718, the Application Map database 719, and the

Thread Context database 720, which makes up the REGEX Engine 740. The infrastructure of

the Analysis Engine 737 further includes the Content Analysis Engine 721, the Events and

Event Chains 722, the Event Management Engine 723, the Event Log 724, the Application

Daemon 725, the Analysis Engine Configuration database 726, the Network Interface 727,

the Dashboard or CMS 728, the SMS/SMTP Server 729, the OTP Server 730, the Upgrade

-28

Client 731, the Software Upgrade Server 732, Software Images 733, the Event Update Client

734, and the Event Upgrade Server 735.

[0084] The PDU together with the protocol headers is intercepted at the Network

Interface Card 713 from where the PDU is pulled and put into the Packet Pool 714. The

timestamp fields in the PDU are filled up by the Time Stamp Engine 715. This helps to make

sure that no packet is stuck in the packet Pool buffer for an inordinately long time.

[0085] The Processor Fabric 716 pulls packets from the packet buffer and the address

fields are hashed and replaced in the appropriate location in the packet. This operation is

performed by the Hashing Engine 717. Then the Processor Fabric starts removing packets

from the packet buffer in the order they arrived. Packets with information from the load time

phase are processed such that the relevant data is extracted and stored in the Application Map

database 719. Packets with information from the runtime phase are processed in accordance

with Figure 5. The efficiency of the Analysis Engine 737 can be increased or decreased

based on the number of processors in the Processor Fabric.

[0086] The transition target data is saved in the Thread Context database 720 which has a

table for each thread. The Processor fabric also leverages the TCAM Engine 718 to perform

transition and memory region searches. Since the processor fabric performing lookups using

hashes, the actual time used is predictable and very short. By choosing the number of

processors in the fabric carefully, per packet throughput can be suitable altered.

[0087] When the Analysis Engine 737 performs searches, it may, from time to time find

an invalid transition, invalid operation of critical/admin functions or system calls, or find a

memory write on undesirable locations. In each of these cases, the Analysis Engine 737

dispatches an event of the programmed severity as described by the policy stored in the Event

and Event Chain database 722 to the Event Management Engine 723. The raw event log is

stored in the Event Log Database 724. The Dashboard can also access the Event Log and

display application status.

[0088] A remedial action is also associated with every event in the Event and Event

Chain database 722. A user can set the remedial action from a range of actions from ignoring

the event in one extreme to terminating the thread in the other extreme. A recommended

remedial action can be recommended to the analyst using the Event Update Client 734 and

Event Upgrade Server 735. In order to change the aforementioned recommended action, an

analyst can use the Dashboard 728 accordingly. The Dashboard provides a GUI interface

- 29

that displays the state of each monitored application and allows a security analyst to have

certain control over the application, such as starting and stopping the application. When an

event is generated, the Event Chain advances from the normal state to a subsequent state. The

remedial action associated with the new state can be taken. If the remedial action involves a

non-ignore action, a notification is sent to the Security Analyst using and SMS or SMTP

Server 729. The SMS/ SMTP address of the security analyst can be determined using an

LDAP or other directory protocol. The process of starting or stopping an application from

the Dashboard requires elevated privileges so the security analyst must authenticate using an

OTP Server 730.

[0089] New events can also be created and linked into the Event and Event Chain

database 722 with a severity and remedial action recommended to the analyst. This allows

unique events and event chains for a new attack at one installation to be dispatched to other

installations. For this purpose, all new events and event chains are loaded into the Event

Upgrade Server 735. The Event Update Client 734 periodically connects and authenticates to

the Event Upgrade Server 735 to retrieve new events and event chains. The Event Update

Client then loads these new events and event chains into the Events and Events Chain

database 722. The Content Analysis Engine 721 can start tracking the application for the new

attacks encapsulated into the new event chains.

[0090] Just as with the Client Daemon, the Appliance Daemon 725 is responsible for

starting the various processes that run on the Analysis Engine 737. For this purpose, it must

read configuration information from the Analysis Engine Configuration database 726. The

daemon is also responsible for running a heartbeat poll for all processes in the Analysis

Engine 737. This ensures that all the devices in the Analysis Engine 373 ecosystem are in top

working condition at all times. Loss of three consecutive heartbeats suggests that the targeted

process is not responding. If any process has exited prematurely, the daemon will revive that

process including itself.

[0091] From time to time, the software may be upgraded in the Appliance host, or of the

Analysis Engine 737 or of the Client for purposes such as fixing errors in the software. For

this purpose, the Upgrade Client 731 constantly checks with the Software Upgrade Server

732 where the latest software is available. If the client finds that the entities in the Analysis

Engine 737 or the Client are running an older image, it will allow the analysts to upgrade the

old image with a new image from the Software Upgrade Server 732. New images are bundled

- 30

together as a system image 733. This makes it possible to provision the appliance or the host

with tested compatible images. If one of the images of a subsystem in the Analysis Engine

737 or the Monitoring Agent 702 does not match the image for the same component in the

System image, then all images will be rolled to a previous known good system image.

PDU for ARMAS Communications

[0092] FIG. 7B illustrates an example protocol data unit (PDU) used to transmit data

between the Monitoring Agent 702 and Analysis Engine 737 of FIG. 7A. In order for the

Monitoring Agent 702 and the Analysis Engine 737 to work effectively with each other, they

communicate with each other using the PDU. The PDU can specifically be used by the

Monitoring Agent 702 to package the extracted model of the application and/or collected

runtime data for transmission to the Analysis Engine 737. The PDU contains fields for each

type of information to be transmitted between the Monitoring Agent 702 and the Analysis

Engine 737. The PDU is divided into the Application Provided Data Section, the HW/CVE

Generated, and Content Analysis Engine or Raw Data sections.

[0093] The Application Provided Data Section contains data from various registers as

well as source and target addresses that are placed in the various fields of this section. The

Protocol Version contains the version number of the PDU 752. As the protocol version

changes over time, the source and destination must be capable of continuing to communicate

with each other. This 8 bit field describes the version number of the packet as generated by

the source entity. A presently unused reserved field 756 follows the Protocol Version field.

[0094] The next field of the Application Provided Data Section is the Message

Source/Destination Identifiers 757, 753, and 754 are used to exchange traffic within the

Analysis Engine infrastructure as shown in FIG. 7A. From time to time, the various entities

shown in FIG. 7, exchange traffic between themselves. Not all these devices have or need IP

addresses and therefore, the two (hardware and host) Query Router Engines uses the Message

Source and Destination fields to route traffic internally. Some messages need to go across the

network to entities in the Analysis Engine 737. For this purpose, the entities are assigned the

following IDs. A given Analysis Engine appliance may have more than one accelerator card.

Each card will have a unique IP address; therefore, the various entities will have a unique ID.

The aforementioned infrastructure may also be running more than one application. Since each

-31

application server will have a unique IP address, the corresponding Monitoring Agent side

entity will also have a unique ID.

Monitoring Agent Side Entities

1. GUI

2. Instrumentation and Analysis Engine

3. Client Message Router

4. Streaming Engine

5. Client Side Daemon

6. CLI Engine

7. Client Watchdog

8. Client Compression Block

9. Client iWarp Ethernet Driver (100 Mb/1Gb/10Gb)

Per PCI Card Entities (starting address = 20 + n*20)

20. Securalyzer TOE block

21. Securalyzer PCI Bridge

22. Decompression Block

23. Message Verification Block

24. Packet Hashing Block

25. Time-Stamping Block

26. Message Timeout Timer Block

27. Statistics Counter Block

28. Securalyzer Query Router Engine

29. Securalyzer Assist

Securalyzer Host Entities

200. Securalyzer PCIe Driver

201. Host Routing Engine

202. Content Analysis Engine

203. Log Manager

204. Daemon

205. Web Engine

-32

206. Watchdog

207. IPC Messaging Bus

208. Configuration Database

209. Log Database

SIEM Connectors

220. SIEM Connector 1 - Virsec Dashboard

221. SIEM Connector 2 - HP ArcSight

222. SIEM Connector 3 - IBM QRadar

223. SIEM Connector 4 - Alien Vault USM

Securalyzer Infrastructure Entities

230. Virsec dashboard

231. SMTP Server

232. LDAP Server

233. SMS Server

234. Entitlement Server

235. Database Backup Server

236. OTP Client

237. OTP Server

238. Checksum Server

239. Ticketing Server

240. Virsec Rules Server

241. Virsec Update Server

All user applications

255. User Applications - Application PID is used to identify the application issuing a

query

[0095] Another field of the Application Provided Data section is the Message Type field

which indicates the type of data being transmitted 755. At the highest level, there are three

distinct types of messages that flow between the various local Monitoring Agent side entities,

between the Analysis Engine appliance side entities and between Client side and appliance

- 33

side entities. Furthermore, messages that need to travel over a network must conform to the

OSI model and other protocols.

[0096] The following field of the Application Provided Data section is the Packet

Sequence Number field containing the sequence identifier for the packet 779. The Streaming

Engine will perform error recovery on lost packets. For this purpose it needs to identify the

packet uniquely. An incrementing signed 64 bit packet sequence number is inserted by the

Streaming Engine and simply passes through the remaining Analysis Engine infrastructure. If

the sequence number wraps at the 64 bit boundary, it may restart at 0. In the case of non

application packets such as heartbeat or log message etc., the packet sequence number may

be -1.

[0097] The Application Provided Data section also contains the Canary Message field

contains a canary used for encryption purposes 761. The Monitoring Agent 702 and the

Analysis Engine 737 know how to compute the Canary from some common information but

of a fresh nature such as the Application Launch time, PID, the license string, and an

authorized user name.

[0098] The Application Provided Data section additionally contains generic fields that are

used in all messages. The Application Source Instruction Address 780, Application

Destination Instruction Address 758, Memory Start Address Pointer 759, Memory End

Address Pointer 760, Application PID 762, Thread ID 763, Analysis Engine Arrival

Timestamp 764, and Analysis Engine Departure Timestamp 765 fields which hold general

application data.

[0099] The PDU also contains the HW/CAE Generated section. In order to facilitate

analysis and to maintain a fixed time budget, the Analysis Engine 737 hashes the source and

destination address fields and updates the PDU prior to processing. The HW/ CAE Generated

section of the PDU is where the hashed data is placed for later use. This section includes the

Hashed Application Source Instruction Address 766, Hash Application Destination

Instruction Address 767, Hashed Memory Start Address 768, and Hashed Memory End

Address 769 fields. The HW/CAW Generated section additionally contains other fields

related to the Canary 771 including the Hardcoded Content Start Magic header, API Name

Magic Header, Call Context Magic Header and Call Raw Data Magic Header are present in

all PDU packets.

- 34

[00100] The HW/CAW Generated section also includes a field 770 to identify other

configuration and error data which includes Result, Configuration Bits, Operating Mode,

Error Code, and Operating Modes data. The Result part of the field is segmented to return

Boolean results for the different Analysis Engine queries - the transition playbook, the code

layout, the Memory (Stack or Heap) Overrun, and the Deep Inspection queries. The

Configuration Bits part of the field indicates when a Compression Flag, Demo Flag, or Co

located Flag is set. The presence of the flag in this field indicates to the Analysis Engine 737

whether the packet should be returned in compression mode. The Demo Flag indicates that

system is in demo mode because there is no valid license for the system. In this mode, logs

and events will not be available in their entirety. The Co-located Flag indicates that the

application is being run in the Analysis Engine 737 so that Host Query Router Engine can

determine where to send packets that need to return to the Application. If this flag is set, the

packets are sent via the PCI Bridge, otherwise they are sent over the Ethernet interface on the

PCI card. The Operating Mode part of the field indicates whether the system is in Paranoid,

Monitor, or Learn mode. These modes will be discussed in more details later in this section.

Lastly, the Error Code part of the field indicates an error in the system. The first eight bits of

the error code will correspond to the message source. The remaining 12 bits will correspond

to the actual error reported by each subsystem.

[00101] The PDU also contains the Content Analysis Engine or Raw Data. All variable

data such as arguments and return value of the OS library calls and System Calls is placed in

this section of the PDU. The data in this section contains the content of the data collected

from the application and is primarily targeted at the Content Analysis Engine 721. This

section contains the Variable Sized API Name or Number 772, the Call Content Magic

Header 777, the Variable Sized Call Content 774, the Call Raw Data Magic Header 778,

Variable Sized Raw Data Contents 776, and two reserved 773 and 775 fields. Furthermore,

these fields can be overloaded for management messages.

Digital Processing Infrastructure

[00102] FIG. 8 illustrates a computer network or similar digital processing environment in

which embodiments of the present disclosure may be implemented.

[00103] Client computer(s)/devices 50 and server computer(s) 60 provide processing,

storage, and input/output devices executing application programs and the like. The client

- 35

computer(s)/devices 50 can also be linked through communications network 70 to other

computing devices, including other client devices/processes 50 and server computer(s) 60.

The communications network 70 can be part of a remote access network, a global network

(e.g., the Internet), a worldwide collection of computers, local area or wide area networks,

and gateways that currently use respective protocols (TCP/IP, Bluetooth@, etc.) to

communicate with one another. Other electronic device/computer network architectures are

suitable.

[00104] Client computers/devices 50 may be configured as the security monitoring agent.

Server computers 60 may be configured as the analysis engine which communicates with

client devices (i.e., security monitoring agent) 50 for detecting database injection attacks.

The server computers 60 may not be separate server computers but part of cloud network 70.

In some embodiments, the server computer (e.g., analysis engine) may analyze a set of

computer routines, identify one or more patches to be applied, and apply one or more patches

to the computer routines. The client (security monitoring agent) 50 may communicate

patches and patch requests, to/from the server (analysis engine) 60. In some embodiments,

the client 50 may include client applications or components (e.g., instrumentation engine)

executing on the client (i.e., security monitoring agent) 50 for capturing requests and queries,

and detecting corrupted memory for which patches are required, as well as providing patches,

and the client 50 may communicate this information to the server (e.g., analysis engine) 60.

[00105] FIG. 9 is a diagram of an example internal structure of a computer (e.g., client

processor/device 50 or server computers 60) in the computer system of FIG. 8. Each

computer 50, 60 contains a system bus 79, where a bus is a set of hardware lines used for data

transfer among the components of a computer or processing system. The system bus 79 is

essentially a shared conduit that connects different elements of a computer system (e.g.,

processor, disk storage, memory, input/output ports, network ports, etc.) that enables the

transfer of information between the elements. Attached to the system bus 79 is an 1/ device

interface 82 for connecting various input and output devices (e.g., keyboard, mouse, displays,

printers, speakers, etc.) to the computer 50, 60. A network interface 86 allows the computer

to connect to various other devices attached to a network (e.g., network 70 of FIG. 8).

Memory 90 provides volatile storage for computer software instructions 92 and data 94 used

to implement an embodiment of the present disclosure (e.g., security monitoring agent,

instrumentation engine, and analysis engine elements described herein). Disk storage 95

- 36

provides non-volatile storage for computer software instructions 92 and data 94 used to

implement an embodiment of the present disclosure. A central processor unit 84 is also

attached to the system bus 79 and provides for the execution of computer instructions.

[00106] Embodiments or aspects thereof may be implemented in the form of hardware

including but not limited to hardware circuitry, firmware, or software. If implemented in

software, the software may be stored on any non-transient computer readable medium that is

configured to enable a processor to load the software or subsets of instructions thereof. The

processor then executes the instructions and is configured to operate or cause an apparatus to

operate in a manner as described herein.

[00107] Some embodiments may transform the behavior and/or data of a set of computer

routines by asynchronously and dynamically manipulating at least one of the computer

routines through patch updates. The patch may include (but is not limited to) modification of

a value, input parameter, return value, or code body associated with one or more of the

computer routines, thereby transforming the behavior (and/or data) of the computer routine.

[00108] Some embodiments may provide functional improvements to the quality of

computer applications, computer program functionality, and/or computer code by detecting

malicious handling of computer routines and/or vulnerabilities in the computer applications

and/or computer code. Some embodiments may deploy one or more patches to correct and/or

replace improperly executing computer routines to avoid the unexpected and/or incorrect

behavior. As such, some embodiments may detect and correct computer code functionality,

thereby providing a substantial functional improvement.

[00109] Some embodiments solve a technical problem (thereby providing a technical

effect) by improving the robustness of functionality of software and its error handling

functionality. Some embodiments also solve a technical problem of detecting and

remediating code corruption that may be hard to do using existing approaches (thereby

providing a technical effect).

[00110] Further, hardware, firmware, software, routines, or instructions may be described

herein as performing certain actions and/or functions of the data processors. However, it

should be appreciated that such descriptions contained herein are merely for convenience and

that such actions in fact result from computing devices, processors, controllers, or other

devices executing the firmware, software, routines, instructions, etc.

- 37

[00111] It should be understood that the flow diagrams, block diagrams, and network

diagrams may include more or fewer elements, be arranged differently, or be represented

differently. But it further should be understood that certain implementations may dictate the

block and network diagrams and the number of block and network diagrams illustrating the

execution of the embodiments be implemented in a particular way.

[00112] Accordingly, further embodiments may also be implemented in a variety of

computer architectures, physical, virtual, cloud computers, and/or some combination thereof,

and, thus, the data processors described herein are intended for purposes of illustration only

and not as a limitation of the embodiments.

[00113] While this disclosure has been particularly shown and described with references to

example embodiments thereof, it will be understood by those skilled in the art that various

changes in form and details may be made therein without departing from the scope of the

disclosure encompassed by the appended claims.

- 38

CLAIMS

What is claimed is:

1. A computer-implemented method comprising:

extracting a model of a computer application during load time, the extracted

model including address bounds attributes of the computer application;

storing the model of the computer application;

inserting instructions into the computer application to collect data at runtime;

analyzing the data collected at runtime against the stored model including

address bounds attributes of the computer application to perform detection of one or

more security events, wherein the one or more security events is associated with

malicious action outside the address bounds attributes of the computer application;

and

based upon the detection of the one or more security events:

pausing execution of at least one active process or thread associated

with the computer application; and

modifying, in a manner that preserves continued execution of the

computer application, at least one computer routine associated with the at least

one active process or thread associated with the computer application, the

modifying creating a trampoline from vulnerable code to non-vulnerable code.

2. The method of Claim 1 wherein the at least one computer routine is executed in

association with the at least one active process.

3. The method of Claim 1 or Claim 2 wherein the malicious action is a malicious

movement to a different code path within the computer application.

4. The method of any one of the preceding Claims wherein modifying includes verifying

a patch or configuration associated with the computer application.

5. The method of any one of the preceding Claims further comprising:

in response to receipt of one or more aggregate patches by a user, performing

at least one of:

- 39

modifying or removing the at least one computer routine associated with the

computer application; and

modifying or removing one or more individual patches associated with the

computer application.

6. The method of any one of the preceding Claims further comprising:

modifying one or more stacks associated with the at least one computer

routine.

7. The method of any one of the preceding Claims further comprising:

modifying one or more heaps associated with the at least one computer

routine.

8. The method of any one of the preceding Claims further comprising:

modifying the at least one computer routine associated with the at least one

active process, while the at least one active process is executing the at least one

computer routine.

9. The method of any one of the preceding Claims further comprising:

after modifying the at least one computer routine, resuming execution of the at

least one active process or thread.

10. A computer system comprising:

an instrumentation engine configured to:

extract a model of a computer application during load time, the

extracted model including address bounds attributes of the computer

application;

store the model of the computer application;

insert instructions into the computer application to collect data at

runtime; and

an analysis engine configured to:

analyze the data collected at runtime against the stored model

including address bounds attributes of the computer application to perform

detection of one or more security events, wherein the one or more security

- 40

events is associated with malicious action outside the address bounds

attributes of the computer application; and

based upon the detection of the one or more security events:

pause execution of at least one active process or thread

associated with the computer application; and

modify, in a manner that preserves continued execution of the

computer application, at least one computer routine associated with the

at least one active process or thread associated with the computer

application, the modifying creating a trampoline from vulnerable code

to non-vulnerable code.

11. The system of Claim 10 wherein the at least one computer routine is executed in

association with the at least one active process.

12. The system of Claim 10 or Claim 11 wherein the malicious action is a malicious

movement to a different code path within the computer application.

13. The system of any one of Claims 10 to 12 wherein the analysis engine is further

configured to verify a patch or configuration associated with the computer

application.

14. The system of any one of Claims 10 to 13, wherein the analysis engine is further

configured to:

in response to receipt of one or more aggregate patches by a user, perform at

least one of:

modifying or removing the at least one computer routine associated

with the computer application; and

modifying or removing one or more individual patches associated with

the computer application.

15. The system of any one of Claims 10 to 14, wherein the analysis engine is further

configured to:

modify one or more stacks associated with the at least one computer routine.

- 41

16. The system of any one of Claims 10 to 15, wherein the analysis engine is further

configured to:

modify one or more heaps associated with the at least one computer routine.

17. The system of any one of Claims 10 to 16, wherein the analysis engine is further

configured to:

modify the at least one computer routine associated with the at least one active

process, while the at least one active process is executing the at least one computer

routine.

18. The system of any one of Claims 10 to 17, wherein the analysis engine is further

configured to:

after modifying the at least one computer routine, resume execution of the at

least one active process or thread.

19. A computer-implemented method comprising:

extracting a model of a computer application during load time, the extracted

model including address bounds attributes of the computer application;

storing the model of the computer application;

inserting instructions into the computer application to collect data at runtime;

analyzing the data collected at runtime against the stored model including

address bounds attributes of the computer application to perform detection of one or

more security events, wherein the one or more security events is associated with

malicious action outside the address bounds attributes of the computer application;

upon the detection of the one or more security events, temporarily remediating

memory corruption associated with the computer application prior to executing one or

more return instructions;

reporting actionable information based upon the one or more detected security

events; and

based upon the detection of the one or more security events:

pausing execution of at least one active process or thread associated

with the computer application; and

modifying, in a manner that preserves continued execution of the

computer application, at least one computer routine associated with the at least

- 42

one active process or thread associated with the computer application, the

modifying creating a trampoline from vulnerable code to non-vulnerable code.

20. The method of Claim 19 further comprising:

modifying at least one computer instruction associated with at least one

process, while the at least one process is executing.

21. The method of Claim 19 or Claim 20 further comprising:

after modifying the at least one computer routine, resuming execution of the at

least one active process or thread.

22. A computer system comprising:

an instrumentation engine configured to:

extract a model of a computer application during load time, the

extracted model including address bounds attributes of the computer

application;

store the model of the computer application;

insert instructions into the computer application to collect data at

runtime; and

an analysis engine configured to:

analyze the data collected at runtime against the stored model

including address bounds attributes of the computer application to perform

detection of one or more security events, wherein the one or more security

events is associated with malicious action outside the address bounds

attributes of the computer application;

upon the detection of the one or more security events, temporarily

remediate memory corruption associated with the computer application prior

to executing one or more return instructions;

report actionable information based upon the one or more detected

security events; and

based upon the detection of the one or more security events:

pause execution of at least one active process or thread

associated with the computer application; and

- 43

modify, in a manner that preserves continued execution of the

computer application, at least one computer routine associated with the

at least one active process or thread associated with the computer

application, the modifying creating a trampoline from vulnerable code

to non-vulnerable code.

23. The system of Claim 22, wherein the analysis engine is further configured to:

modify at least one computer instruction associated with at least one process,

while the at least one process is executing.

24. The system of Claim 22 or Claim 23, wherein the analysis engine is further

configured to:

after modifying the at least one computer routine, resume execution of the at

least one active process or thread.

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

