
(19) United States
(12) Patent Application Publication

Verma et al.

US 20140351694A1

(10) Pub. No.: US 2014/0351694 A1
(43) Pub. Date: Nov. 27, 2014

(54) DOCUMENT ANALYSIS, COMMENTING AND
REPORTING SYSTEM

(71) Applicant: Accenture Global Services Limited,
Dublin (IE)

(72) Inventors: Kunal Verma, Santa Clara, CA (US);
Alex Kass, Palo Alto, CA (US);
Reymonrod G. Vasquez, Vallejo, CA
(US)

(73) Assignee: Accenture Global Services Limited

(21) Appl. No.: 14/455,457

(22) Filed: Aug. 8, 2014

Related U.S. Application Data
(63) Continuation of application No. 12/846,615, filed on

Jul. 29, 2010, now Pat. No. 8,843,819, which is a
continuation of application No. 12/558,483, filed on
Sep. 11, 2009, now Pat. No. 8,271,870, which is a
continuation-in-part of application No. 12/121,503,
filed on May 15, 2008, now Pat. No. 8.266,519, which

2608 Problematic Phrase Glossary
Phrase

is a continuation-in-part of application No. 1 1/945,
958, filed on Nov. 27, 2007, now Pat. No. 8,412,516.

Publication Classification

(51) Int. Cl.
G06F 7/27 (2006.01)
G06F 7/22 (2006.01)

(52) U.S. Cl.
CPC G06F 17/2725 (2013.01); G06F 17/2247

(2013.01)
USPC ... 715/237; 715/234

(57) ABSTRACT

A documentanalysis, commenting, and reporting system pro
vides tools that automate quality assurance analysis tailored
to specific document types. As one example, the system may
implement state machines that evaluate document structure
instances to determine whether the document structure
instances conform to pre-defined syntaxes. The state
machines may include error States and final states, and mes
sages may be associated with the error States for display when
a state machine reaches the error state.

260 2612
A. y

easy to Use

efficiently

improved
better
fastef
superior

To Correct this requirement, to
one of the suggestions in the
checker to write a more testab
requirement.
to coirect this requirement, fo
one of the suggestions in the
&hecker to write a more testab
requirement.
To correct this requirement, fo
one of the suggestions in the
checker to Write a more testab
requirement.
To correct this requirement, fo
one of the suggestions in the
checker to Write a more testab
requirement.

"easy to use" is often ambiguous.
Replace with a specific description of
the expected result.

"none" implies unproven certainty.
Replace with a specific condition.

"efficiently" is often ambiguous. Define
quantitatively how efficient it is.

is underspecified, unless it specifies
how much faster, improved, better, or
Superior.

US 2014/0351694 A1 Nov. 27, 2014 Sheet 1 of 48 Patent Application Publication

| eun61–

Z ?un61–

US 2014/0351694 A1 Nov. 27, 2014 Sheet 2 of 48

ÁJesso?9 Quafiy

Patent Application Publication

Patent Application Publication Nov. 27, 2014 Sheet 3 of 48 US 2014/0351694 A1

S.

ce st
s cs

US 2014/0351694 A1

Klesso19 uo?ov? för

Patent Application Publication

US 2014/0351694 A1 Nov. 27, 2014 Sheet 5 of 48 Patent Application Publication

G ?un61– Klesso19 ºseJud W09

US 2014/0351694 A1 Nov. 27, 2014 Sheet 6 of 48 Patent Application Publication

9 ?un6|-
- - - - - - - -- ? - —

ºpejº?u iesnp?AOIdu? ue ºpeº ?ô Áeu Sjedo|eMed 9? 1 : LOYA

ZZ9

|(80e?ielu Jesn powodu?ue eleº?o ?eu sledoreaedeul:108

z?9

US 2014/0351694 A1 Nov. 27, 2014 Sheet 7 of 48 Patent Application Publication

Z ?un61–

JOSS0001)

US 2014/0351694 A1 Nov. 27, 2014 Sheet 8 of 48 Patent Application Publication

9 ?un61– #798 —~~~~)

Patent Application Publication Nov. 27, 2014 Sheet 9 of 48 US 2014/0351694 A1

Retrieve document specific parameters 902

Receive document for analysis 904

Identify first document structure instance 906

Identify first glossary in document
Specific set 908

Analyze document structure instance
for constituents in glossary 910

Present results of Comparison 912

94.
Perform andlysis

Operation?
Yes

Perform analysis
Operation 916

Identify next gloSSory in
document specific

parameters 920
Additional

922
Additional Identify next document
instances? structure instance 924

Figure 9

US 2014/0351694 A1 Nov. 27, 2014 Sheet 10 of 48

Áless019 || „ ÁæSS019

„ KIBSS019

Patent Application Publication

US 2014/0351694 A1 Sheet 11 of 48 Nov. 27, 2014 ion icat Publi ion icat Patent Appl

„ — ------------{

N –—{

Patent Application Publication Nov. 27, 2014 Sheet 12 of 48 US 2014/0351694 A1

Retrieve document specific parameters 1202

Receive document for analysis 4204

Identify first document structure instance 1206

Identify first glossary in document
specific parameters 1208

Analyze document structure instance
for Constituents in glossary 1210

document structure
instance Contain any constituent

in glossory?

Yes NO

1214 1220

Should
document structure
instOnce contain
Constituent

Yes document structure
instance Contain
Constituent ?

NO Yes

Embed analysis message
in document 1218

Mark document O o

NO

Structure inston Ce
126 1220

Addition,NYes | identify next
glossary in document
parameter Set 1222

1224

Identify next
document Structure

instance 1226

Figure 12 End

US 2014/0351694 A1 Nov. 27, 2014 Sheet 13 of 48 Patent Application Publication

„ KjæSS019

ÁgæSSO49

US 2014/0351694 A1 Nov. 27, 2014 Sheet 14 of 48 Patent Application Publication

huafiy

Patent Application Publication Nov. 27, 2014 Sheet 15 of 48 US 2014/0351694 A1

document Specific parameters 1506

Compare constituent with each
document structure instance 1510

Maintain list of document structure Select t tituent
instance(s) that contain constituent

according to syntax definition. 1612 o

1514
Additional

Constituents in
glossory?

Output report showing Constituents
with Corresponding lists of documents

Structure instance(s) 518

End

Figure 15

US 2014/0351694 A1 Nov. 27, 2014 Sheet 16 of 48 Patent Application Publication

9] © In6|-

Patent Application Publication Nov. 27, 2014 Sheet 17 of 48 US 2014/0351694 A1

Ya

()

8] © In6|-

US 2014/0351694 A1 Nov. 27, 2014 Sheet 18 of 48 Patent Application Publication

US 2014/0351694 A1 Nov. 27, 2014 Sheet 19 of 48 Patent Application Publication

Patent Application Publication Nov. 27, 2014 Sheet 20 of 48 US 2014/0351694 A1

Retrieve document specific parameters 2002

Receive document for analysis 2004

Retrieve Ontology model 2006

Classify document structure instances
using Ontology model 2008

Determine horizontal relationships of 2010
document Structure instances using ontology

model and instance classifications

Output report showing classifications 2012
of document structure instances

and horizontal relationships

End

Figure 20

US 2014/0351694 A1 Sheet 21 of 48 Nov. 27, 2014 Patent Application Publication

LZ ?un61–

US 2014/0351694 A1 Nov. 27, 2014 Sheet 22 of 48 Patent Application Publication

ZZ ?un6|-

JOSS300?ej

~ ZOZZ

US 2014/0351694 A1 Nov. 27, 2014 Sheet 23 of 48 Patent Application Publication

US 2014/0351694 A1 Nov. 27, 2014 Sheet 24 of 48 Patent Application Publication

| | | | | | | | | | | | | | | |

sse?oqns se?|
| | | | | | | | |

GZ ?un61–

US 2014/0351694 A1 Nov. 27, 2014 Sheet 25 of 48 Patent Application Publication

US 2014/0351694 A1 Nov. 27, 2014 Sheet 26 of 48 Patent Application Publication

Klofioleo
Z

9Z ?un61–

9Selud

US 2014/0351694 A1 Nov. 27, 2014 Sheet 27 of 48 Patent Application Publication

ZZ ?un61–

80,

US 2014/0351694 A1

ZOgz --~~~~

Patent Application Publication

6Z ?un61–

US 2014/0351694 A1

35

Nov. 27, 2014 Sheet 29 of 48

Z06Z ~~~~

Patent Application Publication

US 2014/0351694 A1 Nov. 27, 2014 Sheet 30 of 48 Patent Application Publication

Z06Z --~~~~

09 ?un6|-

900€ UJOJ:

US 2014/0351694 A1 Nov. 27, 2014 Sheet 31 of 48

Z019 --~~~~^

Patent Application Publication

US 2014/0351694 A1 Nov. 27, 2014 Sheet 32 of 48 Patent Application Publication

Z9 ?un6|-

£9 eun61–

US 2014/0351694 A1 Nov. 27, 2014 Sheet 33 of 48

Z099 --~~~~

Patent Application Publication

US 2014/0351694 A1 Nov. 27, 2014 Sheet 34 of 48 Patent Application Publication

US 2014/0351694 A1 Nov. 27, 2014 Sheet 35 of 48 Patent Application Publication

US 2014/0351694 A1 Nov. 27, 2014 Sheet 36 of 48 Patent Application Publication

99 e infil

/9 ?un61–

US 2014/0351694 A1 Nov. 27, 2014 Sheet 37 of 48

~ Z019

Patent Application Publication

US 2014/0351694 A1 Nov. 27, 2014 Sheet 38 of 48 Patent Application Publication

69 ?un61

N

US 2014/0351694 A1

N

Nov. 27, 2014 Sheet 39 of 48 Patent Application Publication

US 2014/0351694 A1 Sheet 40 of 48 2014 NOV. 27 Patent Application Publication

-E={}) {

XYYYYYY

90.19 , ,

Zºzzzzzzzzzz

US 2014/0351694 A1 Nov. 27, 2014 Sheet 41 of 48 Patent Application Publication

Z=F=T-No.==----

Patent Application Publication Nov. 27, 2014 Sheet 42 of 48 US 2014/0351694 A1

|
| N

|

A. w
y W. W y

six
ea
92
s i 3,

s
y

we rr (sh r rr we r- we r rr st

US 2014/0351694 A1

|

Nov. 27, 2014 Sheet 43 of 48 Patent Application Publication

US 2014/0351694 A1

CC
c
w
r

nOsey, dôISSý

Patent Application Publication

US 2014/0351694 A1

r- r- N- re

Nov. 27, 2014 Sheet 45 of 48

N

t
N

Patent Application Publication

US 2014/0351694 A1

- coo

22

-

Patent Application Publication

US 2014/0351694 A1

X

X

Nov. 27, 2014 Sheet 47 of 48

|×) ????????????????????????????????????? [-] [-] ????????????????????????????????????? [-] ????????????????????????????????????? ????????????????????????????????????? ????????????????????????????????????? ????????????????????????????????????? [-] ????????????????????????????????????? [-] ?????????????????????????????????????

Patent Application Publication

US 2014/0351694 A1 Nov. 27, 2014 Sheet 48 of 48 Patent Application Publication

US 2014/0351694 A1

DOCUMENT ANALYSIS, COMMENTING AND
REPORTING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 12/846,615 filed Jul. 29, 2010 which is:
a continuation of U.S. patent application Ser. No. 12/558,483,
filed Sep. 11, 2009, and a continuation-in-part of U.S. patent
application Ser. No. 12/121,503, filed May 15, 2008 and a
continuation-in-part of U.S. patent application Ser. No.
11/945,958, filed Nov. 27, 2007. This application incorpo
rates by reference all of the above noted applications in their
entireties.

BACKGROUND OF THE INVENTION

0002 1. Technical Field
0003. This application relates to document analysis, and in
particular, to visualizing the relationships between entities
described in a requirements specification.
0004 2. Related Art
0005 Rapid developments in computer technology have
given rise to the widespread adoption of document authoring
applications. Today, a significant portion of the modern work
force generates documents using a word processor. Unfortu
nately, the writing skills of the typical individual have not
improved at anywhere near the pace of technology. As a
result, computer technology often results in faster generation
of poorly written documents, rather than in efficient produc
tion of clear, consistent, and unambiguous work product.
0006. At the same time, significant technical challenges
exist in analyzing and providing constructive feedback on
documents. The documents themselves vary widely in pur
pose, format, and content, and there is no general flexible and
adaptable framework in place for specific document analysis,
commenting, or reporting. Document authoring applications
only provide basic tools that cooperate with authors to
improve document quality. As examples, analysis tools such
as spell checkers and grammar checkers only provide analysis
at a general level. Such as checks of the fundamental rules of
a given language. In other words, the specialized nature of
many documents defeats more specific analysis that could
provide meaningful criticism on a document and vastly
improve the Substantive content of a document.
0007 Poorly written documents have many adverse and
costly consequences. Vague or ambiguous terms create mis
understandings and misinterpretations. Poor formatting frus
trates testing and validation procedures. Failure to clearly
separate concepts results in extra work needed to untangle
and factor concepts into individual pieces. Contradictory
statements, which often arise in lengthy, complex documents,
create extra work to resolve the meaning and intended pur
pose of passages in the document. Inconsistent terms leave
different readers with different, possibly inconsistent, expec
tations regarding specific parts of the document.
0008. One specific application of the system described
below is to analyze requirements documents. Requirements
documents mediate between stakeholder objectives and the
solution that developers will create to achieve the objectives.
A Successful requirements process is one that creates require
ments documentation that captures stakeholder needs, sets
stakeholder expectations, and may be used by developers to
create a solution which satisfies the stakeholder's needs and

Nov. 27, 2014

expectations. Unsuccessful requirements processes result in
requirements that do not ensure that stakeholders understand
what they will be getting or that developers will build some
thing that is ultimately going to satisfy the stakeholder's
needs.
0009 While creating a good, clear requirements docu
ment may sound straightforward, it is not. For large Software
systems it is extremely difficult to create good requirements
documents. Furthermore, defects in the requirements process
are very expensive. Incorrect, incomplete, or unclear require
ments are the most common cause of Software defects, and
problems resulting from requirements defects are also the
most expensive kinds of “bugs” to fix.
0010 Some existing tools primarily concentrate on main
taining requirements and test Scripts after a baseline require
ments set has been defined. However, this is only part of the
story. Many of the most costly requirements defects happen
during the definition process, resulting in a baseline that is of
poor quality, and prior tools are agnostic to the quality of the
requirements or of the definition process and therefore pro
vide no aid in that regard.
0011 Moreover, many tools do not provide an overview of
the interactions between entities of a requirements document.
Thus, a reader is often left wondering whether one or more
entities of a requirements document should be, or should not
be, interacting. These tools do not account for the interactions
that occur among entities of a requirements document, and a
reader may be left with an impression that certain entities
interact while other entities do not interact.
0012. A need exists for improved documentanalysis tools
that address the problems noted above and other previously
experienced.

SUMMARY

0013. In one implementation, the system includes a syn
tax-based document visualization module operative to iden
tify constituents in document structure instances of an elec
tronic document and determine whether the constituents in
the document structure instances match constituents of an
editable electronic spoken language glossary. The editable
electronic spoken language glossary may include words or
phrases that are considered permissible words and phrases for
a previously defined document type specific syntax. The Syn
tax-based document visualization module may be operative
to generate one or more maps, such as a component visual
ization relationship map or a system visualization relation
ship map, that illustrate interactions and/or non-interactions
between constituents of the document structure instances.
0014. In addition, or alternatively, the system may include
a syntax-based document attribute analysis module that oper
ates in conjunction with an electronic attribute glossary. The
electronic attribute glossary may specify one or more
attribute requirements for one or more constituents of the
editable electronic spoken language glossary. The syntax
based document attribute analysis module may determine
whether one or more document structure instances of the
electronic document satisfy the attribute requirements for one
or more constituents. The syntax-based document attribute
analysis may be further operative to generate and output an
attribute requirement report that identifies whether an
attribute requirement for one or more constituents has been
satisfied.
0015. In one implementation, the system may be a Visual
Basic for Applications plug-in for the Word 2007TM word

US 2014/0351694 A1

processor. In that regard, the system may provide a specific
ribbon interface. The system may be implemented in many
other ways, however, Such as a stand alone application, web
service, or shared function library.
0016 Other systems, methods, features and advantages
will be, or will become, apparent to one with skill in the art
upon examination of the following figures and detailed
description. All Such additional systems, methods, features
and advantages are included within this description, are
within the scope of the invention, and are protected by the
following claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0017. The system may be better understood with reference
to the following drawings and description. The elements in
the figures are not necessarily to Scale, emphasis instead
being placed upon illustrating the principles of the system. In
the figures, like-referenced numerals designate correspond
ing parts throughout the different views.
0018 FIG. 1 shows a network including a document
analysis system in communication with other systems.
0019 FIG. 2 shows an example of an agent glossary.
0020 FIG. 3 illustrates an example of a mode glossary.
0021 FIG. 4 shows an example of an action glossary.
0022 FIG. 5 illustrates an example of a problem phrase
glossary.
0023 FIG. 6 shows an example of a structure identifier and
a syntax definition.
0024 FIG. 7 shows a requirements analysis system.
0025 FIG. 8 shows a requirement analysis user interface.
0026 FIG.9 shows logic flow for a requirements analysis
system.
0027 FIG. 10 shows a requirements commenting system.
0028 FIG. 11 shows an analysis messages embedded in a
document under analysis.
0029 FIG. 12 shows logic flow for a requirements com
menting System.
0030 FIG. 13 shows a report generator system.
0031 FIG. 14 shows an example report.
0032 FIG. 15 shows logic flow for a report generator
system.
0033 FIG. 16 shows an example of an agent taxonomy.
0034 FIG. 17 shows an example of an action taxonomy.
0035 FIG. 18 shows an example of an ontology model.
0036 FIG. 19 shows an ontology analysis system.
0037 FIG. 20 shows logic flow for an ontology analysis
system.
0038 FIG. 21 shows an example of a requirements rela
tionship glossary.
0039 FIG.22 shows a requirements graphing system.
0040 FIG. 23 shows an example of a core ontology hier
archy.
0041 FIG. 24 shows an example of a document specific
ontology hierarchy.
0042 FIG. 25 shows an example of an entity glossary.
0043 FIG. 26 shows an example of an alternative prob
lematic phrase glossary.
0044 FIG. 27 shows an example of a non-functional
attribute glossary.
004.5 FIGS. 28-35 show examples of state machines
employed by the requirements analysis system in evaluating
document structure instances.
0046 FIG. 36 shows an example of a requirements visu
alization system.

Nov. 27, 2014

0047 FIG. 37 shows an example of a component visual
ization relationship map.
0048 FIG. 38 shows an alternative example of a compo
nent visualization relationship map.
0049 FIG. 39 shows yet another example of a component
visualization relationship map.
0050 FIG. 40 shows an example of a system visualization
relationship map.
0051 FIG. 41 shows an alternative example of a system
visualization relationship map.
0.052 FIG. 42 shows yet another example of a system
visualization relationship map.
0053 FIG. 43 shows an example of a sub-system visual
ization relationship map.
0054 FIG. 44 shows another example of a sub-system
visualization relationship map.
0055 FIG. 45 shows yet another example of a sub-system
visualization relationship map.
0056 FIG. 46 shows a further example of a sub-system
visualization relationship map.
0057 FIG. 47 shows an additional example of a sub-sys
tem visualization relationship map.
0.058 FIG. 48 shows an example of an attribute require
ment report.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0059 FIG. 1 shows a network 100 including a document
analysis, commenting, and reporting System 102 (“system
102). The system 102 is connected to the network infrastruc
ture 104. Through the network infrastructure 104, the system
102 may communicate with an inference engine 106. Such as
by a web services interface 108, and with other entities, such
as the glossary provider 110. The system 100 may analyze a
wide range of document types, with analysis tailored for the
specific document type in question. In one implementation,
the system 100 includes the document parameter sets that
tailor analysis to any specific document type. However, in
other implementations, the system 100 may receive new
document parameter sets or update existing document param
eters sets by coordinating with the glossary provider 110. To
that end, the glossary provider 110 may maintain a database
of many different document specific parameter sets, two of
which are labeled 112 and 114.
0060. The system 102 includes a processor 116, memory
118, network interface 120, I/O devices 122, and a document
analysis database 124. The system 102 also includes a display
125 on which graphical user interfaces (GUIs) and analysis
reports are rendered, as noted below. The document analysis
database 124 may store document parameter sets that tailor
the operation of the system 102 to any desired document type.
0061. In the example shown in FIG. 1, the memory 118
includes an analysis module 126, a commenting module 128,
and a reporting module 130. Each of the modules 126-130 is
described in more detail below, and each module may be used
alone or in combination with other modules to assess a docu
ment under analysis 132 (“document 132). The document
132 may be any form of document, Such as a word processor
document, spreadsheet document, or text file. In addition, the
document may be any specific type of document, Such as a
requirements specification, patent application, contract,
building specification, or other document type.
0062. As will be described in more detail below, the docu
ment 132 includes any number of document structure

US 2014/0351694 A1

instances (e.g., the document structure instances 134 and
136). Each document structure instance represents a unit of
content for analysis by the modules 126-130. As examples, a
document structure instance may be a word, phrase, sentence,
or paragraph. Other examples of document structure
instances include arbitrary sequences of characters (e.g.,
serial numbers, email addresses, or encryption keys).
0063 Yet another example of document structure
instances is requirements statements. Requirements state
ments may take any number of forms, such as a requirement
statement identifier, followed by a requirement sentence con
taining an actor, modal verb, action, and statement remainder.
The discussion below uses examples of processing on
requirements statements found in requirements documents.
However, the system 102 may analyze any specific type of
document, with any particular form of document structure
instances.

0064. The modules 126-130 analyze the document 132 in
a manner tailored to the type of document. To that end, the
modules 126-130 access a document specific parameter set
which may be retrieved from the document analysis database
124, pre-configured in a word processor or other application,
pre-defined as individual files stored in memory, or otherwise
obtained or provided to the modules 126-130. FIG. 1 shows
an example of a document specific parameter set 138. Any of
the information in the document specific parameter set 138
may be made read-only, read-write, or have attached access
control permissions for specific users or groups.
0065. The document specific parameter set 138 may
include one or more glossaries for analyzing a document. The
glossaries may be spoken language glossaries, written lan
guage glossaries, language specific glossaries, document
property glossaries, or other types of glossaries, which may
store language components such as words, phrases, or other
language constructs for analysis. Examples of spoken lan
guage glossaries include glossaries having words from the
English language, words from the Russian language, words
form the Japanese language, or words from Latin or non
Latin languages. Spoken language glossaries may also
include words from multiple different spoken languages.
Accordingly, the system may perform a multiple language
analysis on a document that includes many languages without
having to load or unload glossaries specific to each language
and separately perform multiple processing passes.
0066 Examples of written language glossaries include
glossaries having words from the English language, words
from the Russian language, or words from a Latin or non
Latin language. A written language glossary may have words
depicted in print, script, cursive, or any other font. In other
words, the written language glossary may include visual lan
guage indicia that the system may analyze to determine, for
example, whether a language construct is vague or ambigu
ous. A written language glossary may also include words
from one or more written languages, or from words contained
in a spoken language glossary. Accordingly, the system may
also perform multiple language analysis with written lan
guages.
0067 Examples of language specific glossaries include
glossaries having words from computer programming lan
guages, words made up of symbols or other non-alphanu
meric characters, or components of any other non-written or
non-spoken languages. Examples of document property glos
saries include glossaries having words describing document
properties. Such as the margins of a document, the number of

Nov. 27, 2014

pages in a document, the permissible or non-permissible fonts
in a document, or other document property. As a result, the
system may extend its processing to document properties
beyond language constructs, to help critique a document in
other meaningful ways.
0068. In one embodiment, the document parameter set
138 includes an agent glossary 140, an action glossary 142, a
mode glossary 144, and a phrase glossary 146. The document
specific parameter set 138 further includes a structure identi
fier 148 and a syntax definition 150. The structure identifier
148 may define a label that flags a portion of the document as
a structure instance for analysis. The syntax definition 150
may define the expected syntax for the structure instance. In
one implementation, the system 102 analyzes a received
document to determine a document type, and then retrieves
the document specific parameter set 138 corresponding to the
determined document type. For example, the system 102 may
retrieve the syntax definition 150, the structure identifier 148,
the glossaries 140-146, or other document parameters corre
sponding to the determined document type. One example of a
document type is a requirements document.
0069. In the context of a requirements specification, the
structure identifier 148 may be a regular expression, Such as
“A-Za-Z0-90-9. The regular expression specifies that
any combination of uppercase letters, lower case letters, and
digits, followed by a digit, flags the following sentence as a
requirement to analyze. An example syntax definition is:
agent mode action remainder. The syntax definition
specifies structure category components for the document
structure. In this example, the structure category components
include an agent, followed by a modal verb, followed by an
action, followed by the rest of the sentence.
0070 The agent glossary 140 defines the permissible
agents. The mode glossary 144 defines the permissible modal
verbs. The action glossary 142 defines the permissible
actions. The system 102 may enforce the syntax, by perform
ing processing only on those sentences that meet the syntax
with agents, modes, and actions defined in the glossaries
140-144, or may perform processing on a sentence that par
tially or wholly meets the syntax. For example, even if an
actor is missing or an unrecognized actor is present, the
system 102 may still analyze the remainder for ambiguous
terms.

0071 FIG. 2 shows an example of the agent glossary 140.
In the example shown in FIG. 2, the agent glossary 140
defines an agent field 202, an explanation field 204, a parent
field 206, and a notes field 208. The agent field 202 defines
permissible constituent agents for the structure instance Syn
tax, such as “Developers' and “Development Team'. The
explanation field 204 provides diagnostic information rel
evant to the agent, how the agent performs their job, or other
agent related information. The parent field 206 may be used to
indicate a constituent hierarchy parameter for building hier
archies of agents, as will be described in more detail below.
The additional notes field 208 provides a place where devel
opers may insert information regarding a particular agent and
its presence in the agent glossary 140. One of the uses of the
agent glossary 140 is to check that the requirements docu
ment only specifies that certain actors perform actions.
0072 FIG.3 shows an example of the mode glossary 144.
In the example shown in FIG. 3, the mode glossary 144
defines a mode field 302, an explanation field 304, and a notes
field 306. The mode field 302 defines permissible constituent
modes for the actions that an agent may take. Such as “must’.

US 2014/0351694 A1

or “will”, while the explanation field 304 provides diagnostic
information related to the mode. The diagnostic information
may expresses issues or concerns about certain modes, may
recommend or encourage certain modes, or may provide
other mode related information and feedback.
0073 FIG. 4 shows an example of the action glossary 142.
In the example shown in FIG. 4, the action glossary 142
defines an action field 402, an explanation field 404, a parent
field 406, and a notes field 408. The action field 402 defines
permissible constituent actions for the structure instance Syn
tax, such as “Define” and “Tag”. The explanation field 404
provides diagnostic information relevant to the action, how an
agent performs the action, or other action related information.
The parent field 406 may be used to build hierarchies of
actions, as will be described in more detail below. The addi
tional notes field 408 provides a place where developers may
insert information regarding a particular action and its pres
ence in the action glossary 142. The system 102 may use the
action glossary 142 to check that the only certain actions are
specified in a requirements document.
0074 FIG.5 shows an example of the phrase glossary 146.
In the example shown in FIG. 5, the phrase glossary 146
defines a problem phrase field 502, an explanation field 504,
a suggestion field 506, a priority field 508, and a notes field
510. The problem phrase field 502 defines words or combi
nations or words that often give rise to problematic state
ments. Such problem phrases may define ambiguous or inap
propriate words, such as “could', or “improved', particularly
in the context of the specific document type. The problem
phrases may also include industry, domain, or technology
phrases, such as “Windows Mobile' or “strong encryption.”
Thus, the document specific parameter sets tailor the analysis
of the system 102 to the particular document type.
0075. The explanation field 504 provides a description of
why the problem phrase gives rise to difficulties. For
example, the problem phrase “could may be associated with
the corresponding explanation of “is ambiguous’. The phrase
glossary 146 may also define Suggestions in the Suggestion
field 506, explanation field 504, or both, for how to improve
the problem phrase to a less problematic State. For example,
the suggestion field 506 may suggest that “easy” should be
replaced with specific language. Such as “The system will
reduce the effort required to <function> by X %. The docu
ment reviewer may then adopt the Suggestion, complete the
<function> field, and specify a value for x to improve the
Statement.

0076. The priority field 508 assigns a priority value to a
problem phrase. The system 102 may then prioritize analysis
and evaluation of problem phrases. As examples, the system
102 may determine which colors or patterns to use to high
light problem phrases according to the priority value. As
another example, the system 102 may more strongly encour
age the reviewer to modify the problem phrase, provide addi
tional Suggestions, or take other actions driven by the priority
value. The additional notes field 510 provides a place where
developers may insert information regarding a particular
problem phrase and its presence in the phrase glossary 146.
0077 FIG. 6 illustrates examples of a structure identifier
148 and a syntax definition 150 for a requirements specifica
tion. The structure identifier 148 is the regular expression
“A-Za-Z0-90-9' 602. The regular expression specifies that
any combination of alphanumeric characters, followed by a
digit, flags the following sentence as a requirement to ana
lyze. The syntax definition 150 is: agent mode action

Nov. 27, 2014

remainder. The structure category components specified by
the syntax definition are an agent component 604, followed
by a modal verb component 606, followed by an action com
ponent 608, followed by a remainder component 610 of the
rest of the sentence.
0078 FIG. 6 also shows an example requirement 612:
“R01: The Developers may create an improved user inter
face.” found in the text of the document 132. The system 102
parses the document text, finding first the structure identifier
“R01 that matches the structure identifier 148. According,
the requirement sentence that follows is next checked against
the syntax definition 150. In this instance, the syntax defini
tion, Supported by the glossaries 140-144, parse the sentence
as follows: Agent=Developers, Mode-may, Action=create,
and Remainder="an improved user interface.”
007.9 The system 102 may carry out document analysis
operations based on the analysis of the document structure
instances. In the example shown in FIG. 6, the system 102
highlights each structure category component, using a thin
line 614 for the agent, a medium line 616 for the modal verb,
and a heavy line weight 618 for the action. The system 102
uses a dashed line 620 for the remainder.
0080. In addition, the system 102 applies the phrase glos
sary 146 against the requirement sentence. As a result, the
system 102 identifies the ambiguous term “improved in the
requirement sentence, and applies an italic highlight 622 to
emphasize the presence of the problematic word. The system
102 may use any combination of any desired colors, line
weights, line patterns, Sounds, animations, icons, or other
indicia to highlight any of the structure components, problem
phrases, structure identifiers, or other parts of the document.
I0081. In addition to the syntax definition shown in FIG. 6,
additional syntax definitions are also possible. For example,
the syntax definition 150 may define conditional syntax defi
nitions or feature syntax definitions. Table 1 below lists dif
ferent examples of syntax definitions definable by the syntax
definition 150.

TABLE 1

Syntax Type Syntax Definition Example Structure Instance Example

Statement agent mode The order-processing
action remainder system shall send a

message to the procurement
manager.
The user shall click the
button

Conditional When condition), When the user clicks
agent mode he button, the order
action remainder processing system shall

send a message to the
procurement manager.

Conditional: If condition then If the user clicks
agent mode he button, the order
action rest processing system shall

send a message to the
procurement manager.

Feature system-agent The order-entry
moderemainder interface shall

have a cancel
button.

I0082 In one implementation, the syntax definition 150
further defines syntax definitions according to a set of con
trolled document structure instance syntaxes. For example,
the syntax definition 150 may define a document structure
instance as a requirement document structure instance. The

US 2014/0351694 A1

requirement document structure instance may then be defined
as a conditional requirement document structure instance or
as a simple requirement document structure instance. The set
of controlled document structure instance syntaxes may also
define additional syntaxes for the simple requirement docu
ment structure instance or the conditional requirement docu
ment structure instance. For example, the set of controlled
document structure instance syntaxes may define the simple
requirement document structure instance as a standard
requirement document structure instance, as a business rule
document structure instance, or as any other type of document
structure instance. Table 2 illustrates one example of a set of
controlled document structure syntaxes that may be defined

Nov. 27, 2014

module 126 may determine whether the document structure
instance 134 is a requirement statement. The pseudo-codes
below illustrate several methods that the document analysis
module 126 may perform in determining whether the docu
ment structure instance 134 is a requirement statement
according to the syntax definition 150. The first pseudo-code
below illustrate one method that the document analysis mod
ule 126 may use to determine whether the document structure
instance 134 contains a structure identifier:

isRequirement (Document structure instances)
if the first word of the document structure instances has a
structure identifier:

according to the syntax definition 150. Other types of syn- return true
taxes may also be defined.

TABLE 2

Syntax
Syntax Type Identifier Syntax Brief Explanation

Requirement Req. Req. --> ConditionalReq A requirement may be a
SimpleReq simple requirement or a

conditional requirement.
Conditional ConditionalReq. “if condition"then A conditional requirement

SimpleReq; or may be an if-then, “if
“if condition"then then-else', or when kind
SimpleReq"else' of document structure
SimpleReq; or instance. It may be either a
“when condition functional requirement or
SimpleReq business rule depending on

the text of the document
structure instance.

Standard Standard Req Agent ModalWord A standard requirement
Action Rest may be an agent followed

by a modal word, followed
by an action (verb),
followed by the remainder
of the document structure
instance.

Business Rule BusinessRule “all “only A business rule may be
“exactly Rest any document structure

instances that starts with
“all”, “only or “exactly.

Remainder Rest rest -> Secondary The rest of sentence may
Agent Secondary contain a number of
Action Secondary agents and

actions from their
respective glossaries.

0083 FIG. 7 illustrates an example of a requirements -continued
analysis system 702. In the example shown in FIG. 7, the
requirements analysis system 702 includes the document end if
analysis module 126 in communication with a document else
under analysis 132 and the first document specific parameter
set 138. The document analysis module 126 may also be in
communication with the document analysis database 124 to
retrieve one or more document specific parameter sets 706
708. The analysis module 126 is also in communication with
the processor 116, the network interface 120 and various
other input/output devices 122. As shown in FIG. 7, the docu
ment specific analysis module is in communication with the
display 125, which may display an electronic representation
710 of the document under analysis 132 and a graphical user
interface 712 for interacting with the document analysis mod
ule 126.
0084. In general, the document analysis module 126 is
operative to analyze the document instances 134-136 of the
document under analysis 132. For example, when analyzing
the document structure instance 134, the document analysis

return false

end else

end isRequirement

I0085. In addition, the document analysis module 126 may
determine whether the document structure instance 134-136
includes any of the constituents in glossaries 140-146 consis
tent with the syntax definition 150. More specifically, the
document analysis module 126 may determine whether a
document structure instance 134. Such as a requirements
statement of a requirements document, includes a constituent
from the agent glossary 140. In an alternative example, the
document analysis module 126 may determine whether a
document structure instance 134 includes a constituent from

US 2014/0351694 A1

the phrase glossary 146, the mode glossary 144, the action
glossary 142, or another glossary from another document
parameter set 704-708.
I0086. The pseudo-code below illustrates one method for
identifying whether the document structure instance 134 con
tains an agent constituent:

FindAgent(Document structure instances)
For each agent, in AgentGlossary

If agent, is the first phrase in the document structure instance after
the structure identifier

return true
end if

end for
return false

end FindAgent

0087. The pseudo-code below illustrates one method for
identifying whether the document structure instance 134 con
tains a mode constituent:

Find Mode(Document structure instances)
For each mode in ModeGlossary

If mode is the second phrase in the document structure instance
after the agent phrase

return true
end if

end for
return false

end Find Mode

0088. The pseudo-code below illustrates one method for
identifying whether the document structure instance 134 con
tains an action constituent

FindAction(Document structure instances)
For each action in ActionGlossary

If action is the third phrase in the document structure instance
after the mode phrase

return true
end if

end for
return false

end FindAction

0089. The pseudo-code below illustrates one method for
identifying whether the document structure instance 134 con
tains a constituent from the phrase glossary 146:

FindPhrase(Document structure instances)
For each phrase, in PhraseGlossary

If phrase, occurs in the document structure instance
return true

end if
end for
return false

end FindPhrase

0090 The document analysis module 126 may further
perform a document analysis operation based on whether the
document structure instances 134-136 include any of the
constituents in a glossary 140-146 consistent with the syntax
definition 150. Examples of performing a document analysis
operation include identifying a problematic constituent, iden
tifying a constituent from the glossaries 140-146 contained in
the document structure instances 134-136, identifying that

Nov. 27, 2014

the document structure instances 134-136 do not contain a
constituent from the glossaries 140-146, or identifying
whether the document structure instances 134-136 are con
sistent with the syntax definition 150. In addition, where the
document analysis module 126 identifies an error or issue in
the analyzed document structure instance, the document
analysis module 126 may provide a suggestion for correcting
or rectifying the identified error or issue.
0091. The document analysis module 126 may also com
municate with the inference engine 106 to determine whether
one or more document structures instances 134-136 conflict
using the document parameter set 138. For example, the
document parameter set 138 may include one or more docu
ment structure rules relating to the substantive nature of the
document structure instances 134-136. The document analy
sis module 126 may transmit the document structure
instances 134-136, along with the document structure rules,
to the inference engine 106 to determine whether the docu
ment structure instances 134-136 substantively conflict.
0092. For example, suppose that the document structure
rules include a rule stating that “Encryption delays a message
by five seconds, and the document structure instances
include first a document structure instance stating that “The
system will encrypt all messages and a second document
structure instance stating that “The system will send all mes
sages in less than five seconds. By transmitting the document
structure rule along with each of the two document structure
instances of the above example to the inference engine 106,
the document analysis module 126 is able to report that the
document structure instances conflict with one another.
0093. The document analysis module 126 may also use a
constituent hierarchy parameter, such as the parent field 206
of the agent 140, when analyzing the document structure
instances 134-136. The document analysis module 126 may
use the constituent hierarchy parameter to identify whether
the document structure instances 134-136 conflict with a
document structure rule. For example, as shown in FIG. 2, the
parent field 206 of the agent glossary 140 identifies that
“developers' are subordinate to “development team.” Where
a document structure rule states that "Only a development
team shall contact Suppliers' and a document structure
instance states that “Developers will contact suppliers, the
document analysis module 126 determines that the document
structure instance does not conflict with the document struc
ture rule.

0094. As another example of using document structure
rules to analyze document structure instances, Suppose that a
first business rule states that “Ifan order is to be delivered, the
patron must pay by payroll deduction' and a second business
rule states that "Only permanent employees may register for
payroll deduction for any company purchase. The system
102 may then infer that the inferred business rule from the
first and second business rule is that "Only a permanent
employee can specify that an order can be picked up.”
Accordingly, the document analysis module 126 may output
an alert where a document structure instance states that “The
Patron shall specify whether the order is to be picked up or
delivered.” The document analysis module 126 may also
communicate with the inference engine 106 to perform the
analysis on the document structure instances 134-136 using
the document structure rules.

0.095 The document analysis module 126 may also deter
mine whether the document under analysis 132 contains
document structure instances 134-136 of a specific type of

US 2014/0351694 A1

document structure instance. For example, the document
analysis module 126 may compare the document parameter
set 138 to determine that the document under analysis 132
does not contain document structure instances of a security
type. The document analysis module 126 may also determine
whether the document structure instances 134-136 are com
plete. For example, a document structure instance conform
ing to a conditional syntax definition may have an “if state
ment and no "else' statement. In this example, the document
analysis module 126 may output an alert indicating that the
document structure instance is an incomplete conditional
structure instance.

0096. The document analysis module 126 may also deter
mine whether the document structure instances satisfy a pri
ority given to a property or other document structure instance.
For example, the document parameter set 138 may specify
that user interface document structure instances are given the
highest priority level. In analyzing the document under analy
sis 132, the document analysis module 126 may determine
and identify whether any of the document structure instances
are directed to a user interface.

0097. In addition, the document analysis module 126 may
further identify document structure instances for which a
complementary document structure instance appears to be
missing. For example, a document structure instance may
specify that "System X will send an alert to System Y.” The
document analysis module 126 is operative to determine
whether a similar document structure instance states that
System Y should process alerts sent by System X.
0098. The document analysis module 126 may also be in
communication with a graphical user interface 712 for com
municating analysis messages relating to the analysis of
document structure instances 134-136. FIG. 8 shows one
example of a graphical user interface 712 for communicating
analysis messages relating to the analysis of a document
structure instance. The graphical user interface 712 shown in
FIG. 8 has been configured to communicate analysis mes
sages associated with the phrase glossary 146. Other graphi
cal user interfaces may also be configured for each of the
other glossaries, including the agent glossary 140, the action
glossary 142, and the mode glossary 144.
0099. The graphical user interface 712 associated with the
phrase glossary 146 includes several control parameters 814
822, including an “ignore this requirement control param
eter 814, a “change' control parameter 820, an “undo' con
trol parameter 816, a "cancel control parameter 818, and a
“revert to original control parameter 822. Each of the control
parameters 814-822 are associated with an instruction for the
document analysis module 126. For example, selecting the
“ignore this requirement” control parameter 814 instructs the
document analysis module 126 that it should ignore the ana
lyzed document structure instance; selecting the “change'
control parameter 820 instructs the document analysis mod
ule 126 that it should change the document structure instance;
selecting the undo control parameter 816 instructs the analy
sis module 126 that it should undo the last change applied to
the document structure instance; selecting the cancel control
parameter 818 instructs the document analysis module 126
that it should cancel the analysis of the document structure
instance; and, selecting the revert to original control param
eter 822 instructs the document analysis module 126 that it
should revert the document structure instance to its original
form as it appeared before the analysis by the document
analysis module 126.

Nov. 27, 2014

0100. The graphical user interface 712 also includes sev
eral different text fields 824-830. The text fields 824-830
include a document structure instance text field 824, an expla
nation text field 826, an instruction text field 828, and a
suggested change text field 830. The text fields 824-830 may
be associated with fields 502-506 of the phrase glossary 146,
with fields from the document parameter set 138, or with
fields from the document analysis database 124. For example,
as shown in FIG. 8, the suggested text field 830 of the graphi
cal user interface 712 is associated with the suggestion field
506 of the phrase glossary 146. Similarly, the explanation text
field 826 is associated with the explanation field 504 of the
phrase glossary 146. The document analysis module 146 is
operative to populate the text fields 828-830 with the analysis
messages of their associated fields. Other graphical user inter
faces associated with the other glossaries 140-144 may
include additional or fewer control parameters, or additional
or fewer text fields.

0101. In FIG. 8, the document analysis module 126 is
analyzing document structure instances 832 using the con
stituent “easy” from the phrase glossary 146. The document
analysis module 126 has identified an ambiguous phrase 834
in one of the document structure instances. Having identified
a constituent from the phrase glossary 146, the document
analysis module 126 has retrieved several analysis messages
associated with the constituent “easy” and has populated the
text fields 824-830 of the graphical user interface 712 with
those analysis messages. The document analysis module 126
has populated the document structure instance text field 824
with the text of the document structure instance having the
found constituent. The document analysis module 126 has
also populated the explanation text field 826 with an analysis
message indicating the reason for identifying the constituent
of the document structure instance. The document analysis
module 126 has further populated the instruction text field
828 with an analysis message indicating how to resolve the
identified issue presented in the explanation text field 826,
and the document analysis module 126 has populated the
Suggested text field 830 with analysis messages to replace the
text of the identified constituent or the text of the analyzed
document structure instance.

0102) The text fields 824-83.0 may also be associated with
the control parameters 814-822. For example, in one imple
mentation, the suggested text field 830 is associated with the
change control parameter 820. Thus, when an analysis mes
sage is selected from the suggested text field 830 and the
change control parameter 820 is activated, the document
analysis module 126 may replace the document structure
instance text in the document structure instance text field 824
with the selected analysis message from the Suggested text
field 830. The document analysis module 126 may further
change the document under analysis to reflect the changes
made to the analyzed document structure instance of the
document under analysis.
0103) In addition that the graphical user interface 712 of
FIG.8 may indicate that the document analysis module 126
has found a constituent from the phrase glossary 146 in the
analyzed document structure instance, other graphical user
interfaces may indicate that the document analysis module
126 has not found a constituent from other glossaries. For
example, a graphical user interface associated with the agent
glossary 140 may present an analysis message indicating that
the document analysis module 126 did not find an agent
constituent in the analyzed document instance. Similarly, a

US 2014/0351694 A1

graphical user interface associated with the action glossary
140 may present an analysis message indicating that the
document analysis module 126 did not find an action con
stituent in the analyzed document instance. More generally,
the requirements analysis system 702 may be configured Such
that a graphical user interface is associated with each of the
document parameters of the document parameter sets for
displaying the analysis of the document analysis module 126.
0104 FIG.9 shows logic flow for a requirements analysis
system 702. The document analysis module 126 receives the
document parameters, such as the glossaries 140-146 or the
constituents of the glossaries 140-146, from the document
parameter set 138 (902). The document analysis module 126
then receives the document for analysis (904). In starting the
analysis of the document, the document analysis module
identifies a first document structure instance, Such as docu
ment structure instance 134 (906). The document analysis
module 126 may not identify any document structure
instances, in which case, the document analysis module 126
may display a graphical user interface with an analysis mes
sage indicating that the document analysis module 126 did
not identify any document structure instances.
0105. Where the document analysis module 126 identifies
a document structure instance, the document analysis module
126 then identifies a first glossary in the document specific
parameter set (908). The first glossary may be any of the
glossaries 140-146. The first glossary may also be a glossary
stored in the document analysis database 124. Alternatively,
orin addition, the documentanalysis module 126 may receive
a structure category component selection value that indicates
the structure category component to start the analysis. For
example, the document analysis module 126 may receive a
structure category component selection value corresponding
to the action category component, in which case, the docu
ment analysis module 126 begins the analysis of the docu
ment structure instance with the action glossary 142.
0106 The documentanalysis module 126 then begins ana
lyzing the document structure instance to determine whether
the document structure instance contains any of the constitu
ents in the first glossary (910). In one implementation, the
document analysis module 126 compares each of the con
stituents of the first glossary with the document structure
instance. After the analysis, the document analysis module
126 presents the results of the analysis, such as through the
graphical user interface 712 (912).
0107 Based on the results of the analysis, the document
analysis module 126 may decide to perform a document
analysis operation, pre-configured or otherwise, based on the
results of the analysis (914). Examples of performing a docu
ment analysis operation include Some of the examples previ
ously mentioned above, but also include, displaying a graphi
cal user interface, retrieving an analysis message, or
terminating the analysis operation of the document structure
instance. Where the document analysis module 126 decides
to perform a document analysis operation (916), the docu
ment analysis module 126 may use the graphical user inter
face 712 to present an analysis message associated with the
results of the analysis. For example, where the document
analysis module 126 determines that the document structure
instance does not have an action constituent from the action
glossary 142, the document analysis module 126 uses the
graphical user interface 712 to present an analysis message
relating to the absence of the action constituent and a control
parameter for adding an action constituent to the analyzed

Nov. 27, 2014

document structure instance. Alternatively, or in addition, the
document analysis module 126 may be pre-configured to
apply a change to the document structure analysis based on
the results of the analysis and of the category component
associated with the first glossary. The document analysis
module 126 may perform more than one document analysis
operation on the analyzed document structure instance.
0108. The documentanalysis module 126 then determines
whether the document parameter set contains additional glos
saries (918), and if so, identifies the next glossary in the
document parameter set with which to use in analyzing the
document structure instance (920). When the document
analysis 126 determines that there are no additional glossaries
with which to use in analyzing the document structure
instance, the document analysis module 126 then proceeds to
determine whether there are additional document structure
instances to identify (922). If so, the document analysis mod
ule 126 identifies another document structure instance (922),
and proceeds through the analysis of the additional identified
document structure instance as described above. After the
document analysis module 126 determines that there are no
additional document structure instances to analyze, the docu
ment analysis module 126 terminates its analysis of the
received document.
0109 FIG. 10 shows a requirements commenting system
1002. In the system shown in FIG. 10, the requirements
commenting system 1002 includes components similar to
those described with reference to FIG. 7 and the requirements
analysis system 702. However, the requirements commenting
system 1002 may further include the document commenting
module 128.
0110. In general, the document commenting module 128

is operative to comment on the document instances 134-136
of the document under analysis 132. For example, the docu
ment commenting module 128 may determine whether the
document structure instance 134-136 includes any of the
constituents in glossaries 140-146 consistent with the syntax
definition 150. More specifically, the document commenting
module 128 may determine whether a document structure
instance 134. Such as a requirements statement of a require
ments document, includes a constituent from the agent glos
sary 140. In an alternative example, the document comment
ing module 128 may determine whether a document structure
instance 134 includes a constituent from the phrase glossary
146, the mode glossary 144, the action glossary 142, or
another glossary from another document parameter set 704
708.
0111. The document commenting module 128 may fur
ther output an analysis message based on the analysis per
formed by the document commenting module 128. In one
implementation, outputting an analysis message includes
embedded an analysis message as a comment in the electronic
representation 710 of the document under analysis 132. The
pseudo-code below illustrates one method performable by the
document commenting module 128 in retrieving analysis
messages and embedding the analysis messages as comments
in the electronic representation 710 of the document under
analysis 132:

ProcessRequirements (Document reqLoc)
For each document structure instances in reqLoc

If (isRequirement(s) is true)
If (findAgent (s) = true)
Mark agent

US 2014/0351694 A1

-continued

Else
Output ("No Agent Found")
return

End i
f(find Mode (s) = true)
Mark mode

Else
Output ("No Mode Found")
return

End i
f(findAction (s) = true)
Mark action

Else
Output ("No Action Found")
return

End i
Mark rest of sentence
f(find Phrase (s) = true)
Mark phrase
Output ("Phrase used in requirement")

End i
End if

End For
End ProcessRequirements

0112 The document commenting module 128 may fur
ther perform one or more of the analyses as described above
with reference to the document analysis module 126.
0113 FIG. 11 shows analysis messages embedded as
comments 1102-1108 in an electronic representation 710 of a
document under analysis 132. The embedded comments
1102-1108 include a phrase embedded comment 1102, an
agent embedded comment 1104, and action embedded com
ments 1106-1108. Each of the embedded comments have
analysis messages associated with a glossary 140, 142, and
146. For example, the phrase embedded comment 1102 has
an analysis message associated with the phrase glossary 146.
the agent embedded comment 1104 has an analysis message
associated with the agent glossary 140, and the action embed
ded comments 1106-1108 have analysis messages associated
with the action glossary 142. Moreover, the document com
menting module 128 may identify a specific constituent
through the embedded comments 1102-1108, such as identi
fying the constituent “easy” as shown in FIG. 11.
0114. Furthermore, the document commenting module
128 may indicate in the electronic representation 710 the
structure category component of the document instances of
the document under analysis 132 with markings 614-620.
Using the markings 614-620 as discussed above with refer
ence to FIG. 6, the document commenting module 128 may
use a thin line 614 for the agent, a medium line 616 for the
modal verb, and a heavy line weight 618 for the action. The
document commenting module 128 may further use a dashed
line 620 for the remainder.

0115 FIG. 12 shows logic flow for the requirements com
menting system 1002. The document commenting module
128 receives the document parameters, such as the glossaries
140-146 or the constituents of the glossaries 140-146, from
the document parameter set 138 (1202). The document com
menting module 128 then receives the document for analysis
(1204). In starting the analysis of the document, the document
commenting module 128 identifies a first document structure
instance, such as document structure instance 134 (1206).
The document commenting module 128 may not identify any
document structure instances, in which case, the document

Nov. 27, 2014

commenting module 128 may display an analysis message
indicating that no document structure instances were identi
fied.
0116. Where the document commenting module 128 iden

tifies a document structure instance, the document comment
ing module 128 then identifies a first glossary in the document
specific parameter set (1008). The first glossary may be any of
the glossaries 140-146. The first glossary may also be a glos
sary stored in the document analysis database 124. Alterna
tively, or in addition, the document commenting module 128
may receive a structure category component selection value
that indicates the structure category component to start the
analysis. For example, the document commenting module
128 may receive a structure category component selection
value corresponding to the action category component, in
which case, the document commenting module 128 begins
the analysis of the document structure instance with the
action glossary 142.
0117 The document commenting module 128 then begins
analyzing the document structure instance to determine
whether the document structure instance contains any of the
constituents in the first glossary (1210). In one implementa
tion, the document commenting module 126 compares each
of the constituents of the first glossary with the document
structure instance (1212).
0118 Where the document commenting module 128
determines that the document structure instance contains a
constituent from the first glossary, the document commenting
module 128 then proceeds to determine whether the docu
ment structure instance should contain the constituent (1214).
If the document commenting module 128 determines that the
document structure instance should contain the identified
constituent, the documenting commenting module 128 indi
cates in the document structure instance the identified con
stituent (1216). For example, the syntax definition 150
defines that a requirement statement should contain an action
category component. Accordingly, the document comment
ing module 128 will mark a document structure instance
where the document commenting module 128 finds an action
constituent in the document structure instance.

0119) However. If the document commenting module 128
determines that the document structure instance should not
contain the identified constituent, the documenting comment
ing module 128 retrieves an analysis message from the docu
ment parameter set 138 and embeds the analysis message in
the electronic representation 710 of the document under
analysis 132 (1218). For example, the phrase glossary 146
contains constituents that should not appear in a document
structure instance. In this example, where the document com
menting module 128 identifies a constituent from the phrase
glossary 146 in the document structure instance, the docu
ment commenting module 128 embeds an analysis message
associated with the identified constituent.
I0120 Alternatively, the document commenting module
128 may determine that the document structure instance does
not contain a constituent from the first glossary. In this case,
the document commenting module 128 determines whether
the document instance structure should contain a constituent
from the glossary. If the document structure instance should
contain a constituent from the glossary, the document com
menting module 128 retrieves an analysis message associated
with the missing constituent or glossary, and embeds the
analysis message in the electronic representation 710 of the
document under analysis 132 (1218). Alternatively, if the

US 2014/0351694 A1

document structure instance should not contain a constituent
from the glossary, the document commenting module 128
then proceeds to determine whether there are additional glos
saries (1220) in the document parameter set 138.
0121. As an example of the above described logic flow, the
syntax definition 150 defines that a requirements statement
should contain an action category component. Where the
document commenting module 128 identifies a requirements
statement, but further identifies that the requirements state
ment is missing an action category component, the document
commenting module 128 embeds an analysis message in the
electronic representation 710 of the document under analysis
132 indicating that the requirements statement is missing an
action category component.
0122. After marking the document structure instance
(1216), embedding an analysis message (1218), or determin
ing that the document structure instance should not contain a
constituent from the first glossary (1220), the document com
menting module 128 proceeds to determine whether there are
additional glossaries in the document parameter set 138
(1220). If the document commenting module 128 determines
that there are additional glossaries, the document comment
ing module 128 identifies the next glossary (1222) and pro
ceeds to analyze the document structure instance using the
identified glossary (1210). However, if the document com
menting module 128 determines that there are no remaining
glossaries to use in analyzing the identified document struc
ture instance, the document commenting module 128 pro
ceeds to determine whether there are additional document
structure instances remaining in the document under analysis
132 (1224). If there are remaining document structure
instances, the document commenting module 128 identifies
the next document structure instance (1226) and proceeds to
analyze the identified next document structure instance as
described above. Where there are no remaining document
structure instances and no remaining glossaries, the docu
ment commenting module 128 terminates its analysis and
commenting.
0123. Although the logic flow described above illustrates
Some of the actions of the document commenting module
128, the actions described are not exhaustive. For example,
the document commenting module 128 may mark a remain
der component of the document structure instances.
0.124 FIG. 13 shows a report generator system 1302. In
the system shown in FIG. 13, the report generator system
1002 includes components similar to those described with
reference to FIG. 7 and the requirements analysis system 702.
However, the report generator system 1302 may further
include the document reporting module 130. The document
reporting module 130 may be configured to analyze elec
tronic documents and document structure instances as
described above with reference to the document analysis
module 126.

0.125. In general, the document reporting module 130 is
operative to generate reports organized by constituent and
document structure instance document reporting module 130.
More specifically, the document reporting module 130 is
operative to generate a report associating constituents with
document structure instances that contain those constituents
and are consistent with the syntax definition 150. In general,
the document reporting module 130 is operative to receive a
structure category component value and generate a report
using the received structure category component value.

Nov. 27, 2014

0.126 FIG. 14 shows an example report 1402 generated by
the document reporting module 130 using an action category
component value. The example report 1402 contains a con
stituent column 1404 and an identified requirements state
ment column 1406. In the example report 1402, the constitu
ent column 1404 contains rows of agent constituents and the
requirements statement column 1406 contains rows of
requirement statements associated with the agent constituent
identified in the constituent column 1404. However, the con
stituent column 1404 may include other constituents such as
action constituents, mode constituents, or other constituents,
depending on the structure category component value
received by the document reporting module 130. The docu
ment reporting module 130 may also be pre-configured to
generate a report using a specific document structure category
component.
I0127 FIG. 15 shows logic flow for the report generator
system 1302. The document reporting module 130 receives
the document parameters. Such as the glossaries 140-146 or
the constituents of the glossaries 140-146, from the document
parameter set 138 (1502). The document reporting module
130 then receives the document for analysis (1504). After
wards, the document reporting module 130 receives a struc
ture category component selection value for selecting a glos
sary by which to analyze the received document. (1506)
I0128. In starting the report of the received document, the
document reporting module 130 selects a first constituent
from the selected glossary (1508). The document reporting
module 130 then compares the selected first constituent with
the document structure instances of the received document
(1510). As the document reporting module 130 is comparing
the selected first constituent with the document structure
instances, the document reporting module 130 maintains a list
of document structure instances that contain the selected first
constituent according to the syntax definition 150. It is pos
sible that none of the document structure instances contain
the selected first constituent or contain the selected first con
stituent consistent with the syntax definition 150.
I0129. After comparing the selected first constituent with
the document structure instances, the document reporting
module 130 then determines whether there are additional
constituents in the selected glossary (1514). Where the docu
ment reporting module 130 determines there are additional
constituents in the selected glossary, the document reporting
module 130 selects the next constituent in the selected glos
sary (1516), and proceeds to compare the selected next con
stituent with the document structure instances in the received
document (1510). The document reporting module 1530 also
maintains a list of document structure instances that contain
the selected next constituent consistent with the syntax defi
inition 150.

0.130. Where the document reporting module 130 deter
mines that the selected glossary does not contain additional
constituents, the document reporting module 130 outputs a
report containing the list of constituents from the selected
glossary and the maintained lists of document structure
instances containing the constituents consistent with the Syn
tax definition 150 (1518). In some instances, a list associated
with a constituent may be an empty list. The document report
ing module 130 may output more than one report depending
on the number of selected glossaries and the number of
received documents.
I0131 FIG. 16 shows an example of an agent taxonomy
1602. The agent taxonomy 1602 illustrates a hierarchical

US 2014/0351694 A1

relationship between agent constituents contained in an agent
glossary 140. For example, the agent taxonomy 1602 illus
trates that a “supplier manager is a type of “Manager.” Simi
larly, FIG. 17 shows an example of an action taxonomy 1702.
The action taxonomy 1702 illustrates a hierarchical relation
ship between action constituents contained in an action glos
sary 142. For example, the action taxonomy 1702 shows that
the verb “e-mail' is a more specific verb for “Send.” The agent
taxonomy 1602 or the action taxonomy 1702 may be used as
part of a domain knowledge based analysis to determine
whether there is a conflict among document structure
instances, or, more specifically, requirements statements. For
example, the document analysis, commenting, and reporting
system 102 may include one or more business rules for
resolving conflicts between requirement statements using an
agent glossary 140 configured with the agent taxonomy 1602,
the action glossary 142 configured with the action taxonomy
1702, or other glossary configured with another type of tax
onomy. The document analysis, commenting, and reporting
system 102 may also be configured to identify similar docu
ment structure instances, such as “The purchasing system
sends the order to the user' and “The purchasing system faxes
the order to the user,” using the agent taxonomy 1602, the
action taxonomy 1702, or an additional or alternative tax
onomy.

0132 FIG. 18 shows an example of an ontology model
1800. In one implementation, the ontology model 1800
defines an ontology hierarchy 1802. The ontology model
1800 may be described using the OWL Web Ontology Lan
guage. However, the ontology model 1800 may also be
described using other languages Such as the Resource
Description Framework (RDF) or the Knowledge Inter
change Format (KIF).
0133. The ontology hierarchy 1802 comprises document
structure instance classes related as root classes and child
classes. For example, FIG. 18 shows that the ontology hier
archy 1802 starts with a root requirement class 1804 and that
the root requirement class 1804 has two child classes, a secu
rity requirement class 1806 and a time requirement class
1820. In addition, the security requirement class 1806 is a root
class of two child classes, an encryption class 1808 and an
authentication class 1814. Similarly, the time requirement
class 1820 is a root class of two child classes, a response time
class 1822 and a network time class 1824. Additional child
classes include an SSH class 1810, an RSA class 1812, a
security token class 1816, and a password class 1818. As
shown in FIG. 18, the SSH class 1810 and the RSA class 1812
are child classes of the encryption class 1808, and the security
token class 1816 and the password 1818 are child classes of
the authentication class 1814.

0134 FIG. 18 also shows that the ontology hierarchy 1802
defines class relationships between the root classes and their
associated child classes. For example, FIG. 18 shows that the
ontology model 1800 includes a horizontal class definition
relationship 1828 and a vertical class definition relationship
1826. In general, horizontal class definition relationships
define relationships between classes unrelated to hierarchy,
and vertical class definition relationships define hierarchical
relationships between classes. In the example shown in FIG.
18, the horizontal class definition relationship 1828 is an
“affects' relationship, and shows that the security require
ment class 1806 affects the time requirement class 1820. In
addition, FIG. 18 shows that the vertical class definition rela
tionship 1826 is an “is A relationship that shows that the time

Nov. 27, 2014

requirement class 1820 is a child class of the requirement
class 1804. Examples of class definition relationships are
shown below in Table 3.

TABLE 3

Relationship
Type Description

Affect Classifications that affect each other.
Contradict Classifications that contradict each other
Dependency Classifications that depend on each other
Implement Classification that implements a higher-level classification
Similarity Classifications that are similar to each other
is A Classifications that are special cases of other classifications

I0135 FIG. 18 also shows that the ontology model 1800
may further include instance class search terms that facilitate
analysis of document structure instances against the ontology
model 1800. Examples of instance class search terms are the
encryption class search terms 1830 “encrypt' and
"encrypted.” Instance class search terms may be used to asso
ciate document structure instances with a class. Other
examples of instance class search terms may be “SSH.”
“RSA.” “authenticate.” “password, or any other search term
associated with the classes included in the ontology model
1800. However, other properties may be used to associate a
document structure instance with one or more classes.
0.136 Turning next to FIG. 19 is an example of an ontol
ogy analysis system 1900. The ontology analysis system
1900 may include one or more components of the document
analysis, commenting, and reporting system 102. In one
implementation, the memory 118 stores classification logic
1902 and relationship analysis logic 1906 for analyzing a
document under analysis 132 using the ontology model 1800.
The document analysis database 124 may also include addi
tional ontology models other than ontology model 1800.
I0137 As shown in FIG. 19, the ontology model 1800
includes a root class 1910, such as the requirement class 1804,
and child classes 1912. Such as the security requirement class
1806 and the time requirement class 1820. The ontology
model also includes class definition relationships 1914, such
as horizontal relationship 1828 and vertical relationships
1826, and includes instance class search terms, such as the
encryption instance class search terms 1830.
0.138. The classification logic 1902 is operative to analyze
document structure instances 134-136 against the ontology
model 1800 to determine classifications for the document
structure instances among the document structure instance
classes. In one implementation, the classification logic 1902
examines each of the structure instances 134-136 in a docu
ment under analysis 132, and when a document structure
instance includes a search term associated with a class in the
ontology model 1800, the classification logic 1902 assigns an
instance classification to the document structure instance
based on the found search term and the class associated with
the found search term. However, the classification logic 1902
may assign an instance classification to a document structure
using another property of the document structure instance
other than search term.
0.139. In addition, the classification logic 1902 may com
municate with the inference engine 106 to use a knowledge
model to determine that the document structure instance is an
instance of a class associated with the found search term. In
one implementation, the inference engine 106 is a Jena infer
ence engine, available from the Hewlett-Packard Develop

US 2014/0351694 A1

ment Company, LP located in Palo Alto, Calif. However, the
inference engine 106 may be other reasoning engines such as
Jess, available from the Sandia National Laboratories located
in Livermore, Calif. or Oracle 10G, available from the Oracle
Corporation located in Redwood Shores, Calif. The pseudo
code below illustrates one implementation of the classifica
tion logic 1902 when the classification logic 1902 uses the
encryption instance class search terms 1830:

CreateRequirementInstance (Requirement R, Ontology ont, Model
l

'for each class, in Ontology ont
If class, or searchterms (class) occur in R

m.assert (Risa instance of classi)
end if

end For
end CreatementInstance
where: Searchterms (class) is list of search terms
for an class in an ontology, such as "{encrypt, encrypted."

0140. As one example of the classification logic 1902 in
operation, Suppose that a first document structure instance
states that “The messaging system will encrypt all its
responses using SSH' and a second document structure
instance States that “The messaging system will have a
response time of 5 milliseconds. In this example, the classi
fication logic 1902 will assert the first document structure
instance as an instance of the encryption class 1808 and the
SSH class 1810. The classification logic 1902 will also assert
the Second document structure instance as an instance of the
response time class 1822. The classification logic 1902 may
further maintain these assertions as part of the instance clas
sifications 1904.
0141. In addition to the classification logic 1902, the rela
tionship analysis logic 1906 is operative to whether the docu
ment structure instances 134-136 affect each other. The rela
tionship analysis logic 1906 may also operate in conjunction
with the classification logic 1902 to determine the document
structure instances 134-136 that affect each other. The rela
tionship analysis logic 1906 may further use a knowledge
model for determining the document structure instances 134
136 that affect each other. The relationship analysis logic
1906 may also find related document structure instances,
complimentary document structure instances, or other docu
ment structure instances. The pseudo-code below illustrates
one example of the relationship analysis logic 1906:

FindAffectedRequirements(Document d, Ontology ont, Model m)
m. loadOntology (ont)

For each Requirement r in a document
CreateRequirementInstance (R, Ont, m)

End For
m.execute(Query(SELECT 2R1,2R2 WHERE
{2R1 RDF.Type Requirement?R2

RDF.Type Requirement.?R1 affects?R2)
End FindAffectedRequirements
where: them.execute(Query is a SPARQL query that returns any two
instances of class Requirement (R1 and R2) that affect each other.

0142. As shown above, the relationship analysis logic
1906 uses the SPARQL query language. However, the rela
tionship analysis logic 1906 may use other query languages,
such as SQL, the JESS Rules language, LISP or any other
query language.
0143 FIG. 20 shows logic flow for an ontology analysis
system 1900. The ontology analysis system 1900 initially

Nov. 27, 2014

retrieves one or more document parameter sets from the docu
ment analysis database 124 (2002). As previously discussed,
a document parameter set may include one or more glossa
ries, structure identifies, syntax definitions, or other param
eters. The ontology analysis system 1900 then receives the
document under analysis 132 (2004). Thereafter, the ontol
ogy analysis system 1900 retrieves an ontology model 1800
(2006). The ontology analysis system 1900 may also retrieve
additional ontology models from the documentanalysis data
base 124.
0144. Using the retrieved ontology model and the classi
fication logic 1902, the ontology analysis system 1900 clas
sifies the document structure instances of the document under
analysis 132 based on whether the document structure
instances contain associated instance class search terms 1916
(2008). For example, the classification logic 1902 may be
operable to operable to search for instance class search terms
1916 in one or more document structure instances. The ontol
ogy analysis system 1900 may also maintain a set of instance
classifications 1904 that may be identifiers or other data that
assign one or more classes to a document structure instance.
0145 After classifying the document structure instances,
the ontology analysis system 1900 may then use the relation
ship analysis logic 1906 to determine whether there are hori
Zontal class definition relationships between the document
structure instances using the instance classifications 1904 and
the ontology model 1800 (2010). The ontology analysis sys
tem 1900 may also communicate with an inference engine
106 to classify the document structure instances or to analyze
the class definition relationships between the document struc
ture instances.
0146 Following the classification (2008) and relationship
analysis (2010) of the document structure instances, the
ontology analysis system 1900 may output an analysis result
showing the results of the classification and relationship
analysis (2012). As one example of an analysis result, the
ontology analysis system 1900 may insert a relationship noti
fication message into the document the document under
analysis 132. Additional types of analysis results are also
possible.
0147 The description above explained the role of several
types of glossaries 140-146. Such as the agent glossary 140
that defines permissible agents. In addition to the glossaries
140-146, the document analysis, commenting, and reporting
system 102 may also include other types of glossaries, such as
a requirements relationship glossary. FIG. 21 shows one
example of a requirements relationship glossary 2102. The
requirements relationship glossary 2102 may define relation
ships between classes of an ontology model. The require
ments relationship glossary 2102 may also define relation
ships between the structure category components of a
document structure instance.
0.148. In one implementation, the requirements relation
ship glossary 2102 includes a class category 2104, a parent
class category 2106, a keywords category 2108, and a rela
tionship category 2110. Other implementations of the
requirements relationship glossary 2102 may include other
categories. The class category 2104 may identify a class from
an ontology model. The parent class category 2106 may iden
tify a parent class for a given class from the class category
2104. The keywords category 2108 may include keywords
that facilitate analysis of document structure instances.
Examples of keywords associated with an authentication
class may include “password,” “token.” “authentication, and

US 2014/0351694 A1

"Kerberos.' The keywords may be used to associate docu
ment structure instances with a class. Alternatively, or in
addition, the keywords may be used to associate a structure
category component with a class. The relationship category
2110 may identify whether the given class has a relationship
with another class. For example, a security class structure
category component may affect a time structure category
component.
014.9 FIG. 22 is an example of a requirements graphing
system 2202. In the example shown in FIG. 22, the require
ments graphing system 2202 includes a graphing module
2204 in communication with a document under analysis 132
and a document specific parameter set 2206. The graphing
module 2204 may also be in communication with the docu
ment analysis database 124 to retrieve one or more document
specific parameter sets 706-708. In one implementation, the
graphing module 2204 is in communication with the docu
ment parameter set 2206 that includes the agent glossary 140,
the mode glossary 144, the structure identifiers 148, the
action glossary 142, the phrase glossary 146, the syntax defi
nitions 150, and the relationship glossary 2102. The graphing
module 2204 may also be in communication with the proces
sor 116, the network interface 120 and various other input/
output devices 122. As shown in FIG. 22, the graphing mod
ule 2204 is in communication with the display 125, which
may display an electronic representation 2208 of an ontology
hierarchy for the document under analysis 132.
0150. Although the graphing module 2204 is shown as
integrated as part of the requirements graphing System 2202,
the graphing module 2204 may be integrated as part of any
other system. For example, the graphing module 2204 may be
incorporated into the document analysis, commenting, and
reporting system 102, the requirements analysis system 702,
the requirements commenting system 1002, the report gen
erator system 1302, or the ontology analysis system 1900. In
other implementations, the graphing module 2204 is accessed
through remote procedure calls, web services, or other inter
faces to obtain an image to render on the display 125.
0151. The graphing module 2204 includes logic that gen
erates or modifies an ontology hierarchy using the document
parameter set 2206 and the document instances 134-136 of
the document under analysis 132. For example, the graphing
module 2204 may first identify a document structure instance
in the document under analysis 132 (2210). The graphing
module 2204 may then selector identify a structure category
component from the identified document structure instance,
Such as an agent action or other structure category component
(2212). Thereafter, the graphing module 2204 may generate
an ontology hierarchy that includes the identified structure
category component (2214). In one implementation, the
graphing module 2204 is operative to generate an ontology
hierarchy that includes each of the structure category compo
nents from an identified document structure instance (2216).
In another implementation, the graphing module 2204 is
operative to generate an ontology hierarchy that includes each
of the structure category components from each of the docu
ment structure instances 134-136 from the document under
analysis 132 (2218).
0152. In a further implementation, the graphing module
2204 generates a core ontology hierarchy that has common
root classes, child classes, and relationships. The graphing
module 2204 may be configured to use the core ontology
hierarchy to generate a document specific ontology hierarchy.
For example, the graphing module 2204 may access the vari

Nov. 27, 2014

ous glossaries, such as the agent glossary 140 and the action
glossary 142, to modify the core ontology hierarchy to
include agent and action classes and instances specific to
agent glossary 140 and the action glossary 142. The graphing
module 2204 may then access relationship glossary 2102 to
build types and establish relationships between the classes of
the modified core ontology hierarchy. Thereafter, the graph
ing module 2204 may extract the structure category compo
nents from the document structure instances 134-136 to add
instances or identifiers of the document structure instances to
the modified core ontology hierarchy. In other implementa
tions, the graphing module 2204 may be configured to com
municate with other modules, such as the analysis module
126, to add instances or identifiers of the document structure
instances 134-136 to the modified core ontology hierarchy.
The modified core ontology hierarchy may then be assigned
as the document specific ontology hierarchy.
0153. The graphing module 2204 may display one or more
ontology hierarchies as output 2208 on the display 125. For
example, the graphing module 2204 may display the core
ontology hierarchy, the document specific ontology hierar
chy, or any other hierarchy. The hierarchies may be displayed
at any time including while being generated by the graphing
module 2204, after being generated by the graphing module
2204, or being retrieved from another source, such as a
memory device or other computer system.
0154 FIG. 23 shows one example of a core ontology hier
archy 2302. The core ontology hierarchy 2302 may be pre
configured or generated by the graphing module 2304. In one
implementation, the core ontology hierarchy 2302 is gener
ated as the output 2208. In general, the core ontology hierar
chy 2302 illustrates the various relationships between classes
of requirements. The core ontology hierarchy 2302 may be
described using the OWL Web Ontology Language. How
ever, the core ontology hierarchy 2302 may also be described
using other languages such as the Resource Description
Framework (RDF) or the Knowledge Interchange Format
(KIF).
0155 The core ontology hierarchy 2302 comprises docu
ment structure instance classes related as root classes and
child classes. For example, FIG. 23 shows that the core ontol
ogy hierarchy 2302 starts with a root requirement class 2304
and that the root requirement class 2304 has four child
classes: a RequirementType class 2306, a Requirement class
2308, an Agent class 2310, and an Action class 2312. The
RequirementType class 2306 also has two child classes: a
Functional class 2314 and a Nonfunctional class 2316. The
Nonfunctional class 2316 is also a root class for two child
classes: a Time class 2318 and a Security class 2320. The
Security class 2320 also has two child classes: an Authenti
cation class 2322 and an Encryption class 2324.
0156 The Requirement class 2308 also has child classes.
In one implementation, the Requirement class has a Sim
pleRequirement class 2326 and a Conditional Requirement
class 2328. The SimpleRequirement class 2326 has two child
classes: a BusinessRule class 2330 and a Standard Require
ment class 2332.
0157 Like the Requirement class 2308, the Agent class
2310 has a User class 2334 and a System class 2336 as child
classes. The Action class 2312 may or may not have child
classes.
0158. The subclasses for a parent class may be different
depending on the context of the ontology hierarchy. For
example, examples of other Nonfunctional classes include a

US 2014/0351694 A1

SecureTokens class, a MessagingProtocol class, or other
classes. The other parent classes may also have alternative
Subclasses depending on the context of the ontology hierar
chy as well. Table 4 below lists some of the classes illustrated
by the core ontology hierarchy 2302. In other implementa
tions, the core ontology hierarchy 2302 includes alternative
classes.

TABLE 4

Class Description

Root The root of the ontology model
RequirementType A class that defines the type

of requirement
Requirement A class that defines a requirement
Agent A class that defines agents
Action A class that defines actions
Functional A class that defines functional

requirements
Nonfunctional A class the defines non-functional

requirements
Time A class that defines time
Security A class that defines security
Authentication A class that defines authentication
Encryption A class that defines encryption
SimpleRequirement A class that defines all requirements

that are not conditional
Conditional Requirement A class that defines conditional

requirements
BusinessRule A class that defines those requirements

that are business rules
Standard Requirement A class that defines the standard

requirement having the form:
agent modal word
action rest

User A class that defines a user
System A class that defines a system

0159 FIG. 23 also shows that the core ontology hierarchy
2302 defines class relationships between the root classes and
their associated child classes. For example, FIG. 23 shows
that the ontology model 2302 includes a horizontal class
definition relationship 2.338 and a vertical class definition
relationship 2340. In general, horizontal class definition rela
tionships define relationships between classes unrelated to
hierarchy, and vertical class definition relationships define
hierarchical relationships between classes. In the example
shown in FIG. 23, the horizontal class definition relationship
is a “hasRequirementType' relationship, and shows that the
requirement class 2308 has a requirement type of the
RequirementType class 2306. In addition, FIG.23 shows that
the vertical class definition relationship 2340 is a “has sub
class' relationship that shows that the time root requirement
class 2304 has four child classes. These relationships are not
exhaustive and other relationships are also possible.
Examples of class definition relationships are shown below in
Table 5.

TABLE 5

Relationship Description

Affect Classifications that affect each other.
Contradict Classifications that contradict each other
Dependency Classifications that depend on each other
Implement Classification that implements a higher-level

classification
Similarity Classifications that are similar to each other
is A Classifications that are special cases of other

classifications

Nov. 27, 2014

TABLE 5-continued

Relationship Description

Classifications where a subclass is a
specialization of the parent class. For example,
a “parent is a sub-class of
“human, which means that
parent is a special Sub-group of all
“humans' that are parents

has subclass

hasRequirementType Classifications that define the type of the
requirement. In general, the class may be a
Functional class or a Nonfunctional class.

has Agent Classifications where the class is the agent
of the requirement.
Classifications that instances of a class.
In other words, the instance classification
is the specific form of the general class
that the instance class is instantiating.

has instance

has Action Classifications where the class is the
action of the requirement.

Affects Classifications that affect each other.
has secondary Agent Secondary agent of a requirement
hasEncryption Algorithm Encryption Algorithm used by the System

(e.g. SSH, RSA)

0160 The core ontology hierarchy 2302 may include, or
be integrated with, one or more domain specific ontologies.
The domain-specific ontology may include one or more
domain-specific classes. For example, the core ontology hier
archy 2302 includes a domain-specific ontology 2342 that
comprises a Time class 2318, a Security class 2320, an
Authentication class 2322, and an Encryption class 2324. The
domain-specific ontology 2342 is associated with the Non
functional class 2316 of the core ontology hierarchy 2302.
Other examples of domain-specific ontologies include a
mobile domain-specific ontology that has classes associated
with mobile devices and an SAP system domain-specific
ontology associated with SAP systems. Other domain-spe
cific ontologies may be configured for other systems as well.
0.161 The domain-specific ontologies may be associated
with other classes. For example, the core ontology hierarchy
may have a domain-specific ontology associated with the
Functional class 2314, a domain-specific ontology associated
with the Requirement class 2308, a domain-specific ontology
associated with the Agent class 2310, and a domain-specific
ontology associated with the Action class 2312. In other
words, a domain-specific ontology may be associated with
any class of the core ontology hierarchy 2302.
0162. As discussed above, the graphing module 2204 is
operative to generate a document specific ontology hierarchy
using the document under analysis 112 and the core ontology
hierarchy 2302. FIG. 24 illustrates an example of a document
specific ontology hierarchy 2402. In the example shown in
FIG. 24, the document specific ontology hierarchy 2402 gen
erates the document specific ontology hierarchy 2402 using
the following two document structure instances: 1) The Web
Servershall encrypt all of its responses using SSH; and 2) The
Web Server shall have a response time of 5 milliseconds or
less.

0163 The document specific ontology hierarchy 2402
includes hierarchy instance identifiers 2404-2412 that iden
tify and establish relationships between the structure category
components of these two document structure instances. For
example, the document specific ontology hierarchy 2402
includes an agent hierarchy instance identifier 2404 that iden
tifies the agent “Web Server a standard requirement hierar
chy instance identifier 2406 that identifies the response time

US 2014/0351694 A1

of 5 milliseconds, a standard requirement hierarchy instance
identifier 2408 that identifies the document requirement that
the Web Server agent has an encryption requirement of SSH,
response time hierarchy instance identifier 2410 that identi
fies an instance of the response time parent class, and an
encryption hierarchy instance identifier 2412 that identifies
an instance of the encryption parent class.
0164. The document specific ontology hierarchy 2402
provides a powerful and informative graphical overview of
the relationships between the classes of the core requirement
ontology 2302 and the document structure instances 134-136.
Given the large size ofrequirements documents, the graphing
module 2204 may provide information about the various sys
tems being referred to in the requirements document.
0.165. The requirements graphing system 2202 may inter
act with any other systems, such as requirements analysis
system 702, the requirements commenting system 1002, the
ontology analysis system 1900, or any other system, to pro
vide information relating to the document structure instances.
For example, the document specific ontology hierarchy 2402
may be queried to provide information about the document
structure instances using one or more query languages, such
as a SPARQL. In one implementation, the following
SPARQL query may be passed to the document specific
ontology hierarchy 2402 to determine if there are any rela
tionships between the document structure instances:

select?req1, 2req2 where
{?req1 hasRequirementType?type1

'?req2 hasRequirementType?type2.
Affects domain?type1 Affects range?type2.
req2 has Agent agent2.2req1 has Agent agent1

filter(?agent1 = 2agent2)}

0166 Although the query to the document specific ontol
ogy hierarchy 2402 may be in any language, the above
SPARQL query returns all requirements for the same agent
that have requirement types that affect each other.
0167. The requirements graphing system 2202, or any of
the other systems, may also support additional queries. For
example, the requirements graphing system 2202 may Sup
port a system-interaction query that identifies systems that
interact with each other. The system-interactionquery may be
configured to return or display all requirements that have a
System agent as a primary agent and a system agent as the
Secondary agent.
0168 Consider the following document structure
instance: The Web Server shall send the vendor data to the
SAP System. In this document structure instance, the Web
Server is the primary agent and the SAP System is the sec
ondary agent. Both of these systems may be classified in the
agent glossary 140 so that the requirements graphing system
2202 may determine that these systems are interacting with
each other. One example of a system-interaction query is
below:

select req1 agent12 agent2
where {

req1 hasAgent agent2.
req1 hassecondary Agent agent2.
2agent1 RDF:type System.
2agent2 RDF:type System
filter(?agent1 = 2agent2)

Nov. 27, 2014

(0169. As explained with reference to FIGS. 36-47, the
requirements graphing system 2202, or any other system
described herein, may generate many different types of maps
for visualizing the relationships between entities.
0170 The requirements graphing system 2202 may also
Support identifying systems that are missing non-functional
requirements. In general, there is often the case that a system
may require a particular requirement to be identified. The
required requirement for the system may not be identified in
the requirements document. The requirements graphing sys
tem 2202 may accept a non-functional requirement identifi
cation query that returns all systems which are missing a
certain kind of non-functional requirement. Examples of non
functional requirements include: Security, performance, reli
ability, usability, integration and data requirements. Each of
these non-functional requirements may also include addi
tional or Sub-requirements that are non-functional require
ments. Other non-functional requirements are also possible.
FIGS. 27.36 and 48 below provide additional detail regarding
non-functional requirements, non-functional attributes, and
other features directed to a non-functional analysis.
0171 One example of a non-functional requirement iden
tification query is below:

Function DetectMissingRequirements
Start

For each agent in AgentGlossary
For each NonFunctionalRequirementType in
RequirementsOntology

Execute(Ouery (agent, nonFunctionalRequirementType)
End For

End For
End
Function Execute(Ruery (agent, nonFunctionalRequirementType)
Start
AskCuery String =

“Ask " +
req has Agent agent; +

“req hasRequirementType nonFunctionalRequirementType'+
cy"

Result = Model.execute(Query (AskQuery String)
If result = false

Print Agent + agent + is missing non-functional requirement
type' + nonFunctionalRequirementType

End

0172. The requirements graphing system 2202 may also
Support identifying interacting systems that do not have com
patible security profiles. In one implementation, the require
ments graphing system 2202 Supports a security profile iden
tification query that determines whether interacting systems
have similar protocol requirements. For example, consider
the case where one system has a requirement for Supporting a
certain kind of encryption, while an interacting system does
not have any requirement for the same kind of encryption. In
this example, the requirements graphing system 2202 identi
fies out that there is the potential for a security-based incom
patibility. One example of a security profile identification
query is below:

select agent1 agent2
where {

req has Agent agent2.
req has secondary Agent agent2.
2agent1 RDF:type System.
2agent2 RDF:type System.

US 2014/0351694 A1

-continued

agent1 hasRequirementType2EncryptionReq1.
agent2 hasRequirementType2EncryptionReq2.
2EncryptionReq1 RDF:type Encryption.
2EncyptionReq2 RDF:type Encryption.
2EncryptionReq1 hasncryptionTechnique??technique1.
2EncryptionReq2 hasncryptionTechnique??technique2.
filter(?agent1 = 2agent2 and?technique1 = ?technique2)

0173. In the query implemented above, the query identi
fies two interacting system (denoted by “?agent 1 and
“?agent2 in the SPARQL query) that do not use the same
encryption technique. For example, if the first system, that is
system 1, (i.e., "?agentl’) interacts with the second system,
that is system 2, (i.e., "agent2), and the first system uses the
RSA encryption technique and the second system uses the
SSH protocol, then the above query returns “system 1 and
“system 2'. The above query is one example for identifying
security profiles, but other queries are also possible for iden
tifying other security attributes such as authentication, access
control, or other attributes.
0.174. Note that in addition to these queries, the require
ments graphing system 2202, or any other system, may be
extended by adding other system-based analyses using addi
tional queries.
0.175. In addition to the system-based analyses, the
requirements graphing system 2202 may support analyses
based on the role of an agent. For example, the requirements
graphing system 2202 may be configured to accept queries
for a particular domain. In one implementation, the require
ments graphing system 2202 is operative to capture informa
tion in the domain ontologies about which agents are permit
ted to perform which actions. This may be used to ensure that
all the requirements meet that constraint. Another variation of
a similar analysis is “Separation of duty', as outlined in
Sarbanes Oxley. The requirements document, or any other
document under analysis, may be checked to see if the same
agent may perform different roles (e.g. the purchasing man
ager may be the approving manager).
(0176 FIGS. 25-27 present alternative or additional types
of glossaries. Although reference is made to system 102, any
one of the systems described herein may use any one of the
glossaries described herein for analyzing an electronic docu
ment or document structure instance.

0177. In addition to, or instead of using the agent glossary
140 for analyzing a document structure instance, the system
102 may use an entity glossary. In general, an entity glossary
defines one or more permissible entities that may be found in
a document structure instance.
0.178 FIG. 25 shows an example of an entity glossary
2502. Similar to the agent glossary 140, the entity glossary
2502 also defines permissible agents for the document struc
ture instance. However, the entity glossary 2502 may be
broader and more flexible than the agent glossary 140 because
the entity glossary 2502 allows a user or system to define an
entity type for the entity. For example, an entity may be
defined as having the entity type “person.” “system.” “Generi
cEntity.” “Generic Agent, or “GenericPerson.” Other types
of entity types are also possible. Hence, the entity glossary
provides a robust mechanism for defining the entity type of an
entity, which may be used by the system 102 to further deter
mine whether a document structure instance comports with a
particular syntax definition.

16
Nov. 27, 2014

0179. In the example shown in FIG. 25, the entity glossary
2502 defines an entity phrase field 2504, an explanation field
2506, an additional notes field 2508, an entity type field 2510,
and a parent field 2512. The phrase field 2504 defines aphrase
that denotes a permissible constituent entity for the structure
instance syntax. For example, as shown in FIG. 25, one per
missible phrase for an entity is “order portal' and another
permissible phrase for an entity is “finance department user.”
Other permissible phrases may include “shipping module.”
“order details, or other phrases.
0180. The explanation field 2506 may provide diagnostic
information relevant to the entity, how the entity performs a
particular job or function, or other entity related information.
The explanation field 2506 may be used by the system 102 in
providing meaningful information about the entity when a
document structure instance is analyzed. The additional notes
field 2508 may be used to provide additional information
about the entity for a user editing or revising the entity glos
sary 2502 and, in one implementation, may not be used by the
system 102 in analyzing a document structure instance. How
ever, the system 102 may be configured to read from the
additional notes field 2508 to provide further diagnostic or
helpful information about an entity phrase appearing in a
document structure instance.
0181. The entity type phrase field 2510 facilitates the
selection of the entity type for an entity phrase. As discussed
above, in one implementation, the entity type selection
options may include “person.” “system.” “GenericFntity.”
"GenericPerson.” “Generica gent” or other alternative entity
types. As explained below with reference to FIGS. 36-47, the
selected entity type may affect the analysis of a document
structure instance and how a component visualization rela
tionship map, a system visualization relationship map, or a
Sub-system visualization relationship map is generated. By
providing for an entity type, the system 102 provides addi
tional information regarding the interactions among entities
described by the document structure instances.
0182 Each of the entity type selection options may iden
tify a different type of entity for the associated entity phrase.
For example, the “person' entity type may define that the
associated entity phrase identifies a person, Such as a user of
another entity described by a document structure instance.
The “system” entity type may define that the associated entity
phrase identifies a system, Such as module, component,
machine, or other type of system. The “Generic Agent' entity
type may define that the associated entity phrase is neither a
system nor a person. The “Generic Agent' entity type may
alternatively define that the associated entity phrase is either
or both a system and a person. Hence, the “Generic Agent'
entity type is a flexible entity type that may be associated with
either, both, or neither, a system or a person.
0183. As explained previously with respect to other parent
fields, such as the, parent field 206 or parent field 406, the
parent field 2512 may be used to build hierarchies of entities.
0.184 The entity glossary 2502 may also define entities
that are passive entities that are indirect nouns of a document
structure instance. For example, a report, a data object, a
listing, or other object that is acted upon may be a passive
entity. Other types of passive entities are also possible. The
entity glossary 2502 may define that the “GenericFntity”
entity type identifies a entity phrase as passive entity type. For
example, the “order details' entity phrase shown in FIG.25 is
associated with the “GenericEntity” entity type and may be
considered by the system 102 as having a passive entity type.

US 2014/0351694 A1

0185. In addition to the entity glossary 2502, the system
102 may employ an alternative problematic phrase glossary
other than, or in addition to, the problematic phrase glossary
previously described with reference to FIG. 5. FIG. 26 shows
an example of an alternative problematic phrase glossary
2602. In one implementation, the alternative problematic
phrase glossary 2602 includes a problematic phrase field
2604, an explanation field 2606, a suggestion field 2608, a
template field 2610, and a category field 2612.
0186 The alternative problematic phrase glossary 2602
provides a robust mechanism for identifying problematic
phrases and for Suggesting alternative language to correct for
the problematic phrase. The problematic phrase field 2604
identifies one or more problematic phrases. The one or more
problematic phrases may be grouped together, such as a
where a set of problematic phrases share a common ambigu
ity, failing, or problem. For example, FIG. 26 shows that the
problematic phrases “improved.” “better,” “faster” and
'Superior, have been grouped together. Grouping problem
atic phrases together may enhance the analysis of a document
structure instance by providing a common Suggestion for
correcting a problematic phrase. In addition, grouping prob
lematic phrases together reduces the time a user spends modi
fying and revising the problematic phrase glossary 2602
because the user may rely on using one suggestion for cor
recting a common set of problematic phrases. However, a
problematic phrase may be stand-alone in the problematic
phrase glossary 2602, Such as in the case of the problematic
phrases “efficiently.” “none.” and “easy to use.” Alternative
arrangements of problematic phrases are also possible.
0187. The explanation field 2606 provides an explanation
as to how a problematic phrase may be corrected, why a
problematic phrase may not be used, or other explanations.
The explanation field 2606 may refer the user to a suggestion
provided by the suggestion field 2608 or another field of the
problematic phrase glossary 2602. The suggestion field 2608
may provide a suggestion text that describes how the prob
lematic phrase may be replaced. Such as an alternative word
or phrase instead of the problematic phrase. The system 102
may display the Suggestion text appearing in the Suggestion
field 2608 when the system 102 identifies a problematic
phrase.
0188 The template field 2610 provides a quick and effi
cient mechanism for replacing identified problematic
phrases. In addition, the words or phrases provided by the
template field 2610 do not leave the user guessing as to which
words or phrases would be more suitable than the identified
problematic phrase. In one implementation, the template field
2610 provides a list of words or phrases that may replace an
identified problematic phrase. For example, the words or
phrases appearing in the template field 2610 may be dis
played to a user, and a user may select one or more of the
words or phrases from the template field 2610 for replacing a
problematic phrase. Alternatively, or in addition, the system
102 may automatically replace a problematic phrase with one
or more words or phrases appearing in the template field 2610
when a problematic phrase is identified.
0189 The category field 2612 provides a mechanism for
categorizing a problematic phrase. The system 102 may refer
to the category field 2612 for providing metrics to the user as
to the number and type of problematic phrases appearing in a
document structure instance, in an electronic document, or
both. Alternative reporting mechanisms may also refer to the
category field 2612.

Nov. 27, 2014

0190. In addition to the aforementioned glossaries, the
system 102 may refer to a non-functional attribute glossary
for identifying whether one or more document structure
instances provide for an attribute assigned to an entity in the
entity glossary 2502. FIG. 27 shows an example of a non
functional attribute glossary 2702. The non-functional
attribute glossary 2702 provides centralized management
over attributes that should be assigned to one or more entities
defined in one or more glossaries, such as entities defined in
the entity glossary 2502.
0191 In general, a non-functional attribute refers to a fea
ture, condition, or characteristic of an entity. A non-functional
attribute may define the amount of simultaneous users an
entity may support, the amount of bandwidth available to an
entity, the speed at which an entity is expected to perform an
operation, or other non-functional attribute. A non-functional
attribute may also be a non-functional requirement, which
was previously discussed above. Other types of non-func
tional attributes are also possible.
0.192 The non-functional attribute glossary 2702 may
include one or more fields for defining non-functional
attributes. In one implementation, the fields of the non-func
tional attribute glossary 2702 include an area field 2704, a
requirement field 2706, a notes field 2708, a sample field
2710, an indicator phrase field 2712, and an activatable ele
ment field 2714. Alternative arrangements of attribute fields
are also possible.
(0193 The area field 2704 stores an attribute area assigned
to the attribute requirement of the requirement field 2706. The
attribute area of the area field 2704 may be user-defined,
predefined within the non-functional attribute glossary 2702,
or both. In one implementation, an attribute area is first
defined in the requirement field 2706 with an associated
attribute area identifier in the area field 2704. For example,
FIG. 27 shows that the attribute area “Delivery Channels'
first appears in the requirement field 2706 of the first row of
the non-functional attribute glossary 2702, and that an asso
ciated attribute area identifier, “Non-Functional identifies
that the phrase “Delivery Channels' is an attribute area. Simi
larly, the attribute area "Capacity Volumetrics” is first defined
as an attribute area in the fourth row of the non-functional
attribute glossary 2702 by the attribute area identifier “Non
Functional stored in the area field 2704. In these examples,
the phrase “Non-Functional is used as an attribute area iden
tifier to identify that the phrases “Delivery Channels' and
“Capacity Volumetrics are attribute areas. Alternative
attribute area identifiers are also possible. As explained below
with reference to FIG. 48, the attribute area stored in the area
field 2704 may be used in organizing a report showing
whether one or more document structure instances satisfy
attribute requirements assigned to an attribute area for an
entity.
(0194 The requirement field 2706 stores an attribute
requirement assignable to at least some of the permissible
constituents found in one or more glossaries, such as the
entity glossary 2502. An attribute requirement generally
describes an attribute that an entity should possess. The
attribute requirement may be categorized by one or more of
the attribute areas stored in the area field 2704. For example,
FIG. 27 shows that the attribute requirement “Connectivity
Requirement' is categorized as a “Delivery Channels'
attribute area. Another attribute requirement categorized as a
“Delivery Channels' attribute area includes the “Delivery

US 2014/0351694 A1

Channels' attribute requirement. Additional or alternative
attribute requirements are also possible.
(0195 The notes field 2708 stores text describing the
attribute requirement of the attribute field 2706. In one imple
mentation, the attribute notes text may be displayed in a report
describing whether the document structure instances of an
electronic document satisfy an attribute requirement. Alter
natively or in addition, the attribute notes text may be dis
played when a user is modifying or editing the non-functional
glossary 2702. The attribute notes text of the notes field 2708
provides additional descriptive information regarding the
associate attribute requirement.
0196. The sample field 2710 stores a sample document
structure instance satisfying the attribute requirement of the
requirement field 2706. The sample field 2710 may store one
or more document structure instances. In one implementa
tion, the sample field 2710 includes a valid document require
ments statement. Other types of statements are also possible.
The attribute sample text of the sample field 2710 may be
displayed during the editing or modifying of the non-func
tional glossary 2702. Alternatively, the attribute sample text
of the sample field 2710 may be displayed to assist a user in
revising or developing a document structure instance to sat
isfy the attribute requirement of the requirement field 2706.
For example, in preparing a document structure instance that
satisfies the attribute requirement of the requirement field
2706, the attribute sample text may be displayed as a guide to
assist the user in preparing a better, valid, or more focused
document structure instance. However, the attribute sample
text may be displayed at any time.
(0197) The indicator phrase field 2712 stores one or more
attribute phrases that identify an associated attribute require
ment of the requirement field 2706. For example, as shown in
FIG. 27, the attribute indicator phrases “delivery channels.”
“delivery channel.” “browsers.” “browser,” and “Internet
Explorer are each attribute indicator phrases for the attribute
requirement “Delivery Channels.” In these examples, these
attribute indicator phrases signify that a document structure
instance should contain at least one of these phrases if the
document structure instance is to satisfy the “Delivery Chan
nels' attribute requirement. Where an electronic document
does not contain a document structure instance having at least
one attribute indicator phrase from the indicator phrase field
2712, the attribute requirement associated with the attribute
indicator phrase may be identified as not being satisfied.
Similarly, where an electronic document does contain a docu
ment structure instance having at least one attribute indicator
phrase from the indicator phrase field 2712, the attribute
requirement associated with the attribute indicator phrase
may be identified as being satisfied.
0198 Satisfying the attribute requirement associated with
an attribute requirement phrase may include matching one or
more target phrases from a document structure instance with
the attribute requirement phrase. In one implementation, sat
isfying an attribute requirement phrase includes establishing
a one-to-one correspondence of the words appearing in the
target phrase with the words appearing in the attribute indi
cator phrase. In this implementation, a document structure
instance satisfies the attribute requirement “Delivery Chan
nels' when the phrase “delivery channel” appears in the docu
ment structure instance. In an alternative implementation,
satisfying an attribute requirement phrase includes a partial
match of the words appearing in a target phrase with the
words appearing in at least one attribute indicator phrase. In

Nov. 27, 2014

yet another implementation, matching synonyms of the target
phrase with one or more attribute indicator phrases satisfies
the one or more attribute indicator phrases. Other arrange
ments for satisfying one or more attribute indicator phrases is
also possible.
(0199 The activatable element field 2714 includes an acti
vatable element for enabling an attribute requirement. The
activatable element field 2714 provides a flexible mechanism
for controlling whether an electronic document should con
tain a document structure instance that satisfies an attribute
requirement. The activatable element field 2714 may contain
an activatable element 2716 that controls whetheran attribute
requirement is enabled. In one implementation, activating the
activatable element 2716 to enable an attribute requirement
signifies that an electronic document should contain at least
one document structure instance that satisfies the correspond
ing attribute requirement. However, enabling the attribute
requirement may also signify that a greater number of docu
ment structure instances should satisfy the corresponding
attribute requirement. Determining whether an attribute
requirement is to be satisfied may be based on whether the
activatable element 2716 is activated. Alternatively, deter
mining whetheran attribute requirement is to be satisfied may
be based on whether the activatable element 2716 is not
activated.
0200. In one implementation, the activatable element
2716 is a checkbox, and an attribute requirement is enabled
when a checkmark appears in the checkbox. Alternatively, the
attribute requirement may be enabled when a checkmark does
not appear in the checkbox. However, the activatable element
2716 may be an alternative type of activatable element, such
as a radio button, text field, or any other type of activatable
element.

0201 Turning next to FIGS. 28-35, examples of state
machines 2802-3502 are shown that may be employed by the
document analysis, commenting, and reporting system 102
(“system 102') in evaluating one or more document structure
instances. The state machines 2802-3502 shown in FIGS.
28-35 provide a streamlined mechanism for evaluating docu
ment structure instances and for determining whether a docu
ment structure instance conforms to one or more document
structure instance syntaxes. The state machines 2802-3502
evaluate and analyze a document structure instance by the
phrases of the document structure instance, where a phrase is
generally one or more words from the document structure
instance. A phrase may be a constituent from one or more
glossaries. Such as the agent glossary 140 or the entity glos
sary 2502, or the phrase may be one or more words not
appearing in any of the glossaries. Other types of phrases are
also possible.
0202 As previously discussed with reference to the syntax
definition 150, the syntax definition 150 may define con
trolled document structure instance syntaxes. Each of the
state machines 2802-3502 shown in FIGS. 28-35 may be used
in evaluating one or more controlled document structure
instance syntaxes recognized by the system 102. The system
102 may select a state machine for processing a document
structure instance based on a document structure instance
identifier associated with the document structure instance that
identifies the controlled document structure instance syntax
to which the document structure instance should conform.
Table 6 below describes examples of additional controlled
document structure instance syntaxes that may correspond to
one or more of the state machines shown in FIGS. 28-35.

US 2014/0351694 A1

Document Structure

Syntax Type Instance Identifier

Solution SA

Enablement ER

Action AC

Constraint

Attribute ATR

Constraint

Definition DEF

Policy P

TABLE 6

Syntax Definition
Example

Agent “shall' |
“must || “will
Action

Agent “shall' |
“must || “will be
able to' Action); or
Agent “shall' |
“must || “will
“allow | *
Agent “to' Action

permit

Agent “shall' |
“will I “may “only
| “not Action
“when | if
Condition; or
“Only Agent
“may | “may be
Action.

Entity Agent
must "always' |

“never" | “not be
“have Value).
Entity | Agentis' |

“will be “defined
'' is as' | “classified as

Entity.
Entity | Agentis' |

“is not Action).

19

Brief Explanation

The solution syntax may
express that someone,
Some system, or both may
be responsible for
performing some action.
The enablement syntax
may express a capability
that the proposed system
may provide, but may not
specify what who provides
this capability.
There may be two types of
enablement syntaxes: 1) an
enablement syntax that
does not mention a system;
and 2) an enablement
Syntax that mentions a high
level capability provided by
a system to a user.
The action constraint

Syntax may express a

constraint on how a system
or a component of the
system is expected to
behave.

There may be two types of
action constraint syntaxes:
1) an action constraint
Syntax that expresses a
constraint on how a

system, or a component of
the system, is allowed to
behave; and, 2) an action
constraint syntax that
expresses a business rule
that constrains how an

agent in a business takes
an action.

The attribute constraint

Syntax may express a
constraint on attributes

and for attribute values.

The definition syntax may
express a definition of a
non-agent entity.

The policy syntax may
express a policy that
should be adhered to by a
system.

Nov. 27, 2014

US 2014/0351694 A1 Nov. 27, 2014
20

0203 Alternatively, system 102 may select a state TABLE 7-continued
machine for processing a document structure instance based
on one or more modal phrases identified in the document Syntax Type Modal Phrase
structure instance. The one or more modal phrases may iden- will not
tify the controlled document structure instance syntax of the may only
document structure instance, and, based on the identified may t

8. e controlled document structure instance syntax, the system R
102 may select one or more state machines for processing the Attribute Constraint must always have
document structure instance. Table 7 below lists examples of must always be
modal phrases that correspond to controlled document struc- must never be

must never have
ture instance syntaxes. Other modal phrases corresponding to must not be
other controlled document structure instance syntaxes are must not have
also possible. must always include

must never include
must not include

TABLE 7 must always contain
must never contain

Syntax Type Modal Phrase must not contain
Definition will be classified as

Solution shal will be defined as
S is classified as

will is defined as
Enablement shall be able to Policy S

must be able to is no
will be able to
shall permit
shall allow 0204 Table 8 below lists examples of document structure must permit
must allow
will permit

instances that conform to one or more of the controlled docu
ment structure instance syntaxes described in Table 6 and

will allow Table 7. Although the document structure instances listed
Action Constraint shall only below are shown as conforming to one controlled document

shall not structure instance syntax, a document structure instance may
will only conform to more than one controlled document structure

instance syntax.
TABLE 8

Syntax Type Exemplary Document Structure Instance

Solution SA1: The Order Processing System shall process orders every 2 hours.
SA2: The Web Server must inform administrator of failed login attempts.

Enablement ER1: The user must be able to display the PDF rendition of associated
documents.

ER2: The payroll system shall be able to deduct loan amounts from
paychecks.
ER3: Inventory management system shall allow users to add items.
ER4: Payroll system shall permit users to change direct deposit profiles.
ER5: Order Processing System must permit administrator to view daily
transactions.

Action AC1: The account management system shall only close an account if the
Constraint current balance is Zero

AC2: The authentication system shall not grant access when identity
verification level is less than 8.9.

AC3: Only child-friendly pets may be placed in old age homes.
AC4: Only payroll employees may access the payroll database.

Attribute ATR1: Customerstanding must always be one of the following: 1) Gold
Constraint 2) Silver 3) Bronze.

ATR2: Chemical containers must not be stored in Subzero temperature.
ATR3: The customer must never have non US address in records.

Definition DEF1: Total sales value is defined as total item value plus sales tax.
DEF2: A graduate student with a grade-point average above 3.5 is
classified as an honors student.

Policy P1: Sales tax is computed on in-state shipments.
P2: Sales tax is not computed on interstate shipments.

US 2014/0351694 A1

0205 Table 9 below lists the state machines shown in
FIGS. 28-35 and the controlled document structure instance
Syntax corresponding to the state machine. Although Table 9
lists one state machine for evaluating a controlled document
structure instance syntax, more than one state machine may
evaluate a single controlled document structure instance Syn
tax, a state machine may evaluate one or more controlled
document structure syntax, or any other arrangement of state
machines and controlled document structure syntaxes.

TABLE 9

State Machine and Reference Number Syntax Type

solution state machine 2802 Solution
enablement state machine 2902 Enablement
action state machine 3102 Action Constraint
action state machine 3202
attribute state machine 3302 Attribute Constraint
definition state machine 3402 Definition
policy state machine 3502 Policy

0206. Each of the state machines 2802-3502 may be
defined according to a state machine equation. The state
machine equation may be represented as a six-tuple as (X, S.
so, ö, F, E) where,
0207 “X” is an alphabet that includes at least one modal
constituent and one or more constituents from the entity glos
sary 2502, the action glossary 142, or any other glossary;

0208 “S” a set of states defining the state machine
representing the controlled document structure instance;

(0209 “s” is a start state:

Nov. 27, 2014

0210 “6” is a transition function and may be evaluated
according to whether a document structure instance
includes a particular constituent;

0211 “F” is a set of final states indicating that a docu
ment structure instance conforms to a particular con
trolled document structure instance syntax; and,

0212 “E” is the set of error states indicating that a
document structure instance does not conform to the
controlled document structure instance syntax repre
sented by the state machine.

0213 State machines 2802-3502 facilitate and expedite
the processing of a document structure instance. In addition,
the state machines 2802-3502 expeditiously identify errors
that may be present in a document structure instance. For
example, state machine 2802 facilitates the identification of at
least five possible errors that may occur in a document struc
ture instance conforming to the Solution type controlled docu
ment structure instance syntax. The five possible errors
include finding a non-agententity (represented by Non-Agent
Entity State 2810), recognizing a missing agent (represented
by Missing Agent State 2812), recognizing the presence of an
unknown agent (represented by Unknown Agent State 2816),
recognizing the presence of an unknown action (represented
by Unknown Action State 2818), and identifying a missing
action (represented by Missing Action State 2822). The other
state machines 2902-3502 may identify similar or alternative
COS.

0214 Table 10 lists possible states found in state machines
2802-3502 and a brief description of each of the states. Alter
native states are also possible.

TABLE 10

State and Reference
Number

Start 2804

Type of State Brief Description

Start A starting state for a state
machine.

To State 3014 Transition A state indicating that an
expected “to phrase was
found in the documen
structure instance.

Agent State 2808 Transition A state indicating that an
agent constituent was found
in the document structure
instance.

Branch Agent State 3008 Transition A state indicating that an
expected constituent agent
was found in the document
structure instance.

Branch Model State 3010 Transition A state indicating that an
expected constituent modal
was found in the document
structure instance.

Conditional State 3108 Transition A state indicating that an

Entity State 3304

Modal State 2814

expected introducing
conditional phrase was
found in the document
structure instance.

Transition A state indicating that an
expected constituent agent
or entity phrase was found in
the document structure
instance.

Transition A state indicating that an
expected modal constituent
was found in the document
structure instance.

US 2014/0351694 A1

State and Reference
Number

Non-Entity State 2806

Only State 3204

Missing “To State 3012

Missing Action State 2822

Missing Agent State 2812

Missing Conditional State 3104

Non-Agent Entity State 2810

Syntax Error State 3106

Unknown Action State 2818

Unknown Agent State 2816

Unknown Entity State 3404

Action State 2820

Final State 3110

0215. As the controlled document structure instance syn

Type of State

Transition

Transition

Error

Error

Error

Error

Error

Error

Error

Error

Error

Final

Final

22

TABLE 10-continued

Brief Description

A state indicating that a non
entity phrase was found in
the document structure
instance.
A state indicating that an
expected phrase with the
word “only was found in the
document structure
instance.
A state indicating that an
expected “to phrase was
not found in the document
structure instance.
A state indicating that the
document structure instance
ended and no unevaluated
phrases remain in the
document structure
instance.
A state indicating that a
modal constituent was
found, but an expected
agent constituent was not
found.
A state indicating that an
expected conditional was
not found in the document
structure instance.
A state indicating than an
entity constituent was found
in the document structure
instance, but that the entity
constituent is not an agent
constituent.
A state indicating that a
Syntax error occurred in the
document structure
instance.
A state indicating that a
phrase was found in the
document structure
instance, but the phrase is
not an expected action
constituent.
A state indicating that an
expected agent constituent
was not found in the
document structure
instance.
A state indicating that an
expected entity phrase or
constituent agent was not
found in the document
structure instance.
A state indicating that an
expected constituent was
found in the document
structure instance.
A state indicating that the
controlled document
structure instance syntax for
a document structure
instance was evaluated
Successfully.

Nov. 27, 2014

corrected. An error state may be associated with one or more
tax for a document structure instance is being evaluated, the
evaluation of the controlled document structure instance Syn
tax may result in an error, which is shown above in Table 10
as one or more error states. When an error state is encoun
tered, an error message may be displayed that describes the
error and may provide a Suggestion as to how the error may be

error messages. Table 11 below lists exemplary error mes
sages associated with one or more error States and the type of
error message displayed. Categorizing error messages
according to an error type may be used in evaluating the
number of errors occurring in a document structure instance,
the number of different types of errors occurring in a docu

US 2014/0351694 A1

ment structure instance, or other error-related information.
Moreover, the number of errors and the number of different
types of errors may be reported for an entire electronic docu
ment that is comprised of document structure instances. Other
combinations of evaluating errors in an electronic document
or document structure instance are also possible.

TABLE 11

Error State Error Message

Missing Agent his requirement lacks an agent before
State <variable at which error occurs>. It can be

confusing to leave the agent implicit.
Unknown Action This requirement contains <variable at which
State error occurs> where an action is expected, but

<variable at which fault occurs> is not in the
action glossary.

Unknown Agent This requirement contains <variable at which
State error occurs> where an agent is expected, but

<variable at which fault occurs> is not in the
entity glossary.

Non Agent This requirement contains <variable at which
Entity State error occurs> where an agent is expected.

<variable at which error occurs- is in the entity
glossary but is not designated as an agent.

Missing Action This requirement lacks an action before
State <variable at which error occurs>. It can be

confusing to leave the action implicit.

0216 Turning next to FIG. 36, an example of a require
ments visualization system 3602 is shown. Where similar
objects appear in the requirements visualization system 3602
that have been previously described for one or more systems,
a description of those objects has been omitted for brevity.
0217. In the example shown in FIG. 36, the requirements
visualization system 3602 includes a syntax-based document
visualization module 3604 and a syntax-based document
attribute analysis module 3606. The requirements visualiza
tion system 3602 may also include the entity glossary 2502,
the problematic phrase glossary 2602, and the non-functional
attribute glossary 2702 as part of a document parameter set
3608. As with previously described systems, the document
parameter set 3608 may also include the mode glossary 144,
document structure instance identifiers 148, the action glos
sary 142, and one or more document structure instance syntax
definitions 150. The syntax-based document visualization
module 3604 and the syntax-based document attribute analy
sis module 3606 may be in communication with a document
under analysis 132 and the document specific parameter set
3608. The requirements visualization system 3602 may also
be in communication with the document analysis database
124 to retrieve one or more document specific parameter sets
702-706.

0218. In addition to the document parameter set 3608 and
the document under analysis 132, the syntax-based document
visualization module 3604 and the syntax-based document
attribute analysis module 3606 may be in communication
with other components. For example the syntax-based docu
ment visualization module 3604 and the syntax-based docu
ment attribute analysis module 3606 may be in communica
tion with the processor 116, the network interface 120, and
various input/output devices 122. As shown in FIG. 36, the
syntax-based document visualization module 3604 and the
syntax-based attribute analysis module 3606 are in commu
nication with the display 125, and the modules 3604-3606
may display various graphical representations from analyZ
ing the document under analysis 132, Such as a component

Nov. 27, 2014

visualization relationship map, a system visualization rela
tionship map, a Sub-system visualization relationship map, an
attribute requirement report, or any other type of graphical
representations of analyzing the document under analysis
132.
0219. Although the syntax-based document visualization
module 3604 and the syntax-based document attribute analy
sis module 3606 are shown as integrated as part of the require
ments visualization system 3602, the syntax-based document
visualization module 3604 and the syntax-based document
attribute analysis module 3606 may be integrated as part of
any other system. For example, the syntax-based document
visualization module 3604 and the syntax-based document
attribute analysis module 3606 may be incorporated into the
document analysis, commenting, and reporting system 102.
the requirements analysis system 702, the requirements com
menting system 1002, the report generator system 1302, the
ontology analysis system 1900, or the requirements graphing
system 2202. In other implementations, the syntax-based
document visualization module 3604 and the syntax-based
document attribute analysis module 3606 are accessed
through remote procedure calls, web services, or other inter
faces to render a graphical representation on the display 125.
0220. In one implementation, the syntax-based document
visualization module 3604 is operative to generate a compo
nent visualization relationship map. FIG. 37 shows one
example of a component visualization relationship map 3702.
The component visualization relationship map 3702 may rep
resent the interaction of a component with another compo
nent for one or more document structure instances. In general,
a component may be an agent, an entity, a system, a person, or
any constituent from the agent glossary 140 or the entity
glossary 2502.
0221) The component visualization relationship map 3702
focuses on the interactions between a first constituent in a
document structure instance and other constituents identified
as interacting with the first constituent. The component visu
alization relationship map 3702 provides a unique analysis of
a set of document structure instances by identifying the inter
actions between the first constituent and other constituents of
the set of document structure instances and displaying a
visual representation of the interactions between the first
constituent and the other constituents. The component visu
alization relationship map 3702 may also provide a visual
representation of constituents that are non-interacting to help
identify where a set of document structure instances may be
deficient with respect to the non-interacting constituents. For
example, the component visualization relationship map 3702
may help pinpoint and identify non-interacting constituents
that may, in fact, be interacting constituents.
0222. In generating the component visualization relation
ship map 3702, the syntax-based document visualization
module 3604 may perform a recognition process to recognize
that one or more document structure instances conforms to an
interaction syntax. The interaction syntax may be a controlled
document structure instance syntax and may, or may not, be
associated with a document structure instance identifier. The
syntax-based document visualization module 3604 may
parse and/or analyze a document structure instance to identify
interacting constituents and non-interacting constituents
according to the interaction syntax.
0223) In one implementation, the interaction syntax is
defined as “any requirement that has agent that is a system or
a person and a secondary that is a system or a person. Alter

US 2014/0351694 A1

natively, the interaction syntax may be a conditional state
ment, which may be defined as:
0224 InteractionRequirement(R)=Requirement(R) &
hasEntity(RA) & (System(A) or Person(A)) & Secondary
Agent(B) & (System.(B) or Person(B)), where:
0225 R is a document structure instance:
0226 A is a first phrase from the requirement statement;
0227 B is a second phrase from the requirement state
ment,
0228. Requirement(X) is a function that determines
whether a document structure instance X is a requirement
Statement;
0229 hasEntity(X, Y) is a function that determines
whether the phrase Y is an entity within the document struc
ture instance X:
0230 System(Y) is a function that determines whether the
phrase Y is an entity having the entity type of “system':
0231 Person(Y) is a function that determines whether the
phrase Y is an entity having the entity type of “person'; and,
0232 Secondary Agent(Y) is a function that determines
whether the phrase Y is a secondary agent of the requirement
statement X. A phrase Y may be a secondary agent where it is
identified as being a direct object for another subject phrase.
0233. After identifying document structure instances from
a set of document structure instances that conform to the
interaction syntax, the syntax-based document visualization
module 3604 may then identify whether one or more phrases
from the identified set of document structure instances are
interacting constituents or non-interacting constituents. In
one implementation, the syntax-based document visualiza
tion module 3604 employs an interacting agent conditional
statement to identify those constituents as interacting or non
interacting. The interacting agent conditional Statement may
be written as a conditional statement defined as “any system
or user that is the agent or secondary agent of an interaction
requirement. In a conditional language format, the interact
ing agent conditional statement may be defined as:
0234 Interacting Agent(A)=(System(A) or Person(A)) &
InteractionRequirement(R) & (Agent(A) or Secondary Agent
(A)), where:
0235 R is a document structure instance:
0236 A is a first phrase from the requirement statement;
0237 B is a second phrase from the requirement state
ment,
0238 InteractionRequirement(X) is a function that deter
mines whether a document structure instance X is an interac
tion requirement;
0239 Agent(Y) is a function that determines whether the
phrase Y is an agent;
0240 System(Y) is a function that determines whether the
phrase Y is an entity having the entity type of “system':
0241 Person(Y) is a function that determines whether the
phrase Y is an entity having the entity type of “person'; and,
0242 Secondary Agent(Y) is a function that determines
whether the phrase Y is a secondary agent of the requirement
statement X. A phrase Y may be a secondary agent where it is
identified as being a direct object for another subject phrase.
0243 In addition, the syntax-based document visualiza
tion module 3604 may identify whether a constituent is an
interacting agent based on whether the constituent has a child,
or sub-component, that is an interacting agent. Examples of
child agents include a billing module defined as a Sub-system
ofan order processing system or a shipping module defined as
a Sub-system of the order processing system. Other types of

24
Nov. 27, 2014

child agents are also possible. For determining whether a
constituent is an interacting agent based on one or more
children, the syntax-based document visualization module
3604 may employ an interacting child agent conditional State
ment defined as “any system or user, whose child is an inter
acting agent. The interacting child agent conditional State
ment may also be written in a conditional language format
defined as:

0244 Interacting Agent(A)=(System(A) or Person(A)) &
child(A,B) & Interacting Agent.(B), where:
0245
instance;
0246
instance;
0247 System(Y) is a function that determines whether the
phrase Y is an entity having the entity type of “system':
0248 Person(Y) is a function that determines whether the
phrase Y is an entity having the entity type of “person'; and,
0249 ChildCX,Y) is a function that determines whether
the phrase B is a child (or sub-component) of the phrase A.
0250 In evaluating each of the functions identified above,
the syntax-based visualization module 3604 may refer to one
or more glossaries, such as the entity glossary 2502, the
relationship glossary 2102, the agent glossary 140, or any
other glossary previously discussed.
0251 FIG. 37 shows that the component visualization
relationship map 3702 includes several visualization relation
ship objects and several visualization interaction objects. In
general, a visualization relationship object refers to a visual
representation of a constituent from a document structure
instance or a set of document structure instances. The visu
alization relationship object may represent a constituent in a
document structure instance of an electronic document
matching a permissible constituent found one or more of the
glossaries, such as the entity glossary 2502, the agent glos
sary 140, or any other glossary. In addition, a visualization
interaction object generally refers to a visual representation
of an interaction, or non-interaction, between one or more
visualization relationship objects. Moreover, visualization
relationship objects may be interacting visualization relation
ship objects or non-interacting visualization relationship
objects, and a visualization interaction object may identify or
illustrate an interaction established between one or more
visualization relationship objects defined by one or more
document structure instances.

0252. The exemplary component visualization relation
ship map 3702 represents a component visualization relation
ship map for a project resource management system 3706. As
shown in the FIG. 37, the project resource management sys
tem 3706 has several Sub-systems, including an assign
resource module 3704 and a maintain project module 3712.
Because the assign resource module 3704 and the maintain
project module 3712 are “children' of the project resource
management system 3706, the component visualization rela
tionship map 3702 may also illustrate interactions of the
assign resource module 3704 and the maintain project mod
ule 3712. However, the visualization module 3604 may be
instructed or configured to generate a component visualiza
tion relationship maps for other constituents of an electronic
document or a document structure instance. For example, the
visualization module 3604 may be instructed or configured to
generate a component visualization relationship map for the

A is a first phrase from a document structure

B is a second phrase from the document structure

US 2014/0351694 A1

assign resource module 3704, the maintain project module
3712, the project lead 3708, the team resource manager 3710,
or any other constituents.
0253) The visualization relationship object representing a
constituent may be represented as a graphical iconic image.
The graphical iconic image of the component visualization
relationship map 3702 representing the assign resource mod
ule 3704 is one example of a visualization relationship object.
Similarly, the graphical iconic image of the component visu
alization relationship map 3702 representing the project
resource management system 3706 is another example of a
visualization relationship object. Likewise, the graphical
iconic image of the component visualization relationship map
3702 representing the project lead 3708 is a further example
of a visualization relationship object. As discussed below
with reference to FIG. 38, other representations of the visu
alization relationship objects are also possible.
0254 As discussed above, the component visualization
relationship map 3702 includes visualization interaction
objects that represent interactions among one or more of the
visualization relationship objects. The component visualiza
tion relationship map 3702 shows that the visualization inter
action object represented by the graphical iconic image 3714
illustrates an interaction, established by one or more docu
ment structure instances, between the assign resource module
3704 and the maintain project module 3712. The component
visualization relationship map 3702 also shows other visual
ization interaction objects, such as a visualization interaction
object, represented by the graphical iconic image 3716,
between the assign resource module 3704 and the project lead
3708. Depending on the selected constituent for which the
component visualization relationship map 3702 was gener
ated, and the interactions established by one or more docu
ment structure instances that include the selected constituent,
a component visualization relationship map may include
none, one, or more than one visualization interaction objects.
0255. In addition, one or more visualization interaction
objects may include an interaction document structure
instance identifier that identifies the document structure
instance that establishes the interaction, or non-interaction,
between a constituent and other constituents. For example,
the graphical iconic image 3716 includes the interaction
document structure instance identifier “DT-01.8, which
identifies that the document structure instance having the
document structure instance identifier"DT-01.8” establishes
an interaction between the assign resource module 3704 and
the project lead 3708. Other examples of interaction docu
ment structure instance identifiers include the interaction
document structure instance identifier "DT-01.2, the inter
action document structure instance identifier “DT-01.3, and
the interaction document structure instance identifier"DT-05.
7. By including interaction document structure instance
identifiers in the component visualization relationship map
3702, the visualization module 3604 assists in identifying
problematic or proper document structure instances. For
example, by reviewing the visualization interaction objects
labeled with interaction document structure instance identi
fiers, a user or other system can quickly refer to the identified
document structure instance and determine whether the inter
action, or non-interaction, established by the document struc
ture instance is a proper, or desired, interaction or non-inter
action.

0256 In evaluating a set of document structure instances,
the component visualization relationship map 3702 may

Nov. 27, 2014

include a color schema having one or more assignable display
states that displays interactions between constituents of a
document structure instance or an electronic document. The
color schema may include a first display state that displays
that an interaction is established between a first constituent
and a second constituent, a second display state that displays
that a non-interaction is established between the first constitu
ent and the second constituent, or any other types of display
States.

0257. In FIG. 37, the component visualization relation
ship map 3702 includes a first display state 3718 that displays
that a constituent has at least one interaction, and a second
display state 3720 that displays that a constituent does not
have an interaction. The display states may be based on one or
more assignable characteristics of a visualization relationship
object, such as color, shading, orientation, position, or any
other characteristic. In one implementation, the color schema
includes a first color assignable to the first display state 3718,
and a second color different than the first color assignable to
the second display state 3720. However, other implementa
tions are also possible. Based on the color schema, the visu
alization module 3604 assigns visualization relationship
objects display states depending on whether a document
structure instance has established an interaction for the con
stituent.

0258 Although the visualization module 3604 may be
instructed or configured to generate the component visualiza
tion relationship map 3702, the visualization module 3604
may generate alternative component visualization relation
ship maps. FIG. 38 shows an alternative example of a com
ponent visualization relationship map 3802. The component
visualization relationship map 3802 represents an entity-spe
cific component visualization relationship map and more par
ticularly, a system component visualization relationship map.
that illustrates the interactions between the project resource
management system 3706 and constituents having the entity
type “System.” However, other types of component visual
ization relationship maps may include constituents having an
entity type other than "System, such as “Person.” “Generi
cEntity” or other entity type. A component visualization rela
tionship map that includes interactions between a selected
constituent and other constituents of mixed entity types is also
possible.
0259. The system component visualization relationship
map 3802 includes an entity type identifier cell 3804 that
identifies the interacting entity types, a set of rows 3808-3826
for the constituents identified in the electronic document and
a set of columns 3828-3830 for the constituents identified in
the electronic document having the entity type “System.” In
one implementation, each of the rows 3806-3826 and each of
the columns 3828-3830 match at least one permissible con
stituent of a glossary, such as the entity glossary 2502 or the
agent glossary 140. In an alternative implementation, a row
and/or a column may represent an impermissible constituent
or impermissible phrase. Other arrangements of permissible
and impermissible constituents and phrases are also possible.
0260. In one implementation, each row 3806-3826 and the
each column 3828-3830 represents a visualization relation
ship object for the system component visualization relation
ship map 3802. In addition, the system component visualiza
tion relationship map 3802 also includes visualization
interaction objects. With respect to the system component
visualization relationship map 3802, a visualization interac
tion object may be an intersection cell between a row and a

US 2014/0351694 A1

column where a document structure instance establishes an
interaction between the constituent represented by the row
and the constituent represented by the column. As one
example, the intersection cell3830 between the row 3820 and
the column 3828 represents a visualization interaction object.
The intersection cell 3832 illustrates that a document struc
ture instance identified by the syntax-based document visu
alization module 3604 establishes an interaction between the
assign resource module 3704 and the maintain project mod
ule 3712. Alternatively, a visualization interaction object may
be an intersection cell between a row and a column where an
interaction is not established between the constituent repre
sented by the row and the constituent represented by the
column. As one example, the intersection cell 3834 between
the row 3806 and the column 3828 represents a visualization
interaction object where a document structure instance has
not established an interaction between the assign resource
module 3704 and the backup master employee repository
3722.

0261 FIG. 39 shows an alternative example of a compo
nent visualization relationship map 3902. The component
visualization relationship map 3802 represents an entity-spe
cific component visualization relationship map and more par
ticularly, a person component visualization relationship map.
that illustrates the interactions between the project resource
management system 3706 and constituents having the entity
type “Person.” However, other types of component visualiza
tion relationship maps may include constituents having an
entity type other than “Person.” Such as "System.” “Generi
cAgent,” “GenericFntity” or other entity type. A component
visualization relationship map that includes interactions
between a selected constituent and other constituents of
mixed entity types is also possible.
0262 The person component visualization relationship
map 3902 includes an entity type identifier cell 3904 that
identifies the interacting entity types, a set of rows 3906-3916
for the constituents identified in the electronic document and
a set of columns 3918-3920 for the constituents identified in
the electronic document having the entity type “Person. In
one implementation, each of the rows 3906-3916 and each of
the columns 3918-3920 match at least one permissible con
stituent of a glossary, Such as the entity glossary 2502 or the
agent glossary 140. In an alternative implementation, a row
and/or a column may represent an impermissible constituent
or impermissible phrase. Other arrangements of permissible
and impermissible constituents and phrases are also possible.
0263. In one implementation, each row 3906-3916 and
each column 3918-3920 represents a visualization relation
ship objects for the person component visualization relation
ship map 3902. In addition, the person component visualiza
tion relationship map 3902 also includes visualization
interaction objects. With respect to the person component
visualization relationship map 3902, a visualization interac
tion object may be an intersection cell between a row and a
column where a document structure instance establishes an
interaction between the constituent represented by the row
and the constituent represented by the column. As one
example, the intersection cell3922 between the row 3908 and
the column 3918 represents a visualization interaction object.
The intersection cell 3922 illustrates that at least one docu
ment structure instance identified by the visualization inter
action object establishes an interaction between the project
resource management system 3706 and the resource manager
3724. Alternatively, a visualization interaction object may be

26
Nov. 27, 2014

an intersection cell between a row and a column where an
interaction is not established between the constituent repre
sented by the row and the constituent represented by the
column. As one example, the intersection cell 3924 between
the row 3912 and the column 3918 represents a visualization
interaction object where a document structure instance has
not established an interaction between the assign resource
module 3704 and the resource manager 3724.
0264. In another implementation, the syntax-based docu
ment visualization module 3604 is operative to generate a
system visualization relationship map. FIG. 40 shows one
example of a system visualization relationship map 4002. The
system visualization relationship map 4002 may represent the
interactions among constituents identified in a document
structure instance, a set of document structure instances, oran
electronic document. The system visualization relationship
map 4002 provides a comprehensive visualization of the
interactions and non-interactions that occur among constitu
ents. The system visualization relationship map 4002 assists
in the identification of proper and improper interactions, and
helps identify whether a constituent has any interaction. The
system visualization relationship map 4002 may help pin
point and identify non-interacting constituents that should, in
fact, be interacting constituents.
0265. In generating the system visualization relationship
map 4002, the syntax-based document visualization module
3604 may perform a recognition process to recognize that one
or more document structure instances conforms to an inter
action syntax. As discussed the interaction syntax may be a
controlled document structure instance syntax and may, or
may not, be associated with a document structure instance
identifier. The syntax-based document visualization module
3604 may parse and/or analyze a document structure instance
to identify interacting constituents and non-interacting con
stituents according to the interaction syntax. In recognizing
whether a document structure instance conforms to an inter
action syntax for generating the system visualization relation
ship map 4002, the syntax-based document visualization
module 3604 may employ any one of the syntaxes previously
discussed.
0266 Similar to the component visualization relationship
map 3702, the system visualization relationship map 4002
includes several system visualization relationship objects and
several system visualization interaction objects. In general, a
system visualization relationship object refers to a visual
representation of a constituent from a document structure
instance or a set of document structure instances. The system
visualization relationship object may represent a constituent
in a document structure instance of an electronic document
matching a permissible constituent found one or more of the
glossaries, such as the entity glossary 2502, the agent glos
sary 140, or any other glossary. In addition, a system visual
ization interaction object generally refers to a visual repre
sentation of an interaction, or non-interaction, between one or
more visualization relationship objects. Moreover, system
visualization relationship objects may be interacting system
visualization relationship objects or non-interacting system
visualization relationship objects, and a system visualization
interaction object may identify or illustrate an interaction
established between one or more system visualization rela
tionship objects defined by one or more document structure
instances.
0267. The exemplary system visualization relationship
map 4002 represents a system visualization relationship map

US 2014/0351694 A1

for several constituents including the assign resource module
3704, project resource management system 3706, the project
lead 3708, the team resource manager 3710, the maintain
project module 3712, the backup master employee repository
3722, and the resource manager 3724.
0268. The system visualization relationship object repre
senting a constituent may be represented as a graphical iconic
image. The graphical iconic image of the system visualization
relationship map 4002 representing the assign resource mod
ule 3704 is one example of a system visualization relationship
object. Similarly, the graphical iconic image of the system
visualization relationship map 4002 representing the project
resource management system 3706 is another example of a
system visualization relationship object. Likewise, the
graphical iconic image of the system visualization relation
ship map 4002 representing the project lead 3708 is a further
example of a system visualization relationship object. As
discussed below with reference to FIG. 41, other representa
tions of the system visualization relationship objects are also
possible.
0269. As discussed above, the system visualization rela
tionship map 4002 includes system visualization interaction
objects that represent interactions among one or more of the
system visualization relationship objects. The system visual
ization relationship map 4002 shows that the system visual
ization interaction object 4004 illustrates an interaction,
established by one or more document structure instances,
between the backup master employee repository 3722 and the
project lead 3708. The system visualization relationship map
4002 also shows other visualization interaction objects, such
as a visualization interaction object, represented by the
graphical iconic image 4006, between the assign resource
module 3704 and the project lead 3708. Depending on the
document structure instance or the document structure
instances of an electronic document, a system visualization
relationship map may include none, one, or more than one
system visualization interaction objects.
0270. In evaluating a set of document structure instances,
the system visualization relationship map 4002 may include a
color schema having one or more assignable display states
that displays interactions between constituents of a document
structure instance or an electronic document. The color
schema may include a first display state that displays that an
interaction is established between a first constituent and a
second constituent, a second display state that displays that a
non-interaction is established between the first constituent
and the second constituent, or any other types of display
States.

0271 In FIG. 40, the system visualization relationship
map 4002 includes a first display state 4008 that displays that
a constituent has at least one interaction, and a second display
state 4010 that displays that a constituent does not have an
interaction. The display states may be based on one or more
assignable characteristics of a visualization relationship
object, Such as color, shading, orientation, position, or any
other characteristic. In one implementation, the color schema
includes a first color assignable to the first display state 4008,
and a second color different than the first color assignable to
the second display state 4010. However, other implementa
tions are also possible. Based on the color schema, the visu
alization module 3604 assigns system visualization relation
ship objects display states depending on whether a document
structure instance has established an interaction for the con
stituent.

27
Nov. 27, 2014

0272 Although the visualization module 3604 may be
instructed or configured to generate the system visualization
relationship map 4002, the visualization module 3604 may
generate alternative system visualization relationship maps.
FIG. 41 shows an alternative example of a system visualiza
tion relationship map 4102. The system visualization rela
tionship map 4102 represents an entity-specific system visu
alization relationship map and more particularly, a system
visualization relationship map that illustrates the interactions
between a first set of constituents having an entity type of
“System” and a second set of constituents having an entity
type “System. However, other types of system visualization
relationship maps may include constituents having an entity
type other than "System.” Such as “Person.” “GenericEntity”
or other entity type. A system visualization relationship map
that includes interactions between constituents of mixed
entity types is also possible.
0273. The system visualization relationship map 4102
includes an entity type identifier cell 4104 that identifies the
interacting entity types, a set of rows 4106-4126 for the con
stituents identified in the electronic document having the
entity type “System’’ and a set of columns 4128-4142 for the
constituents identified in the electronic document having the
entity type “System.” In one implementation, each of the rows
4106-4126 and each of the columns 4128-4142 match at least
one permissible constituent of a glossary, such as the entity
glossary 2502 or the agent glossary 140. In an alternative
implementation, a row and/or a column may represent an
impermissible constituent or impermissible phrase. Other
arrangements of permissible and impermissible constituents
and phrases are also possible.
0274. In one implementation, each row 4106-4126 and
each column 3828-3830 represents a system visualization
relationship object for the system visualization relationship
map 4102. In addition, the system visualization relationship
map 4102 also includes system visualization interaction
objects. With respect to the system visualization relationship
map 4102, a system visualization interaction object may bean
intersection cell between a row and a column where a docu
ment structure instance establishes an interaction between the
constituent represented by the row and the constituent repre
sented by the column. As one example, the intersection cell
4144 between the row 4112 and the column 4136 represents
a system visualization interaction object. The intersection cell
4144 illustrates that a document structure instance identified
by the visualization interaction object establishes an interac
tion between the assign resource module 3704 and the main
tain project module 3712. Alternatively, a system visualiza
tion interaction object may be an intersection cell between a
row and a column where an interaction is not established
between the constituent represented by the row and the con
stituent represented by the column. As one example, the inter
section cell 4146 between the row 4114 and the column 4142
represents a visualization interaction object where a docu
ment structure instance has not established an interaction
between the maintain project module 3712 and the backup
master employee repository 3722.
0275 FIG. 42 shows an alternative example of a system
visualization relationship map 4202. The system visualiza
tion relationship map 4202 represents an entity-specific sys
tem visualization relationship map and more particularly, a
person visualization relationship map that illustrates the
interactions between a first set of constituents having an entity
type of “System” and constituents having the entity type

US 2014/0351694 A1

“Person. However, other types of system visualization rela
tionship maps may include constituents having an entity type
other than “Person' or "System.” Such as “Generica gent.”
“GenericFntity,” or other entity type. A system visualization
relationship map that includes interactions established
between constituents of mixed entity types is also possible.
0276. The system visualization relationship map 4202
includes an entity type identifier cell 4204 that identifies the
interacting entity types, a set of rows 4206-4226 for the con
stituents identified in the electronic document having the
entity type “System,” and a set of columns 4228-4234 for the
constituents identified in the electronic document having the
entity type “Person. In one implementation, each of the rows
4206-4226 and each of the columns 4228-4234 match at least
one permissible constituent of a glossary, such as the entity
glossary 2502 or the agent glossary 140. In an alternative
implementation, a row and/or a column may represent an
impermissible constituent or impermissible phrase. Other
arrangements of permissible and impermissible constituents
and phrases are also possible.
0277. In one implementation, each row 4206-4226 and
each column 4228-4234 represents a system visualization
relationship objects for the system visualization relationship
map 4202. In addition, the system visualization relationship
map 4202 may include system visualization interaction
objects. With respect to the system visualization relationship
map 4202, a system visualization interaction object may bean
intersection cell between a row and a column where a docu
ment structure instance establishes an interaction between the
constituent represented by the row and the constituent repre
sented by the column. As one example, the intersection cell
4236 between the row 4206 and the column 4228 represents
a system visualization interaction object. The intersection cell
4236 illustrates that at least one document structure instance
identified by the syntax-based document visualization mod
ule 3604 establishes an interaction between the project
resource management system 3706 and the resource manager
3724. Alternatively, a system visualization interaction object
may be an intersection cell between a row and a column where
an interaction is not established between the constituent rep
resented by the row and the constituent represented by the
column. As one example, the intersection cell 4238 between
the row 4212 and the column 4228 represents a system visu
alization interaction object where a document structure
instance has not established an interaction between the assign
resource module 3704 and the resource manager 3724.
0278. In another implementation, the syntax-based docu
ment visualization module 3604 is operative to generate a
sub-system visualization relationship map. FIG. 43 shows
one example of a Sub-system visualization relationship map
4302. The sub-system visualization relationship map 4302
may represent the interactions among constituents identified
in a document structure instance or a Subset of document
structure instances from a set of document structure
instances. In one implementation, the Sub-system visualiza
tion relationship map 4302 provides a visualization of the
interactions between a Subset of document structure instances
that set out requirements for achieving an objective, such as a
particular goal, use, or other type of objective. A subsystem
visualization relationship map 4302 may also provide a visu
alization of the interactions between a subset of document
structure instance that set out requirements for achieving
more than one objective. For example, the subset of document
structure instances may set out the requirements for adding a

28
Nov. 27, 2014

new user to a system or provisioning a new service. The
sub-system visualization relationship map 4302 assists in the
identification of proper and improper interactions among
requirements identified for a particular objective, and helps
identify whether a constituent has any interaction in towards
achieving the particular objective. The Sub-system visualiza
tion relationship map 4302 may help pinpoint and identify
non-interacting constituents that should, in fact, be interact
ing constituents.
0279. In generating the sub-system visualization relation
ship map 4302, the syntax-based document visualization
module 3604 may perform a recognition process to recognize
that one or more document structure instances conforms to an
interaction syntax. As discussed previously, the interaction
Syntax may be a controlled document structure instance Syn
tax and may, or may not, be associated with a document
structure instance identifier. The syntax-based document
visualization module 3604 may parse and/or analyze a docu
ment structure instance to identify interacting constituents
and non-interacting constituents according to the interaction
Syntax. In recognizing whether a document structure instance
conforms to an interaction syntax for generating the Sub
system visualization relationship map 4302, the syntax-based
document visualization module 3604 may employ any one of
the syntaxes previously discussed.
0280. In addition, the syntax-based document visualiza
tion module 3604 may identify a document structure instance
for inclusion in the Sub-system visualization relationship map
4302 based on a type-of-use identifier associated with the
document structure instance. A type-of-use identifier may
identify a use achievable by the document structure instance.
For example, the type-of-use identifier may identify that a
document structure instance is a first step or first action
towards achieving a particular objective.
0281. The type-of-use identifier may also distinguish the
document structure instance from a set of document structure
instance. Moreover, document structure instances with simi
lar type-of-use identifiers may be grouped together as a Subset
of document structure instances. For example, a first type-of
use identifier may identify that a first document structure
instance is a first step or first action towards achieving a
particular objective, and a second type-of-use identifier may
identify that a second document structure instance is a second
step or second action towards achieving the same particular
objective. Other arrangements of type-of-use identifiers are
also possible.
0282. Similar to the component visualization relationship
map 3702, the sub-system visualization relationship map
4302 includes several system visualization relationship
objects and several system visualization interaction objects.
With respect to the sub-system visualization relationship map
4302, the system visualization relationship objects may rep
resent a constituents from a Subset of document structure
instances, such as where the Subset of document structure
instances are distinguishable by one or more type-of-use
identifiers. Similarly, the system interaction objects of the
sub-system visualization relationship map 4302 may be a
visual representation of an interaction, or non-interaction,
between one or more of the visualization relationship objects.
0283. The sub-system visualization relationship map
4302 represents a Sub-system visualization relationship map
for several constituents identified in document structure
instances having a type-of-use identifier. Examples of con
stituents shown in the Sub-system visualization relationship

US 2014/0351694 A1

map 4302 include a reporting module 4304, the assign
resource module 3704, the maintain project module 3712, the
resource manager 3724 and the project resource management
system 3706.
0284. In one implementation, the visualization interaction
objects of the sub-system visualization relationship map 4302
are identified by the type-of-use identifier associated with the
document structure instance establishing the interaction, or
non-interaction, between constituents. For example, the
graphical iconic image 4306 includes the type-of-use identi
fier "UC-1-3, which identifies that the document structure
instance having the type-of-use identifier “UC-1-3’ estab
lishes an interaction between an employee 4308 and the
reporting module 4304. Other examples of type-of-use iden
tifiers include the type-of-use identifier “UC-1-4. the type
of-use identifier “UC-1-2. and the type-of-use identifier
“UC-1-1. By including the type-of-use identifiers in the sub
system visualization relationship map 4302, the visualization
module 3604 assists in identifying the document structure
instances that recite constituents used in achieving a particu
lar objective, use, or goal. For example, by reviewing the
system visualization interaction objects labeled with type-of
use identifiers, a user or other system can quickly refer to the
identified document structure instance and determine
whether the interaction, or non-interaction, established by the
document structure instance is a proper, or desired, interac
tion or non-interaction.

0285 Like the system visualization relationship map
4002, the sub-system visualization relationship map 4302
includes system visualization interaction objects that repre
sent interactions among one or more of the system visualiza
tion relationship objects. The Sub-system visualization rela
tionship map 4302 shows that the system visualization
interaction object 4306 illustrates an interaction, established
by one or more document structure instances, between the
employee 4308 and the reporting module 4304. Depending
on the type-of-use identifier associated with a document
structure instance or the type-of-use identifiers associated
with a Subset of document structure instances of an electronic
document, a Sub-system visualization relationship map may
include none, one, or more than one system visualization
interaction objects.
0286. In evaluating a set of document structure instances,
the sub-system visualization relationship map 4302 may also
include a color schema having one or more assignable display
states that displays interactions, or non-interactions, between
constituents of a document structure instance or an electronic
document. In FIG. 43, the sub-system visualization relation
ship map 4302 includes a first display state 4310 that displays
that a constituent has at least one interaction, and a second
display state 4312 that displays that a constituent does not
have an interaction. The display states 4310-4312 may be
based on one or more assignable characteristics of a visual
ization relationship object, Such as a color, shading, orienta
tion, position, or any other characteristic. In one implemen
tation, the color Schema includes a first colorassignable to the
first display state 4310, and a second color different than the
first color assignable to the second display state 4312. How
ever, other implementations are also possible. Based on the
color schema, the visualization module 3604 assigns system
visualization relationship objects display states depending on
whether a document structure instance has established an
interaction for the constituent.

29
Nov. 27, 2014

0287 Although the visualization module 3604 may be
instructed or configured to generate the system visualization
relationship map 4302, the visualization module 3604 may
generate alternative system visualization relationship maps.
FIG. 44 shows an alternative example of a sub-system visu
alization relationship map 4402. The system visualization
relationship map 44.02 represents an entity-specific Sub-sys
tem visualization relationship map and more particularly, a
Sub-system visualization relationship map that illustrates the
interactions between a first set of constituents having an entity
type of "System’’ and a second set of constituents having an
entity type “System.” However, other types of sub-system
visualization relationship maps may include constituents
having an entity type other than "System, such as “Person.”
“GenericFntity” or other entity type. A sub-system visualiza
tion relationship map that includes interactions between con
stituents of mixed entity types is also possible.
0288 The sub-system visualization relationship map
4302 includes an entity type identifiercell 4404that identifies
the interacting entity types, a set of rows 4406-4426 for the
constituents identified in the electronic document having the
entity type “System’’ and a set of columns 4428-4432 for the
constituents identified in the electronic document having the
entity type “System.” In one implementation, each of the rows
4405-4426 and each of the columns 4428-4432 match at least
one permissible constituent of a glossary, such as the entity
glossary 2502 or the agent glossary 140. In an alternative
implementation, a row and/or a column may represent an
impermissible constituent or impermissible phrase. Other
arrangements of permissible and impermissible constituents
and phrases are also possible.
0289. In one implementation, each row 4406-4426 and
each column 4428-4432 represents a system visualization
relationship object for the sub-system visualization relation
ship map 44.02. In addition, the Sub-system visualization rela
tionship map 44.02 also includes system visualization inter
action objects. With respect to the sub system visualization
relationship map 44.02, a system visualization interaction
object may be an intersection cell between a row and a col
umn where a document structure instance establishes an inter
action between the constituent represented by the row and the
constituent represented by the column. As one example, the
intersection cell 4434 between the row 4406 and the column
4430 represents a system visualization interaction object. The
intersection cell 4434 illustrates that a document structure
instance identified by the syntax-based document visualiza
tion module 3604 establishes an interaction between the
project resource management system 3706 and the reporting
module 4304. Alternatively, a system visualization interac
tion object may be an intersection cell between a row and a
column where an interaction is not established between the
constituent represented by the row and the constituent repre
sented by the column. As one example, the intersection cell
4436 between the row 4414 and the column 4430 represents
a visualization interaction object where a document structure
instance has not established an interaction between the main
tain project module 3712 and the reporting module 4304.
0290 FIG. 45 shows an alternative example of a sub
system visualization relationship map 4502. The sub-system
visualization relationship map 4502 represents an entity-spe
cific Sub-system visualization relationship map and more par
ticularly, a Sub-system visualization relationship map that
illustrates the interactions between a first set of constituents
having an entity type of "System” and constituents having the

US 2014/0351694 A1

entity type “Person.” However, other types of sub-system
visualization relationship maps may include constituents
having an entity type other than “Person' or "System. Such
as “Generica gent,” “GenericFntity,” or other entity type. A
Sub-system visualization relationship map that includes inter
actions established between constituents of mixed entity
types is also possible.
0291. The sub-system visualization relationship map
4502 includes an entity type identifiercell 4506 that identifies
the interacting entity types, a set of rows 4506-4526 for the
constituents identified in subset of document structure
instances having the entity type “System, and a set of col
umns 4528-4534 for the constituents identified in a subset of
document structure instances having the entity type "Person.”
In one implementation, each of the rows 4506-4526 and each
of the columns 4528–4534 correspond to at least one permis
sible constituent of a glossary, Such as the entity glossary
2502 or the agent glossary 140. In an alternative implemen
tation, a row and/or a column may represent an impermissible
constituent or impermissible phrase. Other arrangements of
permissible and impermissible constituents and phrases are
also possible.
0292. In one implementation, each row 4506-4526 and
each column 4528–4534 represents a system visualization
relationship objects for the Sub-system visualization relation
ship map 4502. In addition, the sub-system visualization rela
tionship map 4502 may include system visualization interac
tion objects. With respect to the sub-system visualization
relationship map 4502, a system visualization interaction
object may be an intersection cell between a row and a col
umn where a document structure instance establishes an inter
action between the constituent represented by the row and the
constituent represented by the column. As one example, the
intersection cell 4538 between the row 4510 and the column
4532 represents a system visualization interaction object. The
intersection cell 4538 illustrates that at least one document
structure instance identified by the syntax-based document
visualization module 3604 establishes an interaction between
the project resource management system reporting module
4304 and the resource manager 3724. Alternatively, a system
visualization interaction object may be an intersection cell
between a row and a column where an interaction is not
established between the constituent represented by the row
and the constituent represented by the column. As one
example, the intersection cell 4538 between the row 4512 and
the column 4532 represents a system visualization interaction
object where a document structure instance has not estab
lished an interaction between the assign resource module
3704 and the resource manager 3724.
0293. The syntax-based document visualization module
36.04 may also generate a sub-system visualization relation
ship map that includes one or more document structure
instances that establish the interaction, or non-interaction,
between two constituents. Referring to FIG. 46 is an alterna
tive example of a entity-specific Sub-system visualization
relationship map 4602 that includes a visualization interac
tion object 4604 having a document structure instance. The
document structure instance “UC 1-4: Project resource man
agement system sends data to reporting module' establishes
an interaction between the reporting module 4304 and the
project resource management system 3706. The document
structure instance of the visualization interaction object 4604
includes a type-of-use identifier. “UC 1-4, which indicates to
the syntax-based document visualization module 3604 that

30
Nov. 27, 2014

the document structure instance should be included in a Sub
set of document structure instances relating to a particular
objective. For example, other type-of-use identifiers may also
include the prefix “UC” which indicates to the syntax-based
document visualization module 3604 that the document
structure instance associated with the type-of-use identifier
having the prefix “UC should be included in the subset with
the document structure instance associated with the type-of
use identifier “UC 1-4. Other type-of-use identifiers are also
possible.
0294 FIG. 47 is yet another example of an entity-specific
sub-system visualization relationship map 4702 that includes
visualization interaction objects 4704-4706 having at least
one document structure instance. As shown in FIG. 47, a first
visualization interaction object 4704 includes one document
structure instance, whereas a second visualization interaction
object 4706 includes more than one document structure
instance. By including document structure instances in the
entity-specific Sub-system visualization relationship map
4602 and the entity-specific sub-system visualization rela
tionship map 4702, the syntax-based document visualization
module 3604 facilitates rapid identification of the document
structure instances that establish the interaction between con
stituents. Inclusion of the document structure instances in the
entity-specific Sub-system visualization relationship maps
4602-4702 reduces time and resources spent in reviewing an
electronic document to identify the document structure
instances that establish the interactions between constituents.

0295 FIG. 48 shows one example of an attribute require
ment report 4802 generated by the syntax-based document
attribute analysis module 3606. With reference to FIG. 27, the
syntax-based document attribute analysis module 3606 refers
to the non-functional attribute glossary 2702 to determine
whether one or more document structure instances satisfy an
attribute for a constituent in the document structure instance.

0296 For instance, the syntax-based document attribute
analysis module 3606 may first identify a constituent in a
document structure instance that matches a first permissible
constituent found in one or more glossaries, such as the entity
glossary 2502 or the agent glossary 140. The syntax-based
document attribute analysis module 3606 may then analyze
the document structure instance, Such as by parsing the words
and phrases of the document structure instance, for a docu
ment structure instance phrase that satisfies an attribute
requirement associated with the constituent. As previously
discussed, satisfying an attribute requirement may include
satisfying one or more target phrases from a document struc
ture instance with an attribute requirement phrase. The Syn
tax-based document attribute analysis module 3606 may then
generate the attribute requirement report 4802 which may
indicate whether an attribute for constituent was satisfied by
one or more document structure instances.
0297. In general, an attribute requirement report organizes
major categories of non-functional attributes by System and
Sub-system. In alternative implementations, an attribute
requirement report may organize minor categories, alterna
tive categories, or any other type of categories. The attribute
requirement report 4802 is an example of a category-specific
attribute requirement report for a performance category of
non-functional attributes. Category handles 4838-4846 may
allow a user or system to select an alternative category-spe
cific attribute requirement report for another category, such as
a capacity and Volumetrics category, a delivery channels cat
egory, a new area category, and an availability. However, the

US 2014/0351694 A1

attribute requirement report 4802 may also be implemented
as a cross-category attribute requirement report that identifies
whether document structure instances satisfy attributes for
more than one attribute category.
0298. The organization of the attribute requirement report
4802 facilitates identifying if a category (such as a perfor
mance category, a capacity and Volumetrics category, a deliv
ery channels category, or other category) of a non-functional
attribute is not specified for any system and/or sub-system. As
shown in FIG. 48, the attribute requirement report 4802 iden
tifies that a number of attributes have not been satisfied for the
performance category.
0299. In one implementation, the attribute requirement
report 4802 includes a set of rows 4804-4824, wherein each
row represents a constituent identified by the syntax-based
document attribute analysis module 3606. The attribute
requirement 4802 may also include a set of columns 4828
4832, wherein each column represents an attribute require
ment contained within the non-functional attribute glossary
2702. However, other arrangements of rows and columns are
possible. Moreover the attribute requirement report 4802 may
be represented by any type of report, such as a pie chart, a bar
chart, a step chart, or any other type of chart.
0300. The attribute requirement report 4802 may further
include an intersection cell that between a row and column
that identifies whether a document structure instance satisfies
an attribute requirement assigned to a constituent. As shown
in FIG. 48, the attribute requirement report 4802 includes an
intersection cell 4834 that identifies that a document structure
instance satisfies the online response time attribute for the
master employee repository constituent. In this example, the
document structure instance that satisfies the online response
time attribute is “The Master Employee Repository must
provide an average response time of 500 milliseconds for
employee record queries. However, other document struc
ture instances that satisfy the online response time attribute
for the master employee repository constituent are also pos
sible.

0301 Moreover, the attribute requirement report 4802
may include an intersection cell 4836 that identifies that a
document structure instance does not satisfy an attribute
requirement assigned to a constituent. Alternatively, the inter
section cell 483.6 may identify that no document structure
instances from an electronic satisfies an attribute requirement
assigned to a constituent. In the attribute requirement report
4802, the intersection 4836 identifies that no document struc
ture instances satisfies the online response time attribute
assigned to the E-Verify system constituent. In this example,
the document structure instance that satisfies the online
response time attribute is “The Master Employee Repository
must provide an average response time of 500 milliseconds
for employee record queries.”
0302) The systems, components, and logic described
above may be implemented in many different ways, including
a combination of hardware and software, or as software for
installation on any desired operating system including Linux,
Unix, or Windows. The functionality may be implemented in
a single system or functionally partitioned across multiple
systems. As another example, the components, systems, and
logic may be implemented as computer-executable instruc
tions or as data structures in memory and may be stored on,
distributed across, or read from many different types of
machine-readable media. The machine-readable media may
include RAM, ROM, hard disks, floppy disks, CD-ROMs,

Nov. 27, 2014

flash memory or other machine-readable medium. The com
ponents, systems and logic may also be encoded in a signal,
Such as a signal received from a network or partitioned into
sections and received in multiple packets communicated
across a network.
0303. The systems may be implemented in software, hard
ware, or a combination of software and hardware. The sys
tems may be implemented in a computer programming lan
guage. Such as C# or Java, or in a query language. Such as the
SPARQL Protocol and RDF Query Language (“SPARQL).
The systems may also use one or more metadata data models,
such as the Resource Description Framework (“RDF).
Moreover, the systems may use a knowledge representation
language, such as the Web Ontology Language (“OWL) in
conjunction with a semantic framework, Such as Jena.
0304 Furthermore, the systems may be implemented with
additional, different, or fewer components. As one example, a
processor or any other logic or component may be imple
mented with a microprocessor, a microcontroller, a DSP, an
application specific integrated circuit (ASIC), program
instructions, discrete analog or digital logic, or a combination
of other types of circuits or logic. As another example, memo
ries may be DRAM, SRAM, Flash or any other type of
memory. The systems may be distributed among multiple
components, such as among multiple processors and memo
ries, optionally including multiple distributed processing sys
temS.

0305 Logic, such as programs or circuitry, may be com
bined or split among multiple programs, distributed across
several memories and processors, and may be implemented in
or as a function library, Such as a dynamic link library (DLL)
or other shared library. The DLL, for example, may store code
that implements functionality for a specific module as noted
above. As another example, the DLL may itself provide all or
Some of the functionality of the system. In one implementa
tion, the system is implemented using Visual Basic for Appli
cations as a WordTM application plug-in.
0306 Interfaces between the systems and the logic and
modules within systems may be implemented in numerous
ways. For example, interfaces between systems may be Web
Services, Simple Object Access Protocol, or Enterprise Ser
vice Bus interfaces. Other examples of interfaces include
message passing, Such as publish/subscribe messaging,
shared memory, and remote procedure calls.
0307 While various embodiments of the invention have
been described, it will be apparent to those of ordinary skill in
the art that many more embodiments and implementations are
possible within the scope of the invention. Accordingly, the
invention is not to be restricted except in light of the attached
claims and their equivalents.

1. (canceled)
2. A document analysis system comprising:
a memory comprising:
a document structure instance for analysis; and
state machines configured to evaluate the document struc

ture instance; and
processing circuitry in communication with the memory, the
processing circuitry configured to:

identify a syntax of the document structure instance;
select a state machine from among the State machines for
analysis of the document structure instance, the State machine
selected in response to identification of the syntax of the
document structure instance;

US 2014/0351694 A1

determine phrases in the document structure instance; and
parse contents of the document structure instance phrases

and responsively move through states of the selected
state machine, to determine, using the selected State
machine, conformance of the document structure
instance to a controlled document structure instance
Syntax associated with the selected State machine.

3. The document analysis system of claim 2, wherein the
processing circuitry is further configured to identify the Syn
tax of the document structure instance based on a phrase
among the determined phrases within the document structure
instance.

4. The document analysis system of claim 2, wherein the
circuitry is further operable to identify the syntax of the
document structure instance based on a syntax identifier asso
ciated with the document structure instance.

5. The document analysis system of claim 2, wherein the
selected State machine comprises a transition state, an error
state, and a final state.

6. The document analysis system of claim 5, wherein the
final State represents conformance of the document structure
instance to the controlled document structure instance syntax.

7. The document analysis system of claim 5, wherein the
error state represents non-conformance of the document
structure instance to the controlled document structure
instance syntax.

8. The document analysis system of claim 7, wherein the
circuitry is further configured to:

output a message to be displayed in response to the selected
state machine moving to the error State, wherein the
message comprises a suggestion to correct the non-con
formance.

9. The document analysis system of claim 5, wherein the
transition state represents identification of an expected con
stituent within the contents of the document structure
instance as the contents are parsed.

10. The document analysis system of claim 2, wherein the
selected State machine is associated with more than one con
trolled document structure instance syntax.

11. A method comprising:
identifying a document structure instance within the docu

ment;
identifying a syntax of the document structure instance;
Selecting a state machine from a plurality of state machines

based on the syntax of the document structure instance,
the state machine associated with a controlled document
structure instance syntax; and

determining, using the selected State machine, conform
ance of the document structure instance to the controlled
document structure instance syntax by parsing contents
of the document structure instance and moving through
states of the selected State machine corresponding to the
parsed contents.

12. The method of claim 11, wherein determining the con
formance of the document structure instance comprises:
moving through a transition state, an error state, and a final

state based on parsed content of the document structure
instance.

13. The method of claim 12, wherein the document struc
ture instance is determined to conform to the controlled docu
ment structure instance syntax in response to the selected
state machine moving to the final state.

14. The method of claim 12, wherein the document struc
ture instance is determined to be non-conformant to the con

32
Nov. 27, 2014

trolled document structure instance syntax in response to the
selected State machine moving to the error State.

15. The method of claim 14, further comprising:
displaying a message in response to the selected State

machine moving to the error state, the message compris
ing a Suggestion to correct the non-conformance.

16. A product comprising:
a machine readable storage medium other than a transitory

signal; and
instructions stored on the medium, the instructions config

ured to cause circuitry to:
receive a document structure instance within the docu

ment;
identify a syntax of the document structure instance;
identify a state machine to analyze the document structure

instance, the state machine being selected from a plural
ity of state machines based on the syntax of the docu
ment structure instance;

parse contents of the document structure instance;
move from one state of the state machine to another state of
the state machine in response to the parsed content; and

evaluate whether the document structure instance con
forms to a controlled document structure instance syntax
corresponding to the state machine based on a last state
within the State machine corresponding to a last con
stituent of the parsed content of the document structure
instance.

17. The product of claim 16, wherein the controlled docu
ment structure instance syntax is a first controlled syntax, the
medium further comprising instructions to cause the circuitry
tO:

identify a modal phrase in the document structure instance;
identify a second controlled syntax for the document struc

ture instance to comply with:
identify a second state machine corresponding to the sec

ond controlled syntax; and
evaluate whether the document structure instance con

forms to the second controlled syntax by transitioning
through states of the second State machine according to
the parsed content of the document structure instance.

18. The product of claim 16, wherein conformance of the
document structure instance to the controlled document
structure instance syntax corresponding to the state machine
is based on the last state of the state machine being a final
non-error State.

19. The product of claim 18, wherein the state machine
comprises a start state, a transitory state, an error state, and a
final State.

20. The product of claim 19, wherein the state machine by
default begins at the start state, and to move from one state of
the State machine to another state of the state machine in
response to the parsed content, the medium further compris
ing instructions to cause the circuitry to:

identify a constituent in the parsed content of the document
structure instance; and

determine a next state corresponding to the constituent
based on a current state of the state machine.

21. The product of claim 19, wherein the error state iden
tifies, in the document structure instance, at least one of a
non-agent entity error, a missing agent error, an unknown
agent error, an unknown action error, or a missing action
eO.

