(54) Titre : METHODE POUR OBTENIR DES TEMPS DE TRAJET EN REFLEXION A PARTIR D'UNE INTERPRETATION DE DONNEES SISMIFTES EN ONDES CYLINDRIQUES MIGREEES
(54) Title: METHOD FOR DETERMINING SEISMIC REFLECTION TRAVEL TIMES BASED ON THE INTERPRETATION OF MIGRATED CYLINDRICAL WAVE DATA

(57) Abrégé/Abstract:
- Méthode pour obtenir des temps de trajet en réflexion à partir d'une interprétation de données sismiques en ondes cylindriques migrées, pour une valeur donnée du paramètre définissant la pente de ces ondes, ou de la superposition de telles données
(57) Abrégé(suite)/Abstract(continued):
associées à différentes lignes d’acquisition sensiblement parallèles, ce paramètre pouvant éventuellement prendre successivement plusieurs valeurs. - La méthode comporte les étapes suivantes : a) on définit un vecteur lenteur \((\vec{P}) \) dont la composante \((p_y) \) suivant une direction parallèle aux lignes d’acquisition, définit la pente de l’onde cylindrique ; b) pour une position donnée de récepteur sismique d’abscisse \((x_p) \) sur une ligne d’acquisition, on recherche l’abscisse \((\xi) \) de la source telle qu’un rayon partant du récepteur sismique et se réfléchissant sur un événement pointé, émerge à la source sur la ligne d’acquisition considérée, avec un vecteur lenteur \((\vec{P}) \) dont la composante suivant la direction parallèle aux lignes d’acquisition est \((-p_y) \) ; c) on détermine un temps de trajet \((t^0(x_p)) \) en ajoutant à la valeur du temps de trajet le long du dit rayon, un temps égal au produit de la pente \((p_y) \) de l’onde cylindrique par l’abscisse du point source ; d) on répète les étapes b) et c) pour toutes les positions des récepteurs pour lesquelles on veut un résultat de démigration ; et e) on répète les étapes a) à d) pour toutes les lignes d’acquisition pour lesquelles on veut un résultat de démigration et pour toutes les valeurs prises par le paramètre \((p_y) \). - Applications à l’analyse de vitesse de migration pour la détermination de la distribution de vitesses de propagation des ondes sismiques dans le sous-sol, par exemple.
PRECIS DE LA DIVULGATION

- Méthode pour obtenir des temps de trajet en réflexion à partir d'une interprétation de données sismiques en ondes cylindriques migrées, pour une valeur donnée du paramètre définissant la pente de ces ondes, ou de la superposition de telles données associées à différentes lignes d'acquisition sensiblement parallèles, ce paramètre pouvant éventuellement prendre successivement plusieurs valeurs.

- La méthode comporte les étapes suivantes : a) on définit un vecteur lenteur \(\mathbf{\hat{p}} \) dont la composante \((p_x) \) suivant une direction parallèle aux lignes d'acquisition, définit la pente de l'onde cylindrique ; b) pour une position donnée de récepteur sismique d'abscisse \((x_p) \) sur une ligne d'acquisition, on recherche l'abscisse \((\xi) \) de la source telle qu'un rayon partant du récepteur sismique et se réfléchissant sur un événement pointé, émerge à la source sur la ligne d'acquisition considérée, avec un vecteur lenteur \(\mathbf{\hat{p}} \) dont la composante suivant la direction parallèle aux lignes d'acquisition est \(-(p_x) \) ; c) on détermine un temps de trajet \((t^*(x_p)) \) en ajoutant à la valeur du temps de trajet le long du dit rayon, un temps égal au produit de la pente \((p_x) \) de l'onde cylindrique par l'abscisse du point source ; d) on répète les étapes b) et c) pour toutes les positions des récepteurs pour lesquelles on veut un résultat de démigration ; et e) on répète les étapes a) à d) pour toutes les lignes d'acquisition pour lesquelles on veut un résultat de démigration et pour toutes les valeurs prises par le paramètre \((p_x) \).

- Applications à l'analyse de vitesse de migration pour la détermination de la distribution de vitesses de propagation des ondes sismiques dans le sous-sol, par exemple.
METHODE POUR OBTENIR DES TEMPS DE TRAJET
EN REFLEXION A PARTIR D'UNE INTERPRETATION DE
DONNEES SISMlQUES EN ONDES CYLINDRIQUES MIGREEES

La presente invention concerne une methode pour obtenir des temps de trajet
en reflexion a partir d'une interpretation de donnees sismiques en ondes cylindriques
migrees, pour une valeur donnee d'un parametre definissant la pente de ces ondes, ou
de la superposition de telles donnees associees a differentes lignes d'acquisition
sensiblement paralles, ce parametre pouvant eventuellement prendre
successivement plusieurs valeurs.

ETAT DE LA TECHNIQUE

La demigration de donnees sismiques est l'operation inverse de la migration
qui, on le rappelle, est une methode classique d'imagerie de donnees sismiques,
consistant essentiellement, connaissant la valeur d'un champ d'ondes a une
profondeur connue, par exemple en surface, ainsi qu'un modele de la repartition des
viteses de propagation des ondes dans le sous-sol, a modeliser la propagation du
champ source et la retropropagation des donnees de reflexion enregistrees et a
chercher des coherences de phase entre ces deux champs modelises. La migration est
particulierement utile pour interpreter des donnees sismiques acquises sur des
structures complexes.

Elle permet aussi d'acceder, via une demigration, aux temps d'arriree des
reflexions associees aux evenements pointes. Cette operation intervient, notamment,
loisqu'il s'agit de determiner, par des methodes cinematiques telles que les methodes
d'analyse de vitesse de migration, la distribution de vitesse dans la subsurface. Cette
determination constitue une etape cle dans l'imagerie des structures complexes. Un
exemple d'une telle methode est decrit par :

- Stork, C., 1992 ; « Reflection Tomography in the Postmigrated Domain ;
 Geophysics, 57,680-692.
Une méthode d'analyse de vitesse de migration particulièrement performante dite Smart (pour « Sequential Migration Aided Reflection Tomography ») est décrite notamment par :

C'est à la tomographie de réflexion qu'est confiée, dans les méthodes de ce type, la tâche de déterminer le modèle de vitesse ; les temps de trajet en réflexion (données de la tomographie de réflexion) sont obtenus, dans les parties complexes, en démigrant les événements pointés lors de l'interprétation des données migrées. Cette méthode a été mise en œuvre avec succès pour l'imagerie en 3D de structures complexes en utilisant des algorithmes de migration 2D avant sommation (et la démigration associée) sur un ensemble de profils sismiques extraits d'une acquisition 3D. Néanmoins une telle approche ne s'avère efficace que dans un contexte bien spécifique :

- sur le plan géologique la structure doit varier relativement lentement suivant une direction d'espace (appelée « strike » dans la littérature anglo-saxonne) ;

- les profils sismiques doivent être acquis suivant la direction orthogonale (donc la direction de complexité) appelée ""dip" dans la littérature anglo-saxonne.

En revanche, cette approche peut difficilement être envisagée sur des structures complexes sans direction privilégiée : sur de telles structures il faut avoir recours à des techniques de migration 3D avant sommation, techniques gourmandes en temps de calcul surtout si l'imagerie doit être réalisée sur un volume.

Par le brevet FR 2 784 195 du demandeur notamment, on connaît une autre méthode de migration de données sismiques, connue des gens de l'art sous le nom d'Alchemig. Cette méthode permet de réaliser en 3D, une migration avant sommation d'événements sismiques, et d'imager des volumes d'une zone souterraine, ceci pour un temps de calcul attrayant. à partir d'une série d'un nombre N, de cycles de sismique réflexion.
Elle comprend l'émission successive de champs d'onde élémentaires défini chacun par l'association d'un signal sismique \(W(t) \) et d'un lieu d'émission défini dans une série de lieux d'émission \(S_i \) avec \(1 \leq i \leq N_s \), la réception par des récepteurs sismiques placés en des positions \(\vec{R}_i^j \), des signaux sismiques renvoyés par la zone en réponse à chacun de ces champs d'onde, et l'enregistrement des différents signaux reçus par chaque récepteur sismique sous la forme de traces sismiques \(\mathbf{d}_i^j(t) \) dépendant du temps. Pour un modèle de vitesses donné,

a) on définit un vecteur de lenteur \(\vec{p} \) (homogène à l'inverse d'une vitesse) dont les deux composantes \(p_y \) et \(p_x \) peuvent chacune prendre une suite de valeurs préalablement définies,

b) on définit pour un vecteur de lenteur \(\vec{p} \) donné et lieu d'émission \(S_i \) donné, une fonction de décalage temporel \(t_0(\vec{p}, i) \);

c) on applique la fonction de décalage temporel \(t_0(\vec{p}, i) \) à chaque champ d'onde élémentaire associé au lieu d'émission \(S_i \) et on forme un champ d'ondes composite en surface par superposition spatio-temporelle des différents champs d'onde élémentaires ainsi décalés ;

d) on applique un décalage temporel \(t_0(\vec{p}, i) \) à chaque trace sismique \(\mathbf{d}_i^j(t) \) repérée par le couple \((i,j)\) et on forme un champ de traces composite en surface par superposition spatio-temporelle des différentes traces sismiques ainsi décalées ;

e) on effectue une migration du champ de traces composite en utilisant comme champ d'ondes le champ d'ondes composite, ceci en modélisant la propagation de champ d'ondes composite ainsi que la rétropropagation de champ de traces composite, et en combinant de façon adaptée les deux champs composites ainsi modélisés en tout point de la zone à imager ;
f) on répète les étapes c) à e) pour toutes les valeurs prises par les composantes \(p_y \) et \(p_x \) du vecteur \(\vec{p} \); et

g) pour toute valeur fixée de la deuxième composante \(p_x \) du dit vecteur \(\vec{p} \), on somme les résultats de ces différentes combinaisons de manière à obtenir une image migrée associée à cette valeur fixée de \(p_x \), réalisant ainsi une migration avant sommation.

On suppose, même si la technique s'avère robuste en cas de violation de ces hypothèses, que les données sismiques sont à azimut constant, (l'azimut étant défini comme la direction des bpoints source-captur) (hypothèse 1), et que l'acquisition est effectuée en déplaçant la source suivant des lignes parallèles à la direction définie par l'azimut (hypothèse 2).

Si ce n'est pas le cas, on peut s'y ramener en procédant dans un premier temps à un prétraitement suivant par exemple la technique dite AMO pour « Azimut Moveout », bien connues des gens de l'art, pour aménager les données provenant d'acquisitions marines standards.

Le système de coordonnées choisi ici, est tel que l'axe des \(x \) est parallèle à la direction des lignes d'acquisition et l'axe des \(y \) est le repère donc la position d'une ligne d'acquisition. Ci-après, nous définissons par « données en ondes cylindriques » la mesure, suivant une ligne d'acquisition, de la réponse sismique de la subsurface à une onde cylindrique (onde engendrée par une ligne de sources et dont la phase varie linéairement avec l'abscisse suivant la ligne d'acquisition) dont l'axe coïncide avec la ligne d'acquisition considérée. Compte tenu de cette définition, la technique Alchemig permet d'obtenir la superposition, suivant les différents lignes d'acquisition, de « données en ondes cylindriques migrées », ces ondes cylindriques étant associées à une ligne d'acquisition et à une valeur prédéfinie du paramètre \(p_x \) définissant la pente de l'onde cylindrique. La démarche consiste à appliquer aux données des déphasages linéaires paramétrés par le vecteur \(\vec{p} \) dont la composante suivant l'axe des profils est \(p_x \), et à calculer une telle superposition en appliquant aux données déphasées un logiciel de migration par ondes planes. La sommation après migration s'obtient en sommant les résultats obtenus pour les différentes valeurs
prises par \(p_x \). On suppose, par un choix convenable de l'origine du repère ou de la fonction de déphasage, que le point de la surface où les déphasages sont nuls a pour coordonnées \((x = 0, y = 0)\).

On note que la technique présentée ci-dessus, constitue une façon parmi d'autres d'obtenir la superposition de données en ondes cylindriques migrées associées à des lignes d'acquisition parallèles et à une valeur donnée du paramètre \(p_x \). Une autre façon de procéder peut consister par exemple, comme décrit par Claerbout, J.F., 1971, « Towards a Unified Theory of Reflector Mapping »; in Geophysics, 36, N°3, 467-481, à calculer le résultat en effectuant pour chaque ligne d'acquisition :

- la propagation de l'onde cylindrique et la rétropropagation des données en ondes cylindriques ; et

- le calcul, en tout point de l'espace, de l'intercorrélation du champ source dont on a modélisé la propagation et du champ de données rétropropagées, ce qui permet d'obtenir, pour la ligne d'acquisition considérée, les données en ondes cylindriques migrées ;

et en sommant (superposant) les données en ondes cylindriques migrées obtenues pour les différentes lignes d'acquisition.

Si l'on dispose, pour plusieurs valeurs du paramètre \(p_x \), de la superposition de données en ondes cylindriques migrées associées à différentes lignes d'acquisition, on peut comme expliqué dans le brevet précité, contrôler la qualité du modèle de vitesse utilisé pour réaliser la migration et aussi mettre à jour le modèle de vitesse en exploitant les déformations des événements lorsque l'on passe d'un paramètre d'onde cylindrique à un autre (analyse de vitesse de migration).

Pour procéder à cette mise à jour, comme il est fait suivant la méthode dite Smart précitée (ou d'autres), il faut, pour différentes valeurs du paramètre \(p_x \), pointer les événements dans la superposition des données en ondes cylindriques migrées, superposition correspondant aux différentes lignes d'acquisition, puis démigrer les événements pointés et confier à la tomographie de réflexion le soin de la mise à jour du modèle. Encore faut-il savoir comment démigrer les événements migrés.
interprétés lorsque l'interprétation a été effectuée sur des données en ondes cylindriques migrées ou leur superposition obtenue pour différentes lignes d'acquisition.

La méthode selon l'invention

C'est un des problèmes complexes que la méthode selon l'invention, se propose de résoudre. L'approche retenue débouche, de plus, sur des méthodes que l'on décrira par ailleurs, qui sont connexes au concept d'onde cylindrique.

La méthode selon l'invention permet de déterminer les temps de trajet en réflexion d'événements sismiques pointés sur des enregistrements en 3D de données sismiques correspondant à des signaux captés par des récepteurs sismiques répartis suivant une ligne d'acquisition (respectivement suivant plusieurs lignes d'acquisition) en réponse à l'émission dans le sous-sol d'ondes depuis un ou plusieurs points-source, ces données ayant été au préalable transformées en données en ondes cylindriques migrées et interprétées (respectivement en une superposition données en ondes cylindriques migrées et interprétées).

Dans le cas où l'interprétation a été effectuée sur les données migrées associées à une seule onde cylindrique, et donc une seule ligne d'acquisition, la méthode comporte les étapes suivantes :

a) on définit un vecteur lenteur (\(\vec{p} \)) dont la composante (p_x) suivant une direction parallèle à la ligne d'acquisition, définit la pente de l'onde cylindrique ;

b) pour un récepteur sismique situé à l'abscisse (x_R) sur la ligne d'acquisition, on recherche l'abscisse (\(\xi \)) du point-source sur la ligne d'acquisition telle qu'un rayon partant du récepteur sismique et se réfléchissant sur un événement pointé, émerge au dit point source, avec un vecteur lenteur (\(\vec{p} \)) dont la composante suivant le ligne d'acquisition est (−p_x) ;

c) on détermine un temps de trajet (\(t'(x_R) \)) en ajoutant à la valeur du temps de trajet le long du rayon, un temps égal au produit de la pente de l'onde cylindrique par l'abscisse du point source ;
d) on répète les étapes b) et c) pour toutes les positions des récepteurs pour lesquelles on veut un résultat de démigration ; et
c) on répète les étapes a) à d) pour toutes les valeurs prises par le paramètre (pₐ) pour lesquelles on a pointé un événement dans les données migrées correspondantes.

Dans le cas où l'interprétation a été effectuée sur la superposition de données en ondes cylindriques, superposition réalisée à partir de plusieurs lignes d'acquisition, la méthode comporte les étapes suivantes :

a) on définit un vecteur lenteur (→ p) dont la composante (pₐ) suivant une direction parallèle aux lignes d'acquisition, définit la pente des ondes cylindriques associées aux différentes lignes d'acquisition ;

b) pour un récepteur sismique donné situé à l'abscisse (xₐ) sur une ligne d'acquisition, on recherche l'abscisse (x) d'un point source sur la ligne d'acquisition telle qu'un rayon partant du récepteur sismique et se réfléchissant sur un événement pointé, émerge au dit point source, avec un vecteur lenteur (→ p) dont la composante suivant la ligne d'acquisition est (-pₐ) ;

c) on détermine un temps de trajet (t'(xₐ)) en ajoutant à la valeur du temps de trajet le long du dit rayon, un temps égal au produit de la pente de l'onde cylindrique par l'abscisse du point source ;

d) on répète les étapes b) et c) pour toutes les positions des récepteurs pour lesquelles on veut un résultat de démigration ; et
e) on répète les étapes a) à d) pour toutes les lignes d'acquisition pour lesquelles on veut un résultat de démigration ;
f) on répète les étapes a) à e) pour toutes les valeurs prises par le paramètre (pₐ) pour lesquelles on a pointé un événement dans les données migrées correspondantes.
Le traitement préalable aboutissant à des données en ondes cylindriques migrées, peut éventuellement inclure si nécessaire un prétraitement de type AMO déjà cité ou un rééchantillonnage spatiales des données sismiques acquises sur le terrain.

5 Suivant un mode de mise en œuvre, on utilise les temps de trajet associés aux événements en ondes cylindriques, pour mettre en œuvre une technique de tomographie de réflexion par ondes cylindriques et calculer une distribution des vitesses dans le milieu.

10 Suivant un autre mode de mise en œuvre, on convertit les temps de trajet associés aux événements en ondes cylindriques, en temps de trajet associés aux événements par points de tir, en exploitant les correspondances entre les données en ondes cylindriques et les données en points de tir.

15 Suivant un mode de mise en œuvre, lorsque le dispositif d’acquisition des données sismiques est organisé par lignes d’acquisition, c’est-à-dire lorsque sur une même ligne figurent tout un ensemble de points-source et tout un ensemble de capteurs, on transforme les temps de trajet par tir synthétisé en des temps de trajet associés aux couples source – récepteur (du dispositif d’acquisition des données sismiques), cette transformation se faisant par extrapolation suivant la direction des lignes d’acquisition, du temps de trajet synthétisé pour le couple source – récepteur le plus proche du couple source – récepteur que l’on veut documenter en temps de trajet.

20 Suivant un mode de mise en œuvre, les données sismiques étant seulemement à azimut constant, on transforme les temps de trajet par tir synthétisés, en des temps de trajet associés aux couples source - récepteurs cette transformation se faisant par une double extrapolation, la première suivant la direction définie par l’azimut, la deuxième suivant la direction orthogonale à la direction précédente.

25 La méthode peut être utilisée notamment pour la détermination du modèle de vitesse en appliquant par exemple aux temps de trajet obtenus, une tomographie de réflexion.
PRESENTATION SOMMAIRE DES FIGURES

D'autres caractéristiques et avantages de la méthode selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de mise en œuvre, en se référant aux dessins annexés où :

- la Fig.1 donne un descriptif des différentes options permettant la mise en œuvre de la méthode selon l'invention ; et

- la Fig.2 confronte, sur une section sismique à offset constant, les données sismiques avec les temps d'arrivée obtenus par mise en œuvre d'une option de la méthode.

DESCRIPTION DETAILLEE

La démigration d'événements pointés sur des données en ondes cylindriques migrées, demande une technique spécifique. Nous distinguerons successivement :

- la démigration d'un événement pointé sur des données en ondes cylindriques migrées ;

- la démigration de la superposition (« stack ») de données en ondes cylindriques migrées, associées à différentes lignes d'acquisition ;

- l'obtention de données cinématiques (temps de trajet en réflexion) associées à des couples source-capteur ; et

- l'obtention de données cinématiques associées à des couples source-capteurs existant dans le dispositif d'acquisition d'origine (c'est-à-dire les couples source-capteurs utilisés pour réaliser la migration).

1) Démigration d'un événement pointé sur des données en ondes cylindriques migrées

Le résultat d'une telle démigration est le temps d'arrivée, sur les enregistrements associés à l'onde cylindrique considérée (caractérisée par la coordonnée suivant l'axe des y de la ligne d'acquisition et par la valeur du paramètre pₓ définissant la pente de l'onde cylindrique), de la réflexion correspondant à
l'événement pointé. Ce temps d'arrivée t' dépend de l'abscisse x_R du récepteur considéré. La démigration s'effectue naturellement en recherchant, pour une position de récepteur donnée, l'abscisse ξ du point source ou des points sources S sur la ligne considérée, tel que le rayon partant du récepteur et se réfléchissant sur l'événement pointé émerge en S avec un vecteur lenteur \vec{p} dont la composante suivant x vaut $-p_x$, le modèle de vitesse étant identique à celui utilisé pour réaliser la migration.

Ainsi formulé, le problème apparaît comme la résolution d'une équation non linéaire (exprimant la condition sur le vecteur lenteur) à une inconnue (l'abscisse ξ de la source). Cette équation peut être résolue numériquement par n'importe quelle méthode adaptée à la résolution d'équations non linéaires telle que la méthode de Newton par exemple.

Le temps de trajet résultant de la démigration $t'(x_R)$ sera obtenu en prenant la valeur du temps de trajet le long de tous les rayons obtenu pour la source S obtenu pour la source S, temps auquel on aura ajouté la quantité $p_x \xi$. On note qu'il y a, en fait, une infinité de tels rayons mais ces rayons fournissent, pour une arrivée donnée, le même temps de trajet. L'opération est répétée pour toutes les abscisses de récepteurs pour lesquelles on souhaite avoir le résultat de démigration. Les temps d'arrivée ainsi obtenus constituent une information intrinsèquement liée aux données en ondes cylindriques synthétisées. Ils ne dépendent pas du modèle de vitesse utilisé pour effectuer la migration, (ce qui justifie qu'on puisse les utiliser pour la détermination du modèle de vitesse) car l'opération de démigration présentée ci-dessus est, sur le plan de la cinématique, l'inverse de la migration de données en ondes cylindriques. La composante p_x suivant x du vecteur lenteur \vec{p} du rayon à l'émergence au capteur sismique constitue également une quantité intrinsèquement liée aux données et qui ne dépend donc pas du modèle de vitesse utilisé pour la mise en œuvre de la migration ; elle donne la pente, sur les données en ondes cylindriques, de l'événement enregistré au capteur.
2) Démigration de la superposition de données en ondes cylindriques migrées, associées à différentes lignes d'acquisition

Cette opération s'effectue simplement en répétant l'opération définie au paragraphe précédent pour toutes les lignes d'acquisition où l'on souhaite obtenir un résultat de démigration et elle délivre les mêmes quantités intrinsèques, à savoir le temps d'arrivée de l'événement, sur les données en ondes cylindriques associées à chaque ligne, en fonction de l'abscisse du capteur ainsi que la pente de cet événement suivant l'axe des x, c'est à dire la composante \(p^x \) suivant x du vecteur lenteur lors de l'émergence du rayon au capteur. De plus, si nous appelons \(p^y_x \) et \(p^y_z \) les composantes suivant l'axe des y du vecteur lenteur pour des rayons émergent en surface respectivement au capteur et à la source, la quantité \(p^y_x \) + \(p^y_z \) apparaît elle aussi comme une quantité intrinsèque ; elle s'interprète comme la pente, suivant l'axe des y (et donc quand on passe d'une ligne à l'autre), de l'événement vu pour l'abscisse de capteur sismique considéré, sur des données en ondes cylindriques associées au paramètre \(p_x \).

3) Obtention de données cinématiques (temps de trajet en réflexion) associées à des couples source-capteurs

Si l'on dispose d'un logiciel de tomographie de réflexion pouvant traiter des temps de trajet associés à des ondes cylindriques, les données obtenues au paragraphe précédent suffisent pour permettre la mise à jour du modèle de vitesse et réaliser ainsi, suivant la méthode dite Smart, l'analyse de vitesse de migration.

Si l'on ne dispose pas de tels logiciels d'inversion, mais seulement de logiciels classiques manipulant des données cinématiques organisées par couple source-récepteur, on réalisera l'étape décrite ci-après.

Cette étape consiste à exploiter des correspondances entre les données en ondes cylindriques et les données par point de tir, c'est-à-dire l'ensemble des enregistrements effectués par les différents récepteurs pour une même source sismique supposée ponctuelle.
Une telle correspondance ne peut être exploitée que si l'on dispose de données en ondes cylindriques associées à plusieurs valeurs du paramètre \(p_x \) définissant la pente des ondes cylindriques. Notons que la migration ne joue ici aucun rôle : il s'agit simplement de transformer des données. Les données cinématiques (temps de trajet en réflexion) associées à des couples source-capteur sont obtenues en procédant ligne d'acquisition par ligne d'acquisition (les couples source-capteur sont, rappelons-le, supposés situés sur ces lignes).

Pour une ligne donnée, on dispose, par application des techniques présentées au deux paragraphes précédents, de la fonction \(t^e(x_R) \), ceci pour différentes valeurs du paramètre \(p_x \). En d'autres termes, nous disposons de la fonction, que nous désignons, au prix d'un changement de notation, \(t^e(p_x, x_R) \) ou, plus exactement, d'un échantillonnage de cette fonction, les valeurs prises par cette fonction ayant été obtenues pour des valeurs spécifiques du couple \((p_x, x_R)\). On définit une fonction \(X_s(p_x, x_R) \) par la relation :

\[
X_s(p_x, x_R) = \frac{\partial t^e}{\partial p_x}(p_x, x_R) \quad (1)
\]

quantité que nous pouvons évaluer numériquement (par exemple en utilisant des approximations basées sur des différences finies) pour des valeurs spécifiques du couple \((p_x, x_R)\). La formule (2) ci-après nous donne le temps noté \(t^e(x_S, x_R) \) de l'événement au capteur d'abscisse \(x_R \) dans les données par point de tir pour une abscisse de tir \(x_S = X_s(p_x, x_R) \).

\[
T^e(x_S, x_R) = t^e(p_x, x_R) - p_x X_s(p_x, x_R) \quad (2)
\]

Les temps ainsi obtenus sont des quantités intrinsèques : ils sont uniquement liés aux données sismiques et ne dépendent pas de la façon suivant laquelle la migration a été mise en œuvre. En conclusion, il suffit d'appliquer la formule (2) sur les différentes lignes pour tous les couples \((p_x, x_R)\) pour lesquels on dispose des données \(t^e(p_x, x_R) \) et \(\frac{\partial t^e}{\partial p_x}(p_x, x_R) \) pour connaître les temps d'arrivée de
l'événement interprété (ou, dans la pratique, de chaque événement interprété) pour une multitude de couples source-capteur couvrant la surface et permettre ainsi une détermination précise, via une tomographie de temps de trajet en réflexion, du modèle de vitesse.

4) Obtention de données cinématiques associées à des couples source-capteur existant dans le dispositif d'acquisition d'origine

Même si les données obtenues par la technique exposée à la section précédente suffisent pour effectuer la mise à jour du modèle de vitesse, il peut s'avérer utile de confronter les temps obtenus avec les données sismiques d'origine non migrées. Une telle confrontation est en effet intéressante pour valider le pointé (et notamment l'interprétation) effectué sur les données migrées et pour s'assurer de la fiabilité de la démigration qui, on l'a vu, fait appel à des procédures numériques basées sur des approximations ainsi qu'au tracé de rayons, outil très sensible en la représentation numérique des réflecteurs.

Cependant une confrontation directe peut difficilement être envisagée car les couples source-capteur n'ont aucune raison d'être ceux correspondant aux données utilisées pour réaliser la migration. En effet, les temps de trajet fournis par la méthode exposée à la section précédente, sont obtenus pour des couples source-capteur répartis suivant une suite de nuages de points distribués dans des espaces 2D (chacun de ces espaces correspondant à une ligne d'acquisition) alors que les données d'origine peuvent être répartis suivant un nuage de points répartis dans un espace 3D. Cependant même dans le cas où la migration a été réalisée à partir de données organisées par lignes 3D, la difficulté demeure : le couple source-capteur défini par le couple d'abscisses \((X_s(p_s,x_r),x_r)\), obtenu comme exposé à la section précédente, n'a aucune raison de figurer dans le dispositif d'acquisition d'origine.

Pour obtenir des données cinématiques associées à des couples source-capteur existant dans le dispositif d'acquisition d'origine à partir des résultats obtenus suivant la méthode exposée à la section précédente, il faut avoir recours à des techniques d'interpolation ou d'extrapolation. Une méthode consiste à se définir un critère de proximité dans un espace 2D ou 3D suivant le cas et, pour un couple source-récepteur donné du dispositif d'acquisition d'origine, y affecter le temps de trajet du
couple source-capteur le plus proche parmi ceux qui sont documenté en temps de trajet par mise en œuvre de la méthode exposée à la section 3. Une telle approche est viable si la distance d'extrapolation de l'information n'est pas trop grande. Dans le cas contraire il faut avoir recours à des techniques plus élaborées telles que celles exposées ci après, selon que l'on opère sur des données rééchantillonnées ou sur des données à azimut constant.

4-1 Mise en œuvre sur des données organisées par lignes d’acquisition

Dans ce type de mise en œuvre, nous supposons aussi que les données sismiques sont à azimut constant et que l'acquisition est effectuée en déplaçant la source suivant des lignes parallèles à la direction définie par l'azimut suite par exemple à un rééchantillonnage spatial des données et/ou un prétraitement de type AMO, comme on l’a vu. Les couples source-capteur intervenant dans la mise en œuvre de la méthode de migration sont répartis suivant une suite de nuages de points distribués dans des espaces 2D, chacun de ces espaces correspondant à une ligne d’acquisition.

Dans ce cas, les données sont organisées par ligne d’acquisition et nous voulons obtenir le temps d’arrivée de l’événement réfléchi pour le couple source-capteur du dispositif d’acquisition d'origine (disp), défini par la ligne d’acquisition à laquelle il appartient et par les abscisses \(x_i^{disp} \) et \(x_R^{disp} \). Nous avons, comme expliqué ci-dessus, extrait de l’ensemble des temps d’arrivée calculés pour la ligne considérée, celui associé au couple source-capteur défini par le couple \((x_s^{calc}, x_R^{calc})\) qui s’avérait le plus proche de celui associé au couple \((x_s^{disp}, x_R^{disp})\) parmi le nuage de points obtenus à l’intérieur de l’espace 2D décrit par les couples \((x_s, x_R)\). Nous utilisons alors la formule (3) qui suit, pour obtenir le temps d’arrivée \(t^* (x_s^{disp}, x_R^{disp}) \) à partir des quantités rendues disponibles au cours des étapes de traitement précédentes :

\[
t^* (x_s^{disp}, x_R^{disp}) = t^* (x_s^{calc}, x_R^{calc}) - p_s (x_s^{disp} - x_s^{calc}) + p_R (x_R^{disp} - x_R^{calc})
\]

(3)

la quantité \(p_R \) ayant été définie aux sections 1, 2 ci-dessus. On remarque que cette formule exploite le résultat important suivant : sous les hypothèses 1 et 2 énoncées à la section I, pour un capteur donné et donc pour une ligne d’acquisition
donnée, la pente d'un événement dans les données en ondes cylindriques associées au paramètre p_x, est identique à la pente de l'événement dans la collection point de tir pour le tir lié par la relation (1) au couple (p_x, x_R) à l'abscisse (x_R) du capteur. La technique d'extrapolation indiquée ci-dessus, n'est bien entendu pas limitative. On peut tout aussi bien utiliser une technique d'interpolation.

4-2 Mise en œuvre de la méthode sur des données à azimut constant

Dans ce type de mise en œuvre, nous supposons que les données sismiques sont à azimut constant. Les couples source-capteur intervenant lors de la mise en œuvre de la migration, sont répartis suivant un nuage de points distribués dans un espace 3D, ces couples pouvant être décrits par l'intermédiaire de trois paramètres : les abscisses respectives de la source et du capteur et leur ordonnée commune. Le problème consiste ici à obtenir les temps d'arrivée de l'événement réfléchi pour les couples source-capteur du dispositif d'acquisition d'origine (distribués donc suivant un nuage de points dans un espace 3D) à partir des temps calculés en utilisant la méthode présentée à la section 3. Cette méthode est alors mise en œuvre pour une suite de lignes d'acquisition fictives repérées par leur ordonnée y_i, i représentant le numéro, de la ligne considérée. Ces lignes doivent être suffisamment rapprochées pour permettre l'extrapolation, sur les couples source-capteur du dispositif d'acquisition d'origine, des temps de trajet calculés suivant la méthode présentée ci-dessus à la section 3. Nous voulons donc calculer le temps de trajet de l'événement réfléchi pour un couple source-capteur du dispositif d'origine, ce couple étant repéré par le couple d'abscisses $(x_y^{\text{disp}}, x_R^{\text{disp}})$ et par leur ordonnée commune y^{disp}.

Pour ce faire, nous extrayons de l'ensemble des temps d'arrivée calculés pour la suite de lignes mentionnée ci-dessus, celui associé au couple source-capteur défini par le couple $(x_S^{\text{calc}}, x_R^{\text{calc}})$ et l'ordonnée y_i qui s'avère le plus proche, au sens de la métrique définie dans l'espace 3D, de celui associé au couple source-capteur considéré du dispositif d'origine. Nous utilisons alors la formule (4) ci-après pour obtenir le temps d'arrivée $t^e(x_y^{\text{disp}}, x_R^{\text{disp}}, y^{\text{disp}})$ à partir des quantités rendues disponibles au cours des étapes de traitement précédentes.
\[t^e(x^\text{disp}_y, x^\text{disp}_x, y^\text{disp}) = t^e(x^\text{calc}_y, x^\text{calc}_x, y^\text{calc}) - p_x(x^\text{disp}_y - x^\text{calc}_y) + p_y(x^\text{disp}_x - x^\text{calc}_x) + (p_x^2 + p_y^2)(y^\text{disp} - y^\text{calc}) \]

Là encore, la technique d'extrapolation est indiquée à titre d'exemple non limitatif. On peut tout aussi bien utiliser à la place, une technique d'interpolation.

La figure 2 confronte, sur une section à déport (offset) constant (en l'occurrence 1500 m), obtenue à la suite d'opérations de prospection sismique 3D en Mer du Nord, les données sismiques avec les temps d'arrivée obtenus par mise en œuvre de la technique exposée ci-dessus. On y retrouve clairement la réflexion sur la base de la structure salifère.
Les réalisations de l’invention au sujet desquelles un droit exclusif de propriété ou de
privilege est revendiqué, sont définis comme il suit :

1) Méthode pour déterminer les temps de trajet en réflexion d’événements
sismiques pointés sur des enregistrements en 3D de données sismiques correspondant
à des signaux captés par des récepteurs sismiques répartis suivant une ligne
d’acquisition en réponse à l’émission dans le sous-sol d’ondes depuis des points-
source, ces données ayant été au préalable transformées en données en ondes
cylindriques migrées et interprétées, caractérisée en ce que :

a) on définit un vecteur lenteur \(\vec{p} \) dont la composante \(p_x \)

b) pour un récepteur sismique situé à l’abscisse \(x_R \) sur la ligne
d’acquisition, on cherche l’abscisse \(\xi \) du point source sur la ligne d’acquisition
telle qu’un rayon partant du récepteur sismique et se réfléchissant sur un événement
pointé, émerge au point source, avec un vecteur lenteur \(\vec{p} \) dont la composante

15

suivant le ligne d’acquisition est \(-p_x \) ;

\[
c) \quad \text{on détermine un temps de trajet } (t^*(x_R)) \text{ en ajoutant à la valeur du } \\
\text{temps de trajet le long du dit rayon, un temps égal au produit de la pente de l’onde } \\
cylindrique par l’abscisse du point source ; \\
d) \quad \text{on répète les étapes b) et c) pour toutes les positions des récepteurs } \\
\text{pour lesquelles on veut un résultat de démigration ; et}
\]

\[
e) \quad \text{on répète les étapes a) à d) pour toutes les valeurs prises par le } \\
\text{paramètre } (p_x) \text{ pour lesquelles on a pointé un événement sur les données migrées } \\
correspondantes.
\]

25

2) Méthode pour déterminer les temps de trajet en réflexion d’événements
sismiques pointés sur des enregistrements en 3D de données sismiques correspondant
à des signaux captés par des récepteurs sismiques répartis suivant plusieurs lignes
d’acquisition en réponse à l’émission dans le sous-sol d’ondes depuis un ou plusieurs
points-source, ces données ayant été au préalable transformées en une superposition de données en ondes cylindriques migrées et interprétées, caractérisée en ce que :

a) on définit un vecteur lenteur \(\mathbf{p} \) dont la composante \(p_x \) suivant une direction parallèle aux lignes d’acquisition, définit la pente des ondes cylindriques associées aux différentes lignes d’acquisition ;

b) pour un récepteur sismique donné situé à une abscisse \(x_R \) sur une ligne d’acquisition, on recherche l’abscisse \(\xi \) d’un point source sur la ligne d’acquisition telle qu’un rayon partant du récepteur sismique et se réfléchissant sur un événement pointé, émerge au dit point source, avec un vecteur lenteur \(\mathbf{p} \) dont la composante suivant la ligne d’acquisition est \(-p_x\) ;

c) on détermine un temps de trajet \(t^*(x_R) \) en ajoutant à la valeur du temps de trajet le long du dit rayon, un temps égal au produit de la pente de l’onde cylindrique par l’abscisse du point source ;

d) on répète les étapes b) et c) pour toutes les positions des récepteurs pour lesquelles on veut un résultat de démigration ; et

e) on répète les étapes a) à d) pour toutes les lignes d’acquisition pour lesquelles on veut un résultat de démigration ;

f) on répète les étapes a) à e) pour toutes les valeurs prises par le paramètre \(p_x \) pour lesquelles on a pointé un événement dans les données migrées correspondantes.

3) Méthode selon l’une des revendications 1 ou 2, caractérisée en ce que l’on utilise les temps de trajet associés aux événements en ondes cylindriques, pour mettre en œuvre une technique de tomographie de réflexion par ondes cylindriques et calculer une distribution des vitesses dans le milieu.

4) Méthode selon l’une des revendications 1 ou 2, caractérisée en ce que l’on convertit les temps de trajet associés aux événements en ondes cylindriques, en temps de trajet associés aux événements par points de tir, en exploitant les
correspondances entre les données en ondes cylindriques et les données en points de tir.

5) Méthode selon la revendication 4, caractérisée en ce que, les données sismiques étant organisées par lignes d’acquisition, on transforme les temps de trajet par tir synthétisé en des temps de trajet associés aux couples source - récepteurs, cette transformation se faisant par extrapolation suivant la direction des lignes d’acquisition, du temps de trajet synthétisé pour le couple source - récepteur le plus proche du couple source - récepteur du dispositif d’acquisition, que l’on veut documenter en temps de trajet.

6) Méthode selon la revendication 4, caractérisée en ce que, les données sismiques étant à azimut constant, on transforme les temps de trajet par tir synthétisé, en des temps de trajet associés aux couples source - récepteurs, cette transformation se faisant par une double extrapolation, la première suivant la direction définie par l’azimut, la deuxième suivant la direction orthogonale à la direction précédente.

7) Application de la méthode selon l’une des revendications 4 à 6, à la détermination du modèle de vitesse, en appliquant par exemple une tomographie de réflexion aux temps de trajet obtenu.
Application number/ Numéro de demande: 2364978

Documents of poor quality scanned
(request original documents in File Prep. Section on the 10th floor)

Documents de piètre qualité numérisés
(Pour obtenir les documents originaux, veuillez vous adresser à la Section de préparation des dossiers, située au 10e étage)
Données sismiques

Migration par Alchemig

Données en ondes cylindriques

Données en ondes cylindriques migrées ou superposition de telles données par paramètre px

interprétation

Événements pointés

Fig. 1

Démigration (II-1 ou II-2)

Temps de trajet en ondes cylindriques

Tomographie de réflexion sur données en ondes cylindriques

Conversion en temps de trajet par tir

Temps de trajet par tir

Modèle de vitesse

Tomographie de réflexion classique

Extrapolation sur les couples source-captateurs du dispositif sismique

Temps de trajet par couples source-captateurs du dispositif d'acquisition

Validation ou correction par confrontation avec données sismiques

Temps d'arrivée validés