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(57) Abstract: An apparatus includes a memory and a compiling pro-
cessor configured to: generate, by at least one of a group consisting
of a compiler and a runtime executing on the compiling processor, ar-
guments for executing a compiled kernel, determine, by the at least
one of the group executing on the compiling processor, whether a
first memory reference to a first memory region and a second memory
reference to a second memory region of the arguments refer to a same
memory region, generate, by the at least one of the group, metadata
associated with the first memory reference and the second memory
reference based on the determination, wherein the metadata indicates
a relationship between the first memory region and the second
memory region. The at least one of the compiler and the runtime may
recompile the kernel based on the metadata, and instruct a target pro-
cessor to execute the recompiled kernel.
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MEMORY REFERENCE METADATA FOR COMPILER OPTIMIZATION

TECHNICAL FIELD
(8661} This disclosure relates to compiling source code of kernels, and more

particularly, to techniques for compiling source code of kemels for memory access

BACKGROUND
{88621 There has been a move toward so-called heterogencoos computing architectures.
In heterogencous computing architectures, a program, referred to as a kerpel, may be
compiled using a framework such that a varicty of different types of processors, such as
a CPU (Central Processing Unit), GPU (Graphics Processing Unit), FPGA (Field
Programmable Gate Array), etc., may execute the kernel. Rocent frameworks that
support heterogencous computing include the OpenCL framework, as well as the

DirectCompute framework.

SUMMARY
16043] This disclosure describes tochniques for detecting memory aliasing and memory
overlap of memory references in a kernel in order to generate metadata for compiling
optimizations. To perform the techniques of this disclosuare, a compiler such as a just-in-
time compiler (11T} compiles a source code of a program, alseo referred to as g “kernel”
mto a binary file. A compiling processor, executing the compiler, may compile the
kernel using a heterogensous computing framework, such as OpenCL, at runtime (when
the compiling processor generaies argements needed for executing the kernei). Inthe
techniques described in this disclosure, instead of fnstructing a target processor to
execute the kernel using the generated arguments, a driver analyzes the arguments,
which are passed together in a buffer, that are to be passed to the target processor that is
to execule the kornel. Based on the analysis, the driver/runtime gencrates metadata
indicating a relationship {e.g., whether the memory region of the first momory reference
and the sccond memory reference overlap, to what extent, ete.) between the first
memory reference and the second memory reference.
16004] 1 the memory regions are not the same, the compiling processor may use the
compiler to recompile the kernel based on the metadata, and using more aggressive

compilation techniques, such as loop wnrolling, ete. The driver may also be able to
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determine to what extent memory accesses of the kemnel overlap, and may recompile the
kernel using more aggressive techniques based on the amount of memory overlap. In
this manner, the techuiques of this disclosure may increase the exccution performance
of a kernel that is compiled using 2 just-in-time compiler.

(8065} In onc cxample, this disclosure describes a method comprising: generating, by at
least one of the group consisting of a compiler and a runtime executing on a compiling
processor, arguments for executing binary code of a compiled kernel, determining, by
the at least one of the group consisting of the compiler and the runtime executing on the
compiling processor, whether a first memory reference to a first memory region of the
kernel argumerds and a second mcmory reference to & seccond memory region of the
kernel arguments refer to a same memory region, generating, by the at least one of the
group consisting of the compiler and the runtime executing on the compiling processor,
metadata associated with the first memory reference and the sccond memory reference
based on the determination. The metadata may indicate a relationship between the fivst
memory region and the second memory region. The method further inclades responsive
to determining, by the at least one of the group consisting of the compiler and the
runtirae exccuting on the compiling processor, that first and second memory references
of the kernel do not refer to the same memory region: causing, by the at least one of the
group consisting of the compiler and the nmtime executing on the compiling processor,
a compiler to recompile the kernel based on the metadata, and instructing, by the at least
one of the group consisting of the compiler and the runtime executing on the compiling
processor, a target processor to execute the recompiled kernel.

188661 In another example, this disclosure describes a device that includes 2 memory
and a compiling processor configured fo: generate, by at least one of a group consisting
of a compiler and a runtime executing on the compiling processor, arguments for
executing binary code of a compiled kernel, determine, by the at least one of the group
consisting of the compiier and the runtime executing on the compiling processor,
whether a first memory reference to a first memory region of the kernel arguments and a
second memory reference to a second memory region of the kernel argoments refer to a
83I0C MOMOTY region, generate, by the at least one of the group consisting of the
compiler and the runtime executing on the compiling processor, metadata associated
with the first memory reference and the second memory reference based on the

determination. The metadata may indicate a relationship between the first memory
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region and the second memory region, and responsive to determining, by the at least one
of the group consisting of the compiler and the runtime cxecuting on the compiling
processor, that first and second memory refercnces of the kernel do not refer to the same
memory region, the compiling processor is further configared to: cause, by the at least
one of the group consisting of the compiler and the runtime executing on the compiling
processor, a compiler to recompiie the kernel based on the metadata, and nstruct, by the
at least one of the group consisting of the compiler and the runtime executing on the
compiling processor, a target processor to execute the recompiled kernel.

186871 In another exarple, this disclosure describes a non-transitory compuier-readable
storage medivm storing instructions that, when executed, cause a compiling processor
t0: generate, the at least one of a group consisting of 4 compiler and a runtime executing
on the compiling processor, arguments for executing binary code of a compiled kernel,
determine, by the at least one of the group consisting of the compiler and the runtime
exccuting on the compiling processor, whether a fivst memory reference to a first
memory region of the kernel arguments and a second memory reference to a sccond
memory region of the kernel arguments refer to a same memory region, gencrate, by the
at least one of the group consisting of the compiler and the runtime executing on the
compiling processor, metadata associated with the first memory reference and the
second memory reference based on the determination. The metadata indicates a
relationship between the first memory region and the second memory region, and
{8008} responsive to determining, by the at least one of the group consisting of the
compiler and the runtime execoting on the compiling processor, that first and second
memory references of the kernel do not refer to the same memory region, the compiling
processor may be further configured to execuie nstructions that cause the compiling
processor to: cause, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, a compiler to recompile the kernel based
on the metadata, and instroct, by the at least one of the group consisting of the compiler
and the runtime executing on the compiling processor, 4 target processor to execute the
recompiled kernel.

18669] The details of one or more examples of the disclosure are sot forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the disclosure will be apparent from the description and drawings, and

from the claims.
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BRIEF DESCRIPTION OF DRAWINGS

(60618} FIG. 1 is a block diagram illustrating an example computing device that supports
aliasing analysis to aid compiling optimization in accordance with the techniques of this
disclosure.

16611} FIG. 2 1s a conceptual diagram ilustrating a phurality of processing elements of
one or more shader cores of a processor that may exccute a kernel in accordance with
the techunigques of this disclosure.

(68012} FIG. 3A is 8 conceptual diagram illustrating kernel code that includes code that,
when executed, may cause aliasing in accordance with the techniques of this disclosure.
18613} FIG. 3B is a conceptual diagram illustrating an example of aliasing that 3
compiler configured in accordance with the technigues of this disclosure may be able to
detect.

(8014} FIG. 3C is a conceptual diagram ilhustrating an example of non-overlapping
memory references, which a compiler configured in accordance with the techniques of
this disclosure may be able to detect.

[80615] FIG. 31 is 2 conceptual diagram ilhustrating  overlapping memory references
that a driver/runtime configured in accordance with the techniques of this disclosure
may detect.

16016} FIG. 4A 15 2 conceptual diagram illustrating loop unrolling in accordance with
the technigues of this disclosure.

18017} FIG. 48 is a conceptual diagram illustrating code reordering in accordance with
the techunigques of this disclosure.

[8618] FIG. 4C is a conceptual diagram illustrating code vectorization in accordance
with the in accordance with the technigues of this disclosure.

16019) FIG. 5 is a flow diagram an cxample method for gencrating compiler metadata

to atd compiler optimization in accordance with the techniques of this disclosure.

BETAILED DESCRIPTION

[8628}] As described briefly above, various heterogeneous computing frameworks are
currently under development. Some examples of heterogencous computing frameworks
. o T™ o

include the OpenCL™™ framework, currently under development by the Khronos group,

and the DirectCompute framework, which is currently being developed by Microsoft®,
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Heterogeneous computing frameworks allow a single program or “kernel” to execate on
a variety of different processors, such as a CPU (Central Processing Unit), a GPU
(Graphics Processing Unit), an FPGA (Field Programomable Gate Array), DSP (Digital
Signal Processor), cte.

(8021} To prepare a kernel for execution, a processor, referred to in this disclosurc as a
compiling processor, conmpiies kemel source code to generate binary code to be
exccuted by a target processor. The target processor may be the same processor or a
different from the target processor. One example of the compiler that the compiling
processor uses is referred to as a just-in-time compile (JIT) compiler. A JIT compiler
compiles source code at execution time {aiso referred to as runtime), rather than prior 1o
execution (sometimes referred to as “ahead of time” compilation) or without previously
compiling instructions at alf {referred to as “interpretation”).

(8022} Once the kernel bas been compiled, the compiling processor, via a driver and a
runtime, transfers the compiled binary code of the kernel to the target processor. The
kernel also accepts a set of arguments at nintime for executing the kernel on the target
processor, which the compiling processor also transfers to the target processor. The
kernel arguments comprise a buffer, i.c. an arca of momory allocated for the arguments.
In most cases, the kernel includes code sections that operate on (i.¢., read 1o or write
from) the arguments. In this manner, the argoments comprise a data set for the kerpel
that the kernel may operate over. Afer transferring the kernel to the target processor,
the driver/runtime of the compiling processor executes a function call that provides the
arginnents to the kernel at runtime in some examples. Once the kernel has received the
argumcents, the target processor may conunence exccution of the kernel.

16023) In many nstances, the kernel includes code segments, such as loops, that
execute until the target processor determines that some Boolean condition has been met
or for some number of iterations. A compiler may be able to employ varicus techniques
to improve the performance of executing loop code sections, for example loop
vnrolling, as well as other technigues, such as code reordering, and/or vectorization that
may improve the performance of both loop and non-loop code sections.

18624} Loop unrolling 1s an optimization process by which the compiler expands
several iterations of the loop to reduce or eliminate instractions that control the loop,
such as arithmetic operations, end of loop tests, and/or to improve cache performance

when executing the loop. Code reordering is another optimization, which a compiler
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may usc to group a series of stmilar nstructions (e.g. loads or stores together). Code
reordering may improve cache performance when executing a loop code section in some
cases. For example, code reordering may inprove perfornmence when coalescing a
number of load nstructions {e.g., within 2 loop body) together may improve
performance on 3 system having a cache line width (discussed in greater detail below)
that 1s a multiple of the size of the operand used in the scalar instruction. However, it
may only be safe for the compiler to coalesce the loads if the compiler determines, prior
to compilation, that the load/store buffers do not alias each other. Otherwise, data
corruption could occur dug to the reordered load/store tnstructions.

18025} Vectorization is another optimization process by which a compiler may convert
source code that includes several scalar operations, each of which processes a single
pair of operands at a fime, {0 a vector instruction, which processes one operation on
owltiple pairs of operands at once. Vectorization 15 a form of parallelization that may
mprove performance relative to a scalar implementation of the same code. Loop
unrolling, code reordering, and vectorization are described in greater detail below.
18826} Code sections of a kernel may contain memory references, also reforred to as

)

“pointers,” which reay refer to a memory arca of the arguments. For example, a code
section may nclude a series of memory references that may refer to portions of the
kernel arguments {(i.e., memory references to the buffer included in the kernel
arguments). The kernel may read values from the arguments buffer, and may also wrile
data to the argoments buffer.

(80271 In some cases, different memory references, e.g. pointer variables having
differcnt names, may reference the same data location in memory. The situation in
which different symbolic references reference a same momaory region is referred 1o as
“alasing.” A compiler may attempt to detect aliasing at compile time using static
analysis or other techniques. However, a compiler is usually unable to detect aliasing of
memory references in loops when the data that memory references in loop code sections
refer to (c.g., kernel arguments) 1s supphied at runtime.

(80281 When a compiler 1s umable to definitively determine whether memory references
refer to a same memory region (i.c. the memory references result in aliasing), the
compiler may be unable to perform optinization fechnigues, such as loop vnrolling and
vectorization to the loop.  The techniques of this disclosure may enable a JIT compiler

to determine whether memory aceesses of a kernel loop refer to a same memory region.



WO 2015/153143 PCT/US2015/021585

Additionally, the technigues of this disclosure enable a JIT compiler to generate
metadata about a relationship between memory references, and to recompile the kerpel
using optimizations, such as vectorization and loop vurolling based on the generated
metadata.

(8029} FiG. 1 is a block diagram illustrating an cxample computing device that supports
aliasing analysis to aid compiling optimization 1o accordance with the techuiques of this
disclosure. FIG. 1 includes computing device 2. Computing device 2 may comprise a
personal computer, a desktop computer, 8 laptop computer, a computer workstation, a
tablet computing device, a video game platform or console, a wireless communication
device (such as, ¢.g., 2 mobile telephone, a cellular telephone, 2 satellite telephone,
and/or a mobile telephone handset, a handheld device such as a portable video game
device or a personal digital assistant (PDA), a personal music player, a video player,
display device, a television, a television set-top box, a server, an intermediate network
device, a mainframe compuier or any other type of device that processes and/or displays
graphical data.

186381 As illustrated in the example of FIG. 1, computing device 2 includes a CPU 16,
& system memory 14, a graphics processing unit {GPL) 12, just-in-time (JIT) compiler
18, and driver/runtime 19. CPU 16 may execute various types of applications.
Examples of the applications include web browsers, e-mail applications, spreadsheets,
video games, applications that gencrate viewable objects for display, and the like.
Instructions for execution of the one or more applications may be stored within system
memory 4.

18631} CPU 16 may also cxecute JiT compiler 18, Accordingly, CPU 16 may be
referred to, for the purposes of example, as a “compiling processor.” JIT Compiler 18
comprises a compiler that, when executed by CPU 16, may compile source code of a
kernel using a heterogeneous computing framework, such as OpenCL or
DirectCompuie, as described above. JIT compiler 18 compiles source code into native
code or intermediate code (e.g., bytecode) for exccution by a target processor. HT
compiler 18 performs compilation at “runtime,” 1.e. at the time of exccution as opposed
to before execution. JIT compiler 18 may perform compilation using the
ciBuildProgram() function when compiling using OpenClL.. Additionally, JIT compiler

18 may be configured to analyze data access patterns of kernel 20 to determine whether
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data accesses of certain fibers (1.e. threads) executing on the target processor, GPU (2,
are independent, as well as if other conditions hoid.

18632} Driver/runtime 19 also interacts with JIT compiler 18 to translate kernel source
code to binary instructions or bytecode instructions. Driver/runtime 19 may use the
driver to perform architecture-specific compilation of kernel source code instructions to
native or object code for the target processor (GPU 12 in this example). For example,
driver/runtime 19 may be aware of specific vector instructions or execution resources
avatlable to the target processor, and may compile the source code to native code in a
way that optimizes cxecution performance on the target processor. In some examples,
there may be different drivers, for exaraple if there are muliiple target processors, ¢.g. if
the kernel is to execute on CPU 16 and GPU 12,

18033} Kernel 20 is comprised of native or object code, ¢.g. binary ustructions, that the
target processor, GPU 12 i this example, is capable of executing. JIT Compiler 18
may alse manage runtime execution of GPU 12, CPU 16 may transmit kernel 20 to
GPU 12 for execation. CPU 16 may also generate arguments 26, which CPU 16 may
transfer to GPU 12 for further processing.

18634} Before allocating arguments 26, CPU 16 allocates a free memory buffer, which
is a region of memory, for arguments 26. Once the buffer has been allocated,
driver/runtime 19 stores arguments 26 in the buffer. Arguments 26 may comprise a
plurality of data values {c.g., integers, floating point values, objecis, arrays of values,
ete.) that GPU 12 is capable of processing. Additionally, during execution of kernel 20,
GPU 12 may write data to the buffer that stores argimments 26 as outpot. The outputted
data may comprise output arguments, which GPU 12 may transfer back to CPU 16.
16038] The arguments that CPU 16 transfers to GPU 12 may be reforred to as “input
arguments.” In an example where the heterogencous computing framewaork is the
OpenCL framework, driver/runtime 19 may generate the arguments and pass (make
available) to the clSetKernelArg() function at run-time. The ciScternclArg() function
receives the keroel 20 as an argoment, as well as any of keroel arguernds 26 and
transfers the arguments to GPU 12 so that execution may begin,

18836} As part of aliocating memory for arguments 26, driver/runtime 19 determines an
address and a memory region of arguments 26 that is associated with some or all of the
memory references included in the kemel. The memory references may be memory

references of specific code sections, for example code sections that include loops,
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referred to as “loop code sections.” Based on the determined memory regions,
driver/runtime 19 may be able to resolve {i.c., determine} whether memory references of
foops code sections o7 other code sections of kernel 20 refer to a same memory region
of arguments 26.

{8037} Responsive to generating the kernel arguments 26 for GPU 12 o execuie kernel
20, driver/rantimic 19 may execute kernel 20. More particularly, driver/runtime 19 may
dispatch kernel 20 to the target processor, GPU 12 using the
ciEnqueneNDRangeRKernek) function. At nmtime, driver/numtime 19 analyzes
arguments 26, which kernel 20 receives. Driver/runtime 19 also analyzes memory
references (e.g., pointers), efc. 1o determine whether memaory references refer to a same
memory region of the memory region allocated for arguments 26. Driver/runtime 19
may analyze the momory references and argoments buffers in a pairwise fashion to
determine whether the memory references refer to a same memory region.

(88381 Driver/runtime 19 further generates metadata associated with the memory
references based on the relationship between the memory regions of arguments 26 to
which the memory references refer. The metadata may indicate a relationship between
memory references. For instance, the metadata may include a list of overlapping
memory references, whether the memory vegions associated with the memory regions
overlap, to what extent the memory regions overlap, and how many bytes the overlap
comprises, as some non-liniting examples.

{68038} Driver/rontime 19 provides the generated metadata (it any) back to JIT compiler
18. Responsive to determining that two memory references do not share the exact same
memory region based on the metadata, driver/runtime 19 may cause JIT compiler 18
may recompiie kernel 20 using various optimizations, such as loop unrolling, code
reordering and/or vectorization. JIT compiler 18 may apply these various optinizations
of loop unrelling code reordering, and/or vectorization based on the generated metadata.
(8648} In accordance with the techniques of this disclosure, a compiling processor, ¢.2.
CPL 16 may be configured to generate, using at feast one of a group consisting of JIT
compiler 18 and driver/rumtime 19 executing on a compiling processor, arguments 26
for executing code {e.g., binary code or object code) of a compiled kernel 20, The at
feast one of the group consisting of JT conpiler 18 and driver/runtime 19 may be
further configired to determine whether a first memory reference to a first memory

region of the kernel arguments and a second memory referenee to a second memory
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region of the kernel argoments refer to a same memory region. Responsive to
determining, by the at least one of the group consisting of JIT compiler 18 and
driver/rantime 19, that first and sccond reemoery references of the kernel do not refer to
the same memory region, CPU 16 may be further configared to: cause, with the at least
one of the group consisting of JIT compiler 18 and driver/runtime 19 cxecuting on the
CPL 16, the at east one of the group consisting of JIT compiler 18 and driver/runtime
19 to recompile kemel 20 based on the metadata, and instruct, by the at least one of the
group consisting of HT compiler 18 and driver/runtime 19 executing on the CPU 16, a
target processor, €.g. GPU 12, to execuie the recompiled kernel 20,

16041} GPU 12 may be specialized hardware that allows for massively paraliel
processing, which is well-suited well for processing graphics data, In this way, CPU 16
offloads graphics processing that is betier handled by GPU 12, CPU 16 may
compunicate with GPU 12 in accordance with a particular application processing
mterface (API) or heterogeneous computing framework, Examples of such APls
include the DirectX ® APY by Microsoft ® and OpenGL ® by the Khronos group;
examples of heterogeneous computing frameworks include DirectCompuic by
Microsoft, OpenCL™ by the Khronos group, However, aspects of this disclosure are
not limited to the APIs and trameworks described above, and may be extended to other
types of APIs.

(8042} Examples of CPU 16 and GPU 17 include, bui are not Himited to, a digital signal
processor {D8P), general purpose microprocessor, application specific integrated circuit
{ASIC), field programmable logic array (FPGA), or other equivalent integrated or
discrete logic circuitry. In some examples, GPU 12 may be specialized hardware that
ncludes mtegrated and/or discrete fogic circuitry that provides GPU 12 with massive
parallel processing capabilitics suitable for graphics processing. In some instances,
GPU 12 may also include general purpose processing, and may be referred to as a
general purpose GPU (GPGPU). The techniques described in this disclosure are
applicable to exanples where GPU 12 is a GPGPUL

68043} System memory {4 may comprise one or more computer-readable storage
media. Examples of system memory 14 include, but are not Hmited to, a random access
memory (RAM), a read only memory (ROM), an clectrically erasable programnmable

read-only memory (EEPROM), flash memory, or any other medium that can be used to

10
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carry or store desired program code in the form of instructions and/or data structures
and that can be accessed by a computer or a processor,

16044} In some aspects, systemn memory 14 may include instructions that cause CPU 16
and/or GPU 12 to perform the functions aseribed to CPU 16 and GPY 12 in this
disclosure. Accordingly, systern memory 14 may be a computer-readabic storage
medium comprising jnstructions that cause one or mwore processars, e.g., CPU 16 and
GPU 12, to perform varipus functions.

[8845] System memory 14 may, in some examples, be considered as a non-transitory
storage medinvm. The term “non-transitory” may indicate that the siorage medium is not
embodied in a carrier wave or a  examples, a non-transitory storage medium may store
data that can, over time, change {¢.g., in RAM}.

(8046} Using 1T compiler I8 and driver/runtime 19, CPU 16 may compile source code
into native code (e.g., commands and data) or bytecode for GPGPU applications.
Example GPGPU data and commands include comomands and scene data foraray
tracing application, a physics simulation, or data for any other type of GPGPU kernel.
GPGPU applications, ¢.g. kernel 2, may also be compiled using a graphics AP, such
as DhrectX, or OpenGlL, or using & more general purpose comapute APL such as Open
Compute Language (OpenCL), or OpenCompute, or DirectCompute. CPU 16 may
transmit the data for the kernel 20 t¢ a command buffer for processing. In various
examples, the command buffer may be part of system memory 14, or part of GPU 12,
In some examples, CPU 16 may transmit the commands and data of kernel 20 for GPU
12 to process via a special purpose bus, such as a PCI-Express bus or ancther general
purpose serial or paralicl bus.

18047} To perform the operations of kernel 20 stored in the command buffer, GPU 12
may implement a processing pipeline. The processing pipeline includes performing
functions as defined by software or firmware executing on GPU 12 and performing
functions by fixed-function units that arc hardwired to perform very specific functions.
It may be possible to bypass the fixed-function units for execution of kemnel 20 or the
exccution of kernel 20 may use the fixed-function units.

18648} Kernel 20 may execute on one of more processing clements (also referred to as
“shader cores” or “PES™ of GPU 12, Shader cores 22 provide users with functional
flexibility because a user can program the shaders to execute desired tasks in any

conceivable manner, as with any other processor. The fixed-function euits, however,

11
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are hardwired for the manoer in which the fixed-function units perform tasks.
Accordingly, the fixed-function units may not provide much functional flexibility. The
techniques of this disclosure are directed toward execution of a kemnel, such as kernel
20, on GPU shader cores 22.

(8649} Once CPU 16 transmits the data and/or commands associated with rendering a
graphical scene or executing a keroel to the command buffer, GPU 12 begins execution
of the commands through the pipeline of GPU 12, Scheduler 24 of GPU 12 creates
threads, which perform the basic unit of work associated with the kernel. Scheduler 24
assigos the threads to a particular processing element of shader cores 22.

160561 FIG. 2 1s a conceptual diagram illustrating a plurality of processing clements of
one or more shader cores of a processor that may execute a kernel in accordance with
the techoiques of this disclosure. FIG. 2, illustrates part of GPU 12 or CPU 16. GPU
12 mcludes a phlurality of processing clements 424—42N (PEs 42), which may exccute a
portion of a kernel, e.g. kernel 20, In some examples, the portion of kemel 20 that may
exccute on PEs 42 may be referred to as a “warp” or a “work unit.” PEs 42 may be a
part of one or more of shader cores 22 (FIG. 1). A warp or a work unif, may comprise a
group of threads, also referred to as “fibers,” which GPU scheduler 24 may assignto a
plurality of processing clements, e.g. PEs 42, for execution. Each PE of FIG. 2 may
comprise a single nstruction muiltiple data (SIMD) unit, capable of executing a single
instruction, such as a vector instruction, on multipie data values at a particular ime
{e.g., at a same time for parallel execution). PHs 42 may also support execution of a
single instruction on a single data vakie, such as a single operation on a single floating
point value.

18651} FIG. 2 also includes instructions 44 that a scheduler of GPU 12 assigns PEs 42
for execution. In some examples, instructions 44 may be stored in a command buffer.
Instructions 44 may include a set of instructions of 8 kernel that each PE is configured
to execule. Program counter (PC) 50 indicates the current instruction that one or more
of PHs 42 arc to execute. After an instruction finishes cxecuting on PEs 42, the value of
PC 50 may be incremented to the address of the next instruction of kernel 20. FIG. 2
also includes registers 46, Registers 46A-46N (registers 46} may be general purpose
registers capable of holding multiple data values or a single value. Registers 46 may be
“banked,” that is, may load and store data for particular PE. As an example, register

46 A may be limited to storing data for PE 42A, and may not load or store data for other
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PEs. Each of registers 46 may supply data to and/or from one of PEs 42, which PEs 42
may then process.

18052}) PEs 42, instructions 44, registers 46, cache 48, and PC 50 may comprise a core
or part of shader cores 22 of GPU 12, In various examples, warp 40 may comprise part
of a shader, such as a geometry shader, pixel shader, and/or a vertex shader, which may
be part of a graphics pipeline of GPU 12 or comprise part of a kernel such as kernel 20.
In some examples, GPU 12 may feed the results generated by a warp into another stage
of the pipeline for additional processing.

18653] FIG. 2 also includes cache 48, Cache 48 is a small memory that stores
frequently accessed instructions and data for fast retrieval and storage during exccution.
Although illustrated as a single cache, cache 48 may represent multiple cache levels
and/or separate caches. As described above, during exccution of kernel 20, GPU 12
retrieves one of instructions 44 located at the address indicated by the value of PC 50
GPU 12 then causes PEs 42 to execute the instruction stored at the address of PC 50,
which may be a register in some examples.

18054} Rather than fetch the instroction at the address of PC 50 from system memory,
which would be needlessly stow, GPU 12 checks cache 48 to determine if cache 48
currently inchides the next instruction 1o be executed. The portion of cache 48 that
stores instructions is referred to as the instruction cache (“I-cache™). If the next
imstruction to be executed is stored in cache 4%, referred to as a “cache hit,” GPU 12
loads and executes the cached instruction. 1f the next instruction to be executed is not
stored in cache 48, referred to as a “cache miss,” GPU 12 loads the next instruction for
exccution from some sfower memory, for example from system moemory 14,

16055) During execution of an instruction that requires a data value {¢.g., an operand)
that is stored at a memory address (e.g., add, multiply, load, store, ete.), GPU 12 first
determines whether the operand is stored within a register, e.g. one of registers 46. If
the requested data value is not stored in registers 46, then GPU 12 attempts to access the
data value from the portion of cache 4% that holds data values, referred 1o as the data
cache (“d-cache™). If the data value is stored within cache 48, GPU 12 lpads the
requested data value from cache 48. Otherwise, GPU 12 must load the requested data
vatue from a slower memory, ¢.g. system memory 14, Similarly, if an instruction
causes PEs 42 1o store or modify a data valae back into memory, cache 48 may store

that valoe to cache 48 so that if it written or read from again, the data vahie quickly
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retrieved or overwritten from or to cache 48 i the event that the data value 1s not stored
in one of registers 46,

16856) GPU 12 transfers data to and from cache 48 in fixed size blocks, referred to as
cache “hnes.” Cache 48 may have the capacity to store hundreds or thousands of
different lines. Each line is associated with a particular memory address, and may store
owltiple bytes of data. For example, cach line of cache 48 may store 64 bytes of data,
as one example. The nomber of bytes stored in each line is referred to as the cache
“evidth.” In an example where cache 48 has lines that can store 64 bytes of data, the
cache width of cache 48 is 64 bytes. The cache width may impact the performance of
code reordering optimization techuiques, as will be discussed in greater detail below.
18657} During a load operation that retrieves data from cache 48, GPU 12 may load the
retrigved cache data into one or more of registers 46, or other registers not pictured.
During execution of an jnstruction, PEs 42 may read one or more data values from
vegisters 46, PEs 42 may perform one ot more operations on the data valaes, and store
new values back to registers 46, PEs 42 may execute flow control instructions, such as
branches, jumps, gotos, etc. Because there is a single PC 50 bowever, PEs 42 may only
exccute one of instructions 44 indicated by PC 50 at one particular at a given time.
188588} Processors, such as GPU 12 may have extensive amount of vector registers and
vector instroctions. As such, a compiler, such as JIT compiler 18, which can compile
applications using optimizations, such as vectorization, may increase the throughput or
exccution performance of a processor supporting vector instructions or which has a
SIMD architecture, such as GPU 12

186859] More particularly, GPU 12 may inchude hundreds or thousands of shader cores
similar to those illustrated in FIG. 2. Each shader core may be capable of executing
vector instructions.  Executing the vector mstructions, which have multiple operands,
may greatly improve performance relative to un-optimized code, which contains scalar
instructions rather than vector instructions. Morcover, execution performance increases
may be greater on an architecture with farger mumbers of SIMD cores capable of
exccuting veclor instractions, as more general purpose processors may have a limited
number of registers and/or cores capable of executing vector instructions.

160668] FIG. 3A is a conceptual diagram illustrating kernel code that includes code that,

when executed, may cause aliasing n accordance with the techniques of this disclosure.

14



WO 2015/153143 PCT/US2015/021585

The example of FIG. 3A mchades kernel code 80, Kernel code 83 inchudes lines 82, 84,
86, and 88,

18061} Line 82 ot kernel code 80 is a compute output function. The compute output
function of line 82 is the function that the target processor {e.g., GPU 12} invokes when
the kernel begins exccution. It is roughly equivalent to the “int main()” function in the
C programming language in that the compute_output function is a program cutry point
that driver/runtime 19 uses to begin execution of kernel 20. 1f the target process or is
CPU 16, the C runtime library may comprise the runtime component of driver/nntime
19, W GPU 12 is the target processor, the driver component of driver/runtime 19 may
comprise the runtime.  The compute_ouput function includes four nput arguments: (1)
mputimage, (2) global_cdf, (3) outputimage, and (4) local cdf. mputlmage is a pointer
to a buffer of input argoments. outputimage is a pointer to a buffer that when the kernel
finishes executing, will include output arguments. The argoment global cdf and

local cdf are pointers to arrays of values. Line 84 may represent multiple statements
that, when executed, cause GPU 12 to allocate and initialize variables, As an example,
exccuting line ¥4 may cause PEs 42 (o inttialize and the load the values of
inputimagefi], etc.

16062} Line R4 is a loop imtialization statement. The loop nitialization statement
indicates that the loop iterates for a fixed number of iterations. The loop begins
itorating at a starting index, {, which is equal {0 the variable “start_offset,” and
merements § by one when each iteration finishes executing. At the completion of cach
toop fteration, GPU 12 check to see if Boolean condition 1 <final_offset” is still true.
GPU 12 stops exccuting the loop when valuc of i is equal to or greater than the value
“final_offset”

186631 Withan each loop iteration, GPU 12 sets a value of outputimage at index ¢,

denoted as cutputimage[i] equal to a value of local cdf] inputimageii] | Local ¢dfis

an array, which in this example is indexed by the value of inputimage(i]. inputimage(i]
is, in turn indexed by the variable i, which GPU 12 incremenis with cach loop iteration.
[8864] As discussed above, outputhmage and inputimage are both memory references. It
is possible that the pointers to cutpuilmage and inputbmage may refer to the same region
in memory (i.e. outputimage and jnputimage alias, or alias partially). It is also possible
that outputimage and inputimage may refer to different regions or overlapping regions

in memory {Le. outputimage and inpotimage do pot alias). H HT compiler 18 is unable

15



WO 2015/153143 PCT/US2015/021585

to determine whether inputimage and cutputlmage do not alias (i.e. do not refer to the
exact same memory region), the compiler may not be able (o use certain compiler
optimizations, such as vectorization, code reordering, and/or loop unrolling.

[8065] FIG. 3B is a conceptual diagram ilhustrating an example of aliasing that a
driver/runtime configured in accordance with the technigues of this disclosure may be
able to detect. However, a compiler may not be able 1o optimize for the aliasing. The
example of FIG. 3B illustrates a buffer 160 that GPU 12 may store m memory. Forthe
purpose of examples, the pointers from FIG. 3B, outputlmage and inpuibmage, may
reference part of buffer 100, In the example of FIG. 3B, buffer 100 begins at memory
address 0x800 (hexadecimal).

16066} In this example, inputimage and outputlmage both refer to a single eniry {e.g., a
singic object, variable, etc.) stored within buffer 100, That is, in this example,
inputimage and outpuilmage alias to the exact same memory region, which is indicated
with cross hashing., Driver/runtime 19 may be able to detect that inputimage and
cuiputimage refer to the same memory region. Because inputhmage and outputimage
refer to a same memory region, JIT compiler 18 is not able to perform optimizations,
such as loop unrolling snd/or vectorization.

16067} Responsive to detecting that two memory references refer to a same memory
region as illostrated in FIG. 3B, driver/runtime 19 may not gencrate any metadata.
Additionally, JIT compiler 18 may not recompile kernel 20, as JIT compiler may do for
the cases Hustrated in FIGS. 3C-3D. Therefore, T compiler 18 may not perform any
of the code optimizations as also Hlustrated i FIGS. 3C-3D.

18668} FIG. 3C is a concepiual diagram illustrating an example of non-overlapping
memory references, which a driver/runtime configured in accordance with the
techniques of this disclosure may be able to detect. FIG. 3C illustrates buffer 120,
which is the same buffer as ilhustrated in FIG. 3B, Buffer 120 similarly begins at the
same memory address, 0x800, as bufter 100 of FIG 3B.

(8069} In FIG. 3C, imputlmage and outputlmage are memory references that refer to
two different memory regions of buffer 120. The memory region to which inputimage
refers is indicated by horizontal hashing. The memory region to which outputimage
refers is indicated by vertical hashing. Prior to execution of kernel code 80, and more

particularly, lines 86 and 88, 1T compiler 18 may determine, no matter the value of 1,
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that inputimage[i} and outputhmage{i] will not refer to the same momory region during
samg¢ iteration of the loop.

16476] During runtime, driver/runtime 19 may be able to deternine that inputimageli]
and outputimage[i] do not refer to a same memory region based on the mitial values of
inputimage(i] and culputimageli], and based on the fact that the memory addresses of
inputimageli] and cutputimage[i] do not converge over the course of iterating through
toop 86, In other words, the referenced index of mputtmage and cutputimage is always
referenced by the same index value, 7, which GPU 12 monotonically increases.

18471} Respounsive to determining that memory references inputlmage and outputimage
do not refer to the same memory region, driver may geonerate metadata that indicates a
relationship between inputlmage and outputhmnage. The metadata may indicate that the
memory regions associated with inputimage and cutputimage do not overlap, and are
separate by two entrics, as an exanople. The metadata may also indicate the size of the
regions associated with inputimage and ouptutimage, as well as the nomber of bytes
between inputhmage and outputhmage. After generating the metadata, 1T compiler 18
may receive the metadata from driver/rontime 19, and recompile kernel 20 based oun the
metadata by applying various optiraizations, as described in greater detail below.
16672} FIG. 3D 1s 2 conceptual diagram illustrating overlapping memory references
that a driver/runtime configored in accordance with the techniques of this disclosure
may detect. FIG. 3D includes buffer 134, which may be an argument buffer, e.g.
arguments 26 (FIG. 1), Buffer 130 begins at address 0x800 in this example. Buffer 130
meclades multiple data values, which are illustrated as separate rectangles within the
encompassing rectangle of buffer 130,

1647731 As in provious examples, mputimage and outputimage are memory references,
which refer to regions of buffer 136, In this example, the regions that mputhmage and
cutputimage reference overlap, but not entirely. The memory region that is associated
only with inputimage is indicated with borizontaily-hashed rectangies. The memory
region associated only with outputimage is indicated with vertically hashed rectangles.
The overlapping memory region referenced by both toputlmage and cutputimage is
indicated with cross-hatched rectangles.

160774} At run-time, driver determines whether the inputhmage and outputimage
memory references refer to a same memory region. In this exarmple, inputimage and

cutputimage overlap, but do not refer to a same memory region. Driver/rontime 19
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detects that inputImage and outputhnage overlap, but are not identical, and generates
metadata for JIT compiler 18, The metadata may indicate information about the regions
associated with inputimage, and cutputimage, such as the starting and ending address of
cach region. The metadata may further inclade information about the overlap region,
such as the size of the overlap region, and the starting and/or ending addresses of the
overlap region. JIT compiler 18 receives the metadata generated by driver/runtime 19,
and may recompile kernel 20 by applying optinuzation techniques in accordance with
this disclosare.

18475] FIG. 4A is a conceptual diagram illustrating loop unrolling in accordance with
the techniques of this disclosure. FIG. 4A jncludes code section 140, which geoerally
corresponds to kernel code 80 iHhustrated in FIG. 3A. In the example of FIG. 4A,
driver/runtime 19 and/or JIT compiler 18 may bave determined that the memory
references mputimage and outpuilmage do not refer to the same memory region, as
ustrated in FIGS. 3C and 3D, Because mputimage and outputimage do not refer to
the same memory region, JIT compiler 18 has performed loop surolling on kernel code
80, Lines 142150 illustrate the result of unrolling one iteration into four iterations.
164776] Whereas lines 86 and 88 of FIG. 3A tllustrate performing a single iteration and
merements the variable ¢ by one after each Heration, the unvolled loop of Hine 142
imcrements 7 by four after each iteration. Line 144 assigns the valoe of

tocal cdflinputimageli}] to outputimage

i. Linc 146 assigns the valug of

tocal cdflinputimageli+1]} to outputimage[i+1]. Line 148 assigns the value of

focal cedffinputimage[3+2]1 to outputlmage[i+2], and line 150 assigns the value of
focal cdflinputimageli+3]} to outputimage{i+3]. The result of lines 144150 is to
assign the cutput of local cdfl mputimageli+x ] to a corresponding value of
outputimage[i+x], where x [0...3]. Thus, when executed, the unrolled loop code section
ithustrated in Hnes 142150 has the same effect as four iterations of Hnes 86-83 of FIG.
3A,

[8077] The loop vorelling of code section 140 may have scveral benefits relative to
loop code section 80 of FIG 3A. A first advantage is that by ordering each of the
assigments one after the other, JIT compiler 18 and/or driver/rumtime 19 may be able
to achieve better cache performance on the target processor, ¢.g. GPU 12 relative to the

unordered code section.
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{88781 For example, after executing line 144, GPU 12 may have stored some or all of
the data of the memory regions associated with inputlmage and outputimage in a cache,

. cache 48, 1f data needed to perform jnstructions is not stored in registers, ¢.g.

<.

6]

registers 46, the data may need to be accessed from a cache, ¢.g. cache 48. More
particularly, GPU 12 may store entries of inputimage and cutpuilmage, .
inputlmagefit+1], [i+2], etc., as well as outputimage [i+1], [i+2], etc in cache 48, If
entries of inputimage and outputlmage are stored in a cache of GPU 12, GPU 12 may be
able to quickly access the data of the referenced indices of inputimage and outputimage
of lines 144150 from a cache as opposed o accessing the referenced indices from a
slower memory.

186791 Additionally, when code section 140 15 unrolled, values of inputimage[i, 1+1,
i+2...], and outputlmage(i, i+1, cic.] may be stored in a single cache line. In contrast
when got unrolled, the values of inputimage and outputimageli] may be stored
different cache hines. Retrieving all the values of inputimage from a single cache line in
a single cache read, which may result from loop unroiling may be faster relative to
performing multipie cache reads, which may result when executing unrolled code.
16086] Accessing data from a cache of GPY 12 as opposed 1o accessing data from a
slower system memory, ¢.g. system memory 14, may increase the performance of
executing the loop of bnes 142150 relative to lines 86-88. In some examples, GPU 12
may also be able to exceute lines 144-150 in paralicl, for cxample on a processor that
supports superscalar execution or a SIMD processor assuning there are no
dependencies between lines 144150, in which a vahie of inputimage or outputimage
depends on a value previously calculated in kernel 20,

16081} In addition to improving cache performance, loop uonreliing as Ulustrated mn code
section 140 of FIG. 4A also reduces the number of times that GPU 12 evahuates the
Boolean condition associated with the loop, as well as the number of jumps that GPU 12
executes after finishing cach loop iteration. As compared to code section 80 of FIG.
3A, the code of lines 142150 executes four lines per iteration before evaluating
whether the Boolean condition, *1 < final offset” of line 142 is true. Code section 80
by contrast cxecutes only one line before evaluating whether the Boolean condition of
fine 82 is true. Thus, the number of times that GPU 12 evaluates the Boolean condition

of line 142 15 reduced relative to the code section 8(.
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(80821 After GPU 12 completes an iteration of the loop of lines 142150, and if GPU
12 determines that the Boolean condition, “1 < final offset,” is still true, GPU 12 jumps
from line 150 back to line 144, ITn code section 140, GPU 12 performs the jump afier
executing four lines. When executing code section 80, GPU 12 jumps after each
iteration. Thus, relative to code section 80, the unrolled code of code section 140
reduces both the evaluation of the Boolean condition and the number of jumps that GPU
12 performs, which may improve the execution performance of executing code section
140.

18083] FIG. 48 15 a concepiual diagram illustrating code reordering in accordance with
the techniques of this disclosure. FiG. 48 includes code section 160, which further
inchudes lings 162, 164, 166, 168, 170, and 172. As discussed above, driver/runtime 19
and/or JiT compiler 18 may determine whether references to memory alias to the same
region of memory. As discussed above with respect to FIG. 4A, JIT compiler 18 may
perform certain optimizations, such as the loop vnrolling iHustrated in FI1G. 4A,
responsive to receiving metadata from driver/nmtime 19 determining that there is no
memory aliasing in a particular code section.

16084} Another optimization that JIT compiler 18 and/or driver/compiler 19 may
perform responsive to determining that memory references in a particular code section
do not refer to the same memory region is code reordering, which FIG. 4B illustrates.
Code 160 may generally correspond to a reordered assembly language represcuntation of
the unrolled code of FIG. 48, HT compiler 18 and/or driver/runtime 19 may apply code
reordering to non-loop as well as loop code sections. In FIG. 4B, IIT compiler 18 has
reordered the loads and stores of FIG. 4A such that all of the loads and stores are
grouped together,

18683} Lines 162 and 164 are load instructions, which JIT compiler 1R and/or
driver/compiler 19 have grooped together. In FIG. 4A, a line, such as line 144 includes
multiple foad and store instructions. For example, to exccute line 144, JIT compiler 18
may gencrate three scparate instructions. The first instruction may be a load instruction,
which loads the value from the memory location to which inputimage[i] refers nto a
register, denoted as 10, The sccond mstruction may be a load instruction, which loads
the value of tocal_cdffinputimage(i}] and stores the loaded value ioto the same register,

(), thereby overwriting the previous value of 1. The final instruction inchuded in Ime
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144 may be a store instruction, which stores the valoe from 10 into the memory to which
cuiputimageli] refers.

18886} Lines 162172 illustrate reordered load and store instructions relative 1o the
mstroctions that comprise Hnes 144150, In line 162, the assembly code mstracts GPU
12 1o load (using a load mnstruction, “Idg”) a value from the memory region to which
inputimageli] refors into register 10, Stmilarly, line 164 causes GPU 12 to load the
value to which memory reference inputimage{i+1] refers into register ri. Subsequent
mstructions which may occuor after lines 162 and 164, but before line 166, and which are
not illustrated for the sake of brevity, may include additional load instructions that cause
GPU 12 to load data from momory regions te which inputimage refers into registers.
186871 In lines 166, 163, and other lines not illustrated for brevity, JIT compiler 18 has
grouped the foads from the buffer local cdftogether. Line 166 meludes g load
instruction that loads the contents of the local_cdf 10], i.c. the condents of memory from
the array local cdf at index v{}, and stores the contents of local ¢difr(] nto register 10,
thereby overwriting the contents of 10, Similarly, the instruction of hne 168 caose GPU
1Z to store the contents to which the memory reference local cdfrefers at the index
indicated by the value currently stored in register v futo register v, Thus, upon
execution the instruction of 168 causes GPU 12 to overwrite the previous value of rl.
Other instructions, which occur after line 168 and before line 170, and which are not
itfustrated for the sake of brevity, may similarly inclode instructions that, when
exccuted, cause GPU 12 1o load data from local cdffrx], where x is some integer.
[B088] As part of reordering the instructions of code section 140, TIT compiler 18 also
groups store imstructions together. As an example, of this, after reordering, JIT compiler
1% has grouped Hnes 170 and 172 together. Line 170 includes a store instruction that
stores the contents of 1 inte memory at location cutputimage{i]. Similarly, line 172,
when executed, causes GPU 12 to store the value of register ri into memory at the
location to which outpuilmage[i+i] references. Other instructions not illustrated for the
sake of brovity, when executed, may sinvilarly cause GPU 12 to store the value of a
register, e.g. register vx, where X 13 an integer, to memory at location outputimagefi+x].
16089] Reordering loads and stores may improve the performance of executing code
160 relative to code 80 of FIG. 3A. More particularly, reordering loads and stores may
improve performance in certain cases depending on the cache line width. For example,

code reordering may fmprove execution performance when coalescing a number of load
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mstructions together may improve performance on a system having a cache line width
that is a3 multiple of the size of the operand used in the scalar instruction.

16096] FIG. 4C 15 a concepiual diagram illusirating code vectorization in accordance
with the accordance with the techmiques of this disclosure. FIG. 4C inclades code
section 180, which further includes lines 182, 184, and 186. As discussed above, JIT
compiler 18 and/or compiler/driver 19 may perform certain optimizations, such as the
loop unrolling iHustrated in FIG. 44, responsive to determining that memory references
i the code section do not reference the same memory region. JIT compiler 18 and/or
compiler/driver 19 is configured to vectorize a loop code section based on metadata
from driver/runtime 19 that includes intormation relating to the memory references of
that code section.

(8691} Vectorization is a process in which a compiler (e.g., JIT compiler 18) and/or
driver/runtime 19 combines nuiltiple scalar jnstructions, each having a single operand,
mto a single vector mstruction having multiple operands. Vectorization is a form of
parallelization that improves execution performance by reducing the number of
instructions that 3 processor is required to exccute to complete a particular code section
as well as by raaking use of the inberent hardware capability to move data between
system memory 14 and GPU 12, In the example of code section 180 of FIG. 4C, JT
compiler 18 may reorder the loads and stores as illustrated in FIG, 4B. Once HT
compiler 18 has reordered the loads and stores, JIT compiler 18 may then vectorize
groups of similar instractions, as illustrated m FI1G. 4C.

(80821 In hine 182, JIT compiler 18 has combined mutiple load {1dg) instructions into a
single vectorized instruction. When excecuted, the vectorized instruction loads

inputimage at indices [11—[i+3] 1o registers r0—13. Similarly, in ine 184, JIT compiler
18 combines the multiple load instructions of lines 166, 16§, ete. to a single vectorized
load instruction that Joads the valaes of local cdffr(-13] into registers 10-¢3. Alsc, in
line 186, JIT compiler 18 has combined the stores (“stg” instroctions) of lines 170172
into a single vectorized store fnstruction that stores the valaes of registers r0—3 into
cuiputimage[i]-outputimagefi+3].

16493} To reorder or vectorize instructions as illustrated in FIGS. 4B and 4C, JIT
compiler 18 and/or driver/runtime 19 must respect any dependences. A dependence is a
relationship that produces exccution order constraing between statement or instructions.

As an example, there is a dependence for a statement 52 on another statement S1 i S1
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must be executed before 32, In order to determine whether dependences prohibit
vectorization and/or code reordering, JIT compiler 18 and/or driver/runtime 19 may
perform dependence analysis before reordering or vectorizing code in accordance with
the techniques of this disclosure based on the metadata obtained from driver/nmtime 19,
(8094} FIG. 5 is a flow diagram illustrating an example method for generating compiler
metadata to aid conpiler optimization tn accordance with the techuoiques of this
disclosure. It should generally be understood that the method of FIG. 6 may be
performed by at least one of a group consisting of T compiler 18 and driver/runtime
19 executing compiling processor, €.g., CPU 16, and g target processor, e.g. GPU 12, In
some examples the target processor and the compiling processor may be the same.
Additionally, there may be more than one compiling processor and/or target processor.
(8095} In the method of FIG. 5, a compiling processor, ¢.g. CPU 16 uses driver/runtime
19 and/or JIT comptier 18 to gencrate arguments (e.g., kernel arguments 26) for
exccuting binary code or bytecode of compiled kernel 20 (200) Driver/mumtime 19
and/or JIT compiler 18 further determines whether a first memory reference to a first
memory region of kernel arguments 26 and a second memory reference to a second
memory region of kernel arguments 26 refer to a same memory region of komnel
arguments 26 (202} or other examples of possible relationships as Hlustrated i FI1G. 31,
3C, and 3D .

(8096} CPU 16 uses driver/runtime 19 and/or JIT compiler 18 to gencrate metadata
associated with the first memory reference and the second memory reference (204),

The metadata indicates a relationship between the first memory region and the second
memory region, such as an overlap region between the first memory region and the
second memory region. The metadata may further include a mumber of bytes of overlap
between the first and second memory regions. In some examples, the metadata may
inchide a starting address of the memory overlap and an ending address of the memory
overlap region. it should be undersiood that the examples described with respect to
FIG. 5 refer to 2 single pair of memaory references for the purposes of example only,
Driver/runtime 19 and/or T compiler 18 may derive metadata for all pairs of memory
references of kernel arguments 26

180971 Respousive to determining, using driver/runtime 19, that the first and second
memory references do not refer to the same memory region of kernel arguments 26, JIT

compiler 18 executing on CPU 16 may cause CPU 16 to recompile kernel 20 using HT
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compiler 18 based on the metadata (206). Finally, the target processor, e.g. GPU 12,
may exccule the recompiled kernel (210). In some examples, driver/rontime 19 and/or
HT compiler 18 may determing that the first and second memory refercoces do not refer
to the same memory region based on the metadata, and may recompile kernel 20 with
optimizations using this information.

(8098} In some additional examples, 1o determine whether the first memory reference
and the second memory reference of kernel 20 refer to the same memory region, CPU
16 may use driver/rantime 19 to determine a loop code section of kernel 20 that includes
the first and second memory references. And, to recompile the kernel, JIT compiler 18
may unroll the loop code section based on the metadata generated by driver/tuntime 19
and/or 1T compiler 18, To recompile the kernel, JIT compiler 18 may also reorder at
least one of a load operation and a store operation and a store operation of the loop code
section or vectorize a plurality of scalar instructions of the loop code section into at least
one vector instruction based on the generated metadata. In various examples, JIT
compiler 18 may recompile kernel 20 using a heterogeneous framework, such as
Microsoft DirectCompute and/or OpenCL by the Khronoes Group.

16099] The techniques described in this disclosure may be imeplomented, at least in part,
in hardware, software, firmware or any combination thereof. For example, various
aspects of the described techniques may be implemented within one or more processors,
inchiding one or more microprocessors, digital signal processors {DSPs), application
specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or any
other equivalent integrated or discrete logie circuitry, as well as any combinations of
such components. The torm “processor” or “processing circuitry” may generally refer
to any of the foregoing logic cirenitry, alone or in comabination with other logic circuitry,
or any other equivalent circuitry such as discrete hardware that performs processing.
{8168} Such hardware, software, and firmware may be implemented within the same
device or within separate devices to support the various operations and functions
described in this disclosure. In addition, any of the described units, modules or
components may be implemented together or separately as discrete but interoperable
fogic devices. Depiction of different features as modules or units is intended to
highlight different functional aspects and does not necessarily imply that such modules
or units must be realized by separate hardware or software components. Rather,

functionality asscciated with ong or more modules or units may be performed by
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separate hardware, firmware, and/or software components, or integrated within common
o1 separaie hardware or software components.

18161} The techniques described in this disclosure may also be stored, embodied or
encoded in a computer-readable mediam, such as a computer-readable storage mediom
that stores instructions. Instructions embedded or encoded in a computer-readable
medium may cause one or more processors 1o perform the fechuigues described herein,
e.g., when the ifustructions are executed by the one or more processors. Computer
readable storage media may inchude random access memory (RAM), read only memory
{ROM), programmable read only memory (PROM), crasable programmable read only
memory (EPROM)}, electronically erasable programumable read only memory
(EEPROM), flash memory, 8 hard disk, a CD-ROM, a floppy disk, a cassette, magnetic
media, optical media, or other computer readable storage media that is tangible.

(6182} Computer-readable media may include computer-readable storage media, which
corresponds to a tangible storage medium, such as those Hsted above. Computer-
readable media may also comprise communication media including any median that
facilitates iransfer of a computer program from one place to snother, e.g., according to 2
comvmunication protocol. In this manner, the phrase “computer-readable roedia”
generally may correspond to (1) tangible computer-readable storage media which is
non-transitory, and (23 a non-tangible computer-readable communication mediom sach
as a transitory signal or catricr wave.

{8183} Various aspects and examples have been described. However, modifications can
be made to the structure or techniques of this disclosure without departing from the

scope of the following claims.
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WHAT IS CLAIMED IS

1. A raethod of comapiling keroels for exccution comprising:

generating, by at least one of the group consisting of a compiler and a rontime
executing on a compiling processor, arguments for executing binary code of a compiled
kernel;

determining, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, whether a first memory reference to a
first memory region of the kernel arguments and a sccond memory reference to a second
memory region of the kernel arguments refer to a same memory region;

generating, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, metadata associated with the first
memory reference and the second memory reference based on the determination,
wherein the metadata indicates a relationship between the first memory region and the
second memory region; and

responsive to determining, by the at least one of the group consisting of the
compiler and the runtimee executing on the comapiling processor, that first and second
memory references of the kernel do not refer to the same memory region:

causing, by the at least one of the group consisting of the compiler and
the runtime executing on the compiling processor, a compiler to recompile the
kernel based on the metadata; and
instrocting, by the at least one of the group consisting of the compiler
and the rnuntime executing on the compiling processor, a target processor o

exceute the recompiled kernel.
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2. The method of claim 1,

wherein determining whether the first memory reference and the second memory
references of the kernel refer te the same memory region further cornprises:

determining, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, a loop code section of the kernel that
includes the first and second memory references,

wherein recompiling the kernel comprises:

unrolling, by the at least one of the group consisting of the compiler and
the runtime cxecuting on the compiling processor, the loop code section based

on the generated metadata, and compiling the varolled loop code section.

3. The method of claim 1,

wherein determining whether the first memory reference and the second memory
reference of the kernel refer to the same memory region further comprises:

determining, by the at least one of the group consisting of the compiler and the
runtime exccuting on the compiling processor, a code section of the kernel that inchudes
the first and second memory references,
wherein recompiling the kernel further comprises:

responsive to determining that the first and second memory references of
the code section do not refer to the same memory region, reordering, by the at
least one of the group consisting of the compiler and the nimtime executing on
the compiling processor, at least one of a load operation and a store operation of

the code section based on the generated metadata,
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4, The method of claim 1,

wherein determining whether the first memory reference and the second memory
reference of the kernel refer to the same memory region further comprises:

determining, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, a code section of the kernel that includes
the first and second memory references,

wherein recompiling the kernel firther comprises:

responsive to determining that the first and second memory references of

the code section do not refer to the same memory region, vectorizing, by the at

icast ene of the group consisting of the corapiler and the rantime exccuting on

the compiling processor, a plurality of scalar instructions of the code section into

at least one vector instruction based on the generated metadata.

5. The method of claim 1, wherein the metadata further indicates an overlap region

between the first memory region and the second memory region.

6. The method of claim 5, wherein the metadata includes a rumber of bytes of

overlap between the first memory region and the second memory region.

7. The method of claim 5, wherein the metadats further comprises at least one of a
starting address of the memory overlap region and an ending address of the memory

overlap region.

8. The method of claim |, wherein the compiling processer comprises a ceniral
processing unit {CPL) and the target processor comprises a graphics processing unit

{(GPU).
9. The method of claim 1, wherein the compiler recompiles the kemel using
heterogencous computing framework comprising at least one of Microsoft

ErirectCompute, and OpenCL.

10. The method of claim |, wherein the kernel arguments coroprise a buffer area of

memory allocated for the arguments.
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11, A device comprising:

a memory; and
a compiling processor configured to:

generate, by at least one of a group consisting of a compiler and a
runtinie executing on the compiling processor, arguments for executing binary
code of a compiled kernel;

determine, by the at least one of the group consisting of the compiler and
the runtime executing on the compiling processor, whether a first memory
reference 1o a first memory region of the kernel arguments and a second memory
reference to a second memory region of the kernel arguments refer to a same
MSoTy 1egion;

generate, by the at least one of the group counsisting of the compiler and
the runtime executing on the compiling processor, metadata associated with the
first memory reference and the second memory reference based on the
determination, wherein the metadata indicates a relationship between the first
memory region and the sccond memory region; and

responsive to determining, by the at least one of the group consisting of
the compiler and the runtime exccoting on the compiling processor, that first and
second memory references of the kerael do not refer {o the same memory region:

cause, by the at least one of the group consisting of the compiler
and the runtime executing on the compiling processor, a compiler to
recompilc the kernel based on the metadata; and
instruct, by the at least one of the group consisting of the
compiler and the runtime executing on the compiling processor, & target

processor to execute the recompiled kernel.
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12. The device of ¢laim 11,

wherein to determine whether the first memory reference and the sccond
memory references of the kernel refer to the same memory region, the compiling
processor is further configured to:

determing, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, a loop code section of the kernel that
mcludes the first and second memory references,

wherein to recompile the kernel, the compiling processor is further configured

to:
unroll, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, the loop code section based on
the generated metadata, and compile the unwolled loop code section.
13. The device of ¢laim 11,

wherein to determine whether the first memory reference and the second
memory reference of the kernel refer (o the same momory region, the compiling
processor is further configured 1o

determine, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, a code section of the kernel that inchides
the first and second memory references,

wherein to recompile the kernel, the compiling processor is further configured
to:

responsive to determining that the first and second memory references of

the code section do not refer to the same muemory region, reorder, by the at least

one of the group consisting of the compiler and the runtime exceuting on the

compiling processor, at least one of a load operation and a store operation of the

code section based on the generated metadata.
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14. The device of ¢laim 11,

wherein to determine whether the first memory reference and the sccond
memory reference of the kernel refer to the same memory region, the compiling
processor is further configured to:

determing, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, a code section of the kernel that includes
the first and second memory references,

wherein to recompile the kernel, the compiling processor is further configured
to:

responsive to determining that the first and second memory references of

the code section do not refer to the same memory region, vectorize, by the at

lcast one of the group consisting of the compiler and the runtime executing on

the compiling processor, a plurality of scalar instructions of the code section into

at least one vector instruction based on the generated metadata.

15. The device of claim 11, wherein the metadata further indicates an overlap region

between the first memory region and the second memory region

16. The device of claim 15, wherein the metadata mehuides a number of bytes of

overlap between the first memory region and the second memory region.

17. The device of claim 15, wherein the motadata further comprises at least one of 2
starting address of the memory overlap region and an ending address of the memory

overlap region.

1R. The device of claim 11, wherein the compiling processor comprises a central
processing unit ({CPU) and the target processor compriscs a graphics processing unit

(GPU).
19. The device of claim 11, wherein the compiler recompiles the kernel osing a

heterogeneous computing framework comprising at least one of Microsoft

DirectCompute, and OpenCL.
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24 The device of claim 11, wherein the kernel arguments comprise a buffer area of

memory allocated for the arguments.

21 A non-transitory computer-readable storage mediom that includes mnstructions
thereon that, when oxecuied, cause a compiling processor to:

generate, the at [east one of a group consisting of a compiler and a runtime
exceuting on the compiling processor, arguments for executing binary code of a
compiled kemel;

determine, by the at least one of the group counsisting of the compiler and the
runtimae executing on the conpiling processor, whether a first roemory reference to a
first memory region of the kemel arguments and a second memory reference to a second
memory region of the kernel arguments refer to a same memory region;

generate, by the at Jeast one of the group counsisting of the compiler and the
runtime executing on the compiling processor, metadata associated with the first
memory reference and the second memory reference based on the determination,
whercin the metadata indicates a relationship between the first memory region and the
second memory region; and

responsive to determining, by the at least one of the group consisting of the
compiler and the runtime executing on the compiling processor, that first and second
memory references of the kernel de not refer to the same memory region:

cause, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, a compiler to recompile the
kernel based on the metadata; and
mstruct, by the at least one of the group consisting of the compiler and
the runtime executing on the compiling processor, a target processor to execute

the recompiled kernel.
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22. The non-transttory computer-readable storage medium of elaim 21,

wherein the instructions that cause the compiling processor to determine whether
the first memory reference and the second memory references of the kernel refer to the
same memery region, further comprise insiructions that, when executed, cause the
compiling processor to:

determine, by the at least oune of the group consisting of the conpiler and the
runtime executing on the compiling processor, a loop code section of the kernel that
ncludes the first and second memory references,

wherein the instructions that cause the compiling processor to recompile the

kernel further comprise mstructions that, when executed, cause the compiling processor

o
unroll, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, the loop code section based on
the generated metadata, and compile the anrolled loop code section.
23. The non-transiiory computer-readabic storage medium of claim 21,

wherein the instructions that cause the compiling processor to determine whether
the first memory reference and the second memory reference of the kernel refer to the
same memery region further comprise instractions that, when executed, cause the
compiling processor to:

determine, by the at least one of the group consisting of the compiler and the
runtime exccuting on the compiling processor, 8 code section of the kernel that includes
the first and second memory references,

wherein the nstructions that cause the compiling processor to recompile the
kernel further comprise instractions that, when executed, cause the compiling processor
o

responsive to determining that the first and second memory references of

the code section do not refer to the same memory region, reorder, by the at feast

one of the group consisting of the compiler and the nimtime executing on the

compiling processor, at least one of a load operation and a store operation of the

code section based on the generated metadata,

33



WO 2015/153143 PCT/US2015/021585

24. The non-transttory computer-readable storage medium of elaim 21,

wherein the instructions that cause the compiling processor to determine whether
the first memory reference and the second memory refercnce of the kernel refer to the
same memery region further comprise instractions that, when executed, cause the
compiling processor to:

determine, by the at least one of the group consisting of the compiler and the
runtime executing on the compiling processor, a code section of the kernel that inchuades
the first and second moemory references,

wherein the instructions that cause the compiling processor to recompile the
kernel further comprise mstructions that, when executed, cause the compiling processor
1o

responsive to determining that the first and second memory references of

the code seetion do not refer to the same memaory region, vectorize, by the at

least one of the group consisting of the compiler and the runtime executing on

the compiling processor, a plurality of scalar instructions of the code section into

at least one vector insiruction based on the generated metadata.

25. The non-transitory computer-readable storage medium of claim 21, wherein the
metadata further indicates an overlap region between the first memory region and the

second memory region.

26. The non-transitory computer-readable storage medium of elaim 25, wherein the
metadata inciudes a number of bytes of overlap between the first memory region and the

second memory region,

27. The non-transitory computer-readable storage medium of claim 25, wherein the
metadata forther comprises at least one of a starting address of the memory overlap

region and an ending address of the memory overlap region.
28, The non-transtiory computer-readable storage medium of claim 21, wherein the

compiling processor comprises a central processing unit {CPU) and the target processor

comprises a graphies processing unit (GPU).
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29. The non-transitory computer-readable storage medium of elaim 21, wherein the
compiler recompiles the kemel using a heterogeneous computing framework comprising

at least one of Microsoft DircctCompute, and OpenClL.

30. The non-transitory computer-readable storage medium of claim 21, wherein the

kernel arguments coraprise a buffer arca of memory allocated for the arguments.
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80 ~
__kernel void compute output(__global uchar* inputImage,
__global uint* global cdf, 82

__global uchar* outputImage,
__local uint* local cdf) {
84
<Initializations> 86
for (int 1 = start offset; i < final offset; i ++) 88
outputImage[i] = local cdf] inputImage]i] ],/-
}

}

FIG. 3A

inputImage outputImage

0xB00~ \__ y 100

FIG. 3B

inputlmage  outputlnage

0x800~, \ 2

FIG. 3C
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FIG. 3D
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140\

142

for (int i = start offset; i < final offset; i +=4) {—_ 144

outputImage[i] = local cdf] inputImage[i] ]/
outputlmage[i+1] = local cdf] inputlmage]i+1] ]/-

outputlmage[i+2] = local cdf] inputlmage][i+2] |; 150
outputlmage[i+3] = local cdf] inputImage]i+3] ]/-

FIG. 4A

e 162
r0 <-ldg inputlmage[i]! 164
rl <-1dg 1nputIrnage[1+l]/_

/—166
r0< 1dl local_cdf[r0]{ 168
rl <-1dl local cdﬂrl]/—

e 170
outputlrnage[l] <-stg 10! 172
outputlmage[i+1] <-stg rl! a

FIG. 4B

r0.. r3 <-1dg 1nputImage[1],[_
r0.. 13 <-1dl local cdf[rO], 186
outputlmage[i] <-stg 10 .. 13, [—

FIG. 4C
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