wo 2007/067578 A1 |10 00 T 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 June 2007 (14.06.2007)

PO 0 R

(10) International Publication Number

WO 2007/067578 Al

(51) International Patent Classification:
GOG6F 3/048 (2006.01) GOG6F 17/00 (2006.01)

(21) International Application Number:
PCT/US2006/046464

(22) International Filing Date:
5 December 2006 (05.12.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/742,240
11/418,829

5 December 2005 (05.12.2005)
5 May 2006 (05.05.2006)

Us
Us

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: DENGLER, Patrick, M.; One Microsoft Way,
Redmond, Washington 98052-6399 (US). KRISHNAN,

(81)

Arvind, K.; One Microsoft Way, Redmond, Washington
98052-6399 (US). GACHIBOWLLI, Jagdish, Singh; One
Microsoft Way, Redmond, Washington 98052-6399 (US).
SANCHEZ, Lawrence, M.; One Microsoft Way, Red-
mond, Washington 98052-6399 (US). GACHIBOWLI,
Nabarun, Mondal; One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). GACHIBOWLI, Namendra,
Kumar; One Microsoft Way, Redmond, Washington
98052-6399 (US). DALFO, Richard, Roma; One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
GACHIBOWLLI, Sai, Shankar; One Microsoft Way, Red-
mond, Washington 98052-6399 (US). GACHIBOWLI,
Satish, Kumar, Chittamuru; One Microsoft Way, Red-
mond, Washington 98052-6399 (US). PEKIC, Zoltan;
One Microsoft Way, Redmond, Washington 98052-6399
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

[Continued on next page]

(54) Title: METADATA DRIVEN USER INTERFACE

[200

210 220

Metadata Describing Ul > Interpreter
Events 215
325 230
! L

Code-Behind|

Renderer
Asssembly €
250 240
e .
241

!— T _‘| Control 1
J

:Duta Source| <
|
[} .

b — Control N

Control 2 /242

<

243

N

Rendered UL

(57) Abstract: Metadata is used to create customized
user interface (UI) portions for an application. The
metadata may be XML-based and can be interpreted
and then rendered to implement a customized UI that
also supports data binding between data and the UI
controls. Once created, the metadata is processed
by a rendering engine to display the UI controls. An
interpreter may be used to interpret the metadata file
before it sent to the rendering engine. Neither the
rendering engine nor the interpreter needs knowledge
of the host application and provides support for
arbitrary metadata driven UL The metadata schema
may include mechanisms to create custom controls
for the UI; programmatically modify the UI controls
by providing access to a code-behind assembly as
well as support event handling for the UI controls.

WO 2007/067578 A1 | NININI! DA 000 0T 000 00 000

GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,

MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, Published:

RU, 8C, 8D, SE, SG, 8K, SL, SM, SV, SY, TJ, TM, TN, — wizh international search report

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. — before the expiration of the time limit for amending the
(84) Designated States (unless otherwise indicated, for every claims and to be republished in the event of receipt of

kind of regional protection available): ARIPO (BW, GH, amendments

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ance Notes on Codes and Abbreviations" appearing at the begin-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, ning of each regular issue of the PCT Gazette.

WO 2007/067578 PCT/US2006/046464

METADATA DRIVEN USER INTERFACE

BACKGROUND

[0001] Some application developers desire to customize their applications to
interoperate with certain widely-used existing applications such as: word-processing
applications; email applications; and the like. In some instances, the application developer
would like to provide a user interface that is customized for an application but that can still
be easily modified or extended as the application changes. Today, the application developer
hard codes this functiénality into the application making it cumbersome to change and

update.

SUMMARY

[0002] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not ‘
intended to identify key features or essential features of the claimed subject matter, nor is it
intended to be used as an aid in determining the scope of the claimed subject matter.

[0003] Metadata is defined to create customized user interface (UT) portions for an
application. The metadata is created according to a metadata schema that defines
mechanisms for data binding application data to the controls of the UL. The metadata may
be XML-based and is interpreted and then rendered to implement a customized Ul that also
supports data binding between data and the Ul controls. For example, an application
developer can write a metadata file that defines basic as well as custom Ul controls,
properties of the controls, layout of the controls, and the like. Once created, the metadata is
processed by a rendering engine to display the UI' controls. An interpreter may be used to
interpret the metadata ﬁle before it sent to the rendering engine. Neither the rendering
engine nor the interpreter needs knowledge of the host application and provides support for
arbitrary metadata driven UI. The metadata schema may include mechanisms to create
custom controls for the UT; programmatically modify the UI controls by providing access to

a code-behind assembly as well as support event handling for the Ul controls.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIGURE 1 illustrates an exemplary computing environment;

WO 2007/067578 PCT/US2006/046464

2
[0005] FIGURE 2 shows a user interface metadata system,;

[0006] FIGURES 3A and 3B show an example Ul form that is described by a
metadata file;

[0007] FIGURE 4 illustrates a process for using metadata to describe a Ul form; and

[0008] FIGURE 5 show a process for rendering a Ul form with associated metadata.

DETAILED DESCRIPTION

[0009] Referring now to the drawings, in which like numerals represent like elements,
various embodiments will be described. In particular, FIGURE 1 and the corresponding
discussion are intended to provide a brief, general description of a suitable computing
environment in which embodiments may be implemented.

[0010] Generally, program modules include routines, programs, components, data
structures, and other types of structures that perform particular tasks or implement particular
abstract data types. Other computer system configurations may also be used, including
hand-held devices, multiprocessor systems, microprocessor-based or programmable
consumer electronics, minicomputers, mainframe computers, and the like. Distributed
computing environments may also be used where tasks are performed by remote processing
devices that are linked through a communications network. In a distributed computing
environment, program modules may be located in both local and remote memory storage
devices.

[0011] FIGURE 1 illustrates an exemplary computer environment 100, which can be
used to implement the techniques described herein. The computer environment 100 is only
one example of a computing environment and is not intended to suggest any limitation as to
the scope of use or functionality of the computer and network architectures. Neither should
the computer environment 100 be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated in the example computer
environment 100.

[0012] Computer environment 100 includes a general-purpose computing device in the
form of a computer 102. The components of computer 102 can include, but are not limited
to, one or more processors or processing units 104, system memory 106, and system
bus 108 that couples various system components including processor 104 to system

memory 106.

WO 2007/067578 PCT/US2006/046464

3
[0013] System bus 108 represents one or more of any of several types of bus

structures, including a memory bus or memory controller, a peripheral bus, an accelerated
graphics port, and a processor or local bus using any of a variety of bus architectures. By
way of example, such architectures can include an Industry Standard Architecture (ISA)
bus, a Micro Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video
Electronics Standards Association (VESA) local bus, a Peripheral Component Interconnects
(PCI) bus also known as a Mezzanine bus, a PCI Express bus, a Universal Serial Bus
(USB), a Secure Digital (SD) bus, or an IEEE 1394, i.e., FireWire, bus.

[0014] Computer 102 may include a variety of computer readable media. Such media
can be any available media that is accessible by computer 302 and includes both volatile
and non-volatile media, removable and non-removable media.

[0015] System memory 106 includes computer readable media in the form of volatile
memory, such as random access memory (RAM) 110; and/or non-volatile memory, such as
read only memory (ROM) 112 or flash RAM. Basic input/output system (BIOS) 114,
containing the basic routines that help to transfer information between elements within
computer 102, such as during start-up, is stored in ROM 112 or flash RAM. RAM 110
typically contains data and/or program modules that are immediately accessible to and/or
presently operated on by processing unit 304.

[0016] Computer 102 may also include other removable/non-removable, volatile/non-
volatile computer storage media. By way of example, FIGURE 1 illustrates hard disk
drive 116 for reading from and writing to a non-removable, non-volatile magnetic media
(not shown), magnetic disk drive 118 for reading from and writing to removable, non-
volatile magnetic disk 120 (e.g., a “floppy disk™), and optical disk drive 122 for reading
from and/or writing to a removable, non-volatile optical disk 124 such as a CD-ROM,
DVD-ROM, or other optical media. Hard disk drive 116, magnetic disk drive 118, and
optical disk drive 122 are each connected to system bus 108 by one or more data media
interfaces 125. Alternatively, hard disk drive 116, magnetic disk drive 118, and optical disk
drive 122 can be connected to the system bus 108 by one or more interfaces (not shown).

[0017] The disk drives and their associated computer-readable media provide non-
volatile storage of computer readable instructions, data structures, program modules, and
other data for computer 102. Although the example illustrates a hard disk 116, removable
magnetic disk 120, and removable optical disk 124, it is appreciated that other types of

computer readable media which can store data that is accessible by a computer, such as

WO 2007/067578 PCT/US2006/046464

4
magnetic cassettes or other magnetic storage devices, flash memory cards, CD-ROM,

digital versatile disks (DVD) or other optical storage, random access memories (RAM),
read only memories (ROM), electrically erasable programmable read-only memory
(EEPROM), ahd the like, can also be utilized to implement the example computing system
and environment.

[0018] Any number of program modules can be stored on hard disk 116, magnetic
disk 120, optical disk 124, ROM 112, and/or RAM 110, including by way of example,
operating system 126 (which in some embodiments include low and high priority /O file
systems and indexing systems described above), one or more application programs 128,
interpreter 130, and rendering engine 132. Each of such operating system 126, one or more
application programs 128, a metadata interpreter 130, a Ul rendering engine 132 and
metadata 133 (or some combination thereof) may implement all or part of the resident
components. The metadata repository 133 includes information that allows the
customization of UI elements on a Ul that is associated with application programs 128. For
example, the metadata can include information that allows the customization of Ul forms
for UT 164 that is displayed on monitor 142. The metadata repository 133 may include
information for multiple applications on various coupled computing devices.

[0019] A user can enter commands and information into computer 102 via input
devices such as keyboard 134 and a pointing device 136 (e.g., 2 “mouse”). Other input
devices 138 (not shown specifically) may include a microphone, joystick, game pad,
satellite dish, serial port, scanner, and/or the like. These and other input devices are
connected to processing unit 104 via input/output interfaces 140 that are coupled to system
bus 108, but may be connected by other interface and bus structures, such as a parallel port,
game port, or a universal serial bus (USB).

[0020] Monitor 142 or other type of display device can also be connected to the
system bus 108 via an interface, such as video adapter 144. In addition to monitor 142,
other output peripheral devices can include components such as speakers (not shown) and
printer 146 which can be connected to computer 102 via I/O interfaces 140.

[0021] Computer 102 can operate in a networked environment using logical
connections to one or more remote computers, such as remote computing device 148. By
way of example, remote computing device 148 can be a PC, portable computer, a server, a

router, a network computer, a peer device or other common network node, and the like.

WO 2007/067578 PCT/US2006/046464

5
Remote computing device 148 is illustrated as a portable computer that can include many or
all of the elements and features described herein relative to computer 102.

[0022] Logical connections between computer 102 and remote computer 348 are
depicted as a local area network (LAN) 150 and a general wide area network (WAN) 152.
Such networking environments are commonplace in offices, enterprise-wide computer
networks, intranets, and the Internet..

[0023] When implemented in a LAN networking environment, computer 102 is
connected to local network 150 via network interface or adapter 154. When implemented in
a WAN networking environment, computer 102 typically includes modem 156 or other
means for establishing communications over wide network 152. Modem 156, which can be
internal or external to computer 102, can be connected to system bus 108 via I/O
interfaces 140 or other appropriate mechanisms. The illustrated network connections are
examples and that other means of establishing at least one communication link between
computers 102 and 148 can be employed.

[0024] In a networked environment, such as that illustrated with computing
environment 100, program modules depicted relative to computer 102, or portions thereof,
may be stored in a remote memory storage device. By way of example, remote application
programs 158 reside on a memory device of remote computer 148. For purposes of
illustration, applications or programs and other executable program components such as the
operating system are illustrated herein as discrete blocks, although it is recognized that such
programs and components reside at various times in different storage components of
computing device 102, and are executed by at least one data processor of the computer.

[0025] Various modules and techniques may be described herein in the general context
of computer-executable instructions, such as program modules, executed by one or more
computers or other devices. Generally, program modules include routines, programs,
objects, components, data structures, etc. for performing particular tasks or implement
particular abstract data types. Typically, the functionality of the program modules may be
combined or distributed as desired in various embodiments. ‘-

[0026] An implementation of these modules and techniques may be stored on or
transmitted across some form of computer readable media. Computer readable media can
be any available media that can be accessed by a cbmputer. By way of example, and not
limitation, computer readable media may comprise “‘computer storage media” and

“communications media.”

WO 2007/067578 PCT/US2006/046464

6
[0027] “Computer storage media” includes volatile and non-volatile, removable and

non-removable media implemented in any method or technology for storage of information
such as computer readable instructions, data structures, program modules, or other data.
Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired information
and which can be accessed by a computer.

[0028] “Communication media” typically embodies computer readable instructions,
data structures, program modules, or other data in a modulated data signal, such as carrier
wave or other transport mechanism. Communication media also includes any information
delivery media. The term “modulated data signal” means a signal that has one or more of
its characteristics set or changed in such a manner as to encode information in the signal.

As a non-limiting example only, communication media includes wired media such aé a
wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared, and other wireless media. Combinations of any of the above are also included
within the scope of computer readable media.

[0029] FIGURE 2 shows a user interface metadata system. As illustrated, system 200
includes metadata 210, interpreter 220, code-behind assembly 225, rendering engine 230
that renders user interface 240 and back-end data source 250. Initially, a developer, or some
other user, specifies metadata 210 for a given Ul Form. ‘Generally, once the metadata has
been created and specified, the interpreter 220 accesses the metadata and then passes the Ul
information to rendering engine 230 such that the UI 240 may be displayed to a user.
Although interpreter 220 is illustrated separately from rendering engine 230 its functionality
may be included within rendering engine 230 as illustrated by the dashed box surrounding
the interpreter 220 and rendering engine 230.

[0030] Metadata 210 allows the developer to specify a setAof events 215 for each
control 241-243 that are included on the user interface 240. The metadata 210 allows the Ul
forms developer to specify the controls to be added to the UT; define custom events on these
added controls (or add events to the existing controls); and define the event-handlers via
code in a code-behind assembly 225 for these new custom events (or modify existing
custom-handlers by overriding the defauit behavior). An Object Model (OM) is exposed
that allows the developer to read/modify properties of the controls on the form such that the

WO 2007/067578 PCT/US2006/046464

7
event-handlers are defined in the code behind assembly 225. The name and location of the

code-behind assembly 225 is captured as part of the metadata 210.

[0031] According to one embodiment, the events mirror the typical events supported
for the same type of control in a WINFORMS environment. In addition to the standard
events that may be initially supported by a control, additional controls and custom events
may be added through the metadata 210.

[0032] As illustrated, the rendering engine 230 receives the metadata defining the Ul
through interpreter 220 and renders the UI form 240. According to one embodiment,
rendering engine 230 renders the UI form either in an IBF task pane or a MICROSOFT
OUTLOOK custom form. According to this embodiment, the rendering engine 230 creates
a .NET control object correpsonding to the Ul that is defined by the metadata 210 and that
NET control is hosted either in the IBF task pane or OUTLOOK custom form. In this
embodiment, the rendering engine 230 parses the metadata t}hat is supplied by interpreter
220 and instantiates the different controls (i.e. 241-243) that are described by metadata 210
and outputs a .NET control describing the UI form.

[0033] According to one embodiment, the rendering engine 230 provides ten basic
confrols which the UI forms developer can use while designing a Ul form using metadata
210. These ten basic controls include: Panel; Label; LinkLabel; TextBox; Button; ListBox;
ComboBox; RadioButton; CheckBox and an Image control. As discussed previously,
custom control and events may also be created. Other basic controls may also be provided.

[0034] Each control includes a wrapper class which wraps the control (i.e. a native
WINFORM (.NET) control). The wrapper provides functionality for data binding and
exposing control properties to the code behind assembly 225 through a programmatic object
model (OM). The following is an exemplary wrapper class for a textbox control:

internal class XamlTextBox : XamlControl, IXamlTextBox
{
// Native winform (.NET) control

- private TextBox textBox = null;

¥
[0035] The ‘IXamlTextBox’ interface exposes TextBox specific properties to the code
behind file. An application developer can access a textbox control on the UI in the code

behind using the ‘TXamiTextBox” interface and read/write the control properties.

WO 2007/067578 PCT/US2006/046464

8
[0036] The ‘XamlControl’ provides the base class for the controls rendered by the

rendering engine 230.
internal class XamlControl : IXamlControl, IBindable
{
// Native winform (.NET) control
protected Control Control = null;
}

[0037] The ‘IXamlControl’ interface exposes the control to the code behind file. An
application developer can access properties of a control through this interface in the code
behind assembly 225. The ‘IBindable’ interface is used by the ‘Binder’ component to set
control properties which are bound to properties in a data source. The ‘XamlControl’ class
receives the pseudo XAML metadata (XML) defining the control and then it instantiates the
native .NET WINFORM control (depending upon type) and sets the control properties
specified in the metadata for the control.

public XamIControl(XmINode nodeXml, IControlParent parent, string type)

{
this.Control = CreateControl(type);

)
[0038] When the rendering engine 230 receives the pseudo XAML metadata defining

a Ul form it reads/parses the input XML and instantiates the wrapper classes for the controls
passing in the metadata defining the control. According to one embodiment, the parsing is
done in a depth first manner. Other methods may also be used. The wrapper class
instantiates the native WINFORM (.NET) control and sets the control properties as defined
in the metadata. A wrapper class for each control sets the control properties as specified in
the metadata. The base “XamlControl’ class sets the properties which are common to every
control (for e.g. Background, Foreground, Anchor, Font etc). The specific derived classes
such as: ‘XamlTextBox’ handles the control (textbox) specific properties. If a particular
control property is bound to a property in a data source, such as data source 250, then the
wrapper class passes the control, property name and binding expression to the ‘Binder,’
which then gets the property value from the data source and then sets the specific céntrol
property through the ‘IBindable’ interface. The wrapper class for each control also
subscribes to the control events (SubscribeToEvents()) exposed by the pseudo XAML

WO 2007/067578 PCT/US2006/046464

9
metadata. When an event on a control fires then the rendering engine 230 forwards the

event to the event handler defined in the code behind assembly 225. The wrapper class also
calls a ‘GetChildControls()* method which instantiates the child controls for the control.

[0039] Event handlers 226 may be developed for control events occurring on the form.
To handle a specific event on a control, the developer performs steps, including: developing
a code behind assembly 225 which contains the event handler code; specifying the code
behind assembly in the metadata; and specifying the event handler (method) name which
handles a particular event for a control. According to one embodiment, to specify an event
handler in the metadata for an event on a control the developer supplies the event handler
method name present in the code behind assembly as the value of the attribute
corresponding to the event on the control. The metadata 210 specifies that the “Click”
event for the Buiton control is handled by the method “ButtonClick™ which is present as a
public method in the code behind assembly. According to one embodiment, the signature
for the event handler is same as what it would be for that event on that particular control in
case of NET WINFORMS environment. For example, the event handler for the click event
on a Button would have the following signature: public void ButtonClick(object sender,
System.EventArgs e) { }. According to one embodiment, this is the same signature as the
original button control which provides for programmer understanding and consistency.

[0040] Rendering engine 230 loads the code behind assembly 225 when it parses the
metadata 210 provided by interpreter 220 and instantiates the code behind class through
reflection. The events that are exposed through the metadata on a control are subscribed to
when that control is instantiated during parsing of the metadata. In one implementation the
event handlers for control events bubble up the event to the “Page” level and then the event
handler in the code behind assembly is called through reflection. Mofe than one “code
behind” assembly can be associated to a “page” or form. Providing more than one "code
behind" assembly allows for multiple levels (multiple parties) of extensibility.

[0041] Data may also be bound to one or more of the controls (e.g. controls 241-243)
from a backend data source 250. According to one embodiment, the binding expressions
that bind data source 250 to one or more of the controls (e.g controls 241-243) are specified
in the metadata. Each property of a control (i.e. controls 241-243) can be bound to data
coming from a data source. Thus, the data source changes control properties that are
associated with the controls when the data source 250 is changed. -More than one data

source may be bound. For example, control 1 (241) could be bound to one data source

WO 2007/067578 PCT/US2006/046464

10
while control 2 (242) is bound to a different data source. According to one embodiment,

there are two different types of data sources, including an object data source and an XML
data source. An object data source is a .NET class residing in a NET assembly which acts
as a data source for conﬁols on the UL. An XML Data Source acts as a source of XML data
which is specified inline in the XAML metadata defining the UL
[0042] According to one embodiment, an object data source can be specified in the
metadata in the following manner: <xaml:ObjectDataSource Name="myDataSource"
TypeName="DataSourceNamespace.DataSourceClass, DataSourceAssembly" /> The
“DataSourceClass” implements the “IBindData” and “INotifyPropertyChanged” interfaces.
Exemplary embodiments of these interfaces are described below:
public interface IBindData
{
object GetData(string path); / gather data
bool SetData(string path, object val); // scatter data -
}
[0043] In this embodiment, the “IBindData” interface allows to bind data between the
data source and control properties (explained below) through the standard NET event

delegate model.
public interface INotifyPropertyChanged
{
event PropertyChangedEventHandler PropertyChanged;

}

public delegate void PropertyChangedEventHandler(object sender,
| PropertyChangedEventArgs e);

public class PropertyChangedEventArgs : System.EventArgs

o

public virtual string PropertyName {get; }
3
[0044] The “INotifyPropertyChanged” interface allows the data source to signal any

changes that happen on the data source so that the UI properties which are bound to that
data source can be updated. The data source raises the “PropertyChanged” event whenever

a property in the data source changes. The relevant properties on the UI are then updated

WO 2007/067578 PCT/US2006/046464
11

whenever this event fires. Once the data sources are specified in the metadata then any

property of a control can be bound to data coming from a data source.

[0045] To specify a binding for a control property the developer supplies a binding
expression as the value of the attribute corresponding to that property. For gxample, to bind
the “Text” property of a text box, the developer can specify a binding expression in the
metadata 210 as follows: <xaml:TextBox Name="textBox1" Top="40" Left="8"
Width="200" Text="{Binding Source=DataSourceName, Path=CustomerName,
Mode=TwoWay}" Anchor="Top,Left,Right" /> The expression Text =*{Binding
Source=DataSourceName, Path=CustomerName, Mode=TwoWay}” is a binding expression
for the “Text’ property. The ‘Source’ clause refers to a data source defined in the metadata.
This could be an Object data Source or XML Data Source. In case of Object Data Source
the value of the ‘Path’ clause is passed to the data source’s “GetData(string path)” method
when retrieving the value for the bound property. For an XML Data source the ‘Path’
clause is an Xpath expression in this embodiment, which selects a particular node/attribute
in the XML data whose value would be the bound to the control property. The ‘Mode’
clause indicates ‘OneWay’ or ‘TwoWay’ binding. If the data flows from the data source to
controls on the Ul then the binding is ‘OneWay’ but if UI property changes are also
propagated back to the data source then the binding is ‘TwoWay’. The
‘UpdateSourceTrigger’ is an enumeration which specifies when (what event) to signai the
data source that a UI property has changed and the changed property value needs to be
propagated to the data source. By default, in this embodiment, the value for this clause is
‘PropertyChanged’ which means that when a bound property changes then it is signaled to
the data source. According to one embodiment, this only takes effect in case of ‘TwoWay’
binding.

[0046] The ‘TtemsSource’ attribute of a List Control allows binding of the items in the
list to a collection of objects coming from a data source. When the ‘TtemsSource’ property
is bound then the data source returns a .NET collection implementing the
‘System.Collections.IEnumerable’ interface. The ‘DisplayMemberPath’ attribute of the List
Control specfies the property of the .NET object(s) which form the collection whose value
is used as the display text for the item in the list control. If the ‘DisplayMemberPath’ is null
then the default “ToString()’ method is called on the .NET object and the string returned is
used as the display text. For example, suppose the data source returns a collection of

‘Customer’ obejcts which are shown in the list control then the ‘Customer’ object may have

WO 2007/067578 PCT/US2006/046464

12
a ‘Name’ property whose value is to be used as the display text in the list control. In this

case the ‘DisplayMemberPath’ is set to ‘Name.” Similarly ‘SelectedValuePath’ is set to the
property of the .NET object(s) forming the collection whose value is returned by the
‘SelectedValue’ property of the list control when a particular item is selected in the list
control. For example, suppose that the ‘Customer’ object has a ‘CustomerID’ property
whose value is returned by the ‘SelectedValue’ property when the ‘SelectedValuePath’
property of the list control is set to ‘CustomerID.” If no ‘SelectedValuePath’ attribute is
provided then the whole object (‘Customer’ obejct) is returned by the ‘SelectedValue’
property of the list control.

[0047] In case of a XML Data Source, the binding expression for ‘ItemsSource’
attribute of a list control returns a list of XML nodes. For example, assume that the
following is an XML data source:

<XmlDataSource Name="BookData">
<Books xmlns="">
<Book ISBN="0-7356-0562-9" Stock="in">
<Title>XML in Action</Title>
<Summary>XML Web Technology</Summary>
</Book> |
<Book ISBN="0-7356-1370-2" Stock="in">
<Title>Programming Microsoft Windows With C#</Title>
<Summary>C# Programming using the NET Framework</Summary>
</Book>
<Book ISBN="0-7356-1288-9" Stock="out">
<Title>Inside C#</Title>
<Summary>C# Language Programming</Summary>
</Book>
<Book ISBN="(0-7356-1377-X" Stock="in">
<Title>Introducing Microsoft NET</Title>
<Summary>Overview of NET Technology</Summary>
</Book>
<Book ISBN="0-7356-1448-2" Stock="out">
<Title>Microsoft C# Language Specifications</Title>
<Summary>The C# language definition</Summary>

WO 2007/067578 PCT/US2006/046464

13
</Book>

</Books>
</XmlDataSource>

[0048] The binding expression for the ‘ItemsSource’ property of a list which shows
the list of books is: <ListBox ItemsSource="{Binding Source=BookData,
Path=/Books/Book}" /> The ‘Path’ clause in the above binding expression is actually an
Xpath expression which returns a list of nodes which are populated in the list control from
the XML Data Source. The ‘DisplayMemberPath’ attribute of the list control should be an
Xpath (in case of XmlDataSource) which selects the node/attribute whose value is to be
used as the display text in the list control. For example, if the Ul forms developer wants to
display the “Title’ for each book in the list control, then the user’s XML would look like:
<ListBox ItemsSource=" {Binding Source=BookData, Path=/Books/Book}"
DisplayMemberPath="Title"/> Similarly, the ‘SelectedValuePath’ attribute of the list
control points to the node/attribute of the list item whose value is returned by the
‘SelectedValue’ attribute of the list.

[0049] For example, suppose that the Ul forms developer wants to return the ‘iSBN’
value for a book in the ‘SelectedValue’ property of the list control when a particular book is
selected in the list, then the ‘SelectedValuePath’ attribute may be an Xpath pointing to the
‘ISBN’ attribute of the book item.

[0050] <ListBox ItemsSource="{Binding Source=BookData, Path=/Books/Book}"
DisplayMemberPath="Title" SelectedValuePath="@ISBN"/>

[0051] Controls utilizing data binding implement the ‘IBindable’ interface as
illustrated below:

public interface IBindable
{

object GetBoundValue(string propName);

void SetBoundValue(string propName, object val);
¥

[0052] When the UI form 240 is initially rendered then for every bound property the
‘GetData(string path)’ method of the relevant data source (specified in the binding
expression) is called passing in the value of the ‘Path’ clause in the binding expression as an
argument. This method returns a value of type ‘object.” Next, the ‘SetBoundValue(string

propName, object value)’ is called on the control whose property is bound passing in the

WO 2007/067578 PCT/US2006/046464
14

name of the bound property and the ‘value’ returned by the data source. The control has the
responsibility for understanding the ‘value’ object and interpreting it to update the bound
property. Besides the initial rendering of the UI form whenever the data source changes the
data source signals the binder of a change in data source (INotifyPropertyChanged). The
binder finds out which control properties are bound to the changed data source and updates
those properties. In the case of “TwoWay’ binding then whenever a bound UI property
changes on the UI form then the binder is notified and the binder then propagates the
changed property value back to the data source.

[0053] As discussed briefly above, the rendering engine 230 also provides a generic
framework for hosting custom built controls. According to one embodiment, the framework
supports custom .NET winform controls. According to one embodiment, any custom
controls derive from the class: ‘System.Windows.Forms.UserControl.” Each custom

“control has a default contructor and also implements the ICustomControl interface and the
‘IBindable’ interface so that it can participate in data binding. The following is an
exemplary ‘ICustomControl’ interface:

public interface ICustomControl
{
void SetControlProperty(string propName, string propValue);
event ControlEventFiredHandler ControlEventFired,
}
public delegate void ControlEventFiredHandler(object sender, ControlEventFired Args
e);
public class ControlEventFiredArgs : System.EventArgs

{
public string EventName {get;}
public object Sender { get; }
public object EventArgs {get;}
}

[0054] The ‘SetControlProperty(string propName, string propValue)’ method is used
by the rendering engine 230 to set custom properties for the control. For each custom
property which the custom control exposes and which is not included in the basic properties
of a control (e.g. Width, Height, Top, Left etc) the rendering engine 230 calls the

‘SetControlProperty’ method on the custom control and it is up to the custom control to

WO 2007/067578 PCT/US2006/046464

15
understand and interpret the string” property value that is specified in the metadata which

would be passed to the ‘SetControlProperty’ method.

[0055] The ‘ControlEventFired” event is raised by the custom control when a custom
event exposed by the control fires. This is to signal the rendering engine 230 that an event
has fired on the custom control and the rendering engine needs to call the event handler (if
any) for that event in the code behind assembly 225. The rendering engine 230 does not
know at compile time what are the events (and event signatures) supported by the custom
control. As such, the rendering engine 230 requires the custom control to notify it when a
custom event fires on the custom control. The custom control creates an instance of the
‘ControlEventFiredArgs” class and passes it to the ‘ControlEventFired” event which is
received by the rendering engine 230. The ‘ControlEventFiredArgs’ contains information
about the name of the event which fired, sender and event arguments which need to be
passed to the event handler for that event. Once the rendering engine 230 has this
information it can call the event handler for that event specified in the code behind assembly
225. |

[0056] According to one embodiment, the custom controls reside in a .NET assembly
at run time. The custom control assembly in the metadata may be specified in the following
way: <xaml:Mapping XmlINamespace="urn-Mendocino/CustomControls"
ClrNamespace="CustomControlNamespace" Assembly="CustomControlAssembly,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" /> The ‘Mapping’ element is a
processing directive rather than an XML element. Other ways of specifying the custom
control assémbly may also be utilized.

[0057] A custom control can be specified in'the metadata through the following
exemplary metadata: <custom:CustomControl xmlns:custom="urn-
Mendocino/CustomControls" Top="0" Left="0" Height="100" Width="100" .../> In this
embodiment, the rendering engine 230 instantiates the custom control through reflection
and first set the basic properties of a control like Height, Width, Top, Left, and the like and
then for other properties (custom properties) the rendering engine 230 calls the
‘SetControlProperty()’ method on the custom control.

[0058] A mechanism within the metadata schema allows the UI forms developer to
access the Ul controls and their properties in the code behind assembly. The code behind
class implements the ‘TPageCodeBehind’ interface which is described below:

public interface IPageCodeBehind

WO 2007/067578 PCT/US2006/046464

16
{
string Name { get; set; }
IPageControlCollection PageControls { get; set; }
object Application { get; set; }
object Mediator {get; set; }
object ReturnValue { get; set; }
}

[0059] The ‘PageControls’ property is populated by the rendering engine 230 when it
renders the UI form and instantiates the controls. The ‘Application’ property represents the
host application (i.e. OUTLOOK) in which the Ul forms are being rendered. According to
one embodiment, the “Mediator’ property allows the code behind developer to execute IBF
actions defined in metadata. ‘ReturnValue’ is a variable which can be set by the code
behind developer which is passed back to the caller who renders the form. This is used in
case of modal dialogs to pass back a value from the dialog to the caller.

[0060] The following is an exemplary ‘TPageControlCollection’ interface:

public interface IPageControlCollection : ICollection, [Enumerable
{ ,
XamlControl this[string name] { get; }
}
[0061] The ‘IXamlControl’ interface exposes the properties for a control on the form.
public interface IXamlControl
B
// Properties...
string Name { get;set; }
int Top { get;set; }
int Left { get;set; }
Color Background { get;set; }
bool IsEnabled { get;set; }
int Height { get;set; }
int Width { get;set; }
// Other properties //...

WO 2007/067578 PCT/US2006/046464

17
[0062] This allows the Ul forms developer to access a control on the form in the

following way: MessageBox.Show(this. PageControls["myButton"]. Text); The
‘IXamlControl’ interface exposes the basic properties of a control that are common to
every control. To access specific properties for a control (e.g. IsChecked for a CheckBox
control) the developer can cast the ‘IXamlControl’ object to the specific control interface,
such as: ‘TXamlCheckBox’, ‘TXamiTextBox’, and the like.
((IXamlCheckBox)this.PageControls["myCheckBox"]).IsChecked

[0063] The following is an exemplary ‘IXam!CheckBox’ interface that derives from
the ‘IXamlControl’ interface:

public interface TXamiCheckBox : IXamlControl

{
// CheckBox specific properties...
ContentAlignment TextAlignment {get; set;}
bool IsChecked {get; set;}

}

[0064] Similarly specific interfaces for the controls are exposed which allow the UI
forms developer to access control specific properties. |

[0065] According to one embodiment, the rendering engine 230 generates the same
NET control from the metadata describing the UI form irrespective of whether the UI form
is hosted in an IBF task pane, an OUTLOOK custom form or a dialog. The following
scenarios provide example of how the NET control may be hosted.

[0066] According to one embodiment, the IBF task pane supports hosting any NET
control which implements the ‘IRegion’ interface. The rendering framework contains a
blank (empty) .NET control which implements the ‘TRegion’ interface and which hosts the
NET control genérated by the UI rendering engine from the Ul metadata. To display a
metadata defined Ul form in the IBF task pane the “MSIBF.ULShowRegion’ custom
operation is used which displays the blank .NET host control part of the Ul rendering
framework. The input passed to this ‘MSIBF.ULShowRegion’ operation is the metadata
defining the UT form which is to be hosted in the IBF task pane. The
MSIBF.ULShowRegion’ operation instantiates the blank host NET control and passes the
metadata defining the Ul form as ‘Data’ to the blank host .NET control. The host control

calls the rendering engine 230 passing in the metadata defining the UI form and which

WO 2007/067578 PCT/US2006/046464

18
returns a NET control describing the UI form and which is then added to the host control

resulting in the display of the UI form in the IBF task pane.

[0067] According to another embodiment, to host a NET control describing a Ul form
in an OUTLOOK an ActiveX container control capable of hosting .NET controls is added to
the OUTLOOK form and then the .NET control is added describing the UI form as a child
control of the container control. The ActiveX container control is a part of the Ul
Rendering framework. According to one embodiment, Forms 2.0 hosts the ActiveX
containter which hosts the NET WinForms control described by metdata.

[0068] Metadata defined forms may also be created in modal .NET Winform dialogs.
In this embodiment, program code, such as that contained within an addin calls the
rendering engine 230 passing in the XAML metadata defining a form and the rendering
engine 230 passes back the NET control generated from the XAML metadata which can
then be hosted either in the IBF task pane, OUTLOOK Custom Form or a dialog. The
addin instantiates an instance of the ‘RenderEngine’ class which implements the
‘[RenderEngine’ interface:

public interface IRenderEngine
{
IXamiPage CreateXamlForm(XmINode pageXml);

h

[0069] The caller can call the ‘CreateXamiForm’ method passing in the XAML
metadata describing the form. The rendering engine 230 instantiates the necessary controls
and pass back an object (‘IXamlPage’) which represents the ‘xaml’ form. |

public interface IXamIPage

{
string Name { get; }
Control NativeControl { get; }
IPageControlCollection Controls { get; }
object ReturnValue { get; }

}

[0070] In this embodiment, the “NativeControl’ property above represents the NET
control describing the metadata UT form which can be hosted either in the IBF task pane,
OUTLOOK custom form or a dialog. The ‘ReturnValue’ property is a variable which can

be set from the code behind file and would be used to return a value from a modal dialog.

WO 2007/067578 PCT/US2006/046464
19

[0071] FIGURES 3A and 3B show an example Ul form that is described by a
metadata file. Referring to FIGURE 3A, UI form 300 includes label 305, page 310, panel
315, text box 320, check box 325, link 330, button 3335, list box 340 and radio button list
345, |

[0072] FIGURE 3B shows an exemplary Ul metadata file 360 that may be used to
define the UI form 300 as illustrated in FIGURE 3A. The example Ul metadata file 360
illustrates that the properties of a control are specified by the attributes of the corresponding
XML node. According to one embodiment, most properties have a default value and do not
need to be specifically specified. As illustrated in FIGURE 3B, indicator 362 shows the
description of the panel 310; indicator 364 shows the description of the label 305; indicator
366 shows the description of textbox 320; indicator 368 shows the description of checkbox
325; indicator 370 shows the description of button 335; indicator 372 shows the description
of link 330; indicator 374 shows the description of the list box 340 and indicator 376 shows
the description of the radio button list 345.

[0073] FIGURE 4 illustrates a process for using metadata to describe a Ul form. After
a start operation, the process moves to operation 410 where the metadata file is defined. As
discussed above, the metadata within the file describes the Ul and includes information on
the controls, the data binding, and other relevant information relating to the user interface.

[0074] Moving to operation 420, the metadata file is stored. According to one
embodiment, the metadata file is stored on a computer-readable medium, such as a hard
drive. The metadata file may be stored locally and/or remotely from the computing device
displaying the related UL

[0075] Transitioning to operation 430, the metadata file is accessed. According to one
embodiment, the metadata file is accessed by a rendering engine. Alternatively, as
discussed above, an interpreter may be used to access the metadata file.

[0076] Flowing to operation 440, zero or more data sources may be bound to one or
more of the controls defined for the UI through the metadata.

[0077] Moving to operation 450, the metadata is interpreted and then rendered to
display the UL Each control of the UI form is rendered on the Ul (see FIGURE 5 and
related discussion).

[0078] The process then moves to an end operation and returns to processing other

actions.

WO 2007/067578 PCT/US2006/046464

20
[0079] FIGURE 5 show a process for rendering a Ul form with associated metadata.

After a start operation, the process moves to operation 510 where a control is instantiated.
The control is instantiated based on the type of control (i.e. label, text box, and the like).

[0080] Flowing to operation 520, the base properties of the control are set. For
example, the properties such as the top, left, height, width, and the like are set.

" [0081] Moving to operation 530 the control properties are set. The control properties
that are set depend on the type of control.

[0082] Next, at operation 540, the control events that are specified within the metadata
are subscribed to. Flowing to operation 550 any child controls for the control are
instantiated. The process then moves to an end operation and returns to processing other
actions. |

[0083] The following is an exemplary schema which may be used for defining a Ul
form using metadata.

[0084] <7xml version="1.0" encoding="utf-8" 7>

<xs:schema targetNamespace="urn-Mendocino/xaml"
elementFormDefault="qualified"
xmlns:xaml="urn-Mendocino/xaml"
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
<xs:complexType name="Control Type">
<xs:attributeGroup ref="xaml:Control TypeAttributes" />
</xs:complexType>
<xs:complexType name="ParentControlType">
<xs:complexContent>
<xs:extension base="xaml:ControlType">
<xs:sequence>
<xs:element ref="xaml:Control" minOccurs="0" maxQOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="PageType">

<xs:complexContent>

WO 2007/067578 PCT/US2006/046464

21
<xs:extension base="xaml:ParentControl Type">

<xs:sequence>
<xs:element ref="xaml:ObjectDataSource"
minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="xaml:XmlDataSource"
minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<!-- Events -->

<xs:attribute name="Load" type="xs:string" use="optional" />

<!-- Code Behind Assembly -->

<xs:attribute name="Assembly" type="xs:string" use="optional" />
<xs:attribute name="TypeName" type="xs:string" use="optional" />
</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="ObjectDataSourceType">
<xs:attribute name="Name" type="xs:string" use="required" />
<!-- Data source class -->
<xs:attribute name="TypeName" type="xs:string" use="optional" />
<xs:attribute name="Parameters" type="xs:string" use="optional" />

</xs:complexType>

<!-- Inline XML data source-->
<xs:complexType name="XmlDataSourceType">
<xs:sequence>
<xs:any processContents="skip" />
</xs:sequence>
<xs:attribute name="Name" type="xs:string" use="required" />

</xs:complexType>

<xs:complexType name="PanelType">

WO 2007/067578 PCT/US2006/046464
22
<xs:complexContent>
<xs:extension base="xaml:ParentControlType">
</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="LabelType">
<xs:complexContent>
<xs:extension base="xaml:ControlType">
<xs:attribute name="TextAlignment" type="xs:string" use="optional" />
</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name=""TextBoxType'">
<xs:complexContent>
<xs:extension base="xaml:ControlType">
<xs:attribute name="TextAlignment" type="xs:string" use="optional" />
<xs:attribute name="MaxLength" type="xs:string" usé="optiona1" />
<xs:attribute name="MinLines" type="xs:string" use="optional" />
<xs:attribute name="Wrap" type="xs:string" use="optional" />
</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="ButtonType">
<xs:complexContent>
<xs:extension base="xam!l:ControlType">
<xs:attribute name="TextAlignment" type="xs:string" use="optional" />
</xs:extension>
</xs:complexContent>

</xs:complexType>

WO 2007/067578 PCT/US2006/046464

23
<xs:complexType name="LinkLabel Type">

<xs:complexContent>
<xs:extension base="xaml:ControlType">
<xs:attribute name="TextAlignment" type="xs:string" use="optional" />
<xs:attribute name="LinkBehavior" type="xs:string" use="optional" />
</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="ImageType">
<xs:complexContent>
<xs:extension base="xaml:ControlType">
<xs:attribute name="Source" type="xs:string" use="required" />
</xs:extension>
</xs:complexContent>

</Xs:complexType>

<xs:complexType name="CheckBoxType">
<xs:complexContent>
<xs:extension base="xaml:ControlType">
<xs:attribute name="TextAlignment" type="xs:string" use="optional" />
<xs:attribute name="IsChecked" type="xs:string" use="optional" /
<!-- Events -->
<xs:attribute name="IsCheckedChanged" type="xs:string" use="optional" />
</xs:extension>
</xs:complexContent>

</xs:complexType>

<lI-- List Control Type -->
<xs:complexType name="ListControlType">
<xs:complexContent>
<xs:extension base="xaml:Control Type">

<xs:attribute name="DisplayMemberPath" type="xs:string" use="optional" />

WO 2007/067578 PCT/US2006/046464

24
<xs:attribute name="SelectedValuePath" type="xs:string" use="optional" />

<xs:attribute name="SelectedValue" type="xs:string" use="optional" />
<xs:attribute name="TtemsSource" type="xs:string" use="optional" />

<xs:attribute name="SelectedIndex" type="xs:string" use="optional" />

<!-- Events -->
<xs:attribute name="SelectionChanged" type="xs:string" use="optional" />
<l--
<xs:sequence>
<xs:element ref="xaml:ListControlltem" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
>
</xs:extension>
</xs:complexContent>

</xs:complexType>

<!-- <xs:element name="ListControl" type="xaml:ListControlType" abstract="true"
[> >

<xs:simpleType name="ListControlltemType">
<xs:restriction base="xs:string">
</xs:restriction>

<fxs:simpleType>

<xs:element name="ListControlltem" type="xaml:ListControlltemType"

abstract="true" />

<xs:element name="ListBoxItem" type="xaml:ListControlltemType"
substitutionGroup="xaml:ListControlltem" />

<xs:element name="ComboBoxItem" type="xam]l:ListControlltemType"

substitutionGroup="xaml:ListControlltem" />

WO 2007/067578 PCT/US2006/046464

25
<xs:element name="RadioButton" type="xaml:ListControlltemType"

substitutionGroup="xaml:ListControlltem" />

<xs:complexType name="ListBoxType'">
<xs:complexContent>
<xs:extension base="xaml:ListControl Type">
<xs:sequence>
<xs:element ref="xaml:ListBoxItem"
minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="SelectionMode" type="xs:string"
use="optional" />
</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="ComboBoxType">
<xs:complexContent>
<xs:extension base="xaml:ListControl Type">
<xs:sequence> ‘
<xs:element ref="xaml:ComboBoxItem"
minOccurs="0" maxQOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="DropDownStyle" type="xs:string"
use="optional" />
</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="RadioButtonListType">
<xs:complexContent>
<xs:extension base="xaml:ListControl Type">

<xs:sequence>

WO 2007/067578 PCT/US2006/046464
26
<xs:element ref="xaml:RadioButton"
minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
</xs:extension>
</xs:complexContent>

</xs:complexType>
<!-- UI Elements -->
<xs:element name="Control" type="xaml:ControlType" abstract="true" />

<xs:element name="Page" type="xaml:PageType"
substitutionGroup="xaml:Control" />

<xs:element name¥"0bjectDataSource" type="xaml:ObjectDataSourceType" />

<xs:element name="XmlDataSource" type="xaml:XmlDataSourceType" />

<xs:element name="Panel" type="xaml:PanelType"

substitutionGroup="xaml:Control" />

<xs:element name="ListBox" type="xaml:ListBoxType"
substitutionGroup="xaml:Control" />

<xs:element name="ComboBox" type="xaml:ComboBoxType"
substitutionGroup="xaml:Control" />

<xs:element name="RadioButtonList" type="xaml:RadioButtonListType"

substitutionGroup="xaml:Control" />

<xs:element name="Label" type="xaml:LabelType"
substitutionGrou ="xaml:Control" />

<xs:element name="TextBox" type="xaml:TextBoxType"
substitutionGroup="xaml:Control" />

<xs:element name="Button" type="xaml:ButtonType"
substitutionGroup="xam!:Control" />

<xs:element name="CheckBox" type="xaml:CheckBoxType"

substitutionGroup="xaml:Control" />

WO 2007/067578 PCT/US2006/046464

27
<xs:element name="Image" type="xaml:ImageType"

substitutionGroup="xaml:Control" />
<xs:element name="LinkLabel" type="xaml:LinkLabelType"

substitutionGroup="xaml:Control" />

<!-- Control attributes -->
<!-- Since all attribute values could actually be binding expressions therefore the
type for each attributeis xs:string -->
<xs:attributeGroup name="Control TypeAttributes">
<!-- Properties -->
<!-- Top and Left can be made required attributes but it's ok to
have them as optional -->
<xs:attribute name="Top" type="xs:string" default="0" use="optional" />
<xs:attribute name="Left" type="xs:string" default="0" use="optional" />
<xs:attribute name="Width" type="xs:string" use="optional" />

<xs:attribute name="Height" type="xs:string" use="optional" />

<xs:attribute name="Anchor" type="xs:string" use="optional" /> .
<!-- Here we could have specfied an enumeration of Anchor values but

since this could also be a binding expression we have to leave it as a simple string -->

<xs:attribute name="Background" type="xs:string" use="optional" />

<xs:attribute name="Foreground" type="xs:string" use="optional" />

<xs:attribute name="FontFamily" type="xs:string" use="optional" />
<xs:attribute name="FontSize" type="xs:string" use="optional" />

- <xs:attribute name="FontStyle" type="xs:string" use="optional" />
<xs:attribute name="Name" type="xs:string" use="required" />
<xs:attribute name="Tag" type="xs:string" use="optional" />

<xs:attribute name="TabIndex" type="xs:string" use="optional" />

<xs:attribute name="IsEnabled" type="xs:string" use="optional" />

WO 2007/067578 PCT/US2006/046464

28
<xs:attribute name="Visibility" type="xs:string" use="optional" />

<xs:attribute name="ToolTip" type="xs:string" use="optional" />
<xs:attribute name="Text" type="xs:string" use="optional" />

<!-- Events -->
<xs:attribute name="Click" type="xs:string" use="optional" />
<xs:attribute name="GotFocus" type="xs:string" use="optional" />
<xs:attribute name="LostFocus" type="xs:string" use="optional" />
<xs:attribute name="KeyUp" type="xs:string" use="optional" />
<xs:attribute name="KeyDown" type="xs:string" use="optional" />
<xs:attribute name="MouseUp" type="xs:string" use="optional" />
<xs:attribute name="MouseDown" type="xs:string" use="optional" />
<xs:attribute name="TextChanged" type="xs:string" use="optional"/>
</xs:attributeGroup>
</xs:schema>
[0085] The above specification, examples and data provide a complete description of
the manufacture and use of the composition of the invention. Since many embodiments of
the invention can be made without departing from the spirit and scope of the invention, the

invention resides in the claims hereinafter appended.

WO 2007/067578 PCT/US2006/046464

29
WHAT IS CLAIMED IS:

1. A computer-readable medium having computer executable instructions
for creating a metadata driven user interface, comprising:
accessing metadata that is used in defining a user interface, wherein the
metadata defines controls within the user interface and wherein the metadata
supports binding data to one or more controls of the user interface; and

rendering the user interface according to the metadata.

2. The computer-readable medium of Claim 1, further comprising
providing a metadata schema that includes mechanisms to: create the controls within
the user interface; programmatically modify the controls and support event handling for

the controls.

3. The computer-readable medium of Claim 2, further comprising creating
the metadata for the user interface according to the metadata schema and storing the

metadata in a file.

4, The computer-readable medium of Claim 3, wherein the metadata
defines properties that are associated with the controls within the user interface and

defines a layout of the controls within the user interface.

5. The computer-readable medium of Claim 2, wherein the metadata
schema provides the ability to define custom controls and include standard controls

within the user interface.

6. The computer-readable medium of Claim 2, wherein programmatically

modifying the controls comprises providing access to a code-behind assembly.

7. The computer-readable medium of Claim 6, wherein the code-behind

assembly is specified in the metadata.

WO 2007/067578 PCT/US2006/046464

30
8. The computer-readable medium of Claim 6, further comprising exposing

an object model that is configured to allow properties of the controls to be read and

modified.

9. The computer-readable medium of Claim 5, wherein binding data to one
or more of the controls of the user interface comprises specifying a binding expression

in the metadata.

10. The computer-readable medium of Claim 9, wherein specifying the
binding expression comprises specifying a data source that is associated with at least

one control of the user interface.

11. The computer-readable medium of Claim 10, wherein the data source

comprises at least one of an object data source and an XML data source.

12. The computer-readable medium of Claim 10, wherein the metadata
schema is an XML schema and provides a text box type; a button type; a link type; an

image type; a check box type; a list control type; and a radio list type.

13. A method for creating a user interface using metadata, comprising:
accessing metadata that defines controls for a user interface; wherein the
metadata is created according to a metadata schema;
binding a data source to at least one of the controls within the user
interface; wherein the data source may be selected from an object data source and an

XML data source; and

rendering the user interface according to the metadata.

14. The method of Claim 13, further comprising using the metadata schema
for programmatically modifying the controls and supporting event handling for the

controls.

15. The method of Claim 14, further comprising providing a wrapper class

to wrap the controls of the user interface.

WO 2007/067578 PCT/US2006/046464

31
16. The method of Claim 15, wherein the wrapper class wraps a native .NET

control.

17. The method of Claim 14, wherein rendering the user interface
according to the metadata comprises setting control properties as specified in the

metadata for each control.

18. The method of Claim 17, further comprising developing a code behind
assembly which contains event handler code; specifying the code behind assembly in
the metadata; and specifying an event handler that handles a particular event for a

control.

19. An apparatus for rendering a user interface using metadata, comprising:

a processor and a computer-readable medium;

an operating environment stored on the computer-readable medium and
executing on the processor;

a data store that is configured to store a metadata file that specifies
controls within a user interface and wherein the metadata includes binding expressions
that are used to bind data to one or more controls of the user interface; and

arendering engine comprising functionality that is configured to

interpret the metadata and render the user interface according to the metadata.

20. The apparatus of Claim 19, wherein the metadata is created according to
a metadata schema that includes mechanisms to: create the controls within the user

interface; programmatically modify the controls and support event handling for the

controls.

WO 2007/067578 PCT/US2006/046464

100y Eg — EJ»QO REMOTE)|
\@ 124 148 | compuTing
342 — ‘ 155 152 DEVICE
=5

XXX} INTERNET
MONITOR MODEM
L 00 AN
~N——7 AN, 0
C — I\ 158 —JAppLicATION
7N PROGRAMS
(e N 102~ 106 —\L .
SYSTEM MEMORY |

b o vem emtm et e e —— -

| OPERATING
NETWORK SYSTEM 126
VIDEO - m—
125 ADAPTER h y
_\ ADAPTER SySTEM BUS APPLICATION
DATA MEDIA o PROGRAMSTZS
INTERFACES - b \
W /— 116{)«:\\fgé L RENDERER, ,.,
APPLICATION 128 \, PROICISSSING —
PROGRAMS UNIT 110 RAM
PrRoGRAM 130 b_ﬁ—“—”——“—*ﬂ
~—Mooules 140
DATA _J o
el it =55 112 ROM
LMETADATA —= o000 D “v—
‘ /O INTERFACES
-\ .—.-—'-_._"__L____.__
—_ \
=) [(k= e —~138
]
% LS\ Iooooool ool
PRINTER Mous KEYBOARD OTHER
146 136 134 DEVICE(S)

Fig. 1

WO 2007/067578 PCT/US2006/046464

2/6

[200

210 220

Metadata Describing Ul) Interpreter
Events 215
325 230
2 \ 4 e

Code-Behind,

Renderer
Asssembly <
250 240
/ y ¢

- -

I | Controll |74
|

Data Source| Control 2 /242

| .

l]
———— = Control N ™~ _/243

Rendered UI

Fig. 2

WO 2007/067578

PCT/US2006/046464

3/6
Label ,\13 05
310
N 3\15
—— Page
g Pm;eT
Textbox ,\73’20
D This is a checkbox \/325
Link ~ 50
335
Button AV
List Item 1 ,
List Item 2 ~ 40
List Item 3
List Item 4
O RadioA \/345
QO RadioB

Fig. 3A

[~300

WO 2007/067578 PCT/US2006/046464

350 4/6

Ul Metadata: e

<xaml:Page Load="Pageload" Name="My Custom Page" xmins:xam!="urn-Mendocino/
xaml" Top="0" Left="0" Width="320" Height="400" Assembly="CodeBehind,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null"
TypeName="CodeBehind.PageCodeBehind">

362 ™ <xaml:Panel Name="panell" Left="8" Top="8" Width="304" Height="384"
Text="My Panel" Anchor="Top, Bottom, Left, Right">
364 ~— <xaml:Label Name="labell" Top="16" Left="8" Width="80"
Text="Label" />

366 ™ <xaml:TextBox Name="textBox1" Top="40" Left="8" Width="200"
Text="textbox" Anchor="Top,Left,Right" />

368 ™~ <xaml:CheckBox Name="checkBox1" Width="140" Top="72" Left="112"
Text="This is a checkbox" IsChecked="true" />

370 ™~ <xami:Button Left="8" Width="100" Top="132" Background="Control"
Name="button1" Text="This is a button" Click="ButtonClick" />

372 ~— <xaml:LinkT.abel Top="132" Left="124" Width="100" Text="This is a
link" Click="ButtonClick"/>

374 ™~ <xaml:ListBox Left="8" Top="164" Name="listBox1" SelectedIndex="2">
<xaml:ListBoxItem>krishna</xaml:ListBoxItem>
<xaml:ListBoxItem>arvind</xaml:ListBoxItem>
<xaml:ListBoxItem>satish</xaml:ListBoxItem>
<xaml:ListBoxItem>jaggi</xaml:ListBoxItem>

</xaml:ListBox>

<xaml:RadioButtonList Left="8" Top="264" Width="200" Text="These
are the options" SelectedIndex="1">
<xaml:RadioButton>Choose A</xaml:RadioButton>
<xaml:RadioButton>Choose B</xaml:RadioButton>
</xaml:RadioButtonList>

376 ™~

</xaml:Panel>

</xaml:Page>

Fig. 3B

WO 2007/067578

5/6

START

PCT/US2006/046464

[400

Input Metadata File ,\3110
um
420
AY
4 440
Identify and Retrieve|)
Compressed Chunks
Decompress Chunks r\leO
Return Data \jl60

Fig. 4

WO 2007/067578

6/6

PCT/US2006/046464

[400

Instantiate Control 410
(Based on Type,
Label, TexBox)
Set Base Properties 40
(Top, Left, Width, |™~\J
Height, etc.)
440
Set Control L J
Properties
Subscribe to Control | 450
Events
Add to Parent 460
Control (container) \/
Instantiate Child 470
Controls (if any) (\/

Fig. 5

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2006/046464

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 3/048(2006.01)i, GOGF 17/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 GOGF

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models since 1975
Japanese Utility models and application for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS: "interface" "metadata” "control”

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2005/0091576 A1 (RELYEA et al.) 28 April 2005 1-20
See the detailed description paragraph [0021-0045], paragraph [0298-0320], claim 1-58 and
figure 3-16.
A US 2004/0230572 A1 (OMOIGUI et al.) 18 November 2004 1-20

See the abstract and claim 1

A US 6,158,044 A (TIBBETTS et al.) 5 December 2000 1-20
See the abstract, claim 1 and figure 11

A US 6,961,900 B1 (SPRAGUE et al.) 1 November 2005 1-20
See the abstract, claim 1 and figure1-2

|:| Further documents are listed in the continuation of Box C. & See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
16 APRIL 2007 (16.04.2007) 16 APRIL 2007 (16.04.2007)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, LEE, Cheol Soo
. Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8525

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2006/046464
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2005/0091576 At 28.04.2005 AU2004205327AA 12.05.2005
BR200407050A 22.11.2005
CA2481590AA 24.04.2005
CN1609792A 27.04.2005
EPO1536327A2 01.06.2005
IL164072A0 18.12.2005
JP2005135384A2 26.05.2005
KR 1020050039549 29.04.2005
MXPAO4008849A 17.06.2005
NO20043781A 25.04.2005
NZ535217A 26.05.2006
SG111201A1 30.05.2005
US 2004/0230572 At 18.11.2004 W02005103883A1 03.11.2005
US 6,158,044 A 05.12.2000 AU199941921A1 06.12. 1999
EPO1093612A1 25.04.2001
W09960478A1 25.11.1999
US 6,961,900 B1 01.11.2005 US2005210057AA 22.09.2005

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - wo-search-report
	Page 41 - wo-search-report

