
## M. MARTIN.

## PROTECTIVE APPLIANCE FOR MILLS, FACTORIES, &c.

(Application filed Oct. 17, 1898.)



## United States Patent Office.

MORRIS MARTIN, OF MALDEN, MASSACHUSETTS, ASSIGNOR TO THOMAS J. DRUMMOND, OF BOSTON, MASSACHUSETTS.

## PROTECTIVE APPLIANCE FOR MILLS, FACTORIES, &c.

SPECIFICATION forming part of Letters Patent No. 664,331, dated December 18, 1900.

Application filed October 17, 1898, Serial No. 693,725. (No model.)

To all whom it may concern:

Be it known that I, MORRIS MARTIN, of Malden, county of Middlesex, State of Massachusetts, have invented an Improvement in Protective Appliances for Mills, Factories, Storehouses, &c., of which the following description, in connection with the accompanying drawings, is a specification, like letters on the

drawings representing like parts. Most of the large mills, factories, storehouses, &c., to be insured at low rates have to be equipped with what is known as a "sprinkler system," the sprinklers operating automatically on the occurrence of a fire and per-15 mitting the escape of water from the pipe system, and frequently by the action of the sprinklers alone destructive fires are obviated. The sprinklers used are all liable to accidents, whereby the valves may be disturbed, causing 20 them to leak, and sometimes there is a fault in the connection of the sprinkler to the pipe, which results in leakage and damage, and this leakage of water is frequently very great, flooding a factory or storehouse and damag-25 ing valuable machinery and goods. It sometimes happens that a slow leak in a storehouse which is not visited frequently results in damaging great quantities of goods. This damage, due to leakage of the sprinklers, is rec-30 ognized as a serious evil, and the insurance companies have been obliged to meet this contingency and also insure against water damage due to leakage of the sprinkler system, as well as against fire. I have aimed to produce 35 an appliance whereby on the occasion of any leakage in the sprinkler or water-pipe system with which the sprinklers are connected, be it ever so little, the escape of said water will instantly close an electric circuit and ring a 40 bell or sound an alarm to give notice at suitable headquarters of the room, floor, or sprinkler, it may be, where the leakage is manifest. To do this, I mount the appliance, hereinafter to be described, in an electric circuit contain-

eration of the signals.

The bells used may be tap or vibrating bells,

o and hereinafter I shall in the claims designate

ter and time-stamp to record the time of op-

45 ing suitable annunciators and bells, and, if desired, the circuit may also include a regis-

this bell, annunciator, or register as an "indicator," either one or all of which may be used, if desired.

The part of my appliance of the greater importance herein to be described is that 55 which I shall designate as a "hydrostat," and with it I may and preferably will combine a thermostat.

The hydrostat will be so located with relation to the pipe system or sprinklers that any .60 leakage will by gravity enter a suitable cup, and the water entering the cup, be it ever so little, will immediately effect the movement of material contained in said hydrostat, so that it will operate a circuit-controller to make and 65 break an electric circuit. With this hydrostat I have combined operatively a thermostat, it having as one of its parts a piston and spring, the piston being held by a drop of easily-fusible solder or material which will 70 melt at preferably a lower temperature than that required to let off the usual sprinkler, so that an incipient fire in its very early stage will let off the thermostat—that is, loosen its piston, so that it will move and operate the 75 circuit-controller of the hydrostat—thus giving the alarm as if the hydrostat had received

The invention herein contained is considered as a broad one and is not in all cases 80 limited to the particular form of hydrostat described; but I have devised a most effective and simple form of hydrostat which is especially adapted for quick or substantially instantaneous work and is therefore most 85 valuable in the particular connection in which

the hydrostat is to be used.

My improved hydrostat consists, essentially, of a chamber or holder adapted to receive and support the material which under the influ-90 ence of water applied to it will quickly act to operate the circuit-controller of the hydrostat. The hydrostat is represented as provided at its upper end with a cup having a connected chamber, the water entering said 95 chamber so disturbing the material therein that it will be started in motion to effect the operation of the circuit-controller. The chamber referred to contains a substance which readily enlarges or extends itself on 100

664,331 2

the admission of water, even of a very small amount—say half a teaspoonful—and it will act instantly to operate the circuit-controller.

The material contained in the chamber in 5 one simple form of my invention may be composed of dry cellulose or paper or cornpith. I have found that paper of the character designated as "blotting-paper" cut into disks superimposed in series to constitute a 10 pile acts with the greatest rapidity and as it enlarges or elongates acts with considerable power to safely operate the circuit-controller. Instead of cutting this paper into disks the pulp from which it is made might be molded 15 into a stick of greater or less length and di-This invention is not, however, limited in all instances to the employment of the materials named, as I may use any dry anhydrous material or any chemicals in their 20 dry state, the chemicals being of such nature as will upon the addition of water thereto be put into a state of commotion and generate gas, creating a power sufficient to move the circuit-controller. As one illustration of this 25 class of chemicals I will mention the ingredients of a sedlitz-powder. The cellulose material or blotting - paper or substance employed when in use may rest at one end against a piston fitted in said cylinder. This 30 piston has been, as stated, devised to act as a thermostat, it having mounted under its head and about its shank a spring, the piston being then pushed in a direction to compress the spring, the shank of the piston being held 35 in position by means of usual easily-melting solder or equivalent material. On the occurrence of heat sufficient to fuse this material the piston will be moved by the spring and move with it the paper or other material in 40 the chamber, causing it to be moved to operate the circuit-controller.

These hydrostats, with or without their connected and cooperating thermostats, will be joined in series by wire in a circuit, and 45 the piping of the system may form part of the circuit—for instance, the return-circuit. The hydrostats may be used at any point of the pipe system, but preferably directly under or near a sprinkler, so that any leakage 50 from the sprinkler will readily enter the cup of the hydrostat and thence the chamber containing the material which under the action of water will be made to operate the circuitcontroller. I prefer to locate the hydrostats 55 underneath the pipe system, for the reason that any slow leakage will gravitate to the under side of the pipe and drop into the hydrostats; but they may be located at any desired point so long as they are arranged to re-60 ceive water which may escape from the pipes or from the pipe at a sprinkler or other point.

Figure 1 represents a sufficient portion of a mill, factory, or other place to be protected by sprinklers and my improvements herein 65 to be described added thereto. Fig. 2 shows an enlarged sectional detail of the combined hydrostat and thermostat applied to a pipe l

under the opening therein, which in practice will receive a sprinkler. Fig. 3 is a detail showing two floors of a mill or factory 70 with the hydrostats connected in circuit with an annunciator and alarm or tap bell, and Figs. 4 and 5 are modifications to be described.

In the drawings, let A represent the ceiling of a mill, factory, storehouse, or other 75 place to be protected by a sprinkler system; B, suitable hangers to support the horizontal pipes C, said pipes extending from suitable risers C', the pipes C and C' constituting the pipe system. These pipes contain water un- 85 der pressure, and they have suitable holes, as at a, in which are screwed or fixed sprinklerheads D, each having a valve which is closed by pressure upon it of a strut composed of two parts D' D2, united by some easily-fusible 85 material, such as solder, the melting of the solder, due to a fire or rise of temperature, destroying the connection between the said parts, letting the valve rise under the pressure of the water, so that the water striking 90 the spreader D<sup>3</sup> will be thrown about in the vicinity of the sprinkler on whatever may be in the mill, factory, or storehouse.

The sprinkler shown is one of usual variety, and instead of it I may use any other 95 usual or well-known form of sprinkler adapted to be released by rise of temperature in any

other usual manner.

It frequently happens that the sprinklervalve accidentally becomes loosened and wa- 100 ter leaks through the sprinkler, and also sometimes a leak occurs at the point of connection of the sprinkler with the pipe. This leakage will drop down from the pipe and, falling upon machinery, goods, &c., is liable 105 to do great damage, depending upon the value of the material which is wet down. I so locate my hydrostat E with relation to the pipe carrying the water and the sprinkler that any leakage will enter the open top of cup e, surrounding the chamber e'. The chamber e' is prolonged at e2 above or into the cup, and said prolongation is provided with inlets, as  $e^3$ , one or more, so that water entering the cup may pass through the inlet into the chamber. 115 The top of this chamber is closed by an insulating-block f, which may be composed of india-rubber or other equivalent material, held in place by suitable screws f'. This insulating-block receives a bolt g, forming one 120 member of a circuit-controller, the other member being movable, and, as herein shown, it is represented as composed of a disk g', located within and guided by the inner walls of the chamber e', said disk having, as shown, 125 one or more spiral springs g6 to always maintain contact with the metallic wall of the chamber, and said second or movable member of the circuit-controller rests, as represented in Fig. 2, upon the material which 130 under the action of water will be enlarged or expanded to operate said movable member of the circuit-controller. The material employed in Fig. 2 is supposed to be blotting664,331 3

paper cut into disks and superimposed one on the other to make a pile. The stationary member g of the circuit-controller affords a means for connecting with the hydrostat the 5 wire h, used as one member of the electric circuit. Fig. 2 shows the contact made between the wire and the fixed member of the circuitcontroller by means of suitable nuts h' and  $h^2$ , which are screwed together tightly one 10 with relation to the other, so as to grasp the wire firmly. The cup e is in this instance of my invention represented as supported by a bracket made as a fork m, it having teats m', which are sprung into holes in the cup, and 15 the upper end of the bracket may have two jaws m, which may be sprung over the pipe C at any desired point; but instead of this bracket I may use any other suitable or convenient form or shape of bracket in order to 20 support the hydrostat properly with relation to the pipe system and sprinklers. bottom of this chamber I have located a piston (designated as  $g^3$ ) having a stem n, the said stem being extended out through a hole 25 in the bottom of the chamber, which stem receives upon it a quick-melting solder or material which holds the piston in its depressed position, it compressing a spring  $n^4$ , located between the under side of the head of the 30 piston and the end of the chamber. The piston so held constitutes what is herein designated as a "thermostat."

Assuming that the apparatus is in position and water should enter the cup, it will imme-35 diately enter the inlets  $e^3$ , and ever so little of it, even half a teaspoonful, will meet the blotting-paper or equivalent cellulose or dry material, and the latter will expand and elongate itself, lifting and operating the movable 40 member g' of the circuit-controller, causing the point  $g^5$  to meet the inner end of the stationary member of the circuit-controller, and immediately thereafter this operation of the circuit-controller will be announced at an in-45 dicator or annunciator, as o or o', and the bell or alarm o<sup>2</sup> will also be actuated, sounding the same and calling attention to the fact that leakage is occurring, and the annunciator will show the particular floor or room, or it may 50 be the particular hydrostat, at which the water is escaping.

It will be understood that the annunciator may be of any usual known or suitable kind and may have any desired number of drops 55 and that the wiring from the annunciator to the circuit-controller may be made in any usual or well-known way, as may be readily understood by a practical electrician.

In the drawings, Fig. 3, I have shown a build-60 ing of two floors, one floor having the wire h, running to the annunciator o, and the other floor having a wire  $h^{\times}$ , which runs into an annunciator o', the battery being located at  $B^{\times}$ and the return-circuit wire  $\tilde{h}^{10}$  being con-65 nected with the pipe system.

In the modification Fig. 4 I have shown the

erably the said controller will be normally open, as in Fig. 2. In Fig. 4 the cellulose material or paper will be put on a rod r, attached 70 to a head r', supported by a spiral spring  $r^2$ , said rod constituting the movable member of the circuit-controller, said movable member being kept compressed against the stationary member  $g^4$  of the controller by said spring. 75 Should water fall on the paper or material, the same will quickly swell between the fixed plate or support  $r^5$  and the head r' and will move the head and rod to break the normallyclosed circuit, thus operating the indicator, 80 alarm, or annunciator.

When the movable member of the circuitcontroller (see Fig. 2) is actuated to close the circuit, the spring  $g^6$  thereon keeps in contact with the inner metallic side of the cham- 85 ber e', and when the controller is closed the electricity passes through said movable member, the upper part  $e^2$  of the chamber, and the cup and hanger to the pipe C.

The cellulose, paper, &c., is dry or anhy- 90 drous, and, as has been stated, this invention is not intended to be limited in all respects to the particular kind of dry material used in the hydrostat to operate the circuit-controller quickly when water is added to the dry 95

material. Fig. 5 shows a modification wherein a powdered dry substance s—for instance, a sedlitzpowder—is contained in the chamber e', and lying on this dry material is a thickness of 100 blotting-paper  $t^2$ , on which rests a movable member composed of metal having a metallic point s' and one or more perforations, as  $s^2$ , to let water entering the chamber pass through the said member and mix with the powder, 105 and the effervescence of the powder will create a gas which will lift the member carrying the point s' sufficiently to cause it in this instance to close the electric circuit on the stationary member s<sup>4</sup> and operate the in- 110 dicator. The paper t<sup>2</sup> will check the outflow of the gas generated in the powder.

I may use a hydrostat at each sprinkler, or I may use a less number of hydrostats, connecting adjacent hydrostats with a trough t, 115 it receiving any water which may leak from the system and conduct it into the hydrostat.

Having described my invention, what I claim as new, and desire to secure by Letters Patent, is-

1. In a protective appliance for mills and the like, a hydrostat comprising a reservoir or chamber, hydro-expansible material supported in said chamber and means for conducting liquid into said chamber.

2. In a protective appliance for mills and the like, a hydrostat comprising hydro-expansible material, means for supporting said material, means for conducting liquid to said hydro-expansible material, and an indicator 130 set in motion by the expansion of said mate-

3. A hydrostat composed of a chamber or circuit-controller normally closed; but pref- | holder, a circuit-controller, and hydro-expansible means sustained by said chamber or holder, and adapted in the presence of water to operate said controller and means for conducting water to said chamber, substantially as described.

4. A hydrostat composed of a chamber containing anhydrous material in a free or loose condition and a circuit-controller actuated through the movement of the said material

10 in the presence of water.

5. A hydrostat composed of a chamber or holder containing paper of the character known as "blotting-paper," and a circuit-controller, said controller being operated quickly by the expansion of said paper after the application of water thereto, substantially as described.

6. A hydrostat having a chamber containing hydro-expansible material supported by
20 said chamber, an electric circuit, an indicator controlled by said circuit, and a circuit-controller adapted to be operated by the ex-

pansion of such material.

7. In combination with a water-supply system of a hydrostat having hydro-expansible material and means to sustain said material, said hydrostat being connected to and adapted to catch water issuing from said system.

8. A hydrostat having a hydro-expansible material, and means for sustaining the said material, in combination with a thermostat adjacent thereto and a circuit-controller operable by both the hydrostat and thermostat.

9. A circuit-controller, and a chamber or 35 holder having a movable piston and rod at one end to sustain dry cellulose material adapted to swell and increase in size rapidly by the action of water to operate said circuit-con-

troller, combined with a spring acted upon by said piston and held compressed by easily- 40 fusible solder, the melting of said solder also operating the said circuit-controller, substantially as described.

10. An electric circuit, an indicator governed by the circuit, a circuit-controller, a 45 hydrostat having hydro-expansible material adapted to control said circuit-controller, and a thermostat also adapted to control said cir-

cuit-controller.

11. A sprinkler, a hydrostat subjacent 50 thereto and comprising a chamber, hydroexpansible material contained within said chamber and an indicator under control of the said hydro-expansible material.

12. A hydrostat comprising a chamber and 55 a drip-cup leading thereto, said chamber containing material the cubical area of which is changeable by water, and an indicator under

control of said material.

13. A sprinkler, a hydrostat subjacent 60 thereto and comprising a chamber, a drip-cup leading thereto, said chamber containing material the cubical area of which is changeable by water, and an indicator under control of said material.

14. A hydrostat having hydro-expansible material, a thermostat, and an indicator under control of both said hydrostat and ther-

mostat.

In testimony whereof I have signed my 70 name to this specification in the presence of two subscribing witnesses.

MORRIS MARTIN.

Witnesses:

GEO. W. GREGORY, MARGARET A. C. DUNN.