发明名称
接收设备与接收方法

摘要
提供通信系统中接收数据的接收设备及其接收方法。所述接收设备包括：接收部分，其接收作为重排比特序列发送的数据以及解调部分，其解调所接收到的数据，其中，关于比特序列i,q1,i2,q2,...的重排比特序列通过将i1和q1与i2和q2交换并且置置i1和q1的逻辑值或i2和q2的逻辑值而产生。在输入比特序列进入映射实体之前修改该输入比特序列。信号闹局的修正通过使用交织器和逻辑比特反相器来实现，该反相器根据该信号参数与相位或交换信号格局比特的位置。因此，不需要利用参数化的比特到信号映射实体，就可以实现格局重新安排。
1. 一种接收设备，包括：
接收部分，其接收作为重排比特序列发送的数据；以及
解调部分，其解调所接收到的数据。
其中，关于比特序列 1,q,1,2,q,2,该重排比特序列通过将 1,1 与 1,2 交换并且倒置
1,1 和 q,1 的逻辑值来产生。
2. 一种接收设备，包括：
接收部分，其接收作为重排比特序列发送的数据；以及
解调部分，其解调所接收到的数据。
其中，关于比特序列 1,q,1,2,q,2,该重排比特序列通过将 1,1 与 1,2 交换并且倒置
1,2 和 q,2 的逻辑值来产生。
3. 根据权利要求 1 或 2 所述的接收设备，其中，所述接收部分还接收关于交换和倒置的
信息。
4. 根据权利要求 3 所述的接收设备，还包括：
重排部分，其基于所述信息重排所接收到的数据的所述重排比特序列。
5. 根据权利要求 1 或 2 所述的接收设备，还包括：
组合部分，其组合所接收到的数据与之前所接收到的数据。
6. 根据权利要求 1 或 2 所述的接收设备，其中，所述接收部分还接收作为比特序列
1,q,1,2,q,2 发送的数据，并且所述接收设备还包括组合部分，其组合作为经重排的比特序列发
送的数据与作为比特序列 1,1,2,q,2 发送的数据。
7. 一种接收方法，包括：
接收作为重排比特序列发送的数据；以及
解调所接收到的数据。
其中，关于比特序列 1,q,1,2,q,2,该重排比特序列通过将 1,1 与 1,2 交换并且倒置
1,1 和 q,1 的逻辑值来产生。
8. 一种接收方法，包括：
接收作为重排比特序列发送的数据；以及
解调所接收到的数据。
其中，关于比特序列 1,q,1,2,q,2,该重排比特序列通过将 1,1 与 1,2 交换并且倒置
1,2 和 q,2 的逻辑值来产生。
9. 根据权利要求 7 或 8 所述的接收方法，其中，还包括接收关于交换和倒置的信息。
10. 根据权利要求 9 所述的接收方法，还包括：
基于所述信息重排所接收到的数据的所述重排比特序列。
11. 根据权利要求 7 或 8 所述的接收方法，还包括：
组合所接收到的数据与之前所接收到的数据。
12. 根据权利要求 7 或 8 所述的接收方法，还包括：
接收作为比特序列 1,q,1,2,q,2 发送的数据；以及
组合作为经重排的比特序列发送的数据与作为比特序列 1,1,2,q,2 发送的数据。
接收设备与接收方法

[0001] 本发明是申请日为2002年11月15日，申请号为02826829.6的发明专利申请“数据传送的混合式自动重复请求方法”的分案申请。

技术领域
[0002] 本发明涉及实施在通信系统中自动重复请求（ARQ）重传时修改比特序列的方法的接收设备及其接收方法。

背景技术
[0003] 具有不可靠和时变信道条件的通信系统中的公知技术根据自动重复请求（ARQ）方案和称之为混合式ARQ（HARQ）的前向纠错（FEC）技术进行纠错。如果利用通常使用的循环冗余校验（CRC）检测差错，则通信系统的接收机请求发射机重发错误接收的数据分组。

[0005] 类型 I：丢弃错误接入的分组，和分别重传和解码相同分组的信拷贝。它不组合前后接收的分组的版本。

[0006] 类型 II：不丢弃错误的分组，而是将其与后续解码的重传组合。重传一组有时具有较高的编码率（编码增益），并且在重传中将其与来自在前传送的存储的软信息组合。

[0007] 类型 III：与类型 II 相同，具有每个重传分组的自解码的限制。这意味着，已传送的分组是可解码的，不需要在前分组组合。如果以几乎没有信息是可重用的方式来损坏某些分组，这是有用的。如果所有传送携带已标识数据，则可将其视为具有单一冗余版本的，称之为 HARQ 类型 III 的特定情况。

[0008] 类型 II 和类型 III 方案相对于类型 I 显然更智能化，并且显示了性能增益，因为它们提供了重用采自前接收的错误分组的信息的能力。目前基本上存在重用在前传送分组的冗余的三种方案：

[0009] ●软组合
[0010] ●码组合
[0011] ●软组合和码组合的组合
[0012] ●软组合
组合级联已接收的分组,以便生成新码字 (随着传送参数增加来降低码速率)。因此,解码器必须知道每个重传瞬间应用的 FEC 方案。码组合提供了较之软组合更高的灵活性,因为它可以改变重传分组的长度,以便满足信道状况。然而,较之软组合,这需要更多的待发送的信令数据。

软组合与码组合的组合
在被重传的分组携带了与在前被传送的符号相同的某些符号和与其不同的某些符号的情况下,使用名为“软组合”节中的软组合来组合相同的符号,同时将使用码组合来组合剩余符号。这里,信令需求将类似于码组合。

如 M. P. Schmitt 的“利用 TCM 和分组组合的混合式 ARQ 方案 (HybridARQ Scheme Employing TCM and Packet Combing, Electronics Letters Vol. 34, No. 18, September 1998) 所示,通过重新安排重传时的符号结构 (constellation) 可以增加波形调节 (TCM) 的 HARQ 性能,这里,性能增益是最大化重传的信号符号之间欧几里得距离的结果,因为重传是根据符号基础结构的。

考虑到高级调制方案 (具有携带两个以上比特的符号),利用软组合的组合方法具有一个主要缺点:软组合符号内的比特可靠性在整个重传过程中为定比,即,在收到进一步重传后,来自在前已接收传送的不可靠的比特,将仍然不可靠,与之类似,在收到进一步传送之后,来自在前已接收传送的不可靠的比特将仍然更不可靠性。

变比特可靠性是从二维信号结构 (constellation) 映射的限制演化而来的,其中,在所有符号很可能被平均发送的假定下,每个符号携带两个以上比特的调制方案不可能具有所有比特的相同平均可靠性。所以,术语“平均可靠性”是指信号结构 (signal constellation) 的全部符号的特定比特的可靠性。

利用根据显示格雷编码信号结构的图 1 与给定的映射顺序 i_1q_1i_2q_2 的 16QAM 调制方案的信号结构,映射到符号上的比在分组的首次传送中其平均可靠性彼此明显不同。更具体地说,比特 i_1 和 q_1 具有高平均可靠性,因为这些比特被映射到信号结构图的半空间,所以它们的可靠性与比特发送 1 还是 0 的事实无关。

相反,比特 i_2 和 q_2 具有低平均可靠性,因为它们的可靠性取决于它们发送 1 还是 0 的事实。例如,对于比特 i_2 = 1 被映射到外列,而 0 被映射到内列。同样,对于比特 q_2 = 1 被映射到外行,而 0 被映射到内行。

对于第二次和每个进一步重传,比特可靠性将以彼此的定比保持,该比特可靠性由首次传送中利用的信号结构定义,即,在任何数量的重传后,比特 i_1 和 q_1 将总是具有比比特 i_2 和 q_2 更高的平均可靠性。
在共同待审的 PCT/EP01/01982 中，建议了一种增强解码器性能的方法，在分组的每个已接收传送之后，该方法具有等于或者接近等于平均比特可靠性的相当大的益处。因此，通过使平均比特可靠性达到平均数的方式，使比特可靠性适应整个重传。这是通过选择用于传送的预定第一和至少第二信号格局实现的，这样所有传送的相应比特的组合平均比特可靠性几乎相等。

因此，信号格局重新安排导致已变化的比特映射，其中格局点的移动导致从重传到重传地改变调制符号之间的欧几里得距离。所以，可以按预期的和达到平均数的方式操纵平均比特可靠性，以便在接收机中增加 FEC 解码器的性能。

在以上建议的解决方案中，通过参数化比特到符号的映射实体可以实现格局重新安排的利益。由于复杂性或者有效实施原因，使通信系统具有一个非参数化标准映射实体可能是有利的。

发明内容

因此，本发明的目的是提供具有改进的纠错性能且没有参数化的比特到符号的映射实体的 ARQ 接收设备和接收方法。

为了实现本发明上述和其他目的，本发明提供传送设备，包括，重排部分，其通过交换 i_1 和 i_2 的比特位置以及交换 q_1 和 q_2 的比特位置以及逻辑倒置 i_1 和 q_1 来重排比特序列 (i_1, q_1, i_2, q_2)；调制部分，其调制所述比特序列以及经重排的比特序列；和传送部分，其在首次传送中发送经调制的比特序列，而在重传中发送经调制的经重排的比特序列，其中，所述传送部分还发送关于重排的信息。

为了实现本发明上述和其他目的，本发明还提供传送设备，包括，重排部分，其通过交换 i_1 和 i_2 的比特位置以及交换 q_1 和 q_2 的比特位置以及逻辑倒置 i_1 和 q_1 来重排比特序列 (i_1, q_1, i_2, q_2)；调制部分，其调制所述比特序列以及经重排的比特序列；和传送部分，其在首次传送中发送经调制的比特序列，而在重传中发送经调制的经重排的比特序列，其中，所述传送部分还发送关于重排的信息。

为了实现本发明上述和其他目的，本发明提供接收设备，包括，接收部分，其接收作为重排比特序列发送的数据；以及解调部分，其调解所接收到的数据，其中，关于比特序列 i_1, q_1, i_2, q_2，该重排比特序列通过将 i_1 和 q_1 与 i_2 和 q_2 交换并且倒置 i_1 和 q_1 的逻辑值来产生。

为了实现本发明上述和其他目的，本发明提供接收设备，包括，接收部分，其接收作为重排比特序列发送的数据；以及解调部分，其调解所接收到的数据，其中，关于比特序列 i_1, q_1, i_2, q_2，该重排比特序列通过将 i_1 和 q_1 与 i_2 和 q_2 交换并且倒置 i_1 和 q_1 的逻辑值来产生。

为了实现本发明上述和其他目的，本发明提供传送方法，包括步骤：将比特序列 i_1, q_1, i_2, q_2 调制成第一 16QAM 符号并在首次传送中发送该第一 16QAM 符号，通过交换 i_1 和 i_2 的比特位置并且交换 q_1 和 q_2 的比特位置以及逻辑倒置 i_1 和 q_1 来重排比特序列 i_1, q_1, i_2, q_2；以及将经重排的比特序列调制成第二 16QAM 符号并且在重传中发送该第二 16QAM 符号以及关于重排的信息。

为了实现本发明上述和其他目的，本发明提供传送方法，包括步骤：将比特序列
附图说明
[0037] 为了更好地理解本发明，下面将参考附图说明优选实施例，在附图中：
[0038] 图1是具有格雷编码比特符号的16QAM调制的示范性信号格局；
[0039] 图2显示了具有格雷编码比特符号的16QAM调制方案的信号格局的4个实例，和
[0040] 图3是利用本发明方法的通信系统的示范性实施例。

具体实施方式
[0041] 在以下说明中，将描述作为比特可靠性度量的对数似然比 (LLR) 的概念。首先
将显示单传送的已映射符号内的比特 LLR 的直接计算。然后把 LLR 计算扩展到多传送情况。
[0042] 单传送
[0043] 在具有加性高斯噪声 (AWGN) 的信道和等可能符号上的传送而已经发射符号 s_n
的约束条件下，第 i 比特 b_{ni} 的平均 LLR 产生下式：

$$LLR_{b_{ni}}(r_n) = \log \left(\frac{\sum_{E_s/r_n}^{N_0} e^{-d_{n,s}} \ln r_{n,s}}{\sum_{E_s/r_n}^{N_0} \ln d_{n,s}} \right) - \log \left(\frac{\sum_{E_s/r_n}^{N_0} e^{-d_{n,s}} \ln r_{n,s}}{\sum_{E_s/r_n}^{N_0} \ln d_{n,s}} \right)$$

（1）

[0045] 其中，$r_n = s_n$ 是指在已经发射符号 s_n 的约束条件下平均已接收符号，$d_{n,s}$ 是指已
接收符号 r_n 与符号 s_n 之间的欧几里得距离的平方，E_s/N_0 是指观测的信噪比。

[0046] 从公式（1）中可以看出，LLR 依赖于信噪比 E_s/N_0 和信号格局点之间的欧几里得距离
Δr_n。

[0047] 多传送
[0048] 现在考虑多传送，在独立 AWGN 信道上已经发射符号 $s_n^{(i)}$ 和等可能符号的约束条件
下，第 j 比特 $b_{nj}^{(i)}$ 的第 k 传送后的平均 LLR 产生下式：
$$LLR_{\nu, \mu}^{(1)}(r_n^{(0)}, r_n^{(2)}, \ldots, r_n^{(k)}) = \log \left[\frac{\sum_{m=0}^{1} e^{-\frac{1}{2} \frac{\left(d_m(r_n^{(0)} - d_m(r_n^{(2)}) \right)^2}{\eta_0}}}{\sum_{m=\mu_0}^{\mu} e^{-\frac{1}{2} \frac{\left(d_m(r_n^{(0)} - d_m(r_n^{(2)}) \right)^2}{\eta_0}}} \right]$$

其中，j 是指第 j 次传送 (第 $(j-1)$ 次重传)。与单传送情况类似, 平均 LLR 依赖于信噪比 E_b/N_0 和每个传送次数的欧几里得距离。如果不执行格拒重新安排, 则欧几里得距离 $d_{\nu, \mu}^{(1)} = d_{\nu, \mu}^{(0)}$ 对于所有传送是恒定的，因此将由每个传送时间的观测信噪比和首次传送的信号格局点定义 k 个传送之后的比特可靠性 (LLR)。对于高级调制方案 (每符号高于 2 个比特), 这导致改变该比特的平均 LLR, 从而导致不同的平均比特可靠性。平均可靠性的差保留在整个重传中, 导致解码器性能的恶化。在下文中, 通常将认为 16-QAM 的情况导致 2 个高可靠和 2 个低可靠比特, 其中对于低可靠比特, 可靠性取决于发射 1 和 0 (参见图 1)。因此, 整体上存在 2 级平均可靠性, 因此第二等级可进一步细分。等级 1 (高可靠性; 2 个比特): 对于 1 (0) 的比特映射被分成 1 比特的正 (负) 实数半空间和 q 比特虚数半空间。这里不存在 1 被映射到正半空间还是负半空间的差别。等级 2 (低可靠性; 2 个比特): 1 (0) 被映射到用于 1 比特的内 (外) 列或者被映射到用于 q 比特的内 (外) 行。由于存在依赖于对内 (外) 列和行的映射的 LLR 的差别, 因此等级 2 被进一步分类成:等级 2a: i_n 到内列和 q_n 到内行的各自映射。等级 2b: 等级 2a 的倒置映射: i_n 到外列和 q_n 到外行的各自映射。为了确保所有比特的整个传送的最佳平均处理, 可靠性等级必须修改。必须考虑在初始传送前开放比特映射顺序, 但必须保留重传中, 例如, 用于初始传送的比特映射: $i_1, i_2, q_2 \Rightarrow$ 比特映射所有重传: i_1, i_2, q_2。图 2 显示了可能格局的某些实例。表 1 给出了根据图 2 得到的比特可靠性。

<table>
<thead>
<tr>
<th>格局</th>
<th>比特 i_1</th>
<th>比特 q_1</th>
<th>比特 i_2</th>
<th>比特 q_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>高可靠性 (等级 1)</td>
<td>高可靠性 (等级 1)</td>
<td>低可靠性 (等级 2b)</td>
<td>低可靠性 (等级 2b)</td>
</tr>
<tr>
<td>2</td>
<td>低可靠性 (等级 2a)</td>
<td>低可靠性 (等级 2a)</td>
<td>高可靠性 (等级 1)</td>
<td>高可靠性 (等级 1)</td>
</tr>
<tr>
<td>3</td>
<td>低可靠性 (等级 2b)</td>
<td>低可靠性 (等级 2b)</td>
<td>高可靠性 (等级 1)</td>
<td>高可靠性 (等级 1)</td>
</tr>
<tr>
<td>4</td>
<td>高可靠性 (等级 1)</td>
<td>高可靠性 (等级 1)</td>
<td>低可靠性 (等级 2a)</td>
<td>低可靠性 (等级 2a)</td>
</tr>
</tbody>
</table>
[0062] 在下文中，假定 \(m \) 代表重传次数参数，\(m = 0 \) 代表 ARQ 环境中的分组的首次传送。此外，假设 \(b \) 代表在映射实体中形成符号的比特的数量。通常，\(b \) 可以是任何整数，其中通信系统的最经常使用的值是 2 的整数幂。

[0063] 不失一般性，可以进一步假定被用作对交织处理的输入的比特数 \(n \) 可被 \(b \) 整除，即 \(n \) 是 \(b \) 的整数倍。本领域普通技术人员将会明白如果不是该情况，那么在上述条件满足之前，可以用假比特容易地增补输入比特的序列。

[0064] 如上所述，对于给定的调制，可以标识一些可靠性等级。交织处理在整个重传达到 \(b \) 比特的可靠性的平均数，以使所有 \(b \) 比特平均可靠。这意味着交织器必须改变符号内的 \(b \) 比特的位置 (在本领域还称作 “打包”)，使每个原始比特往往被映射到像多个 \(b \) 比特的所有其它比特那样所有可靠性等级上。这意味着交织是一个符号间比特映射处理。

[0065] 此外，可以有若干可靠性依赖逻辑比特值 (低或高) 的比特位置。当在这样一个位置非第一次映射到一个比特时，还将逻辑地倒置 (invert) 该比特。

[0066] 有了这些规则，可以构建指定用于重传号 \(m \) 的交织器和反相器处理。

[0067] 在理论上，理想的到达可靠性平均值尽可能在无限或者非常高数量重传之后实现。在这些情况下，也许有不同于交织器序列或者反相器模式 (pattern) 的可替代方案。选择这些可替代方案之哪个，将留下来由系统设计者选择，因为将没有性能上的差别。

[0068] 如果将保持如图 1 的信号格局，以便从图 2 的格局 1 得到格局 2，则必须执行以下处理，其中顺序不关紧要：

[0069] 1. 交换原始比特 \(i_1 \) 和 \(i_2 \) 的位置

[0070] 2. 交换原始比特 \(q_1 \) 和 \(q_2 \) 的位置

[0071] 3. 原始比特 \(i_1 \) 和 \(q_1 \) 的逻辑位置倒置。

[0072] 作为选择，还可以倒置以位置 1 和 2 结尾的那些比特。

[0073] 下表给出了依赖传送号的一个实例，其中诸多比特总是涉及首次传送，并且字符上的长划代表该比特的逻辑比特倒置：

| 格局号 | 交织器和反相器功能
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(i_1 q_1 i_2 q_2)</td>
</tr>
<tr>
<td>2</td>
<td>(i_2 q_2 \bar{i}_1 \bar{q}_1) 或 (i_2 \bar{q}_2 \bar{i}_1 \bar{q}_1)</td>
</tr>
<tr>
<td>3</td>
<td>(i_2 \bar{q}_1 i_1 q_1) 或 (i_2 q_2 i_1 q_1)</td>
</tr>
<tr>
<td>4</td>
<td>(i_1 q_1 \bar{i}_2 \bar{q}_2) 或 (i_1 \bar{q}_1 \bar{i}_2 \bar{q}_2)</td>
</tr>
</tbody>
</table>

[0076] 表 2 每行中第一给定例子对应于图 2 中给定的格局。从表 2 中可以容易地得知，信号格局 2 是通过交换 (对换) 比特 \(i_1 \) 和 \(i_2 \) 的位置以及比特 \(q_1 \) 和 \(q_2 \) 的位置和通过倒置比特对 \(i_1 \) 是所有比特，而从格局 1 得到的。类似地，信号格局 3 是通过在一个可替代方案中相互交换比特 \(i_1 \) 和 \(i_2 \) 的位置以及比特 \(q_1 \) 和 \(q_2 \) 的位置和通过倒置比特对 \(i_2 \) 是所有比特，而从格局 1 得到的。在另一个可替代方案中，仅仅交换比特位置而不需要倒置。格局 4 是通过倒置符号的比特对 \(i_2 \) 是所有比特，而不交换比特位置获得的。
据此，可以在用于传送号的不同策略之间作出选择（非穷举）：

<table>
<thead>
<tr>
<th>传送号</th>
<th>格局号</th>
<th>格局号</th>
<th>格局号</th>
<th>格局号</th>
<th>格局号</th>
<th>格局号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

表 3 显示了利用本发明方法的通信系统的一个示范性实施例。

在发射机 100 上，比特序列从信向纠错 (FEC) 编码器（未示出）获得，然后输入到交织器 110 和逻辑比特反相器 120。交织器 110 和逻辑比特反相器 120 分别依赖于传送号参数 m 并修改输入比特序列。接着，把比特序列输入到作为非参数化标准映射实体的映射器 / 调制器 130。映射器通常使用图 2 所示的一个信号格局，并且将 b 比特映射在通过通信信道 200 发射的符号上。通信信道通常是经历不可靠和时变信道条件的无线通信信道。

发射机和接收机存储交织 / 倒置模式，或者发射机存储交织 / 倒置模式并且将其告知接收机。

在接收机 300，复合符号被输入到解映射器 / 解调器 330，将已接收符号解调成对应的比特域序列（例如，LLR 的序列）。然后将序列输入到逻辑倒置器 320，再输入到解交织器 310，解交织器 310 输出已获得的比特域序列。

交织器和解交织器根据交织 / 解交织的公知技术，通过应用输入比特或符号序列的已确定的伪随机或随机置换进行操作，即交换（对换）序列内的比特或者符号的位置。在上述的实施例中，交织器是符号内比特交织器，用于改变映射实体中形成一个符号的比特的位置。

逻辑比特倒置器根据倒置比特的逻辑值的公知技术进行操作，即把逻辑低转换到逻辑高值以及把逻辑高转换到逻辑低值。在利用对数似然比工作的接收机的实际实现中，该倒置操作等同于对数似然比的记号倒置。

如果通过差错检测器（未示出）发出的自动重复请求开始重传，导致从发射机 100 发射一个相同数据分组，则在解映射器（demapper）/ 解调器 330 中将在前接收的错误数据分组与重传的数据分组进行软组合。由于解交织器和逻辑比特反相器修改了比特序列，因此可以达到平均比特可靠性的平均值，从而增加了接收机的性能。

尽管上述方法是利用格雷编码信号和 QAM 调制方案描述的，但是本领域普通技术人员将会明白，也可以等效地使用其它合适的编码和调制方案来获得本发明的效益。
图 1
格局 4

<table>
<thead>
<tr>
<th>i1</th>
<th>i2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1010</td>
</tr>
<tr>
<td>1001</td>
<td>1011</td>
</tr>
<tr>
<td>1100</td>
<td>1110</td>
</tr>
<tr>
<td>1101</td>
<td>1111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
</tr>
<tr>
<td>0011</td>
</tr>
<tr>
<td>0111</td>
</tr>
<tr>
<td>0101</td>
</tr>
</tbody>
</table>

格局 3

<table>
<thead>
<tr>
<th>i1</th>
<th>i2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110</td>
<td>0110</td>
</tr>
<tr>
<td>1010</td>
<td>0010</td>
</tr>
<tr>
<td>1011</td>
<td>0011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
</tr>
<tr>
<td>0000</td>
</tr>
<tr>
<td>0011</td>
</tr>
<tr>
<td>0010</td>
</tr>
</tbody>
</table>

图 2b
图 3