Office de la Propriete Canadian CA 2136300 C 2002/05/21

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 1 36 300
g'rn(c)iL%?r?(iesgaenada ﬁrgijgt?;%/aa;da (12) BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de dépot PCT/PCT Filing Date: 1993/03/30 (51) Cl.Int.°/Int.CIl.° GOBF 12/02
(87) Date publication PCT/PCT Publication Date: 1993/10/14 | (72) Inventeur/Inventor:
(45) Date de délivrance/lssue Date: 2002/05/21 carte, Robert J., US
(85) Entrée phase nationale/National Entry: 1994/11/21 (73) Proprietaire/Owner:

HYPERION SOLUTIONS CORPORATION, US
(74) Agent: DIMOCK STRATTON CLARIZIO LLP

(86) N° demande PCT/PCT Application No.: US 1993/003002
(87) N° publication PCT/PCT Publication No.: 1993/020512
(30) Priorite/Priority: 1992/03/30 (07/860,443) US

(54) Titre : METHODE ET DISPOSITIF POUR STOCKER DES DONNEES MULTIDIMENSIONNELLES DANS UNE
MEMOIRE D'ORDINATEUR ET LES EN EXTRAIRE

54) Title: METHOD AND APPARATUS FOR STORING AND RETRIEVING MULTI-DIMENSIONAL DATA IN
COMPUTER MEMORY

1
INPUT »| DEFINE MEMBER STRUCTURE
CREATE LINKED LIST 2

INPUT—— .| SELECT DENSE DIMENSIONS 3

CREATE UPPER LEVEL a
STRUCTURE
| INPUT DATA
. 7
CHECK FOR POINTER TO INVALID | ERROR
8 DATA BLOCK MESSAGE

INPUT.

VALID EMPTY
10 INSERT DATA IN BLOCK CREATE
BY DENSE PARAMETERS DATA
- BLOCK
9
INSERT POINTER TO BLOCK IN
UPPER LEVEL STRUCTURE
MORE YES
DATA?
NO

(57) Abrége/Abstract:
A method and apparatus for storing and retrieving multi-dimensional data in which a multi-level data structure Is defined wherein
one level contains those dimensions chosen by the user to result in dense data and the other level contains the remaining

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2136300 C 2002/05/21

anen 2 136 300
13) C

(57) Abréege(suite)/Abstract(continued):

sparse data combinations. The dense dimensions specified In any given case are used to determine the basic block size used
to store Information. The remaining sparse dimensions are used to create the upper level structure which is used to point to the
block which contains the desired information. Depending upon the sparseness of the data, different types of upper level
structure may be used. Both the variable data block size and the choice of pointer structure may be used to balance the memory
required against the speed of retrieval. Once the data structure Is created, the data in the data blocks, and the pointers in one

type of upper level pointer structure, may be retrieved by simple calculation of the offset of the desired cell In memory rather than
requiring a search.

b

PCI‘ | WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification > : (11) International Publication Number: WO 93/20512

GO6F 12/02 AL | 43) International Publication Date: 14 October 1993 (14.10.93) |

CA, JP, KR, European patent (AT,

(21) International Application Number: PCT/US93/03002 | (81) Designated tates: AU,
BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC,
(22) International Filing Date: 30 March 1993 (30.03.93) | NL, PT, SE).
|
(30) Priority data: Published |
07/860,443 30 March 1992 (30.03.92) US| With international search report.

(71) Applicant: ARBOR SOFTWARE CORPORATION [US/
US]J; 3211 Scott Boulevard, Santa Clara, CA 95054 (US).

{(72) Inventor: EARLE, Robert, J. ; 930 Rockfeller Drive, #17A, |
| Sunnyvale, CA 94087 (US).

(74) Agent: SAWYER, Joseph, A., Jr.; Benman & Coilins, 490
" California Avenue, Suite 202, Palo Alto, CA 94306 (US).

U (54) Title: METHOD AND APPARATUS FOR STORING AND RETRIEVING MULTI-DIMENSIONAL DATA IN COM-

PUTER MEMORY

(57) Abstract

- A method and apparatus for storing and retrieving multi-dimensional data in which a multi-level data structure is defined
wherein one level contains those dimensions chosen by the user to result in dense data and the other level contains the remaining

- | sparse data combinations. The dense dimensions specified in any given case are used to determine the basic block size used to

store information. The remaining sparse dimensions are used to create the upper level structure which is used to point to the block
“which contains the desired information. Depending upon the sparseness of the data, different types of upper level structure may
be used. Both the variable data block size and the choice of pointer structure may be used to balance the memory required against
the speed of retrieval. Once the data structure is created, the data in the data blocks, and the pointers in one type of upper level
pointer structure, may be retrieved by simple calculation of the offset of the desired cell in memory rather than requiring a search.

10

15

20

25

30

WO 93/20512 2 1 3 6 3 0 0 PCT/US93/03002

METHOD AND APPARATUS FOR STORING AND RETRIEVING
MULTI-DIMENSIONAL DATA IN COMPUTER MEMORY

DESCRIPTION

1. Field of the Invention

The present invention relates generally to computer memory °

and more specifically to a method and apparatus for storing
and retrieving multi-dimensional data, such as financial
data, in computer memory such that the speed of accessing

the memory is maximized and the amount of memory needed to
store such data is minimized.

2. Description of the Relevant Art
' Financial data is often viewed in the form of a

spreadsheet containing rows and columns of figures, or

' data. It has become common to implement such spreadsheets

on computers, so that changes to one item may be
automatlcally reflected in any other items wh:.ch use the

altered item as a basis for a calculation. Before any such

manipuliation of data can occur, however, the data must be
imported from storage or input by the user. Many companies

and individuals now routinely enter thelr basic financial

data into computers for such later retrieval and

\

- manipulation.

A spreadsheet may be thought of as a "two dimensional™
array of data. For example, Company X might list income
and expense accounts along the vertical axis and the months
of the year along the horizontal axis, as shown in Figure
l. Fach block in the spreadsheet corresponds to a
particular account and a particular month, and the amount
of that account in that month, if any, is entered in that
block. In this example, the list of accounts 1is one
ndimension"® and time is the other dimension. In this
example, some accounts depend on other accounts; for
example, "Margin" is "Sales" less "Cost of Goods Sold.™
One advantage of computerized spreadsheets 1s that once the

10

15

20

25

30

35

WO 93/20512

2136300
2
user deflnés th:Ls relationship, if any of the basic data 1is

changed, such as the entry for Sales or the entry for Cost
of Goods Sold, the computer can recalculate the data which

depends on the changed data, such as Margin. Thils saves

the user the effort of changing all entries which depend on
other entries.
Tn this example, the number of potent:l.al weells" or

number of time periods included on ‘the spreadsheet. (Here
there are 17 time perlods, not 12, because the user wishes
to summarize the accounts by guarter and year as well as
month; there could be many more time periods if more than
one year is to be included.) Each item of data may be
considered to have two "attributes" oOr .Ldentlfylng
characteristics, one indicating the account to which the
indicated amounts are attributed and the second indicating
the +time period in which the ijndicated receilpts oOr
expenditures took place.

Another factor which becomes important in these
applications is the ability to "consolidate! data. " For
example, in Figure 1, the summaries by quarter and vear

‘mentioned above are consolidated data from the three months

of each quarter or the entire year, respectively. AS with
the Margin example above, the data for the quarters or the
year need not be independently entered, but may be

to the basic monthly data.

However, many corporatlons have data which has more
than two dimensions. For example, Company X may have
several product lines, and may wish to be able to view data
showing the accounts by each product line over time, rather
than, or as well as, by total accounts for the company,
i.e. the total of all product lines. Thus, the product

PCT/US93/03002 _

\w-'""

10

15

20

25

30

35

WO 93/20512) 2136300 PCT/US93/03002

3

lines and thus is the result of consolidating the data from

the different product lines.

Now the potential number of data cells is greater, and
equal to the number of accounts times the number of months
times the number of product lines. Each item of data now
has three attributes, one indicating the account, another
indicating the month, and the third indicating the product
line represented by the data. This may still be somewhat ‘
manageable in terms of the storage needed.

Also, once the number of dimensions exceeds two, it 1s
useful to be able to view the relationship between any two
dimensions. That is, in this example, the user may wish to
view accounts over time for any Or all product 1lines,
accounts by product line for any or all time perlods, or
product lines over time for any or all accounts. This data
can be exhibited by a series of spreadsheets, each showing
one such relationship. Thus, the spreadsheet shown in

Figure 1 shows accounts over time; however, ‘it only shows
the +otal accounts. While each account could be broken

down by product line, as shown in Figure 2, this greatly
increases the size of the spreadsheet and makes it more
difficult to find all of the entries related to, for
example, the Camera product line, since one dimension,
either accounts or product line, ends up being scattered
across the other dimension.-

S:Lmllarly, Flgure 3a shows accounts by product line.
However, this is for only one time period, here January.
If the user wishes to break the accounts down by time as
well, aga:m the spreadsheet becomes much larger and the
entries for one dimension or the other are no longer
contiguous in the spreadsheet. Again in Figure 3b, which
shows the product lines over time, only one account 1s
shown, here Sales. To include other accounts agailn

If Company ¥ also has geographic areas, this
constltutes a fourth dimension. Each item of data now has

four attrlbutes, and the total number of potential cells is

WO 93/20512 PCT/US93/03002

2136300 4

"the three dimensional total times the number of geographic
areas. Aand if the company wishes to have different
ngeenarios," for example, to make budget forecasts and then

compare the actual results to those forecasts, this 1is a
5 fifth dimension, and five attributes are needed, with the

number of potential cells ije now multiplied again, this

of a spreadsheet to show all possible relationships between

10 dimensions also increases dramatically. Figures 4a to 4d4d
show some possible views of such a five dimensional
database which a user might wish to see. For example, the
front "“face" of Figure 4a is a spreadsheet showing the
actual figures for sales and profits for various products

15 as compared to the budgeted figures over time for the San
Francxsco market. Behind that spreadsheet are other
--spreadsheets showing the same information for other cities,
followed by a spreadsheet showing the same information for

, the "West," i.e. the total for those cities. Figures 4b to

20 | 4@ each show a s:un:n.lar ngtack" of spreadsheets which

' | -represents a three dimensional view of the five dimensional

database. ' Note that in each of these examples, there 1s

-some interm.ngling of more than two dimensions, as shown in

, F:Lgure 2. Many more possible views could be constructed

- 25 from the £ :we dn.mensions used here.

- , ‘It is thus obvious that the number of p0851ble data
cells rapldly becomes enormous if all comblnations of data
are to be precalculated and ready for reporting (as 1is

i necessary to avoid long waits for consolldat.lon and spec1a1

30 calculatlon for even the s:.mplest reports) For example,
suppose that there are seven dimensions in a particular
application, and that the number of items in each dimension
J.s 10. . BEach data cell must have seven attributes, each
attribute being one of the 10 members of each dimension,

35 and the total number of potential data cells is thus

' 10 ¥ 10 % 10 x 10 x 10 x 10 x 10

or 10,000,000. Since a data cell containing a standard

5

10

15

20

25

30

35

WO 93/20512

2136300

double precision floating point number requires 8 bytes,
80,000,000 bytes are required to reserve a place for all of
the potential cells. Common practice in microcomputer
spreadsheet implementation 1is to maintain all cells 1in
memory, if possible, to speed access time. But since most
microprocessors have less than 16 megabytes of memory, most |
or all of the data would have to be kept on disk if a space
were reserved for each potential cell. This would slow the '
speed of storage and access drastica-lly, but could be done
since an 80 megabyte drive is a common fixture on personal

- computers today.

_ But suppose that instead of 10 1items in each
dimension, there are, respectively, 30, 50, 400, 300, 80,
10 and 50. Now the total number of potential cells is

. 30 ¥ 50 x 400 x 300 -x 80 x 10 x 50

or 7,200,000,000,000. Again, with 8 bytes per data cell,

‘a total of 57,600,000,000,000 bytes are required to store

all of the potential cells. No currently available disk
drive can hold thls much data. Even with gigabyte size
disk drives, over 50 000 such drives would be needed. If
the dimensions have more items, or if there are more than
2 dimensions, the problem may be even worse.

.~ Most databases which handle problems of this magnitude
keep only data which actually exists, 1i.e. thej are
relatlonal databases whose tables consist only of records
that need to exist, and thus do not waste space oOn
"potential™ data records.. But relational database tables
are basically two-dimensional structures (a series of
records each . containing a fixed "field" dimension) and
cannot handle higher dimensionality in any straightforward
fashion. Worse, any time a specific data cell is needed,
some sort of search of the records must be done whether or
not an index is available. In fact, even an index must e
searched for the matching attributes. Because the table
records have "gaps", even if the records are organized 1in

some regular repeating order, an offset from the beginning
of the table cannot be calculated directly to find the

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

213§3§9 6

desired record. Thus, by conserving space by keeping only
the actual data, whether on disk or in memory, speed of
access is drastically reduced. This is true of any data

structure which has discontinuities in the attributes of
adjacent blocks or records of data rather than reserving a

place, with a specific 1ength, in a specific known order
for any potential data item. ufﬂ: T
Existing multidimensional databases (non-relational
and non-spreadsheet) which incorporate the ability to
directly calculate the offset to the desired data item do
so by one of two methods. One approach is to use a
one~level structure, i.e. to have one data block containing
all dimension combinations. The obvious drawback to this
is that most of the reserved space is wasted and the number
of dimensions and the numbers of members in each dimension
1s severely 1imited. If the application is even of medium
size, operating in memory must be abandoned to use a dlSk,
and even disk, as slow as it is, cannot offer the space

required by typical corporate applications.
The other, more common approach uses a multi~-level

 structure, usually having two levels. The upper level is

some sort of index to existing data blocks, and the lower
level is either a 1 or 2 dimensional block of data, such as
a record representing a single dimension such as a time
series, or a spreadsheet-like two~-dimensional data block,
respectively. The upper level must be searched to find the
right index for a given set of attributes. 1In theory, the
upper level may be a list of ‘all potential combinations in

a specific order so that the offset to the particular index

(pointer) may be calculated from the attributes 1in the
dimensions covered by the upper level structure, but no
products using such an upper level are known. Since the
potential number of combinations of the upper 1level
attributes is often very large, it is believed that the
existing products in this group resort to a sorted list
which does not contain unused combinations, and therefore
a search of some kind must be employed to reach the proper

PCT/US93/03002

WO 93/20512 PCT/US93/03002

R , 2136300

.

pointer.
Resides the 1loss of speed due to this search

requirement, the biggest drawback to this type of design is
+hat the number of dimensions in the "block"” of data

5 pointed to is fixed at either 1 or 2 dimensions, depending
on the database. Furthermore, the specific type of |
dimension which forms the basic block of data is usually
fixed. For example, one product with a one~-dimensional |
data block requires that this dimension be the Time

10 dimension. Another product which has a two-dimensional
block requires that the two dimensions represent "rows" and
"columns® (nomally Accounts and Time, respectively). But
the operations which can be performed on "rows", “columns"

. and the other dimensions are distinctly different and

15 therefore limiting as to which type of attribute can be

effectlvely and flexibly used as Y"rows" or "columns." For
- example, the "rows" dimension has available a set of
o cﬂalcuvlation. functlons which are most appropriate for

- Accounts, so if Accounts are not set up as the row

7 20 ' dlmens:.on, there is a severe limitation in performing

' analytical calculations typically required for Account

relationships in financial applications. In the time-

series oriented structure, the block dimension must be

- time. ' |

25 - However, the restrlctlon that is most unfortunate is

’ that the'user cannot select the number of dimensions which
make up the basic unit of data storage and usually cannot
even select the dimensions which comprise it. This is not

optimal for a number of reasons. ,

30 In'r'multidimensional databases, as previously
discussed, the major problem is sparseness of data. More
often than not, the data for most potential combinations of
dimensional attributes does not and will not exist. But to

"have the ability to directly calculate the location of a

35 recuired data item, all potential combinations must be

' re: -2sented in the structure without discontinuities, or

10

15

20

25

30

35

WO 93/20512 PCT/US93/03002

2136300 3

the offset to the desired cell.
A two level structure generally reduces this problem

somewhat. Tf the basic unit of allocated storage (the
block), when created, 1s always allocated to have a Sspace
for every combination of a subgroup of the dimensions, then
within those blocks, at least, the offset can be directly
calculated. If the upper level does not reserve a spot for
every combination of the remaining dimensions, its size can
be kept reasonable, although a :slower search algorithm is
necessary to locate a pointer in the upper level structure
which gives the exact address otf the block. Thus, in this
structure, at least half of the procedure of locating a
data item’s location can be done by direct calculation, and
blocks for which no data items exists need not be created.

The failure of the existing designs which use this
approach to allow the user to select how many and which

"dimensions make up the block leads to some problems.
First, the dimension or dimensions which make up the block

- may be very sparse for a given user s application. For
example, if the user is forced to live with Accounts and
Time as the block dimensions, and (as is often the case)
there are hundreds or thousands of accounts, of which only
a small percentage have data for a given combination of the

" other dimensions, each block that is allocated 1is still
mostly wasted space.

For example, a company may have 500 departments, 80
product lines, 1000 accounts, 12 scenarios (ed., Budget,
Actual, Variance, Forecastl, Forecast2, etc.), and in each
partlcular department/ product line/scenarilo combination,
only 20 of the accounts may have values, on average. Yet,
which 20 accounts each department uses may be any 20 of the
1000 accounts. Therefore, each block that is created 1is,
on average, comprised of 98% missing values. As a result,
many such applications are impractical with existing
multidimensional databases given the hardware constraints.

Oon the other hand, a database using a one-dimensional

block which is fixed as the Time dimension will often make

10

15

WO 93/20512

2136300

9

fairly good use of the allocated space, because 1f there is
a data value for a particular combination of attributes 1n
June, there is usually an observation in August and the
remaining months. However, that leaves all the dimensions
except Time to be represented in the upper level
structure/index, and in a 7 dimensional application, this

is impractical because either (1) the design reserves a
fixed spot in the upper level structure for the pointer to
the block, which means that if 6 dimensions are forced to
go into the upper level structure, it is impossibly large;
or (2) the size of the upper level structure is reduced by

not reserving space for each possible combination.

Unfortunately, as above, 1if this is done, a search
algorithm must be used, and with small, one dimensional

Time blocks, even the number of actually ex:.st:mg blocks 1s

qun.te large, and the search is therefore very slow.
Fz.nally, it is assumed that the usage of a Time~dimension

o “block is fairly dense (most cells used), but that might not

20
S but all make "use of a "fixed" Dblock dimensional

30

35

be the case in some applications. .

There are other variations on these two approaches,

composit:.on, and most must use a search algorithm to locate

the index or pointer to the block containing the desired
data cell. However, experience shows to the contrary, that

there is no one fixed block design that effectively

2 'addresses even most applications. Each application has a
o dn.fferent number of dlmensions and of members in each

dlmenslon, and most importantly, a different distribution
of data dens:n.ty/ sparseness 1in. relation to any spec:n.flc

subset of dimensions in that appl:.catlon.

SUMMARY OF THE INVENTION

In accordance with the illustrated preferred .
embodiment, the present invention provides a method and
apparatus for storing and retrieving multi~dimensional data
in which a two-level data structure is defined wherein one
level contains those dimensions chosen by the user to

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

_2136300

10

result in dense data and +he other 1level contains the

remaining sparse data combinations.
For any given multidimensional application, it 1s
likely that the user, who 1is intimately familiar with his

company’s structure and the nature of the application’s

data, can select the specific dimensions which will form

the basic allocated data block allowing a vastly wider

array of applications to be \efflclently handled by the

database and to make optimgl"l use of storage. A database
design which gives the user this freedom offers a
significant benefit and results in unparalleled speed of
access/calculation, and minimum memory/disk requirement for
each individual.application, thus significantly expanding
the practical range of multidimensional applications which
can be run on existing hardware and software platforms.
The present invention allows the user to select the
specific dimensions, and any number of them organized 1in
any order, which will form +he basic block of information.

' Because of the huge potential data requirements . of mualti-~-

dimensional applications, this "variable block structure"
is the only way many such applications can be practical.
The variable block structure allows the user to select
those dimensions which, taken together, result in a densely
populated block, while balancing storage conservation with
other considerations such as block size (and its effect on
paging) and the size of the resulting upper level structure
(which determines the optimal upper level structure type to
select). '

The remaining "sparse" dimensions, in which many or
most member combinations will not exist, are used to create
the upper level structure which is used to point to the
block which contains the desired information. Depending
upon the sparseness of the data, different types of upper
ljevel structure may be used to minimize the memory
required. Allowing the user to select the type of upper
level structure to "plug in" gives the user more control in
balancing the tradeoff between speed (direct calculation of

PCT/US93/03002

™.
) \

10

15

25

30

35

WO 93/20512 ’ 2 1 3 6 3 0 0 PCT/US93/03002

result in dense data, and thus in less empty or wasted
cells, helps minimize the overall size of storage needed
and the number and size of Dblocks which will be used 1in |
calculation, reporting, paging (if required) and backup.
a11 of the dimensions, dense or sparse, are treated equally
from the view of the user.’

The features and advantages described in the
specification are not all inclusive, and particularly, many
additional features and advantages will be apparent to one
of ordinary skill in the art in view of the drawings,
specification and claims hereof. Moreover, it should be
noted that the language used in the specification has been

‘principally selected for readability and instructional

purposes, and may not have been selected to delineate or
circumscribe the inventive subject matter, resort to the

' claims being necessary to determine such inventive subject

matter.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows a prior art two-dimensional spreadsheet.
Fig. 2 shows the spreadsheet of Fig. 1 with one of the
+wo dimensions spread across a thirad dimension.
Figs. 3a and 3b show two-dimensional spreadsheets
representing relationships between dimensions of a

three~dimensional database.

FJ.g. ‘4a to 44 show stacks of spreadsheets represent:mg
three-dlmen51onal views of a flve-dimensn.onal databas=2.

Fig. 5 is a flow chart of the method of allocating
memory and storing data of the present invention.

Fig. 6 shows a representative member structure for a

database in outline form.
Fig. 7 shows a linked list created from the menmber

structure of Fig. 6.
Fig. 8 is a flow chart of the method of retrieving

10

15

20

25

30

35

WO 93/20512

213%3““

12

data which has been stored by the method of the present

invention.
Fig. 9 shows a representative binary tree which may be

used in the method of the present invention.
‘ Fig. 10 shows an alternative upper level pointer
structure which may be used in the present invention.
Fig. 11 shows a preferred embodiment of the present

invention, in which a server provides data stored by the '

method of the present invention to multiple workstations.
Fig. 12 shows a member structure created in Excel®.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Figures 5 through 12 of the drawings depict various
preferred embodinments of the present invention for purposes
of illustration only. One skilled in the art will readily
recognize from the following discussion that alternative
embodiments of the structures and methods 1 llustrated

- herein may be employed without departing from ‘the
;pr1nc1p1es of the invention described herein.

Figure 5 is a flow chart of the method of allocating
memory and storlng data of the present invention. The

the structure of the dimensions, or members, as shown at
step 1. A representative member structure is shown 1in

Figure 6, with the members being shown in the form of an
outline.

The members at the highest level are referred to as
the dimensions of the data, and are the highest level
members that can be attributes of data. Underneath each
dlmens:i.on are descendant members, representing the various
attributes that data can have in each of the dimensions.
In this structure, the dimensions are FINANCIAL ACCOUNTS,
TIME, GEOGRAPHICAL, PRODUCT LINE, DISTRIBUTION CHANNELS and
TYPE.

Once this outline is created by the user, the database
creates a linked list representing the member structure as
shown in step 2 in Figure 5. An example of a linked list

PCT/US93/03002

\.\

WO 93/20512 2 1 3 6 3 0 0 PCT/US93/03002

13

is shown in Figure 6. For each member this linked list
contains member data such as the member name, a

corresponding member number, 1level, generation, and
security and other status settings. It also contains links

5 to the parent members (next higher level), child members
(next lower level), and "left" and "right" siblings (same
level) . (For ease in locating the members in the linked
1list, once all the members are defined an alphabetical list
is created, including alternative names, which can be

10 searched by a binary search, and which points to the member
in the linked list.)

The only other information needed to create the
database structure is the dimension groups. The two types
of groups are "dense" and "“sparse." Dimensions cannot be

15 dense or sparse by themselves, but only when grouped with
o other dimensions. In the example of Figure 6, 1if most
cities in the GEOGRAPHICAL dimension have only one
 DISTRIBUTION CHANNEL and one, but not both, PRODUCT LINE,

o °and 1f Foods are sold only through Wholesale channels, then
20 ' most of the potent:i.al combinations of GEOGRAPHICAL/PRODUCT

LINE/ DISTRIBUTION CHANNEL will never exist, and these

dimensions would form a good sparse group.
on the other hand, FINANCIAL ACCOUNTS will generally

have dat.a" for each TIME period and for every TYPE. These
25 . 3 dimensions thus would make a good dense group. While
' th:.s grouplng is transparent to the end user and thus of no
~ concern in and of itself, it does have significant
J.mpllcatlons for the efficiency of data storage. As will
-, be seen below, this ability to select the dense dimensions

30 is an important feature of the present invention.
Users are generally familiar enough with the structure
of their data to select the dimensions which will be dense.
This is done at step 3 in Figure 5. The members of the
dense dimensions determine the basic block of data storage
35 allocated in the systemn. For example, 1if the three
dimensions FINANCIAIL ACCOUNTS, TIME and TYPE have 10, 5 and
3 members, respectively, the basic block of data will be 10

WO 93/20512 PCT/US93/03002

2136300 S

14

x 5 x 3, or 150, cells. (As above, a cell is typically 8
bytes to allow for a standard double precision floating
point number, but this may be altered if desired.) The

structure of the block 1s described below.
5 The remalm.ng sparse dimension members are used to

create the block pointer structure, as shown at step 4 in
Figure 5, by which a partlcular block header is located

members. The specific block pointer structure 1is
10 | _cOnfigurable by the user at the time the database 1s

.created.
’ In the preferred embodiment there are two block

' po:mter structures which may be used depending on the
B sparseness . of the data. The first of these is a block
15 po:mter array. For most applications this is the preferred
TR structure because it is the fastest. The pointer array
. ..fcontalns a po:l.nter for each possible combination of sparse
.dlmension menbers. “Thus if in the above example; the
- GEOGRAPHICAL, PRODUCT LINE, and DISTRIBUTION CHANNEL
B 2"0 "-"dlmenSLOns conta:n.n 20, 10 and 4 members respectively, the
- . L 'po:.nter array would contain 800 cells, each containing a '
] jpointer. -~ In most appln.cations this array will be much
o ""‘1arger, perhaps 1 or 2 megabytes, but this is not unduly
o large on a server with 16 to 64 megabytes of RAM.
o 25 - The cells in ~the po:.nter array are ordered by
' ' 1ncrement1ng the "fn.rst" sparse dimension through its
members, then J.ncrementlng the "second" sparse dimension by
' one member and incrementing the first sparse dn.mens:mn
- :aga‘in,‘ and so on until all sparse dimensions have been
30 !' completely 1ncremented SO that there are po.lnter cells for
' all possible combinations. It does not matter which sparse
dimension is the first, second, etc. since the block
‘contains no structural information, only the pointer in
_ each cell. As a practical matter, the order set forth in
"35 " +he member outline is used to determine the order of the
sparse dimensions, and the member outline thus indicates

which sparse dimension is first, second and so on SO that

WO 93/20512 PCT/US93/03002

R 12136300

15

+he location of any particular piece of data may be
located, as explained below. There is no need to store

member attributes in the block or anywhere else except the

member outline.
5 Each pointer in the array has three possible settings.

Upon creation of the array, all pointers are set to point
to a dummy empty data block to indicate that no data yet
exists. If the user wants to define any combination of"
sparse dimension members as invalid, the pointer
10 corresponding to that combination can be set to a dummy
invalid data block. (There need only be one dumny empty
data block and one dummy invalid data block for the entire
database, since the purpOSe is only to indicate those
combinations os sparse dimension members which are invalid
15 or for which no data has yet been recorded.) The third
possible setting is a pointer to an actual data block which
contains all the data containing the particular combination
of sparse dimension members represented by the location of

| the pointer in the pointer array.
20 ' The specification of various combinations of

dimensions which are invalid serves two purposes. It is
first a safety feature which prevents accidental entry of
data for combinations which are known to be :unposs:Lble.
For example, 1if a company makes widgets (product line
25 dimension) and the also have operations in Taiwan (country
dimension), but they don’t happen to make widgets in
Taiwan, then Taiwan/Widgets 1s an invalid combination for
which there should never be any data, regardless of the
attributes of other dimensions. Second, when data is

30 consolidated, certain rollups of data in differing |
dimensions may make sense, but some of these rollup
combinations may be of no interest to the user. By

specifying them as invalid, the creation of those blocks
does not occur during consolidation, saving time and

35 storage. ,
When an item of data input by the user (Figure 5, step

5) is to be stored, the sparse dimension members are first

10

s

25

30

35

WO 93/20512

" 213630“

16

used to calculate a "section number” which indicates the
position of the cell in the pointer array which corresponds

+o those sparse dimension members. This is a simple

mathematical calculation based upon the member numbers,
which reflect the order of dimensions and the number and
order of members in each and are contained in the linked |
l1ist. The corresponding cell is then checked to see what
pointer exists for the desired combination of dense '
dlmensa,on members (step 6). '

- If the pointer po:.nts to the dummy invalid data block,
an error message is generated since the data is presumed to
be invalid (step 7). If the pointer points to the dummy
empty data block, then a data block is created (step 8).
As above, this data block contains a number of cells
correspondn.ng to each possible combination of the dense
d.unensn.on members. In addition to the actual cells, each

~ block has a block header which contains the pointer to the
o actual data block, and may also contain additional

1nformat10n as de51red by the user.
As with the pointer array, the cells in the data block

" -'.'--Iare ordered by 1ncrement1ng through all members of the
“flrst" dense dimension, then incrementing the "second"

dense dimension and incrementing through the first dense
dlmension again, and so on until all dimensions have been

incremented so that there are cells for all possible
comblnatlons. Again it does not matter which dense

| d:l.mensa.on is the first, second, etc. since the data block

also contains no structural information, only the numeric
data in each cell (rather than the po:.nters of the pointer
array) . 'As wlth the pointer array, the order of dimensions
in the member outline determines which dimension is first,
second and so on, SO that the location of any particular
piece of data may be located in the same way that the
pointer is 1located, but from the dense dimension

,attributes. Again there is no need to store member
_attributes in the data block or anywhere else except the

member outline.

PCT/US93/03002

WO 93/20512 2136300 PCT/US93/03002

!

17

Oonce an actual data block is created for a set of
sparse dimension attributes, a pointer to the block header
replaces the pointer to the dummy empty data block in the
corresponding cell in the block pointer array. (Figure 5,

5 step 9). All of the cells in the data block are initially
set to a null or "missing" value. Individual cells may
also again be designated as invalid. The location of the
data cell which corresponds to the dense dimensions of the -
input data is then calculated from the member numbers in

10 the 1linked 1list, which again contains the order of
cdimensions and number and order of dimension members, and
the input data value is inserted into that cell (step 10).

When subseguent data values are input, the sparse

dimensions are again used to find the corresponding pointer

15 in the block pointer array. If the selected po:mter peints

to the dummy empty data block, a new dense data block 1is

again created. If the pointer points to an actual data

block which has already been created, the dense dimensions

| are then used to determlne where in the indicated block to

20 insert the new input data. (Figure 5, step 10.) If there
1S'more data to input, the system returns to step 5.

A flowchart for the retrieval of data is shown 1in

Figure 8. To locate a particular piece of data, one need

. only specify the desired member attributes (step 11).. The

25 sparse dimension attributes are used to locate the
corresponding ‘member numbers from the linked list (step

~_ where the data is stored (step 13). Once the approprlate |
30 data block js located by retrieving the pon.nter from the
block pointer array (step 14), the dense dimension
attributes are used to locate the member numbers (step 15)
from which the offset in the block is calculated (step 16),
and the desired data retrieved from the indicated cell
35 (step 17).
In some instances, however, such as large applications
with many sparse dimensions, even the block pointer array

WO 93/20512 PCT/US93/03002

21363““ 18

can become prohibitively large, possibly even gigabytes.

=

Tn such cases the block pointer array may not even f£it into

memory Or may occupy too much of the avallable memory.

Moving the array to a disk, even if possible, drastically
5 slows down operation. Thus, an alternative is desirable.

The second type of block pointer structure which may:

be used in the preferred embodiment is a binary tree. A

representative binary tree ig shown in Figure 9. In this:

approach, no memory is allocated for pointers until the

10 first data block is created, at which time the top link of

+the tree is created. rach additional block which is

created causes anothér 1ink in the tree to be created as

well. Each link has four elements to it. These are the

block number, a pointer to the next link with a lower

15 section' number, a pointer to the next 1ink with a higher

section number, and a pointer to the data block header
associated with the section number.

As each piece of data to be input is received, the

sparse dimension attributes are examined first, as in the

2'0 block pointer array approach, and the section number
' calculated. The section number is the same as the offset

‘would be in the block pointer array, and is calculated the

same way from the order of the members as represented by

+he member numbers in the linked 1ist. The binary tree 1s
25 scanned as explained below to determine whether there 1is
already a data block corresponding to the specified
combination of sparse dimension attributes. If there is
such a data block, the dense dimension attributes are then
- used to calculate the offset in the data block where the
30 data iskto be stored. ? '

If no data block exists for the sparse dimension
attributes of the data, a new data block is created, Jjust
as in the block pointer array method. Here, however, since
there is no existing cell in which to put the pointer, a

35 new link in the binary tree is created, which contains the
pointer to the new data block. If the section number of
the new data block is greater thén the section number of

. WO 93720512 2 1 3 6 3 0 0 PCT/US93/03002

19

the previous 1link, the new link is placed to the right of

the previous link. The appropriate pointers of each link
are set to point to the other 1ink as having a higher or
lower section number, respectively. As more links are

section number, based on the member numbers of the sparse
dimension members, of 500. If the section number for the -
Lext 1ink 22 is 495, the next link is located as the left
10 child of 1link 21. The next link 23 having a section number
of 603 becomes the right child of link 21, and.-so on, such
that all of the descendant links to the left of each link
have lower section numbers than the parent link, and all
descendant links to the right of each link have higher
15 section numbers than the parent link. Periodically the
tree may be "balanced" or reorganized to make it easier to
search, if, for example, the section numbers continually
happen to increase, resulting in only right child members.
. Tn such a case, a point somewhere in the center of the tree
20 is chosen to become the new top link so that the number of
jeft children and right children is roughly equal.
' To locate a piece of data, the section number 1s
calculated from the sparse dimension attributes, just as in

the block pointer array approach. However, instead of

25 using this as an offset in the block pointer array as
above, the computer now looks to the binary tree to find

the section number. Starting at the top link, the computer

looks to see if the current link has the same section

- number as that desired. If so, the computer retrieves the
30 o pointer stored in the link, which points to the data block
corresponding . to the combination of sparse dimension
members represented by that section number. If the top

1ink does not contain the desired section number, the
computer looks left or. right depending upon whether the

35 desired section number is lower or higher than that of that
1ink. This process continues until the link containing the

desired section number is located, and the pointer

WO 93/20512

10

15

20

.25

30

35

3%3Q% 20

contained in the link which points to the corresponding
data block is retrieved. The computer then proceeds as 1in
the case of the block pointer array above, and uses the
dense dimension attributes to calculate the offset of the
cell in the data block which contains the specific data
desired which corresponds to the combination of all of the

specified dimension members.
While the binary tree is somewhat slower than the ‘

block pointer array appreoach, in very sparse applications
it has sufficient speed that the user should not notice the
difference. Since the binary tree is designed to be used
only when the sparse dimensions are very sparse, the
maximum number of levels of the binary tree which need to
be searched is thus expected to be fairly small. f

However, the advantage of the binary tree is that only
entries for those combinations of the sparse dimension

~attributes which actually have corresponding data are
created, whereas in the block ‘pointer array space must be
reserved for every possible sparse dimension member

combination. Thus, the binary tree results in greater
memory savings than the block pointer array, at some cost
in speed. '

The binary tree has one additional disadvantage. It
is not possible to mark invalid block pointers, 1i.e.
:mvalld combinations of sparse dimension attributes, at the
tlme. of creation of- the data base as can be done with the
block po:..nter array, since only 1links which represent
blocks with actual data are created. This may be handled
wn.th a table of such invalid comblnatlons whlch are then be

. evaluated each time a block is about to be created.

Specification of invalid combinations of dense dimension
members is handled the same way with either upper level

structure.
Thus, the dimensions selected as dense, and the number

of members in each dimension, determine the size of the

dense data blocks. This "variable block size" 1is not
believed to have been implemented previously in such

PCT/US93/03002

WO 93/20512
w | 2 1 3 6 3 0 0 ' PFT/US93/03002

21

applications and allows the user to choose a very careful
halancing of several factors. First, the selection of the
specific dimensions for the block should be such that the
density of the data relative to those dimensions is high
5 and wasted storage is thus minimal. Second, enough

dimensions may be selected for the data blocks so that the
number of combinations of the remaining (i.e. non-data
block) dimensions is small enough that they can be stored
. in the upper level block pointer array to allow direct
10 calculation of addresses, Or, in extremely large
applications where direct calculation is not possible, that
at least the size of the binary tree or other upper level
‘structure can be kept to a reasonable, customizable size sO
that the search algorithm is fast. Third, it is desirable
15 to keep the block size within a reasonable range for very
o '-large problems where some disk paging may be required. If
paging _1s requ:..red, access of a single cell may require
+hat the whole block be moved back into memory, and 1f the
| . block size 1is too large, paging becomes very slow. As
20 'above, once the dense and sparse dimensions are selected,
' -..the blocks are created automatically and the user 1is not
~ aware of it.
- Also incorporated in this new database design is a
- method of both specifying data for input to the database
- ."25 . and for extracting required data which is unique. This is
' a* "natural ordering ‘syntax" which allows the database to
read and understand standard reports, tables, and
spreadsheets without requirihg a separate specification of
. o how to map these objects to the data structure. For
30 example, the input object (or desired output report) might
: be a spreadsheet which deals with widgets (Product Line) in
Taiwan (Country) and a selection of mnembers from the
Accounts, Time, and Scenario (Budget/ Actual/Variance)
dimensions such as the following:
35 | Taiwan Widgets
Budget Actual

Jan Feb Mar Jan Feb Mar

r

WO 93/20512 PCT/US93/03002
3““ 22
?A?‘% Revenues 10 12 13 10 9 12
Expenses 8 S 7 8 8 8
Profit 2 3 6 2 1 4

Or the spreadsheet could contain the same information,
5 but in a very different layout:

Widgets Taiwan

Revenues Expenses Profit

Jan

' Budget 10 | 8 2

10 - Actual 10 8 2
Feb

Budget 12 o 3

Actual 9 8
e ~ Actual 12 8 A

Or, it might be a general ledger output file or an SQL
(relational database) table containing the same data in
' still another form: |

T_»f20) ~'-Taiwan Widgets Budget Jan Revenues 10
S Taiwan -Widgets Budget Feb Revenues 12
~ Taiwan Widgets Budget Mar Revenues 13
Taiwan Widgets Actual Jan Revenues 10
. Taiwan Widgets Actual Feb Revenues 3
25 Téi&an: Widgets Actua1Mar Revenues 12
| Taiwan Widgets Budget Jan Expenses 8
Taiwan Widgets Budget Feb Expenses 9
Taiwan Widgets Budget Mar Expenses 7
| Taiwan Widgets Actual Jan Expenses 8
30 Taiwan Widgets Actual Feb Expenses 8
Taiwan Widgets Actual Mar Expenses 8
Taiwan Widgets Budget Jan Profit 2

w WO 93/20512 PCT/US93/03002

2136300

Taiwan Widgets Budget Feb Profit 3
Taiwan Widgets Budget Mar Profit 6
Taiwan widgets Actual Jan Profit 2

Taiwan Widgets Actual Feb Profit 1
5 Taiwan Widgets Actual Mar Profit 4

The "natural ordering syntax" method is an ideal
interface between the multidimensional database and-
commonly used external objects because it can "understand"
these objects precisely the way they are naturally laid out

10 by users and other software ‘products, without the user
“having to SPec:i.fy a separate definitional mapping of how to
reiat_e each ' cell in the varying objects to the database.

This method of analyzing the input/output object works

B . in the following way. The object records are scanned from
15 left to right on each line, from the first line to the
© jast. All of the items found are jdentifiable as either
(1) data values; (2) dimension member names' or pseudonyms;
N 3) -_tokens to skip; (4) tokens to ignore; Or (5) invalid
- SR ,tOken:s which ‘generate an error.
20 -;-‘,‘,',,;'I'he- ‘databas’e . creates a structure which is called an
' wodometer" because it operates similar to an automobile
odometer in that each dimension is represented 'by one
barrel (ring) on the odometer, and the numbers on each of

25 'c';urrefnt_ly ngelected" or active members of the dimension
| ' repreiSQnted by that barrel. The odometer differs from an
automotive odometer in that the numbers (indices) on a
barrel are not necessarily consecutive, and in that the
- number ‘of indices on a barrel may differ from the1 numb:er on
30 the other barrels. Further, the number of indices on a

particular barrel can change at any point in the operation,
varying from 1 to the total number of members in the

~ dimension represented by that barrel. Finally, the order
of the barrels in the odometer can also change during the

35 '1oad/extract'operation. |
The odometer is initially empty. As the object 1is

WO 93/20512 PCT/US93/03002

436308

scanned, the odometer is modified according to the

24

following rules.
1. When a member token is encountered, its index 1s

looked up in the database (as above, there is a sorted
5 blnary search list containing all member names, aliases,

skip tokens, and ignore tokens, which gives a pointer to

the member 1link of that token’s name in the outline

structure, which contains the index) and the index is added '

to the odometer barrel for that dimension.

10 5. If the member token encountered is from the same
dimension as the preceding token (with no data value tokens
intervening), the previous indices on the barrel remain,
and the new index is simply added. Otherwise, that barrel
is reset to contain only the current member token’s index.

15 When a barrel contains more than one index, it répresents

' a data range. When a barrel gets a second index and

becomes a range, it is moved to the first barrel position

~on the odometer and the other barrels are shifted back (to

R Gt ’the r:.ght) This causes the most recently created ranges
20 to be ordered first on the odometer. For example, at the
| B ...pon.nt where "Jan," "Feb," and "Mar" have been encountered

and processed in the first example spreadsheet above, the
odometer would look like:

Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrxel 5

“25- -~ Jan - Budget Widgets Taiwan = =====——-
Feb Actual '
Mar

After the next token, Revénues, is encountéred, the
. odometer would have "Revenues" as the only member in Barrel
30 5. (Note that it is the members’ indices that are actually
stored in the barrels, not their names, which are shown

here only for illustration.)
Thus, the odometer now looks like this:

Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5

10

15

20

- 30

35

WO 93/20512 | 2136300 . PCT/US93/03002

25
——=> Jan Budget wWidgets Taiwan Revenues
Feb Actual
Mar
2. When a data item is encountered, it triggers a

store or retrieve operation based on the current odometer
setting (indicated by the members on the line pointed to by
the ---> above). If this is a data load (store), then the-
data value is stored into the data cell whose attributes
match the members whose indices are reflected in the

. current odometer setting. In other words, the value 10 is

stored in the data cell whose attributes are "Jan Budget
Widgets Taiwan Revenues." This store operation can be done

is a binary tree, in which case a search must be performed
to get the upper level block pointer; the offset in the
block is still obtainable by direct calculation). If the
operatlon is retrleval, the data value encountered in the

. object is replaced by the current database cell, which 1is
 looked up in the same way.

4. When a data item is encountered, and one Or more
of the barrels have ranges (more than one index on the
barrel), it can be assumed that there will be a consecutive
range of data values in the object being scanned, directly
following the one just found. The odometer 1s therefore
J.ncremented, starting with the leftmost barrel, and a data
cell is transferred for each increment. When the first
barrel ha.s incremented through its entire range, the next
increment is back to its first index (just like a car
odometer), and the next barrel increments. If that barrel
is at the end of its range, the next increments, and so on.
The result is that a consecutive range of data values in
the object are transferred to or from the proper locations
in the database and object as intended. After all the

barrels have incremented through their ranges, the odometer

has returned to the state it was in prior to encountering

WO 93/20512 PCT/US93/03002

!

3

26

‘Z'X?)%?)QChat first data value.

In +this example, since two ranges have been

encountered (Jan/ Feb/Mar and Budget/Actual), with 3 and 2
members, respectively, it is expected that there will be

5 six consecutive data items which need no further
description to understand how to map them. Of course, this
technique is not limited to the illustrated exaniple, but
can be used with any logical arrangement of data which is

to be loaded or retrieved.
10 - 5. If a skip token is encountered, it means that

' -'altho'ug'h this is (or once was) ‘a valid member token, it 1s
not germane to the database at this point and no data with
this attribute is to be loaded or extracted. This 1S

o handled by skipping the token, and scanning the object as
15 = before, ignoring all intervening tokens until another
' N member token from the same dimension as the skip token is
'encountered. This effect:wely sk:.ps all data which has the
*' 'unwanted attrlbute, and ensures that the odometer does not
S have a skz.p token index as one of its index values.
20 ‘6. Ignore tokens are ignored as if they had not even
- | been feund. . This is useful if, for example, reports or
spreadsheets being examined have title or notes information
 wh1ch has no bearlng on the data being loaded/extracted.
R _ 'I'h:Ls natural ordering syntax has been shown to be an
25 effective method with which to interface user objects such
o as spraadsheets, reports, tables, etc. to the database and
_handles most such objects because that is the natural way
in which most peOple organize their information. ‘Provision
| can eas:l.ly be made for cases where, for example, the "“row
30 ‘ names" are placed in the middle of a data row. The
assumptn.on that member attributes are always on the left
and the data is on the right in spreadsheet rows or table
records is not critical to the method, since that can be
| . taken into account when the record is being scanned. Also,
B 35 when an "unnatural" or inconsistent arrangement 1s

'en'ceuntered there can be a method of handling errors. This
method makes possible a very seamless integration of data

10

15

20

25

30

35

WO 93/20512 |) 2 1 3 6 3 0 0 PCT/US93/03002

27

retrieval and store operations within existing popular
commercial spreadsheets, word processors, etc., with
minimal development difficulty.

While the preferred embodiment discussed hereiln

utilizes a two-level structure, in which the upper level
points directly to the data blocks, there is no reason that
the upper level pointer structure could not consist of more
than one level, so that the top level points to one or more '
intermediate levels, which in turn point to the data
blocks. For example, in a very large application of 6 or
more dimensions, it might be appropriate to create a
structure of the variable data blocks of dense dimension
data, an intermediate level containing a set of pointer
arrays each of which represents the combinations of 2 or 3
dimensions which are somewhat sparse, and a top level oI
pointers representing the combinations of 2 or 3 dimensions
which are extremely sparse. '

Thus, assume that there are six dimensions, A to F,
and each has 3 members, represented by 1 to 3, so that the
members of A are Al, A2 and A3, with the members of B to F
similarly designated. If A and B are the most dense, C and
D are sparse, and E and F are very sparse, under the two
level structure, the data blocks would contain all
combinations of A and B and the upper level block point
pointer structure would contain combinations of C to F, of
which' there are 81 possible combinations.

on the other hand, a three level structure might be as
shown in Figure 10. Pointers to actual data are indicated
by arrows, and the combinations from which there are no
arrows are filled with pointers to the dummy empty oOr
invalid data blocks. The top level 31 contains the nine
possible combinations of dimensions E and F. Only three of
+hese combinations are represented by actual data, and thus
show pointers to a lower level. The intermediate level 32
shows the nine possible combinations of dimensions C and D
for each of the three combinations of dimensions E and F

for which there 1is data. In turn, of the 27 shown

WO 93/20512 | PCT/US93/03002

‘\'%Qgsg\\ 28

?“' combinations of dimensions C and D, there are pointers to
5 actual data blocks 33, each of which contains the nine
possible combinations of dimensions A and B, again for the

combinations of dimensions C to F indicated.
5 If a block pointer array 1s used, this structure

- requires less memory than- the two level structure above,
since the two level structure would require all possible
combinations of dimensions C to F to be represented in the-
array. Thus, since there are 8l possible combinations of

10 dimensions CctoF (3 x3 x3Xx3), if each pointer uses 4
bytes, a total of 81 x 4 or 324 bytes would be needed for
-the array - In the three level structure of Figure 10, the

' 'top level 31 has 9 pointers, and the intermediate level 32

has 27 pointers, for a total of 36. Thus, 36 X 4 or 144

15 bytes are required, and the size of the two levels is

‘ .sa.gnlflcantly jess than the size of one four-dimensional
' fp01nter array.

~ If a two level structure is used with a binary tree,

- ..only 5 l:mks are requlred (i.e., one to each of the five

20 :j.'d_ata blocks), ~ with each 1link containing 1inf ormation
S representing the members of the four dimensions C to F

\«which are represented. However, each link regquires more
. ':Lnformatn.on, 4 bytes for the section number, 4 bytes for
RO the left pointer, 4 pytes for the right pointer, and 4
25 - ytes for the block po:.nter, for a total of 16 bytes per
ST 'lz.nk For fJ.ve 11.nks, a total of 80 bytes is thus needed.
Wh:.le the sn.ze of the binary tree is somewhat smaller than
'the three 1evel structure in this example, the difference
- is 1ess ‘than with the two level structure. Also, a search
30 'and compare is requlred to £find the 1ink having the desired
section number, a problem which gets worse the larger the
binary tree becomes, while in the three level structure
only one more calculation of a section number or offset is

: necessary. -
35 ' ~ In very sparse appllcatlons , it is possible that the

three level structure could even be smaller than the binary
tryee. Given that the binary tree must also be searched,

~—

10

15

20

25

30

35

WO 93/20512 _ 2136300 PCT/US93/03002

29
there is no guestion that the three level structure would

be preferable in such a case. Also, it is possible to miXx
pointer structures, SO +hat where there is more than one
upper level pointer structure, one or more may be block
pointer arrays and one Or more may be binary trees,
depending upon the application.

In the preferred embodiment, the system runs on a
server w‘nch allows a number of users with workstations to°
access the database simultaneously, as shown in Figure 11l.
The user uses a workstation 41 which contains the

spreadsheet he or she is using, and which has a keyboard or

other input device 42 and a display or other output device
43. The user interfaces with the server 44 through the
workstation 43, so that other then the appropriate commands
for retrieving data the server 44 is completely transparent
to the user once the data is loaded. The server controls

access to the data in memory, which contains the block

pcnnter structure 46 and data blocks 47 as described above,
for a number of workstations. This presents no problem
even where more than one user wishes to access the same
cell unless the data in the cell is being changed. In that
situation, the system can be instructed to "lock" the cell
until the data is changed so that only one change 1s made
at a tinme. Each workstation is preferably a personal
computer containing a standard spreadsheet program, such as

Excel® from Microsoft or 1-2-3® from Lotus. The

spreadsheet works as the front end to the database, and
once the database is created the user never Sees anything
but the spreadsheet, with which he or she is presumably
already familiar. Even the member structure of Figure 6
can be created in the spreadsheet. Figure 12 shows a
sample member structure defined in Excel®, in fact the
nember structure represented by Figures 1 to 4d.

As with computerized spreadsheets, formulas may be
used in the present invention. However, unlike
spreadsheets, where a formula is "attached" to a specific
cell, in the present invention all formulas, which are

W0 93720512 PCT/US93/03002

13830

-~

30

merely relationships with other cells, are performed by the
computer use of the section numbers OX offsets of the cells
in question. Thus, a formula will tell the computer to

5 some specified operation on it and store the result in the
cell correspohding to another offset. Similarly,
consolidation of data 1is accomplished by simply specifyingd
+he "range" of items desired to be consolidatéd, i.e. the:
offsets of the desired data jtems, and the computer

10 retrieves and adds them automatically. The speed with
‘which data may be retrieved in the present invention makes

possible very rapid calculation and consolidation, believed
to be unmatched by any presently available multi-

15 Another advantage to the present invention is that all
dimeh.sions, and all data, are treated equally. Thus,

- unlike some of the prior art products described ‘above,
-'-th.ére is no difference, from dimension to dimension, in the

o f_unctionality_ for performing calculations or otherwise

e 20 ..mgnipulating or reporting data. If the user wishes to view

B - only 'd"ajta relating to units sold, rather than dollar sales,
 for example for forecasting purposes, this is possible by

Appropriate' wewisting" of the dimensions of the member

25 - struc,ture. of Figure 10 results in the views shown in

Figures 4a to 4d. -

- From the above description, it will be apparent that
the invention disclosed herein provides a novel and
~advantageous apparatus for . storing and retrieving

. 0N
L

30 nulti-dimensional data, such as financial data, in computer

data. The foregoing discussion discloses and describes
merely exemplary methods and embodiments of the present
35 invention. AS will be understood by those familiar with
the art, the jnvention may be embodied in other specific

WO 93/20312 PCT/US93/03002
. 2136300

31

characteristics thereof. For example, other types of upper
level structure, such as a HASH type incorporating levels
of bit maps, could be used for even more Sparse

applications, although no application has yet been found
5 which the binary tree cannot handle with reasonable speed,

even with 12 to 15 dimensions. Accordingly, the disclosure
of the present invention is intended to be illustrative,
but not limiting, of the scope of the invention, which is_'

set forth in the following claims.

WO 93/20512 PCT/US93/03002
" o
94363

What is claimed 1is:

32

1. A method of storing multi-dimensional data, each

of a plurality of dimensions, in computer memory,
5 comprising:
selecting a first group of a number of dimensions

contains cells corresponding to combinations of the
10 members of the first group of dimensions;
allocating a second portion of memory which
contains a plurality of data blocks, each containing
cells cori'esponding to combinations of the members of
the second group of dimensions, wherein each data
15 block corresponds to a different combination of the
first group of dimensions, and the size of the data
blocks depends upon the dimensions selected and the
number of members in each;
, storing each unit of data in the data block which
20 corresponds to the combination of members of the first
~ group of dimensions which jdentifies that unit of
data, and in the location within that data block which
corresponds to the combination of members of the
second group of dimensions which identifies that unit
25 - of data; and _
' ' inserting " a pointer to each data Dblock
corresponding to a particular combination of members
of the first group of dimensions in the cell in the
first portion of memory which corresponds to the sane
30 combination of members of the first group of
dimensions. '

2. The method of claim 1 wherein the step of
inserting a pointer to each data block further comprises
the step of selecting the manner in which the cells 1in the

35 first portion of memory are to be organized.

:
7
MJ

10

s

20

25

30

WO 93/20512 2 1 3 6 3 0 0 . ?CT/US93/03002

33

3. The method of claim 1 wherein the first portion
of memory is a block pointer array Wwhich contains all
possible combinations of the members of the first group of

dimensions.

4. The method of claim 1 wherein the first portion
of memory is a Dbinary tree containing only those
combinations of the members of the first group of
dimensions for which data exists.

5. The method of claim 1 further comprising the step
of selecting an order for the dimensions and theilr members,
and wherein the step of creating a plurality of data blocks
further comprises ordering the cells in each data block in
the same order established for the dimensions and members.

6. The method of claim 5 wherein the step of

" selecting an order for the dimensions and their members

comprises the step of creating an outline of the dimensions
and their members in the desired order.

2. The method of claim 5 wherein the step of
allocating a second portion of memory further cor:::-ises
‘arranging the cells contained in each block in an order

corresponding to the order of the dimensions and their
members. | |

8. The method of claim 7 wherein the mnulti-

. dimensional data 1s organized in a regular pattern, and the

step of storing the data further comprises the step of

recognizing the pattern in which the data is organized and

inserting each unit of data into the corresponding cell 1in
the corresponding data block based upon that pattern.

9. An apparatus for storing multi-dimensional data,

each unit of which 1is identified by one or more members of
each of a plurality of dimensions, in computer memory,

10

15
20

. .
)
’ 5

s2

. .
. # - .
.
- -
.

30

35

WO 93720512 PCT/US93/03002 -

2136%Q“ 34

comprising:
input means for selecting a first group of a

number of dimensions and a second group of a number of

dimensions;
means for allocating a first portion of memory

which contains cells corresponding to combinations of
the members of the first group of dimensions;

' means for allocating a second portion of memory:
which contains a plurality of data blocks, each of
which contains cells corresponding to combinations of
members of the second group of dimensions, and wherein
each data block corresponds to a different combination
of the first group of dimensions, and the size of the
data blocks depends upon the dimensions selected and
the number of members in eachj

means for storing each unit of data in the data
block which corresponds to the combination of members

' _ of the first group of dimensions which identifies that

‘ un:).t of data, and in the 1ocat:n.on within that data

means for inserting a pointer to each data block
corresponding to a particular combination of members
of the first group of dimensions in the cell in the
first portion of memory which corresponds to the same
combination of members of the first group of
‘dimensions. '

11. The apparatus of claim 9 wherein the first
portion of memory is a block pointer array which contains
all possible combinations of the members of the first group

of dimensions.

10

15

W _
O 93/20512 PCT/US93/03002

dimensions for which data exists.

members, and wherein the means for cre
data blocks further comprises ordering the cells in each

data block in the same order established for +he dimensions

and members.

The apparatus of claim 13 wherein the step of

selecting an order for +he dimensions and their members

comprises means for creating an outline of the dimensions

and their members in the desired order.

15. The apparatus of claim 13 wherein the means for

allocating a second portion of memory further comprises

means for arranging the cells contained in each block in an
o the order of the dimensions and

<

order corresponding t
their members.

20 16. The apparatus of claim 15 wherein the multi-

dimensionai data is organized in a regular pattern, and the
means for storing the data further comprises the means for

recognizing the pattern in which the data is organized and
inserting each unit of data into the corresponding cell 1in

25 . the corresponding data block based upon that pattern.

17. An apparatus for retrieving multi-dimensional

data, each unit of which is identified by one oOX more

members of each of a plurality of dimensions, comprising:
memory means containing the multi-dimensional

in which a first portion of the memory contains

30 data,
f the members of

cells corresponding to combinations ©

a first group of one or more of the dimensions and a

WO 93/20512

2i°%

10

15

20

25

30

35

300

36

second portion of the memory contains a plurality of
data blocks, each having cells corresponding to
combinations of the members of a second group of one
or more of the remaining dimensions, and wherein the
cells in the first portion of memory contain pointers
to the data blocks which <correspond to the
combinations of the members of the first group of
dimensions represented by the cells;

input means for receiving input signals from a
user which indicate the members of the dimensions of
the data desired by the user; and

processing means responsive to the input signals
for calculating the location of the cell in the first
portion of memory containing the pointer to the block
of data which contains the desired data, then
calculating which cell within the block of data
indicated by the pointer contains the data, and
retrieving the data from the indicated cell.

18. An apparatus for allowing a plurality of users to

retrieve multi~-dimensional data, each unit of which is

jdentified by one or more members of each of a plurality of

dimensions, comprising:

memory means containing the multi-dimensional
data, in which a first portion of the memory contains
cells corresponding to combinations of the members of
a first group of one or more of the dimensions and a
second portion of the memory contains a plurality of
data blocks, each having cells corresponding to
coxﬁbinations of the members of a second group of one
or more of the remaining dimensions, and wherein the
cells in the first portion of memory contain pointers

. to the data blocks which correspond to the

combinations of the members of the first group of
dimensions represented by the cells;

a plurality of input means for receiving input
signals from users which indicate the members of the

PCT/US93/03002

WO 93/20512 ' 2136300 PCT/US93/03002

-l

37

dimensions of the data desired by the users;
a plurality of processing means responsive to the
input signals for generating command signals;
server means responsive to the command signals
5 from the plurality of processing means for calculating
the location of the cell in the first portion of
memory containing the pointer to the block of data
which contains the data desired by each user, then.
calculating which cell within the block of data
10 indicated by the pointer contains the data, and
retrieving the data from the indicated cell.

19. A method of retrieving multi-dimensional data,

each of a plurality of dimensions,qand which is stored in

15 memory in which a first portion of the 'memory contains
| cells corresponding to combinations of the members of a
first group of one or more of the dimensions and a second
portion of the memory contains a plurality of data blocks,

eacﬁ& having cells corresponding to combinations of the

20 | members of a second group of one or more of the remaining

dimensions, and wherein the cells in the first portion of
memory contain pointers to the data blocks which correspond
to the combinations of the members of the first group of

dimensions represented by the cells, comprising:

25 means for receiving input signals from a user

- which indicate the members of the dimensions of the
data desired by the user;

means for calculating from the input signals the

location of the cell in the first portion of memory

30 . containing the pointer to the block of data which
contains the desired data;

pointer contains the desired data; and
35 retrieving the data from the indicated cell.

CA 02136300 2002-02-22

o 195 L e
Bl (e |sap® 9 8
8| 2= sl g o
=8| e st |5 (28
“F| BB e 8 (92
| el e |2 8
0 |2 |olis 8| 52
8| Bl bis-fl g 25
Bl 0| sl 8] 25
] Eae| sl o B T
B sssl sl 3 88 T
-l 2| ol o] 52
B sl sl 5| 92
B 8| bial) |55
B S| Lia |) 53
B Bae| | ol |3
IEIIIIQ!EIIIIE

IHH“EEEEEQEIEI

CA 02136300 2002-02-22

EIIIIIIIIIIIIIIIIIII
g [T
3 LT
g (L
g L
g L
SAnRnARR R AR RRANEEA
Elllllllllllllllllll

& '6
= 5>
O O

Fig. 2

CA 02136300 2002-02-22

BT
III|I||II|I|II A
sl L]

AN
g
WAL, e
s g L

L e
SHINNNARNNR

L BT
g

EIIlIIIIIII

amera

Fig. 3b

LosAnel ’ .

[Seatte / / _/

I P o

\

v 1 1 ¢+ 1

werR ¢t

7

Audio | | o 1 /
m====M'

/

vwer | 1
Audo | f oV 1

Fig. 4a

""';’
n

M-’
/
9
w T /
%

Fig. 4b

I) P
Actual Budget | Actual Budet
VR JJan | | L 1

e

a
/
/
/

Foecast] | T 1 1/¥
Varance | | | | /
West |Actual | | | | /
Budget | | | | ”
Forecast | | | | /

Verene | | | |
Fig. 4d

CA 02136300 2002-02-22

INPUT.——3.| DEFINE MEMBER STRUCTURE

CREATE LINKED LIST 2

INPUT—— .| SELECT DENSE DIMENSIONS 3

CREATE UPPER LEVEL 4
STRUCTURE
INPUT INPUT DATA
7

CHECK FORPOINTERTO | INVALID | ERROR
6 DATA BLOCK MESSAGE
VALID EMPTY
0~ | INSERT DATA IN BLOCK 8
BY DENSE PARAMETERS
9
INSERT POINTER TO BLOCK IN
UPPER LEVEL STRUCTURE
YES
DATA?
NO

CA 02136300 2002-02-22

Geographical
Western _Hemisphere

US |
S_America
Venezuela
Brazil
Europe

France -
Paris
Marseilles
Italy
Asia
Taiwan
Singapore
Hong Kong
Total Product Line
Electronics
Radios
TV
Foods
Beverages
Canned Goods
Cereals
Dsitribution Chanmels
Wholesale |
Mail Order Houses
Chains
Distributors
Retail
Wholly Owned_Electronics_Outlets

Catalog Sales
Fig. 6

CA 02136300 2002-02-22

UNIVERSE MEMBER DATA CHILD
GEOGRAPHICAL | MEMBER DATA| CHILD m
USA MEMBER DATA RSIBLING

FRANCE MEMBER DATA - .

PRODUCT MEMBER DATA cHiLD |
CONTACTS| MEMBER DATA RSIBLING

Fig. 7/

INPUT

CA 02136300 2002-02-22

SPECIFY ATTRIBUTES OF DESIRED 11
INFORMATION

LOCATE MEMBER NUMBERS FOR 12

SPARSE DIMENSION ATTRIBUTES

CALCULATE SECTION NUMBER OF 13
SPARSE DIMENSION i.e. LOCATION OF
POINTER TO DATA BLOCK

RETRIEVE POINTER FROM -

CALCULATED CELL 4
LOCATE MEMBER NUMBERS FOR 15
DENSE DIMENSION ATTRIBUTES
CALCULATE SECTION NUMBER OF "

DENSE DIMENSIONS i.e. OFFSET OF
CELL CONTAINING DESIRED DATA

RETRIEVE DATA 17

Fig. 8

CA 02136300 2002-02-22

MO01d vivd
Ol ¥31NIOd

A7IHO 1HOIY

Ol ¥31NIOd

€C

aiHO 1431
Ol 431NIOd

LC

—

R

O — et

CA 02136300 2002-02-22

1 4€
AVHHV ¥3LNIOd "3 AVHYY ¥ZINIOD %43

ct

AVHNY H¥ILNIOd ‘4'3

42

41

OTHER
WORKSTATIONS

CA 02136300 2002-02-22

KEYBOARD
AND/OR OTHER
INPUT DEVICES

WORKSTATION

PROCESSOR DISPLAY
43
SERVER 44
45

MEMORY

DATA BLOCKS

BLOCK
POINTER

STRUCTURE 47

Fig. 11

CA 02136300 2002-02-22

~ | Profit_% = Profit % Sales
-~ | MaminT% = Malrgin % Tal&s
|
Scenario | | |
'Budget |
~lAcwal| |

~ | Variance = Actual - Budget

| I .
Fig. 12

1
INPUT, »! DEFINE MEMBER STRUCTURE
CREATE LINKED LIST 2

INPUT—— .| SELECT DENSE DIMENSIONS 3

CREATE UPPER LEVEL i
STRUCTURE
INPUT. INPUT DATA
7

CHECK FOR POINTER TO INVALID | ERROR
8 DATA BLOCK MESSAGE

VALID EMPTY

10 INSERT DATA IN BLOCK CREATE
BY DENSE PARAMETERS DATA
- BLOCK
INSERT POINTER TO BLOCK IN
UPPER LEVEL STRUCTURE

YES

DATA?

NO

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - abstract drawing

