
H. B. FORBES. STEP LADDER. APPLICATION FILED AUG. 14, 1906.

2 SHEETS-SHEET 1.

ATTORNEYS

H. B. FORBES. STEP LADDER.

APPLICATION FILED AUG. 14, 1906. 2 SHEETS-SHEET 2. 26 Horace B. Forbes. BY Mun of 4 ATTORNEYS

UNITED STATES PATENT OFFICE.

HORACE B. FORBES, OF OGDEN, UTAH.

STEP-LADDER.

Mc. 849,224.

Specification of Letters Patent.

Patented April 2, 1907.

Application filed August 14, 1906. Serial No. 330,548.

To all whom it may concern:

Be it known that I, HORACE B. FORBES, a citizen of the United States, and a resident of Ogden, in the county of Weber and State of Utah, have invented a new and Improved Step-Ladder, of which the following is a full, clear, and exact description.

This invention relates to improvements in step-ladders, more especially directed to ro means for assembling the parts in a strong

and durable manner.

With this in view the invention consists of novel sheet-metal brackets forming the union between the ladder-steps and its front 15 legs, combined with a sheet-metal bracket for connecting the upper ends of the legs with the top board, also affording means to which the rear legs of the latter are pivoted. front and rear legs of the ladder are adjust-20 ably connected together by forked metal strips of peculiar formation, adapting the legs of the ladder to be folded together when not in use.

Reference is to be had to the accompany-35 ing drawings, forming a part of this specification, in which similar characters of reference indicate corresponding parts in all the

figures.

Figure 1 is a side elevation of the ladder 30 with one of the legs partly broken away to more clearly disclose the construction of a bracket employed at each end of the laddersteps. Fig. 2 is a front elevation of the ladder. Fig. 3 is a fragmentary view of the 35 central portion of the ladder, in side elevation, disclosing the means for adjustably connecting the rear and front legs. Fig. 4 is a view similar to Fig. 3, but with the legs of the ladder separated to a lesser extent. Fig. 5 is a the separate to the means for adjustably con-toplan view of the means for adjustably con-positing the less of the ladder together. Fig. necting the legs of the ladder together. Fig. 6 is a perspective view of a bracket employed in connecting the upper ends of the ladder-legs to the top board, the upper ends of said 45 legs being shown in position in the bracket. Fig. 7 is a perspective view of a portion of one of the front ladder-legs with a bracket secured thereon as employed in connecting the front legs with the steps; and Fig. 8 is a 50 perspective view of the upper end of one of the rear ladder-legs, showing a sheet-metal socket as employed to cover the same.

In carrying out the invention I employ struts or posts 1 1, forming the front legs of the ladder, which are braced by steps 2, transversely extending between the legs, and the ladder of sheet metal and bent to inclose

a top board 3, connected to the legs at their upper ends. Struts 4 4, forming the rear legs of the ladder, are braced by diagonal strips 5 and transverse strips 6, connecting 60 them together, the rear legs being in pivotal connection with the front legs of the ladder, as is usual in step-ladder construction.

For connecting the end of each step of the ladder to the front legs 1 I employ a sheetmetal bracket 7, (best shown in perspective in Fig. 7,) comprising members 7^a and 8, bent at right angles to each other, the member 7ª being provided with extended ears 9, bent in the same direction to embrace and be secured to 70 the edges of the leg. The projecting portion 8 of this bracket is formed with an extended portion at one end which is bent downwardly at substantially right angles to the member 8, forming a brace 10, and is provided with a 75 portion 11, bent inwardly to lie flat against the inner face of the leg. For fastening this bracket on the inner face of the leg screwnails or other devices are employed, which are passed through the ears 9 and at the end 80 of the inwardly-turned portion 11 of the brace 10, as illustrated in Fig. 7. After a suitable number of these brackets have been fastened to the inner face of each leg, corresponding in number to the number of steps 85 desired, the steps 2 are nailed or otherwise secured to the projecting portions 8. It should be noted that the angle formed between the projecting portion 8 and the brace 10 is slightly flattened, as at 12, in order to 9° throw the braces inwardly toward the inner face of the ladder-leg, and thus adapting the portion 11 to lie flat against said inner face.

For securing the top board 3 to the upper ends of the legs 1 and also providing means to 95 which the rear legs 4 are pivotally connected I employ a bracket 13, best shown in perspective in Fig. 6 and comprising a top or central portion 13° and downwardly-turned sides 14, to embrace the legs 1 at opposite sides 100 and be secured thereto by nails or other devices, as illustrated in said figure. The top of the bracket is extended at each end to provide upwardly-turned ears 15, which when the bracket is connected to the top board 3, 105 embraces the board at opposite edges and is secured thereto by nails or other devices passing through the apertures shown.

Each of the rear legs 4 of the ladder are inclosed at their upper ends by a metal cap or 110

these ends of the legs, as illustrated. Each 1 side of the cap 16 is indented with protuberances 17, which prevent the cap from working loose when they are inserted between the 5 sides 14 of the bracket 13 and drawn together by a bolt 18, pivotally connecting the bracket and cap with the leg 4 contained therein. These caps 16 prevent undue wearing of the upper ends of the legs 4, as also the

10 holes through which the bolts 18 are passed. For adjustably connecting the front and rear legs of the ladder together I employ a sheet-metal member 19, which is bent upon itself at its center to form an intermediate 15 slot, through which a sheet-metal member 20 is adapted to pass. The sheet-metal member 19 is constructed with divergent ends 21, forming a fork, the outer ends of which are pivotally connected to the front legs by pins 20 or rivets 22. The sheet-metal member 20 is split longitudinally to form a fork comprising members 23, which are divergently bent and pivotally connected by rivets or pins 24 to the legs 4, the members 23 being sprung in 25 order that the pivot-pins may be in alinement.

Each of the members 19 and 20 are provided with a series of holes 25, which are adapted to be brought into alinement and a 30 bolt or pin pass therethrough, thereby holding the front or rear legs of the ladder from folding together, which is desirable for use by paper-hangers or for other special pur-

The member 20 carries at its end prongs 35 26, extending over the member 19 and cooperating with slots or notches 27 therein for holding the legs of the ladder in adjusted posi-As shown, the outer end of the mem-40 ber 19 is slightly upturned in order that the

member 20 can freely pass under it and into the slot adjacent thereto.

Although I have particularly described the invention in detail, it is to be understood 45 that the precise embodiment is not material, provided it is within the scope of the annexed claims.

Having thus described my invention, I claim as new and desire to secure by Letters

50 Patent

1. A step-ladder comprising two sets of legs pivotally connected together, means for adjustably bracing the legs, consisting of a sheet-metal member bent to form a slot with

the ends thereof divergently bent and pivot- 5: ally connected to one pair of the legs, a second sheet-metal member passing through the slot in the first and longitudinally split forming members divergently bent and pivotally connected to the second set of legs, and locking 6c means carried by the adjacent ends of each member.

2. In a step-ladder, legs, steps, sheetmetal brackets secured to the legs and connecting them with the steps, each bracket 65 comprising a portion to lie flat against the inner face of a leg, and a second portion bent at substantially right angles to the first to lie flat against the under face of a step, said second portion having an extended end bent 70 downwardly, forming a brace, the latter lying in a plane substantially at right angles to both of said first and second portions, part of said extended end being bent to lie in a plane with said first portion.

3. In a step-ladder, legs, steps, sheetmetal brackets secured to the legs and connecting them with the steps, each bracket comprising a portion to lie flat against the inner face of a leg with ears bent to embrace 80 the edges thereof, and a second portion bent at substantially right angles to the first to lie flat against the under face of a step, said second portion having an extended end bent downwardly, forming a brace, the latter ly- 85 ing in a plane substantially at right angles to both of said first and second portions, part of said extended end being bent to lie in a plane with said first portion, for the purpose described.

4. In a step-ladder, legs, steps secured to the legs rigidly connecting them together, sheet-metal brackets bent in inverted - U shape to embrace the upper ends of the legs at both sides, upwardly-extending ears 95 formed integral with the top of said brackets at each end thereof, a top board secured between said ears, and rear legs having their upper ends pivoted to and inclosed by said brackets.

In testimony whereof I have signed my name to this specification in the presence of two subscribing witnesses.

HORACE B. FORBES.

Witnesses:

Abbot Maginnis, JAMES N. KIRKBALL