The present invention relates to new and useful improvements in can openers and more particularly to a motor operated can opener including a power operated rotary cutter and a power operated feed wheel for the can.

An important object of the invention is to provide a motor operated can opener including an electric motor having a switch moved into its circuit closing position by a handle or lever and connecting the rotary cutter to the handle to force the cutter into a position for penetrating the top of a can as the switch is closed.

Another object of the invention is to arrange the motor and the can opening mechanism on an attaching bracket in a compact form whereby the device may be firmly secured in a position to a wall or other supporting structure.

A still further object is to provide a device of this character of simple and practical construction, which is efficient and reliable in operation, relatively inexpensive to manufacture and otherwise well adapted for the purposes for which the same is intended.

Other objects and advantages reside in the details of construction and operation as more fully hereinafter described and claimed, referring hereto the accompanying drawings forming part hereof, wherein like numerals refer to like parts throughout, and in which:

Figure 1 is a side elevational view;

Figure 2 is a top plan view;

Figures 3 and 4 are transverse sectional views taken respectively on the lines 3—3 and 4—4 of Figure 1.

Referring now to the drawings in detail wherein for the purpose of illustration I have disclosed a preferred embodiment of the invention the numeral 5 designates an attaching bracket which comprises a vertical plate 6 having a flange 7 at one end for attaching to a wall or other suitable supporting structure by screws or the like. A motor housing 8 is secured to the rear surface of the plate 6 in any suitable manner for enclosing an electric motor 10 which is also secured to the plate 6 as shown at 11.

A horizontal shaft 12 is journaled in the plate 6 by means of a bearing 13 formed with the plate the shaft being driven by the motor by means of gearing 14.

The shaft 12 projects outwardly at the front surface of plate 6 and to which is suitably secured a feeder gear 15 having a pinion gear 16 formed therewith at its rear side.

A cutter supporting arm 17 is positioned against the upper front surface of plate 6 with one end of the arm slidable in a socket or pocket 18 formed on the front surface of the plate adjacent its inner end.

A handle or lever 19 is pivoted adjacent the outer end of plate 6 by means of a pivot or pin 20 for vertical swinging movement of the handle, the handle being positioned against the rear surface of the plate and provided with a pin 21 working in an arcuate slot 22 in plate 6 end engaged in an opening 23 adjacent the outer end of arm 17.

The arm 11 is formed or otherwise provided with a downwardly inclined boss 24 terminating at its outer end in a pin 25 on which a gear 26 and a substantially conical cutting disc 27 are journal and retained in position on the pin by a nut 28 threaded thereon. The gear 26 and cutter 27 are connected to each other in any suitable manner for rotation as a unit.

A horizontally projecting can guide lug 29 is formed at the lower edge of plate 6 and the arm 17 is provided at its lower inner edge by a similar horizontally projecting can guide lug 30 and is provided adjacent its outer end with a vertically inclined can guide lug 31.

A conventional type of push button switch 32 is suitably secured to the rear surface of plate 6 in the path of downward movement of handle 19 to cut the motor on and off.

In the operation of the device the handle 19 is normally held in its raised position as shown by the dotted lines in Figure 1 of the drawing whereby the outer end of arm 17 will be raised upwardly and moved inwardly.

The feeding 32 of a can 33 is then inserted behind cutter 27 and on top of feed gear 15, as shown in Figure 3. The handle 19 is then lowered to close switch 32 and at the same time the pin 21 carried by the handle, working in arcuate slot 22, will slide arm 17 outwardly and downwardly to force cutter 27 into the top of the can and to engage gear 26 with gear 16 whereby the can is fed between gear 15 and cutter 27 as the cutter is rotated to cut the top from the can.

The side of the can is held against guide lug 29 while the top of the can is held under guide lug 30 and inclined lug 31 to hold the can steady during the operation of the cutter.

After the top has been sufficiently cut, the handle 19 is raised to cut off the motor.

In view of the foregoing description taken in conjunction with the accompanying drawings it is believed that a clear understanding of the device will be quite apparent to those skilled
in this art. A more detailed description is accordingly deemed unnecessary.

It is to be understood, however, that even though there is herein shown and described a preferred embodiment of the invention the same is susceptible to certain changes fully comprehended by the spirit of the invention as herein described and the scope of the appended claims.

Having described the invention, what is claimed as new is:

1. A motor operated can opener comprising in combination, a supporting member, a motor carried thereby, a rotary can feeding member and a rotary can cutter driven by the motor, a switch for the motor, a movable mounting for the cutter carried by the supporting member, and means connected to the mounting for moving the cutter into and out of cutting position and also opening and closing the switch.

2. A motor operated can opener comprising in combination, a supporting member, a motor carried thereby, a rotary can feeding member and a rotary can cutter driven by the motor, a switch for the motor, a movable mounting for the cutter carried by the supporting member, and means connected to the mounting for moving the cutter into and out of cutting position and also opening and closing the switch, said means comprising a handle pivoted to the supporting member and said switch being positioned in the path of movement of the handle.

3. A motor operated can opener comprising in combination, a supporting member, a motor carried thereby, a rotary can feeding member and a rotary can cutter driven by the motor, a switch for the motor, an arm slidably carried by the supporting member and on which the cutter is carried for moving the cutter into and out of cutting position, and a handle pivoted to the supporting member and connected to the arm for actuating the same, said switch being positioned in the path of movement of the handle for actuation thereby.

RICHARD J. RAAB.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,614,503</td>
<td>West</td>
<td>Dec. 1, 1931</td>
</tr>
<tr>
<td>2,462,416</td>
<td>Nelson</td>
<td>Feb. 22, 1949</td>
</tr>
</tbody>
</table>