

US 20130344553A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0344553 A1

Lee

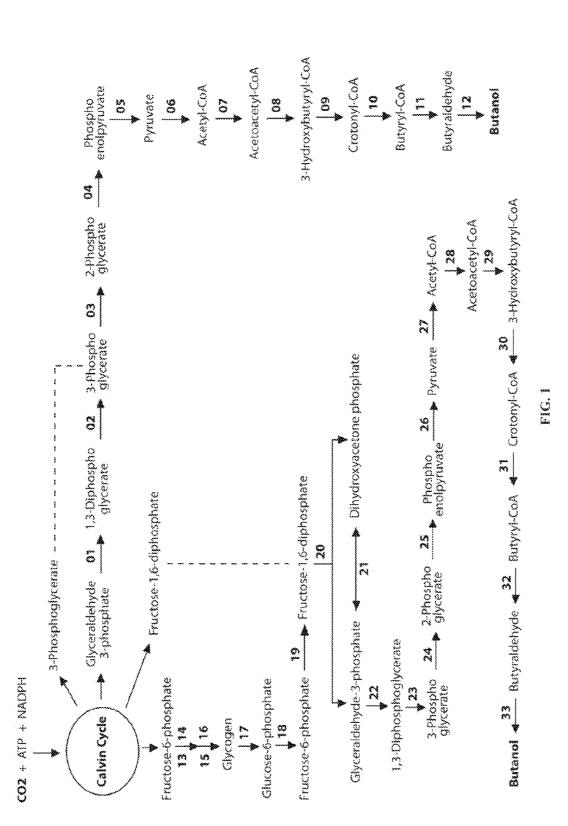
(54) DESIGNER CALVIN-CYCLE-CHANNELED AND HYDROGENOTROPHIC PRODUCTION OF BUTANOL AND RELATED HIGHER ALCOHOLS

- (76) Inventor: James Weifu Lee, Cockeysville, MD (US)
- (21) Appl. No.: 13/997,242
- (22) PCT Filed: Dec. 20, 2011
- (86) PCT No.: PCT/US11/66090
 § 371 (c)(1), (2), (4) Date: Jun. 22, 2013

Related U.S. Application Data

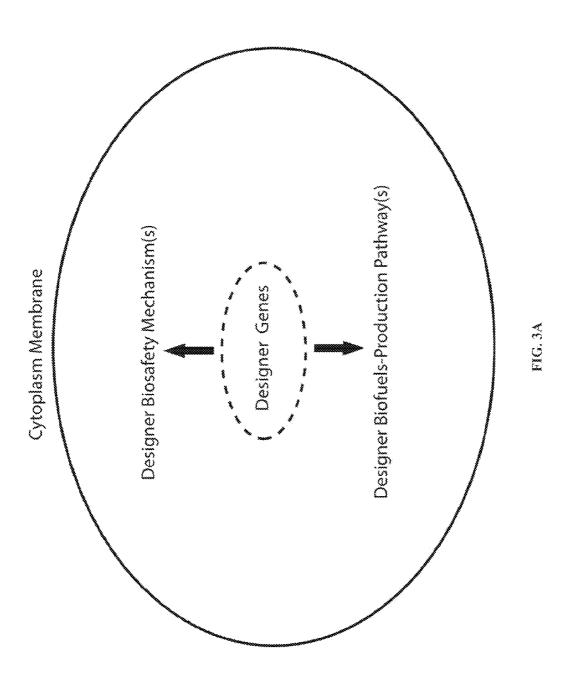
- (63) Continuation-in-part of application No. 13/075,153, filed on Mar. 29, 2011, which is a continuation-in-part of application No. 12/918,784, filed on Aug. 20, 2010, filed as application No. PCT/US2009/034801 on Feb. 21, 2009.
- (60) Provisional application No. 61/426,147, filed on Dec.
 22, 2010, provisional application No. 61/066,845, filed on Feb. 23, 2008, provisional application No.

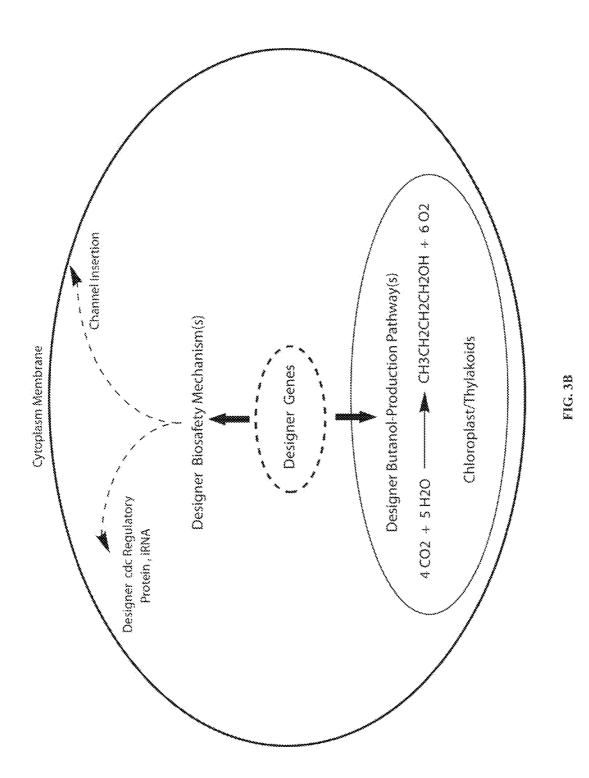
(10) **Pub. No.: US 2013/0344553 A1** (43) **Pub. Date: Dec. 26, 2013**

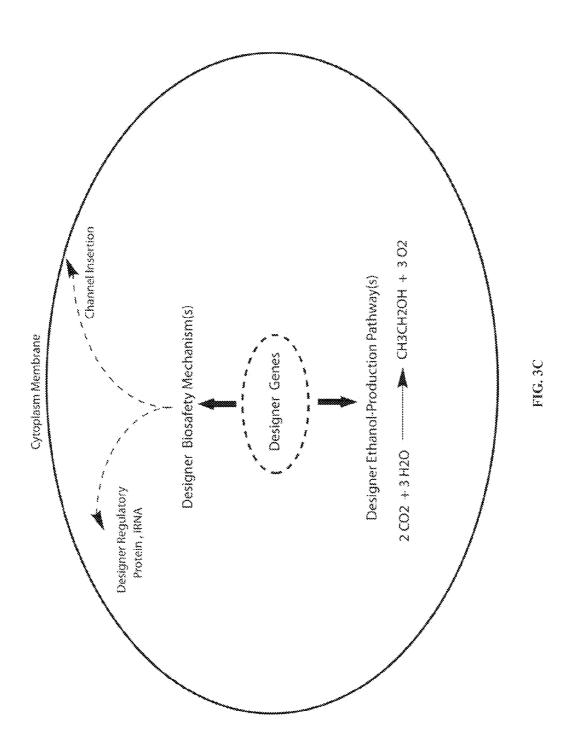

61/066,835, filed on Feb. 23, 2008, provisional application No. 61/426,147, filed on Dec. 22, 2010.

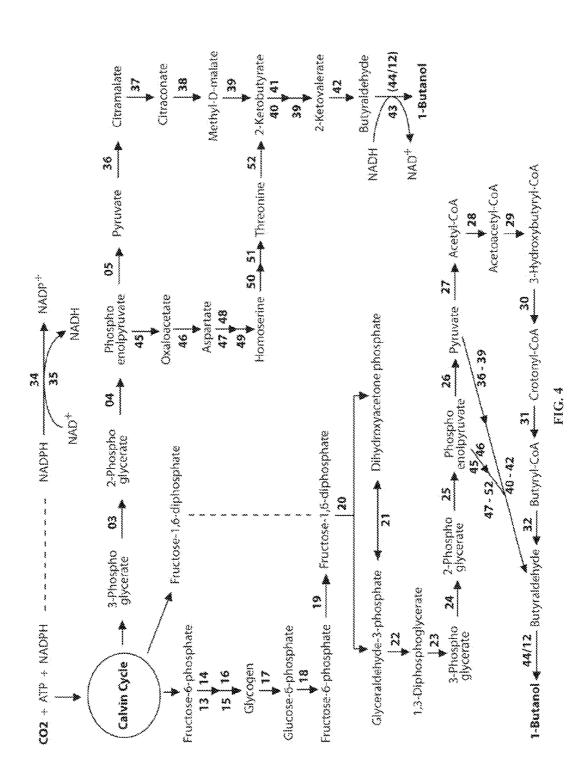
Publication Classification

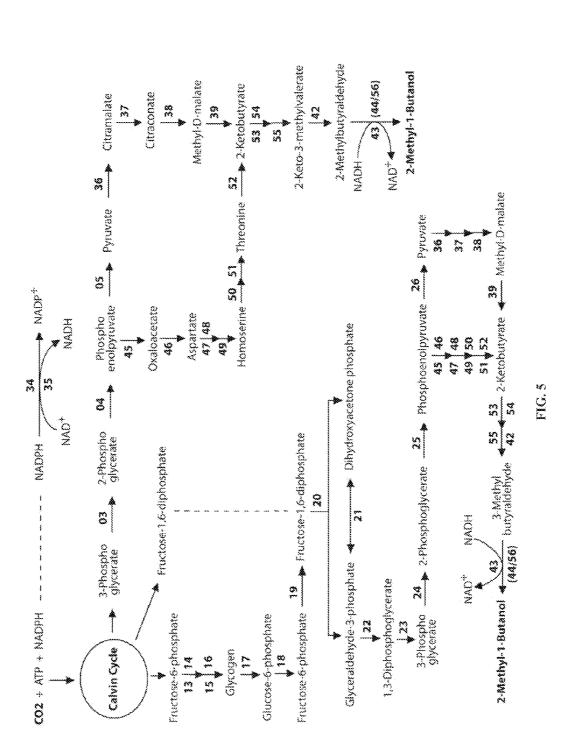
- (51) Int. Cl. *C12P 7/16* (2006.01)

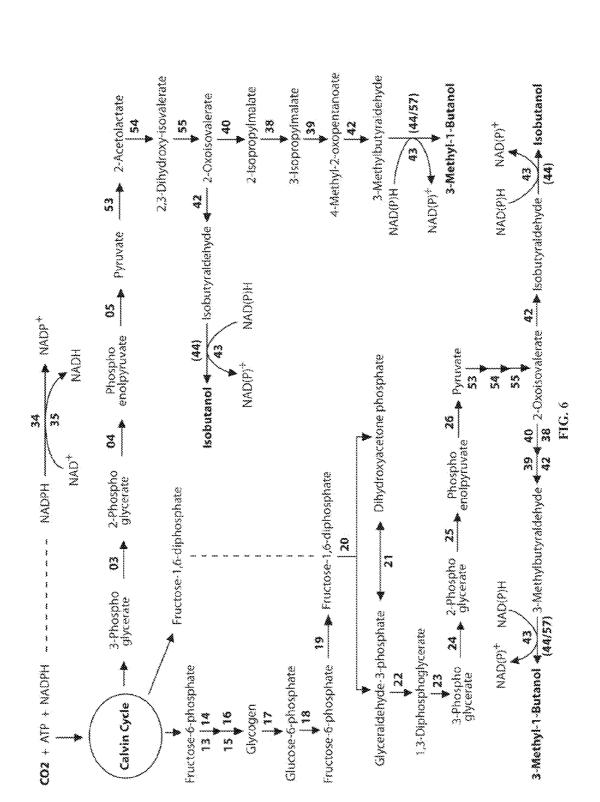

(57) ABSTRACT

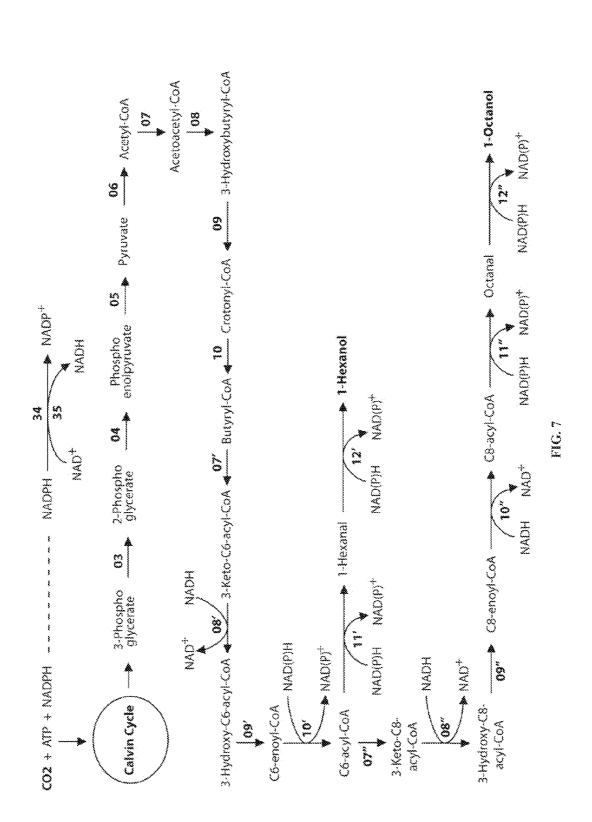

Designer Calvin-cycle-channeled and hydrogenotrophic biofuel-production pathways, the associated designer genes and designer transgenic organisms for autotrophic production of butanol and related higher alcohols from carbon dioxide, hydrogen, and/or water are provided. The butanol and related higher alcohols include 1-butanol, 2-methyl-1-butanol, isobutanol, 3-methyl-1-butanol, 1-hexanol, 1-octanol, 1-pentanol, 1-heptanol, 3-methyl-1-pentanol, 4-methyl-1-hexanol, 5-methyl-1-heptanol, 4-methyl-1-pentanol, 5-methyl-1-hexanol, and 6-methyl-1-heptanol. The designer autotrophic organisms such as designer transgenic oxyphotobacteria and algae comprise designer Calvin-cycle-channeled and hydrogenotrophic pathway gene(s) and biosafety-guarding technology for enhanced autotrophic production of butanol and related higher alcohols from carbon dioxide and water.

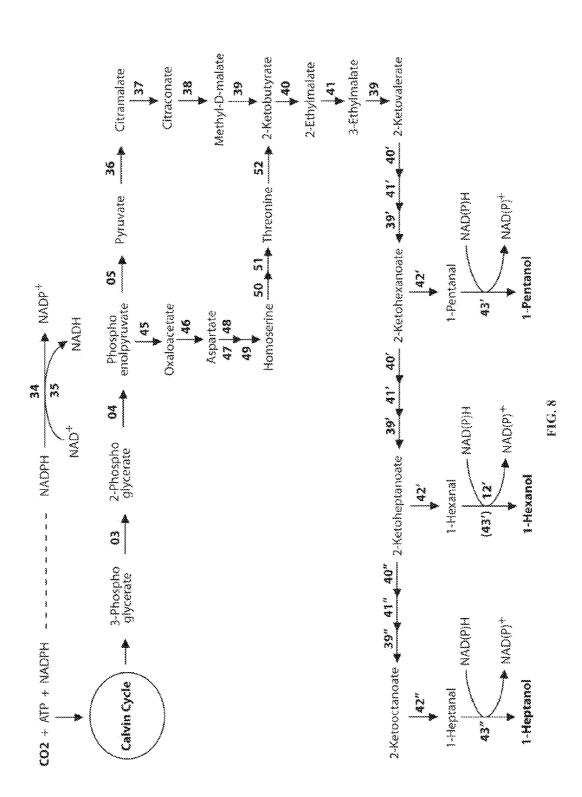


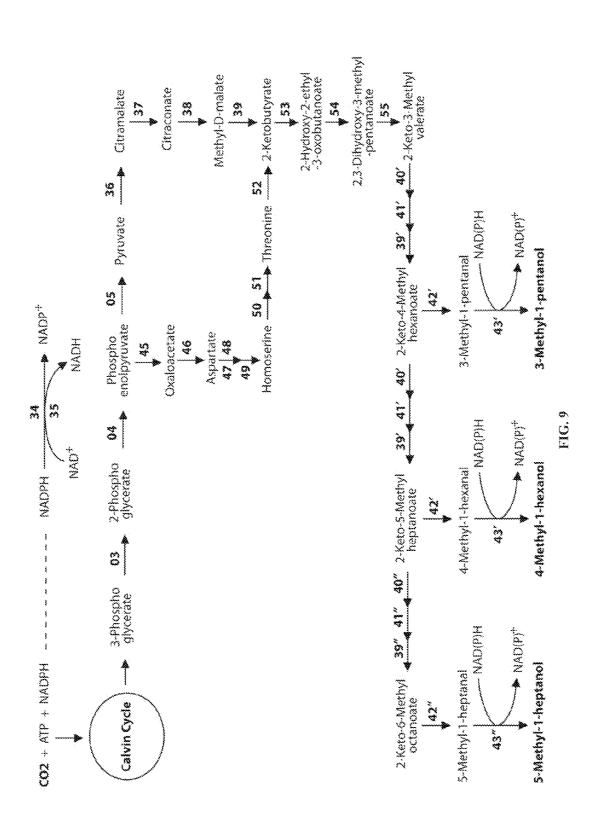

5°. PCR FD Primer Inducible Promoter Targeting Seq Butanol-Production-Pathway Gene(s) PCR RE Primer	FIG. 2A	5'- PCRFD Primer Inducible Promoter Targeting Seq NADPH/NADH-Conversion Gene(s) PCR RE Primer	FIG. 28	st- PCR FD Primer Inducible Promoter IRNA Starch/Glycogen-Synthesis Inhibitor(s) PCR RE Primer	FIG. 2C	ج. ج	PCR FD Primer Inductble Promoter Starch-Degradation-Glycolysis Gene(s) PCR RE Primer	F13, 21 20	ock FD Primer Inducible Promoter Butanol-Production-Pathway Gene(s) PCR RE Prime	FIG. 2E	Recombination Site 1 Designer Butanol-Production-Pathway Gene(s) Recombination Site 2	FIG. 2F		PCR FD Primer Inducible Promoter Biosafety-Cantrol Gene(s) PCR RE Primer FIG. 2G	, v	CRFD Primer [inductble Promoter] Designer Proton-Channel Gene(s) [PCR RE Prime	FIG. 2H
--	---------	--	---------	---	---------	---------	--	----------------------	--	---------	---	---------	--	--	--------	---	---------

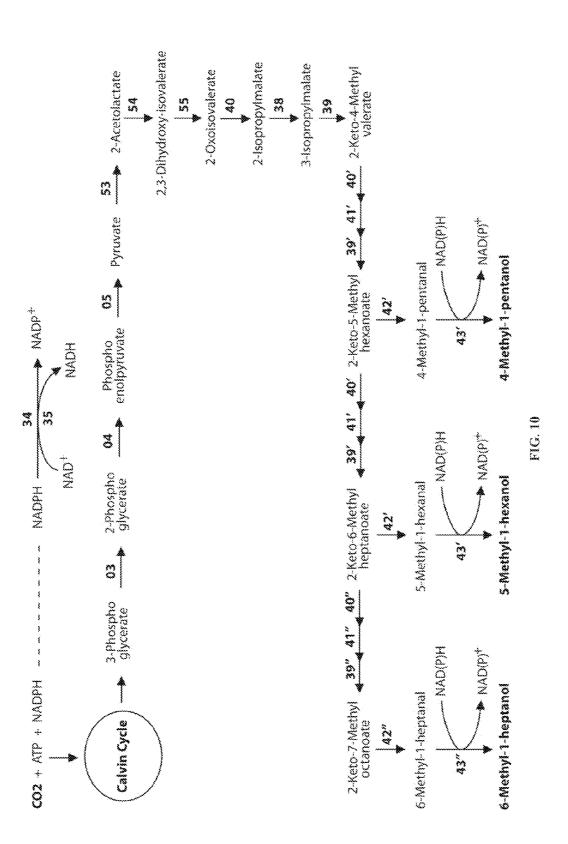

Patent ApplicationDec. 26, 2013Sheet 2 of 19US 2013/0344553A1

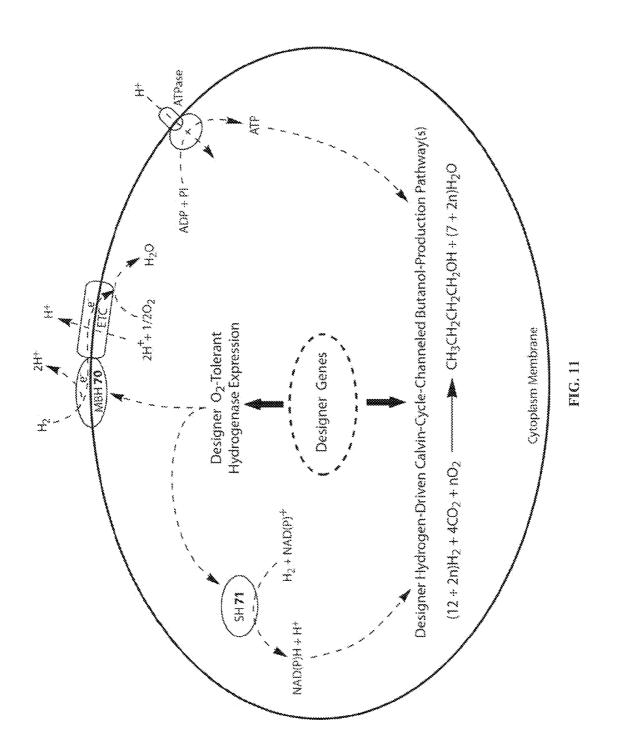












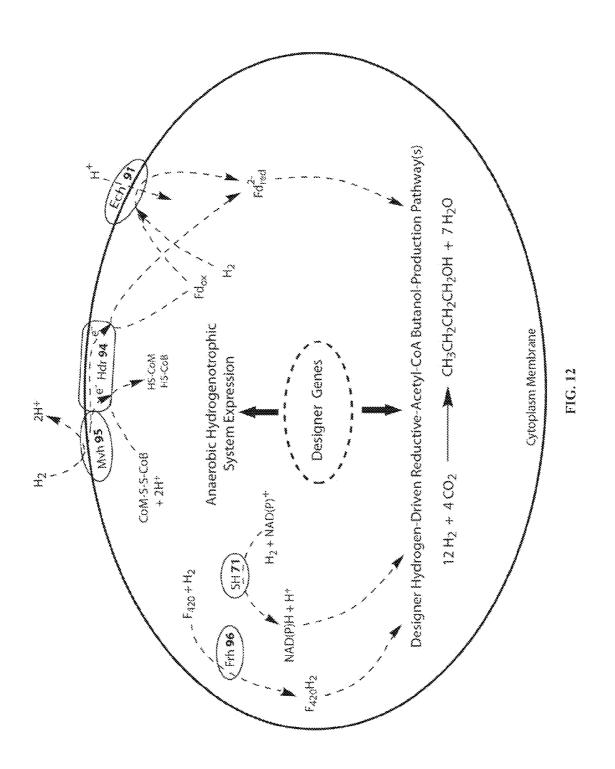
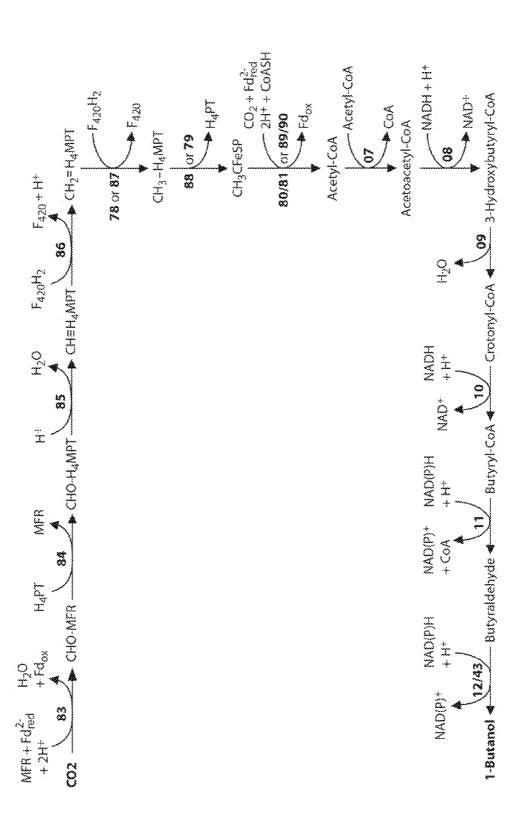
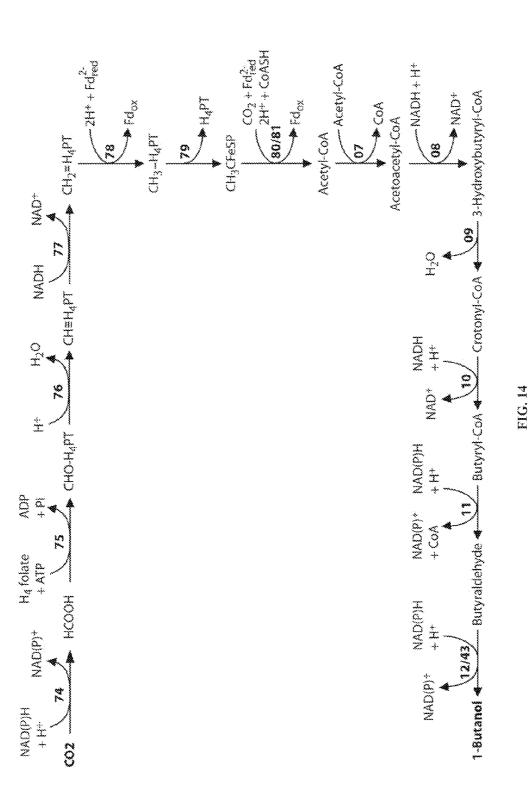
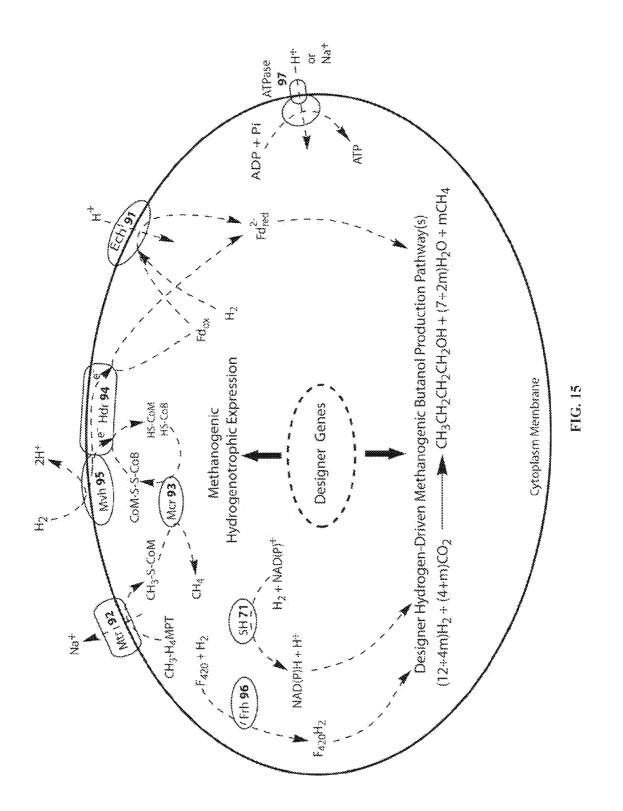
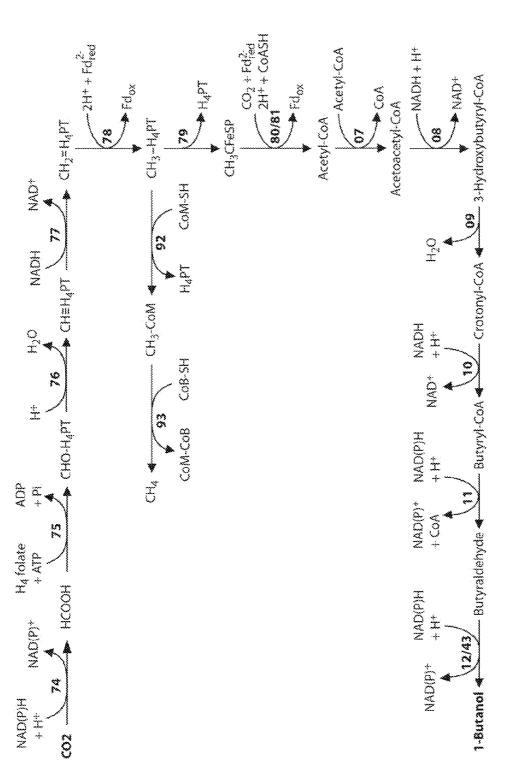
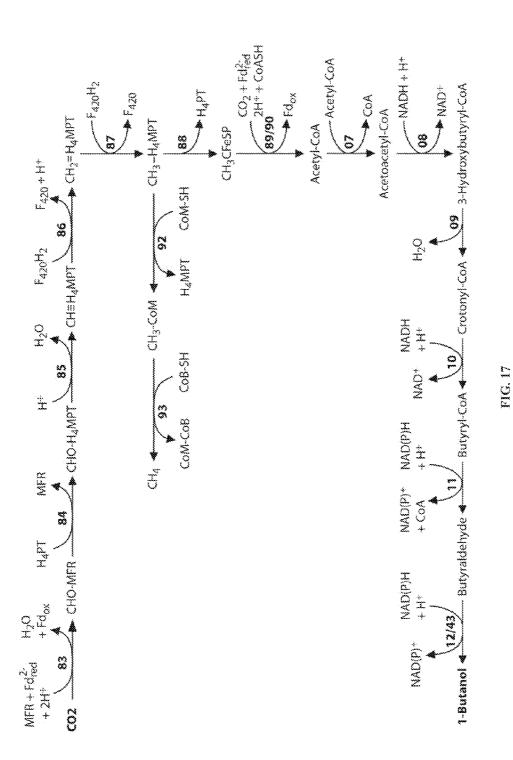






FIG. 13



DESIGNER CALVIN-CYCLE-CHANNELED AND HYDROGENOTROPHIC PRODUCTION OF BUTANOL AND RELATED HIGHER ALCOHOLS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. patent application Ser. No. 13/075,153 filed on Mar. 29, 2011, which is a continuation-in-part of co-pending U.S. patent application Ser. No. 12/918,784 filed on Aug. 20, 2010, which is the National Stage of International Application No. PCT/US2009/034801 filed on Feb. 21, 2009, which claims the benefit of U.S. Provisional Application No. 61/066,845 filed on Feb. 23, 2008, and U.S. Provisional Application No. 61/066,835 filed on Feb. 23, 2008. This application No. 61/426,147 filed on Dec. 22, 2010. The entire disclosures of all of these applications are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention generally relates to biosafetyguarded biofuel energy production technology. More specifically, the present invention provides an autotrophic advanced-biofuels production methodology based on designer transgenic plants, such as transgenic algae, bluegreen algae (cyanobacteria and oxychlorobacteria), plant cells or bacterial cells that are created to use the reducing power (NADPH) or Hydrogen (H₂), and energy (ATP) acquired from the photosynthetic and/or hydrogenotrophic process for autotrophic synthesis of butanol and/or related higher alcohols from carbon dioxide (CO_2) and water (H₂O).

REFERENCE TO SEQUENCE LISTING

[0003] The present invention contains references to amino acid sequences and/or nucleic acid sequences which have been submitted concurrently herewith as the sequence listing "JWL_004_PCT_SeqListingFull_ST25.txt" text file updated on Dec. 18, 2911 from the efile of "JWL_004_US1_ SeqListingFull_ST25.txt", file size 429 KB, created on Mar. 29, 2011, in electronic format using the Electronic Filing System of the U.S. Patent and Trademark Office. The aforementioned sequence listing was prepared with PatentIn 3.5, which complies with all format requirements specified in World Intellectual Property Organization Standard (WIPO) ST.25 and the related United States (US) final rule, and is incorporated herein by reference in its entirety including pursuant to 37 C.F.R. §1.52(e)(5) where applicable.

BACKGROUND OF THE INVENTION

[0004] Butanol and/or related higher alcohols can be used as a liquid fuel to run engines such as cars. Butanol can replace gasoline and the energy contents of the two fuels are nearly the same (110,000 Btu per gallon for butanol; 115,000 Btu per gallon for gasoline). Butanol has many superior properties as an alternative fuel when compared to ethanol as well. These include: 1) Butanol has higher energy content (110,000 Btu per gallon butanol) than ethanol (84,000 Btu per gallon ethanol); 2) Butanol is six times less "evaporative" than ethanol and 13.5 times less evaporative than gasoline, making it safer to use as an oxygenate and thereby eliminating the need for very special blends during the summer and winter seasons; 3) Butanol can be transported through the existing fuel infrastructure including the gasoline pipelines whereas ethanol must be shipped via rail, barge or truck; and 4) Butanol can be used as replacement for gasoline gallon for gallon e.g. 100% or any other percentage, whereas ethanol can only be used as an additive to gasoline up to about 85% (E-85) and then only after significant modification to the engine (while butanol can work as a 100% replacement fuel without having to modify the current car engine).

[0005] A significant potential market for butanol and/or related higher alcohols as a liquid fuel already exists in the current transportation and energy systems. Butanol is also used as an industrial solvent. In the United States, currently, butanol is manufactured primarily from petroleum. Historically (1900s-1950s), biobutanol was manufactured from corn and molasses in a fermentation process that also produced acetone and ethanol and was known as an ABE (acetone, butanol, ethanol) fermentation typically with certain butanolproducing bacteria such as Clostridium acetobutylicum and Clostridium beijerinckii. When the USA lost its low-cost sugar supply from Cuba around 1954, however, butanol production by fermentation declined mainly because the price of petroleum dropped below that of sugar. Recently, there is renewed R&D interest in producing butanol and/or ethanol from biomass such as corn starch using Clostridia- and/or yeast-fermentation process. However, similarly to the situation of "cornstarch ethanol production," the "cornstarch butanol production" process also requires a number of energy-consuming steps including agricultural corn-crop cultivation, corn-grain harvesting, corn-grain starch processing, and starch-to-sugar-to-butanol fermentation. The "cornstarch butanol production" process could also probably cost nearly as much energy as the energy value of its product butanol. This is not surprising, understandably because the cornstarch that the current technology can use represents only a small fraction of the corn crop biomass that includes the corn stalks, leaves and roots. The cornstovers are commonly discarded in the agricultural fields where they slowly decompose back to CO₂, because they represent largely lignocellulosic biomass materials that the current biorefinery industry cannot efficiently use for ethanol or butanol production. There are research efforts in trying to make ethanol or butanol from lignocellulosic plant biomass materials-a concept called "cellulosic ethanol" or "cellulosic butanol". However, plant biomass has evolved effective mechanisms for resisting assault on its cell-wall structural sugars from the microbial and animal kingdoms. This property underlies a natural recalcitrance, creating roadblocks to the cost-effective transformation of lignocellulosic biomass to fermentable sugars. Therefore, one of its problems known as the "lignocellulosic recalcitrance" represents a formidable technical barrier to the cost-effective conversion of plant biomass to fermentable sugars. That is, because of the recalcitrance problem, lignocellulosic biomasses (such as cornstover, switchgrass, and woody plant materials) could not be readily converted to fermentable sugars to make ethanol or butanol without certain pretreatment, which is often associated with high processing cost. Despite more than 50 years of R&D efforts in lignocellulosic biomass pretreatment and fermentative butanol-production processing, the problem of recalcitrant lignocellulosics still remains as a formidable technical barrier that has not yet been eliminated so far. Furthermore, the steps of lignocellulosic biomass cultivation, harvesting, pretreatment processing, and cellulose-to-sugar-to-butanol fermentation

all cost energy. Therefore, any new technology that could bypass these bottleneck problems of the biomass technology would be useful.

[0006] Oxyphotobacteria (also known as blue-green algae including cyanobacteria and oxychlorobacteria) and algae (such as Chlamydomonas reinhardtii, Platymonas subcordiformis, Chlorella fusca, Dunaliella salina, Ankistrodesmus braunii, and Scenedesmus obliquus), which can perform photosynthetic assimilation of CO₂ with O₂ evolution from water in a liquid culture medium with a maximal theoretical solarto-biomass energy conversion of about 10%, have tremendous potential to be a clean and renewable energy resource. However, the wild-type oxygenic photosynthetic green plants, such as blue-green algae and eukaryotic algae, do not possess the ability to produce butanol directly from CO2 and H₂O. The wild-type photosynthesis uses the reducing power (NADPH) and energy (ATP) from the photosynthetic water splitting and proton gradient-coupled electron transport process through the algal thylakoid membrane system to reduce CO_2 into carbohydrates $(CH_2O)_n$ such as starch with a series of enzymes collectively called the "Calvin cycle" at the stroma region in an algal or green-plant chloroplast. The net result of the wild-type photosynthetic process is the conversion of CO_2 and H_2O into carbohydrates $(CH_2O)_n$ and O_2 using sunlight energy according to the following process reaction:

$$nCO_2 + nH_2O \rightarrow (CH_2O)n + nO_2$$
 [1]

The carbohydrates (CH_2O)n are then further converted to all kinds of complicated cellular (biomass) materials including proteins, lipids, and cellulose and other cell-wall materials during cell metabolism and growth.

[0007] In certain alga such as *Chlamydomonas reinhardtii*, some of the organic reserves such as starch could be slowly metabolized to ethanol (but not to butanol) through a secondary fermentative metabolic pathway. The algal fermentative metabolic pathway is similar to the yeast-fermentation process, by which starch is breakdown to smaller sugars such as glucose that is, in turn, transformed into pyruvate by a glycolysis process. Pyruvate may then be converted to formate, acetate, and ethanol by a number of additional metabolic steps (Gfeller and Gibbs (1984) "Fermentative metabolism of Chlamydomonas reinhardtii," Plant Physiol. 75:212-218). The efficiency of this secondary metabolic process is quite limited, probably because it could use only a small fraction of the limited organic reserve such as starch in an algal cell. Furthermore, the native algal secondary metabolic process could not produce any butanol. As mentioned above, butanol (and/or related higher alcohols) has many superior physical properties to serve as a replacement for gasoline as a fuel. Therefore, a new photobiological and/or hydrogenotrophic butanol (and/or related higher alcohols)-producing mechanism with a high energy conversion efficiency is needed.

[0008] International Application No. PCT/US2009/ 034801 discloses a set of methods on designer photosynthetic organisms (such as designer transgenic plant, plant cells, algae and oxyphotobacteria) for photobiological production of butanol from carbon dioxide (CO_2) and water (H_2O).

SUMMARY OF THE INVENTION

[0009] The present invention discloses designer Calvincycle-channeled and/or hydrogenotrophic pathways, the associated designer genes and designer transgenic photosynthetic organisms for autotrophic production of butanol and/or related higher alcohols that are selected from the group that consists of: 1-butanol, 2-methyl-1-butanol, isobutanol, 3-methyl-1-butanol, 1-hexanol, 1-octanol, 1-pentanol, 1-heptanol, 3-methyl-1-pentanol, 4-methyl-1-hexanol, 5-methyl-1-heptanol, 4-methyl-1-pentanol, 5-methyl-1-hexanol, 6-methyl-1-heptanol, and combinations thereof.

[0010] The designer autotrophic organisms such as designer transgenic oxyphotobacteria and algae comprise designer Calvin-cycle-channeled and photosynthetic NADPH-enhanced pathway gene(s) and biosafety-guarding technology for enhanced photobiological production of butanol and related higher alcohols from carbon dioxide and water.

[0011] According to another embodiment, the transgenic autotrophic organism comprises a transgenic designer plant or plant cells selected from the group consisting of aquatic plants, plant cells, green algae, red algae, brown algae, blue-green algae (oxyphotobacteria including cyanobacteria and oxychlorobacteria), diatoms, marine algae, freshwater algae, salt-tolerant algal strains, cold-tolerant algal strains, heat-tolerant algal strains, antenna-pigment-deficient mutants, butanol-tolerant algal strains, higher-alcohols-tolerant algal strains, butanol-tolerant oxyphotobacteria, higher-alcohols-tolerant oxyphotobacteria, and combinations thereof.

[0012] According to one of the various embodiments, a designer Calvin-cycle-channeled photosynthetic NADPH-enhanced pathway that takes the Calvin-cycle intermediate product, 3-phosphoglycerate, and converts it into 1-butanol comprises a set of enzymes selected from the group consisting of: NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, piveralate synthase, 2-methylmalate dehydrogenase, 3-isopropylmalate dehydratase, 3-isopropylmalate dydratase, isopropylmalate dehydrogenase, NADPH-dependent glycerates, alcohol dehydrogenase, NADPH-dependent synthase, isopropylmalate dehydrogenase, 2-keto acid decarboxylase, alcohol dehydrogenase, and butanol dehydrogenase.

[0013] According to one of the various embodiments, another designer Calvin-cycle-channeled photosynthetic NADPH-enhanced 1-butanol-production pathway comprises a set of enzymes selected from the group consisting of: NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, enolase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, aspartokinase, aspartate-semialdehyde dehydrogenase, homoserine dehydrogenase, homoserine kinase, threonine synthase, threonine ammonia-lyase, 2-isopropylmalate synthase, isopropylmalate isomerase, 3-isopropylmalate dehydrogenase, 2-keto acid decarboxylase, and NAD-dependent alcohol dehydrogenase, NADPH-dependent alcohol dehydrogenase, and butanol dehydrogenase.

[0014] According to another embodiment, a designer Calvin-cycle-channeled photosynthetic NADPH-enhanced pathway that takes the Calvin-cycle intermediate product, 3-phosphoglycerate, and converts it into 2-methyl-1-butanol, comprises a set of enzymes selected from the group consisting of: NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, enolase, pyruvate kinase, citramalate synthase, 2-methylmalate dehydratase, 3-isopropylmalate dehydratase, 3-isopropylmalate somerase, dihydroxy-acid dehydratase, 2-keto acid decarboxylase, NAD-dependent alcohol dehydrogenase, NADPHdependent alcohol dehydrogenase, and 2-methylbutyraldehyde reductase.

[0015] According to another embodiment, a designer Calvin-cycle-channeled photosynthetic NADPH-enhanced pathway for photobiological production of 2-methyl-1-butanol production comprises a set of enzymes selected from the group consisting of: NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, enolase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, aspartokinase, aspartate-semialdehyde dehydrogenase, homoserine dehydrogenase, homoserine kinase, threonine synthase, threonine ammonia-lyase, acetolactate synthase, ketol-acid reductoisomerase, dihydroxy-acid dehydratase, 2-keto acid decarboxylase, and NAD dependent alcohol dehydrogenase, NADPH dependent alcohol dehydrogenase, and 2-methylbutyraldehyde reductase.

[0016] According to another embodiment, a designer Calvin-cycle-channeled photosynthetic NADPH-enhanced pathway for photobiological production of isobutanol comprises a set of enzymes selected from the group consisting of: NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, enolase, pyruvate kinase, acetolactate synthase, ketol-acid reductoisomerase, dihydroxy-acid dehydratase, 2-keto acid decarboxylase, and NAD-dependent alcohol dehydrogenase, and NADPH-dependent alcohol dehydrogenase.

[0017] Likewise, a number of other designer Calvin-cyclechanneled photosynthetic NADPH-enhanced pathways are also disclosed according to one of the various embodiments for photobiological production of butanol and/or related higher alcohols such as 3-methyl-1-butanol, 1-hexanol, 1-octanol, 1-pentanol, 1-heptanol, 3-methyl-1-pentanol, 4-methyl-1-hexanol, 5-methyl-1-heptanol, 4-methyl-1-pentanol, 5-methyl-1-hexanol, and/or 6-methyl-1-heptanol.

[0018] According to one of various embodiments, a method for photobiological production and harvesting of butanol and related higher alcohols comprises: a) introducing a transgenic photosynthetic organism into a photobiological reactor system, the transgenic photosynthetic organism comprising transgenes coding for a set of enzymes configured to act on an intermediate product of a Calvin cycle and to convert the intermediate product into butanol and/or related higher alcohols; b) using reducing power NADPH and energy ATP associated with the transgenic photosynthetic organism acquired from photosynthetic water splitting and proton gradient coupled electron transport process in the photobioreactor to synthesize butanol and/or related higher alcohols from carbon dioxide and water; and c) using a product separation process to harvest the synthesized butanol and/or related higher alcohols from the photobioreactor.

[0019] According to another embodiment, designer hydrogen-driven Calvin-cycle-channeled biofuel-production organisms for chemolithoautotrophic production of butanol and related higher alcohols comprises a set of oxygen-tolerant soluble hydrogenase and membrane-bound hydrogenases in combination with the designer Calvin-cycle-channeled biofuel-production pathways.

[0020] According to another embodiment, a designer organism comprises a designer anaerobic hydrogenotrophic system and a reductive-acetyl-CoA biofuel-production path-

way(s) for hydrogen-driven chemolithoautotrophic production of 1-butanol(CH₃CH₂CH₂CH₂OH) from hydrogen (H₂) and carbon dioxide (CO₂) with its maximal H₂-to-butanol energy conversion efficiency as high as 91%. This designer autotrophic organism comprises a set of designer genes (e.g., designer DNA constructs) that express the designer anaerobic hydrogenotrophic butanol-production-pathway system comprising: energy converting hydrogenase (Ech), [NiFe]-hydrogenase (Mvh), Coenzyme F420-reducing hydrogenase (Frh), native (or heterologous) soluble hydrogenase (SH), heterodissulfide reductase (Hdr), formylmethanofuran dehydroganse, formyl transferase, 10-methenyl-tetrahydromethanopterin cyclohydrolase, 10-methylene-H₄ methanopterin dehydrogenase, 10-methylene-H₄-methanopterin reductase, methyl-H₄-methanopterin: corrinoid iron-sulfur protein methyltransferase, corrinoid iron-sulfur protein, CO dehydrogenase/acetyl-CoA synthase, thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyaldehyde dehydrogenase, butanol dehydrogenase and/or alcohol dehydrogenase.

[0021] According to one of the various embodiments, a designer autotrophic organism comprises a designer methanogenic hydrogenotrophic system and a reductive-acetyl-CoA biofuel-production pathway(s) for anaerobic chemproduction of both olithoautotrophic 1-butanol (CH₃CH₂CH₂CH₂OH) and methane (CH₄) from hydrogen (H_2) and carbon dioxide (CO_2) . This designer autotrophic organism comprises a set of designer genes that express a designer methanogenic hydrogenotrophic butanol-production-pathway system comprising: methyl-H4MPT: coenzyme-M methyltransferase Mtr, native (or heterologous) A₁A_o-ATP synthase, methyl-coenzyme M reductase Mcr, energy converting hydrogenase (Ech), [NiFe]-hydrogenase (Mvh), Coenzyme F₄₂₀-reducing hydrogenase (Frh), soluble hydrogenase (SH), heterodissulfide reductase (Hdr), formate dehydroganse, 10-formyl-H₄ folate synthetase, methenyltetrahydrofolate cyclohydrolase, 10-methylene-H₄ folate dehydrogenase, 10-methylene-H₄ folate reductase, methyl-H₄ folate: corrinoid iron-sulfur protein methyltransferase, corrinoid iron-sulfur protein, CO dehydrogenase/acetyl-CoA synthase, thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyaldehyde dehydrogenase, and butanol dehydrogenase and/or alcohol dehydrogenase.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1 presents designer butanol-production pathways branched from the Calvin cycle using the reducing power (NADPH) and energy (ATP) from the photosynthetic water splitting and proton gradient-coupled electron transport process to reduce carbon dioxide (CO₂) into butanol $CH_3CH_2CH_2CH_2OH$ with a series of enzymatic reactions.

[0023] FIG. **2**A presents a DNA construct for designer butanol-production-pathway gene(s).

[0024] FIG. **2**B presents a DNA construct for NADPH/ NADH-conversion designer gene for NADPH/NADH interconversion.

[0025] FIG. **2**C presents a DNA construct for a designer iRNA starch/glycogen-synthesis inhibitor(s) gene.

[0026] FIG. **2**D presents a DNA construct for a designer starch-degradation-glycolysis gene(s).

[0027] FIG. **2**E presents a DNA construct of a designer butanol-production-pathway gene(s) for cytosolic expression.

[0028] FIG. **2**F presents a DNA construct of a designer butanol-production-pathway gene(s) with two recombination sites for integrative genetic transformation in oxyphotobacteria.

[0029] FIG. **2**G presents a DNA construct of a designer biosafety-control gene(s).

[0030] FIG. **2**H presents a DNA construct of a designer proton-channel gene(s).

[0031] FIG. **3**A illustrates a cell-division-controllable designer organism that contains two key functions: designer biosafety mechanism(s) and designer biofuel-production pathway(s).

[0032] FIG. 3B illustrates a cell-division-controllable designer organism for photobiological production of butanol $(CH_3CH_2CH_2CH_2OH)$ from carbon dioxide (CO_2) and water (H_2O) with designer biosafety mechanism(s).

[0033] FIG. 3C illustrates a cell-division-controllable designer organism for biosafety-guarded photobiological production of other biofuels such as ethanol (CH_3CH_2OH) from carbon dioxide (CO_2) and water (H_2O).

[0034] FIG. 4 presents designer Calvin-cycle-channeled and photosynthetic NADPH-enhanced pathways using the reducing power (NADPH) and energy (ATP) from the photosynthetic water splitting and proton gradient-coupled electron transport process to reduce carbon dioxide (CO_2) into 1-butanol($CH_3CH_2CH_2CH_2OH$) with a series of enzymatic reactions.

[0035] FIG. 5 presents designer Calvin-cycle-channeled and photosynthetic NADPH-enhanced pathways using NADPH and ATP from the photosynthetic water splitting and proton gradient-coupled electron transport process to reduce carbon dioxide (CO_2) into 2-methyl-1-butanol (CH_3CH_2CH (CH_3) CH_2OH) with a series of enzymatic reactions.

[0036] FIG. **6** presents designer Calvin-cycle-channeled and photosynthetic NADPH-enhanced pathways using NADPH and ATP from the photosynthetic water splitting and proton gradient-coupled electron transport process to reduce carbon dioxide (CO_2) into isobutanol ((CH_3)₂CHCH₂OH) and 3-methyl-1-butanol($CH_3CH(CH_3)CH_2CH_2OH$) with a series of enzymatic reactions.

[0038] FIG. 8 presents designer Calvin-cycle-channeled and photosynthetic NADPH-enhanced pathways using NADPH and ATP from the photosynthetic water splitting and proton gradient-coupled electron transport process to reduce dioxide 1-pentanol carbon (CO_2) into (CH₃CH₂CH₂CH₂CH₂OH), 1-hexanol (CH₃CH₂CH₂CH₂CH₂CH₂OH), and 1-heptanol (CH₃CH₂CH₂CH₂CH₂CH₂CH₂OH) with a series of enzymatic reactions.

[0039] FIG. **9** presents designer Calvin-cycle-channeled and photosynthetic NADPH-enhanced pathways using NADPH and ATP from the photosynthetic water splitting and proton gradient-coupled electron transport process to reduce carbon dioxide (CO₂) into 3-methyl-1-pentanol (CH₃CH₂CH (CH₃)CH₂CH₂OH), 4-methyl-1-hexanol (CH₃CH₂CH(CH₃) CH₂CH₂CH₂OH), and 5-methyl-1-heptanol (CH₃CH₂CH (CH₃)CH₂CH₂CH₂CH₂OH) with a series of enzymatic reactions.

[0040] FIG. **10** presents designer Calvin-cycle-channeled and photosynthetic NADPH-enhanced pathways using NADPH and ATP from the photosynthetic water splitting and proton gradient-coupled electron transport process to reduce carbon dioxide (CO₂) into 4-methyl-1-pentanol (CH₃CH (CH₃)CH₂CH₂CH₂OH), 5-methyl-1-hexanol (CH₃CH(CH₃) CH₂CH₂CH₂CH₂OH), and 6-methyl-1-heptanol (CH₃CH (CH₃)CH₂CH₂CH₂CH₂OH), with a series of enzymatic reactions.

[0041] FIG. **11** illustrates a designer organism with designer oxygen-tolerant hydrogenases and Calvin-cyclechanneled biofuel-production pathway(s) for aerobic chemolithoautotrophic production of biofuels such as butanol (CH₃CH₂CH₂CH₂CH₂OH) from hydrogen (H₂), carbon dioxide (CO₂), and oxygen (O₂).

[0042] FIG. 12 illustrates a designer organism that comprises a designer anaerobic hydrogenotrophic system with reductive-acetyl-CoA biofuel-production pathway(s) for anaerobic chemolithotrophic production of 1-butanol ($CH_3CH_2CH_2CH_2OH$) from hydrogen (H_2) and carbon dioxide (CO_2).

[0043] FIG. 13 presents a designer reductive-acetyl-CoA biofuel-production pathway for anaerobic hydrogenotrophic production of 1-butanol($CH_3CH_2CH_2OH$) from carbon dioxide (CO_2) with a series of enzymatic reactions.

[0044] FIG. 14 presents a designer ATP-required reductiveacetyl-CoA biofuel-production pathway for anaerobic hydrogenotrophic production of 1-butanol($CH_3 CH_2 CH_2 CH_2 OH$) from carbon dioxide (CO_2) with a series of enzymatic reactions.

[0045] FIG. **15** illustrates a designer organism that comprises a designer methanogenic hydrogenotrophic system with reductive-acetyl-CoA biofuel-production pathway(s) for anaerobic chemolithotrophic production of both 1-butanol(CH₃CH₂CH₂CH₂OH) and methane (CH₄) from hydrogen (H₂) and carbon dioxide (CO₂).

[0046] FIG. **16** presents designer reductive-acetyl-CoA biofuel-production pathways for anaerobic hydrogenotrophic production of both 1-butanol ($CH_3CH_2CH_2CH_2OH$) and methane (CH_4) from carbon dioxide (CO_2) with a series of enzymatic reactions.

[0047] FIG. 17 presents designer ATP-required reductiveacetyl-CoA biofuel-production pathways for anaerobic hydrogenotrophic production of both 1-butanol ($CH_3CH_2CH_2CH_2OH$) and methane (CH_4) from carbon dioxide (CO_2) and with a series of enzymatic reactions.

DETAILED DESCRIPTION OF THE INVENTION

[0048] The present invention is directed to an autotrophic butanol and related high alcohols production technology based on designer autotrophic organisms such as designer transgenic plants (e.g., algae and oxyphotobacteria), plant cells, or bacteria. In this context throughout this specification, a "higher alcohol" or "related higher alcohol" refers to an alcohol that comprises at least four carbon atoms, which includes both straight and branched alcohols such as 1-butanol and 2-methyl-1-butanol. The Calvin-cycle-channeled and photosynthetic-NADPH-enhanced pathways are constructed with designer enzymes expressed through use of designer genes in host photosynthetic organisms such as algae and oxyphotobacteria (including cyanobacteria and

oxychlorobacteria) organisms for photobiological production of butanol and related higher alcohols. The said butanol and related higher alcohols are selected from the group consisting of: 1-butanol, 2-methyl-1-butanol, isobutanol, 3-methyl-1-butanol, 1-hexanol, 1-octanol, 1-pentanol, 1-heptanol, 3-methyl-1-pentanol, 4-methyl-1-hexanol, 5-methyl-1-heptanol, 4-methyl-1-pentanol, 5-methyl-1-hexanol, and 6-methyl-1-heptanol. The designer plants and plant cells are created using genetic engineering techniques such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradientcoupled electron transport process can be used for immediate synthesis of higher alcohols, such as 1-butanol (CH₃CH₂CH₂CH₂OH) and 2-methyl-1-butanol(CH₃CH₂CH $(CH_2)CH_2OH$, from carbon dioxide (CO_2) and water (H_2O) according to the following generalized process reaction (where m, n, x and y are its molar coefficients) in accordance of the present invention:

$$m(CO_2)+n(H_2O) \rightarrow x(higher alcohols)+y(O_2)$$
 [2]

The photobiological higher-alcohols-production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. As shown in FIG. 1, for example, the photosynthetic process in a designer organism effectively uses the reducing power (NADPH) and energy (ATP) from the photosynthetic water splitting and proton gradient-coupled electron transport process for immediate synthesis of butanol (CH₃CH₂CH₂CH₂OH) directly from carbon dioxide (CO₂) and water (H₂O) without being drained into the other pathway for synthesis of the undesirable lignocellulosic materials that are very hard and often inefficient for the biorefinery industry to use. This approach is also different from the existing "cornstarch butanol production" process. In accordance with this invention, butanol can be produced directly from carbon dioxide (CO₂) and water (H₂O) without having to go through many of the energy consuming steps that the cornstarch butanol-production process has to go through, including corn crop cultivation, corn-grain harvesting, corngrain cornstarch processing, and starch-to-sugar-to-butanol fermentation. As a result, the photosynthetic butanol-production technology of the present invention is expected to have a much (more than 10-times) higher solar-to-butanol energyconversion efficiency than the current technology. Assuming a 10% solar energy conversion efficiency for the proposed photosynthetic butanol production process, the maximal theoretical productivity (yield) could be about 72,700 kg of butanol per acre per year, which could support about 70 cars (per year per acre). Therefore, this invention could bring a significant capability to the society in helping to ensure energy security. The present invention could also help protect the Earth's environment from the dangerous accumulation of CO2 in the atmosphere, because the present methods convert CO₂ directly into clean butanol energy.

[0049] A fundamental feature of the present methodology is utilizing a plant (e.g., an alga or oxyphotobacterium) or plant cells, introducing into the plant or plant cells nucleic acid molecules encoding for a set of enzymes that can act on an intermediate product of the Calvin cycle and convert the intermediate product into butanol as illustrated in FIG. 1, instead of making starch and other complicated cellular (biomass) materials as the end products by the wild-type photosynthetic pathway. Accordingly, the present invention provides, inter alia, methods for producing butanol and/or related higher alcohols based on a designer plant (such as a designer alga and a designer oxyphotobacterium), designer plant tissue, or designer plant cells, DNA constructs encoding genes of a designer butanol- and/or related higher alcohols-production pathway(s), as well as the designer algae, designer oxyphotobacteria (including designer cyanobacteria), designer plants, designer plant tissues, and designer plant cells created. The various aspects of the present invention are described in further detail hereinbelow.

Host Photosynthetic Organisms

[0050] According to the present invention, a designer organism or cell for the photosynthetic butanol and/or related higher alcohols production of the invention can be created utilizing as host, any plant (including alga and oxyphotobacterium), plant tissue, or plant cells that have a photosynthetic capability, i.e., an active photosynthetic apparatus and enzymatic pathway that captures light energy through photosynthesis, using this energy to convert inorganic substances into organic matter. Preferably, the host organism should have an adequate photosynthetic CO₂ fixation rate, for example, to support photosynthetic butanol (and/or related higher alcohols) production from CO₂ and H₂O at least about 1,450 kg butanol per acre per year, more preferably, 72,700 kg butanol per acre per year.

[0051] In a preferred embodiment, an aquatic plant is utilized to create a designer plant. Aquatic plants, also called hydrophytic plants, are plants that live in or on aquatic environments, such as in water (including on or under the water surface) or permanently saturated soil. As used herein, aquatic plants include, for example, algae, blue-green algae (cyanobacteria and oxychlorobacteria), submersed aquatic herbs (Hydrilla verticillate, Elodea densa, Hippuris vulgaris, Aponogeton Boivinianus Aponogeton Rigidifolius, Aponogeton Longiplumulosus, Didiplis Diandra, Vesicularia Dubyana, Hygrophilia Augustifolia, Micranthemum Umbrosum, Eichhornia Azurea, Saururus Cernuus, Cryptocorvne Lingua, Hydrotriche Hottoniiflora Eustralis Stellata, Vallisneria Rubra, Hygrophila Salicifolia, Cyperus Helferi, Cryptocoryne Petchii, Vallisneria americana, Vallisneria Torta, Hydrotriche Hottoniiflora, Crassula Helmsii, Limnophila Sessiliflora, Potamogeton Perfoliatus, Rotala Wallichii, Cryptocoryne Becketii, Blyxa Aubertii, Hygrophila Difformmis), duckweeds (Spirodela polyrrhiza, Wolffia globosa, Lemna trisulca, Lemna gibba, Lemna minor, Landoltia punctata), water cabbage (Pistia stratiotes), buttercups (Ranunculus), water caltrop (Trapa natans and Trapa bicornis), water lily (Nymphaea lotus, Nymphaeaceae and Nelumbonaceae), water hyacinth (Eichhornia crassipes), Bolbitis heudelotii, Cabomba sp., seagrasses (Heteranthera Zosterifolia, Posidoniaceae, Zosteraceae, Hydrocharitaceae, and Cymodoceaceae). Butanol (and/or related higher alcohols) produced from an aquatic plant can diffuse into water, permitting normal growth of the plants and more robust production of butanol from the plants. Liquid cultures of aquatic plant tissues (including, but not limited to, multicellular algae) or cells (including, but not limited to, unicellular algae) are also highly preferred for use, since the butanol (and/or related higher alcohols) molecules produced from a designer butanol (and/or related higher alcohols) production pathway(s) can readily diffuse out of the cells or tissues into the liquid water medium, which can serve as a large pool to store the product

butanol (and/or related higher alcohols) that can be subsequently harvested by filtration and/or distillation/evaporation techniques.

[0052] Although aquatic plants or cells are preferred host organisms for use in the methods of the present invention, tissue and cells of non-aquatic plants, which are photosynthetic and can be cultured in a liquid culture medium, can also be used to create designer tissue or cells for photosynthetic butanol (and/or related higher alcohols) production. For example, the following tissue or cells of non-aquatic plants can also be selected for use as a host organism in this invention: the photoautotrophic shoot tissue culture of wood apple tree Feronia limonia, the chlorophyllous callus-cultures of corn plant Zea mays, the green root cultures of Asteraceae and Solanaceae species, the tissue culture of sugarcane stalk parenchyma, the tissue culture of bryophyte Physcomitrella patens, the photosynthetic cell suspension cultures of soybean plant (Glycine max), the photoautotrophic and photomixotrophic culture of green Tobacco (Nicofiana tabacum L.) cells, the cell suspension culture of Gisekia pharmaceoides (a C₄ plant), the photosynthetic suspension cultured lines of Amaranthus powellii Wats., Datura innoxia Mill., Gossvpium hirsutum L., and Nicotiana tabacum×Nicotiana glutinosa L. fusion hybrid.

[0053] By "liquid medium" is meant liquid water plus relatively small amounts of inorganic nutrients (e.g., N, P, K etc, commonly in their salt forms) for photoautotrophic cultures; and sometimes also including certain organic substrates (e.g., sucrose, glucose, or acetate) for photomixotrophic and/or photoheterotrophic cultures.

[0054] In an especially preferred embodiment, the plant utilized in the butanol (and/or related higher alcohols) production method of the present invention is an alga or a bluegreen alga. The use of algae and/or blue-green algae has several advantages. They can be grown in an open pond at large amounts and low costs. Harvest and purification of butanol (and/or related higher alcohols) from the water phase is also easily accomplished by distillation/evaporation or membrane separation.

[0055] Algae suitable for use in the present invention include both unicellular algae and multi-unicellular algae. Multicellular algae that can be selected for use in this invention include, but are not limited to, seaweeds such as Ulva latissima (sea lettuce), Ascophyllum nodosum, Codium fragile, Fucus vesiculosus, Eucheuma denticulatum, Gracilaria gracilis, Hydrodictyon reticulatum, Laminaria japonica, Undaria pinntifida, Saccharina japonica, Porphyra yezoensis, and Porphyra tenera. Suitable algae can also be chosen from the following divisions of algae: green algae (Chlorophyta), red algae (Rhodophyta), brown algae (Phaeophyta), diatoms (Bacillariophyta), and blue-green algae (Oxyphotobacteria including Cyanophyta and Prochlorophytes). Suitable orders of green algae include Ulvales, Ulotrichales, Volvocales, Chlorellales, Schizogoniales, Oedogoniales, Zygnematales, Cladophorales, Siphonales, and Dasycladales. Suitable genera of Rhodophyta are Porphyra, Chondrus, Cyanidioschyzon, Porphyridium, Gracilaria, Kappaphycus, Gelidium and Agardhiella. Suitable genera of Phaeophyta are Laminaria, Undaria, Macrocystis, Sargassum and Dictyosiphon. Suitable genera of Cyanophyta (also known as Cyanobacteria) include (but not limited to) Phoridium, Synechocystis, Syncechococcus, Oscillatoria, and Anabaena. Suitable genera of Prochlorophytes (also known as oxychlorobacteria) include (but not limited to) Prochloron, Prochlorothrix, and Prochlorococcus. Suitable genera of Bacillariophyta are Cyclotella, Cylindrotheca, Navicula, Thalassiosira, and Phaeodactylum. Preferred species of algae for use in the present invention include Chlamydomonas reinhardtii, Platymonas subcordiformis, Chlorella fusca, Chlorella sorokiniana, Chlorella vulgaris, 'Chlorella' ellipsoidea, Chlorella spp., Dunaliella salina, Dunaliella viridis, Dunaliella bardowil, Haematococcus pluvialis; Parachlorella kessleri, Betaphycus gelatinum, Chondrus crispus, Cyanidioschyzon merolae, Cyanidium caldarium, Galdieria sulphuraria, Gelidiella acerosa, Gracilaria changii, Kappaphycus alvarezii, Porphyra miniata, Ostreococcus tauri, Porphyra vezoensis, Porphyridium sp., Palmaria palmata, Gracilaria spp., Isochrysis galbana, Kappaphycus spp., Laminaria japonica, Laminaria spp., Monostroma spp., Nannochloropsis oculata, Porphyra spp., Porphyridium spp., Undaria pinnatifida, Ulva lactuca, Ulva spp., Undaria spp., Phaeodactylum Tricornutum, Navicula saprophila, Crypthecodinium cohnii, Cylindrotheca fusiformis, Cyclotella cryptica, Euglena gracilis, Amphidinium sp., Symbiodinium microadriaticum, Macrocystis pyrifera, Ankistrodesmus braunii, and Scenedesmus obliquus.

[0056] Preferred species of blue-green algae (oxyphotobacteria including cyanobacteria and oxychlorobacteria) for use in the present invention include Thermosynechococcus elongatus BP-1, Nostoc sp. PCC 7120, Synechococcus elongatus PCC 6301, Syncechococcus sp. strain PCC 7942, Syncechococcus sp. strain PCC 7002, Syncechocystis sp. strain PCC 6803, Prochlorococcus marinus MED4, Prochlorococcus marinus MIT 9313, Prochlorococcus marinus NATL1A, Prochlorococcus SS120, Spirulina platensis (Arthrospira platensis), Spirulina pacifica, Lyngbya majuscule, Anabaena sp., Synechocystis sp., Synechococcus elongates, Synechococcus (MC-A), Trichodesmium sp., Richelia intracellularis, Synechococcus WH7803, Synechococcus WH8102, Nostoc punctiforme, Syncechococcus sp. strain PCC 7943, Synechocyitis PCC 6714 phycocyanin-deficient mutant PD-1, Cyanothece strain 51142, Cyanothece sp. CCY0110, Oscillatoria limosa, Lyngbya majuscula, Symploca muscorum, Gloeobacter violaceus, Prochloron didemni, Prochlorothrix hollandica, Synechococcus (MC-A), Trichodesmium sp., Richelia intracellularis, Prochlorococcus marinus, Prochlorococcus SS120, Synechococcus WH8102, Lyngbya majuscula, Symploca muscorum, Synechococcus bigranulatus, cryophilic Oscillatoria sp., Phormidium sp., Nostoc sp.-1, Calothrix parietina, thermophilic Synechococcus bigranulatus, Synechococcus lividus, thermophilic Mastigocladus laminosus, Chlorogloeopsis fritschii PCC 6912, Synechococcus vulcanus, Synechococcus sp. strain MA4, Synechococcus sp. strain MA19, and Thermosynechococcus elongatus.

[0057] Proper selection of host photosynthetic organisms for their genetic backgrounds and certain special features is also beneficial. For example, a photosynthetic-butanol-producing designer alga created from cryophilic algae (psychrophiles) that can grow in snow and ice, and/or from coldtolerant host strains such as *Chlamydomonas* cold strain CCMG1619, which has been characterized as capable of performing photosynthetic water splitting as cold as 4° C. (Lee, Blankinship and Greenbaum (1995), "Temperature effect on production of hydrogen and oxygen by *Chlamydomonas* cold strain CCMP1619 and wild type 137c," *Applied Biochemistry and Biotechnology* 51/52:379-386), permits photobiological butanol production even in cold seasons or regions such as Canada. Meanwhile, a designer alga

created from a thermophilic/thermotolerant photosynthetic organism such as thermophilic algae Cyanidium caldarium and Galdieria sulphuraria and/or thermophilic cyanobacteria (blue-green algae) such as Thermosynechococcus elongatus BP-1 and Synechococcus bigranulatus may permit the practice of this invention to be well extended into the hot seasons or areas such as Mexico and the Southwestern region of the United States including Nevada, California, Arizona, New Mexico and Texas, where the weather can often be hot. Furthermore, a photosynthetic-butanol-producing designer alga created from a marine alga, such as Platymonas subcordiformis, permits the practice of this invention using seawater, while the designer alga created from a freshwater alga such as Chlamydomonas reinhardtii can use freshwater. Additional optional features of a photosynthetic butanol (and/or related higher alcohols) producing designer alga include the benefits of reduced chlorophyll-antenna size, which has been demonstrated to provide higher photosynthetic productivity (Lee, Mets, and Greenbaum (2002). "Improvement of photosynthetic efficiency at high light intensity through reduction of chlorophyll antenna size," Applied Biochemistry and Biotechnology, 98-100: 37-48) and butanol-tolerance (and/or related higher alcohols-tolerance) that allows for more robust and efficient photosynthetic production of butanol (and/or related higher alcohols) from CO₂ and H₂O. By use of a phycocyanin-deficient mutant of Synechocystis PCC 6714, it has been experimentally demonstrated that photoinhibition can be reduced also by reducing the content of light-harvesting pigments (Nakajima, Tsuzuki, and Ueda (1999) "Reduced photoinhibition of a phycocyanin-deficient mutant of Synechocystis PCC 6714", Journal of Applied Phycology 10: 447-452). These optional features can be incorporated into a designer alga, for example, by use of a butanol-tolerant and/or chlorophyll antenna-deficient mutant (e.g., Chlamydomonas reinhardtii strain DS521) as a host organism, for gene transformation with the designer butanol-productionpathway genes. Therefore, in one of the various embodiments, a host alga is selected from the group consisting of green algae, red algae, brown algae, blue-green algae (oxyphotobacteria including cyanobacteria and prochlorophytes), diatoms, marine algae, freshwater algae, unicellular algae, multicellular algae, seaweeds, cold-tolerant algal strains, heat-tolerant algal strains, light-harvesting-antenna-pigment-deficient mutants, butanol-tolerant algal strains, higher alcohols-tolerant algal strains, and combinations thereof.

Creating a Designer Butanol-Production Pathway in a Host

Selecting Appropriate Designer Enzymes

[0058] One of the key features in the present invention is the creation of a designer butanol-production pathway to tame and work with the natural photosynthetic mechanisms to achieve the desirable synthesis of butanol directly from CO_2 and H_2O . The natural photosynthetic mechanisms include (1) the process of photosynthetic water splitting and proton gradient-coupled electron transport through the thylakoid membrane, which produces the reducing power (NADPH) and energy (ATP), and (2) the Calvin cycle, which reduces CO_2 by consumption of the reducing power (NADPH) and energy (ATP).

[0059] In accordance with the present invention, a series of enzymes are used to create a designer butanol-production pathway that takes an intermediate product of the Calvin cycle and converts the intermediate product into butanol as illustrated in FIG. 1. A "designer butanol-production-pathway enzyme" is hereby defined as an enzyme that serves as a catalyst for at least one of the steps in a designer butanolproduction pathway. According to the present invention, a number of intermediate products of the Calvin cycle can be utilized to create designer butanol-production pathway(s); and the enzymes required for a designer butanol-production pathway are selected depending upon from which intermediate product of the Calvin cycle the designer butanol-production pathway branches off from the Calvin cycle.

[0060] In one example, a designer pathway is created that takes glyceraldehydes-3-phosphate and converts it into butanol by using, for example, a set of enzymes consisting of, as shown with the numerical labels 01-12 in FIG. 1, glyceraldehyde-3-phosphate dehydrogenase 01, phosphoglycerate kinase 02, phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05, pyruvate-ferredoxin oxidoreductase 06, thiolase 07, 3-hydroxybutyryl-CoA dehydrogenase 08, crotonase 09, butyryl-CoA dehydrogenase 10, butyraldehyde dehydrogenase 11, and butanol dehydrogenase 12. In this glyceraldehydes-3-phosphate-branched designer pathway, for conversion of two molecules of glyceraldehyde-3-phosphate to butanol, two NADH molecules are generated from NAD+ at the step from glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate catalyzed by glyceraldehyde-3-phosphate dehydrogenase 01; meanwhile two molecules of NADH are converted to NAD+: one at the step catalyzed by 3-hydroxybutyryl-CoA dehydrogenase 08 in reducing acetoacetyl-CoA to 3-hydroxybutyryl-CoA and another at the step catalyzed by butyryl-CoA dehydrogenase 10 in reducing crotonyl-CoA to butyryl-CoA. Consequently, in this glyceraldehydes-3-phosphate-branched designer pathway (01-12), the number of NADH molecules consumed is balanced with the number of NADH molecules generated. Furthermore, both the pathway step catalyzed by butyraldehyde dehydrogenase 11 (in reducing butyryl-CoA to butyraldehyde) and the terminal step catalyzed by butanol dehydrogenase 12 (in reducing butyraldehyde to butanol) can use NADPH, which can be regenerated by the photosynthetic water splitting and proton gradientcoupled electron transport process. Therefore, this glyceraldehydes-3-phosphate-branched designer butanol-production pathway can operate continuously.

[0061] In another example, a designer pathway is created that takes the intermediate product, 3-phosphoglycerate, and converts it into butanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 03-12 in FIG. 1) phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05, pyruvate-ferredoxin oxidoreductase 06, thiolase 07, 3-hydroxybutyryl-CoA dehydrogenase 08, crotonase 09, butyryl-CoA dehydrogenase 10, butyraldehyde dehydrogenase 11, and butanol dehydrogenase 12. It is worthwhile to note that the last ten enzymes (03-12) of the glyceraldehydes-3-phosphate-branched designer butanolproducing pathway (01-12) are identical with those utilized in the 3-phosphoglycerate-branched designer pathway (03-12). In other words, the designer enzymes (01-12) of the glyceraldehydes-3-phosphate-branched pathway permit butanol production from both the point of 3-phosphoglycerate and the point glyceraldehydes 3-phosphate in the Calvin cycle. These two pathways, however, have different characteristics. Unlike the glyceraldehyde-3-phosphate-branched butanol-production pathway, the 3-phosphoglycerate-branched pathway which consists of the activities of only ten enzymes (03-12) could not itself generate any NADH that is required for use at

two places: one at the step catalyzed by 3-hydroxybutyryl-CoA dehydrogenase 08 in reducing acetoacetyl-CoA to 3-hydroxybutyryl-CoA, and another at the step catalyzed by butyryl-CoA dehydrogenase 10 in reducing crotonyl-CoA to butyryl-CoA. That is, if (or when) a 3-hydroxybutyryl-CoA dehydrogenase and/or a butyryl-CoA dehydrogenase that can use strictly only NADH but not NADPH is employed, it would require a supply of NADH for the 3-phosphoglyceratebranched pathway (03-12) to operate. Consequently, in order for the 3-phosphoglycerate-branched butanol-production pathway to operate, it is important to use a 3-hydroxybutyryl-CoA dehydrogenase 08 and a butyryl-CoA dehydrogenase 10 that can use NADPH which can be supplied by the photodriven electron transport process. Therefore, it is a preferred practice to use a 3-hydroxybutyryl-CoA dehydrogenase and a butyryl-CoA dehydrogenase that can use NADPH or both NADPH and NADH (i.e., NAD(P)H) for this 3-phosphoglycerate-branched designer butanol-production pathway (03-12 in FIG. 1). Alternatively, when a 3-hydroxybutyryl-CoA dehydrogenase and a butyryl-CoA dehydrogenase that can use only NADH are employed, it is preferably here to use an additional embodiment that can confer an NADPH/NADH conversion mechanism (to supply NADH by converting NADPH to NADH, see more detail later in the text) in the designer organism to facilitate photosynthetic production of butanol through the 3-phosphoglycerate-branched designer pathway.

[0062] In still another example, a designer pathway is created that takes fructose-1,6-diphosphate and converts it into butanol by using, as shown with the numerical labels 20-33 in FIG. 1, a set of enzymes consisting of aldolase 20, triose phosphate isomerase 21, glyceraldehyde-3-phosphate dehydrogenase 22, phosphoglycerate kinase 23, phosphoglycerate mutase 24, enolase 25, pyruvate kinase 26, pyruvate-NADP+ oxidoreductase (or pyruvate-ferredoxin oxidoreductase) 27, thiolase 28, 3-hydroxybutyryl-CoA dehydrogenase 29, crotonase 30, butyryl-CoA dehydrogenase 31, butyraldehyde dehydrogenase 32, and butanol dehydrogenase 33, with aldolase 20 and triose phosphate isomerase 21 being the only two additional enzymes relative to the glyceraldehydes-3-phosphate-branched designer pathway. The use of a pyruvate-NADP⁺ oxidoreductase 27 (instead of pyruvate-ferredoxin oxidoreductase) in catalyzing the conversion of a pyruvate molecule to acetyl-CoA enables production of an NADPH. which can be used in some other steps of the butanol-production pathway. The addition of yet one more enzyme in the designer organism, phosphofructose kinase 19, permits the creation of another designer pathway which branches off from the point of fructose-6-phosphate of the Calvin cycle for the production of butanol. Like the glyceraldehyde-3-phosphate-branched butanol-production pathway, both the fructose-1,6-diphosphate-branched pathway (20-33) and the fructose-6-phosphate-branched pathway (19-33) can themselves generate NADH for use in the pathway at the step catalyzed by 3-hydroxybutyryl-CoA dehydrogenase 29 to reduce acetoacetyl-CoA to 3-hydroxybutyryl-CoA and at the step catalyzed by butyryl-CoA dehydrogenase 31 to reduce crotonyl-CoA to butyryl-CoA. In each of these designer butanol-production pathways, the numbers of NADH molecules consumed are balanced with the numbers of NADH molecules generated; and both the butyraldehyde dehydrogenase 32 (catalyzing the step in reducing butyryl-CoA to butyraldehyde) and the butanol dehydrogenase 33 (catalyzing the terminal step in reducing butyraldehyde to butanol) can all use NADPH, which can be regenerated by the photosynthetic water splitting and proton gradient-coupled electron transport process. Therefore, these designer butanolproduction pathways can operate continuously.

[0063] Table 1 lists examples of the enzymes including those identified above for construction of the designer butanol-production pathways. Throughout this specification, when reference is made to an enzyme, such as, for example, any of the enzymes listed in Table 1, it includes their isozymes, functional analogs, and designer modified enzymes and combinations thereof. These enzymes can be selected for use in construction of the designer butanol-production pathways (such as those illustrated in FIG. 1). The "isozymes or functional analogs" refer to certain enzymes that have the same catalytic function but may or may not have exactly the same protein structures. The most essential feature of an enzyme is its active site that catalyzes the enzymatic reaction. Therefore, certain enzyme-protein fragment(s) or subunit(s) that contains such an active catalytic site may also be selected for use in this invention. For various reasons, some of the natural enzymes contain not only the essential catalytic structure but also other structure components that may or may not be desirable for a given application. With techniques of bioinformatics-assisted molecular designing, it is possible to select the essential catalytic structure(s) for use in construction of a designer DNA construct encoding a desirable designer enzyme. Therefore, in one of the various embodiments, a designer enzyme gene is created by artificial synthesis of a DNA construct according to bioinformaticsassisted molecular sequence design. With the computer-assisted synthetic biology approach, any DNA sequence (thus its protein structure) of a designer enzyme may be selectively modified to achieve more desirable results by design. Therefore, the terms "designer modified sequences" and "designer modified enzymes" are hereby defined as the DNA sequences and the enzyme proteins that are modified with bioinformatics-assisted molecular design. For example, when a DNA construct for a designer chloroplast-targeted enzyme is designed from the sequence of a mitochondrial enzyme, it is a preferred practice to modify some of the protein structures, for example, by selectively cutting out certain structure component(s) such as its mitochondrial transit-peptide sequence that is not suitable for the given application, and/or by adding certain peptide structures such as an exogenous chloroplast transit-peptide sequence (e.g., a 135-bp Rubisco small-subunit transit peptide (RbcS2)) that is needed to confer the ability in the chloroplast-targeted insertion of the designer protein. Therefore, one of the various embodiments flexibly employs the enzymes, their isozymes, functional analogs, designer modified enzymes, and/or the combinations thereof in construction of the designer butanol-production pathway (s).

[0064] As shown in Table 1, many genes of the enzymes identified above have been cloned and/or sequenced from various organisms. Both genomic DNA and/or mRNA sequence data can be used in designing and synthesizing the designer DNA constructs for transformation of a host alga, oxyphotobacterium, plant, plant tissue or cells to create a designer organism for photobiological butanol production (FIG. 1). However, because of possible variations often associated with various source organisms and cellular compartments with respect to a specific host organism and its chloroplast/thylakoid environment where the butanol-production pathway(s) is designed to work with the Calvin cycle, certain

molecular engineering art work in DNA construct design including codon-usage optimization and sequence modification is often necessary for a designer DNA construct (FIG. 2) to work well. For example, in creating a butanol-producing designer eukaryotic alga, if the source sequences are from cytosolic enzymes (sequences), a functional chloroplast-targeting sequence may be added to provide the capability for a designer unclear gene-encoded enzyme to insert into a host chloroplast to confer its function for a designer butanol-production pathway. Furthermore, to provide the switchability for a designer butanol-production pathway, it is also important to include a functional inducible promoter sequence such as the promoter of a hydrogenase (Hyd1) or nitrate reductase (Nia1) gene, or nitrite reductase (nirA) gene in certain designer DNA construct(s) as illustrated in FIG. 2A to control the expression of designer gene(s). In addition, as mentioned before, certain functional derivatives or fragments of these enzymes (sequences), chloroplast-targeting transit peptide sequences, and inducible promoter sequences can also be selected for use in full, in part or in combinations thereof, to create the designer organisms according to various embodiments of this invention. The arts in creating and using the designer organisms are further described hereinbelow.

Targeting the Designer Enzymes to the Stroma Region of Chloroplasts

[0065] Some of the designer enzymes discussed above, such as, pyruvate-ferredoxin oxidoreductase, thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and butanol dehydrogenase are known to function in certain special bacteria such as *Clostridium*; but wild-type plant chloroplasts generally do not possess these enzymes to function with the Calvin cycle. Therefore, in one of the various embodiments in creating a butanol-producing eukaryotic designer organism, designer nucleic acids encoding for these enzymes are expressed in the chloroplast(s) of a host cell. This can be accomplished by delivery of designer butanol-productionpathway gene(s) into the chloroplast genome of the eukaryotic host cell typically using a genegun. In certain extent, the molecular genetics of chloroplasts are similar to that of cyanobacteria. After being delivered into the chloroplast, a designer DNA construct that contains a pair of proper recombination sites as illustrated in FIG. 2F can be incorporated into the chloroplast genome through a natural process of homologous DNA double recombination.

[0066] In another embodiment, nucleic acids encoding for these enzymes are genetically engineered such that the enzymes expressed are inserted into the chloroplasts to operate with the Calvin cycle there. Depending on the genetic background of a particular host organism, some of the designer enzymes discussed above such as phosphoglycerate mutase and enolase may exist at some background levels in its native form in a wild-type chloroplast. For various reasons including often the lack of their controllability, however, some of the chloroplast background enzymes may or may not be sufficient to serve as a significant part of the designer butanol-production pathway(s). Furthermore, a number of useful inducible promoters happen to function in the nuclear genome. For example, both the hydrogenase (Hyd1) promoter and the nitrate reductase (Nia1) promoter that can be used to control the expression of the designer butanol-production pathways are located in the nuclear genome of Chlamydomonas reinhardtii, of which the genome has recently been sequenced. Therefore, in one of the various embodiments, it is preferred to use nuclear-genome-encodable designer genes to confer a switchable butanol-production pathway. Consequently, nucleic acids encoding for these enzymes also need to be genetically engineered with proper sequence modification such that the enzymes are controllably expressed and are inserted into the chloroplasts to create a designer butanol-production pathway.

[0067] According to one of the various embodiments, it is best to express the designer butanol-producing-pathway enzymes only into chloroplasts (at the stroma region), exactly where the action of the enzymes is needed to enable photosynthetic production of butanol. If expressed without a chloroplast-targeted insertion mechanism, the enzymes would just stay in the cytosol and not be able to directly interact with the Calvin cycle for butanol production. Therefore, in addition to the obvious distinctive features in pathway designs and associated approaches, another significant distinction is that one of the various embodiments innovatively employs a chloroplast-targeted mechanism for genetic insertion of many designer butanol-production-pathway enzymes into chloroplast to directly interact with the Calvin cycle for photobiological butanol production.

[0068] With a chloroplast stroma-targeted mechanism, the cells will not only be able to produce butanol but also to grow and regenerate themselves when they are returned to certain conditions under which the designer pathway is turned off, such as under aerobic conditions when designer hydrogenase promoter-controlled butanol-production-pathway genes are used. Designer algae, plants, or plant cells that contain normal mitochondria should be able to use the reducing power (NADH) from organic reserves (and/or some exogenous organic substrate such as acetate or sugar) to power the cells immediately after returning to aerobic conditions. Consequently, when the designer algae, plants, or plant cells are returned to aerobic conditions after use under anaerobic conditions for photosynthetic butanol production, the cells will stop making the butanol-producing-pathway enzymes and start to restore the normal photoautotrophic capability by synthesizing new and functional chloroplasts. Therefore, it is possible to use such genetically engineered designer alga/ plant organisms for repeated cycles of photoautotrophic growth under normal aerobic conditions and efficient production of butanol directly from CO2 and H2O under certain specific designer butanol-producing conditions such as under anaerobic conditions and/or in the presence of nitrate when a Nia1 promoter-controlled butanol-production pathway is used.

[0069] The targeted insertion of designer butanol-production-pathway enzymes can be accomplished through use of a DNA sequence that encodes for a stroma "signal" peptide. A stroma-protein signal (transit) peptide directs the transport and insertion of a newly synthesized protein into stroma. In accordance with one of the various embodiments, a specific targeting DNA sequence is preferably placed in between the promoter and a designer butanol-production-pathway enzyme sequence, as shown in a designer DNA construct (FIG. **2**A). This targeting sequence encodes for a signal (transit) peptide that is synthesized as part of the apoprotein of an enzyme in the cytosol. The transit peptide guides the insertion of an apoprotein of a designer butanol-production-pathway enzyme from cytosol into the chloroplast. After the apoprotein is inserted into the chloroplast, the transit peptide is cleaved off from the apoprotein, which then becomes an active enzyme.

[0070] A number of transit peptide sequences are suitable for use for the targeted insertion of the designer butanolproduction-pathway enzymes into chloroplast, including but not limited to the transit peptide sequences of: the hydrogenase apoproteins (such as HydA1 (Hyd1) and HydA2, Gen-Bank accession number AJ308413, AF289201, AY090770), ferredoxin apoprotein (Frx1, accession numbers L10349, P07839), thioredoxin m apoprotein (Trx2, X62335), glutamine synthase apoprotein (Gs2, Q42689), LhcII apoproteins (AB051210, AB051208, AB051205), PSII-T apoprotein (PsbT), PSII-S apoprotein (PsbS), PSII-W apoprotein (PsbW), CF₀CF₁ subunit-δapoprotein (AtpC), CF₀CF₁ subunit-6 apoprotein (AtpD, U41442), CFoCF₁ subunit-II apoprotein (AtpG), photosystem I (PSI) apoproteins (such as, of genes PsaD, PsaE, PsaF, PsaG, PsaH, and PsaK), Rubisco SSU apoproteins (such as RbcS2, X04472). Throughout this specification, when reference is made to a transit peptide sequence, such as, for example, any of the transit peptide sequence described above, it includes their functional analogs, modified designer sequences, and combinations thereof. A "functional analog" or "modified designer sequence" in this context refers to a peptide sequence derived or modified (by, e.g., conservative substitution, moderate deletion or addition of amino acids, or modification of side chains of amino acids) based on a native transit peptide sequence, such as those identified above, that has the same function as the native transit peptide sequence, i.e., effecting targeted insertion of a desired enzyme.

[0071] In certain specific embodiments, the following transit peptide sequences are used to guide the insertion of the designer butanol-production-pathway enzymes into the stroma region of the chloroplast: the Hyd1 transit peptide (having the amino acid sequence: msalvlkpca avsirgsscr arqvaprapl aastvrvala tleaparrlg nvacaa (SEQ ID NO: 54)), the RbcS2 transit peptides (having the amino acid sequence: maaviakssv saavarpars svrpmaalkp avkaapvaap aqanq (SEQ ID NO: 55)), ferredoxin transit peptide (having the amino acid sequence: mamamrs (SEQ ID NO: 56)), the CF₀CF₁ subunit- δ transit peptide (having the amino acid sequence: mlaaksiagp rafkasavra apkagrrtvv vma (SEQ ID NO: 57)), their analogs, functional derivatives, designer sequences, and combinations thereof.

Use of a Genetic Switch to Control the Expression of a Designer Butanol-Producing Pathway.

[0072] Another key feature of the invention is the application of a genetic switch to control the expression of the designer butanol-producing pathway(s), as illustrated in FIG. **1**. This switchability is accomplished through the use of an externally inducible promoter so that the designer transgenes are inducibly expressed under certain specific inducing conditions. Preferably, the promoter employed to control the expression of designer genes in a host is originated from the host itself or a closely related organism. The activities and inducibility of a promoter in a host cell can be tested by placing the promoter in front of a reporting gene, introducing this reporter construct into the host tissue or cells by any of the known DNA delivery techniques, and assessing the expression of the reporter gene.

[0073] In a preferred embodiment, the inducible promoter used to control the expression of designer genes is a promoter

that is inducible by anaerobiosis, i.e., active under anaerobic conditions but inactive under aerobic conditions. A designer alga/plant organism can perform autotrophic photosynthesis using CO_2 as the carbon source under aerobic conditions, and when the designer organism culture is grown and ready for photosynthetic butanol production, anaerobic conditions will be applied to turn on the promoter and the designer genes that encode a designer butanol-production pathway(s).

[0074] A number of promoters that become active under anaerobic conditions are suitable for use in the present invention. For example, the promoters of the hydrogenase genes (HydA1 (Hyd1) and HydA2, GenBank accession number: AJ308413, AF289201, AY090770) of Chlamydomonas reinhardtii, which is active under anaerobic conditions but inactive under aerobic conditions, can be used as an effective genetic switch to control the expression of the designer genes in a host alga, such as Chlamydomonas reinhardtii. In fact, Chlamydomonas cells contain several nuclear genes that are coordinately induced under anaerobic conditions. These include the hydrogenase structural gene itself (Hyd1), the Cyc6 gene encoding the apoprotein of Cytochrome C_6 , and the Cpx1 gene encoding coprogen oxidase. The regulatory regions for the latter two have been well characterized, and a region of about 100 bp proves sufficient to confer regulation by anaerobiosis in synthetic gene constructs (Quinn, Barraco, Ericksson and Merchant (2000). "Coordinate copper- and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element." J Biol Chem 275: 6080-6089). Although the above inducible algal promoters may be suitable for use in other plant hosts, especially in plants closely related to algae, the promoters of the homologous genes from these other plants, including higher plants, can be obtained and employed to control the expression of designer genes in those plants.

[0075] In another embodiment, the inducible promoter used in the present invention is an algal nitrate reductase (Nia1) promoter, which is inducible by growth in a medium containing nitrate and repressed in a nitrate-deficient but ammonium-containing medium (Loppes and Radoux (2002) "Two short regions of the promoter are essential for activation and repression of the nitrate reductase gene in Chlamydomonas reinhardtii," Mol Genet Genomics 268: 42-48). Therefore, the Nia1 (gene accession number AF203033) promoter can be selected for use to control the expression of the designer genes in an alga according to the concentration levels of nitrate and ammonium in a culture medium. Additional inducible promoters that can also be selected for use in the present invention include, for example, the heat-shock protein promoter HSP70A (accession number: DQ059999, AY456093, M98823; Schroda, Blocker, Beek (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant Journal 21:121-131), the promoter of CabII-1 gene (accession number M24072), the promoter of Ca1 gene (accession number P20507), and the promoter of Ca2 gene (accession number P24258).

[0076] In the case of blue-green algae (oxyphotobacteria including cyanobacteria and oxychlorobacteria), there are also a number of inducible promoters that can be selected for use in the present invention. For example, the promoters of the anaerobic-responsive bidirectional hydrogenase hox genes of *Nostoc* sp. PCC 7120 (GenBank: BA000019), *Prochlorothrix hollandica* (GenBank: U88400; hoxUYH operon promoter), *Synechocystis* sp. strain PCC 6803 (CyanoBase: sll1220 and sll1223), *Synechococcus elongatus*

PCC 6301 (CyanoBase: syc1235_c), Arthrospira platensis (GenBank: ABC26906), Cyanothece sp. CCY0110 (Gen-Bank: ZP_01727419) and Synechococcus sp. PCC 7002 (GenBank: AAN03566), which are active under anaerobic conditions but inactive under aerobic conditions (Sjoholm, Oliveira, and Lindblad (2007) "Transcription and regulation of the bidirectional hydrogenase in the Cyanobacterium Nostoc sp. strain PCC 7120," Applied and Environmental Microbiology, 73(17): 5435-5446), can be used as an effective genetic switch to control the expression of the designer genes in a host oxyphotobacterium, such as Nostoc sp. PCC 7120, Synechocystis sp. strain PCC 6803, Synechococcus elongatus PCC 6301, Cyanothece sp. CCY0110, Arthrospira platensis, or Synechococcus sp. PCC 7002.

[0077] In another embodiment in creating switchable butanol-production designer organisms such as switchable designer oxyphotobacteria, the inducible promoter selected for use is a nitrite reductase (nirA) promoter, which is inducible by growth in a medium containing nitrate and repressed in a nitrate-deficient but ammonium-containing medium (Qi, Hao, Ng, Slater, Baszis, Weiss, and Valentin (2005) "Application of the Synechococcus nirA promoter to establish an inducible expression system for engineering the Synechocystis tocopherol pathway," Applied and Environmental Microbiology, 71(10): 5678-5684; Maeda, Kawaguchi, Ohe, and Omata (1998) "cis-Acting sequences required for NtcB-dependent, nitrite-responsive positive regulation of the nitrate assimilation operon in the Cyanobacterium Synechococcus sp. strain PCC 7942," Journal of Bacteriology, 180(16):4080-4088). Therefore, the nirA promoter sequences can be selected for use to control the expression of the designer genes in a number of oxyphotobacteria according to the concentration levels of nitrate and ammonium in a culture medium. The nirA promoter sequences that can be selected and modified for use include (but not limited to) the nirA promoters of the following oxyphotobacteria: Synechococcus elongatus PCC 6301 (GenBank: AP008231, region 355890-255950), Synechococcus sp. (GenBank: X67680.1, D16303. 1, D12723.1, and D00677), Synechocystis sp. PCC 6803 (GenBank: NP_442378, BA000022, AB001339, D63999-D64006, D90899-D90917), Anabaena sp. (GenBank: X99708.1), Nostoc sp. PCC 7120 (GenBank: BA000019.2 and AJ319648), Plectonema boryanum (GenBank: D31732. 1), Synechococcus elongatus PCC 7942 (GenBank: P39661, CP000100.1), Thermosynechococcus elongatus BP-1 (Gen-Bank: BAC08901, NP_682139), Phormidium laminosum (GenBank: CAA79655, Q51879), Mastigocladus laminosus (GenBank: ABD49353, ABD49351, ABD49349, ABD49347), Anabaena variabilis ATCC 29413 (GenBank: YP_325032), Prochlorococcus marinus str. MIT 9303 (Gen-Bank: YP_001018981), Synechococcus sp. WH 8103 (Gen-Bank: AAC17122), Synechococcus sp. WH 7805 (GenBank: ZP_01124915), and Cyanothece sp. CCY0110 (GenBank: ZP_01727861).

[0078] In yet another embodiment, an inducible promoter selected for use is the light- and heat-responsive chaperone gene groE promoter, which can be induced by heat and/or light [Kojima and Nakamoto (2007) "A novel light- and heat-responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria," FEBS Letters 581: 1871-1880). A number of groE promoters such as the groES and groEL (chaperones) promoters are available for use as an inducible promoter in controlling the expression of the designer butanol-production-pathway enzymes. The groE

promoter sequences that can be selected and modified for use in one of the various embodiments include (but not limited to) the groES and/or groEL promoters of the following oxyphotobacteria: Synechocystis sp. (GenBank: D12677.1), Synechocystis sp. PCC 6803 (GenBank: BA000022.2), Synechococcus elongatus PCC 6301 (GenBank: AP008231.1), Synechococcus sp (GenBank: M58751.1), Synechococcus elongatus PCC 7942 (GenBank: CP000100.1), Nostoc sp. PCC 7120 (GenBank: BA000019.2), Anabaena variabilis ATCC 29413 (GenBank: CP000117.1), Anabaena sp. L-31 (GenBank: AF324500); Thermosynechococcus elongatus BP-1 (CyanoBase: t110185, t110186), Synechococcus vulcanus (GenBank: D78139), Oscillatoria sp. NKBG091600 (GenBank: AF054630), Prochlorococcus marinus MIT9313 (GenBank: BX572099), Prochlorococcus marinus str. MIT 9303 (GenBank: CP000554), Prochlorococcus marinus str. MIT 9211 (GenBank: ZP_01006613), Synechococcus sp. WH8102 (GenBank: BX569690), Synechococcus sp. CC9605 (GenBank: CP000110), Prochlorococcus marinus subsp. marinus str. CCMP1375 (GenBank: AE017126), and Prochlorococcus marinus MED4 (GenBank: BX548174).

[0079] Additional inducible promoters that can also be selected for use in the present invention include: for example, the metal (zinc)-inducible smt promoter of Synechococcus PCC 7942 (Erbe, Adams, Taylor and Hall (1996) "Cyanobacteria carrying an smt-lux transcriptional fusion as biosensors for the detection of heavy metal cations," Journal of Industrial Microbiology, 17:80-83); the iron-responsive idiA promoter of Synechococcus elongatus PCC 7942 (Michel, Pistorius, and Golden (2001) "Unusual regulatory elements for iron deficiency induction of the idiA gene of Synechococcus elongatus PCC 7942" Journal of Bacteriology, 183(17): 5015-5024); the redox-responsive cyanobacterial crhR promoter (Patterson-Fortin, Colvin and Owttrim (2006) "A LexA-related protein regulates redox-sensitive expression of the cyanobacterial RNA helicase, crhR", Nucleic Acids Research, 34(12):3446-3454); the heat-shock gene hsp16.6 promoter of Synechocystis sp. PCC 6803 (Fang and Barnum (2004) "Expression of the heat shock gene hsp16.6 and promoter analysis in the Cyanobacterium, Synechocystis sp. PCC 6803," Current Microbiology 49:192-198); the small heat-shock protein (Hsp) promoter such as Synechococcus vulcanus gene hspA promoter (Nakamoto, Suzuki, and Rov (2000) "Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria," FEBS Letters 483:169-174); the CO₂-responsive promoters of oxyphotobacterial carbonic-anhydrase genes (GenBank: EAZ90903, EAZ90685, ZP_01624337, EAW33650, ABB17341, AAT41924, CAO89711, ZP_00111671, YP_400464, AAC44830; and CyanoBase: all2929, PMT1568 slr0051, slr1347, and syc0167_c); the nitrate-reductase-gene (narB) promoters (such as GenBank accession numbers: BAC08907, NP 682145, AAO25121; ABI46326, YP_732075, BAB72570, NP_484656); the green/red lightresponsive promoters such as the light-regulated cpcB2A2 promoter of Fremyella diplosiphon (Casey and Grossman (1994) "In vivo and in vitro characterization of the lightregulated cpcB2A2 promoter of Fremyella diplosiphont" Journal of Bacteriology, 176(20):6362-6374); and the UVlight responsive promoters of cyanobacterial genes lexA, recA and ruvB (Domain, Houot, Chauvat, and Cassier-Chauvat (2004) "Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is critical to the survival of cells facing inorganic carbon starvation," *Molecular Microbiology*, 53(1):65-80).

[0080] Furthermore, in one of the various embodiments, certain "semi-inducible" or constitutive promoters can also be selected for use in combination of an inducible promoter (s) for construction of a designer butanol-production pathway (s) as well. For example, the promoters of oxyphotobacterial Rubisco operon such as the rbcL genes (GenBank: X65960, ZP_01728542, Q3M674, BAF48766, NP_895035, 0907262A; CyanoBase: PMT1205, PMM0550, Pro0551, tll1506, SYNW1718, glr2156, alr1524, slr0009), which have certain light-dependence but could be regarded almost as constitutive promoters, can also be selected for use in combination of an inducible promoter(s) such as the nirA, hox, and/or groE promoters for construction of the designer butanol-production pathway(s) as well.

[0081] Throughout this specification, when reference is made to inducible promoter, such as, for example, any of the inducible promoters described above, it includes their analogs, functional derivatives, designer sequences, and combinations thereof. A "functional analog" or "modified designer sequence" in this context refers to a promoter sequence derived or modified (by, e.g., substitution, moderate deletion or addition or modification of nucleotides) based on a native promoter sequence, such as those identified hereinabove, that retains the function of the native promoter sequence.

DNA Constructs and Transformation into Host Organisms

[0082] DNA constructs are generated in order to introduce designer butanol-production-pathway genes to a host alga, plant, plant tissue or plant cells. That is, a nucleotide sequence encoding a designer butanol-production-pathway enzyme is placed in a vector, in an operable linkage to a promoter, preferably an inducible promoter, and in an operable linkage to a nucleotide sequence coding for an appropriate chloroplast-targeting transit-peptide sequence. In a preferred embodiment, nucleic acid constructs are made to have the elements placed in the following 5' (upstream) to 3' (downstream) orientation: an externally inducible promoter, a transit targeting sequence, and a nucleic acid encoding a designer butanol-production-pathway enzyme, and preferably an appropriate transcription termination sequence. One or more designer genes (DNA constructs) can be placed into one genetic vector. An example of such a construct is depicted in FIG. 2A. As shown in the embodiment illustrated in FIG. 2A, a designer butanol-production-pathway transgene is a nucleic acid construct comprising: a) a PCR forward primer; b) an externally inducible promoter; c) a transit targeting sequence; d) a designer butanol-production-pathway-enzyme-encoding sequence with an appropriate transcription termination sequence; and e) a PCR reverse primer.

[0083] In accordance with various embodiments, any of the components a) through e) of this DNA construct are adjusted to suit for certain specific conditions. In practice, any of the components a) through e) of this DNA construct are applied in full or in part, and/or in any adjusted combination to achieve more desirable results. For example, when an algal hydrogenase promoter is used as an inducible promoter in the designer butanol-production-pathway DNA construct, a transgenic designer alga that contains this DNA construct will be able to perform autotrophic photosynthesis using ambientair CO_2 as the carbon source and grows normally under aerobic conditions, such as in an open pond. When the algal culture is grown and ready for butanol production, the

designer transgene(s) can then be expressed by induction under anaerobic conditions because of the use of the hydrogenase promoter. The expression of designer gene(s) produces a set of designer butanol-production-pathway enzymes to work with the Calvin cycle for photobiological butanol production (FIG. 1).

[0084] The two PCR primers are a PCR forward primer (PCR FD primer) located at the beginning (the 5' end) of the DNA construct and a PCR reverse primer (PCR RE primer) located at the other end (the 3' end) as shown in FIG. 2A. This pair of PCR primers is designed to provide certain convenience when needed for relatively easy PCR amplification of the designer DNA construct, which is helpful not only during and after the designer DNA construct is synthesized in preparation for gene transformation, but also after the designer DNA construct is delivered into the genome of a host alga for verification of the designer gene in the transformants. For example, after the transformation of the designer gene is accomplished in a Chlamydomonas reinhardtii-arg7 host cell using the techniques of electroporation and argininosuccinate lyase (arg7) complementation screening, the resulted transformants can be then analyzed by a PCR DNA assay of their nuclear DNA using this pair of PCR primers to verify whether the entire designer butanol-production-pathway gene (the DNA construct) is successfully incorporated into the genome of a given transformant. When the nuclear DNA PCR assay of a transformant can generate a PCR product that matches with the predicted DNA size and sequence according to the designer DNA construct, the successful incorporation of the designer gene(s) into the genome of the transformant is verified.

[0085] Therefore, the various embodiments also teach the associated method to effectively create the designer transgenic algae, plants, or plant cells for photobiological butanol production. This method, in one of embodiments, includes the following steps: a) Selecting an appropriate host alga, plant, plant tissue, or plant cells with respect to their genetic backgrounds and special features in relation to butanol production; b) Introducing the nucleic acid constructs of the designer genes into the genome of said host alga, plant, plant tissue, or plant cells; c) Verifying the incorporation of the designer genes in the transformed alga, plant, plant tissue, or plant cells with DNA PCR assays using the said PCR primers of the designer DNA construct; d) Measuring and verifying the designer organism features such as the inducible expression of the designer butanol-pathway genes for photosynthetic butanol production from carbon dioxide and water by assays of mRNA, protein, and butanol-production characteristics according to the specific designer features of the DNA construct(s) (FIG. 2A).

[0086] The above embodiment of the method for creating the designer transgenic organism for photobiological butanol production can also be repeatedly applied for a plurality of operational cycles to achieve more desirable results. In various embodiments, any of the steps a) through d) of this method described above are adjusted to suit for certain specific conditions. In various embodiments, any of the steps a) through d) of the method are applied in full or in part, and/or in any adjusted combination.

[0087] Examples of designer butanol-production-pathway genes (DNA constructs) are shown in the sequence listings. SEQ ID NO: 1 presents a detailed DNA construct of a designer Butanol Dehydrogenase gene (1809 bp) that includes a PCR FD primer (sequence 1-20), a 262-bp nitrate

reductase Nia1 promoter (21-282), a 135-bp RbcS2 transit peptide (283-417), an enzyme-encoding sequence (418-1566) selected and modified from a Clostridium saccharoperbutylacetonicum Butanol Dehydrogenase sequence (AB257439), a 223-bp RbcS2 terminator (1567-1789), and a PCR RE primer (1790-1809). The 262-bp Nia1 promoter (DNA sequence 21-282) is used as an example of an inducible promoter to control the expression of a designer butanolproduction-pathway Butanol Dehydrogenase gene (DNA sequence 418-1566). The 135-bp RbcS2 transit peptide (DNA sequence 283-417) is used as an example to guide the insertion of the designer enzyme (DNA sequence 418-1566) into the chloroplast of the host organism. The RbcS2 terminator (DNA sequence 1567-1789) is employed so that the transcription and translation of the designer gene is properly terminated to produce the designer apoprotein (RbcS2 transit peptide-Butanol Dehydrogenase) as desired. Because the Nia1 promoter is a nuclear DNA that can control the expression only for nuclear genes, the synthetic butanol-productionpathway gene in this example is designed according to the codon usage of Chlamydomonas nuclear genome. Therefore, in this case, the designer enzyme gene is transcribed in nucleus. Its mRNA is naturally translocated into cytosol, where the mRNA is translated to an apoprotein that consists of the RbcS2 transit peptide (corresponding to DNA sequence 283-417) with its C-terminal end linked together with the N-terminal end of the Butanol Dehydrogenase protein (corresponding to DNA sequence 418-1566). The transit peptide of the apoprotein guides its transportation across the chloroplast membranes and into the stroma area, where the transit peptide is cut off from the apoprotein. The resulting Butanol Dehydrogenase then resumes its function as an enzyme for the designer butanol-production pathway in chloroplast. The two PCR primers (sequences 1-20 and 1790-1809) are selected and modified from the sequence of a Human actin gene and can be paired with each other. Blasting the sequences against Chlamydomonas GenBank found no homologous sequences of them. Therefore, they can be used as appropriate PCR primers in DNA PCR assays for verification of the designer gene in the transformed alga.

[0088] SEQ ID NO: 2 presents example 2 for a designer Butyraldehyde Dehydrogenase DNA construct (2067 bp) that includes a PCR FD primer (sequence 1-20), a 262-bp nitrate reductase Nia1 promoter (21-282), a 135-bp RbcS2 transit peptide (283-417), a Butyraldehyde Dehydrogenase-encoding sequence (418-1824) selected and modified from a *Clostridium saccharoperbutylacetonicum* Butyraldehyde Dehydrogenase sequence (AY251646), a 223-bp RbcS2 terminator (1825-2047), and a PCR RE primer (2048-2067). This DNA construct is similar to example 1, SEQ ID NO: 1, except that a Butyraldehyde Dehydrogenase-encoding sequence (418-1824) selected and modified from a *Clostridium saccharoperbutylacetonicum* Butyraldehyde Dehydrogenase sequence (AY251646) is used.

[0089] SEQ ID NO: 3 presents example 3 for a designer Butyryl-CoA Dehydrogenase construct (1815 bp) that includes a PCR FD primer (sequence 1-20), a 262-bp nitrate reductase promoter (21-282), a 9-bp Xho I NdeI site (283-291), a 135-bp RbcS2 transit peptide (292-426), a Butyryl-CoA Dehydrogenase encoding sequence (427-1563) selected/modified from the sequences of a *Clostridium beijerinckii* Butyryl-CoA Dehydrogenase (AF494018), a 9-bp XbaI site (1564-1572), a 223-bp RbcS2 terminator (1573-1795), and a PCR RE primer (1796-1815) at the 3' end. This DNA construct is similar to example 1, SEQ ID NO: 1, except that a Butyryl-CoA Dehydrogenase encoding sequence (427-1563) selected/modified from the sequences of a Clostridium beijerinckii Butyryl-CoA Dehydrogenase (AF494018) is used and restriction sites of Xho I NdeI and XbaI are added to make the key components such as the targeting sequence (292-426) and the designer enzyme sequence (427-1563) as a modular unit that can be flexible replaced when necessary to save cost of gene synthesis and enhance work productivity. Please note, the enzyme does not have to be Clostridium beijerinckii Butyryl-CoA Dehydrogenase; a number of butyryl-CoA dehydrogenase enzymes (such as those listed in Table 1) including their isozymes, designer modified enzymes, and functional analogs from other sources such as Butyrivibrio fibrisolvens, Butyrate producing bacterium L2-50, Thermoanaerobacterium thermosaccharolyticum, can also be selected for use.

[0090] SEQ ID NO: 4 presents example 4 for a designer Crotonase DNA construct (1482 bp) that includes a PCR FD primer (sequence 1-20), a 262-bp nitrate reductase promoter (21-282), a 9-bp Xho I NdeI site (283-291) a 135-bp RbcS2 transit peptide (292-426), a Crotonase-encoding sequence (427-1209) selected/modified from the sequences of a Clostridium beijerinckii Crotonase (Genbank: AF494018), a 21-bp Lumio-tag-encoding sequence (1210-1230), a 9-bp XbaI site (1231-1239) containing a stop codon, a 223-bp RbcS2 terminator (1240-1462), and a PCR RE primer (1463-1482) at the 3' end. This DNA construct is similar to example 3, SEQ ID NO: 3, except that a Crotonase-encoding sequence (427-1209) selected/modified from the sequences of a Clostridium beijerinckii Crotonase (Genbank: AF494018) is used and a 21-bp Lumio-tag-encoding sequence (1210-1230) is added at the C-terminal end of the enolase sequence. The 21-bp Lumio-tag sequence (1210-1230) is employed here to encode a Lumio peptide sequence Gly-Cys-Pro-Gly-Cys-Cys, which can become fluorescent when treated with a Lumio reagent that is now commercially available from Invitrogen [https://catalog.invitrogen.com]. Lumio molecular tagging technology is based on an EDT (1,2-ethanedithiol) coupled biarsenical derivative (the Lumio reagent) of fluorescein that binds to an engineered tetracysteine sequence (Keppetipola, Coffman, and et al (2003). Rapid detection of in vitro expressed proteins using LumioTM technology, Gene *Expression*, 25.3:7-11). The tetracysteine sequence consists of Cys-Cys-Xaa-Xaa-Cys-Cys, where Xaa is any non-cysteine amino acid such as Pro or Gly in this example. The EDT-linked Lumio reagent allows free rotation of the arsenic atoms that quenches the fluorescence of fluorescein. Covalent bond formation between the thiols of the Lumio's arsenic groups and the tetracysteines prevents free rotation of arsenic atoms that releases the fluorescence of fluorescein (Griffin, Adams, and Tsien (1998), "Specific covalent labeling of recombinant protein molecules inside live cells", Science, 281:269-272). This also permits the visualization of the tetracysteine-tagged proteins by fluorescent molecular imaging. Therefore, use of the Lumio tag in this manner enables monitoring and/or tracking of the designer Crotonase when expressed to verify whether the designer butanol-production pathway enzyme is indeed delivered into the chloroplast of a host organism as designed. The Lumio tag (a short 7 amino acid peptide) that is linked to the C-terminal end of the Crotonase protein in this example should have minimal effect on the function of the designer enzyme, but enable the designer enzyme molecule to be visualized when treated with the

Lumio reagent. Use of the Lumio tag is entirely optional. If the Lumio tag somehow affects the designer enzyme function, this tag can be deleted in the DNA sequence design.

[0091] SEQ ID NO: 5 presents example 5 for a designer 3-Hydroxybutyryl-CoA Dehydrogenase DNA construct (1367 bp) that includes a PCR FD primer (sequence 1-20), a 84-bp nitrate reductase promoter (21-104), a 9-bp Xho I NdeI site (105-113) a 135-bp RbcS2 transit peptide (114-248), a 3-Hydroxybutyryl-CoA Dehydrogenase-encoding sequence (249-1094) selected/modified from a Clostridium beijerinckii 3-Hydroxybutyryl-CoA Dehydrogenase sequence (Genbank: AF494018), a 21-bp Lumio-tag sequence (1095-1115), a 9-bp XbaI site (1116-1124), a 223-bp RbcS2 terminator (1125-1347), and a PCR RE primer (1348-1367). This DNA construct is similar to example 4, SEQ ID NO: 4, except that an 84-bp nitrate reductase promoter (21-104) and a 3-Hydroxybutyryl-CoA Dehydrogenase-encoding sequence (249-1094) selected/modified from a Clostridium beijerinckii 3-Hydroxybutyryl-CoA Dehydrogenase sequence (Genbank: AF494018) are used. The 84-bp nitrate-reductase promoter is artificially created by joining two partially homologous sequence regions (-231 to -201 and -77 to -25 with respect to the start site of transcription) of the native Chlamydomonas reinhardtii Nia1 promoter. Experimental studies have demonstrated that the 84-bp sequence is more active than the native Nia1 promoter (Loppes and Radoux (2002) "Two short regions of the promoter are essential for activation and repression of the nitrate reductase gene in Chlamvdomonas reinhardtii," Mol Genet Genomics 268: 42-48). Therefore, this is also an example where functional synthetic sequences, analogs, functional derivatives and/or designer modified sequences such as the synthetic 84-bp sequence can be selected for use according to various embodiments in this invention.

[0092] SEQ ID NO: 6 presents example 6 for a designer Thiolase DNA construct (1721 bp) that includes a PCR FD primer (sequence 1-20), a 84-bp nitrate reductase promoter (21-104), a 9-bp Xho I Ndel site (105-113) a 135-bp RbcS2 transit peptide (114-248), a Thiolase-encoding sequence (248-1448) selected/modified from a *Butyrivibrio fibrisolvens* Thiolase sequence (AB190764), a 21-bp Lumio-tag sequence (1449-1469), a 9-bp XbaI site (1470-1478), a 223bp RbcS2 terminator (1479-1701), and a PCR RE primer (1702-1721). This DNA construct is also similar to example 4, SEQ ID NO: 4, except that a Thiolase-encoding-encoding sequence (249-1448) and an 84-bp synthetic Nia1 promoter (21-104) are used. This is another example that functional synthetic sequences can also be selected for use in designer DNA constructs.

[0093] SEQ ID NO: 7 presents example 7 for a designer Pyruvate-Ferredoxin Oxidoreductase DNA construct (4211 bp) that includes a PCR FD primer (sequence 1-20), a 2×84bp nitrate reductase promoter (21-188), a 9-bp Xho I NdeI site (189-197) a 135-bp RbcS2 transit peptide (198-332), a Pyruvate-Ferredoxin Oxidoreductase-encoding sequence (333-3938) selected/modified from the sequences of a *Mastigamoeba balamuthi* Pyruvate-ferredoxin oxidoreductase (GenBank: AY101767), a 21-bp Lumio-tag sequence (3939-3959), a 9-bp XbaI site (3960-3968), a 223-bp RbcS2 terminator (3969-4191), and a PCR RE primer (4192-4211). This DNA construct is also similar to example 4, SEQ ID NO: 4, except a designer 2×84-bp Nia1 promoter and a Pyruvate-Ferredoxin Oxidoreductase-encoding sequence (333-3938) selected/modified from the sequences of a *Mastigamoeba* *balamuthi* Pyruvate-ferredoxin oxidoreductase (GenBank: AY101767) are used. The 2×84-bp Nia1 promoter is constructed as a tandem duplication of the 84-bp synthetic Nia1 promoter sequence presented in SEQ ID NO: 6 above. Experimental tests have shown that the 2×84-bp synthetic Nia1 promoter is even more powerful than the 84-bp sequence which is more active than the native Nia1 promoter (Loppes and Radoux (2002) "Two short regions of the promoter are essential for activation and repression of the nitrate reductase gene in *Chlamydomonas reinhardtii,*" *Mol Genet Genomics* 268: 42-48). Use of this type of inducible promoter sequences with various promoter strengths can also help in adjusting the expression levels of the designer enzymes for the butanol-production pathway(s).

[0094] SEQ ID NO: 8 presents example 8 for a designer Pyruvate Kinase DNA construct (2021 bp) that includes a PCR FD primer (sequence 1-20), a 84-bp nitrate reductase promoter (21-104), a 9-bp Xho I NdeI site (105-113) a 135-bp RbcS2 transit peptide (114-248), a pyruvate kinase-encoding sequence (249-1748) selected/modified from a *Saccharomyces cerevisiae* Pyruvate Kinase sequence (GenBank: AY949876), a 21-bp Lumio-tag sequence (1749-1769), a 9-bp XbaI site (1770-1778), a 223-bp RbcS2 terminator (1779-2001), and a PCR RE primer (2002-2021). This DNA construct is similar to example 6, SEQ ID NO: 6, except that a pyruvate kinase-encoding sequence (249-1748) is used.

[0095] SEQ ID NO: 9 presents example 9 for a designer Enolase gene (1815 bp) consisting of a PCR FD primer (sequence 1-20), a 262-bp nitrate reductase promoter (21-282), a 9-bp Xho I NdeI site (283-291) a 135-bp RbcS2 transit peptide (292-426), a enolase-encoding sequence (427-1542) selected/modified from the sequences of a *Chlamydomonas reinhardtii* cytosolic enolase (Genbank: X66412, P31683), a 21-bp Lumio-tag-encoding sequence (1507-1527), a 9-bp XbaI site (1543-1551) containing a stop codon, a 223-bp RbcS2 terminator (1552-1795), and a PCR RE primer (1796-1815) at the 3' end. This DNA construct is similar to example 3, SEQ ID NO: 3, except that an enolase-encoding sequence (427-1542) selected/modified from the sequences of a *Chlamydomonas reinhardtii* cytosolic enolase is used.

[0096] SEQ ID NO: 10 presents example 10 for a designer Phosphoglycerate-Mutase DNA construct (2349 bp) that includes a PCR FD primer (sequence 1-20), a 262-bp nitrate reductase promoter (21-282), a 9-bp Xho I NdeI site (283-291), a 135-bp RbcS2 transit peptide (292-426), a phosphoglycerate-mutase encoding sequence (427-2097) selected/ modified from the sequences of a *Chlamydomonas reinhardtii* cytosolic phosphoglycerate mutase (JGI Chlre2 protein ID 161689, Genbank: AF268078), a 9-bp XbaI site (2098-2106), a 223-bp RbcS2 terminator (2107-2329), and a PCR RE primer (2330-2349) at the 3' end. This DNA construct is similar to example 3, SEQ ID NO: 3, except that a phosphoglycerate-mutase encoding sequence (427-2097) selected/modified from the sequences of a *Chlamydomonas reinhardtii* cytosolic phosphoglycerate mutase is used.

[0097] SEQ ID NO: 11 presents example 11 for a designer Phosphoglycerate Kinase DNA construct (1908 bp) that includes a PCR FD primer (sequence 1-20), a 262-bp nitrate reductase Nia1 promoter (21-282), a phosphoglycerate-kinase-encoding sequence (283-1665) selected from a *Chlamydomonas reinhardtii* chloroplast phosphoglycerate-kinase sequence including its chloroplast signal peptide and mature enzyme sequence (GenBank: U14912), a 223-bp RbcS2 terminator (1666-1888), and a PCR RE primer (1889-1908). This DNA construct is similar to example 1, SEQ ID NO: 1, except a phosphoglycerate-kinase-encoding sequence (283-1665) selected from a *Chlamydomonas reinhardtii* chloroplast phosphoglycerate-kinase sequence including its chloroplast signal peptide and mature enzyme sequence is used. Therefore, this is also an example where the sequence of a nuclear-encoded chloroplast enzyme such as the *Chlamydomonas reinhardtii* chloroplast phosphoglycerate kinase can also be used in design and construction of a designer butanol-production pathway gene when appropriate with a proper inducible promoter such as the Nia1 promoter (DNA sequence 21-282).

[0098] SEQ ID NO: 12 presents example 12 for a designer Glyceraldehyde-3-Phosphate Dehydrogenase gene (1677 bp) that includes a PCR FD primer (sequence 1-20), a 262-bp nitrate reductase Nia1 promoter (21-282), a 135-bp RbcS2 transit peptide (283-417), an enzyme-encoding sequence (418-1434) selected and modified from a Mesostigma viride glyceraldehyde-3-phosphate cytosolic dehydrogenase (mRNA) sequence (GenBank accession number DQ873404), a 223-bp RbcS2 terminator (1435-1657), and a PCR RE primer (1658-1677). This DNA construct is similar to example 1, SEQ ID NO: 1, except that an enzyme-encoding sequence (418-1434) selected and modified from a Mesostigma viride cytosolic glyceraldehyde-3-phosphate dehydrogenase (mRNA) sequence (GenBank accession number DQ873404) is used.

[0099] SEQ ID NO: 13 presents example 13 for a designer HydA1-promoter-linked Phosphoglycerate Mutase DNA construct (2351 bp) that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a 135-bp RbcS2 transit peptide (303-437), a phosphoglycerate-mutase encoding sequence (438-2108) selected/modified from the sequences of a Chlamydomonas reinhardtii cytosolic phosphoglycerate mutase (JGI Chlre2 protein ID 161689, Genbank: AF268078), a 223-bp RbcS2 terminator (2109-2331), and a PCR RE primer (2332-2351). This designer DNA construct is quite similar to example 1, SEQ ID NO:1, except that a 282-bp HydA1 promoter (21-302) and a phosphoglyceratemutase encoding sequence (438-2108) selected/modified from the sequences of a Chlamydomonas reinhardtii cytosolic phosphoglycerate mutase are used. The 282-bp HydA1 promoter (21-302) has been proven active by experimental assays at the inventor's laboratory. Use of the HydA1 promoter (21-302) enables activation of designer enzyme expression by using anaerobic culture-medium conditions.

[0100] With the same principle of using an inducible anaerobic promoter and a chloroplast-targeting sequence as that shown in SEQ ID NO: 13 (example 13), SEQ ID NOS: 14-23 show designer-gene examples 14-23. Briefly, SEQ ID NO: 14 presents example 14 for a designer HydA1-promoter-linked Enolase DNA construct (1796 bp) that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a 135-bp RbcS2 transit peptide (303-437), a Enolase-encoding sequence (438-1553) selected/modified from the sequences of a *Chlamydomonas reinhardtii* cytosolic enolase (Genbank: X66412, P31683), a 223-bp RbcS2 terminator (1554-1776), and a PCR RE primer (1777-1796).

[0101] SEQ ID NO: 15 presents example 15 for a designer HydA1-promoter-controlled Pyruvate-Kinase DNA construct that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a 135-bp RbcS2 transit peptide (303-437), a Pyruvate Kinase-encoding sequence (438-1589) selected/modified from a *Chlamydomonas rein*- *hardtii* cytosolic pyruvate kinase sequence (JGI Chlre3 protein ID 138105), a 223-bp RbcS2 terminator (1590-1812), and a PCR RE primer (1813-1832).

[0102] SEQ ID NO:16 presents example 16 for a designer HydA1-promoter-linked Pyruvate-ferredoxin oxidoreductase DNA construct (4376 bp) that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a 135bp RbcS2 transit peptide (303-437), a Pyruvate-ferredoxin oxidoreductase-encoding sequence (438-4133) selected/ modified from a *Desulfovibrio africanus* Pyruvate-ferredoxin oxidoreductase sequence (GenBank Accession Number Y09702), a 223-bp RbcS2 terminator (4134-4356), and a PCR RE primer (4357-4376).

[0103] SEQ ID NO:17 presents example 17 for a designer HydA1-promoter-linked Pyruvate-NADP⁺ oxidoreductase DNA construct (6092 bp) that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a 135bp RbcS2 transit peptide (303-437), a Pyruvate-NADP⁺ oxidoreductase-encoding sequence (438-5849) selected/modified from a *Euglena gracilis* Pyruvate-NADP⁺ oxidoreductase sequence (GenBank Accession Number AB021127), a 223-bp RbcS2 terminator (5850-6072), and a PCR RE primer (6073-6092).

[0104] SEQ ID NO:18 presents example 18 for a designer HydA1-promoter-linked Thiolase DNA construct (1856 bp) that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a 135-bp RbcS2 transit peptide (303-437), a Thiolase-encoding sequence (438-1613) selected/modified from the sequences of a *Thermoanaerobacterium thermosaccharolyticum* Thiolase (GenBank Z92974), a 223-bp RbcS2 terminator (1614-1836), and a PCR RE primer (1837-1856).

[0105] SEQ ID NO:19 presents example 19 for a designer HydA1-promoter-linked 3-Hydroxybutyryl-CoA dehydrogenase DNA construct (1550 bp) that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a 135-bp RbcS2 transit peptide (303-437), a 3-Hydroxybutyryl-CoA dehydrogenase-encoding sequence (438-1307) selected/modified from the sequences of a *Thermoanaerobacterium thermosaccharolyticum* 3-Hydroxybutyryl-CoA dehydrogenase (GenBank Z92974), a 223-bp RbcS2 terminator (1308-1530), and a PCR RE primer (1531-1550).

[0106] SEQ ID NO:20 presents example 20 for a designer HydA1-promoter-linked Crotonase DNA construct (1457 bp) that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a 135-bp RbcS2 transit peptide (303-437), a Crotonase-encoding sequence (438-1214) selected/modified from the sequences of a *Thermoanaerobacterium thermosaccharolyticum* Crotonase (GenBank Z92974), a 223-bpRbcS2 terminator (1215-1437), and a PCR RE primer (1438-1457).

[0107] SEQ ID NO:21 presents example 21 for a designer HydA1-promoter-linked Butyryl-CoA dehydrogenase DNA construct (1817 bp) that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a 135-bp RbcS2 transit peptide (303-437), a Butyryl-CoA dehydrogenase-encoding sequence (438-1574) selected/modified from the sequences of a *Thermoanaerobacterium thermosaccharolyticum* Butyryl-CoA dehydrogenase (GenBank Z92974), a 223bp RbcS2 terminator (1575-1797), and a PCR RE primer (1798-1817).

[0108] SEQ ID NO: 22 presents example 22 for a designer HydA1-promoter-linked Butyraldehyde dehydrogenase DNA construct (2084 bp) that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a 135bp RbcS2 transit peptide (303-437), a Butyraldehyde dehydrogenase-encoding sequence (438-1841) selected/modified from the sequences of a *Clostridium saccharoperbutylacetonicum* Butyraldehyde dehydrogenase (GenBank AY251646), a 223-bp RbcS2 terminator (1842-2064), and a PCR RE primer (2065-2084).

[0109] SEQ ID NO: 23 presents example 23 for a designer HydA1-promoter-linked Butanol dehydrogenase DNA construct (1733 bp) that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a 135-bp RbcS2 transit peptide (303-437), a Butanol dehydrogenase-encoding sequence (438-1490) selected/modified from the sequences of a *Clostridium beijerinckii* Butanol dehydrogenase (GenBank AF157307), a 223-bp RbcS2 terminator (1491-1713), and a PCR RE primer (1714-1733).

[0110] With the same principle of using a 2×84 synthetic Nia1 promoter and a chloroplast-targeting mechanism as mentioned previously, SEQ ID NOS:24-26 show more examples of designer-enzyme DNA-constructs. Briefly, SEQ ID NO: 24 presents example 24 for a designer Fructose-Diphosphate-Aldolase DNA construct that includes a PCR FD primer (sequence 1-20), a 2×84-bp NR promoter (21-188), a Fructose-Diphosphate Aldolase-encoding sequence (189-1313) selected/modified from a *C. reinhardtii* chloroplast fructose-1,6-bisphosphate aldolase sequence (Gen-Bank: X69969), a 223-bpRbcS2 terminator (1314-1536), and a PCR RE primer (1537-1556).

[0111] SEQ ID NO: 25 presents example 24 for a designer Triose-Phosphate-Isomerase DNA construct that includes a PCR FD primer (sequence 1-20), a 2×84-bp NR promoter (21-188), a Triose-Phosphate Isomerase-encoding sequence (189-1136) selected and modified from a *Arabidopsis thaliana* chloroplast triosephosphate-isomerase sequence (GenBank: AF247559), a 223-bp RbcS2 terminator (1137-1359), and a PCR RE primer (1360-1379).

[0112] SEQ ID NO: 26 presents example 26 for a designer Phosphofructose-Kinase DNA construct that includes a PCR FD primer (sequence 1-20), a 2×84-bp NR promoter (21-188), a 135-bp RbcS2 transit peptide (189-323), a Phosphofructose Kinase-encoding sequence (324-1913) selected/ modified from *Arabidopsis thaliana* 6-phosphofructokinase sequence (GenBank: NM_001037043), a 223-bp RbcS2 terminator (1914-2136), and a PCR RE primer (2137-2156).

[0113] The nucleic acid constructs, such as those presented in the examples above, may include additional appropriate sequences, for example, a selection marker gene, and an optional biomolecular tag sequence (such as the Lumio tag described in example 4, SEQ ID NO: 4). Selectable markers that can be selected for use in the constructs include markers conferring resistances to kanamycin, hygromycin, spectinomycin, streptomycin, sulfonyl urea, gentamycin, chloramphenicol, among others, all of which have been cloned and are available to those skilled in the art. Alternatively, the selective marker is a nutrition marker gene that can complement a deficiency in the host organism. For example, the gene encoding argininosuccinate lyase (arg7) can be used as a selection marker gene in the designer construct, which permits identification of transformants when Chlamydomonas reinhardtii arg7-(minus) cells are used as host cells.

[0114] Nucleic acid constructs carrying designer genes can be delivered into a host alga, blue-green alga, plant, or plant tissue or cells using the available gene-transformation techniques, such as electroporation, PEG induced uptake, and ballistic delivery of DNA, and *Agrobacterium*-mediated transformation. For the purpose of delivering a designer construct into algal cells, the techniques of electroporation, glass bead, and biolistic genegun can be selected for use as preferred methods; and an alga with single cells or simple thallus structure is preferred for use in transformation. Transformants can be identified and tested based on routine techniques.

[0115] The various designer genes can be introduced into host cells sequentially in a step-wise manner, or simultaneously using one construct or in one transformation. For example, the ten DNA constructs shown in SEO ID NO: 13-16 (or 17) and 18-23 for the ten-enzyme 3-phosphoglycerate-branched butanol-production pathway can be placed into a genetic vector such as p389-Arg7 with a single selection marker (Arg7). Therefore, by use of a plasmid in this manner, it is possible to deliver all the ten DNA constructs (designer genes) into an arginine-requiring Chlamydomonas reinhardtii-arg7 host (CC-48) in one transformation for expression of the 3-phosphoglycerate-branched butanol-production pathway (03-12 in FIG. 1). When necessary, a transformant containing the ten DNA constructs can be further transformed to get more designer genes into its genomic DNA with an additional selection marker such as streptomycin. By using combinations of various designer-enzymes DNA constructs such as those presented in SEQ ID NO: 1-26 in genetic transformation with an appropriate host organism, various butanol-production pathways such as those illustrated in FIG. 1 can be constructed. For example, the designer DNA constructs of SEQ ID NO: 1-12 can be selected for construction of the glyceraldehydes-3-phosphate-branched butanol-production pathway (01-12 in FIG. 1); The designer DNA constructs of SEQ ID NO: 1-12, 24, and 25 can be selected for construction of the fructose-1,6-diphosphate-branched butanol-production pathway (20-33); and the designer DNA constructs of SEQ ID NO: 1-12 and 24-26 can be selected for construction of the fructose-6-phosphate-branched butanolproduction pathway (19-33).

Additional Host Modifications to Enhance Photosynthetic Butanol Production

An NADPH/NADH Conversion Mechanism

[0116] According to the photosynthetic butanol production pathway(s), to produce one molecule of butanol from $4CO_2$ and 5H₂O is likely to require 14 ATP and 12 NADPH, both of which are generated by photosynthetic water splitting and photophosphorylation across the thylakoid membrane. In order for the 3-phosphoglycerate-branched butanol-production pathway (03-12 in FIG. 1) to operate, it is a preferred practice to use a butanol-production-pathway enzyme(s) that can use NADPH that is generated by the photo-driven electron transport process. Clostridium saccharoperbutvlacetonicum butanol dehydrogenase (GenBank accession number: AB257439) and butyaldehyde dehydrogenase (GenBank: AY251646) are examples of a butanol-production-pathway enzyme that is capable of accepting either NADP(H) or NAD (H). Such a butanol-production-pathway enzyme that can use both NADPH and NADH (i.e., NAD(P)H) can also be selected for use in this 3-phosphoglycerate-branched and any of the other designer butanol-production pathway(s) (FIG. 1) as well. Clostridium beijerinckii Butyryl-CoA dehydrogenase (GenBank: AF494018) and 3-Hydroxybutyryl-CoA dehydrogenase (GenBank: AF494018) are examples of a butanol-production-pathway enzyme that can accept only NAD(H). When a butanol-production-pathway enzyme that can only use NADH is employed, it may require an NADPH/ NADH conversion mechanism in order for this 3-phosphoglycerate-branched butanol-production pathway to operate well. However, depending on the genetic backgrounds of a host organism, a conversion mechanism between NADPH and NADH may exist in the host so that NADPH and NADH may be interchangeably used in the organism. In addition, it is known that NADPH could be converted into NADH by a NADPH-phosphatase activity (Pattanayak and Chatterjee (1998) "Nicotinamide adenine dinucleotide phosphate phosphatase facilitates dark reduction of nitrate: regulation by nitrate and ammonia," Biologia Plantarium 41(1):75-84) and that NAD can be converted to NADP by a NAD kinase activity (Muto, Miyachi, Usuda, Edwards and Bassham (1981) "Light-induced conversion of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide phosphate in higher plant leaves," Plant Physiology 68(2):324-328; Matsumura-Kadota, Muto, Miyachi (1982) "Light-induced conversion of NAD+ to NADP+ in Chlorella cells," Biochimica Biophysica Acta 679(2):300-300). Therefore, when enhanced NADPH/NADH conversion is desirable, the host may be genetically modified to enhance the NADPH phosphatase and NAD kinase activities. Thus, in one of the various embodiments. the photosynthetic butanol-producing designer plant, designer alga or plant cell further contains additional designer transgenes (FIG. 2B) to inducibly express one or more enzymes to facilitate the NADPH/NADH interconversion, such as the NADPH phosphatase and NAD kinase (GenBank: XM_001609395, XM_001324239), in the stroma of algal chloroplast.

[0117] Another embodiment that can provide an NADPH/ NADH conversion mechanism is by properly selecting an appropriate branching point at the Calvin cycle for a designer butanol-production pathway to branch from. To confer this NADPH/NADH conversion mechanism by pathway design according to this embodiment, it is a preferred practice to branch a designer butanol-production pathway at or after the point of glyceraldehydes-3-phosphate of the Calvin cycle as shown in FIG. 1. In these pathway designs, the NADPH/ NADH conversion is achieved essentially by a two-step mechanism: 1) Use of the step with the Calvin-cycle's glyceraldehyde-3-phosphate dehydrogenase, which uses NADPH in reducing1,3-diphosphoglycerate to glyceraldehydes-3-phosphate; and 2) use of the step with the designer pathway's NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase 01, which produces NADH in oxidizing glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate. The net result of the two steps described above is the conversion of NADPH to NADH, which can supply the needed reducing power in the form of NADH for the designer butanol-production pathway(s). For step 1), use of the Calvin-cycle's NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase naturally in the host organism is usually sufficient. Consequently, introduction of a designer NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase 01 to work with the Calvin-cycle's NADPH-dependent glyceraldehyde-3phosphate dehydrogenase may confer the function of an NADPH/NADH conversion mechanism, which is needed for the 3-phosphoglycerate-branched butanol-production pathway (03-12 in FIG. 1) to operate well. For this reason, the designer NAD+-dependent glyceraldehyde-3-phosphate-dehydrogenase DNA construct (example 12, SEQ ID NO:12) is used also as an NADPH/NADH-conversion designer gene (FIG. 2B) to support the 3-phosphoglycerate-branched butanol-production pathway (03-12 in FIG. 1) in one of the various embodiments. This also explains why it is important to use a NAD⁺-dependent glyceraldehyde-3-phosphate dehydrogenase 01 to confer this two-step NADPH/NADH conversion mechanism for the designer butanol-production pathway (s). Therefore, in one of the various embodiments, it is also a preferred practice to use a NAD⁺-dependent glyceraldehyde-3-phosphate dehydrogenase, its isozymes, functional derivatives, analogs, designer modified enzymes and/or combinations thereof in the designer butanol-production pathway(s) as illustrated in FIG. 1.

iRNA Techniques to Further Tame Photosynthesis Regulation Mechanism

[0118] In another embodiment of the present invention, the host plant or cell is further modified to tame the Calvin cycle so that the host can directly produce liquid fuel butanol instead of synthesizing starch (glycogen in the case of oxyphotobacteria), celluloses and lignocelluloses that are often inefficient and hard for the biorefinery industry to use. According to the one of the various embodiments, inactivation of starch-synthesis activity is achieved by suppressing the expression of any of the key enzymes, such as, starch synthase (glycogen synthase in the case of oxyphotobacteria) 13, glucose-1-phosphate (G-1-P) adenylyltransferase 14, phosphoglucomutase 15, and hexose-phosphate-isomerase 16 of the starch-synthesis pathway which connects with the Calvin cycle (FIG. 1).

[0119] Introduction of a genetically transmittable factor that can inhibit the starch-synthesis activity that is in competition with designer butanol-production pathway(s) for the Calvin-cycle products can further enhance photosynthetic butanol production. In a specific embodiment, a genetically encoded-able inhibitor (FIG. 2C) to the competitive starchsynthesis pathway is an interfering RNA (iRNA) molecule that specifically inhibits the synthesis of a starch-synthesispathway enzyme, for example, starch synthase 16, glucose-1-phosphate (G-1-P) adenylyltransferase 15, phosphoglucomutase 14, and/or hexose-phosphate-isomerase 13 as shown with numerical labels 13-16 in FIG. 1. The DNA sequences encoding starch synthase iRNA, glucose-1-phosphate (G-1-P) adenylyltransferase iRNA, a phosphoglucomutase iRNA and/or a G-P-isomerase iRNA, respectively, can be designed and synthesized based on RNA interference techniques known to those skilled in the art (Liszewski (Jun. 1, 2003) Progress in RNA interference, Genetic Engineering News, Vol. 23, number 11, pp. 1-59). Generally speaking, an interfering RNA (iRNA) molecule is anti-sense but complementary to a normal mRNA of a particular protein (gene) so that such iRNA molecule can specifically bind with the normal mRNA of the particular gene, thus inhibiting (blocking) the translation of the gene-specific mRNA to protein (Fire, Xu, Montgomery, Kostas, Driver, Mello (1998) "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans". Nature 391(6669):806-11; Dykxhoorn, Novina, Sharp (2003) "Killing the messenger: short RNAs that silence gene expression", Nat Rev Mol Cell Biol. 4(6):457-67).

[0120] Examples of a designer starch-synthesis iRNA DNA construct (FIG. **2**C) are shown in SEQ ID NO: 27 and 28 listed. Briefly, SEQ ID NO: 27 presents example 27 for a designer Nia1-promoter-controlled Starch-Synthase-iRNA DNA construct (860 bp) that includes a PCR FD primer

(sequence 1-20), a 262-bp Nia1 promoter (21-282), a Starch-Synthase iRNA sequence (283-617) consisting of start codon atg and a reverse complement sequence of two unique sequence fragments of a Chlamydomonas reinhardtii starchsynthase-mRNA sequence (GenBank: AF026422), a 223-bp RbcS2 terminator (618-850), and a PCR RE primer (851-860). Because of the use of a Nia1 promoter (21-282), this designer starch-synthesis iRNA gene is designed to be expressed only when needed to enhance photobiological butanol production in the presence of its specific inducer, nitrate (NO_3^{-}) , which can be added into the culture medium as a fertilizer for induction of the designer organisms. The Starch-Synthase iRNA sequence (283-617) is designed to bind with the normal mRNA of the starch synthase gene, thus blocking its translation into a functional starch synthase. The inhibition of the starch/glycogen synthase activity at 16 in this manner is to channel more photosynthetic products of the Calvin cycle into the Calvin-cycle-branched butanol-production pathway(s) such as the glyceraldehydes-3-phosphatebranched butanol-production pathway 01-12 as illustrated in FIG. 1.

[0121] SEQ ID NO: 28 presents example 28 for a designer HydA1-promoter-controlled Starch-Synthase-iRNA DNA construct (1328 bp) that includes a PCR FD primer (sequence 1-20), a 282-bp HydA1 promoter (21-302), a designer Starch-Synthase iRNA sequence (303-1085), a 223-bp RbcS2 terminator (1086-1308), and a PCR RE primer (1309-1328). The designer Starch-Synthase-iRNA sequence (303-1085) comprises of: a 300-bp sense fragment (303-602) selected from the first 300-bp unique coding sequence of a Chlamydomonas reinhardtii starch synthase mRNA sequence (GenBank: AF026422), a 183-bp designer intron-like loop (603-785), and a 300-bp antisense sequence (786-1085) complement to the first 300-bp coding sequence of a Chlamydomonas reinhardtii starch-synthase-mRNA sequence (GenBank: AF026422). This designer Starch-Synthase-iRNA sequence (303-1085) is designed to inhibit the synthesis of starch synthase by the following two mechanisms. First, the 300-bp antisense complement iRNA sequence (corresponding to DNA sequence 786-1085) binds with the normal mRNA of the starch synthase gene, thus blocking its translation into a functional starch synthase. Second, the 300-bp antisense complement iRNA sequence (corresponding to DNA sequence 786-1085) can also bind with the 300-bp sense counterpart (corresponding to DNA sequence 303-602) in the same designer iRNA molecule, forming a hairpin-like double-stranded RNA structure with the 183-bp designer intron-like sequence (603-785) as a loop. Experimental studies have shown that this type of hairpin-like double-stranded RNA can also trigger post-transcriptional gene silencing (Fuhrmann, Stahlberg, Govorunova, Rank and Hegemann (2001) Journal of Cell Science 114:3857-3863). Because of the use of a HydA1 promoter (21-302), this designer starch-synthesis-iRNA gene is designed to be expressed only under anaerobic conditions when needed to enhance photobiological butanol production by channeling more photosynthetic products of the Calvin cycle into the butanol-production pathway (s) such as 01-12, 03-12, and/or 20-33 as illustrated in FIG. 1.

Designer Starch-Degradation and Glycolysis Genes

[0122] In yet another embodiment of the present invention, the photobiological butanol production is enhanced by incorporating an additional set of designer genes (FIG. **2**D) that can facilitate starch/glycogen degradation and glycolysis in

combination with the designer butanol-production gene(s) (FIG. 2A). Such additional designer genes for starch degradation include, for example, genes coding for 17: amylase, starch phosphorylase, hexokinase, phosphoglucomutase, and for 18: glucose-phosphate-isomerase (G-P-isomerase) as illustrated in FIG. 1. The designer glycolysis genes encode chloroplast-targeted glycolysis enzymes: glucosephosphate isomerase 18, phosphofructose kinase 19, aldolase 20, triose phosphate isomerase 21, glyceraldehyde-3-phosphate dehydrogenase 22, phosphoglycerate kinase 23, phosphoglycerate mutase 24, enolase 25, and pyruvate kinase 26. The designer starch-degradation and glycolysis genes in combination with any of the butanol-production pathways shown in FIG. 1 can form additional pathway(s) from starch/glycogen to butanol (17-33). Consequently, co-expression of the designer starchdegradation and glycolysis genes with the butanol-production-pathway genes can enhance photobiological production of butanol as well. Therefore, this embodiment represents another approach to tame the Calvin cycle for enhanced photobiological production of butanol. In this case, some of the Calvin-cycle products flow through the starch synthesis pathway (13-16) followed by the starch/glycogen-to-butanol pathway (17-33) as shown in FIG. 1. In this case, starch/ glycogen acts as a transient storage pool of the Calvin-cycle products before they can be converted to butanol. This mechanism can be quite useful in maximizing the butanol-production yield in certain cases. For example, at high sunlight intensity such as around noon, the rate of Calvin-cycle photosynthetic CO₂ fixation can be so high that may exceed the maximal rate capacity of a butanol-production pathway(s); use of the starch-synthesis mechanism allows temporary storage of the excess photosynthetic products to be used later for butanol production as well.

[0123] FIG. 1 also illustrates the use of a designer starch/ glycogen-to-butanol pathway with designer enzymes (as labeled from 17 to 33) in combination with a Calvin-cyclebranched designer butanol-production pathway(s) such as the glyceraldehydes-3-phosphate-branched butanol-production pathway 01-12 for enhanced photobiological butanol production. Similar to the benefits of using the Calvin-cyclebranched designer butanol-production pathways, the use of the designer starch/glycogen-to-butanol pathway (17-33) can also help to convert the photosynthetic products to butanol before the sugars could be converted into other complicated biomolecules such as lignocellulosic biomasses which cannot be readily used by the biorefinery industries. Therefore, appropriate use of the Calvin-cycle-branched designer butanol-production pathway(s) (such as 01-12, 03-12, and/or 20-33) and/or the designer starch/glycogen-to-butanol pathway (17-33) may represent revolutionary inter alia technologies that can effectively bypass the bottleneck problems of the current biomass technology including the "lignocellulosic recalcitrance" problem.

[0124] Another feature is that a Calvin-cycle-branched designer butanol-production pathway activity (such as 01-12, 03-12, and/or 20-33) can occur predominantly during the days when there is light because it uses an intermediate product of the Calvin cycle which requires supplies of reducing power (NADPH) and energy (ATP) generated by the photosynthetic water splitting and the light-driven proton-translocation-coupled electron transport process through the thyla-koid membrane system. The designer starch/glycogen-to-butanol pathway (17-33) which can use the surplus sugar that has been stored as starch/glycogen during photosynthesis can

operate not only during the days, but also at nights. Consequently, the use of a Calvin-cycle-branched designer butanolproduction pathway (such as 01-12, 03-12, and/or 20-33) together with a designer starch/glycogen-to-butanol pathway (s) (17-33) as illustrated in FIG. 1 enables production of butanol both during the days and at nights.

[0125] Because the expression for both the designer starch/ glycogen-to-butanol pathway(s) and the Calvin-cyclebranched designer butanol-production pathway(s) is controlled by the use of an inducible promoter such as an anaerobic hydrogenase promoter, this type of designer organisms is also able to grow photoautotrophically under aerobic (normal) conditions. When the designer photosynthetic organisms are grown and ready for photobiological butanol production, the cells are then placed under the specific inducing conditions such as under anaerobic conditions [or an ammonium-to-nitrate fertilizer use shift, if designer Nia1/ nirA promoter-controlled butanol-production pathway(s) is used] for enhanced butanol production, as shown in FIGS. **1** and **3**.

[0126] Examples of designer starch (glycogen)-degradation genes are shown in SEQ ID NO: 29-33 listed. Briefly, SEQ ID NO:29 presents example 29 for a designer Amylase DNA construct (1889 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp NR promoter (21-188), a 9-bp Xho I NdeI site (189-197), a 135-bp RbcS2 transit peptide (198-332), an Amylase-encoding sequence (333-1616) selected and modified from a Barley alpha-amylase (Gen-Bank: J04202A my46 expression tested in aleurone cells), a 21-bp Lumio-tag sequence (1617-1637), a 9-bp XbaI site (1638-1646), a 223-bp RbcS2 terminator (1647-1869), and a PCR RE primer (1870-1889).

[0127] SEQ ID NO: 30 presents example 30 for a designer Starch-Phosphorylase DNA construct (3089 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp NR promoter (21-188), a 135-bp RbcS2 transit peptide (189-323), a Starch Phosphorylase-encoding sequence (324-2846) selected and modified from a Citrus root starch-phosphorylase sequence (GenBank: AY098895, expression tested in citrus root), a 223-bp RbcS2 terminator (2847-3069), and a PCR RE primer (3070-3089).

[0128] SEQ ID NO: 31 presents example 31 for a designer Hexose-Kinase DNA construct (1949 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp NR promoter (21-188), a 135-bp RbcS2 transit peptide (189-323), a Hexose Kinase-encoding sequence (324-1706) selected and modified from *Ajellomyces capsulatus* hexokinase mRNA sequence (Genbank: XM_001541513), a 223-bp RbcS2 terminator (1707-1929), and a PCR RE primer (1930-1949).

[0129] SEQ ID NO: 32 presents example 32 for a designer Phosphoglucomutase DNA construct (2249 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp NR promoter (21-188), a 135-bp RbcS2 transit peptide (189-323), a Phosphoglucomutase-encoding sequence (324-2006) selected and modified from *Pichia stipitis* phosphoglucomutase sequence (GenBank: XM_001383281), a 223-bp RbcS2 terminator (2007-2229), and a PCR RE primer (2230-2249).

[0130] SEQ ID NO: 33 presents example 33 for a designer Glucosephosphate-Isomerase DNA construct (2231 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp NR promoter (21-188), a 135-bp RbcS2 transit peptide (189-323), a Glucosephosphate Isomerase-encoding sequence (324-1988) selected and modified from a *S. cerevisiae* phosphoglucoisomerase sequence (GenBank: M21696), a 223-bp RbcS2 terminator (1989-2211), and a PCR RE primer (2212-2231).

[0131] The designer starch-degradation genes such as those shown in SEQ ID NO: 29-33 can be selected for use in combination with various designer butanol-production-pathway genes for construction of various designer starch-degradation butanol-production pathways such as the pathways shown in FIG. 1. For example, the designer genes shown in SEQ ID NOS: 1-12, 24-26, and 29-33 can be selected for construction of a Nia1 promoter-controlled starch-to-butanol production pathway that comprises of the following designer enzymes: amylase, starch phosphorylase, hexokinase, phosphoglucomutase, glucosephosphate isomerase, phosphofructose kinase, fructose diphosphate aldolase, triose phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, pyruvate kinase, pyruvate-NADP+ oxidoreductase (or pyruvate-ferredoxin oxidoreductase), thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase. butyraldehyde dehydrogenase, and butanol dehydrogenase. This starch/glycogen-to-butanol pathway 17-33 may be used alone and/or in combinations with other butanol-production pathway(s) such as the 3-phosphoglycerate-branched butanol-production pathway 03-12 as illustrated in FIG. 1.

Distribution of Designer Butanol-Production Pathways Between Chloroplast and Cytoplasm

[0132] In yet another embodiment of the present invention, photobiological butanol productivity is enhanced by a selected distribution of the designer butanol-production pathway(s) between chloroplast and cytoplasm in a eukaryotic plant cell. That is, not all the designer butanol-production pathway(s) (FIG. 1) have to operate in the chloroplast; when needed, part of the designer butanol-production pathway(s) can operate in cytoplasm as well. For example, in one of the various embodiments, a significant part of the designer starch-to-butanol pathway activity from dihydroxyacetone phosphate to butanol (21-33) is designed to occur at the cytoplasm while the steps from starch to dihydroxyacetone phosphate (17-20) are in the chloroplast. In this example, the linkage between the chloroplast and cytoplasm parts of the designer pathway is accomplished by use of the triose phosphate-phosphate translocator, which facilitates translocation of dihydroxyacetone across the chloroplast membrane. By use of the triose phosphate-phosphate translocator, it also enables the glyceraldehyde-3-phospahte-branched designer butanol-production pathway to operate not only in chloroplast, but also in cytoplasm as well. The cytoplasm part of the designer butanol-production pathway can be constructed by use of designer butanol-production pathway genes (DNA constructs of FIG. 2A) with their chloroplast-targeting sequence omitted as shown in FIG. 2E.

Designer Oxyphotobacteria with Designer Butanol-Production Pathways in Cytoplasm

[0133] In prokaryotic photosynthetic organisms such as blue-green algae (oxyphotobacteria including cyanobacteria and oxychlorobacteria), which typically contain photosynthetic thylakoid membrane but no chloroplast structure, the Calvin cycle is located in the cytoplasm. In this special case, the entire designer butanol-production pathway(s) (FIG. 1) including (but not limited to) the glyceraldehyde-3-phosphate branched butanol-production pathway (01-12), the

3-phosphpglycerate-branched butanol-production pathway (03-12), the fructose-1,6-diphosphate-branched pathway (20-33), the fructose-6-phosphate-branched pathway (19-33), and the starch (or glycogen)-to-butanol pathways (17-33) are adjusted in design to operate with the Calvin cycle in the cytoplasm of a blue-green alga. The construction of the cytoplasm designer butanol-production pathways can be accomplished by use of designer butanol-production pathway genes (DNA construct of FIG. 2A) with their chloroplasttargeting sequence all omitted. When the chloroplast-targeting sequence is omitted in the designer DNA construct(s) as illustrated in FIG. 2E, the designer gene(s) is transcribed and translated into designer enzymes in the cytoplasm whereby conferring the designer butanol-production pathway(s). The designer gene(s) can be incorporated into the chromosomal and/or plasmid DNA in host blue-green algae (oxyphotobacteria including cyanobacteria and oxychlorobacteria) by using the techniques of gene transformation known to those skilled in the art. It is a preferred practice to integrate the designer genes through an integrative transformation into the chromosomal DNA that can usually provide better genetic stability for the designer genes. In oxyphotobacteria such as cyanobacteria, integrative transformation can be achieved through a process of homologous DNA double recombination into the host's chromosomal DNA using a designer DNA construct as illustrated in FIG. 2F, which typically, from the 5' upstream to the 3' downstream, consists of: recombination site 1, a designer butanol-production-pathway gene(s), and recombination site 2. This type of DNA constructs (FIG. 2F) can be delivered into oxyphotobacteria (blue-green algae) with a number of available genetic transformation techniques including electroporation, natural transformation, and/or conjugation. The transgenic designer organisms created from blue-green algae are also called designer blue-green algae (designer oxyphotobacteria including designer cyanobacteria and designer oxychlorobacteria).

[0134] Examples of designer oxyphotobacterial butanolproduction-pathway genes are shown in SEQ ID NO: 34-45 listed. Briefly, SEQ ID NO:34 presents example 34 for a designer oxyphotobacterial Butanol Dehydrogenase DNA construct (1709 bp) that includes a PCR FD primer (sequence 1-20), a 400-bp nitrite reductase (nirA) promoter from *Thermosynechococcus elongatus* BP-1 (21-420), an enzyme-encoding sequence (421-1569) selected and modified from a *Clostridium saccharoperbutylacetonicum* Butanol Dehydrogenase sequence (AB257439), a 120-bp rbcS terminator from *Thermosynechococcus elongatus* BP-1 (1570-1689), and a PCR RE primer (1690-1709) at the 3' end.

[0135] SEQ ID NO:35 presents example 35 for a designer oxyphotobacterial Butyraldehyde Dehydrogenase DNA construct (1967 bp) that includes a PCR FD primer (sequence 1-20), a 400-bp *Thermosynechococcus elongatus* BP-1 nitrite reductase nirA promoter (21-420), an enzyme-encoding sequence (421-1827) selected and modified from a *Clostridium saccharoperbutylacetonicum* Butyraldehyde Dehydrogenase sequence (AY251646), a 120-bp rbcS terminator from *Thermosynechococcus* (1828-1947), and a PCR RE primer (1948-1967).

[0136] SEQ ID NO:36 presents example 36 for a designer oxyphotobacterial Butyryl-CoA Dehydrogenase DNA construct (1602 bp) that includes a PCR FD primer (sequence 1-20), a 305-bp *Thermosynechococcus elongatus* BP-1 nitrate reductase promoter (21-325), a Butyryl-CoA Dehydrogenase encoding sequence (326-1422) selected/modified

from the sequences of a *Clostridium beijerinckii* Butyryl-CoA Dehydrogenase (AF494018), a 120-bp *Thermosynecho-coccus* rbcS terminator (1423-1582), and a PCR RE primer (1583-1602).

[0137] SEQ ID NO:37 presents example 37 for a designer oxyphotobacterial Crotonase DNA construct (1248 bp) that includes a PCR FD primer (sequence 1-20), a 305-bp *Thermosynechococcus elongatus* BP-1 nitrate reductase promoter (21-325), a Crotonase-encoding sequence (326-1108) selected/modified from the sequences of a *Clostridium beijerinckii* Crotonase (GenBank: AF494018), 120-bp *Thermosynechococcus elongatus* BP-1 rbcS terminator (1109-1228), and a PCR RE primer (1229-1248).

[0138] SEQ ID NO:38 presents example 38 for a designer oxyphotobacterial 3-Hydroxybutyryl-CoA Dehydrogenase DNA construct (1311 bp) that include of a PCR FD primer (sequence 1-20), a 305-bp nirA promoter from (21-325), a 3-Hydroxybutyryl-CoA Dehydrogenase-encoding sequence (326-1171) selected/modified from a *Clostridium beijerinckii* 3-Hydroxybutyryl-CoA Dehydrogenase sequence Crotonase (GenBank: AF494018), a 120-bp *Thermosynechococcus* rbcS terminator (1172-1291), and a PCR RE primer (1292-1311).

[0139] SEQ ID NO:39 presents example 39 for a designer oxyphotobacterial Thiolase DNA construct (1665 bp) that includes a PCR FD primer (sequence 1-20), a 305-bp *Thermosynechococcus* nirA promoter (21-325), a Thiolase-encoding sequence (326-1525) selected from a *Butyrivibrio fibrisolvens* Thiolase sequence (AB190764), a 120-bp *Thermosynechococcus* rbcS terminator (1526-1645), and a PCR RE primer (1646-1665).

[0140] SEQ ID NO:40 presents example 40 for a designer oxyphotobacterial Pyruvate-Ferredoxin Oxidoreductase DNA construct (4071 bp) that includes a PCR FD primer (sequence 1-20), a 305-bp nirA promoter from Thermosynechococcus elongatus BP-1 (21-325), a Pyruvate-Ferredoxin Oxidoreductase-encoding sequence (326-3931) selected/ modified from the sequences of a Mastigamoeba balamuthi Pyruvate-ferredoxin oxidoreductase (GenBank: AY101767), a 120-bp rbcS terminator from Thermosynechococcus elongatus BP-1 (3932-4051), and a PCR RE primer (4052-4071). [0141] SEQ ID NO:41 presents example 41 for a designer oxyphotobacterial Pyruvate Kinase DNA construct (1806 bp) that includes a PCR FD primer (sequence 1-20), a 305-bp nirA promoter from Thermosynechococcus (21-325), a pyruvate kinase-encoding sequence (326-1666) selected/modified from a *Thermoproteus tenax* pyruvate kinase (GenBank: AF065890), a 120-bp Thermosynechococcus rbcS terminator (1667-1786), and a PCR RE primer (1787-1806).

[0142] SEQ ID NO:42 presents example 42 for a designer oxyphotobacterial Enolase DNA construct (1696 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus* (21-251), a enolase-encoding sequence (252-1556) selected/modified from the sequences of a *Chlamydomonas* cytosolic enolase (GenBank: X66412, P31683), a 120-bp rbcS terminator from *Thermosynechococcus* (1557-1676), and a PCR RE primer (1677-1696).

[0143] SEQ ID NO:43 presents example 43 for a designer oxyphotobacterial Phosphoglycerate-Mutase DNA construct (2029 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP-1 (21-251), a phosphoglycerate-mutase encoding sequence (252-1889) selected/modified from the sequences

of a *Pelotomaculum thermopropionicum* SI phosphoglycerate mutase (GenBank: YP_001213270), a 120-bp *Thermosynechococcus* rbcS terminator (1890-2009), and a PCR RE primer (2010-2029).

[0144] SEQ ID NO:44 presents example 44 for a designer oxyphotobacterial Phosphoglycerate Kinase DNA construct (1687 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP-1 (21-251), a phosphoglycerate-kinase-encoding sequence (252-1433) selected from *Pelotomaculum thermo-propionicum* SI phosphoglycerate kinase (BAF60903), a 234-bp *Thermosynechococcus elongatus* BP-1 rbcS terminator (1434-1667), and a PCR RE primer (1668-1687).

[0145] SEQ ID NO:45 presents example 45 for a designer oxyphotobacterial Glyceraldehyde-3-Phosphate Dehydrogenase DNA construct (1514 bp) that includes a PCR FD primer (sequence 1-20), a 305-bp *Thermosynechococcus elongatus* BP-1 nirA promoter (21-325), an enzyme-encoding sequence (326-1260) selected and modified from *Blastochloris viridis* NAD-dependent Glyceraldehyde-3-phosphate dehydrogenase (CAC80993), a 234-bp rbcS terminator from *Thermo-synechococcus elongatus* BP-1 (1261-1494), and a PCR RE primer (1495-1514).

[0146] The designer oxyphotobacterial genes such as those shown in SEQ ID NO: 34-45 can be selected for use in full or in part, and/or in combination with various other designer butanol-production-pathway genes for construction of various designer oxyphotobacterial butanol-production pathways such as the pathways shown in FIG. 1. For example, the designer genes shown in SEQ ID NOS: 34-45 can be selected for construction of an oxyphotobacterial nirA promoter-controlled and glyceraldehyde-3-phosphate-branched butanolproduction pathway (01-12) that comprises of the following designer enzymes: NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 01, phosphoglycerate kinase 02, phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05, pyruvate-ferredoxin oxidoreductase (or pyruvate-NADP+ oxidoreductase) 06, thiolase 07, 3-hydroxybutyryl-CoA dehydrogenase 08, crotonase 09, butyryl-CoA dehydrogenase 10, butyraldehyde dehydrogenase 11, and butanol dehydrogenase 12. Use of these designer oxyphotobacterial butanol-production-pathway genes (SEQ ID NOS: 34-45) in a thermophilic and/or thermotolerant cyanobacterium may represent a thermophilic and/or thermotolerant butanol-producing oxyphotobacterium. Fox example, use of these designer genes (SEQ ID NOS: 34-45) in a thermophilic/ thermotolerant cyanobacterium such as Thermosynechococcus elongatus BP-1 may represent a designer thermophilic/ thermotolerant butanol-producing cyanobacterium such as a designer butanol-producing Thermosynechococcus.

Further Host Modifications to Help Ensure Biosafety

[0147] The present invention also provides biosafetyguarded photosynthetic biofuel (e.g., butanol and/or related higher alcohols) production methods based on cell-divisioncontrollable designer transgenic plants (such as algae and oxyphotobacteria) or plant cells. For example, the cell-division-controllable designer photosynthetic organisms (FIG. **3**) are created through use of a designer biosafety-control gene (s) (FIG. **2**G) in conjunction with the designer butanol-production-pathway gene(s) (FIGS. **2**A-**2**F) such that their cell division and mating function can be controllably stopped to provide better biosafety features. [0148] In one of the various embodiments, a fundamental feature is that a designer cell-division-controllable photosynthetic organism (such as an alga, plant cell, or oxyphotobacterium) contains two key functions (FIG. 3A): a designer biosafety mechanism(s) and a designer biofuel-production pathway(s). As shown in FIG. 3B, the designer biosafety feature(s) is conferred by a number of mechanisms including: (1) the inducible insertion of designer proton-channels into cytoplasm membrane to permanently disable any cell division and mating capability, (2) the selective application of designer cell-division-cycle regulatory protein or interference RNA (iRNA) to permanently inhibit the cell division cycle and preferably keep the cell at the G₁ phase or G₀ state, and (3) the innovative use of a high-CO₂-requiring host photosynthetic organism for expression of the designer biofuelproduction pathway(s). Examples of the designer biofuelproduction pathway(s) include the designer butanolproduction pathway(s), which work with the Calvin cycle to synthesize biofuel such as butanol directly from carbon dioxide (CO₂) and water (H₂O). The designer cell-division-control technology can help ensure biosafety in using the designer organisms for photosynthetic biofuel production. Accordingly, this embodiment provides, inter alia, biosafetyguarded methods for producing biofuel (e.g., butanol and/or related higher alcohols) based on a cell-division-controllable designer biofuel-producing alga, cyanobacterium, oxychlorobacterium, plant or plant cells.

[0149] In one of the various embodiments, a cell-divisioncontrollable designer butanol-producing eukaryotic alga or plant cell is created by introducing a designer proton-channel gene (FIG. **2**H) into a host alga or plant cell (FIG. **3**B). SEQ ID NO: 46 presents example 46 for a detailed DNA construct of a designer Nia1-promoter-controlled proton-channel gene (609 bp) that includes a PCR FD primer (sequence 1-20), a 262-bp nitrate reductase Nia1 promoter (21-282), a Melittin proton-channel encoding sequence (283-366), a 223-bp RbcS2 terminator (367-589), and a PCR RE primer (590-609).

[0150] The expression of the designer proton-channel gene (FIG. 2H) is controlled by an inducible promoter such as the nitrate reductase (Nia1) promoter, which can also be used to control the expression of a designer biofuel-production-pathway gene(s). Therefore, before the expression of the designer gene(s) is induced, the designer organism can grow photoautotrophically using CO₂ as the carbon source and H₂O as the source of electrons just like wild-type organism. When the designer organism culture is grown and ready for photobiological production of biofuels, the cell culture is then placed under a specific inducing condition (such as by adding nitrate into the culture medium if the nitrate reductase (Nia1) promoter is used as an inducible promoter) to induce the expression of both the designer proton-channel gene and the designer biofuel-production-pathway gene(s). The expression of the proton-channel gene is designed to occur through its transcription in the nucleus and its translation in the cytosol. Because of the specific molecular design, the expressed proton channels are automatically inserted into the cytoplasm membrane, but leave the photosynthetic thylakoid membrane intact. The insertion of the designer proton channels into cytoplasm membrane collapses the proton gradient across the cytoplasm membrane so that the cell division and mating function are permanently disabled. However, the photosynthetic thylakoid membrane inside the chloroplast is kept intact (functional) so that the designer biofuel-productionpathway enzymes expressed into the stroma region can work with the Calvin cycle for photobiological production of biofuels from CO_2 and H_2O . That is, when both the designer proton-channel gene and the designer biofuel-productionpathway gene(s) are turned on, the designer organism becomes a non-reproducible cell for dedicated photosynthetic production of biofuels. Because the cell division and mating function are permanently disabled (killed) at this stage, the designer-organism culture is no longer a living matter except its catalytic function for photochemical conversion of CO_2 and H_2O into a biofuel. It will no longer be able to mate or exchange any genetic materials with any other cells, even if it somehow comes in contact with a wild-type cell as it would be the case of an accidental release into the environments.

[0151] According to one of the various embodiments, the nitrate reductase (Nia1) promoter or nitrite reductase (nirA) promoter is a preferred inducible promoter for use to control the expression of the designer genes. In the presence of ammonium (but not nitrate) in culture medium, for example, a designer organism with Nia1-promoter-controlled designer proton-channel gene and biofuel-production-pathway gene (s) can grow photoauotrophically using CO_2 as the carbon source and H₂O as the source of electrons just like a wild-type organism. When the designer organism culture is grown and ready for photobiological production of biofuels, the expression of both the designer proton-channel gene and the designer biofuel-production-pathway gene(s) can then be induced by adding some nitrate fertilizer into the culture medium. Nitrate is widely present in soils and nearly all surface water on Earth. Therefore, even if a Nia1-promotercontrolled designer organism is accidentally released into the natural environment, it will soon die since the nitrate in the environment will trig the expression of a Nia1-promotercontrolled designer proton-channel gene which inserts proton-channels into the cytoplasm membrane thereby killing the cell. That is, a designer photosynthetic organism with Nia1-promoter-controlled proton-channel gene is programmed to die as soon as it sees nitrate in the environment. This characteristic of cell-division-controllable designer organisms with Nia1-promoter-controlled proton-channel gene provides an added biosafety feature.

[0152] The art in constructing proton-channel gene (FIG. **2**H) with a thylakoid-membrane targeting sequence has recently been disclosed [James W. Lee (2007). Designer proton-channel transgenic algae for photobiological hydrogen production, PCT International Publication Number: WO 2007/134340 A2]. In the present invention of creating a cell-division-controllable designer organism, the thylakoid-membrane-targeting sequence must be omitted in the proton-channel gene design. For example, the essential components of a Nia1-promoter-controlled designer proton-channel gene can simply be a Nia1 promoter linked with a proton-channel-encoding sequence (without any thylakoid-membrane-target-ing sequence) so that the proton channel will insert into the cytoplasm membrane but not into the photosynthetic thylakoid membrane.

[0153] According to one of the various embodiments, it is a preferred practice to use the same inducible promoter such as the Nia1 promoter to control the expression of both the designer proton-channel gene and the designer biofuel-production pathway genes. In this way, the designer biofuel-production pathway(s) can be inducibly expressed simulta-

neously with the expression of the designer proton-channel gene that terminates certain cellular functions including cell division and mating.

[0154] In one of the various embodiments, an inducible promoter that can be used in this designer biosafety embodiment is selected from the group consisting of the hydrogenase promoters [HydA1 (Hyd1) and HydA2, accession number: AJ308413, AF289201, AY090770], the Cyc6 gene promoter, the Cpx1 gene promoter, the heat-shock protein promoter HSP70A, the CabII-1 gene (accession number M24072) promoter, the Ca1 gene (accession number P20507) promoter, the Ca2 gene (accession number P24258) promoter, the nitrate reductase (Nia1) promoter, the nitrite-reductase-gene (nirA) promoters, the bidirectional-hydrogenase-gene hox promoters, the light- and heat-responsive groE promoters, the Rubisco-operon rbcL promoters, the metal (zinc)-inducible smt promoter, the iron-responsive idiA promoter, the redoxresponsive crhR promoter, the heat-shock-gene hsp16.6 promoter, the small heat-shock protein (Hsp) promoter, the CO₂responsive carbonic-anhydrase-gene promoters, the green/ red light responsive cpcB2A2 promoter, the UV-light responsive lexA, recA and ruvB promoters, the nitrate-reductase-gene (narB) promoters, and combinations thereof.

[0155] In another embodiment, a cell-division-controllable designer photosynthetic organism is created by use of a carbonic anhydrase deficient mutant or a high- CO_2 -requiring mutant as a host organism to create the designer biofuel-production organism. High- CO_2 -requiring mutants that can be selected for use in this invention include (but not limited to): *Chlamydomonas reinhardtii* carbonic-anhydrase-deficient mutant12-1C(CC-1219 ca1 mt-), *Chlamydomonas reinhardtii* cia3 mutant (*Plant Physiology* 2003, 132:2267-2275), the high- CO_2 -requiring mutant M3 of *Synechococcus* sp. Strain PCC 7942, or the carboxysome-deficient cells of *Synechocystis* sp. PCC 6803 (*Plant biol* (Stuttg) 2005, 7:342-347) that lacks the CO_2 -concentrating mechanism can grow photoautotrophically only under elevated CO_2 concentration level such as 0.2-3% CO_2 .

[0156] Under atmospheric CO_2 concentration level (380 ppm), the carbonic anhydrase deficient or high-CO2-requiring mutants commonly cannot survive. Therefore, the key concept here is that a high-CO₂-requiring designer biofuelproduction organism that lacks the CO₂ concentrating mechanism will be grown and used for photobiological production of biofuels always under an elevated CO2 concentration level $(0.2-5\% \text{ CO}_2)$ in a sealed bioreactor with CO₂ feeding. Such a designer transgenic organism cannot survive when it is exposed to an atmospheric CO₂ concentration level (380 ppm=0.038% CO₂) because its CO₂-concetrating mechanism (CCM) for effective photosynthetic CO₂ fixation has been impaired by the mutation. Even if such a designer organism is accidentally released into the natural environment, its cell will soon not be able to divide or mate, but die quickly of carbon starvation since it cannot effectively perform photosynthetic CO₂ fixation at the atmospheric CO₂ concentration (380 ppm). Therefore, use of such a high-CO₂-requiring mutant as a host organism for the genetic transformation of the designer biofuel-production-pathway gene(s) represents another way in creating the envisioned cell-division-controllable designer organisms for biosafety-guarded photobiological production of biofuels from CO₂ and H₂O. No designer proton-channel gene is required here.

[0157] In another embodiment, a cell-division-controllable designer organism (FIG. **3**B) is created by use of a designer

cell-division-cycle regulatory gene as a biosafety-control gene (FIG. 2G) that can control the expression of the celldivision-cycle (cdc) genes in the host organism so that it can inducibly turn off its reproductive functions such as permanently shutting off the cell division and mating capability upon specific induction of the designer gene.

[0158] Biologically, it is the expression of the natural cdc genes that controls the cell growth and cell division cycle in cyanobacteria, algae, and higher plant cells. The most basic function of the cell cycle is to duplicate accurately the vast amount of DNA in the chromosomes during the S phase (S for synthesis) and then segregate the copies precisely into two genetically identical daughter cells during the M phase (M for mitosis). Mitosis begins typically with chromosome condensation: the duplicated DNA strands, packaged into elongated chromosomes, condense into the much-more compact chromosomes required for their segregation. The nuclear envelope then breaks down, and the replicated chromosomes, each consisting of a pair of sister chromatids, become attached to the microtubules of the mitotic spindle. As mitosis proceeds, the cell pauses briefly in a state called metaphase, when the chromosomes are aligned at the equator of the mitotic spindle, poised for segregation. The sudden segregation of sister chromatids marks the beginning of anaphase during which the chromosomes move to opposite poles of the spindle, where they decondense and reform intact nuclei. The cell is then pinched into two by cytoplasmic division (cytokinesis) and the cell division is then complete. Note, most cells require much more time to grow and double their mass of proteins and organelles than they require to replicate their DNA (the S phase) and divide (the M phase). Therefore, there are two gap phases: a G1 phase between M phase and S phase, and a G2 phase between S phase and mitosis. As a result, the eukaryotic cell cycle is traditionally divided into four sequential phases: G₁, S, G₂, and M. Physiologically, the two gap phases also provide time for the cell to monitor the internal and external environment to ensure that conditions are suitable and preparation are complete before the cell commits itself to the major upheavals of S phase and mitosis. The G₁ phase is especially important in this aspect. Its length can vary greatly depending on external conditions and extracellular signals from other cells. If extracellular conditions are unfavorable, for example, cells delay progress through G₁ and may even enter a specialized resting state known as G₀ (G zero), in which they remain for days, weeks, or even for years before resuming proliferation. Indeed, many cells remain permanently in G_0 state until they die.

[0159] In one of the various embodiments, a designer gene (s) that encodes a designer cdc-regulatory protein or a specific cdc-iRNA is used to inducibly inhibit the expression of certain cdc gene(s) to stop cell division and disable the mating capability when the designer gene(s) is trigged by a specific inducing condition. When the cell-division-controllable designer culture is grown and ready for photosynthetic production of biofuels, for example, it is a preferred practice to induce the expression of a specific designer cdc-iRNA gene (s) along with induction of the designer biofuel-productionpathway gene(s) so that the cells will permanently halt at the G_1 phase or G_0 state. In this way, the grown designer-organism cells become perfect catalysts for photosynthetic production of biofuels from CO2 and H2O while their functions of cell division and mating are permanently shut off at the G₁ phase or G₀ state to help ensure biosafety.

[0160] Use of the biosafety embodiments with various designer biofuel-production-pathways genes listed in SEQ ID NOS: 1-45 (and 58-165) can create various biosafetyguarded photobiological biofuel producers (FIGS. 3A, 3B, and 3C). Note, SEQ ID NOS: 46 and 1-12 (examples 1-12) represent an example for a cell-division-controllable designer eukaryotic organism such as a cell-division-controllable designer alga (e.g., Chlamydomonas) that contains a designer Nia1-promoter-controlled proton-channel gene (SEQ ID NO: 46) and a set of designer Nia1-promoter-controlled butanolproduction-pathway genes (SEQ ID NOS: 1-12). Because the designer proton-channel gene and the designer biofuel-production-pathway gene(s) are all controlled by the same Nia1promoter sequences, they can be simultaneously expressed upon induction by adding nitrate fertilizer into the culture medium to provide the biosafety-guarded photosynthetic biofuel-producing capability as illustrated in FIG. 3B. Use of the designer Nia1-promoter-controlled butanol-productionpathway genes (SEQ ID NOS: 1-12) in a high CO2-requiring host photosynthetic organism, such as Chlamydomonas reinhardtii carbonic-anhydrase-deficient mutant12-1C(CC-1219 ca1 mt-) or Chlamydomonas reinhardtii cia3 mutant, represents another example in creating a designer cell-divisioncontrollable photosynthetic organism to help ensure biosafety.

[0161] This designer biosafety feature may be useful to the production of other biofuels such as biooils, biohydrogen, ethanol, and intermediate products as well. For example, this biosafety embodiment in combination with a set of designer ethanol-production-pathway genes such as those shown SEQ ID NOS: 47-53 can represent a cell-division-controllable ethanol producer (FIG. 3C). Briefly, SEQ ID NO: 47 presents example 47 for a detailed DNA construct (1360 base pairs (bp)) of a nirA-promoter-controlled designer NAD-dependent Glyceraldehyde-3-Phosphate-Dehydrogenase gene including: a PCR FD primer (sequence 1-20), a 88-bp nirA promoter (21-108) selected from the Synechococcus sp. (freshwater cyanobacterium) nitrite-reductase-gene promoter sequence, an enzyme-encoding sequence (109-1032) selected and modified from a Cyanidium caldarium cytosolic NAD-dependent glyceraldehyde-3-phosphate-dehydrogenase sequence (GenBank accession number: CAC85917), a 308-bp Synechococcus rbcS terminator (1033-1340), and a PCR RE primer (1341-1360) at the 3' end.

[0162] SEQ ID NO: 48 presents example 48 for a designer nirA-promoter-controlled Phosphoglycerate Kinase DNA construct (1621 bp) that includes a PCR FD primer (sequence 1-20), a 88-bp *Synechococcus* sp. strain PCC 7942 nitrite-reductase nirA promoter (21-108), a phosphoglycerate-kinase-encoding sequence (109-1293) selected from a *Geobacillus kaustophilus* phosphoglycerate-kinase sequence (GenBank: BAD77342), a 308-bp *Synechococcus* rbcS terminator (1294-1601), and a PCR RE primer (1602-1621).

[0163] SEQ ID NO: 49 presents example 49 for a designer nirA-promoter-controlled Phosphoglycerate-Mutase DNA construct (1990 bp) that includes a PCR FD primer (sequence 1-20), a 88-bp *Synechococcus* sp. strain PCC 7942 nitrite-reductase nirA promoter (21-108), a 9-bp Xho I NdeI site (109-117), a phosphoglycerate-mutase encoding sequence (118-1653) selected from the sequences of a *Caldicellulosir-uptor saccharolyticus* DSM 8903 phosphoglycerate mutase (GenBank: ABP67536), a 9-bp XbaI site (1654-1662), a 308-bp *Synechococcus* sp. strain PCC 7942 rbcS terminator (1663-1970), and a PCR RE primer (1971-1990).

[0164] SEQ ID NO: 50 presents example 50 for a designer nirA-promoter-controlled Enolase DNA construct (1765 bp) that includes a PCR FD primer (sequence 1-20), a 88-bp *Synechococcus* sp. strain PCC 7942 nitrite reductase nirA promoter (21-108), a 9-bp Xho I NdeI site (109-117), an enolase-encoding sequence (118-1407) selected from the sequence of a *Cyanothece* sp. CCY0110 enolase (GenBank: ZP_01727912), a 21-bp Lumio-tag-encoding sequence (1408-1428), a 9-bp XbaI site (1429-1437) containing a stop codon, a 308-bp *Synechococcus* rbcS terminator (1438-1745), and a PCR RE primer (1746-1765) at the 3' end.

[0165] SEQ ID NO: 51 presents example 51 for a designer nirA-promoter-controlled Pyruvate Kinase DNA construct (1888 bp) that includes a PCR FD primer (sequence 1-20), a 88-bp Synechococcus nitrite reductase nirA promoter (21-108), a 9-bp Xho I NdeI site (109-117), a Pyruvate-Kinaseencoding sequence (118-1530) selected from a Selenomonas ruminantium Pyruvate Kinase sequence (GenBank: AB037182), a 21-bp Lumio-tag sequence (1531-1551), a 9-bp XbaI site (1552-1560), a 308-bp Synechococcus rbcS terminator (1561-1868), and a PCR RE primer (1869-1888). [0166] SEQ ID NO: 52 presents example 52 for a designer nirA-promoter-controlled Pyruvate Decarboxylase DNA construct (2188 bp) that includes a PCR FD primer (sequence 1-20), a 88-bp Synechococcus nitrite reductase nirA promoter (21-108), a 9-bp Xho I NdeI site (109-117), a Pyruvate-Decarboxylase-encoding sequence (118-1830) selected from the sequences of a Pichia stipitis pyruvate-decarboxylase sequence (GenBank: XM_001387668), a 21-bp Lumio-tag sequence (1831-1851), a 9-bp XbaI site (1852-1860), a 308bp Synechococcus rbcS terminator (1861-2168), and a PCR RE primer (2169-2188) at the 3' end.

[0167] SEQ ID NO: 53 presents example 53 for a nirApromoter-controlled designer NAD(P)H-dependent Alcohol Dehydrogenase DNA construct (1510 bp) that includes a PCR FD primer (sequence 1-20), a 88-bp *Synechococcus* nitrite-reductase nirA promoter (21-108), a NAD(P)H dependent Alcohol-Dehydrogenase-encoding sequence (109-1161) selected/modified (its mitochondrial signal peptide sequence removed) from the sequence of a *Kluyveromyces lactis* alcohol dehydrogenase (ADH3) gene (GenBank: X62766), a 21-bp Lumio-tag sequence (1162-1182), a 308bp *Synechococcus* rbcS terminator (1183-1490), and a PCR RE primer (1491-1510) at the 3' end.

[0168] Note, SEQ ID NOS: 47-53 (DNA-construct examples 47-53) represent a set of designer nirA-promotercontrolled ethanol-production-pathway genes that can be used in oxyphotobacteria such as *Synechococcus* sp. strain PCC 7942. Use of this set of designer ethanol-productionpathway genes in a high-CO₂-requiring cyanobacterium such as the *Synechococcus* sp. Strain PCC 7942 mutant M3 represents another example of cell-division-controllable designer cyanobacterium for biosafety-guarded photosynthetic production of biofuels from CO₂ and H₂O.

More on Designer Calvin-Cycle-Channeled Production of Butanol and Related Higher Alcohols

[0169] The present invention further discloses designer Calvin-cycle-channeled and photosynthetic-NADPH (reduced nicotinamide adenine dinucleotide phosphate)-enhanced pathways, associated designer DNA constructs (designer genes) and designer transgenic photosynthetic organisms for photobiological production of butanol and related higher alcohols from carbon dioxide and water. In this context throughout this specification as mentioned before, a "higher alcohol" or "related higher alcohol" refers to an alcohol that comprises at least four carbon atoms, including both straight and branched higher alcohols such as 1-butanol and 2-methyl-1-butanol. The Calvin-cycle-channeled and photosynthetic-NADPH-enhanced pathways are constructed with designer enzymes expressed through use of designer genes in host photosynthetic organisms such as algae and oxyphotobacteria (including cyanobacteria and oxychlorobacteria) organisms for photobiological production of butanol and related higher alcohols. The said butanol and related higher alcohols are selected from the group consisting of: 1-butanol, 2-methyl-1-butanol, isobutanol, 3-methyl-1-butanol, 1-hexanol, 1-octanol, 1-pentanol, 1-heptanol, 3-methyl-1-pentanol, 4-methyl-1-hexanol, 5-methyl-1-heptanol, 4-methyl-1-pentanol, 5-methyl-1-hexanol, and 6-methyl-1-heptanol. The designer photosynthetic organisms such as designer transgenic algae and oxyphotobacteria (including cyanobacteria and oxychlorobacteria) comprise designer Calvin-cyclechanneled and photosynthetic NADPH-enhanced pathway gene(s) and biosafety-guarding technology for enhanced photobiological production of butanol and related higher alcohols from carbon dioxide and water.

[0170] Photosynthetic water splitting and its associated proton gradient-coupled electron transport process generates chemical energy intermediate in the form of adenosine triphosphate (ATP) and reducing power in the form of reduced nicotinamide adenine dinucleotide phosphate (NADPH). However, certain butanol-related metabolic pathway enzymes such as the NADH-dependent butanol dehydroge-(GenBank accession numbers: YP_148778, nase NP_561774, AAG23613, ZP_05082669, ADO12118, ADC48983) can use only reduced nicotinamide adenine dinucleotide (NADH) but not NADPH. Therefore, to achieve a true coupling of a designer pathway with the Calvin cycle for photosynthetic production of butanol and related higher alcohols, it is a preferred practice to use an effective NADPH/ NADH conversion mechanism and/or NADPH-using enzyme(s) (such as NADPH-dependent enzymes) in construction of a compatible designer pathway(s) to couple with the photosynthesis/Calvin-cycle process in accordance with the present invention.

[0171] According to one of the various embodiments, a number of various designer Calvin-cycle-channeled pathways can be created by use of an NADPH/NADH conversion mechanism in combination with certain amino-acids-metabolic pathways for production of butanol and higher alcohols from carbon dioxide and water. The Calvin-cycle-channeled and photosynthetic-NADPH-enhanced pathways are constructed typically with designer enzymes that are selectively expressed through use of designer genes in a host photosynthetic organism such as a host alga or oxyphotobacterium for production of butanol and higher alcohols. A list of exemplary enzymes that can be selected for use in construction of the Calvin-cycle-channeled and photosynthetic-NADPH-enhanced pathways are presented in Table 1. As shown in FIGS. 4-10, the net results of the designer Calvin-cycle-channeled and photosynthetic NADPH-enhanced pathways in working with the Calvin cycle are production of butanol and related higher alcohols from carbon dioxide (CO_2) and water (H_2O) using photosynthetically generated ATP (Adenosine triphosphate) and NADPH (reduced nicotinamide adenine dinucleotide phosphate). A significant feature is the innovative utilization of an NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34 and a nicotinamide adenine dinucleotide (NAD)-dependent glyceraldehyde-3-phosphate dehydrogenase 35 to serve as a NADPH/NADH conversion mechanism that can convert certain amount of photosynthetically generated NADPH to NADH which can then be used by NADHrequiring pathway enzymes such as an NADH-dependent alcohol dehydrogenase 43 (examples of its encoding gene with GenBank accession numbers are: BAB59540, CAA89136, NP_148480) for production of butanol and higher alcohols.

[0172] More specifically, an NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34 (e.g., GenBank accession numbers: ADC37857, ADC87332, YP_003471459, ZP_04395517, YP_003287699, ZP_07004478, ZP_04399616) catalyzes the following reaction that uses NADPH in reducing 1,3-Diphosphoglycerate (1,3-DiPGA) to 3-Phosphoglyaldehyde (3-PGAld) and inorganic phosphate (Pi):

1,3-DiPGA+NADPH+H⁺→3-PGAld+NADP⁺+Pi [3]

Meanwhile, an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35 (e.g., GenBank: ADM41489, YP_003095198, ADC36961, ZP_07003925, ACQ61431, YP_002285269, ADN80469, ACI60574) catalyzes the oxidation of 3-PGAld by oxidized nicotinamide adenine dinucleotide (NAD⁺) back to 1,3-DiPGA:

3-PGAld+NAD⁺+Pi \rightarrow 1,3-DiPGA+NADH+H⁺ [4]

The net result of the enzymatic reactions [3] and [4] is the conversion of photosynthetically generated NADPH to NADH, which various NADH-requiring designer pathway enzymes such as NADH-dependent alcohol dehydrogenase 43 can use in producing butanol and related higher alcohols. When there is too much NADH, this NADPH/NADH conversion system can run also reversely to balance the supply of NADH and NADPH. Therefore, it is a preferred practice to innovatively utilize this NADPH/NADH conversion system under control of a designer switchable promoter such as nirA (or Nia1 for eukaryotic system) promoter when/if needed to achieve robust production of butanol and related higher alcohols. Various designer Calvin-cycle-channeled pathways in combination of a NADPH/NADH conversion mechanism with certain amino-acids-metabolism-related pathways for photobiological production of butanol and related higher alcohols are further described hereinbelow.

production of butanol and related higher alcohols.		
Enzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
03:	Oceanithermus profundus DSM 14977;	ADR35708;
Phosphoglycerate mutase	'Nostoc azollae' 0708;	ADI65627, YP_003722750;
(phosphoglyceromutase)	Thermotoga lettingae TMO;	YP_001470593, ABV33529;
	<i>Syntrophothermus lipocalidus</i> DSM 12680;	ADI02216, YP_003702781;
	Pelotomaculum thermopropionicum SI;	YP_001212148;
	Fervidobacterium nodosum Rt17-B1;	YP_001409891;
	Caldicellulosiruptor bescii DSM 6725;	YP_002573254, YP_002573195;
	Fervidobacterium nodosum Rt17-B1;	ABS60234;
	Thermotoga petrophila RKU-1;	ABQ47079, YP_001244998;
	Deferribacter desulfuricans SSM1;	YP_003496402, BAI80646;
	Cyanobium sp. PCC 7001;	ZP_05046421;
	Cyanothece sp. PCC 8802;	YP_003138980, YP_003138979;
	Chlamydomonas reinhardtii cytoplasm;	JGI Chlre2 protein ID 161689,
	Aspergillus fumigatus; Coccidioides	GenBank: AF268078;
	immitis; Leishmania braziliensis;	XM_747847; XM_749597;
	Ajellomyces capsulatus;	XM_001248115; XM_00156926
	Monocercomonoides sp.; Aspergillus	XM_001539892; DQ665859;
	clavatus; Arabidopsis thaliana; Zea	XM_001270940; NM_117020;
	mays	M80912
04:	Syntrophothermus lipocalidus DSM	ADI02602, YP_003703167;
Enolase	12680; 'Nostoc azollae' 0708;	ADI63801;
	Thermotoga petrophila RKU-1;	ABQ46079;
	Spirochaeta thermophila DSM 6192;	YP_003875216, ADN02943;
	Cyanothece sp. PCC 7822;	YP_003886899, ADN13624;
	Hydrogenobacter thermophilus TK-6;	YP_003432637, BAI69436;
	Thermosynechococcus elongatus BP-1, Prochlorococcus marinus str. MIT	BAC08209;
	9301; Synechococcus sp. WH 5701;	ABO16851; ZP_01083626;
	Trichodesmium erythraeum IMS101;	ABG51970;
	Anabaena variabilis ATCC 29413;	ABA23124;
	Nostoc sp. PCC 7120;	BAB75237;
	Chlamydomonas reinhardtii cytoplasm;	GenBank: X66412, P31683;
	Arabidopsis thaliana; Leishmania	AK222035; DQ221745;
	Mexicana; Lodderomyces elongisporus;	XM_001528071; XM_00161187
	Babesia bovis; Sclerotinia sclerotiorum;	XM_001594215; XM_00148361
	Pichia guilliermondii;	AB221057; EF122486, U09450;
	Spirotrichonympha leidyi; Oryza sativa;	DQ845796; AB088633; U82438;
	Trimastix pyriformis; Leuconostoc	
	1, 0	D64113; U13799; AY307449;
	mesenteroides; Davidiella tassiana; Aspergillus oryzae;	U17973

TABLE 1

05: Pyruvate kinase 06a: Pyruvate-NADP ⁺ oxidoreductase 06b: Pyruvate-ferredoxin oxidoreductase	Schizosaccharomyces pombe; Brassica napus; Zea mays Syntrophothermus lipocalidus DSM 12680; Cyanothece sp. PCC 8802; Thermotoga lettingae TMO; Caldicellulosiruptor bescii DSM 6725; Geobacillus kaustophilus HTA426; Thermosynechococcus elongatus BP-1; Thermosipho melanesiensis BI429; Thermotoga petrophila RKU-1; Caldicellulosiruptor saccharolyticus DSM 8903; Cyanothece sp. PCC 7425; Acaryochloris marina MBIC11017; Cyanothece sp. PCC 7822; Cyanothece sp. PCC 7823; Cyanothece sp. PCC 7823; Cyanothece sp. PCC 7823; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm; Arabidopsis thaliana; Saccharomyces	ADI02459, YP_003703024; YP_002372431; YP_001471580, ABV34516; YP_002573139; YP_148872; NP_681306, BAC08068; YP_001306168, ABR30783; YP_001306168, ABR30783; YP_0013044312, ABQ46736; ABP67416, YP_001180607; ACL43749, YP_00180607; ACL43749, YP_00180807; YP_001514814; YP_001514814; YP_003138017; YP_003890281;
05: Pyruvate kinase 06a: Pyruvate-NADP* oxidoreductase 06b: Pyruvate-ferredoxin oxidoreductase	Syntrophothermus lipocalidus DSM 12680; Cyanothece sp. PCC 8802; Thermotoga lettingae TMO; Caldicellulosiruptor bescii DSM 6725; Geobacillus kaustophilus HTA426; Thermosynechococcus elongatus BP-1; Thermosipho melanesiensis BI429; Thermotoga petrophila RKU-1; Caldicellulosiruptor saccharolyticus DSM 8903; Cyanothece sp. PCC 7425; Acaryochloris marina MBIC11017; Cyanothece sp. PCC 8801; Microcystis aeruginosa NIES-843; Cyanothece sp. PCC 7822; cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	YP_002372431; YP_001471580, ABV34516; YP_002573139; YP_148872; NP_681306, BAC08068; YP_001306168, ABR30783; YP_001244312, ABQ46736; ABP67416, YP_001180607; ACL43749, YP_002482578; YP_001514814; YP_003138017; YP_001655408;
Pyruvate kinase 06a: Pyruvate-NADP ⁺ oxidoreductase 06b: Pyruvate-ferredoxin oxidoreductase	12680; Cyanothece sp. PCC 8802; Thermotoga lettingae TMO; Caldicellulosiruptor bescii DSM 6725; Geobacillus kaustophilus HTA426; Thermosynechococcus elongatus BP-1; Thermosipho melanesiensis BI429; Thermotoga petrophila RKU-1; Caldicellulosiruptor saccharolyticus DSM 8903; Cyanothece sp. PCC 7425; Acaryochloris marina MBIC11017; Cyanothece sp. PCC 8801; Microcystis aeruginosa NIES-843; Cyanothece sp. PCC 7822; cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	YP_002372431; YP_001471580, ABV34516; YP_002573139; YP_148872; NP_681306, BAC08068; YP_001306168, ABR30783; YP_001244312, ABQ46736; ABP67416, YP_001180607; ACL43749, YP_002482578; YP_001514814; YP_003138017; YP_001655408;
D6a: Pyruvate-NADP ⁺ oxidoreductase ob6b: Pyruvate-ferredoxin oxidoreductase	Caldicellulosiruptor bescii DSM 6725; Geobacillus kaustophilus HTA426; Thermosynechococcus elongatus BP-1; Thermosynechococcus elongatus BP-1; Thermotoga petrophila RKU-1; Caldicellulosiruptor saccharolyticus DSM 8903; Cyanothece sp. PCC 7425; Acaryochloris marina MBIC11017; Cyanothece sp. PCC 8801; Microcystis aeruginosa NIES-843; Cyanothece sp. PCC 7822; cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	YP_002573139; YP_148872; NP_681306, BAC08068; YP_001306168, ABR30783; YP_001244312, ABQ46736; ABP67416, YP_001180607; ACL43749, YP_002482578; YP_001514814; YP_003138017; YP_001655408;
D6a: Pyruvate-NADP* xxidoreductase D6b: Pyruvate-ferredoxin xxidoreductase	Geobacillus kaustophilus HTA426; Thermosynechococcus elongatus BP-1; Thermosynechococcus elongatus BP-1; Thermotoga petrophila RKU-1; Caldicellulosiruptor saccharolyticus DSM 8903; Cyanothece sp. PCC 7425; Acaryochloris marina MBIC11017; Cyanothece sp. PCC 8801; Microcystis aeruginosa NIES-843; Cyanothece sp. PCC 7822; cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	YP_148872; NP_681306, BAC08068; YP_001306168, ABR30783; YP_001244312, ABQ46736; ABP67416, YP_001180607; ACL43749, YP_002482578; YP_001514814; YP_003138017; YP_001655408;
)6a: ² yruvate-NADP ⁺ xidoreductase)6b: yruvate-ferredoxin xidoreductase	Thermosynechococcus elongatus BP-1; Thermosipho melanesiensis BI429; Thermosipho melanesiensis BI429; Thermotoga petrophila RKU-1; Caldicellulosiruptor saccharolyticus DSM 8903; Cyanothece sp. PCC 7425; Acaryochloris marina MBIC11017; Cyanothece sp. PCC 8801; Microcystis aeruginosa NIES-843; Cyanothece sp. PCC 7822; cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	NP_681306, BAC08068; YP_001306168, ABR30783; YP_001244312, ABQ46736; ABP67416, YP_001180607; ACL43749, YP_002482578; YP_001514814; YP_003138017; YP_001655408;
)6a: yruvate-NADP+ yxidoreductase obi: yruvate-ferredoxin xidoreductase	Thermosipho melanesiensis BI429; Thermotoga petrophila RKU-1; Caldicellulosiruptor saccharolyticus DSM 8903; Cyanothece sp. PCC 7425; Acaryochloris marina MBIC11017; Cyanothece sp. PCC 8801; Microcystis aeruginosa NIES-843; Cyanothece sp. PCC 7822; cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	YP_001306168, ABR30783; YP_001244312, ABQ46736; ABP67416, YP_001180607; ACL43749, YP_002482578; YP_001514814; YP_003138017; YP_001655408;
)6a: 'yruvate-NADP* xidoreductase)6b: yruvate-ferredoxin xidoreductase	Caldicellulosiruptor saccharolyticus DSM 8903; Cyanothece sp. PCC 7425; Acaryochloris marina MBIC11017; Cyanothece sp. PCC 8801; Microcystis aeruginosa NIES-843; Cyanothece sp. PCC 7822; cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	ABP67416, YP_001180607; ACL43749, YP_002482578; YP_001514814; YP_003138017; YP_001655408;
i6a: 'yruvate-NADP* 'xidoreductase i6b: yruvate-ferredoxin xidoreductase	DSM 8903; Cyanothece sp. PCC 7425; Acaryochloris marina MBIC11017; Cyanothece sp. PCC 8801; Microcystis aeruginosa NIES-843; Cyanothece sp. PCC 7822; cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	ACL43749, YP_002482578; YP_001514814; YP_003138017; YP_001655408;
fa: yruvate-NADP ⁺ xidoreductase (6b: yruvate-ferredoxin xidoreductase	Acaryochloris marina MBIC11017; Cyanothece sp. PCC 8801; Microcystis aeruginosa NIES-843; Cyanothece sp. PCC 7822; cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	YP_001514814; YP_003138017; YP_001655408;
6a: /yruvate-NADP+ xidoreductase 6b: yruvate-ferredoxin xidoreductase	Microcystis aeruginosa NIES-843; Cyanothece sp. PCC 7822; cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	YP_001655408;
6a: yruvate-NADP* xidoreductase 6b: yruvate-ferredoxin xidoreductase	Cyanothece sp. PCC 7822; cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	,
6a: yruvate-NADP ⁺ xidoreductase 6b: yruvate-ferredoxin xidoreductase	cyanobacterium UCYN-A; Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	1P_003890281;
6a: yruvate-NADP ⁺ xidoreductase 6b: yruvate-ferredoxin xidoreductase	Arthrospira maxima CS-328; Synechococcus sp. PCC 7335; Chlamydomonas reinhardtii cytoplasm;	YP_003422225;
6a: yruvate-NADP* xidoreductase 6b: yruvate-ferredoxin xidoreductase	Chlamydomonas reinhardtii cytoplasm;	ZP_03273505;
6a: yruvate-NADP* xidoreductase 6b: yruvate-ferredoxin xidoreductase		ZP_05035056;
/6a: /yruvate-NADP* xidoreductase /6b: /yruvate-ferredoxin xidoreductase		JGI Chlre3 protein ID 138105;
f6a: 'yruvate-NADP+ xidoreductase 'yruvate-ferredoxin xidoreductase	cerevisiae: Babesia bovis: Sclerotinia	GenBank: AK229638; AY949876, AY949890, AY949888;
6a: yruvate-NADP+ xidoreductase 6b: yruvate-ferredoxin xidoreductase	sclerotiorum; Trichomonas vaginalis;	XM_001612087; XM_001594710;
6a: 'yruvate-NADP* xidoreductase 6b: yruvate-ferredoxin xidoreductase	Pichia guilliermondii; Pichia stipitis;	XM_001329865; XM_001487289
6a: yruvate-NADP ⁺ xidoreductase 6b: yruvate-ferredoxin xidoreductase	Lodderomyces elongisporus; Coccidioides immitis; Trimastix	XM_001384591; XM_001528210;
6a: yruvate-NADP ⁺ xidoreductase 6b: yruvate-ferredoxin xidoreductase	vriformis; Glvcine max (soybean)	XM_001240868; DQ845797; L08632
6b: yruvate-ferredoxin xidoreductase	Peranema trichophorum; Euglena gracilis	GenBank: EF114757; AB021127, AJ278425
Yruvate-ferredoxin vidoreductase	Mastigamoeba balamuthi; Desulfovibrio	GenBank: AY101767; Y09702;
xidoreductase	africanus; Entamoeba histolytica;	U30149; XM_001582310,
	Trichomonas vaginalis;	XM_001313670, XM_001321286,
i	Cryptosporidium parvum;	XM_001307087,
i.	Cryptosporidium baileyi; Giardia lamblia; Entamoeba histolytica;	XM_001311860, XM_001314776, XM_001307250; EF030517;
	Hydrogenobacter thermophilus;	EF030516; XM_764947;
	Clostridium pasteurianum;	XM_651927; AB042412; Y17727
	Butyrivibrio fibrisolvens; butyrate-	GenBank: AB190764; DQ987697;
	producing <i>bacterium</i> L2-50; Thermoanaerobacterium	Z92974;
	thermosaccharolyticum;	
	Clostridium beijerinckii; Butyrivibrio	GenBank: AF494018; AB190764;
	fibrisolvens; Ajellomyces capsulatus;	XM_001537366; XM_741533; XM_001274776; XM_001262361;
	Aspergillus fumigatus; Aspergillus clavatus; Neosartorya fischeri;	DQ987697; BT001208; Z92974;
	Butyrate-producing <i>bacterium</i> L2-50;	<i>DQ:01031</i> , D1001200, D/D/11,
	Arabidopsis thaliana;	
	Thermoanaerobacterium	
	thermosaccharolyticum; Clostridium beijerinckii; Butvrivibrio	GenBank: AF494018; AB190764;
	fibrisolvens; Butyrate-producing	DQ987697; Z92974
	bacterium L2-50;	
	Thermoanaerobacterium	
	thermosaccharolyticum; Clostridium beijerinckii; Butyrivibrio	GenBank: AF494018; AB190764;
	fibrisolvens; Butyrate-producing	DQ987697; Z92974
	bacterium L2-50;	-
	Thermoanaerobacterium thermosaccharolyticum;	
	thermosaccharolyticum; Clostridium	GenBank: AY251646
	saccharoperbutylacetonicum	
ehydrogenase		
	Geobacillus kaustophilus HTA426;	YP_148778, BAD77210;
	Clostridium perfringens str. 13; Carboxydothermus hydrogenoformans;	NP_561774, BAB80564; AAG23613;
	Pseudovibrio sp. JE062;	ZP_05082669, EEA96294;
	Clostridium carboxidivorans P7;	ADO12118;
	Bacillus pseudofirmus OF4;	ADC48983, YP_003425875; NP_693981, BAC15015;

nzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
Enzyme/callout number	Source (Organism)	Chation
	Slackia exigua ATCC 700122;	ZP_06159969, EEZ61452;
	Fusobacterium ulcerans ATCC 49185;	ZP_05633940;
	Listeria monocytogenes FSL J1-175; Chlorobium chlorochromatii CaD3;	ZP_05388801; ABB28961;
	Clostridium perfringens D str. JGS1721;	ZP_02952811;
	Clostridium perfringens NCTC	ZP_02641897;
	8239; Clostridium perfringens CPE str.	ZP_02638128;
	F4969; Clostridium perfringens B str.	ZP_02634798;
	ATCC 3626;	EDT24774;
	Clostridium botulinum NCTC 2916;	ZP_02614964, ZP_02614746;
2b:	Nostoc sp. PCC 7120; Clostridium perfringens str. 13;	NP_488606, BAB76265; NP_562172, BAB80962;
JADPH-dependent Butanol	Clostridium perfringens sti. 15, Clostridium saccharobutylicum;	AAA83520;
ehydrogenase	Subdoligranulum variabile DSM 15176;	EFB77036;
	Butyrivibrio crossotus DSM 2876;	EFF67629, ZP_05792927;
	Oribacterium sp. oral taxon 078 str.	ZP_06597730, EFE92592;
	F0262; Clostridium sp. M62/1;	EFE12215, ZP_06346636;
	Clostridium hathewayi DSM 13479;	EFC98086, ZP_06115415;
	Subdoligranulum variabile DSM 15176;	ZP_05979561; ZP_05615704_EEU05840;
	Faecalibacterium prausnitzii A2-165; Blautia hansenii DSM 20583;	ZP_05615704, EEU95840; ZP_05853889, EEX22072;
	Roseburia intestinalis L1-82,	ZP_03853889, EEX22072; ZP_04745071, EEU99657;
	Bacillus cereus Rock3-28;	ZP_04236939, EEL31374;
	Eubacterium rectale ATCC 33656;	YP_002938098, ACR75964;
	Clostridium sp. HGF2;	EFR36834;
	Atopobium rimae ATCC 49626;	ZP_03568088;
	Clostridium perfringens D str. JGS1721;	ZP_02952006;
	Clostridium perfringens NCTC 8239; Clostridium butyricum 5521;	ZP_02642725; ZP_02950013, ZP_02950012;
	Clostridium carboxidivorans P7;	ZP_06856327;
	Clostridium botulinum E3 str. Alaska	YP_001922606, YP_001922335,
	E43; Clostridium novyi NT;	ACD52989; YP_878939;
	Clostridium botulinum B str. Eklund	YP_001887401;
	17B; Thermococcus sp. AM4;	EEB74113;
	Fusobacterium sp. D11;	EFD81183;
	Anaerococcus vaginalis ATCC 51170; Clostri dium parfingana CPE atr	ZP_05473100, EEU12061; EDT27639;
	Clostridium perfringens CPE str. F4969; Clostridium perfringens B str.	EDT24389;
	ATCC 3626;	LB121009,
3:	Chlamydomonas reinhardtii; Phaseolus	GenBank: AF026422, AF026421,
tarch synthase	vulgaris; Oryza sativa; Arabidopsis	DQ019314, AF433156;
	thaliana; Colocasia esculenta;	AB293998; D16202, AB115917,
	Amaranthus cruentus; Parachlorella	AY299404; AF121673,
	kessleri; Triticum aestivum; Sorghum bicolor; Astragalus membranaceus;	AK226881; NM_101044; AY225862, AY142712;
	Perilla frutescens; Zea mays; Ipomoea	DQ178026; AB232549; Y16340;
	batatas	AF168786; AF097922;
		AF210699; AF019297; AF068834
4:	Arabidopsis thaliana; Zea mays;	GenBank: NM_127730,
ilucose-1-phosphate	Chlamydia trachomatis; Solanum	NM_124205, NM_121927,
denylyltransferase	tuberosum (potato); Shigella flexneri;	AY059862; EF694839,
	Lycopersicon esculentum	EF694838; AF087165; P55242; NP_709206; T07674
5:	Oryza sativa plastid; Ajellomyces	NP_/09206; 107674 GenBank: AC105932, AF455812;
). hosphoglucomutase	capsulatus; Pichia stipitis;	XM_001536436; XM_001383281;
FinoBracomanoo	Lodderomyces elongisporus; Aspergillus	XM_001527445; XM_749345;
	fumigatus; Arabidopsis thaliana;	NM_124561, NM_180508,
	Populus tomentosa; Oryza sativa; Zea	AY128901; AY479974;
	mays	AF455812; U89342, U89341
	Staphylococcus carnosus subsp.	YP_002633806, CAL27621;
6:	carnosus TM300;	
	TT 7 7 7 11	GenBank: J04202;
Iexose-phosphate-isomerase 7:	Hordeum vulgare aleuron cells;	
6: Iexose-phosphate-isomerase 7: Alpha-amylase;	Trichomonas vaginalis; Phanerochaete	XM_001319100; EF143986;
Iexose-phosphate-isomerase 7:	Trichomonas vaginalis; Phanerochaete chrysosporium; Chlamydomonas	AY324649; NM_129551;
lexose-phosphate-isomerase 7:	Trichomonas vaginalis; Phanerochaete chrysosporium; Chlamydomonas reinhardtii; Arabidopsis thaliana;	
lexose-phosphate-isomerase 7:	Trichomonas vaginalis; Phanerochaete chrysosporium; Chlamydomonas reinhardtii; Arabidopsis thaliana; Dictyoglomus thermophilum heat-stable	AY324649; NM_129551;
lexose-phosphate-isomerase 7:	Trichomonas vaginalis; Phanerochaete chrysosporium; Chlamydomonas reinhardtii; Arabidopsis thaliana;	AY324649; NM_129551;

lists examples of enzymes for construction of designer Calvin-cycle-linked pathways for production of butanol and related higher alcohols.

Enzyme/callout number	Source (Organism)	Number, JGI Protein ID or Citation
Starch phosphorylase;	Citrus hybrid cultivar root; Solanum	GenBank: AY098895; P53535;
staten phosphorylase,	tuberosum chloroplast; Arabidopsis	NM_113857, NM_114564;
	thaliana; Triticum aestivum; Ipomoea	AF275551; M64362
	batatas;	
18:	Chlamydomonas reinhardtii;	JGI Chlre3 protein ID 135202;
Glucose-phosphate (glucose-	Saccharomyces cerevisiae, Pichia	GenBank: M21696;
6-phosphate) isomerase	stipitis; Ajellomyces capsulatus; Spinacia oleracea cytosol; Oryza sativa	XM_001385873; XM_001537043; T09154;
	cytoplasm; Arabidopsis thaliana; Zea	P42862; NM_123638,
	mays	NM_118595; U17225
19:	Chlamydomonas reinhardtii;	JGI Chlre2 protein ID 159495;
Phosphofructose kinase	Arabidopsis thaliana; Ajellomyces	GenBank: NM_001037043,
	capsulatus; Yarrowia lipolytica; Pichia	NM_179694, NM_119066,
	stipitis; Dictyostelium discoideum;	NM_125551; XM_001537193;
	Tetrahymena thermophila;	AY142710; XM_001382359,
	Trypanosoma brucei; Plasmodium	XM_001383014; XM_639070;
	falciparum; Spinacia oleracea;	XM_001017610; XM_838827; XM_001347929; DQ437575;
20:	Chlamydomonas reinhardtii chloroplast;	GenBank: X69969; AF308587;
Fructose-diphosphate	Fragaria x ananassa cytoplasm; Homo	NM_005165; XM_001609195;
aldolase	sapiens; Babesia bovis; Trichomonas	XM_001312327, XM_001312338;
	vaginalis; Pichia stipitis; Arabidopsis	XM_001387466; NM_120057,
	thaliana	NM_001036644
21:	Arabidopsis thaliana; Chlamydomonas	GenBank: NM_127687,
Triose phosphate isomerase	reinhardtii; Sclerotinia sclerotiorum; Chlorolla promovidenza: Dichia	AF247559; AY742323;
	Chlorella pyrenoidosa; Pichia guilliermondii; Euglena intermedia;	XM_001587391; AB240149; XM_001485684; DQ459379;
	Euglena longa; Spinacia oleracea;	AY742325; L36387; AY438596;
	Solanum chacoense; Hordeum vulgare; Oryza sativa	U83414; EF575877;
34:	Staphylococcus aureus 04-02981;	ADC37857;
NADPH-dependent	Staphylococcus lugdunensis;	ADC87332;
Glyceraldehyde-3-phosphate	Staphylococcus lugdunensis HKU09;	YP_003471459;
dehydrogenase	Vibrio cholerae BX 330286;	ZP_04395517;
	Vibrio sp. Ex25; Pseudomonas savastanoi pv.;	YP_003287699; ZP_07004478, EFI00105;
	Vibrio cholerae B33;	ZP_04399616
	Grimontia hollisae CIP 101886;	ZP_06052988, EEY71738;
	Vibrio mimicus MB-451,	ZP_06041160;
	Vibrio coralliilyticus ATCC BAA-450;	ZP_05886203;
	Vibrio cholerae MJ-1236;	YP_002876243;
	Zea mays cytosolic NADP dependent;	NP_001105589;
	Apium graveolens;	AAF08296;
	Vibrio cholerae B33;	EE017521;
	Vibrio cholerae TMA 21; Vibrio cholerae bv. albensis VL426;	EEO13209; EEO01829;
	Vibrio crioterae 60. albensis VL426, Vibrio orientalis CIP 102891;	ZP_05943395;
	Vibrio cholerae MJ-1236;	ACQ62447;
	Vibrio cholerae CT 5369-93;	ZP_06049761;
	Vibrio sp. RC586;	ZP_06079970;
	Vibrio furnissii CIP 102972;	ZP_05878983;
2.5	Vibrio metschnikovii CIP 69.14;	ZP_05883187;
35: NAD donondont	Edwardsiella tarda FL6-60;	ADM41489; VB 002005108.
NAD-dependent Glyceraldehyde-3-phosphate	Flavobacteriaceae bacterium 3519-10; Staphylococcus aureus 04-02981;	YP_003095198; ADC36961;
dehydrogenase	Naphylococcus aureus 04-02981; Pseudomonas savastanoi pv. savastanoi NCPPB 3335;	ADC30901; ZP_07003925;
	Vibrio cholerae MJ-1236;	ACQ61431, YP_002878104;
	Streptococcus pyogenes NZ131;	YP_002285269;
	Helicobacter pylori 908;	ADN80469;
	Streptococcus pyogenes NZ131;	ACI60574;
	Staphylococcus lugdunensis HKU09;	ADC88142;
	Vibrio sp. Ex25;	ACY51070;
	Stenotrophomonas chelatiphaga; Provideranthomonas dekdonomias	ADK67090;
	Pseudoxanthomonas dokdonensis; Stenotrophomonas maltophilia;	ADK67075; ADK67085, ACH90636;
	Vibrio cholerae B33; Photobacterium	ZP_04401333;
	damselae subsp. damselae CIP 102761;	ZP_06155532;
		,
	Vibrio sp. RC586;	ZP_06080908;

production of butanol and related higher alcohols. GenBank Accession		
Enzyme/callout number	Source (Organism)	Number, JGI Protein ID or Citation
	Vibrio furnissii CIP 102972;	EEX42220;
	Acidithiobacillus caldus ATCC 51756;	ZP_05292346;
	Nostoc sp. PCC 7120;	CAC41000;
	Vibrio cholerae BX 330286;	EEO22474;
	Vibrio cholerae TMA 21;	EEO13042;
	Nostoc sp. PCC 7120; Pinus sylvestris;	CAC41000;
	Cheilanthes yavapensis;	CAA04942; ACO58643, ACO58642;
	Cheilanthes wootonii;	ACO58624, ACO58623;
	Astrolepis laevis;	CBH41484, CBH41483;
36:	Hydrogenobacter thermophilus TK-6;	YP_003433013, ADO45737,
R)-Citramalate synthase	Geobacter bemidjiensis Bem;	BAI69812;
EC 2.3.1.182)	Geobacter sulfurreducens KN400;	ACH38284;
	Methanobrevibacter ruminantium M1;	ADI84633;
	Leptospira biflexa serovar Patoc strain	CP001719;
	'Patoc 1 (Paris)'; <i>Leptospira biflexa</i> serovar Monteralerio; <i>Leptospira</i>	ABK13757; ABK13756;
	interrogans serovar Australis;	ABK13756;
	Leptospira interrogans serovar	ABK13753;
	Pomona; Leptospira interrogans	ABK13754;
	serovar Autumnalis; Leptospira	ABK13752;
	interrogans serovar Pyrogenes;	ABK13751;
	Leptospira interrogans serovar	ABK13750;
	Canicola, Leptospira interrogans	ABK13749;
	serovar Lai; Acetohalobium arabaticum	ADL11763,
	DSM 5501; Leadbetterella byssophila DSM 17132; Bacteroides xylanisolvens	YP_003998693; CBK66631;
	XB1A; Mucilaginibacter paludis DSM	EFQ72644;
	18603; Prevotella ruminicola 23;	ADE82919;
	Flavobacterium johnsoniae UW101;	ABQ04337;
	Victivallis vadensis ATCC BAA-548;	ZP_06244204,
	Prevotella copri DSM 18205;	EFA99692;
	Alistipes shahii WAL 8301;	EFB36404, ZP_06251228;
	Methylobacter tundripaludum SV96;	CBK64953;
	Methanosarcina mazei Go1;	ZP_07654184;
37:	Eubacterium eligens ATCC 27750	NP_632695; YP_002930810, YP_002930809;
R)-2-Methylmalate	Methanocaldococcus jannaschii;	P81291;
lehydratase (large and small	Sebaldella termitidis ATCC 33386;	ACZ06998;
ubunits)	Eubacterium eligens ATCC 27750;	ACR72362, ACR72361,
EC 4.2.1.35)		ACR72363, YP_002930808;
38:	Thermotoga petrophila RKU-1;	ABQ46641, ABQ46640;
-Isopropylmalate	Cyanothece sp. PCC 7822;	YP_003886427, YP_003889452;
lehydratase (large + small	Syntrophothermus lipocalidus DSM	ADI02900, ADI02899,
subunits) EC 4.2.1.33)	12680; Caldicalluloginuton gaochanolutions	YP_003703465, ADI01294;
EC 4.2.1.55)	Caldicellulosiruptor saccharolyticus DSM 8903;	ABP66933, ABP66934;
	Pelotomaculum thermopropionicum SI,	YP_001211082, YP_001211083
	Caldicellulosiruptor bescii DSM 6725;	YP_002573950, YP_002573949
	Caldicellulosiruptor saccharolyticus	YP_001180124, YP_001180125
	DSM 8903;	leuC, ECK0074, JW0071;
	E. coli;	leuD, ECK0073, JW0070;
	Spirochaeta thermophila DSM 6192;	YP_003875294, YP_003873373;
	Pelotomaculum thermopropionicum SI;	YP_001213069, YP_001213068;
	Hydrogenobacter thermophilus TK-6; Deferribacter desulfuricans SSM1;	YP_003433547, YP_003432351; YP_003495505, YP_003495504;
	Anoxybacillus flavithermus WK1;	ACJ32977, ACJ32978;
	Thermosynechococcus elongatus BP-1;	BAC08461, BAC08786;
	Geobacillus kaustophilus HTA426;	BAD76941, BAD76940;
	Synechocystis sp. PCC 6803;	BAA18738, BAA18298;
	Chlamydomonas reinhardtii;	XP_001702135, XP_001696402
9:	Thermotoga petrophila RKU-1;	ABQ46392, YP_001243968;
3-Isopropylmalate	Cyanothece sp. PCC 7822;	YP_003888480, ADN15205;
lehydrogenase	Thermosynechococcus elongatus BP-1;	BAC09152, NP_682390;
	Syntrophothermus lipocalidus DSM	ADI02898, YP_003703463;
(EC 1.1.1.85)		
EC 1.1.1.85)	12680; Caldicellulosiruntor hescii DSM 6725;	4D078220
EC 1.1.1.85)	Caldicellulosiruptor bescii DSM 6725;	ADQ78220; YP_002573948;
EC 1.1.1.85)	· · · · · · · · · · · · · · · · · · ·	ADQ78220; YP_002573948; YP_003998692;

me/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
	DSM 8903; Thermus thermophilus;	AAA16706, YP_001180126;
	Pelotomaculum thermopropionicum SI;	YP_001211084;
	Geobacillus kaustophilus HTA426;	YP_148510, BAD76942;
	Hydrogenobacter thermophilus TK-6;	YP_003433176;
	Spirochaeta thermophila DSM 6192;	YP_003873639; VB_003405017;
	Deferribacter desulfuricans SSM1; Anoxybacillus flavithermus WK1;	YP_003495917; YP_002314961;
	Volvox carteri f. nagariensis;	XP_002955062, EFJ43816;
	Chlamydomonas reinhardtii;	XP_001701074, XP_001701073
	Ostreococcus tauri;	XP_003083133;
propulmalate cumthage	Thermotoga petrophila RKU-1;	ABQ46395, YP_001243971;
propylmalate synthase 2.3.3.13)	<i>Cyanothece</i> sp. PCC 7822; <i>Cyanothece</i> sp. PCC 8802;	YP_003890122, ADN16847; ACU99797;
2.5.5.15)	Nostoc punctiforme PCC 73102;	ACC82459;
	Pelotomaculum thermopropionicum SI;	YP_001211081;
	Hydrogenobacter thermophilus TK-6;	YP_003432474, BAI69273;
	E. coli; Caldicellulosiruptor	NP_414616, AAC73185;
	saccharolyticus DSM 8903; Suntrophotharmus lineaglidus DSM	ABP66753, YP_001179944;
	Syntrophothermus lipocalidus DSM 12680; Geobacillus kaustophilus	YP_003703466, ADI02901; YP_148511, BAD76943;
	HTA426; Caldicellulosiruptor bescii	YP_002572404;
	DSM 6725; Anoxybacillus flavithermus	YP_002314960, ACJ32975;
	WK1; Deferribacter desulfuricans	YP_003496874, BAI81118;
	SSM1; Thermosynechococcus elongatus	NP_682187, BAC08949;
	BP-1; Spirochaeta thermophila DSM	ADN03009, YP_003875282;
	6192; Thermotoga lettingae TMO;	YP_001469896, ABV32832;
	Volvox carteri f. nagariensis;	XP_002945733,
	Micromonas sp. RCC299; Micromonas pusilla CCMP1545;	EFJ52728;
	Micromonas pusilla CCMP1545; Chlamvdomonas reinhardtii:	ACO69978, XP_002508720; XP_003063010_EEH52949;
	Chlamydomonas reinhardtii;	XP_003063010, EEH52949; XP_001696603, EDP08580;
	Geobacillus kaustophilus HTA426;	YP_148509, YP_148508;
ylmalate isomerase	Anabaena variabilis ATCC 29413;	YP_324467, YP_324466;
all subunits	Synechocystis sp. PCC 6803;	NP_442926, NP_441618;
1.33)	Anoxybacillus flavithermus WK1;	YP_002314962, YP_002314963
	Thermosynechococcus elongatus BP-1;	NP_682024, NP_681699;
	Spirochaeta thermophila DSM 6192;	YP_003873372;
	Salmonella enterica subsp. enterica	CBG23133, CBG23132;
	serovar <i>Typhimurium</i> str. D23580;	ZP_05702396;
	Staphylococcus aureus A5937; Francisella philomiragia subsp.	ZP_05702396; EET20545;
	philomiragia ATCC 25015;	AAA53236;
	Neisseria lactamica; Francisella	ABK88972;
	novicida U112; Staphylococcus aureus	EEV86047;
	A5937; Staphylococcus aureus subsp.	ZP_05607839;
	aureus 68-397; Fusobacterium sp.	EEO38992;
	2_1_31; Francisella novicida GA99-	EDN35429;
	3549; marine <i>bacterium</i> HP15;	ADP98363, ADP98362;
	Bacillus licheniformis ATCC 14580;	YP_092517, YP_092516;
	Rhodobacter sphaeroides 2.4.1; Bordatalla patrii DSM 12804;	YP_353947, YP_353945; YP_001631647_YP_001631646
	Bordetella petrii DSM 12804; Agrobacterium vitis S4;	YP_001631647, YP_001631646 YP_002551071, YP_002551071
	Lactococcus lactis;	AAS49166;
cid decarboxylase	Lactococcus lactis subsp. lactis KF147;	ADA65057, YP_003353820;
1.72, etc)	Lactococcus lactis subsp. Lactis;	,,
	Kluyveromyces marxianus;	CAG34226;
	Kluyveromyces lactis;	AAA35267;
	Mycobacterium avium 104;	CAA59953;
	Mycobacterium ulcerans Agy99;	A0QBE6;
	Mycobacterium bovis;	A0PL16;
	Mycobacterium leprae; Proteus mirabilis HI4320;	Q7U140; 09CBD6:
	Proteus mirabilis HI4320; Staphylococcus aureus 04-02981;	Q9CBD6; YP_002150004;
	Acetobacter pasteurianus;	ADC36400;
	Saccharomyces cerevisiae;	AAM21208;
	-	
	Zymomonas mobilis subsp. mobilis CP4;	CAA39398;

TABLE 1-continued

lists example	s of enzymes for construction of designer Calvin- production of butanol and related higher alc	
		GenBank Accession Number, JGI Protein ID or
Enzyme/callout number	Source (Organism)	Citation
	Mycobacterium smegmatis str. MC2	O53865;
	155; Mycobacterium bovis BCG str.	A0R480;
	Pasteur 1173P2;	A1KGY5;
3:	Thermoplasma volcanium GSS1;	BAB59540
Icohol dehydrogenase	Gluconacetobacter hansenii ATCC	ZP_06834544;
NAD dependent) EC 1.1.1.1);	23769; Saccharomyces cerevisiae; Aeropyrum pernix K1;	CAA89136;
se 1.1.1.1),	Rhodobacterales bacterium HTCC2083;	NP_148480; ZP_05073895;
	Bradyrhizobium japonicum USDA 110;	NP_769420;
	Syntrophothermus lipocalidus DSM	ADI01021;
	12680; Fervidobacterium nodosum	YP_001411173;
	Rt17-B1; Desulfotalea psychrophila	YP_065604;
	LSv54; Acetobacter pasteurianus IFO	BAI03878;
	3283-03; Gluconobacter oxydans 621H;	YP_192500;
	Aeromonas hydrophila subsp.	ABK38651;
	hydrophila ATCC 7966; Acetobacter	BAI00830;
	pasteurianus IFO 3283-01; Streptomyces hygroscopicus ATCC	EFL29096;
	53653;	
4:	Pelotomaculum thermopropionicum SI;	YP_001211038, BAF58669;
dcohol dehydrogenase	Fusobacterium sp. 7_1;	ZP_04573952, EEO43462;
NADPH dependent) (EC	Pichia pastoris GS115;	XP_002494014, XP_002490014;
.1.1.2);	Pichia pastoris GS115;	CAY71835, XP_002492217,
	Escherichia coli str. K-12 substr.	CAY67733;
	MG1655;	yqhD, NP_417484, AAC76047;
	Clostridium hathewayi DSM 13479;	EFC99049;
	Clostridium butyricum 5521; Fusobacterium ulcerans ATCC 49185;	ZP_02948287 ZP_05632371;
	Fusobacterium sp. D11; Desulfovibrio	ZP_05440863;
	desulfuricans subsp. desulfuricans str.	YP_389756;
	G20; Clostridium novyi NT;	YP_878957;
	Clostridium tetani E88;	NP_782735;
	Aureobasidium pullulans;	ADG56699;
	Scheffersomyces stipitis CBS 6054,	ABN66271, XP_001384300;
	Thermotoga lettingae TMO;	YP_001471424;
	Thermotoga petrophila RKU-1;	YP_001244106;
	<i>Coprinopsis cinerea</i> okayama7#130;	XP_001834460;
	Saccharomyces cerevisiae EC1118; Saccharomyces cerevisiae JAY291;	CAY82157; EEU07174;
5:	Thermaerobacter subterraneus DSM	EFR61439;
hosphoenolpyruvate	13965; Cyanothece sp. PCC 7822;	YP_003887888;
arboxylase	Thermus sp.; Rhodothermus marinus;	BAA07723; CAA67760;
EC 4.1.1.31)	Thermosynechococcus elongatus BP-1;	NP_682702, BAC09464;
	Leadbetterella byssophila DSM 17132;	YP_003998059, ADQ17706;
	Riemerella anatipestifer DSM 15868;	ADQ81501, YP_004045007;
	Mucilaginibacter paludis DSM 18603;	EFQ77722;
	Truepera radiovictrix DSM 17093;	YP_003706036; VP_003011507_ADN74523;
	Ferrimonas balearica DSM 9799; Meiothermus silvanus DSM 9946;	YP_003911597, ADN74523; YP_003685046;
	Nocardiopsis dassonvillei subsp.	YP_003681843;
	dassonvillei DSM 43111; E. coli,	ZP_07594313, ZP_07565817;
	Meiothermus ruber DSM 1279;	ADD27759;
	Olsenella uli DSM 7084;	YP_003801346, ADK68466;
	Ktedonobacter racemifer DSM 44963;	ZP_06967036, EFH90147;
	Rhodopirellula baltica SH 1;	NP_866412, CAD78193;
	Oceanithermus profundus DSM 14977;	ADR36285;
	marine bacterium HP15;	ADP96559;
	Marivirga tractuosa DSM 4126; Mucilaginibacter paludis DSM 18603;	ADR23252; 7P 07746438;
	Streptomyces coelicolor A3(2);	ZP_07746438; NP_627344;
	Delftia acidovorans SPH-1;	ABX34873;
	Actinobacillus pleuropneumoniae	ZP_07544559;
	serovar 13 str. N273; Prochlorococcus	ABO18389;
	marinus str. MIT 9301;	·
	Prochlorococcus marinus str. NATL1A	ABM76577;
	Prochlorococcus marinus str. MIT	ABM72969;
	9515; Clostridium cellulovorans 743B;	YP_003842669, ADL50905;
	Neisseria meningitidis Z2491;	CAM07667;
	Deinococcus geothermalis DSM 11300;	ABF44963; ZP_06399624;
	Micromonospora sp. L5;	

	production of butanol and related higher al	GenBank Accession Number, JGI Protein ID or	
Enzyme/callout number	Source (Organism)	Citation	
	Chlorobium phaeobacteroides DSM	ABL64615;	
	266; Arthrobacter sp. FB24;	YP_830113;	
	Rhodomicrobium vannielii ATCC	YP_004010507;	
	17100; Gordonia bronchialis DSM	YP_003273502;	
	43247; <i>Thermus aquaticus</i> Y51MC23; <i>Burkholderia ambifaria</i> IOP40-10;	ZP_03496338; ZP_02894226;	
:	Thermotoga lettingae TMO;	YP_001470126;	
partate aminotransferase	Synechococcus elongatus PCC 6301;	YP_172275;	
Ĉ 2.6.1.1)	Synechococcus elongatus PCC 7942;	YP_401562;	
	Thermosipho melanesiensis BI429;	YP_001306480;	
	Thermotoga petrophila RKU-1;	YP_001244588;	
	Thermus thermophilus;	BAA07487; VB 002215404;	
	Anoxybacillus flavithermus WK1; Bacillus sp.; E. coli,	YP_002315494; AAA22250; aspC: BAB34434;	
	Pelotomaculum thermopropionicum SI;	YP_001211971;	
	Phormidium lapideum;	BAB86290;	
	Fervidobacterium nodosum Rt17-B1;	YP_001410686, YP_001409589;	
	Geobacillus kaustophilus HTA426;	YP_148025, YP_147632,	
	Thermosynechococcus elongatus BP-1;	YP_146225; NP_683147;	
	Anoxybacillus flavithermus WK1;	ACJ34747;	
	Geobacillus kaustophilus HTA426; Spirochaeta thermophila DSM 6192;	BAD77213, BAD76064; YP_003874653;	
	Caldicellulosiruptor bescii DSM 6725;	YP_002572445;	
	Caldicellulosiruptor saccharolyticus	YP_001179582;	
	DSM 8903;		
	Arabidopsis thaliana;	AAA79371;	
	Glycine max; Lupinus angustifolius;	AAA33942; CAA42430;	
	Chlamydomonas reinhardtii;	XP_001696609;	
	Micromonas pusilla CCMP1545;	XP_003060871;	
7 <u>-</u>	Thermotoga lettingae TMO;	YP_001470361, ABV33297;	
spartokinase (EC = $2.7.2.4$)	Cyanothece sp. PCC 8802;	YP_003136939;	
	Thermotoga petrophila RKU-1	YP_001244864, YP_001243977;	
	Hydrogenobacter thermophilus TK-6; Anoxybacillus flavithermus WK1;	YP_003432105, BAI68904; ACJ35001;	
	Bacillus sp.;	AAA22251;	
	Spirochaeta thermophila DSM 6192;	YP_003873788, ADN01515;	
	Anoxybacillus flavithermus WK1;	ACJ34043, YP_002316986;	
	Geobacillus kaustophilus HTA426;	BAD77480, YP_149048;	
	Syntrophothermus lipocalidus DSM	ADI02230, YP_003702795;	
	12680; E. coli; Thermosynechococcus elongatus BP-1;	ZP_07594328, ZP_07565832; NP_682623, BAC09385;	
	Fervidobacterium nodosum Rt17-B1;	ABS59942, YP_001410786;	
	Spirochaeta thermophila DSM 6192;	YP_003873302, ADN01029;	
	Pelotomaculum thermopropionicum SI;	YP_001212149, YP_001211837;	
	Caldicellulosiruptor saccharolyticus	ABP66605;	
	DSM 8903; Caldicellulosiruptor bescii	YP_002573821;	
	DSM 6725; Thermosipho melanesiensis	YP_001307097, ABR31712;	
	BI429; Thermotoga lettingae TMO; Arabidopsis thaliana;	YP_001470985, ABV33921; CAA67376;	
	Chlamydomonas reinhardtii;	XP_001698576, EDP08069,	
	· ····································	XP_001695256;	
:	Thermotoga lettingae TMO;	YP_001470981, ABV33917;	
spartate-semialdehyde	Trichodesmium erythraeum IMS101;	ABG50031;	
hydrogenase	<i>Prochlorococcus marinus</i> str. MIT 9303;	ABM76828; ABQ47283, YP_001244859;	
	9303; Thermotoga petrophila RKU-1;	ABQ47283, 1P_001244839; ABP67176, YP_001180367;	
	Caldicellulosiruptor saccharolyticus	ADI01804, YP_003702369;	
	DSM 8903; Syntrophothermus	YP_001460230, YP_001464895;	
	lipocalidus DSM 12680; E. coli;	YP_001409594, ABS59937;	
	Fervidobacterium nodosum Rt17-B1	YP_002573009;	
	Caldicellulosiruptor bescii DSM 6725;	YP_001307092, ABR31707;	
	Thermosipho melanesiensis BI429; Spirochaota thermophila DSM 6192;	YP_003875128, ADN02855; YP_001211836, PAE50467;	
	Spirochaeta thermophila DSM 6192; Pelotomaculum thermopropionicum SI;	YP_001211836, BAF59467; YP_003432252, BAI69051;	
	Hydrogenobacter thermophilus TK-6;	YP_002316029, ACJ34044;	
	Anoxybacillus flavithermus WK1;	YP_147128, BAD75560;	
	Geobacillus kaustophilus HTA426;	YP_003496635, BAI80879;	
	Deferribacter desulfuricans SSM1;	NP_680860, BAC07622;	
	Thermosynechococcus elongatus BP-1;	AAG23574, AAG23573;	

33

Reasons - / 11 1	Saura (Orașeline)	GenBank Accession Number, JGI Protein ID or
Enzyme/callout number	Source (Organism)	Citation
	Carboxydothermus hydrogenoformans;	XP_001695059, EDP02211;
	Chlamydomonas reinhardtii; Polytomella parva;	ABH11018; ACU30050;
	Glycine max;	ACG41594;
	Zea mays;	ABR26065;
	Oryza sativa Indica Group;	
19:	Syntrophothermus lipocalidus DSM	ADI02231, YP_003702796;
Iomoserine dehydrogenase	12680; <i>Cyanothece</i> sp. PCC 7822;	YP_003887242;
	Caldicellulosiruptor bescii DSM 6725; Caldicellulosiruptor saccharolyticus	YP_002573819; ABP66607, YP_001179798;
	DSM 8903; E. coli;	EFJ98002;
	Spirochaeta thermophila DSM 6192;	YP_003873441, ADN01168;
	Pelotomaculum thermopropionicum SI;	YP_001212151, BAF59782;
	Hydrogenobacter thermophilus TK-6;	YP_003431981, BAI68780;
	Anoxybacillus flavithermus WK1;	YP_002316756, ACJ34771;
	Geobacillus kaustophilus HTA426; Deferribacter desulfuricans SSM1;	YP_148817, BAD77249; YP_003496401_BA180645;
	Thermosynechococcus elongatus BP-1;	YP_003496401, BAI80645; NP_681068, BAC07830;
	Glycine max;	ABG78600, AAZ98830;
	Chlamydomonas reinhardtii;	XP_001699712, EDP07408;
	Micromonas sp. RCC299;	ACO69662, XP_002508404;
0:	Thermotoga petrophila RKU-1;	YP_001243979, ABQ46403;
Iomoserine kinase EC 2.7.1.39)	<i>Cyanothece</i> sp. PCC 7822; <i>Caldicellulosiruptor bescii</i> DSM 6725;	YP_003886645; YP_002573820;
EC 2.7.1.39)	Caldicellulosiruptor saccharolyticus	ABP66606, YP_001179797;
	DSM 8903; E. coli;	AP_000667, BAB96580;
	Anoxybacillus flavithermus WK1;	YP_002316754, ACJ34769;
	Geobacillus kaustophilus HTA426;	YP_148815, BAD77247;
	Thermosynechococcus elongatus BP-1;	NP_682555, BAC09317;
	Pelotomaculum thermopropionicum SI;	YP_001212150, BAF59781;
	Hydrogenobacter thermophilus TK-6; Chlamydomonas reinhardtii;	YP_003433124, BAI69923; XP_001701899, EDP06874;
	Prototheca wickerhamii;	XP_001701899, EDP06874; ABC24954;
	Arabidopsis thaliana;	NP_179318, AAD33097;
	Glycine max;	ACU26535;
	Zea mays;	ACG46592;
1:	Thermotoga petrophila RKU-1;	YP_001243978, ABQ46402;
Threonine synthase	Cyanothece sp. PCC 7425; Thormoginho melanogiamia BI420;	YP_002485009; VP_001206558_APP21172;
EC 4.2.99.2)	Thermosipho melanesiensis BI429; Syntrophothermus lipocalidus DSM	YP_001306558, ABR31173; ADI02519, YP_003703084;
	12680; E. coli;	AP_000668, NP_414545;
	Pelotomaculum thermopropionicum SI;	YP_001213220;
	Anoxybacillus flavithermus WK1;	YP_002316755, ACJ34770;
	Caldicellulosiruptor bescii DSM 6725;	YP_002572552;
	Caldicellulosiruptor saccharolyticus	YP_001180015, ABP66824; XP_003433070, XP_003433010
	DSM 8903; Hydrogenobacter thermophilus TK-6; Geobacillus	YP_003433070, YP_003433019 BAI69869, BAI69818;
	kaustophilus HTA426;	YP_148816, YP_147614;
	Thermosynechococcus elongatus BP-1;	NP_682017, NP_681772,
	Spirochaeta thermophila DSM 6192;	BAC08534, BAC08779;
	Deferribacter desulfuricans SSM1;	YP_003873303, ADN01030;
2	Geobacillus kaustophilus HTA426;	YP_003495358, BAI79602;
2: 'hreonine ammonia-lyase	Geobacillus kaustophilus HTA426; Prochlorococcus marinus str. MIT	BAD76058, BAD75876, YP_147626, YP_147444;
EC 4.3.1.19)	Prochlorococcus marinus str. MIT 9202; Synechococcus sp. PCC 7335;	ZP_05137562; ZP_05035047;
	Thermotoga petrophila RKU-1;	ABQ46585, YP_001244161;
	Pelotomaculum thermopropionicum SI;	YP_001210652, BAF58283;
	Anoxybacillus flavithermus WK1;	YP_002315804, YP_002315746
	Deferribacter desulfuricans SSM1;	YP_003497384, BAI81628;
	E. coli;	YP_001746093, ZP_07690697;
	Neisseria lactamica ATCC 23970; Citrobacter youngae ATCC 29220;	EEZ76650, ZP_05986317; EFE07783, ZP_06571237;
	Neisseria polysaccharea ATCC 43768;	EFH23894, ZP_06863451;
	Providencia rettgeri DSM 1131;	EFE52186, ZP_06127162;
	Neisseria subflava NJ9703;	EFC51529, ZP_05985502;
	Mannheimia haemolytica PHL213;	ZP_04978734;
	Achromobacter piechaudii ATCC	ZP_06687730, ZP_06684811; ZP_07260080, EEM04207;
	43553; Neisseria meningitidis ATCC	ZP_07369980, EFM04207;
	13091; Synechococcus sp. CC9902;	ABB26032;

		cohols. GenBank Accession	
Enzyme/callout number	Source (Organism)	Number, JGI Protein ID or Citation	
	Synechococcus sp. WH 8109;	ACA99606;	
	Cyanobium sp. PCC 7001;	ZP_05790446, EEX07646;	
	Anabaena variabilis ATCC 29413;	EDY39077, ZP_05045768;	
	Microcoleus chthonoplastes PCC 7420;	ABA20300;	
	Chlamydomonas reinhardtii;	ZP_05029756;	
53:	Caldicellulosiruptor saccharolyticus	XP_001701816, EDP06791; ABP66750, ABP66751,	
Acetolactate synthase	DSM 8903;	YP_001179942, ABP66455,	
EC 2.2.1.6)	2011 01 00,	YP_001179941, YP_001179646;	
	Thermotoga petrophila RKU-1;	YP_001243976, YP_003345845,	
		ADA66432, ADA66431,	
		ABQ46399, YP_001243975,	
	Thomas of a solution of a solution of the solu	ABQ46400, YP_003345846;	
	Thermosynechococcus elongatus BP-1;	NP_682614, BAC09376, NP_681670, BAC08432,	
		NP_682086;	
	Syntrophothermus lipocalidus DSM	ADI02904, YP_003703469,	
	12680;	ADI02903, YP_003703468;	
	Pelotomaculum thermopropionicum SI;	BAF58709, BAF58917,	
		YP_001211286, YP_001211078;	
	Geobacillus kaustophilus HTA426;	BAD76946, YP_148514,	
	Caldicellulosiruptor bescii DSM 6725;	BAD76945, YP_148513: ACM59790, ACM59628,	
	Culture cultures in up for octoen Doiri 6720,	ACM59629, YP_002572563,	
		YP_002572401, YP_002572402;	
		YP_003432299, YP_003432300,	
	Hydrogenobacter thermophilus TK-6;	BAI69099, BAI69098;	
	Spirochaeta thermophila DSM 6192;	YP_003874926, YP_003874927, ADN02654, ADN02653,	
	Spirochaeta inermophila DSM 0192,	ACJ33615, YP_002314957,	
	Anoxybacillus flavithermus WK1;	ACJ32972, ACJ32973,	
		YP_002314958;	
		YP_003496879, BAI81123,	
	Deferribacter desulfuricans SSM1;	YP_003496878, BAI81122;	
	Escherichia coli str. K-12 substr.	AP_004121, BAE77622, AP_004122, BAE77623,	
	W3110;	BAE77528, AP_004027,	
		BAB96646, AP_000741;	
		BAA12700;	
	Saccharomyces cerevisiae,	EDN64495, CAA89744, EDV09697;	
	Thermus aquaticus;	YP_001735999, ACB00744;	
	Synechococcus sp. PCC 7002;	YP_002376012;	
	Cyanothece sp. PCC 7424;	YP_324035;	
	Anabaena variabilis ATCC 29413;	NP_487595, BAB75254;	
	Nostoc sp. PCC 7120;	YP_001655615;	
	<i>Microcystis aeruginosa</i> NIES-843; <i>Synechocystis</i> sp. PCC 6803;	NP_441297, BAA17984, CAA66718, NP_441304,	
	<i>Syncercolyting</i> op. 1 CC 0003,	NP_442206, BAA10276;	
	Synechococcus sp. JA-2-3B'a(2-13);	YP_478353;	
	Synechococcus sp. JA-3-3Ab;	YP_475372, ABD00213,	
		ABD00270, YP_475476,	
	Chlamydomonas reinhardtii;	YP_475533; AAC03784, AAB88292,	
	Chiamyaomonas retinaratti;	AAC03784, AAB88292, XP_001700185, EDO98300,	
		XP_001695168, EDP01876;	
	Volvox carteri;	AAC04854, AAB88296;	
	Bacillus subtilis subsp. subtilis str. 168;	CAB07802 (AlsS);	
· 4.	Bacillus licheniformis ATCC 14580;	AAU42663 (AlsS);	
54: Catal agid raduataisamarasa	Syntrophothermus lipocalidus DSM 12680; Caldicellulosiruptor	ADI02902, YP_003703467;	
Ketol-acid reductoisomerase EC 1.1.1.86)	saccharolyticus DSM 8903; E. coli;	ABP66752, YP_001179943; AAA67577, YP_001460567;	
	Thermotoga petrophila RKU-1;	ABQ46398, YP_001243974;	
	Calditerrivibrio nitroreducens DSM	YP_004050904;	
	19672;		
	Spirochaeta thermophila DSM 6192;	YP_003874858, ADN02585;	
	Pelotomaculum thermopropionicum SI;	YP_001211079, BAF58710;	
	Cyanothece sp. PCC 7822; Hydrogenobacter thermophilus TK-6;	YP_003885458; YP_003433279, BAI70078;	

lists examples of enzymes for construction of designer Calvin-cycle-linked pathways for production of butanol and related higher alcohols.		
nzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
	Caldicellulosiruptor bescii DSM 6725;	YP_002572403;
	Geobacillus kaustophilus HTA426;	YP_148512, BAD76944;
	Deferribacter desulfuricans SSM1;	YP_003496877, BAI81121;
	Thermosynechococcus elongatus BP-1;	NP_683044, BAC09806;
	<i>Cyanothece</i> sp. PCC 7425; <i>Nostoc punctiforme</i> PCC 73102;	YP_002482078; ACC82013;
	Trichodesmium erythraeum IMS101;	ABG53327;
	Synechococcus sp. PCC 7335;	ZP_05036558;
	Microcoleus chthonoplastes PCC 7420;	ZP_05026584;
	Prochlorococcus marinus str. MIT	ABO18124;
	9301; Cyanobium sp. PCC 7001;	EDY39000;
	Arthrospira sp. PCC 8005;	ZP_07166132;
	Arabidopsis thaliana;	CAA48253, NP_001078309;
	Pisum sativum (pea);	CAA76854;
	Zea mays;	ACG35752;
	Chlamydomonas reinhardtii;	XP_001702649, EDP06428;
	Polytomella parva;	ABH11013;
ydroxy-acid dehydratase	Thermotoga petrophila RKU-1;	YP_001243973, ABQ46397;
4.2.1.9)	Cyanothece sp. PCC 7822; Marivirga tractuosa DSM 4126;	YP_003887466; YP_004053736;
	Geobacillus kaustophilus HTA426;	YP_147899, BAD76331,
	Syntrophothermus lipocalidus DSM	YP_147822, BAD76254;
	12680;	ADI02905, YP 003703470;
	Spirochaeta thermophila DSM 6192;	YP_003874669, ADN02396;
	Anoxybacillus flavithermus WK1;	YP_002315593;
	Caldicellulosiruptor bescii DSM 6725;	YP_002572562;
	Caldicellulosiruptor saccharolyticus	YP_001179645, ABP66454;
	DSM 8903; E. coli;	ADR29155, YP_001460564;
	Deferribacter desulfuricans SSM1;	YP_003496880, BAI81124;
	Thermosynechococcus elongatus BP-1;	NP_681848, BAC08610;
	Hydrogenobacter thermophilus TK-6;	YP_003431766, BAI68565;
	Nostoc punctiforme PCC 73102;	ACC82168, ADN14191;
	'Nostoc azollae' 0708; Arthrospira maxima CS-328;	ADI62939; EDZ97146;
	Prochlorococcus marinus str. MIT	AB017457;
	9301; Cyanobium sp. PCC 7001;	ZP_05044537, EDY37846;
	Synechococcus sp. PCC 7335;	ZP_05037932;
	Arthrospira platensis str. Paraca;	ZP_06383646;
	Microcystis aeruginosa NIES-843;	BAG02689;
	Chlamydomonas reinhardtii;	XP_001693179, EDP03205;
	Arabidopsis thaliana;	BAB03011;
	Oryza sativa Indica Group;	ABR25557;
	Glycine max;	ACU26534;
·	Schizosaccharomyces japonicus	XP_002173231, EEB06938;
ethylbutyraldehyde	yFS275; Biskin montonia CS115;	XD 002400018 CAX67727
ctase 1.1.1.265)	Pichia pastoris GS115;	XP_002490018, CAY67737, XM_002489973;
	Saccharomyces cerevisiae S288c;	DAA12209, NP_010656,
	Succours invects correstate 52666,	NM_001180676;
	Aspergillus fumigatus Af293;	XP_752003;
	Debaryomyces hansenii CBS767;	XP_002770138;
	Debaryomyces hansenii	CAR65507;
	Kluyveromyces lactis;	CAH02579;
	Lachancea thermotolerans CBS 6340;	XP_002554884;
	Lachancea thermotolerans;	CAR24447, CAR23718;
	Saccharomyces cerevisiae EC1118;	CAY78868;
	Saccharomyces cerevisiae JAY291;	EEU08013;
- 41 11 4 1	Saccharomyces cerevisiae S288c;	DAA10635, NM_001183405,
ethylbutanal reductase	Sandraunungen generister - DO1119-	NP_014490;
1.1.1.265)	Saccharomyces cerevisiae EC1118;	CAY86141;
	Saccharomyces cerevisiae JAY291; Geobacillus kaustophilus HTA426;	EEU07090; VP 147173 BAD75605;
etothiolase (reversible)	Geobacillus kaustophilus HTA426; Azohydromonas lata;	YP_147173, BAD75605;
nounorase (reversible)	Azonyaromonas tata; Rhodoferax ferrireducens T118;	YP_523526;
	Allochromatium vinosum;	CAA01849, CAA01846;
	Dechloromonas aromatica RCB;	YP_286222;
	Rhodobacter sphaeroides ATCC 17029;	YP_001041914;
	Rhodobacter sphaeroides ATCC 17025:	YP_001166229;
	Rhodobacter sphaeroides ATCC 17025; Bacillus sp. 256;	YP_001166229; ABX11181;

nzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
-	Aspergillus fumigatus Af293;	XP_752635;
	Rhizobium etli;	AAK21958;
	Citreicella sp. SE45;	ZP_05784120, ZP_05781517;
	Silicibacter sp. TrichCH4B;	ZP_05742998;
	Azohydromonas lata;	AAC83659, AAD10275;
	Chromobacterium violaceum;	AAC69616;
	Dinoroseobacter shibae DFL 12;	ABV95064;
	Alcaligenes sp. SH-69;	AAP41838;
	Candida dubliniensis CD36;	CAX43351, XP_002418052;
	Pseudomonas sp. 14-3;	CAK18903;
	Aspergillus flavus NRRL3357;	XP_002375989;
	Aedes aegypti;	EAT37298, EAT37297,
	Sahaffarrammaas stinitis CDS 6054	XP_001654752, XP_001654751
	Scheffersomyces stipitis CBS 6054; Cyanothece sp. BCC 7424;	ABN68380, XP_001386409; VP_002375827_ACK68959;
	<i>Cyanothece</i> sp. PCC 7424; <i>Cyanothece</i> sp. PCC 7822;	YP_002375827, ACK68959; YP_003886602, ADN13327;
	Microcystis aeruginosa NIES-843;	BAG04828;
:	Syntrophothermus lipocalidus DSM	YP_003702743, ADI02178,
Iydroxyacyl-CoA	12680;	ADI01287, ADI01071;
lydrogenase	Oceanithermus profundus DSM 14977;	ADR36325;
-	Anoxybacillus flavithermus WK1;	YP_002317076, YP_002315864
	Pelotomaculum thermopropionicum SI;	YP_001210823, BAF58454;
	Geobacillus kaustophilus HTA426;	YP_149248, YP_147889;
	Deferribacter desulfuricans SSM1;	YP_003497047, BAI81291;
	Glomerella graminicola M1.001;	EFQ32520, EFQ35765;
	Legionella pneumophila str. Corby;	YP_001250712, ABQ55366;
	Aspergillus fumigatus Af293;	XP_748706, XP_748351;
	Coprinopsis cinerea okayama7#130;	EAU80763;
	Botryotinia fuckeliana B05.10; Coccidioides posadasii; E. coli;	XP_001559519; ABH10642; YP_001462756;
	Chelativorans sp. BNC1;	YP_675197;
	Nostoc punctiforme PCC 73102;	ACC81853, YP_001866796;
	Oscillatoria sp. PCC 6506;	ZP_07114022, CBN59220;
:	Bordetella petrii;	CAP41574;
oyl-CoA dehydratase	Bordetella petrii DSM 12804;	YP_001629844;
	Anoxybacillus flavithermus WK1;	YP_002315700, YP_002314932
	Geobacillus kaustophilus HTA426;	YP_148541, YP_147845,
	Geobacillus kaustophilus;	BAD76199; BAD18341;
	Syntrophothermus lipocalidus DSM	ADI02939, ADI02740,
	12680;	ADI02007, ADI01364;
	Acinetobacter sp. SE19;	AAG10018;
	Scheffersomyces stipitis CBS 6054;	ABN64617, XP_001382646;
	Laccaria bicolor S238N-H82;	EDR09131, XP_001888157;
	<i>Alternaria</i> alternate; <i>Ajellomyces dermatitidis</i> ER-3;	BAH83503, FEO91989
	Afeitomyces aermanitats ER-5; Aspergillus fumigatus Af293;	EEQ91989; EAL93360, XP_755398;
	Cryptococcus neoformans var.	XP_572730;
	neoformans JEC21; E. Coli;	ADN73405, YP_001458194;
	Aspergillus flavus NRRL3357;	XP_002377859;
	Laccaria bicolor S238N-H82;	EDR01115;
	Neosartorya fischeri NRRL 181;	EAW18645;
	Nostoc sp. 'Peltigera membranacea	ADA69246;
	cyanobiont';	
	Xanthomonas campestris pv.	CAP53709;
Enoyl-CoA reductase	Campestris; Xanthomonas campestris	YP_001905744;
	pv. campestris str. B100; Xanthomonas campestris pv. musacearum	ZP_06489037;
	NCPPB4381; Xanthomonas campestris pv. vasculorum NCPPB702;	ZP_06487845;
	Aeromicrobium marinum DSM 15272; Rhodobacterales bacterium HTCC2083; Lysinibacillus fusiformis ZC1;	ZP_07718056, EFQ82338; ZP_05074461, EDZ42121;
	Mycobacterium smegmatis str. MC2 155;	ZP_07049092, EFI69525; YP_886510, ABK76225;
	Lysinibacillus sphaericus C3-41;	<u> </u>
	Coprinopsis cinerea okayama7#130;	YP_001699417, ACA41287;
	Arthroderma gypseum CBS 118893;	XP_002910885, EFI27391;
	Paracoccidioides brasiliensis Pb01;	EFR05506;
	Paracoccidioides brasiliensis Pb18;	XP_002796528, EEH39074;
	Ajellomyces capsulatus G186AR;	EEH43955;

lists examples of enzymes for construction of designer Calvin-cycle-linked pathways for		
production of butanol and related higher alcohols.		
Enzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
	Ostreococcus tauri; Jatropha curcas;	EEH03439; XP_003083795, CAL57762;
11': Acyl-CoA reductase (EC	Clostridium cellulovorans 743B; Thermosphaera aggregans DSM 11486;	ACS32302; YP_003845606, ADL53842; YP_003649571, ADG90619;
1.2.1.50)	Delftia acidovorans SPH-1; Comamonas testosteroni KF-1; Bifidobacterium longum subsp. infantis	YP_001565543, ABX37158; ZP_03543536;
	ATCC 15697; Clostridium papyrosolvens DSM 2782;	YP_002321654, ACJ51276;
	Acidovorax avenae subsp. avenae ATCC 19860; Comamonas testosteroni KF-1;	ZP_05497968, EEU57047; ZP_06211782, EFA39209;
	Aminomonas paucivorans DSM 12260; Herpetosiphon aurantiacus ATCC	EED67822; ZP_07740542, EFQ24431 ;
	23779; <i>Clostridium beijerinckii</i> NCIMB 8052;	ABX07240, YP_001547368;
	Geobacillus sp. G11MC16; Clostridium lentocellum DSM 5427;	ABR34265, YP_001309221; ZP_03148237, EDY05596;
	Leadbetterella byssophila DSM 17132; Actinosynnema mirum DSM 43827;	ZP_06885967, EFG96716; YP_003997212, ADQ16859;
	Haliangium ochraceum DSM 14365; Photobacterium phosphoreum;	YP_003101455, ACU37609; ACY16972, YP_003268865;
	Simmondsia chinensis; Hevea brasiliensis;	AAT00788; AAD38039;
	Arabidopsis thaliana;	AAR88762; ABE65991;
2': Hexanol dehydrogenase	Mycobacterium chubuense NBB4;	ACZ56328;
2": Detanol dehydrogenase 3C 1.1.1.73	Drosophila subobscura;	ABO61862, ABO65263, CAD43362, CAD43361, CAD54410, CAD43360, CAD43359, CAD43358
13':	Pyrococcus furiosus DSM 3638;	CAD43357, CAD43356; AAC25556;
Short chain alcohol lehydrogenase	Burkholderia vietnamiensis G4; Geobacillus thermoleovorans;	ABO56626; BAA94092;
	Geobacillus kaustophilus HTA426; Anoxybacillus flavithermus WK1; Holiochasten milori BaConA.	YP_146837, BAD75269; YP_002314715, ACJ32730; YP_003077227, AD007277;
	Helicobacter pylori PeCan4; Mycobacterium chubuense NBB4; Mucobacterium anium anhan, anium	YP_003927327, ADO07277; ACZ56328; ZP_05215778;
	<i>Mycobacterium avium</i> subsp. avium ATCC 25291; <i>Aspergillus oryzae</i> ; <i>cyanobacterium</i> UCYN-A;	ZP_03213778; BAE71320; YP_003421738, ADB95357;
	Anabaena circinalis AWQC131C; Cylindrospermopsis raciborskii T3;	ABI75134; ABI75108;
	Helicobacter pylori Sat464; Helicobacter pylori Cuz20;	AD005766; AD004259;
	Mycobacterium intracellulare ATCC 13950; Mycobacterium avium subsp.	ZP_05228059, ZP_05228058; ZP_05215779;
	avium ATCC 25291; Gluconacetobacter hansenii ATCC 23769; Helicobacter	ZP_06834730, EFG83978;
	pylori Shi470; Mycobacterium avium 104;	YP_001910563, ACD48533; YP_880627, ABK67217;
	Citrus sinensis; Gossypium hirsutum;	ADH82118; ABD65462;
	Arabidopsis halleri; Paracoccidioides brasiliensis Pb01;	ABZ02361, ABZ02360; XP_002792148, EEH34889;
	<i>Pyrenophora tritici-repentis</i> Pt-1C-BFP; <i>Ajellomyces capsulatus</i> H143;	XP_001940779, EDU43498; EER38733;
70: Membrane-bound	Scheffersomyces stipitis CBS 6054; Ralstonia eutropha H16;	XP_001382930, ABN64901; NP_942643 (hoxK), NP_942644 (hoxG), YP_015633 (hoxZ);
nydrogenase (MBH)	Ralstonia eutropha H16;	AAP85757 (hoxK), AAP85758 (hoxG), AAA16463 (hoxZ); ABF08183 (hoxK), YP_583451
	Cupriavidus metallidurans CH34;	(hoxG), ABF08182 (hoxG); ADK12981, ADK12980;
	Thiocapsa roseopersicina, Thermococcus onnurineus NA1;	ACJ15972; YP_004763067;

lists examples of enzymes for construction of designer Calvin-cycle-linked pathways for production of butanol and related higher alcohols.		
nzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
	Thermococcus sp. 4557;	YP_004763083;
	Thermococcus sp. 4557;	YP_004763081;
	Thermococcus sp. 4557;	AEK73406;
	Thermococcus sp. 4557;	AEK73404;
	Thermococcus sp. 4557;	NP_579163;
	Pyrococcus furiosus DSM 3638; Pyrococcus furiosus DSM 3638;	NP_579162; YP_004624085;
	Pvrococcus vavanosii CH1;	YP_004624086;
	Pyrococcus yayanosii CH1;	YP_004624087;
	Pyrococcus yayanosii CH1;	NP_142896;
	Pyrococcus horikoshii OT3;	BAK19334;
	Hydrogenovibrio marinus;	CAA63615;
	Alcaligenes sp.;	CAA63616;
	Rubrivivax sp.; Hydrogenobacter thermophilus TK-6;	BAF73677; ACS32538;
	Thermococcus gammatolerans EJ3;	ADN36337;
	Methanoplanus petrolearius DSM	YP_002958402;
	11571; Thermococcus gammatolerans	YP_004638463 (hoxZ);
	EJ3; Oligotropha carboxidovorans	AEI08136 (hoxZ);
	OM5; Aquifex aeolicus VF5;	NP_213456 (hoxZ);
	Centipeda periodontii DSM 2778; Selenomonas noxia ATCC 43541;	ZP_08500995 (hoxZ);
	Allochromatium vinosum DSM 180;	ZP_06602778 (hoxZ); ADC63224 (hoxZ);
	Thiomonas intermedia K12;	ADG32404 (hoxZ);
	Aquifex aeolicus VF5;	AAC06857 (hoxZ);
:	Ralstonia eutropha H16;	AAP85843 (hoxY), AAP85844
luble hydrogenase (SH)	Ralstonia eutropha H16;	(HoxH); NP_942730 (hoxH),
AD(P)-reducing)	Ralstonia eutropha H16;	NP_942729 (hoxY);
	Ralstonia eutropha H16;	NP_942727 (hoxF), NP_942728
	Ralstonia eutropha H16; Ralstonia eutropha H16;	(hoxU); AAP85841 (hoxF), AAP85842 (hoxU); AAC06140
	Ralstonia eutropha H16;	(hoxF), AAC06141 (hoxU),
	Ralstonia eutropha H16;	AAC06142 (hoxY),
	Ralstonia eutropha H16;	AAC06143 (hoxH);
	Rhodobacter capsulatus;	AAD38065 (hoxH);
	Azotobacter vinelandii DJ;	YP_002797671 (hoxH);
	Microcystis aeruginosa NIES-843;	BAG01243 (hoxH);
	Acaryochloris marina MBIC11017; Synechococcus sp. PCC 7002;	ABW32682 (hoxH); AAN03569 (hoxH);
	Synechococcus sp. 1 CC 7002, Synechococcus elongatus PCC 6301;	CAA66383 (hoxH);
	Synechococcus elongatus PCC 6301;	CAA66382 (hoxY);
	Allochromatium vinosum;	AAX89151 (hoxY);
	Microcystis aeruginosa PCC 7806;	CAO88137 (hoxY);
	Azotobacter vinelandii DJ;	YP_002797670 (hoxY);
	Synechococcus elongatus PCC 6301;	CAA66381 (hoxU);
	Allochromatium vinosum; Arthrospira platensis FACHB341;	AAX89150 (hoxU); ABC26909 (hoxU);
	Microcystis aeruginosa PCC 7806;	CAO88140 (hoxU);
	Lyngbya majuscula CCAP 1446/4;	AAY57574 (hoxU);
	Synechococcus elongatus PCC 6301;	YP_172263 (hoxU);
	Cyanothece sp. ATCC 51142;	YP_001803733 (hoxU);
	Synechococcus elongatus PCC 6301;	CAA73873 (hoxF);
	Allochromatium vinosum;	AAX89149 (hoxF); ABC26907 (hoxF);
	<i>Arthrospira platensis</i> FACHB341; <i>Synechococcus</i> sp. PCC 7002;	ABC26907 (hoxF); YP_001733465 (hoxF);
	Anaerolinea thermophila UNI-1;	BAJ63286 (hoxH);
	Caloramator australicus RC3;	CCC57856 (hoxF);
	Ralstonia eutropha H16;	NP_942649 (hoxO), AAP85763
irogenase accessary	Ralstonia eutropha H16;	(hoxO), AAA16467 (hoxO);
eins	Cupriavidus metallidurans CH34;	ABF08176 (hoxO); YP_583445
	Cupriavidus metallidurans CH34;	(hoxO);
	Ralstonia eutropha H16;	NP_942650 (hoxQ), AAP85764 (hoxQ), AAA16468 (hoxQ);
	Cupriavidus metallidurans CH34;	ABF08175 (hoxQ), YP_583444
		(hoxQ);
	Azotobacter vinelandii;	AAA19504 (hoxQ);
	Salmonella enterica subsp.;	EHC91928 (hoxQ/hoxR),
		EFX49216 (hoxQ/hoxR),
	Escherichia coli B354;	ZP_06652932 (hoxQ);
	Methyloversatilis universalis FAM5;	ZP_08506135 (hoxQ);

lists example	es of enzymes for construction of designer Calvin- production of butanol and related higher alo	
		GenBank Accession Number, JGI Protein ID or
Enzyme/callout number	Source (Organism)	Citation
	Shigella flexneri CDC 796-83;	EFW61888 (hoxQ);
	Ralstonia eutropha H16;	AAA16469 (hoxR), NP_942651(hoxR);
	Azotobacter vinelandii;	AAA19505 (hoxR);
	Ralstonia eutropha H16;	NP_942652 (hoxT), AAP85766
		(hoxT), AAA16470 (hoxT);
	Cupriavidus metallidurans CH34;	ABF08173 (hoxT);
	Azotobacter vinelandii DJ;	YP_002802114 (hoxT), ACO1139 (hoxT);
	Ralstonia eutropha H16;	NP_942648 (hoxL), AAP85762
	1	(hoxL), AAA16466 (hoxL);
	Azotobacter vinelandii;	AAA19502 (hoxL);
	Oligotropha carboxidovorans OM5;	YP_015634 (hoxL);
	Cupriavidus metallidurans CH34;	ABF08177 (hoxL), YP_583446
	Salmonella enterica subsp. enterica serovar Weltevreden str. 2007-60-3289-	(hoxL); CBY95754 (hoxL);
	1; Oligotropha carboxidovorans OM5;	YP_004638464 (hoxL);
	Oligotropha carboxidovorans OM4;	AEI04509 (hoxL);
	Azotobacter vinelandii DJ;	YP_002802118 (hoxL),
	Mathilanour stills universal - TANGE.	ACO81143 (hoxL); 7B 08506137 (hoxL) EGK7031
	Methyloversatilis universalis FAM5;	ZP_08506137 (hoxL), EGK70310 (hoxL);
	Ralstonia eutropha H16;	NP_942653 (hoxV), AAP85767
		(hoxV), AAA16471 (hoxV);
	Azotobacter vinelandii;	AAA19507 (hoxV);
	Oligotropha carboxidovorans OM5;	YP_015636 (HoxV);
	<i>Cupriavidus metallidurans</i> CH34; <i>Azotobacter vinelandii</i> DJ;	ABF08172 (hoxV); YP_002802113 (hoxV);
	Cupriavidus metallidurans CH34;	$YP_{583441} (hoxV);$
	Methyloversatilis universalis FAM5;	$ZP_08506132 \text{ (hoxV)};$
	Methyloversatilis universalis FAM5;	EGK70311 (hoxV);
	Ralstonia eutropha H16	NP_942647 (hoxM);
	Oligotropha carboxidovorans OM5, Oligotropha carboxidovorans OM4;	YP_004638462 (hoxM); AEI04507 (hoxM);
	Azotobacter vinelandii;	AAA19501 (hoxM);
	Azotobacter vinelandii DJ;	YP_002802119 (hoxM);
	Cupriavidus metallidurans CH34;	YP_583447 (hoxM);
	Hydrogenobacter thermophilus TK-6;	BAF73673 (hoxM);
	Hydrogenobacter thermophilus TK-6; Thermoproteus tenax Kra 1;	YP_003432119 (hoxM); CCC80713 (hoxM);
	Acidithiobacillus sp. GGI-221;	EGQ60729 (hoxM);
	Methyloversatilis universalis FAM5;	ZP_08506138 (hoxM);
	Burkholderiales bacterium 1_1_47;	ZP_07342912 (hoxM);
	Thiomonas intermedia K12;	YP_003644737 (hoxM);
	Thermococcus gammatolerans EJ3;	YP_002958602
	Ralstonia eutropha H16;	(hybD/hycI/hoxM); NP_942661 (hoxA), AAP85775;
	Azorhizobium caulinodans ORS 571;	AAS91037 (hoxA);
	Bradyrhizobium japonicum;	CAA78991 (hoxA);
	Hyphomicrobium sp. MC1;	YP_004674255 (hoxA);
	Azoarcus sp. BH72; Methyloversatilis universalis FAM5;	YP_935307 (hoxA); ZP_08506123 (hoxA);
	<i>Methyloversatilis universalis</i> FAM5; <i>Grimontia hollisae</i> CIP 101886;	ZP_08506123 (hoxA); ZP_06053565 (hoxA);
	Oxalobacteraceae bacterium;	ZP_08276168 (hoxA);
	Ralstonia eutropha H16;	NP_942662 (hoxB), AAP85776;
	Azoarcus sp. BH72;	YP_935309 (hoxB);
	Oligotropha carboxidovorans OM5;	YP_004638467 (hoxB);
	<i>Ralstonia eutropha</i> H16; <i>Azoarcus</i> sp. BH72;	AAP85777 (hoxC), NP_942663; YP_935310 (hoxC);
	Oligotropha carboxidovorans OM4;	AEI04502 (hoxC);
	Oligotropha carboxidovorans OM1;	YP_004638457 (hoxC);
	Oxalobacteraceae bacterium	ZP_08276171 (hoxJ), EGF30361
	IMCC9480;	(hoxJ);
	Alcaligenes hydrogenophilus;	AAB49362 (hoxJ); BAA18357 (hypA);
	Synechocystis sp. PCC 6803; Ralstonia eutropha H16;	BAA18357 (hypA); NP_942654 (hypA1);
	Ralstonia eutropha H16;	NP_942733 (hypA2);
	Ralstonia eutropha H16;	NP_942716 (hypA3);
	Cupriavidus metallidurans CH34;	YP_583440 (hypA);
	Ralstonia eutropha H16;	NP_942655 (hypB1);

lists examples of enzymes for construction of designer Calvin-cycle-linked pathways for production of butanol and related higher alcohols.		
Enzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
	Ralstonia eutropha H16;	AAP85769 (hypB1);
	Butyrivibrio proteoclasticus B316;	YP_003830670 (hypB1);
	Oligotropha carboxidovorans OM5;	YP_004638455 (hypB);
	Oligotropha carboxidovorans OM4;	AEI04500 (hypB);
	Desulfitobacterium metallireducens	ZP_08976390 (hypB),
	DSM 15288;	EHC20145 (hypB);
	Synechocystis sp. PCC 6803;	BAA18180 (hypC);
	Cyanothece sp. CCY0110;	EAZ91066 (hypC);
	Cupriavidus metallidurans CH34, Ralstonia eutropha H16;	ABF08421(hypC);
	Ralstonia eutropha 1116;	NP_942657 (hypC1); AAP85826 (hypC2);
	Ralstonia eutropha H16;	CAA49734 (hypD);
	Cupriavidus metallidurans CH34;	YP_583436 (hypD);
	Cupriavidus metallidurans CH34;	ABF08422 (hypD);
	Escherichia coli BL21(DE3);	ACT44398 (hypD);
	Synechocystis sp. PCC 6803;	BAA17478 (hypE);
	Ralstonia eutropha H16;	CAA49735 (hypE);
	Ralstonia eutropha H16;	NP_942659 (hypE1);
	Ralstonia eutropha H16;	AAP85829 (hypE2);
	Rhizobium leguminosarum;	CAA37164 (hypE);
	Azotobacter vinelandii;	AAA19513 (hypE);
	Aeropyrum pernix K1;	NP_148343 (hypE);
	Sulfolobus solfataricus P2;	NP_341628 (hypE);
	Hydrogenobacter thermophilus TK-6;	YP_003432665 (hypE);
	Pelotomaculum thermopropionicum SI;	YP_001212249 (hypE);
	Syntrophothermus lipocalidus DSM	ADI01176 (hypE),
	12680;	YP_003701741 (hypE);
	Hydrogenobacter thermophilus TK-6;	YP_003432667 (hypF);
	Pelotomaculum thermopropionicum SI;	YP_001212246 (hypF);
	Syntrophothermus lipocalidus DSM	ADI01173 (hypF),
	12680; Caldicellulosiruptor bescii DSM	YP_003701738 (hypF);
	6725;	YP_002572964 (hypF);
	Ralstonia eutropha H16;	CAA49731 (hypF);
	Ralstonia eutropha H16;	NP_942660 (hypX);
	Ralstonia eutropha H16;	AAP85774 (hypX)
	Hydrogenobacter thermophilus TK-6;	YP_003433460 (hypX);
	Rhizobium leguminosarum;	CAA37165 (hypX);
	Methyloversatilis universalis FAM5;	ZP_08506124 (hoxX);
	Cupriavidus metallidurans CH34;	ABF08424 (hoxX);
	Ralstonia eutropha H16;	CAA52735 (hoxX);
3:	Desulfobulbus propionicus DSM 2032;	ADY56959, YP_004195043;
AD(P)-dependent	Acetohalobium arabaticum DSM 5501;	YP_003826884;
/drogenase	<i>Ilyobacter polyt</i> ; ropus DSM 2926; beta	ADO82414;
arogenade	proteobacterium KB13	EDZ65062, ZP_05082375;
	Acetohalobium arabaticum DSM 5501;	ADL11819
4:	Moorella thermoacetica ATCC 39073;	YP_429324, ABC18781;
r. ormate dehydrogenase	Moorella thermoacetica ATCC 39073;	YP_431142, ABC20599;
using NAD(P)H	Moorella thermoacetica;	AAB18330 (α), AAB18329 (β);
····· ································	Moorena mermoacenca, Methanosaeta harundinacea 6Ac;	AET63712, AET63711,
	Methanoculleus marisnigri JR1;	YP_001047290;
	Methanocorpusculum labreanum Z;	YP_001029904, YP_001029903;
	Helicobacter bilis ATCC 43879;	ZP_04582064 (NADPH);
	Helicobacter bilis ATCC 43879;	EEO23341 (NADPH);
	Pelotomaculum thermopropionicum SI;	YP_001213196;
	Hydrogenobacter thermophilus TK-6;	YP_003432807;
	Hydrogenobacter thermophilus TK-6;	YP_003433330 (NDA dependent);
	Klebsiella variicola At-22;	ADC58081, YP_003439113;
	Azospirillum sp. B510;	YP_003451652, YP_003450092;
	Thermococcus gammatolerans EJ3;	YP_002958615;
	Yersinia pestis Antiqua;	ABG15899;
	Thermofilum pendens Hrk 5;	YP_919603;
	Ferrimonas balearica DSM 9799;	YP_003913071;
	Thermodesulfatator indicus DSM	AEH46025;
	15286; Shewanella baltica BA175;	AEG12633;
	Methanocella paludicola SANAE;	YP_003357462, YP_003357461;
	Methanosaeta harundinacea 6Ac;	AET64643, AET64987,
	momanopacia narananacca Uno,	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

lists examples of enzymes for construction of designer Calvin-cycle-linked pathways for production of butanol and related higher alcohols.		
Enzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
75:	Moorella thermoacetica ATCC 39073;	YP_428991;
10-Formyl-H ₄ folate	Methanocorpusculum labreanum Z;	YP_001030445;
synthetase (ADP	Sphingomonas paucimobilis;	BAD61061;
orming, 10-	Desulfatibacillum alkenivorans AK-01;	ACL05327;
Formyltetrahydrofolate	Corynebacterium aurimucosum;	YP_002834788;
Synthetase)	Clostridium acidurici;	AAA53187;
	Sphingobium sp. SYK-6;	YP_004834408;
	<i>Listeria monocytogenes</i> serotype 4b str. <i>CLIP 80459; Vibrio fischeri</i> MJ11;	YP_002758587; YP_002156619;
	Anoxybacillus flavithermus WK1;	YP_002315932;
	Thermotoga lettingae TMO;	YP_001471133;
	Fervidobacterium nodosum Rt17-B1;	YP_001410584;
	Thermosipho melanesiensis BI429;	YP_001305561;
	Thermotoga petrophila RKU-1	YP_001244647
	Pelotomaculum thermopropionicum SI;	YP_001210750;
	Moorella thermoacetica ATCC 39073;	YP_430368, ABC19825;
,10-Methenyl-H ₄ folate	Thermotoga lettingae TMO;	ABV34070;
yclohydrolase	Caldicellulosiruptor bescii DSM 6725;	YP_002572856;
Methenyltetrahydrofolate	Thermotoga petrophila RKU-1;	ABQ47072;
yclohydrolase)	Anoxybacillus flavithermus WK1;	YP_002315305;
	Geobacillus kaustophilus HTA426;	BAD76681;
	Geobacillus kaustophilus HTA426;	YP_148249;
	Synechococcus sp. JA-2-3B'a(2-13);	YP_476354;
	Synechococcus sp. JA-3-3Ab;	YP_475381;
	Exiguobacterium sp. AT1b;	YP_002884899; YP_001471134;
7:	Thermotoga lettingae TMO; Moorella thermoacetica ATCC 39073;	ABC19825, YP_430368;
,10-Methylene-H ₄ folate	Geobacillus kaustophilus HTA426;	BAD76681;
lehydrogenase	Syntrophothermus lipocalidus;	ADI01214;
lenyurogenase	Caldicellulosiruptor kronotskyensis;	ADQ46551;
	Caldicellulosiruptor kristjanssonii;	ADQ40482;
	Caldicellulosiruptor hydrothermalis;	ADQ07463;
	Caldicellulosiruptor owensensis OL;	ADQ04336;
	Caldicellulosiruptor hydrothermalis;	YP_003992832;
	Kosmotoga olearia TBF 19.5.1;	ACR80790;
	Exiguobacterium sp. AT1b;	ACQ69454;
	Komagataella pastoris CBS 7435;	CCA37557;
	Homo sapiens;	AAH09806;
	Taeniopygia guttata;	XP_002200380;
	Syntrophobotulus glycolicus DSM 8271;	ADY56189;
	Olsenella uli DSM 7084;	ADK67906;
8:	Moorella thermoacetica ATCC 39073;	YP_430048, ABC19505;
,10-Methylene-H ₄	Syntrophothermus lipocalidus;	ADI02156;
olate reductase	Fervidobacterium nodosum Rt17-B1;	ABS61421;
Methylenetetrahydrofolate	Thermotoga petrophila RKU-1;	ABQ46674;
reductase)	Fervidobacterium nodosum Rt17-B1;	ABS61126;
	Thermotoga lettingae TMO;	ABV33918;
	Thermosipho melanesiensis BI429;	YP_001305980;
	Synechococcus sp. JA-2-3B'a(2-13);	YP_477166;
	Hippea maritima DSM 10411;	YP_004340445;
	Spirochaeta thermophila DSM 6192;	YP_003875363;
	Deferribacter desulfuricans SSM1;	YP_003496368;
	Hydrogenobacter thermophilus TK-6;	YP_003432279;
_	Pelotomaculum thermopropionicum SI;	BAF59187, YP_001211556;
9:	Moorella thermoacetica ATCC 39073;	YP_430950, YP_430174;
1ethyl- H_4 folate: corrinoid	Pelotomaculum thermopropionicum SI;	YP_001211554;
con-sulfur protein	Clostridium carboxidivorans P7;	ADO12092;
Aethyltransferase	Desulfitobacterium hafniense DCB-2;	YP_002461301;
Methyltetrahydrofolate:corrinoid/	Dinoroseobacter shibae DFL 12;	YP_001533020;
ron-sulfur protein	Ammonifex degensii KC4;	YP_003238352;
Methyltransferase)	Desulfotomaculum acetoxidans;	YP_003190781;
	Rhodobacter sphaeroides KD131;	YP_002525435;
	Carboxydothermus hydrogenoformans;	YP_360065; VP_352826;
	Rhodobacter sphaeroides 2.4.1;	YP_352826;
	Holiobactorium modestical Juni Teel.	
	Heliobacterium modesticaldum Ice1; Sinorhizobium meliloti 1021; Acetonema	YP_001680302; NP_386092;

42

-	of enzymes for construction of designer Calvin- production of butanol and related higher alc	
Enzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
80:	Moorella thermoacetica;	AAA23255;
Corrinoid iron-sulfur protein	Carboxydothermus hydrogenoformans	2H9A_A, 2H9A_B;
(CFeSP)	Clostridium ragsdalei;	AEI90763, AEI90762;
	Clostridium autoethanogenum;	AEI90746, AEI90745;
	Clostridium sticklandii DSM 519;	YP_003936194;
31:	Clostridium sticklandii; Moorella thermoacetica ATCC 39073;	CBH21289; ABC19516, YP_430059;
CO dehydrogenase/acetyl-	Moorella thermoacetica ATCC 39073; Moorella thermoacetica ATCC 39073;	YP_430813 (CODH);
CoA synthase (Fd^{2-})	Moorella thermoacetica;	AAA23229, AAA23228;
	Caldicellulosiruptor kristjanssonii;	ADQ39747;
	Caldicellulosiruptor saccharolyticus;	YP_001179230;
	Clostridium ragsdalei;	AEI90761;
	Clostridium autoethanogenum;	AEI90744;
	Desulfosporosinus orientis DSM 765;	AET68776;
	Methanococcus aeolicus Nankai-3;	ABR56750;
	Desulfobacca acetoxidans DSM 11109;	YP_004370981;
	Thermodesulfatator indicus; Acetohalobium arabaticum DSM 5501;	AEH46031; ADL12817;
	Desulfarculus baarsii DSM 2075;	YP_003806211;
	Archaeoglobus veneficus SNP6;	YP_004341848;
	Methanosalsum zhilinae DSM 4017;	AEH60991;
	Thermosediminibacter oceani;	ADL07576;
	Desulfotomaculum kuznetsovii;	YP_004517493, YP_004516875;
	Methanosalsum zhilinae DSM 4017;	AEH60989, AEH60993;
32:	Thermodesulfobium narugense;	YP_004437266;
Pyruvate synthase (Fd ²⁻)	Desulfobacca acetoxidans;	YP_004370392;
	Archaeoglobus veneficus SNP6;	YP_004341929;
	Hippea maritima DSM 10411;	YP_004339618;
	Desulfurobacterium	YP_004281767, YP_004281766,
	thermolithotrophum;	ADY73708;
	Archaeoglobus veneficus; Thermodesulfobium narugense;	AEA47214; AEE14134;
	Archaeoglobus veneficus SNP6;	YP_004341930;
	Thermobacillus composti KWC4;	ZP_08918406;
	Desulfobacca acetoxidans;	AEB09210;
	Methanolinea tarda NOBI-1;	EHF09898;
	Methanobacterium sp. AL-21;	YP_004289712, ADZ08740;
	Methanocella paludicola SANAE;	YP_003356312, YP_003356313;
33:	Methanothermobacter marburgensis str.	ADL58895, ADL58894,
Formylmethanofuran	Marburg;	ADL58283, ADL58893,
lehydrogenase (Fmd) (Fd ²⁻)		ADL57751, ADL57749,
	hed d t	ADL57750, ADL57748;
	Methanothermobacter	CAA66401, CAA61212,
	thermautotrophicus; Methanothermobacter	CAA66400, CAA66402; CAA61213, CAA61214,
	thermautotrophicus;	CAA61210, CAA61214, CAA61210, CAA61211,
	mer maaton op neus,	CAA61209;
	Agrobacterium sp. H13-3;	YP_004444030;
	Agrobacterium vitis S4;	YP_002547540;
	Methylomonas methanica MC09;	YP_004511613;
	Desulfobacca acetoxidans DSM 11109;	YP_004370144, AEB08963;
	Methylovorus glucosetrophus SIP3-4;	YP_003051278;
	Methylotenera mobilis JLW8;	YP_003048298;
	Methylotenera versatilis 301;	ADI29297;
	Methanoculleus marisnigri JR1;	YP_001046285, YP_001046287,
	Methanosaeta harundinacea 6Ac;	YP_001046533; AET63761, AET64650,
	Meinanosaeta narunainacea 6AC,	AET65189, AET64652;
	Methanosphaera stadtmanae;	ABC56660, ABC56659,
		YP_447302, ABC56661,
		ABC56658, ABC56657;
4:	Methanothermobacter marburgensis str.	ADL59225,
Formyl transferase	Marburg;	YP_003850538;
-	Methanosaeta harundinacea 6Ac;	AET65566;
	Methanosarcina barkeri;	CAA62582;
	Methanopyrus kandleri AV19;	NP_614099;
	Thermosipho melanesiensis BI429;	YP_001305762;
	Desulfobacca acetoxidans DSM 11109;	YP_004369335;
	Methylobacterium chloromethanicum;	YP_002421530;
	Methylomicrobium alcaliphilum;	YP_004917963;

lists examples of enzymes for construction of designer Calvin-cycle-linked pathways for production of butanol and related higher alcohols.		
GenBank Accession		
		Number, JGI Protein ID or
Enzyme/callout number	Source (Organism)	Citation
	Methanopyrus kandleri AV19;	NP_613403;
	Methanoculleus marisnigri JR1;	YP_001046543;
	Methanocorpusculum labreanum Z;	YP_001029658, YP_001029834
	Methanopyrus kandleri AV19;	AAM02029, AAM01333;
	Methanocella paludicola SANAE;	YP_003356088, BAI61105;
5:	Methanosphaera stadtmanae;	ABC57615, YP_448258;
,10-Methenyl-	Methanothermus fervidus DSM 2088;	YP_004003819;
etrahydromethanopterin (H4	Methanosalsum zhilinae DSM 4017;	AEH61193;
nethanopterin)	Methanohalophilus mahii DSM 5219;	ADE36644;
yclohydrolase	Methanoplanus petrolearius;	ADN34846;
	Archaeoglobus veneficus SNP6;	YP_004342719;
	Planctomyces brasiliensis DSM 5305;	YP_004269775;
	Methylobacillus flagellates;	AAD55893;
	Xanthobacter autotrophicus;	AAD55896;
	Methylosinus trichosporium OB3b;	AAD56174;
	Methylobacterium organophilum;	AAD55900;
	Methylococcus capsulatus;	AAD55899;
	Methylomicrobium kenyense;	AAS88982;
	Methylomonas sp. LW13;	AAS88987;
	Methylosinus sp. LW2;	AAS88975;
	Methylomicrobium kenyense;	AAS86344;
	Methanohalophilus mahii DSM 5219;	YP_003542289;
	Methanolinea tarda NOBI-1;	EHF09908;
	Methanothermococcus okinawensis IH1;	YP_004577331;
	Methanobacterium sp. SWAN-1;	YP_004519292;
	Methylomonas methanica MC09;	YP_004513168;
		· · · · · · · · · · · · · · · · · · ·
6: 10 Mathrilana II	Methanothermobacter marburgensis;	ADL57660, YP_003848973;
10-Methylene-H ₄ -	Methanosphaera stadtmanae;	YP_447224;
ethanopterin	Methanococcus maripaludis X1;	AEK19019;
hydrogenase (F ₄₂₀ H ₂)	Methanothermobacter	CAA63376;
	thermautotrophicus;	011127
	Methanopyrus kandleri;	CAA43127;
	Methylobacterium extorquens AM1;	AAC27020;
	Methylobacillus flagellatus KT;	ABE49928;
	Xanthobacter autotrophicus;	AAD55895;
	Methyloversatilis universalis FAM5;	ZP_08504846;
	Methylobacterium chloromethanicum;	ACK83011;
	Methylobacterium populi BJ001;	YP_001924478;
	Methylobacterium extorquens PA1;	YP_001639299;
	Burkholderia sp. CCGE1001;	YP 004230417;
	Methylovorus sp. MP688;	YP_004039958;
	Methanocaldococcus fervens AG86;	YP_003128308;
	Methanocaldococcus jannaschii;	NP_247770;
_	Methanobrevibacter smithii;	YP_001273145;
1:	Methanoplanus petrolearius;	ADN36752;
10-Methylene-H ₄ -	Methanocaldococcus sp. FS406-22;	YP_003458803;
ethanopterin reductase	Methanocaldococcus infernus ME;	ADG13507;
(F ₄₂₀ H ₂)	Methanocaldococcus fervens AG86;	ACV24808;
	anococcus maripaludis C6;	ABX01642;
	Stenotrophomonas sp. SKA14;	EED39154, ZP_05135093;
	Amycolatopsis mediterranei S699;	AEK43785;
	Corynebacterium glutamicum;	EHE83474;
	Acinetobacter sp. DR1;	ADI90167;
	Acinetobacter baumannii ABNIH4;	EGU03459;
	Acinetobacter sp. DR1;	YP_003731540;
	Paenibacillus terrae HPL-003;	AET61191;
	Acinetobacter baumannii ABNIH3;	EGT94264;
	Cupriavidus necator N-1;	AEI79563;
	Herbaspirillum seropedicae SmR1;	YP_003777169;
	Burkholderia cenocepacia HI2424;	YP_840196;
	Methanobrevibacter ruminantium M1;	YP_003423269, ADC46377;
		ADI37005;
	Methanococcus voltae A3;	· · · · · · · · · · · · · · · · · · ·
	Methanococcus aeolicus Nankai-3;	ABR56603;
	Methanocaldococcus vulcanius M7;	ACX71899;
:	Methanothermobacter marburgensis;	MTBMA_c02920;
ethyl-H4-methanopterin:	Methanothermobacter marburgensis str.	ADL57900;
rrinoid iron-sulfur protein	Marburg;	
ethyltransferase		

corrinoid iron-sulfur protein methyltransferase

lists examples of enzymes for construction of designer Calvin-cycle-linked pa	athways for
---	-------------

production of butanol and related higher alcohols.

Daman a / a a 11 t 1	Saura (Orace')	GenBank Accession Number, JGI Protein ID or Citation
Enzyme/callout number	Source (Organism)	Citation
89: Corrinoid iron-sulfur protein (MTBMA_c02910)	Methanothermobacter marburgensis; Methanothermobacter marburgensis str. Marburg;	MTBMA_c02910; ADL57899;
90:	Maiburg, Methanothermobacter marburgensis;	aMTBMA_c02870/14220/14210/
CO dehydrogenase/acetyl- CoA synthase (Fd ²⁻ _{red})		14200;
		€ MTBMA_c14190/02880;
		βMTBMA_c02890;
	Methanothermobacter marburgensis str.	ADL57895;
	Marburg;	ADL59006;
91:	Methanosphaera stadtmanae;	ADL57897; ABC57827 (ehbA);
Energy converting	Methanosphaera stadtmanae;	ABC57826 (ehbB);
hydrogenase (Ech)	Methanosphaera stadtmanae;	ABC57825 (ehbC);
nj urogenase (zen)	Methanosphaera stadtmanae;	ABC57824 (ehbD);
	Methanosphaera stadtmanae;	ABC57823 (ehbE);
	Methanosphaera stadtmanae;	ABC57822 (ehbF);
	Methanosphaera stadtmanae;	ABC57821 (ehbG);
	Methanosphaera stadtmanae;	ABC57820 (ehbH);
	Methanosphaera stadtmanae;	ABC57819 (ehbI);
	Methanosphaera stadtmanae;	ABC57818 (ehbJ);
	Methanosphaera stadtmanae; Methanosphaera stadtmanae:	ABC57817 (ehbK);
	Methanosphaera stadtmanae; Methanosphaera stadtmanae;	ABC57816 (ehbL); ABC57815 (ehbM);
	Methanosphaera stadimanae; Methanosphaera stadimanae;	ABC57813 (enom); ABC57814 (ehbN);
	Methanosphaera stadtmanae;	ABC57813 (ehbO);
	Methanosphaera stadtmanae;	ABC57812(ehbP);
	Methanosphaera stadtmanae;	ABC57807 (ehbQ);
	Methanothermobacter marburgensis;	ADL59203, YP_003850516;
	Methanobacterium sp. SWAN-1;	YP_004520980;
	Methanobrevibacter ruminantium M1;	YP_003424741, ADC47849;
92:	Methanosphaera stadtmanae;	ABC56714 (mtrA);
Methyl-H4MPT: coenzyme	Methanosphaera stadtmanae;	ABC56713 (mtrB);
M methyltransferase (MtrA-H)	Methanosphaera stadtmanae; Methanosphaera stadtmanae;	YP_447355 (mrtC);
	Methanosaeta harundinacea 6Ac;	YP_447354 (mtrD); AET65445 (mtrE);
	Methanopyrus kandleri AV19;	AAM01871 (mtrE);
	Methanoculleus marisnigri JR1;	YP_001046527 (mtrE);
	Methanoculleus marisnigri JR1	YP_001046522 (mtrF);
	Methanopyrus kandleri AV19;	NP_614768 (mtrF);
	Methanosphaera stadtmanae;	YP_447359 (mtrG);
	Methanosphaera stadtmanae;	YP_447360 (mtrH);
	Archaeoglobus fulgidus DSM 4304;	NP_068850 (mtrH);
	Methanopyrus kandleri AV19;	AAM01874 (mtrB);
	Methanocella paludicola SANAE;	BAI60614 (mtrB);
	Methanosaeta harundinacea 6Ac; Methanoculleus marisnigri JR1;	AET65448 (mtrB);
	Methanocella paludicola SANAE;	YP_001046524 (mtrB); YP_003355598 (mtrA);
	Methanocella paludicola SANAE;	YP_003355597 (mtrB);
	Methanocella paludicola SANAE;	YP_003355596 (mtrC);
	Methanocella paludicola SANAE;	YP_003355595 (mtrD);
	Methanocella paludicola SANAE;	YP_003355594 (mtrE);
	Methanocella paludicola SANAE;	BAI60616 (mtrF);
	Methanocella paludicola SANAE;	YP_003355600 (mtrG);
02	Methanocella paludicola SANAE,	YP_003355601 (mtrH);
93: Mathul aganguna M	Methanobacterium aarhusense;	AAR27839 (mcrA);
Methyl-coenzyme M reductase (Mcr)	Methanobacterium sp. MB4; Methanosphaera stadtmanae;	ABG78755 (mcrA); CAE48306 (mcrA)
	Methanosphaera stadtmanae; Methanosphaera stadtmanae;	CAE48306 (mcrA) CAE48303 (mcrB)
	Methanosphaera stadtmanae;	ABC56709 (mcrC);
	Methanosphaera stadtmanae;	CAE48305 (McrG)
	Methanosphaera stadtmanae;	ABC56731, ABC56728;
	Methanosphaera stadtmanae;	YP_447371, ABC56730 (mrtG);
	Methanosphaera stadtmanae;	ABC56794;
94:	Methanocella paludicola SANAE;	YP_003357823 (hdrA);
Heterodisulfide reductases	Methanocella paludicola SANAE;	YP_003357824 (hdrB);
(HdrABC, HdrDE)	Methanocella paludicola SANAE;	YP_003357825 (hdrC)
	Methanosaeta harundinacea 6Ac;	AET63985 (hdrA);
	Methanosaeta harundinacea 6Ac;	AET63982 (hdrB);
	Methanosaeta harundinacea 6Ac;	AET63983 (C);
	Methanosaeta harundinacea 6Ac;	AET64166 (D);

44

IFe]-hydrogenase thADG (non-F420 ucing hydrogenase; thyl viologen-reducing trogenase) enzyme F420-reducing trogenase (Frh)	Methanosaeta harundinacea 6Ac; Methanopyrus kandleri AV19; Methanopyrus kandleri AV19; Methanosphaera stadimanae; Cyanobium sp. PCC 7001; Methanosphaera stadimanae; Cyanobium sp. PCC 7001; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanothermobacter smithii DSM 2374; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadimanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadimanae; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechocycsis sp. PCC 6803;	AET64165 (E); NP_613552 (hdrA); NP_613857 (hdrB); NP_613857 (hdrB); NP_613858 (hdrC); ABC56726 (mvhA); EDY38497 (mvhA); ADL59096 (mvhA) YP_003424648 (mvhA); YP_002602450 (mvhA) ACL06634 (mvhA); ADL59095 (mvhB); ACL06636 (mvhB); ZP_05975561 (mvhB); ADL59098 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); EDY38425 (mvhG); ABC56725 (mvhG); EFC93226 (mvhG); ACL06638; ACL06332 (hypF); YP_001046332 (hypF); YP_003357209 (frhB-1); YP_003357309 (frhB-3); ABB57389 (frhB);
Fe]-hydrogenase thADG (non-F420 ucing hydrogenase; thyl viologen-reducing trogenase) enzyme F420-reducing trogenase (Frh)	Methanopyrus kandleri AV19; Methanopyrus kandleri AV19; Methanosphaera stadimanae; Cyanobium sp. PCC 7001; Methanothermobacter marburgensis; Methanobrevibacter ruminantium M1 Desulfobacterium autotrophicum HRM2 Desulfatibacillum alkenivorans AK-01; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Methanothermobacter smithii DSM 2374; Methanothermobacter smithii DSM 2374; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechococcus porta SAC-01;	NP_613857 (hdrB); NP_613858 (hdrC); ABC56726 (mvhA); EDY38497 (mvhA); ADL59096 (mvhA) YP_003424648 (mvhA); YP_002602450 (mvhA) ACL06634 (mvhB); ADL59095 (mvhB); ADL59095 (mvhB); ADL59095 (mvhB); ADL59098 (mvhD); YP_003850411 (mvhD); YP_003850411 (mvhD); YP_003850411 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); EDY38425 (mvhG); EFC93226 (mvhG); ACL06638; ACL03322; YP_001345729 (frhB-1); YP_00335729 (frhB-1); YP_003357509 (frhB-3);
Fe]-hydrogenase thADG (non-F420 ucing hydrogenase; thyl viologen-reducing trogenase) enzyme F420-reducing trogenase (Frh)	Methanopyrus kandleri AV19; Methanosphaera stadtmanae; Cyanobium sp. PCC 7001; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Desulfatbacillum alkenivorans AK-01 Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanothermobacter smithii DSM 2374; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter thermautotrophicus; Methanothermobacter smithii Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Methanocellum alkenivorans AK-01; Methanoculleus marisnigri IR1; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocostis sp. PCC 6803;	NP_613858 (hdrC); ABC56726 (mvhA); EDY38497 (mvhA); ADL59096 (mvhA) YP_003424648 (mvhA); YP_002602450 (mvhA) ACL06634 (mvhA); ADL59095 (mvhB); ADL59095 (mvhB); ADL59098 (mvhB); ADL59098 (mvhB); YP_003850411 (mvhD); YP_003850411 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); ABC56725 (mvhG); ABC56725 (mvhG); ABC106638; ACL03322; YP_001345729 (frhB-1); YP_00335729 (frhB-1); YP_003357509 (frhB-3);
Fe]-hydrogenase thADG (non-F420 ucing hydrogenase; thyl viologen-reducing trogenase) enzyme F420-reducing trogenase (Frh)	Methanosphaera stadtmanae; Cyanobium sp. PCC 7001; Methanothermobacter marburgensis; Methanothervibacter ruminantium M1 Desulfobacterium autotrophicum HRM2 Desulfatibacillum alkenivorans AK-01 Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanothermobacter smithii Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter thermautotrophicus; Methanothermobacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803;	ABC56726 (mvhA); EDY38497 (mvhA); ADL59096 (mvhA) YP_003424648 (mvhA); YP_002602450 (mvhA) ACL06634 (mvhA); ADL59095 (mvhB); ADL59095 (mvhB); ADL59098 (mvhD); YP_003850411 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); ABC56725 (mvhG); EFC93226 (mvhG); EFC93226 (mvhG); EFC93226 (mvhG); EFC93226 (mvhG); ACL06638; ACL06332; YP_001046332 (hypF); YP_003357247 (fthB-1); YP_003357509 (fthB-3);
Fe]-hydrogenase thADG (non-F420 ucing hydrogenase; thyl viologen-reducing trogenase) enzyme F420-reducing trogenase (Frh)	Cyanobium sp. PCC 7001; Methanothermobacter marburgensis; Methanobrevibacter ruminantium M1 Desulfobacterium autotrophicum HRM2 Desulfatibacillum alkenivorans AK-01 Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter thermautotrophicus; Methanothermobacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803;	EDY38497 (mvhA); ADL59096 (mvhA) YP_003424648 (mvhA); YP_002602450 (mvhA) ACL06634 (mvhA); ADL59095 (mvhB); ACL06636 (mvhB); ZP_05975561 (mvhB); ADL59098 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); ABQ87206 (mvhD); ABQ87206 (mvhD); ABQ02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); EFC93226 (mvhG); ACL06638; ACL03322; YP_001345729 (frhB-1); YP_00335729 (frhB-1); YP_003357509 (frhB-3);
enzyme F420-reducing trogenase (Frh)	Methanothermobacter marburgensis; Methanobrevibacter ruminantium M1 Desulfobacterium autotrophicum HRM2 Desulfatibacillum alkenivorans AK-01 Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Methanobrevibacter smithii DSM 2374; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechococcus per server	ADL59096 (mvhA) YP_003424648 (mvhA); YP_002602450 (mvhA); ACL06634 (mvhB); ACL06634 (mvhB); ADL59095 (mvhB); ADL59098 (mvhD); YP_003850411 (mvhD); YP_003850411 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); EDY38425 (mvhG); EFC93226 (mvhG); ACL06638; ACL06638; ACL03322; YP_001345729 (frhB-1); YP_00335729 (frhB-1); YP_003357509 (frhB-3);
ucing hydrogenase; thyl viologen-reducing trogenase) enzyme F420-reducing trogenase (Frh)	Methanobrevibacter ruminantium M1 Desulfabacterium autotrophicum HRM2 Desulfatibacillum alkenivorans AK-01 Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanothermobacter smithii Methanothermobacter smithii; Methanothermobacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter thermautotrophicus; Methanothermobacter smithii Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Methanocellum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocostis sp. PCC 6803;	YP_003424648 (mvhA); YP_002602450 (mvhA) ACL06634 (mvhA); ADL59095 (mvhB); ACL06636 (mvhB); ZP_05975561 (mvhB); ADL59098 (mvhD); YP_003850411 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); ABC56725 (mvhG); ABC56725 (mvhG); EFC93226 (mvhG); ACL06638; ACL03322; YP_001046332 (hypF); YP_00335729 (frhB-1); YP_003357509 (frhB-3);
enzyme F420-reducing trogenase (Frh)	Desulfatibacillum alkenivorans AK-01 Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Methanothermobacter smithii DSM 2374; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanobrevibacter smithii; Methanothermobacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter thermautotrophicus; Methanothermobacter thethanothermobacter thethanothermobacter thethanothermobacter thethanothermobacter selfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Methanocellum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechoccystis sp. PCC 6803;	ACL06634 (mvhA); ADL59095 (mvhB); ACL06636 (mvhB); ZP_05975561 (mvhB); ADL59098 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); EFC33226 (mvhG); ACL06638; ACL06638; ACL06638; ACL03322; YP_001046332 (hypF); YP_003357229 (frhB-1); YP_00335729 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing trogenase (Frh)	Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Methanobrevibacter smithii DSM 2374; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanothermobacter smithii; Methanobrevibacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechococcus p. PCC 6803;	ADL59095 (mvhB); ACL06036 (mvhB); ZP_05975561 (mvhB); ADL59098 (mvhD); YP_003850411 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); EDY38425 (mvhG); EFC93226 (mvhG); ACL06638; ACL06638; ACL03322; YP_001046332 (hypF); YP_00335729 (frhB-1); YP_003357467 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Desulfatibacillum alkenivorans AK-01; Methanobrevibacter smithii DSM 2374; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanobrevibacter smithii; Methanobrevibacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocoystis sp. PCC 6803;	ACL06636 (mvhB); ZP_05975561 (mvhB); ADL59098 (mvhD); YP_003850411 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); AAB02349 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); ABC56725 (mvhG); ABC56725 (mvhG); ACL06638; ACL06322; YP_001046332 (hypF); YP_003357229 (frhB-1); YP_003357467 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Methanobrevibacter smithii DSM 2374; Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanobrevibacter smithii; Methanobrevibacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Methanoculleus marisnigri JR1; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocoystis sp. PCC 6803;	ZP_05975561 (mvhB); ADL59098 (mvhD); YP_003850411 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); ABC56725 (mvhG); EFC93226 (mvhG); EFC93226 (mvhG); ACL06638; ACL06332; YP_001046332 (hypF); YP_003357229 (frhB-1); YP_003357467 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Methanothermobacter marburgensis; Methanothermobacter marburgensis; Methanobrevibacter smithii; Methanobrevibacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanocellum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocoystis sp. PCC 6803;	ADL59098 (mvhD); YP_003850411 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); ABC56725 (mvhG); EFC93226 (mvhG); ACL06638; ACL03322; YP_001345729 (frhB-1); YP_00335729 (frhB-1); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Methanothermobacter marburgensis; Methanobrevibacter smithii; Methanobrevibacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocoystis sp. PCC 6803;	YP_003850411 (mvhD); YP_001273574 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); EFC93226 (mvhG); ACL06638; ACL03322; YP_001046332 (hypF); YP_003357229 (frhB-1); YP_00335729 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Methanobrevibacter smithii; Methanobrevibacter smithii; Methanothermobacter thermautotrophicus; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocoystis sp. PCC 6803;	YP_001273574 (mvhD); ABQ87206 (mvhD); AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); EBC93226 (mvhG); ACL06638; ACL03322; YP_001046332 (hypF); YP_00335729 (frhB-1); YP_003357467 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Methanothermobacter thermautotrophicus; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Methanoculleus marisnigri JR1; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechococcus sp. PCC 6803;	AAB02349 (mvhD); ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); EFC93226 (mvhG); ACL06638; ACL0322; YP_001046332 (hypF); YP_003357229 (frhB-1); YP_003357467 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	thermautotrophicus; Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadimanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanoculleus marisnigri JR1; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocoystis sp. PCC 6803;	ADL59097 (mvhG); ACL06635 (mvhG); EDY38425 (mvhG); ABC56725 (mvhG); EFC93226 (mvhG); ACL06638; ACL0322; YP_001046332 (hypF); YP_003357229 (frhB-1); YP_003357467 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Methanothermobacter marburgensis; Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803;	ACL06635 (mvhG); EDY38425 (mvhG); ABC56725 (mvhG); EFC93226 (mvhG); ACL06638; ACL03322; YP_001046332 (hypF); YP_003357229 (frhB-1); YP_003357267 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Desulfatibacillum alkenivorans AK-01; Cyanobium sp. PCC 7001; Methanosphaera stadimanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803;	ACL06635 (mvhG); EDY38425 (mvhG); ABC56725 (mvhG); EFC93226 (mvhG); ACL06638; ACL03322; YP_001046332 (hypF); YP_003357229 (frhB-1); YP_003357267 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Cyanobium sp. PCC 7001; Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanoculleus marisnigri JR1; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocoystis sp. PCC 6803;	EDY38425 (mvhG); ABC56725 (mvhG); EFC93226 (mvhG); ACL06638; ACL03322; YP_001046332 (hypF); YP_003357229 (frhB-1); YP_003357467 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Methanosphaera stadtmanae; Methanobrevibacter smithii DSM 2374; Desulfatibacillum alkenivorans AK-01; Methanoculleus marisnigri IR1; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocoystis sp. PCC 6803;	ABC56725 (mvhG); EFC93226 (mvhG); ACL06638; ACL03322; YP_001046332 (hypF); YP_003357229 (fthB-1); YP_003357467 (fthB-2); YP_003357509 (fthB-3);
enzyme F420-reducing łrogenase (Frh)	Desulfatibacillum alkenivorans AK-01; Desulfatibacillum alkenivorans AK-01; Methanoculleus marisnigri JR1; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803;	EFC93226 (mvhG); ACL06638; ACL03322; YP_001046332 (hypF); YP_003357229 (frhB-1); YP_003357467 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Desulfatibacillum alkenivorans AK-01; Methanoculleus marisnigri JR1; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803;	ACL03322; YP_001046332 (hypF); YP_003357229 (frhB-1); YP_003357467 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Methanoculleus marisnigri JR1; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803;	YP_001046332 (hypF); YP_003357229 (frhB-1); YP_003357467 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Methanocella paludicola SANAE; Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803;	YP_003357229 (frhB-1); YP_003357467 (frhB-2); YP_003357509 (frhB-3);
enzyme F420-reducing łrogenase (Frh)	Methanocella paludicola SANAE; Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803;	YP_003357467 (frhB-2); YP_003357509 (frhB-3);
trogenase (Frh)	Methanocella paludicola SANAE; Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803;	YP_003357509 (frhB-3);
	Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803;	
	G 1 NUL 2003	BAA18574, YP_001735870;
	Synechococcus sp. WH 7803;	YP_001225273;
	Synechococcus sp. RCC307;	YP_001227030;
	<i>Cyanothece</i> sp. PCC 8802; <i>Cyanobium</i> sp. PCC 7001;	ACV00312 (frhB); EDY39891 (fehB);
	Synechococcus sp. RS9916;	EAU74116 (frhB);
	Synechococcus sp. IA33910, Synechococcus sp. JA-2-3B'a(2-13);	YP_477499;
	Pelotomaculum thermopropionicum SI;	YP_001212042, YP_001211959;
	Methanothermus fervidus DSM 2088;	YP_004004590;
	Methanococcus maripaludis S2;	CAF30376 (A), NP_988502 (A);
	Methanococcus maripaludis S2;	NP_988505 (B);
	Methanococcus maripaludis S2; Methanococcus maripaludis S2;	NP_988503 (D); NP_988504 (G);
	Methanobrevibacter ruminantium M1;	$YP_{003423444}$ (ahaA);
· · · · ·	Methanobrevibacter ruminantium M1;	YP_003423445 (ahaB);
	Methanobrevibacter ruminantium M1;	YP_003423442 (ahaC);
	Methanobrevibacter ruminantium M1	ADC46554 (ahaD);
	Methanobrevibacter ruminantium M1;	ADC46549 (ahaE);
	Methanobrevibacter ruminantium M1; Methanobrevibacter ruminantium M1;	YP_003423443 (ahaF); YP_003423438 (ahaH)
	Methanobrevibucter ruminantium M1; Methanobrevibacter ruminantium M1;	ADC46547 (ahaI);
	Methanobrevibacter ruminantium M1;	YP_003423440 (ahaK);
	Ferroplasma acidarmanus fer1;	ZP_05570724;
	Thermococcus sibiricus MM 739;	YP_002995194;
	Thermoproteus tenax Kra 1;	CCC82573;
	Thermoproteus tenax Kra 1; Methanosarcina mazei Go1;	CCC82176; AAC06375 (ahaA);
	Methanosarcina mazei Go1; Methanosarcina mazei Go1;	AAC06376 (ahaB);
	Methanosarcina mazei Go1;	AAC06373 (ahaC);
	Methanosarcina mazei Go1;	AAC06377 (ahaD)
	Methanosarcina mazei Go1;	AAC06372 (ahaE);
	Methanosarcina mazei Go1;	AAC06374 (ahaF);
	Methanosarcina mazei Gol; Mathanosarcina mazei Gol;	AAC06378 (ahaG); CAA58177 (mbtA);
embrane bound	Methanosarcina mazei Go1; Methanosarcina acetivorans C2A;	CAA58177 (mhtA); NP_616088 (mhtA);
ochrome-containing F420-	Archaeoglobus fulgidus DSM 4304;	NP_070209 (mhtA);
reducing hydrogenase		ADC65001 (mhtA);
htGAC, VhtD)	Ferroglobus placidus DSM 10642;	NP_616088 (mhtB);

45

lists examples of enzymes for construction of designer Calvin-cycle-linked pathways for production of butanol and related higher alcohols.		
nzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
,,		CA 459179 (mhtD).
	<i>Methanosarcina mazei</i> Go1; <i>Methanocella paludicola</i> SANAE;	CAA58178 (mhtB); YP_003357991 (mhtC);
	Methanosarcina acetivorans C2A;	NP_616084(mhtC);
	Methanosarcina mazei Go1;	CAA58178 (nhtC);
	Methanosarcina mazei Go1;	NP_634195 (mhtC);
	Methanosarcina acetivorans C2A;	AAM04564 (mhtC);
	Methanosarcina mazei Go1;	CAA62962 (nhtD);
	Methanocella paludicola SANAE;	YP_003355429 (mhtD);
	Methanosarcina acetivorans C2A;	NP_616085 (mhtD);
	Methanosarcina acetivorans C2A; Methanosarcina mazei G01;	NP_616087 (mhtG); CAA581769 (mhtG);
	Methanocella paludicola SANAE;	YP_003357989 (mhtG);
	Methanosarcina acetivorans C2A;	AAM04562 (mhtG);
	Archaeoglobus fulgidus DSM 4304;	AAB89863 (mhtG);
	Methanobrevibacter ruminantium M1;	YP_003423415 (cofA);
:Lactaldehyde	Methanobrevibacter ruminantium M1;	ADC46523 (cofA);
drogenase (for F ₄₂₀	Methanothermococcus okinawensis IH1;	YP_004576675;
esis)	Methanotorris igneus Kol 5;	YP_004484309;
	Methanolinea tarda NOBI-1;	EHF10591;
	Methanobacterium sp. SWAN-1;	YP_004520759;
	Methanobacterium sp. AL-21;	YP_004289639;
	Methanolinea tarda NOBI-1; Methanothermobacter marburgensis;	ZP_09042363;
3: L-Lactate kinase (for	Methanothermobacter Methanothermobacter	cofB; cofB;
synthesis)	thermautotrophicus	соны,
(Jinaneolo)	Methanothermobacter marburgensis;	ADL58588;
2-phospho-L-lactate	Haloquadratum walsbyi C23;	CCC41432;
ylyltransferase (for F ₄₂₀	Methanobrevibacter ruminantium M1;	YP_003423696;
esis)	Archaeoglobus veneficus SNP6;	YP_004342334;
	Natronobacterium gregoryi SP2;	ZP_08967286;
	Methanosalsum zhilinae DSM 4017;	AEH61444;
	Methanoplanus petrolearius;	ADN35493;
	Methanolinea tarda NOBI-1;	EHF10295;
I PPC Eq 2 phoepho	Methanococcus maripaludis S2;	NP987524; YP_004341066;
LPPG:Fo 2-phospho- ate transferase (for F ₄₂₀	Archaeoglobus veneficus SNP6; Methanospirillum hungatei JF-1;	YP_503864;
esis)	Methanococcus maripaludis XI;	YP_004742044;
6010)	Methanocella paludicola SANAE;	YP_003356970;
	Methanosphaera stadtmanae;	YP_448417;
	Methanopyrus kandleri AV19;	NP_614772;
	Methanoculleus marisnigri JR1;	YP_001048050;
	Methanosaeta harundinacea 6Ac;	AET64321;
	Methanocorpusculum labreanum Z;	YP_001029596;
	Methanococcus maripaludis S2;	CAF29960;
E Organner-	Methanothermobacter	NP_276154;
F ₄₂₀ -0: gamma-	thermautotrophicus; Methanocornusculum labreanum 7:	YP_001030766;
nyl ligase ₄₂₀ synthesis)	Methanocorpusculum labreanum Z; Methanothermus fervidus DSM 2088;	YP_004003885;
120 0 3 11 (10010)	Methanohalophilus mahii DSM 2008;	ADE37403;
	Mycobacterium sp. Spyr1;	YP_004078486;
	Halogeometricum borinquense;	YP_004035572;
	Methanococcus maripaludis C5;	ABO35054;
	Methanosarcina barkeri str. Fusaro;	YP_305815;
	Methanocorpusculum labreanum Z;	YP_001030766;
	Methanococcoides burtonii DSM 6242;	YP_566482;
	Methanoculleus marisnigri JR1;	ABN57125;
	Methanosaeta thermophila PT;	ABK13958;
	Acidothermus cellulolyticus 11B Mathanobrazibaatan muninantium M1:	ABK53734; YP_003424716 (cofG);
H: Fo synthase (for F ₄₂₀	Methanobrevibacter ruminantium M1; Methanococcus maripaludis S2;	$P_{003424716}(colG);$ CAF30432 (cofG);
(100 For synthase)	Methanococcus maripaluais 52; Methanosphaera stadtmanae;	YP_447349 (cofG)
	Methanocella paludicola SANAE;	$YP_{003357513}$ (cofG);
	Methanopyrus kandleri AV19;	NP_{614181} (cofG);
	Synechococcus sp. PCC 7002;	YP_001734664 (cofG);
	Cyanothece sp. PCC 7425;	YP_002481576 (cofG);
	Synechococcus elongatus PCC 7942;	ABB56922 (cofG);
	Synechocystis sp. PCC 6803	NP_440537 (cofG)
	Synechococcus elongatus PCC 7942;	YP_399705 (cofH);
	Synechococcus elongatus PCC 7942; Synechocystis sp. PCC 6803; Thermosynechococcus elongatus BP-1;	YP_399705 (cofH); NP_440146 (cofH); NP_682387 (cofH);

Enzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
Enzyme canout number		
	Cyanothece sp. ATCC 51472; Methanosphaera stadtmanae;	EHC24992 (cofH); ABC56793 (cofH);
	Methanococcus maripaludis S2;	NP_987177 (cofH);
	Methanobrevibacter ruminantium M1,	YP_003424008 (cofH);
	Methanosarcina mazei Go1;	NP_634520 (cofH);
00:	Methanocella paludicola SANAE; Mathanocella paludicola SANAE;	YP_003357511 (cofH);
vridoxal phosphate-	Methanocella paludicola SANAE; Methanobrevibacter ruminantium M1;	YP_003355454; YP_003424638;
lependent L-tyrosine	Thermococcus gammatolerans EJ3;	YP_002960503;
ecarboxylase (mfnA for	Halobacterium salinarum R1;	YP_001688512;
ethanofuran synthesis)	Methanothermobacter marburgensis;	ADL59079;
	Thermococcus gammatolerans EJ3;	ACS34639;
101a:	Haloferax vokanii DS2; Mathawarah asun ata dimanasi	YP_003534871;
01a: IptA: GTP cyclohydrolase	Methanosphaera stadtmanae; Methanobrevibacter ruminantium M1;	YP_447347; YP_003424704;
for Methanopterin synthesis)	Methanococcus maripaludis S2;	NP_987154;
r) marcono)	Pyrococcus horikoshii OT3;	NP_143623;
	Thermococcus gammatolerans EJ3;	YP_002959796;
	Methanosarcina mazei Go1;	NP_633246;
	Methanospirillum hungatei JF-1;	YP_503757;
	Thermococcus kodakarensis KOD1; Methanopyrus kandleri AV19;	YP_183206; NP_613770;
	Methanopyrus kanaleri AV 19; Methanosarcina acetivorans C2A;	NP_613770; NP_619377;
	Methanocaldococcus fervens AG86;	YP_003128348;
	Methanoregula boonei 6A8;	YP_001403641;
	Methanothermobacter	NP_276324;
	thermautotrophicus;	VD 204721.
	Methanosarcina barkeri str. Fusaro;	YP_304731;
01b:	Methanocaldococcus jannaschii; Methanococcus maripaludis C5;	NP_247760; ABO35741;
fptB: Cyclic	Roseobacter denitrificans OCh 114;	YP_683148;
hosphodiesterase	Arabidopsis thaliana;	AEE84108;
or Methanopterin synthesis)	Zea mays;	NP_001151923;
	Medicago truncatula;	XP_003629873;
01c:	Methanothermus fervidus DSM 2088;	YP_004003771;
FAP:	Methanocella paludicola SANAE;	YP_003356610;
ibofuranosylaminobenzene	Methanoplanus petrolearius; Methanobrevibacter ruminantium M1;	ADN37264; YP_003424432;
-phosphate synthase (for Iethanopterin synthesis)	Archaeoglobus veneficus SNP6;	YP_004342012;
Menalopterin synthesis)	Thermococcus sp. AM4;	YP_002582695;
	Methanococcus maripaludis S2;	NP_987399;
	Methanothermus fervidus DSM 2088;	ADP77009;
	Methanocella paludicola SANAE;	BAI61627;
02a:	Methanothermobacter marburgensis;	ADL57861;
ComA: Phosphosulfolactate	Methanococcus maripaludis S2;	NP_987393;
ynthase (for Coenzyme M ynthesis)	Methanosphaera stadtmanae; Methanothermus fervidus DSM 2088;	ABC57647; YP_004004617;
y 11(11×010)	Methanothermococcus okinawensis IH1;	YP_004575938;
	Methanobacterium sp. SWAN-1;	YP_004519242;
	Methanocaldococcus fervens AG86;	YP_003127444;
	Methanococcus voltae A3;	ADI36986;
	Methanococcus maripaludis C6;	YP_001548728;
	Methanobacterium sp. AL-21;	YP_004291430;
	Methanococcus aeolicus Nankai-3; Mathanotorria ignoug Kol 5;	YP_001324357;
	Methanotorris igneus Kol 5; Methanobacterium sp. AL-21	AEF96400; ADZ10458;
	Methanococcus maripaludis X1;	AEK19167;
	Methanocaldococcus infernus ME;	ADG13665;
	Methanocaldococcus sp. FS406-22;	YP_003457919;
)2b:	Methanococcus maripaludis S2;	NP_987281;
omB: 2-	Methanopyrus kandleri AV19;	AAM01355;
hosphosulfolactate	Methanothermobacter marburgensis;	YP_003850451;
hosphatase (for Coenzyme	Methanococcus maripaludis S2;	CAF29717;
M synthesis)	Methanocella paludicola SANAE; Mathanothormus famidus DSM 2088;	YP_003357619 VP_004004784
	Methanothermus fervidus DSM 2088; Methanothermus fervidus DSM 2088;	YP_004004784; ADP78022;
	Methanobacterium sp. AL-21;	ADF 78022; YP_004289567;
	Methanobrevibacter ruminantium M1;	YP_003424691;
	Synechocystis sp. PCC 6803;	BAK50080;
	Synechococcus sp. JA-2-3B'a(2-13);	YP_476548;

lists examples of enzymes for construction of designer Calvin-cycle-linked pathways for production of butanol and related higher alcohols.		
Enzyme/callout number	Source (Organism)	GenBank Accession Number, JGI Protein ID or Citation
	Synechococcus sp. PCC 7002;	YP_001735079;
	Synechococcus sp. WH 7803;	YP_001224757;
	Cyanothece sp. ATCC 51472;	EHC21417;
	Synechococcus sp. WH 8016;	ZP_08955317;
102c:	Methanothermobacter marburgensis;	ADL59162;
ComC: Sulfolactate	Methanosphaera stadtmanae;	ABC56689;
	Methanothermobacter marburgensis;	YP_003850475;
dehydrogenase (for	Methanothermus fervidus DSM 2088;	YP_004003953;
Coenzyme M synthesis)	Roseobacter litoralis Och 149;	YP_004689622;
	Methanococcus maripaludis C5;	ABO34766;
	Methanothermus fervidus DSM 2088;	ADP77191;
102d:	Methanosarcina acetivorans C2A;	NP_618188;
ComDE: Sulfopyruvate	Methanocella paludicola SANAE;	YP_003357048;
decarboxylase (for	Methanocorpusculum labreanum Z;	YP_001029945;
Coenzyme M synthesis)	Methanoculleus marisnigri JR1;	ABN56047;
	Methanosarcina barkeri str. Fusaro;	YP_306991;
	Methanocella paludicola SANAE;	BAI62065;
	Methanosphaera stadtmanae;	ABC56687;
	Methanococcus maripaludis S2;	NP_988809;
102e:	Methanothermobacter marburgensis;	comF;
ComF: Sulfoacetaldehyde	Methanothermobacter	comF;
dehydrogenase (for Coenzyme M synthesis)	thermautotrophicus	,
103a:	Methanopyrus kandleri AV19;	AAM01606;
LeuA homolog:	Methanothermobacter	AAB85956;
sopropylmalate synthase	thermautotrophicus;	
for Coenzyme B synthesis)	Thermoproteus tenax;	CAF18516;
	Thermoplasma volcanium GSS1;	NP_111428;
	Methanobrevibacter smithii;	ABQ87451;
	Methanosphaera stadtmanae;	YP_447259;
	Methanobrevibacter ruminantium M1;	YP_003424897;
	Methanococcus maripaludis S2;	NP_988183;
	Synechocystis sp. PCC 6803	NP_442009;
	Synechococcus elongatus PCC 7942;	ABB56460;
	Cyanothece sp. ATCC 51472;	EHC25498;
	Synechococcus sp. WH 8016;	ZP_08954784;
	Synechococcus sp. JA-2-3B'a(2-13)	YP_477672;
	Thermosynechococcus elongatus BP-1;	NP_682187;
103b:	Methanopyrus kandleri AV19;	NP_614498;
LeuB homolog:	Methanothermobacter marburgensis;	ADL58232;
Isopropylmalate	Methanothermus fervidus DSM 2088;	YP_004004146;
dehydrogenase (for	Methanocella paludicola SANAE;	YP_003358048;
Coenzyme B synthesis)	Methanosphaera stadtmanae;	YP_447715;
- • ·	Methanocella paludicola SANAE;	BAI63065;
	Methanococcus maripaludis S2;	CAF30095;
	Synechocystis sp. PCC 6803;	NP_441348;
	Synechococcus elongatus PCC 7942;	ABB57535;
	Cyanothece sp. ATCC 51472;	EHC23198;
	Synechococcus sp. JA-2-3B'a(2-13;	YP_477855;
	Thermosynechococcus elongatus BP-1;	NP_682390;
103c:	Marinobacter adhaerens HP15;	ADP98363, ADP98362;
LeuCD homolog:	Halorhabdus tiamatea SARL4B;	ZP_08559069;
sopropylmalate isomerase	Haloarcula marismortui ATCC 43049;	YP_135090;
(for Coenzyme B synthesis)	Halomicrobium mukohataei;	YP_003178469;
	Haladaptatus paucihalophilus DX253;	ZP_08045715;
	Escherichia coli O103:H2 str. 12009;	YP_003220086, YP_003220085;
	Synechocystis sp. PCC 6803;	NP_442926, NP_441618;
	Cyanothece sp. PCC 8801;	YP_002370476, YP_002373868;
	<i>Nostoc</i> sp. PCC 7120;	NP_485460, NP_485459;
	Synechococcus sp. JA-2-3B'a(2-13);	YP_478232, YP_476588;
	p	

Designer Calvin-Cycle-Channeled 1-Butanol Producing Pathways

[0173] According to one of the various embodiments, a designer Calvin-cycle-channeled pathway is created that takes the Calvin-cycle intermediate product, 3-phosphoglyc-

erate, and converts it into 1-butanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 34, 35, 03-05, 36-43 in FIG. 4): NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05,

citramalate synthase 36, 2-methylmalate dehydratase 37, 3-isopropylmalate dehydratase 38, 3-isopropylmalate dehydrogenase 39, 2-isopropylmalate synthase 40, isopropylmalate isomerase 41, 2-keto acid decarboxylase 42, and alcohol dehydrogenase (NAD dependent) 43. In this pathway design, as mentioned above, the NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34 and NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35 serve as a NADPH/NADH conversion mechanism that can covert certain amount of photosynthetically generated NADPH to NADH which can be used by the NADH-requiring alcohol dehydrogenase 43 (examples of its encoding gene with the following GenBank accession numbers: BAB59540, CAA89136, NP_148480) for production of 1-butanol by reduction of butyraldehyde.

[0174] According to one of the various embodiments, it is a preferred practice to also use an NADPH-dependent alcohol dehydrogenase 44 that can use NADPH as the source of reductant so that it can help alleviate the requirement of NADH supply for enhanced photobiological production of butanol and other alcohols. As listed in Table 1, examples of NADPH-dependent alcohol dehydrogenase 44 include (but not limited to) the enzyme with any of the following GenBank accession numbers: YP_001211038, ZP_04573952, XP_002494014, CAY71835, NP_417484, EFC99049, and ZP_02948287.

[0175] Note, the 2-keto acid decarboxylase 42 (e.g., AAA35267, AAS49166, ADA65057, CAG34226, CAA59953, A0QBE6, A0PL16) and alcohol dehydrogenase 43 (and/or 44) have quite broad substrate specificity. Consequently, their use can result in production of not only 1-butanol but also other alcohols such as propanol depending on the genetic and metabolic background of the host photosynthetic organisms. This is because all 2-keto acids can be converted to alcohols by the 2-keto acid decarboxylase 42 and alcohol dehydrogenase 43 (and/or 44) owning to their broad substrate specificity. Therefore, according to another embodiment, it is a preferred practice to use a substrate-specific enzyme such as butanol dehydrogenase 12 when/if production of 1-butanol is desirable. As listed in Table 1, examples of butanol dehydrogenase 12 are NADH-dependent butanol dehydrogenase (e.g., GenBank: YP_148778, NP_561774, AAG23613, ZP_05082669, ADO12118) and/or NAD(P)Hdependent butanol dehydrogenase (e.g., NP_562172, AAA83520, EFB77036, EFF67629, ZP_06597730, EFE12215, EFC98086, ZP_05979561).

[0176] In one of the various embodiments, another designer Calvin-cycle-channeled 1-butanol production pathway is created that takes the Calvin-cycle intermediate product, 3-phosphoglycerate, and converts it into 1-butanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 34, 35, 03, 04, 45-52 and 40-43 (44/12) in FIG. 4): NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, phosphoenolpyruvate carboxylase 45, aspartate aminotransferase 46, aspartokinase 47, aspartate-semialdehyde dehydrogenase 48, homoserine dehydrogenase 49. homoserine kinase 50, threonine synthase 51, threonine ammonia-lyase 52, 2-isopropylmalate synthase 40, isopropy-Imalate isomerase 41, 3-isopropylmalate dehydrogenase 39, 2-keto acid decarboxylase 42, and NAD-dependent alcohol dehydrogenase 43 (and/or NADPH-dependent alcohol dehydrogenase 44, or butanol dehydrogenase 12).

[0177] According to another embodiment, the amino-acids-metabolism-related 1-butanol production pathways [numerical labels 03-05, 36-43; and/or 03, 04, 45-52 and 39-43 (44/12)] can operate in combination and/or in parallel with other photobiological butanol production pathways. For example, as shown also in FIG. **4**, the Frctose-6-photophatebranched 1-butanol production pathway (numerical labels 13-32 and 44/12) can operate with the parts of amino-acidsmetabolism-related pathways [numerical labels 36-42, and/ or 45-52 and 40-42) with pyruvate and/or phosphoenolpyruvate as their joining points.

[0178] Examples of designer Calvin-cycle-channeled 1-butanol production pathway genes (DNA constructs) are shown in the DNA sequence listings. SEQ ID NOS: 58-70 represent a set of designer genes for a designer nirA-promoter-controlled Calvin-cycle-channeled 1-butanol production pathway (as shown with numerical labels 34, 35, 03-05, and 36-43 in FIG. 4) in a host oxyphotobacterium such as Thermosynechococcus elongatus BP1. Briefly, SEQ ID NO: 58 presents example 58 of a designer nirA-promoter-controlled NADPH-dependent Glyceraldehyde-3-Phosphate Dehydrogenase (34) DNA construct (1417 bp) that comprises: a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from Thermosynechococcus elongatus BP1 (21-251), an enzyme-encoding sequence (252-1277) selected/ modified from the sequences of a Staphylococcus aureus 04-02981 NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (GenBank: ADC37857), a 120-bp rbcS terminator from BP1 (1278-1397), and a PCR RE primer (1398-1417) at the 3' end.

[0179] SEQ ID NO: 59 presents example 59 of a designer nirA-promoter-controlled NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (35) DNA construct (1387 bp) that comprises: a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1247) selected/modified from the sequences of an *Edwardsiella tarda* FL6-60 NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GenBank: ADM41489), a 120-bp rbcS terminator from BP1 (1248-1367), and a PCR RE primer (1368-1387) at the 3' end.

[0180] SEQ ID NO: 60 presents example 60 of a designer nirA-promoter-controlled Phosphoglycerate Mutase (03) DNA construct (1627 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from Thermosynechococcus elongatus BP1 (21-251), an enzyme-encoding sequence (252-1487) selected/modified from the sequences of a Oceanithermus profundus DSM 14977 phosphoglycerate mutase (GenBank: ADR35708), a 120-bp rbcS terminator from BP1 (1488-1607), and a PCR RE primer (1608-1627). [0181] SEQ ID NO: 61 presents example 61 of a designer nirA-promoter-controlled Enolase (04) DNA construct (1678 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from Thermosynechococcus elongatus BP1 (21-251), an enzyme-encoding sequence (252-1538) selected from the sequences of a Syntrophothermus Enolase (Gen-Bank: ADI02602), a 120-bp rbcS terminator from BP1 (1539-1658), and a PCR RE primer (1659-1678).

[0182] SEQ ID NO: 62 presents example 62 of a designer nirA-promoter-controlled Pyruvate Kinase (05) DNA construct (2137 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1997) selected from the sequences of a *Syntrophother*-

mus lipocalidus pyruvate kinase (GenBank: ADI02459), a 120-bp rbcS terminator from BP1 (1998-2117), and a PCR RE primer (2118-2137).

[0183] SEQ ID NO: 63 presents example 63 of a designer nirA-promoter-controlled Citramalate Synthase (36) DNA construct (2163 bp) that includes a PCR FD primer (sequence 1-20), a 305-bp nirA promoter (21-325), an enzyme-encoding sequence (326-1909) selected and modified from *Hydrogenobacter thermophilus* TK-6 citramalate synthase (YP_003433013), a 234-bp rbcS terminator from BP1 (1910-2143), and a PCR RE primer (2144-2163).

[0184] SEQ ID NO: 64 presents example 64 of a designer nirA-promoter-controlled 3-Isopropylmalate/(R)-2-Methylmalate Dehydratase (37) DNA construct (2878 bp) consisting of a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from Thermosynechococcus elongatus BP1 (21-251), a 3-isopropylmalate/(R)-2-methylmalate dehydratase large subunit-encoding sequence (252-2012) selected/modified from the sequences of an Eubacterium 3-isopropylmalate/ (R)-2-methylmalate dehydratase large subunit (YP_ 002930810), a 231-bp nirA promoter from Thermosynecho-3-isopropylmalate/(R)-2coccus (2013-2243),а methylmalate dehydratase small subunit-encoding sequence (2244-2738) selected/modified from the sequences of an Eubacterium 3-isopropylmalate/(R)-2-methylmalate dehydratase small subunit (YP_002930809), a 120-bp rbcS terminator from BP1 (2739-2858), and a PCR RE primer (2859-2878).

[0185] SEQ ID NO: 65 presents example 65 of a designer nirA-promoter-controlled 3-Isopropylmalate Dehydratase (38) DNA construct (2380 bp) comprises: a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from Thermosynechococcus elongatus BP1 (21-251), a 3-isopropylmalate dehydratase large subunit-encoding sequence (252-1508) selected/modified from the sequences of a Thermotoga petro*phila* 3-isopropylmalate dehydratase large subunit (ABQ46641), a 231-bp nirA promoter from Thermosynechococcus elongatus BP1 (1509-1739), a 3-isopropylmalate dehydratase small subunit-encoding sequence (1740-2240) selected/modified from the sequences of a Thermotoga 3-isopropylmalate dehydratase small subunit (ABQ46640), a 120bp rbcS terminator from BP1 (2241-2360), and a PCR RE primer (2361-2380).

[0186] SEQ ID NO: 66 presents example 66 of a designer nirA-promoter-controlled 3-Isopropylmalate Dehydrogenase (39) DNA construct (1456 bp) consisting of: a PCR FD primer (1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), a 3-isopropylmalate dehydrogenase-encoding sequence (252-1316) selected from the sequences of a *Thermotoga* 3-isopropylmalate dehydrogenase (GenBank: CP000702 Region 349983 . . . 351047), a 120-bp rbcS terminator from BP1 (1317-1436), and a PCR RE primer (1437-1456).

[0187] SEQ ID NO: 67 presents example 67 of a designer nirA-promoter-controlled 2-Isopropylmalate Synthase (40, EC 4.1.3.12) DNA construct (1933 bp) consisting of: a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* (21-251), an enzyme-encoding sequence (252-1793) selected/modified from the sequences of a *Thermotoga petrophila* 3-isopropylmalate dehydrogenase (CP000702 Region: 352811 . . . 354352), a 120-bp rbcS terminator from BP1 (1794-1913), and a PCR RE primer (1914-1933).

[0188] SEQ ID NO: 68 presents example 68 of a designer nirA-promoter-controlled Isopropylmalate Isomerase (41) DNA construct (2632 bp) comprises: a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), a isopropylmalate isomerase large subunit-encoding sequence (252-1667) selected/modified from the sequences of a *Geobacillus kaustophilus* 3-isopropylmalate isomerase large subunit (YP_148509), a 231bp nirA promoter from *Thermosynechococcus* (1668-1898), a isopropylmalate isomerase small subunit-encoding sequence (1899-2492) selected from the sequences of a *Geobacillus kaustophilus* isopropylmalate isomerase small subunit (YP_148508), a 120-bp rbcS terminator from BP1 (2493-2612), and a PCR RE primer (2613-2632).

[0189] SEQ ID NO: 69 presents example 69 of a designer nirA-promoter-controlled 2-Keto Acid Decarboxylase (42) DNA construct (2035 bp) consisting of: a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), a 2-keto acid decarboxylase-encoding sequence (252-1895) selected/modified from the sequences of a *Lactococcus lactis* branched-chain alpha-ketoacid decarboxylase (AAS49166), a 120-bp rbcS terminator from BP1 (1896-2015), and a PCR RE primer (2016-2035) at the 3' end.

[0190] SEQ ID NO: 70 presents example 70 of a designer nirA-promoter-controlled NAD-dependent Alcohol Dehydrogenase (43) DNA construct (1426 bp) consisting of: a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1286) selected/modified from the sequences of an *Aeropyrum pernix* K1 NAD-dependent alcohol dehydrogenase (NP_148480), a 120-bp rbcS terminator from BP1 (1287-1406), and a PCR RE primer (1407-1426).

[0191] As mentioned before, use of an NADPH-dependent alcohol dehydrogenase 44 that can use NADPH as the source of reductant can help alleviate the requirement of NADH supply for enhanced photobiological production of butanol and other alcohols. SEQ ID NO: 71 presents example 71 of a designer nirA-promoter-controlled NADPH-dependent Alcohol Dehydrogenase (44) DNA construct (1468 bp) that comprises: a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from Thermosynechococcus elongatus BP1 (21-251), an enzyme-encoding sequence (252-1328) selected from the sequences of a Pichia pastoris NADPH-dependent medium chain alcohol dehydrogenase with broad substrate specificity (XP_002494014), a 120-bp rbcS terminator from BP1 (1329-1458), and a PCR RE primer (1459-1468) at the 3' end. In one of the examples, this type of NADPH-dependent alcohol dehydrogenase gene (SEQ ID NO: 71) is also used in construction of Calvin-cycle-channeled butanol production pathway.

[0192] However, because of the broad substrate specificity of the 2-keto acid decarboxylase (42, SEQ ID NO: 69) and the alcohol dehydrogenase (43, SEQ ID NO: 70; or 44, SEQ ID NO: 71), the pathway expressed with designer genes of SEQ ID NO: 69 and SEQ ID NO: 71 (and/or SEQ ID NO: 70) can result in the production of alcohol mixtures rather than single alcohols since all 2-keto acids can be converted to alcohols by the two broad substrate specificity enzymes. Therefore, to improve the specificity for 1-butanol production, it is a preferred practice to use a more substrate-specific butanol dehydrogenase 12. SEQ ID NO: 72 presents example 72 of a designer nirA-promoter-controlled NADH-dependent

Butanol Dehydrogenase (12a) DNA construct (1555 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1415) selected/ modified from the sequences of a *Geobacillus kaustophilus* NADH-dependent butanol dehydrogenase (YP_148778), a 120-bp rbcS terminator from BP1 (1416-1535), and a PCR RE primer (1536-1555) at the 3' end.

[0193] SEQ ID NO: 73 presents example 73 of a designer nirA-promoter-controlled NADPH-dependent Butanol Dehydrogenase (12b) DNA construct (1558 bp) consisting of a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), a NADPH-dependent butanol dehydrogenase-encoding sequence (252-1418) selected/modified from the sequences of a *Clostridium perfringens* NADPH-dependent butanol dehydrogenase (NP_562172), a 120-bp rbcS terminator from BP1 (1419-1528), and a PCR RE primer (1529-1558) at the 3' end.

[0194] Use of SEQ ID NOS: 72 and/or 73 (12a and/or 12b) along with SEQ ID NOS: 58-69 represents a specific Calvincycle-channeled 1-butanol production pathway numerically labeled as 34, 35, 03-05, 36-42 and 12 in FIG. **4**.

[0195] SEQ ID NOS: 74-81 represent an alternative (amino acids metabolism-related) pathway (45-52 in FIG. 4) that branches from the point of phosphoenolpyruvate and merges at the point of 2-ketobutyrate in the Calvin-cycle-channeled 1-butanol production pathway. Briefly, SEQ ID NO: 74 presents example 74 of a designer nirA-promoter-controlled Phosphoenolpyruvate Carboxylase (45) DNA construct (3646 bp) consisting of: a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-3506) selected/modified from the sequences of a *Thermaerobacter subterraneus* DSM 13965 Phosphoenolpyruvate carboxylase (EFR61439), a 120-bp rbcS terminator from BP1 (3507-3626), and a PCR RE primer (3627-3646) at the 3' end.

[0196] SEQ ID NO: 75 presents example 75 of a designer nirA-promoter-controlled Aspartate Aminotransferase (46) DNA construct (1591 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1451) selected/modified from the sequences of a *Thermotoga lettingae* aspartate aminotransferase (YP_001470126), a 120-bp rbcS terminator from BP1 (1452-1471), and a PCR RE primer (1472-1591).

[0197] SEQ ID NO: 76 presents example 76 of a designer nirA-promoter-controlled Aspartate

[0198] Kinase (47) DNA construct (1588 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1448) selected/modified from the sequences of a *Thermotoga lettingae* TMO aspartate kinase (YP_001470361), a 120-bp rbcS terminator from BP1 (1449-1568), and a PCR RE primer (1569-1588).

[0199] SEQ ID NO: 77 presents example 77 of a designer nirA-promoter-controlled Aspartate-Semialdehyde Dehydrogenase (48) DNA construct (1411 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzymeencoding sequence (252-1271) selected/modified from the sequences of a *Thermotoga lettingae* TMO aspartate-semial-

dehyde dehydrogenase (YP_001470981), a 120-bp rbcS terminator from BP1 (1272-1391), and a PCR RE primer (1392-1411) at the 3' end.

[0200] SEQ ID NO: 78 presents example 78 of a designer nirA-promoter-controlled Homoserine Dehydrogenase (49) DNA construct (1684 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1544) selected/modified from the sequences of a *Syntrophothermus lipocalidus* DSM 12680 homoserine dehydrogenase (ADI02231), a 120-bp rbcS terminator from BP1 (1545-1664), and a PCR RE primer (1665-1684) at the 3' end.

[0201] SEQ ID NO: 79 presents example 79 of a designer nirA-promoter-controlled Homoserine Kinase (50) DNA construct (1237 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1097) selected/modified from the sequences of a *Thermotoga petrophila* RKU-1 Homoserine Kinase (YP_001243979), a 120-bp rbcS terminator from BP1 (1098-1217), and a PCR RE primer (1218-1237) at the 3' end.

[0202] SEQ ID NO: 80 presents example 80 of a designer nirA-promoter-controlled Threonine Synthase (51) DNA construct (1438 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus* (21-251), an enzyme-encoding sequence (252-1298) selected from the sequences of a *Thermotoga* Threonine Synthase (YP_001243978), a 120-bp rbcS terminator from BP1 (1299-1418), and a PCR RE primer (1419-1438).

[0203] SEQ ID NO: 81 presents example 81 of a designer nirA-promoter-controlled Threonine Ammonia-Lyase (52) DNA construct (1600 bp) consisting of a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1460) selected/modified from the sequences of a *Geobacillus kaustophilus* threonine ammonia-lyase (BAD75876), a 120-bp rbcS terminator from BP1 (1461-1580), and a PCR RE primer (1581-1600) at the 3' end.

[0204] Note, SEQ ID NOS: 58-61, 74-81, 66-69, and 72 (and/or 73) represent a set of sample designer genes that can express a Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced 1-butanol production pathway of 34, 35, 03, 04, 45-52 40, 41, 39, 42, and 12 while SEQ ID NOS: 58-69 and 72 (and/or 73) represent another set of sample designer genes that can express another Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced 1-butanol production pathway as numerically labeled as 34, 35, 03-05, 36-42, and 12 in FIG. 4. The net results of the designer photosynthetic NADPH-enhanced pathways in working with the Calvin cycle are photobiological production of 1-butanol (CH₃CH₂CH₂CH₂OH) from carbon dioxide (CO₂) and water (H₂O) using photosynthetically generated ATP (Adenosine triphosphate) and NADPH (reduced nicotinamide adenine dinucleotide phosphate) according to the following process reaction:

$$4CO_2 + 5H_2O \rightarrow CH_3CH_2CH_2CH_2OH + 6O_2$$
[5]

Designer Calvin-Cycle-Channeled 2-Methyl-1-Butanol Producing Pathways

[0205] According to one of the various embodiments, a designer Calvin-cycle-channeled 2-Methyl-1-Butanol production pathway is created that takes the Calvin-cycle inter-

mediate product, 3-phosphoglycerate, and converts it into 2-methyl-1-butanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 34, 35, 03-05, 36-39, 53-55, 42, 43 or 44/56 in FIG. **5**): NADPHdependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05, citramalate synthase 36, 2-methylmalate dehydratase 37, 3-isopropylmalate dehydratase 38, 3-isopropylmalate dehydrogenase 39, acetolactate synthase 53, ketolacid reductoisomerase 54, dihydroxy-acid dehydratase 55, 2-keto acid decarboxylase 42, and NAD-dependent alcohol dehydrogenase 43 (or NADPH-dependent alcohol dehydrogenase 44; more preferably, 2-methylbutyraldehyde reductase 56).

[0206] In another embodiment, a designer Calvin-cyclechanneled 2-methyl-1-butanol production pathway is created that takes the intermediate product, 3-phosphoglycerate, and converts it into 2-methyl-1-butanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 34, 35, 03, 04, 45-55, 42, 43 or 44/56 in FIG. 5): NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, phosphoenolpyruvate carboxylase 45, aspartate aminotransferase 46, aspartokinase 47, aspartate-semialdehyde dehydrogenase 48, homoserine dehydrogenase 49, homoserine kinase 50, threonine synthase 51, threonine ammonia-lyase 52, acetolactate synthase 53, ketol-acid reductoisomerase 54, dihydroxy-acid dehydratase 55, 2-keto acid decarboxylase 42, and NAD dependent alcohol dehydrogenase 43 (or NADPH dependent alcohol dehydrogenase 44; more preferably, 2-methylbutyraldehyde reductase 56).

[0207] These pathways (FIG. **5**) are quite similar to those of FIG. **4**, except that acetolactate synthase 53, ketol-acid reductoisomerase 54, dihydroxy-acid dehydratase 55, and 2-meth-ylbutyraldehyde reductase 56 are used to produce 2-Methyl-1-Butanol.

[0208] SEQ ID NO: 82 presents example 82 of a designer nirA-promoter-controlled Acetolactate Synthase (53) DNA construct (2107 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an acetolactate synthase-encoding sequence (252-1967) selected/modified from the sequences of a *Bacillus subtilis* subsp. *subtilis* str. 168 acetolactate synthase (CAB07802), a 120-bp rbcS terminator from BP1 (1968-2087), and a PCR RE primer (2088-2107) at the 3' end.

[0209] SEQ ID NO: 83 presents example 83 of a designer nirA-promoter-controlled Ketol-Acid Reductoisomerase (54) DNA construct (1405 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), a ketol-acid reductoisomerase-encoding sequence (252-1265) selected/modified from the sequences of a *Syntrophothermus lipocalidus* DSM 12680 ketol-acid reductoisomerase (ADI02902), a 120-bp rbcS terminator from BP1 (1266-1385), and a PCR RE primer (1386-1405) at the 3' end.

[0210] SEQ ID NO: 84 presents example 84 of a designer nirA-promoter-controlled Dihydroxy-Acid Dehydratase (55) DNA construct (2056 bp) that includes a PCR FD primer (1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1916) selected from the sequences of a *Thermotoga*

dihydroxy-acid dehydratase (YP_001243973), a 120-bp rbcS terminator from BP1 (1917-2036), and a PCR RE primer (2037-2056).

[0211] SEQ ID NO: 85 presents example 85 of a designer nirA-promoter-controlled 2-Methylbutyraldehyde Reductase (56) DNA construct (1360 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1220) selected/modified from the sequences of a *Schizosaccharomyces japonicus* 2-methylbutyraldehyde reductase (XP_002173231), a 120-bp rbcS terminator from BP1 (1221-1340), and a PCR RE primer (1341-1360) at the 3' end.

[0212] Note, SEQ ID NOS: 58-66, 82-84, 69 and 85 represent another set of sample designer genes that can express a Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced 2-methyl-1-butanol production pathway numerically labeled as 34, 35, 03-05, 36-39, 53-55, 42 and 56; while SEQ ID NOS: 58-61, 74-84, 69 and 85 represent a set of sample designer genes that can express another Calvincycle 3-phophoglycerate-branched photosynthetic NADPHenhanced 2-methyl-1-butanol production pathway of 34, 35, 03, 04, 45-55, 42 and 56 in FIG. 5. These designer genes can be used in combination with other pathway gene(s) to express certain other pathways such as a Calvin-cycle Fructose-6phosphate branched 2-methyl-1-butanol production pathway numerically labeled as 13-26, 36-39, 53-55, 42 and 56 (and/ or, as 13-25, 45-55, 42 and 56) in FIG. 5 as well. The net results of the designer photosynthetic NADPH-enhanced pathways in working with the Calvin cycle are production of 2-methyl-1-butanol [CH3CH2CH(CH3)CH2OH] from carbon dioxide (CO₂) and water (H₂O) using photosynthetically generated ATP and NADPH according to the following process reaction:

$$10CO_2+12H_2O \rightarrow 2CH_3CH_2CH(CH_3)CH_2OH+15O_2$$
[6]

Calvin-Cycle-Channeled Pathways for Production of Isobutanol and 3-Methyl-1-Butanol

[0213] According to one of the various embodiments, a designer Calvin-cycle-channeled pathway is created that takes the Calvin-cycle intermediate product, 3-phosphoglycerate, and converts it into isobutanol by using, for example, a set of enzymes consisting of (as shown with numerical labels 34, 35, 03-05, 53-55, 42, 43 (or 44) in FIG. 6): NADPHdependent glyceraldehyde-3-phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05, acetolactate synthase 53, ketol-acid reductoisomerase 54, dihydroxy-acid dehydratase 55, 2-keto acid decarboxylase 42, and NAD-dependent alcohol dehydrogenase 43 (or NADPH-dependent alcohol dehydrogenase 44). The net result of this pathway in working with the Calvin cycle is photobiological production of isobutanol ((CH₃) $_{2}$ CHCH $_{2}$ OH) from carbon dioxide (CO $_{2}$) and water (H $_{2}$ O) using photosynthetically generated ATP and NADPH according to the following process reaction:

$$4CO_2 + 5H_2O \rightarrow (CH_3)_2CHCH_2OH + 6I_2$$
[7]

[0214] According to another embodiment, a designer Calvin-cycle-channeled pathway is created that takes the intermediate product, 3-phosphoglycerate, and converts it into 3-methyl-1-butanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels

34, 35, 03-05, 53-55, 40, 38, 39, 42, 43 (or 44/57) in FIG. 6): NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05, acetolactate synthase 53, ketol-acid reductoisomerase 54, dihydroxy-acid dehydratase 55, 2-isopropylmalate synthase 40, 3-isopropylmalate dehydratase 38, 3-isopropylmalate dehydrogenase 39, 2-keto acid decarboxylase 42, and NAD-dependent alcohol dehydrogenase 43 (or NADPH-dependent alcohol dehydrogenase 44; or more preferably, 3-methylbutanal reductase 57). The net result of this pathway in working with the Calvin cycle is photobiological production of 3-methyl-1-butanol(CH₃CH(CH₃) CH_2CH_2OH) from carbon dioxide (CO_2) and water (H_2O) using photosynthetically generated ATP and NADPH according to the following process reaction:

$$10CO_2+12H_2O \rightarrow 4CH_3CH(CH_3)CH_2CH_2OH+15O_2$$
 [8]

[0215] These designer pathways (FIG. 6) share a number of designer pathway enzymes with those of FIGS. 4 and 5, except that a 3-methylbutanal reductase 57 is preferably used for production of 3-methyl-1-butanol; they all have a common feature of using an NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34 and an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35 as an NADPH/NADH conversion mechanism to covert certain amount of photosynthetically generated NADPH to NADH which can be used by NADH-requiring pathway enzymes such as an NADH-requiring alcohol dehydrogenase 43.

[0216] SEQ ID NO: 86 presents example 86 of a designer nirA-promoter-controlled 3-Methylbutanal Reductase (57) DNA construct (1420 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from Thermosynechococcus elongatus BP1 (21-251), an enzyme-encoding sequence (252-1280) selected/modified from the sequences of a Saccharomyces cerevisiae S288c 3-Methylbutanal reductase (DAA10635), a 120-bp rbcS terminator from BP1 (1281-1400), and a PCR RE primer (1401-1420) at the 3' end. **[0217]** SEQ ID NOS: 58-62, 82-84, 69, 70 (or 71) represent a set of sample designer genes that can express a Calvin-cycle 3-phosphoglycerate-branched photosynthetic NADPH-enhanced isobutanol production pathway (34, 35, 03-05, 53-55, 42, 43 or 44); while SEQ ID NOS: 58-62, 82-84, 65-67, 69 and 86 represent another set of sample designer genes that can express a Calvin-cycle 3-phosphoglycerate-branched photosynthetic NADPH-enhanced 3-methyl-1-butanol production pathway (34, 35, 03-05, 53-55, 40, 38, 39, 42, and 57 in FIG.

[0218] These designer genes can be used with certain other designer genes to express certain other pathways such as a Calvin-cycle Fructose-6-phosphate-branched 3-methyl-1-butanol production pathway shown as 13-26, 53-54, 39-40, 42 and 57 (or 43/44) in FIG. **6** as well. The net results of the designer photosynthetic NADPH-enhanced pathways in working with the Calvin cycle are also production of isobutanol ((CH₃)₂CHCH₂OH) and/or 3-methyl-1-butanol (CH₃CH(CH₃)CH₂CH₂OH) from carbon dioxide (CO₂) and water (H₂O) using photosynthetically generated ATP and NADPH.

Designer Calvin-Cycle-Channeled Pathways for Production of 1-Hexanol and 1-Octanol

[0219] According to one of the various embodiments, a designer Calvin-cycle-channeled pathway is created that

takes the Calvin-cycle intermediate product, 3-phosphoglycerate, and converts it into 1-hexanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 34, 35, 03-10, 07'-12' in FIG. 7): NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05, pyruvate-ferredoxin oxidoreductase 06, thiolase 07, 3-hydroxybutyryl-CoA dehydrogenase 08, crotonase 09, butyryl-CoA dehydrogenase 10, designer 3-ketothiolase 07', designer 3-hydroxyacyl-CoA dehydrogenase 08', designer enoyl-CoA dehydratase 09', designer 2-enoyl-CoA reductase 10', designer acyl-CoA reductase 11', and hexanol dehydrogenase 12'. The net result of this designer pathway in working with the Calvin cycle is photobiological production of 1-hexanol (CH₂CH₂CH₂CH₂CH₂CH₂CH₂OH) from carbon dioxide (CO₂) and water (H₂O) using photosynthetically generated ATP and NADPH according to the following process reaction:

$6CO_2 + 7H_2O \rightarrow CH_3CH_2CH_2CH_2CH_2OH + 9O_2$ [9]

[0220] According to another embodiment, a designer Calvin-cycle-channeled pathway is created that takes the intermediate product, 3-phosphoglycerate, and converts it into 1-octanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 34, 35, 03-10, 07'-10', and 07"-12" in FIG. 7): NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05, pyruvate-ferredoxin oxidoreductase 06, thiolase 07, 3-hydroxybutyryl-CoA dehydrogenase 08, crotonase 09, butyryl-CoA dehydrogenase 10, designer 3-ketothiolase 07', designer 3-hydroxyacyl-CoA dehydrogenase 08', designer enoyl-CoA dehydratase 09', designer 2-enoyl-CoA reductase 10', designer 3-ketothiolase 07", designer 3-hydroxyacyl-CoA dehydrogenase 08", designer enoyl-CoA dehydratase 09", designer 2-enoyl-CoA reductase 10", designer acyl-CoA reductase 11", and octanol dehydrogenase 12".

[0221] These pathways represent a significant upgrade in the pathway designs with part of a previously disclosed 1-butanol production pathway (03-10). The key feature is the utilization of an NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34 and an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35 as a mechanism for NADPH/NADH conversion to drive an NADH-requiring designer hydrocarbon chain elongation pathway (07'-10') for 1-hexanol production (07'-12' as shown in FIG. 7).

[0222] SEQ ID NOS: 87-92 represent a set of designer genes that can express the designer hydrocarbon chain elongation pathway for 1-hexanol production (07'-12' as shown in FIG. 7). Briefly, SEQ ID NO: 87 presents example 87 of a designer nirA-promoter-controlled 3-Ketothiolase (07') DNA construct (1540 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1400) selected/modified from the sequences of a *Geobacillus kaustophilus* 3-Ketothiolase (YP_147173), a 120-bp rbcS terminator from BP1 (1401-1520), and a PCR RE primer (1521-1540).

[0223] SEQ ID NO: 88 presents example 88 of a designer nirA-promoter-controlled 3-Hydroxyacyl-CoA Dehydrogenase (08') DNA construct (1231 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Ther-mosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1091) selected/modified from the sequences of a *Syntrophothermus lipocalidus* 3-Hydroxya-cyl-CoA dehydrogenase (YP_003702743), a 120-bp rbcS terminator from BP1 (1092-1211), and a PCR RE primer (1212-1231).

[0224] SEQ ID NO: 89 presents example 89 of a designer nirA-promoter-controlled Enoyl-CoA Dehydratase (09') DNA construct (1162 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1022) selected/modified from the sequences of a *Bordetella petrii* Enoyl-CoA dehydratase (CAP41574), a 120-bp rbcS terminator from BP1 (1023-1442), and a PCR RE primer (1443-1162) at the 3' end.

[0225] SEQ ID NO: 90 presents example 90 of a designer nirA-promoter-controlled 2-Enoyl-CoA Reductase (10') DNA construct (1561 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1421) selected/modified from the sequences of a *Xanthomonas campestris* 2-Enoyl-CoA Reductase (CAP53709), a 120-bp rbcS terminator from BP1 (1422-1541), and a PCR RE primer (1542-1561).

[0226] SEQ ID NO: 91 presents example 91 of a designer nirA-promoter-controlled Acyl-CoA Reductase (11') DNA construct (1747 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1607) selected/modified from the sequences of a *Clostridium cellulovorans* Acyl-CoA reductase (YP_003845606), a 120-bp rbcS terminator from BP1 (1608-1727), and a PCR RE primer (1728-1747).

[0227] SEQ ID NO: 92 presents example 92 of a designer nirA-promoter-controlled Hexanol Dehydrogenase (12') DNA construct (1450 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-1310) selected/modified from the sequences of a *Mycobacterium chubuense* hexanol dehydrogenase (ACZ56328), a 120-bp rbcS terminator from BP1 (1311-1430), and a PCR RE primer (1431-1450).

[0228] SEQ ID NO: 93 presents example 93 of a designer nirA-promoter-controlled Octanol Dehydrogenase (12") DNA construct (1074 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from *Thermosynechococcus elongatus* BP1 (21-251), an enzyme-encoding sequence (252-934) selected/modified from the sequences of a *Drosophila subobscura* octanol dehydrogenase (ABO65263), a 120-bp rbcS terminator from BP1 (935-1054), and a PCR RE primer (1055-1074) at the 3' end.

[0229] Note, the designer enzymes of SEQ ID NOS: 87-91 have certain broad substrate specificity. Consequently, they can also be used as designer 3-ketothiolase 07", designer 3-hydroxyacyl-CoA dehydrogenase 08", designer enoyl-CoA dehydratase 09", designer 2-enoyl-CoA reductase 10", and designer acyl-CoA reductase 11". Therefore, SEQ ID NOS: 87-91 and 93 represent a set of designer genes that can express another designer hydrocarbon chain elongation pathway for 1-octanol production (07'40' and 07"-12" as shown in FIG. 7). SEQ ID NO: 93 (encoding for octanol dehydrogenase 12") is one of the key designer genes that enable production of 1-octanol production in this pathway. The net result of this pathway in working with the Calvin cycle are photobiological production of 1-octanol
$$\begin{array}{l} 8\text{CO}_2+\\ 9\text{H}_2\text{O} \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}+\\ 12\text{O}_2 \end{array}$$
[10]

Calvin-Cycle-Channeled Pathways for Production of 1-Pentanol, 1-Hexanol and 1-Heptanol

[0230] According to one of the various embodiments, a designer Calvin-cycle-channeled pathway is created that takes the Calvin-cycle intermediate product, 3-phosphoglycerate, and converts it into 1-pentanol, 1-hexanol, and/or 1-heptanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 34, 35, 03-05, 36-41, 39, 39'-43', 39'-43', 12', and 39"-43" in FIG. 8): NADPHdependent glyceraldehyde-3-phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05, citramalate synthase 36, 2-methylmalate dehydratase 37, 3-isopropylmalate dehydratase 38, 3-isopropylmalate dehydrogenase 39, 2-isopropylmalate synthase 40, isopropylmalate isomerase 41, 3-isopropylmalate dehydrogenase 39, designer isopropylmalate synthase 40', designer isopropylmalate isomerase 41', designer 3-isopropylmalate dehydrogenase 39', designer 2-keto acid decarboxylase 42', short-chain alcohol dehydrogenase 43', hexanol dehydrogenase 12', designer isopropylmalate synthase 40", designer isopropylmalate isomerase 41", designer 3-isopropylmalate dehydrogenase 39", designer 2-keto acid decarboxylase 42", and designer short-chain alcohol dehydrogenase 43". This designer pathway works with the Calvin cycle using photosynthetically generated ATP and NADPH for photobiological production of 1-pentanol (CH₃CH₂CH₂CH₂CH₂OH), 1-hexanol (CH₃CH₂CH₂CH₂CH₂CH₂CH₂OH), and/or 1-heptanol (CH₃CH₂CH₂CH₂CH₂CH₂CH₂OH) from carbon dioxide (CO_2) and water (H_2O) according to the following process reactions:

$$0CO_2+12H_2O \rightarrow 2CH_3CH_2CH_2CH_2CH_2OH+15O_2$$
[11]

$$5CO_2 + 7H_2O \rightarrow CH_3CH_2CH_2CH_2CH_2CH_2OH + 9O_2$$
 [12]

$$14CO_{2}+$$

$$16H_{2}O\rightarrow 2CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}OH+$$

$$21O_{2}$$
[13]

[0231] According to another embodiment, a designer Calvin-cycle-channeled pathway is created that takes the intermediate product, 3-phosphoglycerate, and converts it into 1-pentanol, 1-hexanol, and/or 1-heptanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 34, 35, 03, 04, 45-52, 40, 41, 39, 39'-43', 39'-43', 12', and 39"-43" in FIG. 8): NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, phosphoenolpyruvate carboxylase 45, aspartate aminotransferase 46, aspartokinase 47, aspartate-semialdehyde dehydrogenase 48, homoserine dehydrogenase 49, homoserine kinase 50, threonine synthase 51, threonine ammonia-lyase 52, 2-isopropylmalate synthase 40, isopropylmalate isomerase 41, 3-isopropylmalate dehydrogenase 39, designer isopropylmalate synthase 40', designer isopropylmalate isomerase 41', designer 3-isopropylmalate dehydrogenase 39', designer 2-keto acid decarboxylase 42', short-chain alcohol dehydrogenase 43', hexanol dehydrogenase 12', designer isopropylmalate synthase 40'', designer isopropylmalate isomerase 41'', designer 3-isopropylmalate dehydrogenase 39'', designer 2-keto acid decarboxylase 42'', and designer short-chain alcohol dehydrogenase 43''.

[0232] These pathways (FIG. 8) share a common feature of using an NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34 and an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35 as a mechanism for NADPH/ NADH conversion to drive production of 1-pentanol, 1-hexanol, and/or 1-heptanol through a designer Calvin-cyclechanneled pathway in combination with a designer hydrocarbon chain elongation pathway (40', 41', 39'). This embodiment also takes the advantage of the broad substrate specificity (promiscuity) of 2-isopropylmalate synthase 40, isopropylmalate isomerase 41, 3-isopropylmalate dehydrogenase 39, 2-keto acid decarboxylase 42, and short-chain alcohol dehydrogenase 43 so that they can be used also as: designer isopropylmalate synthase 40', designer isopropylmalate isomerase 41', designer 3-isopropylmalate dehydrogenase 39', designer 2-keto acid decarboxylase 42', and shortchain alcohol dehydrogenase 43'; isopropylmalate synthase 40", designer isopropylmalate isomerase 41", designer 3-isopropylmalate dehydrogenase 39", designer 2-keto acid decarboxylase 42", and designer short-chain alcohol dehydrogenase 43".

[0233] In this case, proper selection of a short-chain alcohol dehydrogenase with certain promiscuity is also essential. SEQ ID NO: 94 presents example 94 of a designer nirApromoter-controlled Short Chain Alcohol Dehydrogenase DNA construct (1096 bp) that includes a PCR FD primer (sequence 1-20), a 231-bp nirA promoter from Thermosynechococcus elongatus BP1 (21-251), an enzyme-encoding sequence (252-956) selected/modified from the sequences of a Pyrococcus furiosus DSM 3638 Short chain alcohol dehydrogenase (AAC25556), a 120-bp rbcS terminator from BP1 (957-1076), and a PCR RE primer (1077-1096) at the 3' end. [0234] Therefore, SEQ ID NOS: 58-69 and 94 represent a set of designer genes that can express a designer Calvin-cycle 3-phosphoglycerate-braned photosynthetic NADPH-enhanced pathway for production of 1-pentanol, 1-hexanol, and/or 1-heptanol as shown with numerical labels 34, 35, 03-05, 36-41, 39, 39'-43', 39'-43', 39"-43" in FIG. 8. Similarly, SEQ ID NOS: 58-61, 74-81, 66-69, and 94 represent another set of sample designer genes that can express another Calvin-cycle 3-phophoglycerate-branched NADPH-enhanced pathway for production of 1-pentanol, 1-hexanol, and/or 1-heptanol as numerically labeled as 34, 35, 03, 04, 45-52, 40, 41, 39, 39'-43', 39'-43', 39"-43" in FIG. 8. Note, both of these two pathways produce alcohol mixtures with different chain lengths rather than single alcohols since all 2-keto acids (such as 2-ketohexanoate, 2-ketaheptanoate, and 2-ketooctanoate) can be converted to alcohol because of the use of the promiscuity of designer 2-keto acid decarboxylase 42' and designer short-chain alcohol dehydrogenase 43'.

[0235] To improve product specificity, it is a preferred practice to use substrate specific designer enzymes. For example, use of substrate specific designer 1-hexanol dehydrogenase 12' (SEQ ID NO: 92) instead of short-chain alcohol dehydrogenase with promiscuity (43') can improve product specificity more toward 1-hexanol. Consequently, SEQ ID NOS: 58-69 and 92 represent a set of designer genes that can

express a designer Calvin-cycle 3-phosphoglycerate-braned photosynthetic NADPH-enhanced pathway for production of 1-hexanol as shown with numerical labels 34, 35, 03-05, 36-41, 39, 39'-40', 39'-42' and 12' in FIG. **8**.

Designer Calvin-Cycle-Channeled Pathways for Production of 3-Methyl-1-Pentanol, 4-Methyl-1-Hexanol, and 5-Me-thyl-1-Heptanol

[0236] According to one of the various embodiments, a designer Calvin-cycle-channeled pathway is created that takes the Calvin-cycle intermediate product, 3-phosphoglycerate, and converts it into 3-methyl-1-pentanol, 4-methyl-1hexanol, and/or 5-methyl-1-heptanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 34, 35, 03-05, 36-39, 53-55, 39'-43', 39'-43', and 39"-43" in FIG. 9): NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05, citramalate synthase 36, 2-methylmalate dehydratase 37, 3-isopropylmalate dehydratase 38, 3-isopropylmalate dehydrogenase 39, acetolactate synthase 53, ketol-acid reductoisomerase 54, dihydroxyacid dehydratase 55, designer isopropylmalate synthase 40', designer isopropylmalate isomerase 41', designer 3-isopropylmalate dehydrogenase 39', designer 2-keto acid decarboxylase 42', short-chain alcohol dehydrogenase 43', designer isopropylmalate synthase 40", designer isopropylmalate isomerase 41", designer 3-isopropylmalate dehydrogenase 39", designer 2-keto acid decarboxylase 42", and designer short-chain alcohol dehydrogenase 43".

[0237] According to another embodiment, a designer Calvin-cycle-channeled pathway is created that takes the intermediate product, 3-phosphoglycerate, and converts it into 3-methyl-1-pentanol, 4-methyl-1-hexanol, and/or 5-methyl-1-heptanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 34, 35, 03, 04, 45-55, 39'-43', 39'-43', and 39"-43" in FIG. 9): NADPHdependent glyceraldehyde-3-phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, phosphoenolpyruvate carboxylase 45, aspartate aminotransferase 46, aspartokinase 47, aspartate-semialdehyde dehydrogenase 48, homoserine dehydrogenase 49, homoserine kinase 50, threonine synthase 51, threonine ammonia-lyase 52, acetolactate synthase 53, ketol-acid reductoisomerase 54, dihydroxy-acid dehydratase 55, designer isopropylmalate synthase 40', designer isopropylmalate isomerase 41', designer 3-isopropylmalate dehydrogenase 39', designer 2-keto acid decarboxylase 42', short-chain alcohol dehydrogenase 43', designer isopropylmalate synthase 40", designer isopropylmalate isomerase 41", designer 3-isopropylmalate dehydrogenase 39", designer 2-keto acid decarboxylase 42", and designer short-chain alcohol dehydrogenase 43".

[0238] These pathways (FIG. 9) are similar to those of FIG. 8, except they use acetolactate synthase 53, ketol-acid reductoisomerase 54, dihydroxy-acid dehydratase 55 as part of the pathways for production of 3-methyl-1-pentanol, 4-methyl-1-hexanol, and/or 5-methyl-1-heptanol. They all share a common feature of using an NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34 and an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35 as a mechanism for NADPH/NADH conversion to drive production of 3-methyl-1-pentanol, 4-methyl-1-hexanol, and/or 5-methyl-1-heptanol through a designer Calvin-cycle-channeled pathway in combination with a hydrocarbon chain elongation pathway (40', 41', 39'). This embodiment also takes the advantage of the broad substrate specificity (promiscuity) of 2-isopropylmalate synthase 40, isopropylmalate isomerase 41, 3-isopropylmalate dehydrogenase 39, 2-keto acid decarboxylase 42, and short-chain alcohol dehydrogenase 43 so that they can also serve as: designer isopropylmalate synthase 40', designer isopropylmalate isomerase 41', designer 3-isopropylmalate dehydrogenase 39', designer 2-keto acid decarboxylase 42', and short-chain alcohol dehydrogenase 43'; designer isopropylmalate synthase 40'', designer isopropylmalate isomerase 41'', designer 3-isopropylmalate isomerase 41'', designer 3-isopropylmalate dehydrogenase 39'', designer 2-keto acid decarboxylase 42'', and designer short-chain alcohol dehydrogenase 43''.

[0239] Therefore, SEQ ID NOS: 58-69, 82-84, and 94 represent a set of designer genes that can express a designer Calvin-cycle 3-phosphoglycerate-braned photosynthetic NADPH-enhanced pathway for production of 3-methyl-1pentanol, 4-methyl-1-hexanol, and 5-methyl-1-heptanol as shown with numerical labels 34, 35, 03-05, 36-39, 53-55, 39'-43', 39'-43', and 39"-43" in FIG. 9. Similarly, SEQ ID NOS: 58-61, 74-81, 82-84, 66-69, and 94 represent another set of sample designer genes that can express another Calvincycle 3-phophoglycerate-branched NADPH-enhanced pathway for production of 3-methyl-1-pentanol, 4-methyl-1-hexanol, and/or 5-methyl-1-heptanol as numerically labeled as 34, 35, 03, 04, 45-55, 39'-43', 39'-43', 39"-43" in FIG. 9. The net results of the designer photosynthetic NADPH-enhanced pathways in working with the Calvin cycle are production of (CH₃CH₂CH(CH₃)CH₂CH₂OH), 3-methyl-1-pentanol 4-methyl-1-hexanol (CH₃CH₂CH(CH₃)CH₂CH₂CH₂OH), and 5-methyl-1-heptanol(CH₃CH₂CH(CH₃) CH₂CH₂CH₂CH₂OH) from carbon dioxide (CO₂) and water (H₂O) using photosynthetically generated ATP and NADPH according to the following process reactions:

$$6CO_2 + 7H_2O \rightarrow CH_3CH_2CH(CH_3)CH_2CH_2OH + 9O_2$$
[14]

$$\begin{array}{c} 14\text{CO}_2+16\text{H}_2\text{O} \rightarrow 2\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\text{O} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{OH}+21\text{O}_2 \end{array} \tag{15}$$

$$\begin{array}{l} 8\text{CO}_2+9\text{H}_2\text{O} \rightarrow \text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3) \\ \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}+12\text{O}_2 \end{array} \tag{16}$$

Designer Calvin-Cycle-Channeled Pathways for Production of 4-Methyl-1-Pentanol, 5-Methyl-1-Hexanol, and 6-Methyl-1-Heptanol

[0240] According to one of the various embodiments, a designer Calvin-cycle-channeled pathway is created that takes the Calvin-cycle intermediate product, 3-phosphoglycerate, and converts it into 4-methyl-1-pentanol, 5-methyl-1hexanol, and 6-methyl-1-heptanol by using, for example, a set of enzymes consisting of (as shown with the numerical labels 34, 35, 03-05, 53-55, 40, 38, 39, 39'-43', 39'-43', and 39"-43" in FIG. 10): NADPH-dependent glyceraldehyde-3phosphate dehydrogenase 34, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35, phosphoglycerate mutase 03, enolase 04, pyruvate kinase 05, acetolactate synthase 53, ketol-acid reductoisomerase 54, dihydroxy-acid dehydratase 55, isopropylmalate synthase 40, dehydratase 38, 3-isopropylmalate dehydrogenase 39, designer isopropy-Imalate synthase 40', designer isopropylmalate isomerase 41', designer 3-isopropylmalate dehydrogenase 39', designer 2-keto acid decarboxylase 42', short-chain alcohol dehydrogenase 43', designer isopropylmalate synthase 40", designer isopropylmalate isomerase 41", designer 3-isopropylmalate dehydrogenase 39", designer 2-keto acid decarboxylase 42", and designer short-chain alcohol dehydrogenase 43".

[0241] This pathway (FIG. 10) is similar to those of FIG. 8, except that it does not use citramalate synthase 36 and 2-methylmalate dehydratase 37, but uses acetolactate synthase 53, ketol-acid reductoisomerase 54, dihydroxy-acid dehydratase 55 as part of the pathways for production of 4-methyl-1pentano-1,5-methyl-1-hexanol, and/or 6-methyl-1-heptanol. They all share a common feature of using an NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase 34 and an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 35 as a mechanism for NADPH/NADH conversion to drive production of 3-methyl-1-butanol, 4-methyl-1-butanol, and 5-methyl-1-butanol through a Calvin-cycle-channeled pathway in combination with a designer hydrocarbon chain elongation pathway (40', 41', 39'). This embodiment also takes the advantage of the broad substrate specificity (promiscuity) of 2-isopropylmalate synthase 40, isopropylmalate isomerase 41, 3-isopropylmalate dehydrogenase 39, 2-keto acid decarboxylase 42, and short-chain alcohol dehydrogenase 43 so that they may also serve as: designer isopropylmalate synthase 40', designer isopropylmalate isomerase 41', designer 3-isopropylmalate dehydrogenase 39', designer 2-keto acid decarboxylase 42', and short-chain alcohol dehydrogenase 43', designer isopropylmalate synthase 40", designer isopropylmalate isomerase 41", designer 3-isopropylmalate dehydrogenase 39", designer 2-keto acid decarboxylase 42", and designer short-chain alcohol dehydrogenase 43".

[0242] Therefore, SEQ ID NOS: 58-62, 82-84, 65-69 and 94 represent a set of sample designer genes that can be used to express a designer Calvin-cycle 3-phosphoglycerate-braned photosynthetic NADPH-enhanced pathway for production of 4-methyl-1-pentanol, 5-methyl-1-hexanol, and/or 6-methyl-1-heptanol as shown with numerical labels 34, 35, 03-05, 53-55, 40, 38, 39, 39'-43', 39'-43', and 39"-43" in FIG. 10. The net results of the designer photosynthetic NADPH-enhanced pathway in working with the Calvin cycle are production of 4-methyl-1-pentanol (CH₃CH(CH₃)CH₂CH₂CH₂OH), 5-methyl-1-hexanol (CH₃CH(CH₃)CH₂CH₂CH₂CH₂OH), 6-methyl-1-heptanol (CH₃CH(CH₃) and CH₂CH₂CH₂CH₂CH₂CH₂OH) from carbon dioxide (CO₂) and water (H₂O) using photosynthetically generated ATP and NADPH according to the following process reactions:

$$6CO_2 + 7H_2O \rightarrow CH_3CH(CH_3)CH_2CH_2CH_2OH + 9O_2$$
 [17]

$$14CO_2+16H_2O \rightarrow 2CH_3CH(CH_3)$$

CH_3CH_3CH_3CH_3CH(CH_3) [18]

$$\begin{array}{l} 8CO_2+9H_2O \rightarrow CH_3CH(CH_3) \\ CH_2CH_2CH_2CH_2CH_2OH+12O_2 \end{array}$$
[19]

Designer Oxyphotobacteria with Calvin-Cycle-Channeled Pathways for Production of Butanol and Related Higher Alcohols

[0243] According to one of the various embodiments, use of designer DNA constructs in genetic transform of certain oxyphotobacteria hosts can create various designer transgenic oxyphotobacteria with Calvin-cycle-channeled pathways for photobiological production of butanol and related higher alcohols from carbon dioxide and water. To ensure biosafety for use of the designer transgenic photosynthetic organism-based biofuels production technology, it is a preferred practice to incorporate biosafety-guarded features into

the designer transgenic photosynthetic organisms as well. Therefore, in accordance with the present invention, various designer photosynthetic organisms including designer transgenic oxyphotobacteria are created with a biosafety-guarded photobiological biofuel-production technology based on cell-division-controllable designer transgenic photosynthetic organisms. The cell-division-controllable designer photosynthetic organisms contain two key functions: a designer biosafety mechanism(s) and a designer biofuel-production pathway(s). The designer biosafety feature(s) is conferred by a number of mechanisms including: a) the inducible insertion of designer proton-channels into cytoplasm membrane to permanently disable any cell division and/or mating capability, b) the selective application of designer cell-division-cycle regulatory protein or interference RNA (iRNA) to permanently inhibit the cell division cycle and preferably keep the cell at the G_1 phase or G_0 state, and c) the innovative use of a high-CO2-requiring host photosynthetic organism for expression of the designer biofuel-production pathway(s). The designer cell-division-control technology can help ensure biosafety in using the designer organisms for biofuel production.

[0244] Oxyphotobacteria (including cyanobacteria and oxychlorobacteria) that can be selected for use as host organisms to create designer transgenic oxyphotobacteria for photobiological production of butanol and related higher alcohols include (but not limited to): Thermosynechococcus elongatus BP-1, Nostoc sp. PCC 7120, Synechococcus elongatus PCC 6301, Syncechococcus sp. strain PCC 7942, Syncechococcus sp. strain PCC 7002, Svncechocvstis sp. strain PCC 6803, Prochlorococcus marinus MED4, Prochlorococcus marinus MIT 9313, Prochlorococcus marinus NATL1A, Prochlorococcus SS120, Spirulina platensis (Arthrospira platensis), Spirulina pacifica, Lyngbya majuscule, Anabaena sp., Svnechocvstis sp., Svnechococcus elongates, Svnechococcus (MC-A), Trichodesmium sp., Richelia intracellularis, Synechococcus WH7803, Synechococcus WH8102, Nostoc punctiforme, Syncechococcus sp. strain PCC 7943, Synechocyitis PCC 6714 phycocyanin-deficient mutant PD-1, Cyanothece strain 51142, Cyanothece sp. CCY0110, Oscillatoria limosa, Lyngbya majuscula, Symploca muscorum, Gloeobacter violaceus, Prochloron didemni, Prochlorothrix hollandica, Prochlorococcus marinus, Prochlorococcus SS120, Synechococcus WH8102, Lyngbya majuscula, Symploca muscorum, Synechococcus bigranulatus, cryophilic Oscillatoria sp., Phormidium sp., Nostoc sp.-1, Calothrix parietina, thermophilic Synechococcus bigranulatus, Synechococcus lividus, thermophilic Mastigocladus laminosus, Chlorogloeopsis fritschii PCC 6912, Synechococcus vulcanus, Synechococcus sp. strain MA4, Synechococcus sp. strain MA19, and Thermosynechococcus elongatus.

[0245] According to one of the examples, use of designer DNA constructs such as SEQ ID NOS: 58-94 in genetic transform of certain oxyphotobacteria hosts such as *Thermosynechococcus elongatus* BP1 can create a series of designer transgenic oxyphotobacteria with Calvin-cycle-channeled pathways for production of butanol and related higher alcohols. Consequently, SEQ ID NOS: 58-61, 74-81, 66-69, and 72 (and/or 73) represent a designer transgenic oxyphotobacteria transgenic oxyphotobacteria transgenic transgenic oxyphotobacteria but and related higher alcohols. Consequently, SEQ ID NOS: 58-61, 74-81, 66-69, and 72 (and/or 73) represent a designer transgenic oxyphotobacteria such as a designer transgenic *Thermosynechococcus* that comprises the designer genes of a Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced pathway (numerically labeled as 34, 35, 03, 04, 45-52, 39-42, and 12 in FIG. 4) for photobiological production of 1-butanol

from carbon dioxide and water. SEQ ID NOS: 58-69 and 72 (and/or 73) represent another designer transgenic oxyphotobacterium such as designer transgenic *Thermosynechococcus* that comprises the designer genes of a Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced pathway (numerically labeled as 34, 35, 03-05, 36-42, and 12 in FIG. 4) for photobiological production of 1-butanol from carbon dioxide and water as well.

[0246] Similarly, SEQ ID NOS: 58-66, 82-84, 69 and 85 represent another designer transgenic oxyphotobacterium such as designer transgenic *Thermosynechococcus* with a Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced pathway (numerically labeled as 34, 35, 03-05, 36-39, 53-55, 42 and 56 in FIG. 5) for photobiological production of 2-methyl-1-butanol production from carbon dioxide and water; while SEQ ID NOS: 58-61, 74-84, 69 and 85 represent another designer transgenic *Thermosynechococccus* with a Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced 2-methyl-1-butanol production pathway (34, 35, 03, 04, 45-55, 42 and 56 in FIG. 5) for photobiological production of 2-methyl-1-butanol production pathway (34, 35, 03, 04, 45-55, 42 and 56 in FIG. 5) for photobiological production of 2-methyl-1-butanol production pathway (34, 35, 03, 04, 45-55, 42 and 56 in FIG. 5) for photobiological production of 2-methyl-1-butanol production production from carbon dioxide and water.

[0247] SEQ ID NOS: 58-63, 82-84, 69, 70 (or 71) represent another designer transgenic oxyphotobacterium such as designer transgenic *Thermosynechococcus* with a Calvincycle 3-phosphoglycerate-branched photosynthetic NADPH-enhanced isobutanol production pathway (34, 35, 03-05, 53-5, 42, 43 or 44); while SEQ ID NOS: 58-62, 81-83, 65-67, 69 and 86 represent another designer transgenic *Thermosynechococcus* with a Calvin-cycle 3-phosphoglyceratebranched photosynthetic NADPH-enhanced 3-methyl-1-butanol production pathway (numerical labels 34, 35, 03-05, 53-55, 40, 38, 39, 42, and 57 in FIG. **6**).

[0248] SEQ ID NOS: 87-92 represent another designer transgenic *Thermosynechococcus* with a designer hydrocarbon chain elongation pathway (07'-12' as shown in FIG. 7) for photobiological production of 1-hexanol. SEQ ID NOS: 87-91 and 93 represent another designer transgenic *Thermosynechococcus* with a designer hydrocarbon chain elongation pathway (07'-10' and 07''-12'' as shown in FIG. 7) for photobiological production of 1-octanol.

[0249] SEQ ID NOS: 58-69 and 92 represent another designer transgenic *Thermosynechococcus* with a designer Calvin-cycle 3-phosphoglycerate-braned photosynthetic NADPH-enhanced pathway (34, 35, 03-05, 36-41, 39, 39'-40', 39'-42' and 12' in FIG. **8**) for photobiological production of 1-hexanol from carbon dioxide and water.

[0250] SEQ ID NOS: 58-69, 82-84, and 94 represent a designer transgenic *Thermosynechococcus* with a designer Calvin-cycle 3-phosphoglycerate-braned photosynthetic NADPH-enhanced pathway (34, 35, 03-05, 36-39, 53-55, 39'-43', 39'-43' in FIG. 9) for production of 3-methyl-1-pentanol, 4-methyl-1-hexanol, and 5-methyl-1-heptanol from carbon dioxide and water. Similarly, SEQ ID NOS: 58-61, 74-81, 82-84, 66-69, and 94 represent another designer transgenic *Thermosynechococcus* with a Calvin-cycle 3-phophoglycerate-branched NADPH-enhanced pathway (34, 35, 03, 04, 45-55, 39'-43', 39'-43', 39''-43'' in FIG. 9) for photobiological production of 3-methyl-1-pentanol, 4-methyl-1-hexanol, and 5-methyl-1-pentanol, 4-methyl-1-hexanol, and 5-methyl-1-heptanol from carbon dioxide and water as well.

[0251] SEQ ID NOS: 58-62, 82-84, 65-69 and 94 represent a designer transgenic *Thermosynechococcus* with a designer Calvin-cycle 3-phosphoglycerate-braned photosynthetic NADPH-enhanced pathway labels (34, 35, 03-05, 53-55, 40, 38, 39, 39'-43', 39'-43', and 39"-43" in FIG. **10**) for photobiological production of 4-methyl-1-pentanol, 5-methyl-1-hexanol, and/or 6-methyl-1-heptanol from carbon dioxide and water.

[0252] Use of other host oxyphotobacteria such as Synechococcus sp. strain PCC 7942, Synechocystis sp. strain PCC 6803, Prochlorococcus marinus, Cyanothece sp. ATCC 51142, for genetic transformation with proper designer DNA constructs (genes) can create other designer oxyphotobacteria for photobiological production of butanol and higher alcohols as well. For example, use of Synechococcus sp. strain PCC 7942 as a host organism in genetic transformation with SEQ ID NOS: 95-98 (and/or 99) can create a designer transgenic Synechococcus for photobiological production of 1-butanol. Briefly, SEQ ID NO: 95 presents example 95 of a detailed DNA construct (1438 base pairs (bp)) of a designer NADPH-dependent Glyceraldehyde-3-Phosphate-Dehydrogenase (34) gene that includes a PCR FD primer (sequence by 1-20), a 88-bp nirA promoter (21-108) selected from the Synechococcus sp. strain PCC 7942 (freshwater cyanobacterium) nitrite-reductase-gene promoter sequence, an enzymeencoding sequence (109-1110) selected and modified from a Staphylococcus NADPH-dependent glyceraldehyde-3-phosphate-dehydrogenase sequence (GenBank accession number: YP_003471459), a 308-bp Synechococcus rbcS terminator (1111-1418), and a PCR RE primer (1419-1438).

[0253] SEQ ID NO: 96 presents example 96 of a detailed DNA construct (1447 bp) of a designer NAD-dependent Glyceraldehyde-3-Phosphate-Dehydrogenase (35) gene that includes a PCR FD primer (sequence by 1-20), a 88-bp nirA promoter (21-108) selected from the *Synechococcus* nitrite-reductase-gene promoter sequence, an enzyme-encoding sequence (109-1119) selected from a *Staphylococcus aureus* NAD-dependent glyceraldehyde-3-phosphate-dehydrogenase sequence (GenBank accession number: ADC36961), a 308-bp *Synechococcus* rbcS terminator (1120-1427), and a PCR RE primer (1428-1447).

[0254] SEQ ID NO: 97 presents example 97 of a detailed DNA construct (2080 bp) of a designer 2-Keto Acid Decarboxylase (42) gene that includes a PCR FD primer (sequence by 1-20), a 88-bp nirA promoter (21-108) selected from the *Synechococcus* nitrite-reductase-gene promoter sequence, an enzyme-encoding sequence (109-1752) selected from a *Lactococcus lactis* branched-chain alpha-ketoacid decarboxylase (GenBank accession number: AAS49166), a 308-bp *Synechococcus* rbcS terminator (1753-2060), and a PCR RE primer (2061-2080).

[0255] SEQ ID NO: 98 presents a detailed DNA construct (1603 bp) of a designer NADH-dependent butanol dehydrogenase (12a) gene that include a PCR FD primer (sequence by 1-20), a 88-bp nirA promoter (21-108) selected from the *Synechococcus* nitrite-reductase-gene promoter sequence, an enzyme-encoding sequence (109-1275) selected from a *Clostridium* NADH-dependent butanol dehydrogenase (Gen-Bank accession number: ADO12118), a 308-bp *Synechococcus* rbcS terminator (1276-1583), and a PCR RE primer (1584-1603).

[0256] SEQ ID NO: 99 presents example 99 of a detailed DNA construct (1654 bp) of a designer NADPH-dependent Butanol Dehydrogenase (12b) gene including: a PCR FD primer (sequence by 1-20), a 88-bp nirA promoter (21-108) selected from the *Synechococcus* nitrite-reductase-gene promoter sequence, an enzyme-encoding sequence (109-1326)

selected from a *Butyrivibrio* NADPH-dependent butanol dehydrogenase (GenBank: EFF67629), a 308-bp *Synechococcus* rbcS terminator (1327-1634), and a PCR RE primer (1635-1654).

[0257] Note, in the designer transgenic *Synechococcus* that is represented by SEQ ID NOS: 95-98 (and/or 99), *Synechococcus*'s native enzymes of 03-05, 36-41 and 45-52 are used in combination with the designer nirA-promoter-controlled enzymes of 34, 35, 42 and 12 [encoded by SEQ ID NOS: 95-98 (and/or 99)] to confer the Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced pathways for photobiological production of 1-butanol from carbon dioxide and water (FIG. **4**).

[0258] Similarly, use of *Synechocystis* sp. strain PCC 6803 as a host organism in genetic transformation with SEQ ID NOS: 100-102 (and/or 103) creates a designer transgenic *Synechocystis* for photobiological production of 1-butanol. Briefly, SEQ ID NO: 100 presents example 100 of a designer nirA-promoter-controlled NAD-dependent Glyceraldehyde-3-Phosphate Dehydrogenase (35) DNA construct (1440 bp) that includes a PCR FD primer (sequence 1-20), a 89-bp *Synechocystis* sp. strain PCC 6803 nitrite-reductase nirA promoter (21-109), an enzyme-encoding sequence (110-1011) selected from a *Streptococcus pyogenes* NAD-dependent Glyceraldehyde-3-phosphate dehydrogenase (GenBank: YP_002285269), a 409-bp *Synechocystis* sp. PCC 6803 rbcS terminator (1012-1420), and a PCR RE primer (1421-1440).

[0259] SEQ ID NO: 101 presents example 101 of a designer nirA-promoter-controlled 2-Keto Acid Decarboxylase (42) DNA construct (2182 bp) that includes a PCR FD primer (sequence 1-20), a 89-bp *Synechocystis* sp. strain PCC 6803 nitrite-reductase nirA promoter (21-109), an enzyme-encoding sequence (110-1753) selected from a *Lactococcus lactis* branched-chain alpha-ketoacid decarboxylase (GenBank: AAS49166), a 409-bp *Synechocystis* sp. PCC 6803 rbcS terminator (1754-2162), and a PCR RE primer (2163-2182).

[0260] SEQ ID NO: 102 presents example 102 of a designer nirA-promoter-controlled NADH-dependent Butanol Dehydrogenase (12a) DNA construct (1705 bp) that includes a PCR FD primer (sequence 1-20), a 89-bp *Synechocystis* sp. strain PCC 6803 nitrite-reductase nirA promoter (21-109), an enzyme-encoding sequence (110-1276) selected from a *Clostridium carboxidivorans* P7 NADH-dependent butanol dehydrogenase (GenBank: ADO12118), a 409-bp *Synechocystis* sp. PCC 6803 rbcS terminator (1277-1685), and a PCR RE primer (1686-1705).

[0261] SEQ ID NO: 103 presents example 103 of a designer nirA-promoter-controlled NADPH-dependent butanol dehydrogenase (12b) DNA construct (1756 bp) that includes a PCR FD primer (sequence 1-20), a 89-bp *Synechocystis* sp. strain PCC 6803 nitrite-reductase nirA promoter (21-109), an enzyme-encoding sequence (110-1327) selected from a *Butyrivibrio crossotus* NADPH-dependent butanol dehydrogenase (GenBank: EFF67629), a 409-bp *Synechocystis* sp. PCC 6803 rbcS terminator (1328-1736), and a PCR RE primer (1737-1756).

[0262] Note, in the designer transgenic *Synechocystis* that contains the designer genes of SEQ ID NOS: 100-102 (and/or 103), *Synechocystis*'s native enzymes of 34, 03-05, 36-41 and 45-52 are used in conjunction with the designer nirA-promoter-controlled enzymes of 35, 42 and 12 [encoded by SEQ ID NOS: 100-102 (and/or 103)] to confer the Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-en-

[0263] Use of *Nostoc* sp. strain PCC 7120 as a host organism in genetic transformation with SEQ ID NOS: 104-109 can create a designer transgenic *Nostoc* for photobiological production of 2-methyl-1-butanol (FIG. **5**). Briefly, SEQ ID NO: 104 presents example 104 of a designer hox-promotercontrolled NAD-dependent Glyceraldehyde-3-Phosphate Dehydrogenase (35) DNA construct (1655 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc* sp. strain PCC 7120 (*Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1203) selected/modified from the sequence of a *Streptococcus pyogenes* NZ131 NADdependent glyceraldehyde-3-phosphate dehydrogenase (GenBank: YP_002285269), a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (1204-1635), and a PCR RE primer (1636-1655).

[0264] SEQ ID NO: 105 presents example 105 of a designer hox-promoter-controlled Acetolactate Synthase (53) DNA construct (2303 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc* sp. strain PCC 7120 (*Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1851) selected/modified from the sequence of a *Thermosynechococcus elongatus* BP-1 acetolactate synthase (GenBank: NP_682614), a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (1852-2283), and a PCR RE primer (2284-2303).

[0265] SEQ ID NO: 106 presents example 106 of a designer hox-promoter-controlled Ketol-Acid Reductoisomerase (54) DNA construct (1661 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc* sp. strain PCC 7120 (*Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1209) selected/modified from the sequence of a *Calditerrivibrio nitroreducens* ketol-acid reductoisomerase (GenBank: YP_004050904), a 432-bp *Nostoc* sp. gor terminator (1210-1641), and a PCR RE primer (1642-1661).

[0266] SEQ ID NO: 107 presents example 107 of a designer hox-promoter-controlled Dihydroxy-Acid Dehydratase (55) DNA construct (2324 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc* sp. strain PCC 7120 (*Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1872) selected/modified from the sequence of a *Marivirga tractuosa* DSM 4126 dihydroxyacid dehydratase (GenBank: YP_004053736), a 432-bp *Nostoc* sp. gor terminator (1873-2304), and a PCR RE primer (2305-2324).

[0267] SEQ ID NO: 108 presents example 108 of a designer hox-promoter-controlled branched-chain alpha-Ketoacid Decarboxylase (42) DNA construct (2288 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc* sp. (*Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1836) selected/modified from the sequence of a *Lactococcus lactis* branched-chain alpha-ketoacid decarboxylase (GenBank: AAS49166), a 432-bp *Nostoc* sp. gor terminator (1837-2268), and a PCR RE primer (2269-2288).

[0268] SEQ ID NO: 109 presents example 109 of a designer hox-promoter-controlled 2-Methylbutyraldehyde Reductase (56) DNA construct (1613 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc* sp. (*Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1461) selected/modified from the sequence of a *Schizosaccharomyces japonicus* y 2-methylbutyraldehyde reductase (GenBank: XP_002173231), a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (1462-1893), and a PCR RE primer (1894-1613).

[0269] Note, in the designer transgenic *Nostoc* that contains designer hox-promoter-controlled genes of SEQ ID NOS: 104-109, *Nostoc*'s native enzymes (genes) of 34, 03-05, 36-39 and 45-52 are used in combination with the designer hox-promoter-controlled enzymes of 35, 53-55, 42 and 56 (encoded by DNA constructs of SEQ ID NOS: 104-109) to confer the Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced pathways for photobiological production of 2-methyl-1-butanol from carbon dioxide and water (FIG. **5**).

[0270] Use of Prochlorococcus marinus MIT 9313 as a host organism in genetic transformation with SEQ ID NOS: 110-122 can create a designer transgenic Prochlorococcus marinus for photobiological production of isobutanol and/or 3-methyl-1-butanol (FIG. 6). Briefly, SEQ ID NO:110 presents example 110 for a designer groE-promoter-controlled NAD-dependent Glyceraldehyde-3-Phosphate Dehydrogenase (35) DNA construct (1300 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp Prochlorococcus marinus MIT 9313 heat- and light-responsive groE promoter (21-157), an enzyme-encoding sequence (158-1159) selected from a Vibrio cholerae MJ-1236 NAD-dependent Glyceraldehyde-3-phosphate dehydrogenase (GenBank: ACQ61431), a 121-bp Prochlorococcus marinus MIT9313 rbcS terminator (1160-1280), and a PCR RE primer (1281-1300).

[0271] SEQ ID NO:111 presents example 111 for a designer groE-promoter-controlled Phosphoglycerate Mutase (03) DNA construct (1498 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp *Prochlorococcus marinus* MIT9313 heat- and light-responsive groE promoter (21-157), an enzyme-encoding sequence (158-1357) selected from a *Pelotomaculum thermopropionicum* SI phosphoglycerate mutase (GenBank: YP_001212148), a 121-bp *Prochlorococcus marinus* rbcS terminator (1358-1478), and a PCR RE primer (1479-1498).

[0272] SEQ ID NO:112 presents example 112 for a designer groE-promoter-controlled Enolase (04) DNA construct (1588 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp *Prochlorococcus* heat- and light-responsive groE promoter (21-157), an enzyme-encoding sequence (158-1447) selected from a *Thermotoga* enolase (GenBank: ABQ46079), a 121-bp *Prochlorococcus marinus* rbcS terminator (1448-1568), and a PCR RE primer (1569-1588).

[0273] SEQ ID NO:113 presents example 113 for a designer groE-promoter-controlled Pyruvate Kinase (05) DNA construct (1717 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp *Prochlorococcus marinus* MIT9313 heat- and light-responsive groE promoter (21-157), an enzyme-encoding sequence (158-1576) selected from a *Thermotoga lettingae* TMO pyruvate kinase (GenBank: YP_001471580), a 121-bp *Prochlorococcus marinus* MIT9313 rbcS terminator (1577-1697), and a PCR RE primer (1698-1717).

[0274] SEQ ID NO:114 presents example 114 for a designer groE-promoter-controlled Acetolactate Synthase (53) DNA construct (2017 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp *Prochlorococcus marinus* MIT 9313 heat- and light-responsive groE promoter (21-157), an enzyme-encoding sequence (158-1876) selected from a *Bacillus licheniformis* ATCC 14580 acetolactate synthase

(GenBank: AAU42663), a 121-bp *Prochlorococcus marinus* MIT 9313 rbcS terminator (1877-1997), and a PCR RE primer (1998-2017).

[0275] SEQ ID NO:115 presents example 115 for a designer groE-promoter-controlled Ketol-Acid Reductoisomerase (54) DNA construct (1588 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp *Prochlorococcus marinus* MIT9313 heat- and light-responsive groE promoter (21-157), an enzyme-encoding sequence (158-1168) selected from a *Thermotoga petrophila* RKU-1 ketol-acid reductoisomerase (GenBank: ABQ46398), a 400-bp *Prochlorococcus marinus* MIT9313 rbcS terminator (1169-1568), and a PCR RE primer (1569-1588).

[0276] SEQ ID NO:116 presents example 116 for a designer groE-promoter-controlled Dihydroxy-Acid Dehydratase (55) DNA construct (1960 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp *Prochlorococcus marinus* heat- and light-responsive groE promoter (21-157), an enzyme-encoding sequence (158-1819) selected from a *Syntrophothermus lipocalidus* DSM 12680 dihydroxy-acid dehydratase (GenBank: ADI02905), a 121-bp *Prochlorococcus marinus* rbcS terminator (1820-1940), and a PCR RE primer (1941-1960).

[0277] SEQ ID NO:117 presents example 117 for a designer groE-promoter-controlled 2-Keto Acid Decarboxylase (42) DNA construct (1945 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp *Prochlorococcus* heat- and light-responsive groE promoter (21-157), an enzyme-encoding sequence (158-1804) selected from a *Lactococcus lactis* Alpha-ketoisovalerate decarboxylase (GenBank: ADA65057), a 121-bp *Prochlorococcus* rbcS terminator (1805-1925), and a PCR RE primer (1926-1945).

[0278] SEQ ID NO:118 presents example 118 for a designer nirA-promoter-controlled Alcohol Dehydrogenase (43/44) DNA construct (1138 bp) that includes a PCR FD primer (sequence 1-20), a 251-bp *Prochlorococcus* nirA promoter (21-271), an enzyme-encoding sequence (272-997) selected from a *Geobacillus* short chain alcohol dehydrogenase (GenBank: YP_146837), a 121-bp *Prochlorococcus* rbcS terminator (998-1118), and a PCR RE primer (1119-1138).

[0279] Note, in the designer transgenic *Prochlorococcus* that contains the designer genes of SEQ ID NOS: 110-118, *Prochlorococcus*'s native gene (enzyme) of 34 is used in combination with the designer groE and nirA-promoters-controlled genes (enzymes) of 35, 03-05, 53-55, 42 and 43/44 (encoded by DNA constructs of SEQ ID NOS: 110-118) to confer the Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced pathways for photobiological production of isobutanol from carbon dioxide and water (FIG. 6). Addition of the following four designer groE promoter-controlled genes (SEQ ID NO:119-122) results in another designer transgenic *Prochlorococcus* that can produce both isobutanol and 3-methyl-1-butanol from carbon dioxide and water (35, 03-05, 53-55, 42, 43/44, plus 38-40 and 57 as shown in FIG. 6).

[0280] Briefly, SEQ ID NO:119 presents example 119 for a designer groE-promoter-controlled 2-Isopropylmalate Synthase (40) DNA construct (1816 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp *Prochlorococcus marinus* MIT9313 heat- and light-responsive groE promoter (21-157), an enzyme-encoding sequence (158-1675) selected from a *Pelotomaculum thermopropionicum* S12-isopropylmalate

synthase (GenBank: YP_001211081), a 121-bp *Prochloro-coccus marinus* rbcS terminator (1676-1796), and a PCR RE primer (1797-1816).

[0281] SEQ ID NO:120 presents example 120 for a designer groE-promoter-controlled 3-Isopropylmalate Dehydratase (38) DNA construct (2199 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp Prochlorococcus marinus MIT9313 heat- and light-responsive groE promoter (21-157), a 3-isopropylmalate dehydratase large subunit-encoding sequence (158-1420) selected from a Pelotomaculum thermopropionicum S13-isopropylmalate dehydratase large subunit (GenBank: YP_001211082), a 137-bp Prochlorococcus marinus MIT9313 heat- and light-responsive groE promoter (1421-1557), a 3-isopropylmalate dehydratase small subunitencoding sequence (1558-2058) selected from a Pelotomaculum thermopropionicum SI 3-isopropylmalate dehydratase small subunit (GenBank: YP_001211083), a 121-bp Prochlorococcus marinus rbcS terminator (2059-2179), and a PCR RE primer (2180-2199).

[0282] SEQ ID NO:121 presents example 121 for a designer groE-promoter-controlled 3-Isopropylmalate Dehydrogenase (39) DNA construct (1378 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp *Prochlorococcus marinus* MIT9313 heat- and light-responsive groE promoter (21-157), an enzyme-encoding sequence (158-1237) selected from a *Syntrophothermus lipocalidus* DSM 12680 3-isopropylmalate dehydrogenase (GenBank: ADI02898), a 121-bp *Prochlorococcus marinus* rbcS terminator (1238-1358), and a PCR RE primer (1359-1378).

[0283] SEQ ID NO:122 presents example 122 for a designer groE-promoter-controlled 3-Methylbutanal Reductase (57) DNA construct (1327 bp) that includes a PCR FD primer (sequence 1-20), a 137-bp *Prochlorococcus marinus* MIT9313 heat- and light-responsive groE promoter (21-157), an enzyme-encoding sequence (158-1186) selected from a *Saccharomyces cerevisiae* S288c 3-Methylbutanal reductase (GenBank: DAA10635), a 121-bp *Prochlorococcus marinus* MIT9313 rbcS terminator (1187-1307), and a PCR RE primer (1308-1327).

[0284] Note, the use of SEQ ID NOS: 110-117 and 119-122 in genetic transformation of *Prochlorococcus marinus* MIT 9313 creates another designer transgenic *Prochlorococcus marinus* with a groE promoter-controlled designer Calvin-cycle-channeled pathway (identified as 34 (native), 35, 03-05, 53-55, 38-40, 42 and 57 in FIG. 6) for photobiological production of 3-methyl-1-butanol from carbon dioxide and water.

[0285] Use of *Cyanothece* sp. ATCC 51142 as a host organism in genetic transformation with SEQ ID NOS: 123-128 can create a designer transgenic *Cyanothece* for photobiological production of 1-pentanol, 1-hexanol, and/or 1-heptanol (FIG. 8). Briefly, SEQ ID NO:123 presents example 123 for a designer nirA-promoter-controlled 2-Isopropylmalate Synthase (40) DNA construct (2004 bp) that includes a PCR FD primer (sequence 1-20), a 203-bp *Cyanothece* sp. nirA promoter (21-223), an enzyme-encoding sequence (224-1783) selected from a *Hydrogenobacter thermophilus* 2-isopropylmalate synthase sequence (GenBank: BAI69273), a 201-bp *Cyanothece* sp. rbcS terminator (1784-1984), and a PCR RE primer (1985-2004).

[0286] SEQ ID NO:124 presents example 124 for a designer nirA-promoter-controlled Isopropylmalate Isomerase (41) large/small subunits DNA construct (2648 bp) that includes a PCR FD primer (sequence 1-20), a 203-bp

Cyanothece sp. ATCC 51142 nirA promoter (21-223), an enzyme-large-subunit-encoding sequence (224-1639) selected from a *Anoxybacillus flavithermus* WK1 isopropyl-malate isomerase large subunit sequence (GenBank: YP_002314962), a 203-bp *Cyanothece* sp. ATCC 51142 nirA promoter (1640-1842), an enzyme-small-subunit-encoding sequence (1843-2427) selected from a *Anoxybacillus flavithermus* WK1 isopropylmalate isomerase small subunit sequence (GenBank: YP_002314963), a 201-bp *Cyanothece* sp. ATCC 51142 rbcS terminator (2428-1628), and a PCR RE primer (2629-2648).

[0287] SEQ ID NO:125 presents example 125 for a designer g nirA-promoter-controlled 3-Isopropylmalate Dehydrogenase (39) DNA construct (1530 bp) that includes a PCR FD primer (sequence 1-20), a 203-bp *Cyanothece* sp. ATCC 51142 nirA promoter (21-223), an enzyme-encoding sequence (224-1309) selected from a *Thermosynechococcus elongatus* BP-1 3-isopropylmalate dehydrogenase sequence (GenBank: BAC09152), a 201-bp *Cyanothece* sp. ATCC 51142 rbcS terminator (1310-1310), and a PCR RE primer (1311-1530).

[0288] SEQ ID NO:126 presents example 126 for a designer nirA-promoter-controlled 2-Keto Acid Decarboxylase (42') DNA construct (2088 bp) that includes a PCR FD primer (sequence 1-20), a 203-bp *Cyanothece* nirA promoter (21-223), an enzyme-encoding sequence (224-1867) selected from a *Lactococcus lactis* 2-keto acid decarboxylase (Gen-Bank: AAS49166), a 201-bp *Cyanothece* rbcS terminator (1868-2068), and a PCR RE primer (2069-2088).

[0289] SEQ ID NO:127 presents example 127 for a designer nirA-promoter-controlled Hexanol Dehydrogenase (12') DNA construct (1503 bp) that includes a PCR FD primer (sequence 1-20), a 203-bp *Cyanothece* nirA promoter (21-223), an enzyme-encoding sequence (224-1282) selected from a *Mycobacterium chubuense* hexanol dehydrogenase (GenBank: ACZ56328), a 201-bp *Cyanothece* rbcS terminator (1283-1483), and a PCR RE primer (1484-1503).

[0290] SEQ ID NO:128 presents example 128 for a designer nirA-promoter-controlled short-chain Alcohol Dehydrogenase (43', 43") DNA construct (1149 bp) that includes a PCR FD primer (sequence 1-20), a 203-bp *Cyanothece* sp. ATCC 51142 nirA promoter (21-223), an enzyme-encoding sequence (224-928) selected from a *Pyrococcus furiosus* DSM 3638 Short chain alcohol dehydrogenase (GenBank: AAC25556), a 201-bp *Cyanothece* sp. ATCC 51142 rbcS terminator (929-1129), and a PCR RE primer (1130-1149).

[0291] Note, in the designer transgenic *Cvanothece* that contains designer nirA promoter-controlled genes of SEQ ID NOS: 123-127, Cyanothece's native enzymes of 34,03-05, 36-38, and 45-52 are used in combination with the designer nirA-promoters-controlled enzymes of 35, 39-41 (39'-41', 39'-41'), 42' and 12' (encoded by DNA constructs of SEQ ID NOS: 123-127) to confer the Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced pathways for photobiological production of 1-hexanol from carbon dioxide and water (FIG. 8). Addition of a designer nirApromoters-controlled gene (SEQ ID NO: 128) of a short chain alcohol dehydrogenase 43' (43") with promiscuity results in another designer transgenic Cyanothece containing a Calvincycle-channeled pathway (35, 39-41, 39'-43', 39'-43', and 39"-43" as shown in FIG. 8) that can produce 1-pentanol, 1-hexanol, and 1-hexanol from carbon dioxide and water.

Designer Advanced Photosynthetic Organisms with Calvin-Cycle-Channeled Pathways for Production of Butanol and Related Higher Alcohols

[0292] According to one of the various embodiments, use of certain designer DNA constructs in genetic transformation of eukaryotic photosynthetic organisms such as plant cells, eukaryotic aquatic plants (including, for example, eukaryotic algae, submersed aquatic herbs, duckweeds, water cabbage, water lily, water hyacinth, Bolbitis heudelotii, Cabomba sp., and seagrasses) can create designer transgenic eukaryotic photosynthetic organisms for production of butanol and related higher alcohols from carbon dioxide and water. Eukaryotic algae that can be selected for use as host organisms to create designer algae for photobiological production of butanol and related higher alcohols include (but not limited to): Dunaliella salina, Dunaliella viridis, Dunaliella bardowil, Crypthecodinium cohnii, Schizochytrium sp., Chlamydomonas reinhardtii. Platvmonas subcordiformis. Chlorella fusca, Chlorella sorokiniana, Chlorella vulgaris, 'Chlorella' ellipsoidea, Chlorella spp., Haematococcus pluvialis; Parachlorella kessleri, Betaphycus gelatinum, Chondrus crispus, Cyanidioschyzon merolae, Cyanidium caldarium, Galdieria sulphuraria, Gelidiella acerosa, Gracilaria changii, Kappaphycus alvarezii, Porphyra miniata, Ostreococcus tauri, Porphyra yezoensis, Porphyridium sp., Palmaria palmata, Gracilaria spp., Isochrysis galbana, Kappaphycus spp., Laminaria japonica, Laminaria spp., Monostroma spp., Nannochloropsis oculata, Porphyra spp., Porphyridium spp., Undaria pinnatifida, Ulva lactuca, Ulva spp., Undaria spp., Phaeodactylum Tricornutum, Navicula saprophila, Cylindrotheca fusiformis, Cyclotella cryptica, Euglena gracilis, Amphidinium sp., Symbiodinium microadriaticum, Macrocystis pyrifera, Ankistrodesmus braunii, Scenedesmus obliquus, Stichococcus sp., Platymonas sp., Dunalielki sauna, and Stephanoptera gracilis.

[0293] According to another embodiment, the transgenic photosynthetic organism comprises a designer transgenic plant or plant cells selected from the group consisting of aquatic plants, plant cells, green algae, red algae, brown algae, blue-green algae (oxyphotobacteria including cyanobacteria and oxychlorobacteria), diatoms, marine algae, freshwater algae, salt-tolerant algal strains, cold-tolerant algal strains, heat-tolerant algal strains, antenna-pigment-deficient mutants, butanol-tolerant algal strains, higher-alcohols-tolerant algal strains, higher-alcohols-tolerant oxyphotobacteria, and combinations thereof.

[0294] According to another embodiment, said transgenic photosynthetic organism comprises a biosafety-guarded feature selected from the group consisting of: a designer protonchannel gene inducible under pre-determined inducing conditions, a designer cell-division-cycle iRNA gene inducible under pre-determined inducing conditions, a high-CO₂-requiring mutant as a host organism for transformation with designer biofuel-production-pathway genes in creating designer cell-division-controllable photosynthetic organisms, and combinations thereof.

[0295] The greater complexity and compartmentalization of eukaryotic plant cells allow for creation of a wider range of photobiologically active designer organisms and novel metabolic pathways compartmentally segregated for production of butanol and/or higher alcohols from water and carbon dioxide. In a eukaryotic algal cell, for example, the translation of designer nuclear genes occurs in cytosol whereas the pho-

tosynthesis/Calvin cycle is located inside an algal chloroplast. This clear separation of algal chloroplast photosynthesis from other subcellular functions such as the functions of cytoplasm membrane, cytosol and mitochondria can be used as an advantage in creation of a biosafety-guarded designer algae through an inducible insertion of designer proton-channels into cytoplasm membrane to permanently disable any cell division and/or mating capability while keeping the algal chloroplast functional work with the designer biofuel production, pathways to produce butanol and related higher alcohols. However, it is essential to genetically deliver designer enzyme(s) into the chloroplast to tame the Calvin cycle and funnel metabolism toward butanol directly from CO_2 and H_2O . This requires more complicated gene design to achieve desirable results.

[0296] According to one of various embodiments, designer Calvin-cycle-channeled pathway enzymes encoded with designer unclear genes are targetedly expressed into algal chloroplast through use of a transit signal peptide sequence. The said signal peptide is selected from the group consisting of the hydrogenase transit-peptide sequences (HydA1 and HydA2), ferredoxin transit-peptide sequence (Frx1), thioredoxin-m transit-peptide sequence (Trx2), glutamine synthase transit-peptide sequence (Gs2), LhcII transit-peptide sequences, PSII-T transit-peptide sequence (PsbT), PSII-S transit-peptide sequence (PsbS), PSII-W transit-peptide sequence (PsbW), CF_0CF_1 subunit- γ transit-peptide sequence (AtpC), CF_0CF_1 subunit- δ transit-peptide sequence (AtpD), CFoCF₁ subunit-II transit-peptide sequence (AtpG), photosystem I (PSI) transit-peptide sequences, Rubisco SSU transit-peptide sequences, and combinations thereof. Preferred transit peptide sequences include the Hyd1 transit peptide, the Frx1 transit peptide, and the Rubisco SSU transit peptides (such as RbcS2).

[0297] SEQ ID NOS. 129-165 present examples for designer DNA constructs of designer chloroplast-targeted enzymes for creation of designer eukaryotic photosynthetic organisms such as designer algae with Calvin-cycle-channeled photosynthetic NADPH-enhanced pathways for photobiological production of butanol and related higher alcohols. Briefly, SEQ ID NO. 129 presents example 129 for a designer Nia1-promoter-controlled chloroplast-targeted Phosphoglycerate Mutase (03) DNA construct (1910 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp Chlamydomonas Nia1 (nitrate reductase) promoter (21-188), a 135-bp Chlamydomonas RbcS2 transit peptide (189-323), a Phosphoglycerate Mutase-encoding sequence (324-1667) selected from Nostoc azollae Phosphoglycerate Mutase (ADI65627), a 223-bp Chlamydomonas RbcS2 terminator (1668-1890), and a PCR RE primer (1891-1910).

[0298] SEQ ID NO. 130 presents example 130 for a designer Nia1-promoter-controlled chloroplast-targeted Enolase (04) DNA construct (1856 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas reinhardtii* Nia1 promoter (21-188), a 135-bp *Chlamydomonas reinhardtii* RbcS2 transit peptide (189-323), an Enolase-encoding sequence (324-1613) selected/modified from *Nostoc azollae* Enolase (ADI63801), a 223-bp *Chlamydomonas* RbcS2 terminator (1614-1836), and a PCR RE primer (18837-1856).

[0299] SEQ ID NO. 131 presents example 131 for a designer Nia1-promoter-controlled chloroplast-targeted Pyruvate-Kinase (05) DNA construct (1985 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomo*-

nas reinhardtii Nia1 promoter (21-188), a 135-bp *Chlamy-domonas reinhardtii* RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1742) selected/modified from *Cyanothece* sp. PCC 8802 pyruvate-kinase (YP_003138017), a 223-bp *Chlamydomonas* RbcS2 terminator (1743-1965), and a PCR RE primer (1966-1985).

[0300] SEQ ID NO. 132 presents example 132 for a designer Nial-promoter-controlled chloroplast-targeted NADPH-dependent Glyceraldehyde-3-Phosphate Dehydrogenase (34) DNA construct (1568 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp Chlamydomonas reinhardtii Nia1 promoter (21-188), a 135-bp Chlamydomonas RbcS2 transit peptide (189-323), a NADPH-dependent Glyceraldehyde-3-phosphate dehydrogenase-encoding sequence (324-1325) selected/modified from Staphylococcus lugdunensis NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (ADC87332), a 223-bp Chlamydomonas RbcS2 terminator (1326-1548), and a PCR RE primer (1549-1568). [0301] SEQ ID NO. 133 presents example 133 for a designer Nia1-promoter-controlled chloroplast-targeted NAD-dependent Glyceraldehyde-3-phosphate dehydrogenase (35) DNA construct (1571 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp Chlamydomonas Nia1 (nitrate reductase) promoter (21-188), a 135-bp Chlamvdomonas RbcS2 transit peptide (189-323), a NAD-dependent Glyceraldehyde-3-phosphate dehydrogenase-encoding sequence (324-1328) selected/modified from Flavobacteriaceae bacterium NAD-dependent Glyceraldehyde-3-phosphate dehydrogenase (YP_003095198), a 223-bp Chlamydomonas RbcS2 terminator (1329-1551), and a PCR RE primer (1552-1571).

[0302] SEQ ID NO. 134 presents example 134 for a designer Nia1-promoter-controlled chloroplast-targeted Citramalate Synthase (36) DNA construct (2150 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 (nitrate reductase) promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), a Citramalate Synthase-encoding sequence (324-1907) selected from Hydrogenobacter Citramalate Synthase (ADO45737), a 223-bp *Chlamydomonas* RbcS2 terminator (1908-2130), and a PCR RE primer (2131-2150).

[0303] SEQ ID NO. 135 presents example 135 for a designer Nia1-promoter-controlled chloroplast-targeted 3-Isopropylmalate/(R)-2-Methylmalate Dehydratase (37) large/small subunits DNA construct (3125 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp Chlamydomonas reinhardtii Nia1 promoter (21-188), a 135-bp Chlamydomonas RbcS2 transit peptide (189-323), a 3-isopropylmalate/ (R)-2-methylmalate dehydratase large subunit-encoding sequence (324-2084) selected/modified from Eubacterium eligens 3-isopropylmalate/(R)-2-methylmalate dehydratase large subunit (YP_002930810), a 2×84-bp Chlamydomonas Nia1 promoter (2085-2252), a 135-bp Chlamydomonas RbcS2 transit peptide (2253-2387), a 3-isopropylmalate/(R)-2-methylmalate dehydratase small subunit-encoding sequence (2388-2882) selected/modified from Eubacterium eligens 3-isopropylmalate/(R)-2-methylmalate dehydratase small subunit (YP_002930809), a 223-bp Chlamydomonas RbcS2 terminator (2883-3105), and a PCR RE primer (3106-3125).

[0304] SEQ ID NO. 136 presents example 136 for a designer Nia1-promoter-controlled chloroplast-targeted 3-Isopropylmalate Dehydratase (38) large/small subunits DNA construct (2879 bp) that includes a PCR FD primer

(sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), a 3-isopropylmalate dehydratase large subunitencoding sequence (324-1727) selected/modified from *Cyanothece* 3-isopropylmalate dehydratase large subunit (YP_003886427), a 2×84-bp *Chlamydomonas* Nia1 promoter (1727-1894), a 135-bp *Chlamydomonas* RbcS2 transit peptide (1895-2029), a 3-isopropylmalate dehydratase small subunit-encoding sequence (2030-2636) selected from *Cyanothece* 3-isopropylmalate dehydratase small subunit (YP_003889452), a 223-bp *Chlamydomonas* r RbcS2 terminator (2637-2859), and a PCR RE primer (2860-2879).

[0305] SEQ ID NO. 137 presents example 137 for a designer Nia1-promoter-controlled chloroplast-targeted 3-Isopropylmalate Dehydrogenase (39) DNA construct (1661 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 (nitrate reductase) promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), a 3-isopropylmalate dehydrogenase-encoding sequence (324-1418) selected/modified from *Cyanothece* 3-isopropylmalate dehydrogenase (YP_003888480), a 223-bp *Chlamydomonas* RbcS2 terminator (1419-1641), and a PCR RE primer (1642-1661).

[0306] SEQ ID NO. 138 presents example 138 for a designer Nia1-promoter-controlled chloroplast-targeted 2-Isopropylmalate Synthase (40) DNA construct (2174 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), a 2-isopropylmalate synthase-encoding sequence (324-1931) selected/ modified from *Cyanothece* 2-isopropylmalate synthase (YP_003890122), a 223-bp *Chlamydomonas* RbcS2 terminator (1932-2154), and a PCR RE primer (2155-2174).

[0307] SEQ ID NO. 139 presents example 139 for a designer Nia1-promoter-controlled chloroplast-targeted Isopropylmalate Isomerase (41) large/small subunit DNA construct (2882 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp Chlamydomonas Nia1 promoter (21-188), a 135-bp Chlamvdomonas RbcS2 transit peptide (189-323), an isopropylmalate isomerase large subunit-encoding sequence (324-1727) selected/modified from Anabaena variabilis isopropylmalate isomerase large subunit (YP_324467), a 2×84bp Chlamydomonas reinhardtii Nia1 promoter (1728-1895), a 135-bp Chlamydomonas RbcS2 transit peptide (1896-2030), an isopropylmalate isomerase small subunit-encoding sequence (2031-2639) selected/modified from Anabaena isopropylmalate isomerase small subunit (YP_324466), a 223bp Chlamydomonas RbcS2 terminator (2640-2862), and a PCR RE primer (2863-2882).

[0308] SEQ ID NO. 140 presents example 140 for a designer Nia1-promoter-controlled chloroplast-targeted 2-Keto Acid Decarboxylase (42) DNA construct (2210 bp) that includes a PCR FD primer (1-20), a 2×84-bp *Chlamy-domonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), a 2-keto acid decarboxy-lase-encoding sequence (324-1967) selected from *Lactococ-cus* 2-keto acid decarboxylase (AAS49166), a 223-bp *Chlamydomonas* RbcS2 terminator (1968-2190), and a PCR RE primer (2191-2210).

[0309] SEQ ID NO. 141 presents example 141 for a designer Nia1-promoter-controlled chloroplast-targeted NADH-dependent Alcohol Dehydrogenase (43) DNA construct (1724 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a

135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), a NADH-dependent alcohol dehydrogenase-encoding sequence (324-1481) selected/modified from *Gluconacetobacter hansenii* NADH-dependent alcohol dehydrogenase (ZP_06834544), a 223-bp *Chlamydomonas* RbcS2 terminator (1482-1704), and a PCR RE primer (1705-1724).

[0310] SEQ ID NO. 142 presents example 142 for a designer Nia1-promoter-controlled chloroplast-targeted NADPH-dependent Alcohol Dehydrogenase (44) DNA construct (1676 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas reinhardtii* Nia1 promoter (21-188), a 135-bp *Chlamydomonas reinhardtii* RbcS2 transit peptide (189-323), a NADPH-dependent alcohol dehydrogenase-encoding sequence (324-1433) selected/modified from *Fusobacterium* NADPH-dependent alcohol dehydrogenase (ZP_04573952), a 223-bp *Chlamydomonas reinhardtii* RbcS2 terminator (1434-1656), and a PCR RE primer (1657-1676).

[0311] Note, use of SEQ ID NOS. 129-141 (and/or 142) in genetic transformation of an eukaryotic photosynthetic organism such as *Chlamydomonas* can create a designer eukaryotic photosynthetic organism such as designer *Chlamydomonas* with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced pathway (03-05, 34-43/44 in FIG. 4) for photobiological production of 1-butanol from carbon dioxide and water.

[0312] SEQ ID NO. 143 presents example 143 for a designer Nia1-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase (45) DNA construct (3629 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas reinhardtii* Nia1 promoter (21-188), a 135-bp *Chlamydomonas reinhardtii* RbcS2 transit peptide (189-323), a Phosphoenolpyruvate Carboxylase-encoding sequence (324-3386) selected/modified from *Cyanothece* sp. PCC 7822 Phosphoenolpyruvate Carboxylase (YP_003887888), a 223-bp *Chlamydomonas reinhardtii* RbcS2 terminator (3387-3609), and a PCR RE primer (3610-3629).

[0313] SEQ ID NO. 144 presents example 144 for a designer Nia1-promoter-controlled chloroplast-targeted Aspartate Aminotransferase (46) DNA construct (1745 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas reinhardtii* Nia1 promoter (21-188), a 135-bp *Chlamydomonas reinhardtii* RbcS2 transit peptide (189-323), a Aspartate Aminotransferase-encoding sequence (324-1502) selected/modified from *Synechococcus elongatus* PCC 6301 Aspartate Aminotransferase (YP_172275), a 223-bp *Chlamydomonas reinhardtii* RbcS2 terminator (1503-1525), and a PCR RE primer (1526-1745).

[0314] SEQ ID NO. 145 presents example 145 for a designer Nia1-promoter-controlled chloroplast-targeted Aspartokinase (47) DNA construct (2366 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas reinhardtii* Nia1 promoter (21-188), a 135-bp *Chlamydomonas reinhardtii* RbcS2 transit peptide (189-323), an Aspartokinase-encoding sequence (324-2123) selected/modified from *Cyanothece* Aspartokinase (YP_003136939), a 223-bp *Chlamydomonas* RbcS2 terminator (2124-2346), and a PCR RE primer (2347-2366).

[0315] SEQ ID NO. 146 presents example 146 for a designer Nia1-promoter-controlled chloroplast-targeted Aspartate-Semialdehyde Dehydrogenase (48) DNA construct (1604 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas reinhardtii* Nia1 promoter

(21-188), a 135-bp *Chlamydomonas reinhardtii* RbcS2 transit peptide (189-323), an Aspartate-semialdehyde dehydrogenase-encoding sequence (324-1361) selected/modified from *Trichodesmium erythraeum* IMS101 Aspartate-semialdehyde dehydrogenase (ABG50031), a 223-bp *Chlamydomonas* RbcS2 terminator (1362-1584), and a PCR RE primer (1585-1604).

[0316] SEQ ID NO. 147 presents example 147 for a designer Nia1-promoter-controlled chloroplast-targeted Homoserine Dehydrogenase (49) DNA construct (1868 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), a homoserine dehydrogenase-encoding sequence (324-1625) selected from *Cyanothece* homoserine dehydrogenase (YP_003887242), a 223-bp *Chlamydomonas* RbcS2 terminator (1626-1848), and a PCR RE primer (1849-1868).

[0317] SEQ ID NO. 148 presents example 148 for a designer Nia1-promoter-controlled chloroplast-targeted Homoserine Kinase (50) DNA construct (1472 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), a Homoserine kinase-encoding sequence (324-1229) selected/modified from *Cyanothece* Homoserine kinase (YP_003886645), a 223-bp *Chlamydomonas* RbcS2 terminator (1230-1452), and a PCR RE primer (1453-1472).

[0318] SEQ ID NO. 149 presents example 149 for a designer Nia1-promoter-controlled chloroplast-targeted Threonine Synthase (51) DNA construct (1655 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), a Threonine synthase-encoding sequence (324-1412) selected/modified from *Cyanothece* Threonine synthase (YP_002485009), a 223-bp *Chlamydomonas* RbcS2 terminator (1413-1635), and a PCR RE primer (1636-1655).

[0319] SEQ ID NO. 150 presents example 150 for a designer Nia1-promoter-controlled chloroplast-targeted Threonine Ammonia-Lyase (52) DNA construct (2078 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), a threonine ammonia-lyase-encoding sequence (324-1835) selected/ modified from *Synechococcus* threonine ammonia-lyase (ZP_05035047), a 223-bp *Chlamydomonas* RbcS2 termina-tor (1836-2058), and a PCR RE primer (2059-2078).

[0320] Note, use of SEQ ID NOS. 129, 130, 132, 133, 143-150, 137-141 (and/or 141) through genetic transformation of an eukaryotic photosynthetic organism such as *Chlamydomonas* can create a designer eukaryotic photosynthetic organism such as designer *Chlamydomonas* with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced pathway (03, 04, 34, 35, 45-52, 39-43/44 in FIG. 4) for photobiological production of 1-butanol from carbon dioxide and water.

[0321] SEQ ID NO. 151 presents example 151 for a designer Nia1-promoter-controlled chloroplast-targeted Acetolactate Synthase (53) DNA construct (2282 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas reinhardtii* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), an acetolactate synthase-encoding sequence (324-2039) selected from *Bacillus subtilis* acetolactate synthase

(CAB07802), a 223-bp *Chlamydomonas* RbcS2 terminator (2040-2262), and a PCR RE primer (2263-2282).

[0322] SEQ ID NO. 152 presents example 152 for a designer Nia1-promoter-controlled chloroplast-targeted Ketol-Acid Reductoisomerase (54) DNA construct (1562 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1319) selected/modified from *Cyanothece* ketol-acid reductoisomerase (YP_003885458), a 223-bp *Chlamydomonas* RbcS2 terminator (1320-1542), and a PCR RE primer (1543-1562).

[0323] SEQ ID NO. 153 presents example 153 for a designer Nia1-promoter-controlled chloroplast-targeted Dihydroxy-Acid Dehydratase (55) DNA construct (2252 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamy-domonas* RbcS2 transit peptide (189-323), a dihydroxy-acid dehydratase-encoding sequence (324-2009) selected from *Cyanothece* dihydroxy-acid dehydratase (YP_003887466), a 223-bp *Chlamydomonas* RbcS2 terminator (2010-2232), and a PCR RE primer (2233-2252).

[0324] SEQ ID NO. 154 presents example 154 for a designer Nia1-promoter-controlled chloroplast-targeted 2-Methylbutyraldehyde Reductase (56) DNA construct (1496 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas reinhardtii* Nia1 promoter (21-188), a 135-bp *Chlamydomonas reinhardtii* RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1253) selected/modified from *Pichia pastoris* GS115 2-methylbutyraldehyde reductase (XP_002490018), a 223-bp *Chlamydomonas reinhardtii* RbcS2 terminator (1254-1476), and a PCR RE primer (1477-1496).

[0325] Note, use of SEQ ID NOS. 129-137, 140, and 151-154 in genetic transformation of an eukaryotic photosynthetic organism such as *Chlamydomonas* can create a designer eukaryotic photosynthetic organism such as designer *Chlamydomonas* with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced pathway (03-05, 34-39, 53-55, 42, and 56 in FIG. 5) for photobiological production of 2-me-thyl-1-butanol from carbon dioxide and water.

[0326] SEQ ID NO. 155 presents example 155 for a designer Nia1-promoter-controlled chloroplast-targeted 3-Methylbutanal Reductase (57) DNA construct (1595 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas reinhardtii* Nia1 promoter (21-188), a 135-bp *Chlamydomonas reinhardtii* RbcS2 transit peptide (189-323), a 3-methylbutanal reductase-encoding sequence (324-1352) selected/modified from *Saccharomyces cerevisiae* S288c 3-methylbutanal reductase (DAA10635), a 223-bp *Chlamydomonas reinhardtii* RbcS2 terminator (1353-1575), and a PCR RE primer (1576-1595).

[0327] Note, use of SEQ ID NOS. 129-133, 151-153, 140 and 141 (or 142) in genetic transformation of an eukaryotic photosynthetic organism such as *Chlamydomonas* can create a designer eukaryotic photosynthetic organism such as designer *Chlamydomonas* with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced pathway (03-05, 34, 35, 53-55, 42, and 43 (44) in FIG. **6**) for photobiological production of isobutanol from carbon dioxide and water. Whereas, SEQ ID NOS. 129-133, 151-153, 136-138, 140 and 155 represent a designer eukaryotic photosynthetic organism such as designer *Chlamydomonas* with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced pathway (03-05, 34, 35, 53-55, 40, 38, 39, 42, and 57 in FIG. 6) that can photobiologically produce 3-methyl-1-butanol from carbon dioxide and water.

[0328] SEQ ID NO. 156 presents example 156 for a designer Nia1-promoter-controlled chloroplast-targeted NADH-dependent Butanol Dehydrogenase (12a) DNA construct (1739 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas reinhardtii* Nia1 (nitrate reductase) promoter (21-188), a 135-bp *Chlamydomonas reinhardtii* RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1496) selected/modified from *Clostridium perfringens* NADH-dependent butanol dehydrogenase (NP_561774), a 223-bp *Chlamydomonas* RbcS2 terminator (1497-1719), and a PCR RE primer (1720-1739).

[0329] SEQ ID NO. 157 presents example 157 for a designer Nia1-promoter-controlled chloroplast-targeted NADPH-dependent Butanol Dehydrogenase (12b) DNA construct (1733 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp Chlamydomonas reinhardtii Nia1 promoter (21-188), a 135-bp Chlamydomonas reinhardtii RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1490) selected/modified from Clostridium saccharobutylicum NADPH-dependent butanol dehydrogenase (AAA83520), a 223-bp Chlamvdomonas reinhardtii RbcS2 terminator (1491-1713), and a PCR RE primer (1714-1733). [0330] Note, use of SEQ ID NOS. 129-140 and 156 (and/or 157) in genetic transformation of an eukaryotic photosynthetic organism such as Chlamydomonas can create a designer eukaryotic photosynthetic organism such as designer Chlamvdomonas with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced butanol production pathway (03-05, 34-42 and 12 in FIG. 4) for more specific photobiological production of 1-butanol from carbon dioxide and water. Similarly, SEQ ID NOS. 129, 130, 132, 133, 143-150, 137-140, and 156 (and/or 157) represent another designer eukaryotic photosynthetic organism such as designer Chlamydomonas with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced butanol-production pathway (03, 04, 34, 35, 45-52, 39-42 and 12 in FIG. 4) for photobiological production of 1-butanol from carbon dioxide and water.

[0331] SEQ ID NO. 158 presents example 158 for a designer Nia1-promoter-controlled chloroplast-targeted 3-Ketothiolase (07') DNA construct (1745 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 (nitrate reductase) promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), a 3-Ke-tothiolase-encoding sequence (324-1502) selected/modified from *Azohydromonas* lata 3-Ketothiolase (AAD10275), a 223-bp *Chlamydomonas* RbcS2 terminator (1503-1725), and a PCR RE primer (1726-1745).

[0332] SEQ ID NO. 159 presents a designer Nia1-promoter-controlled chloroplast-targeted 3-Hydroxyacyl-CoA dehydrogenase (08') DNA construct (1439 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1196) selected/modified from *Oceanithermus* 3-Hydroxyacyl-CoA dehydrogenase (ADR36325), a 223-bp *Chlamydomonas* RbcS2 terminator (1197-1419), and a PCR RE primer (1420-1439).

[0333] SEQ ID NO. 160 presents example 160 for a designer Nia1-promoter-controlled chloroplast-targeted Enoyl-CoA dehydratase (09') DNA construct (1337 bp) that

includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1094) selected/modified from *Bordetella petrii* Enoyl-CoA dehydratase (YP_001629844), a 223-bp *Chlamydomonas* RbcS2 terminator (1095-1317), and a PCR RE primer (1318-1337).

[0334] SEQ ID NO. 161 presents example 161 for a designer Nia1-promoter-controlled 2-Enoyl-CoA reductase (10') DNA construct (1736 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1493) selected/modified from *Xanthomonas campestris* 2-Enoyl-CoA reductase (YP_001905744), a 223-bp *Chlamydomonas* RbcS2 terminator (1494-1716), and a PCR RE primer (1717-1736).

[0335] SEQ ID NO. 162 presents example 162 for a designer Nia1-promoter-controlled chloroplast-targeted Acyl-CoA reductase (11') DNA construct (2036 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas reinhardtii* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1793) selected/modified from *Thermosphaera aggregans* Acyl-CoA reductase (YP_ 003649571), a 223-bp *Chlamydomonas* RbcS2 terminator (1794-2016), and a PCR RE primer (2017-2036).

[0336] SEQ ID NO. 163 presents example 163 for a designer Nia1-promoter-controlled chloroplast-targeted Hexanol Dehydrogenase (12') DNA construct (1625 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1382) selected/modified from *Mycobacterium chubuense* hexanol dehydrogenase (ACZ56328), a 223-bp *Chlamydomonas* RbcS2 terminator (1383-1605), and a PCR RE primer (1606-1625).

[0337] Note, use of SEQ ID NOS. 158-163 with other proper DNA constructs such as SEQ ID NOS. 132 and 133 in genetic transformation of an eukaryotic photosynthetic organism such as *Chlamydomonas* can create a designer eukaryotic photosynthetic organism such as designer *Chlamydomonas* with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced hexanol production pathway (34, 35, 03-10, and 07'-12' in FIG. 7) for photobiological production of 1-hexanol from carbon dioxide and water.

[0338] SEQ ID NO. 164 presents example 164 for a designer Nia1-promoter-controlled chloroplast-targeted Octanol Dehydrogenase (12") DNA construct (1249 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1006) selected/modified from *Drosophila subobscura* Octanol dehydrogenase (ABO65263), a 223-bp *Chlamydomonas* RbcS2 terminator (1007-1229), and a PCR RE primer (1230-1249).

[0339] Note, SEQ ID NOS. 132, 133, and 158-163 represent a designer eukaryotic photosynthetic organism such as a designer *Chlamydomonas* with a designer hydrocarbon chain elongation pathway (34, 35, 07'-12' as shown in FIG. 7) for photobiological production of 1-hexanol. SEQ ID NOS: 132, 133, 158-162 and 164 represent another designer eukaryotic photosynthetic organism such as a designer *Chlamydomonas*

with a designer hydrocarbon chain elongation pathway (34, 35, 07'-10' and 07"-12" as shown in FIG. 7) for photobiological production of 1-octanol.

[0340] SEQ ID NO. 165: a designer Nia1-promoter-controlled chloroplast-targeted Short Chain Alcohol Dehydrogenase (43') DNA construct (1769 bp) that includes a PCR FD primer (sequence 1-20), a 2×84-bp *Chlamydomonas* Nia1 promoter (21-188), a 135-bp *Chlamydomonas* RbcS2 transit peptide (189-323), an enzyme-encoding sequence (324-1526) selected/modified from *Burkholderia* Short chain alcohol dehydrogenase (AB056626), a 223-bp *Chlamydomonas* RbcS2 terminator (1527-1749), and a PCR RE primer (1750-1769).

[0341] Note, use of SEQ ID NOS. 129-140 and 165 in genetic transformation of an eukaryotic photosynthetic organism such as *Chlamydomonas* can create a designer eukaryotic photosynthetic organism such as designer *Chlamydomonas* with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced pathway (03-05, 34-41, 39'-43', 39'-43' and 39"-43" in FIG. 8) for photobiological production of 1-pentanol, 1-hexanol, and 1-heptanol from carbon dioxide and water. Similarly, SEQ ID NOS. 129-140 and 163 represent another designer eukaryotic photosynthetic organism such as designer *Chlamydomonas* with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced pathway (03-05, 34-41, 39'-41', 39'-42' and 12' in FIG. 8) for photobiological production of 1-hexanol from carbon dioxide and water.

[0342] Likewise, use of SEQ ID NOS. 129-137, 151-153, 138-140 and 165 through genetic transformation of an eukaryotic photosynthetic organism such as Chlamydomonas can create a designer eukaryotic photosynthetic organism such as designer Chlamydomonas with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced pathway (03-05, 34-39, 53-55, 39'-43', 39'-43', and 39"-43" in FIG. 9) for photobiological production of 3-methyl-1-pentanol, 4-methyl-1-hexanol, and 5-methyl-1-heptanol from carbon dioxide and water; The expression of SEQ ID NOS. 129, 130, 132, 133, 143-150, 151-153, 137-140 and 165 in an eukaryotic photosynthetic organism such as a host Chlamydomonas represent another designer eukaryotic photosynthetic organism with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced pathway (03, 05, 34, 35, 42-55, 39'-43', 39'-43', and 39"-43" in FIG. 9) for photobiological production of 3-methyl-1-pentanol, 4-methyl-1-hexanol, and 5-methyl-1-heptanol from carbon dioxide and water; The expression of SEQ ID NOS. 129-133, 151-153, 136-140 and 165 in a host eukaryotic photosynthetic organism such as Chlamydomonas represent yet another designer eukaryotic photosynthetic organism with a Calvin-cycle 3-phosphogylcerate-branched NADPH-enhanced pathway (03-05, 34, 35, 53-55, 40, 38, 39, 39'-43', 39'-43', and 39"-43" in FIG. 10) for photobiological production of 4-methyl-1-pentanol, 5-methyl-1-hexanol, and 6-methyl-1-heptanol from carbon dioxide and water.

Use of Designer Photosynthetic Organisms with Photobioreactor for Production and Harvesting of Butanol and Related Higher Alcohols

[0343] The designer photosynthetic organisms with designer Calvin-cycle channeled photosynthetic NADPHenhanced pathways (FIGS. **1**, and **4-10**) can be used with photobioreactors for production and harvesting of butanol and/or related higher alcohols. The said butanol and/or related higher alcohols are selected from the group consisting of: 1-butanol, 2-methyl-1-butanol, isobutanol, 3-methyl-1butanol, 1-hexanol, 1-octanol, 1-pentanol, 1-heptanol, 3-methyl-1-pentanol, 4-methyl-1-hexanol, 5-methyl-1-heptanol, 4-methyl-1-pentanol, 5-methyl-1-hexanol, 6-methyl-1-heptanol, and combinations thereof.

[0344] The said designer photosynthetic organisms such as designer transgenic oxyphotobacteria and algae comprise designer Calvin-cycle-channeled and photosynthetic NADPH-enhanced pathway gene(s) and biosafety-guarding technology for enhanced photobiological production of butanol and related higher alcohols from carbon dioxide and water. According to one of the various embodiments, it is a preferred practice to grow designer photosynthetic organisms photoautotrophically using carbon dioxide (CO₂) and water (H₂O) as the sources of carbon and electrons with a culture medium containing inorganic nutrients. The nutrient elements that are commonly required for oxygenic photosynthetic organism growth are: N, P, and K at the concentrations of about 1-10 mM, and Mg, Ca, S, and Cl at the concentrations of about 0.5 to 1.0 mM, plus some trace elements Mn, Fe, Cu, Zn, B, Co, Mo among others at µM concentration levels. All of the mineral nutrients can be supplied in an aqueous minimal medium that can be made with well-established recipes of oxygenic photosynthetic organism (such as algal) culture media using water (freshwater for the designer freshwater algae; seawater for the salt-tolerant designer marine algae) and relatively small of inexpensive fertilizers and mineral salts such as ammonium bicarbonate (NH₄HCO₃) (or ammonium nitrate, urea, ammonium chloride), potassium phosphates (K2HPO4 and KH2PO4), magnesium sulfate heptahydrate (MgSO₄.7H₂O), calcium chloride $(CaCl_2)$, zinc sulfate heptahydrate $(ZnSO_4.7H_2O)$, iron (II) sulfate heptahydrate (FeSO₄.7H₂O), and boric acid (H₃BO₃), among others. That is, large amounts of designer algae (or oxyphotobacteria) cells can be inexpensively grown in a short period of time because, under aerobic conditions such as in an open pond, the designer algae can photoautotrophically grow by themselves using air CO_2 as rapidly as their wild-type parental strains. This is a significant feature (benefit) of the invention that could provide a cost-effective solution in generation of photoactive biocatalysts (the designer photosynthetic biofuel-producing organisms such as designer algae or oxyphotobacteria) for renewable solar energy production.

[0345] According to one of the various embodiments, when designer photosynthetic organism culture is grown and ready for photobiological production of butanol and/or related higher alcohols, the designer photosynthetic organism cells are then induced to express the designer Calvin-cycle channeled photosynthetic NADPH-enhanced pathway(s) to photobiologically produce butanol and/or related higher alcohols from carbon dioxide and water. The method of induction is designer pathway gene(s) specific. For example, if/when a nirA promoter is used to control the designer Calvin-cycle channeled pathway gene(s) such as those of SEQ ID NOS: 58-69 and 72 (and/or 73) which represent a designer transgenic Thermosynechococcus that comprises the designer genes of a Calvin-cycle 3-phophoglycerate-branched photosynthetic NADPH-enhanced pathway (numerically labeled as 34, 35, 03-05, 36-42, and 12 in FIG. 4) for photobiological production of 1-butanol from carbon dioxide and water, the designer transgenic Thermosynechococcus is grown in a minimal liquid culture medium containing ammonium (but no nitrate) and other inorganic nutrients. When the designer transgenic Thermosynechococcus culture is grown and ready for photobiological production of biofuel 1-butanol, nitrate

fertilizer will then be added into the culture medium to induce the expression of the designer nirA-controlled Calvin-cyclechanneled pathway to photobiologically produce 1-butanol from carbon dioxide and water in this example.

[0346] For the designer photosynthetic organism(s) with anaerobic promoter-controlled pathway(s) such as the designer transgenic *Nostoc* that contains designer hox-promoter-controlled Calvin-cycle 3-phophoglycerate-branched pathway genes of SEQ ID NOS. 104-109, anaerobic conditions can be used to induce the expression of the designer pathway gene(s) for photobiological production of 2-methyl-1-butanol from carbon dioxide and water (FIG. **5**). That is, when the designer transgenic *Nostoc* culture is grown and ready for photobiological biofuel production, its cells will then be placed (or sealed) into certain anaerobic conditions to induce the expression of the designer hox-controlled pathway gene(s) to photobiologically produce 2-methyl-1-butanol from carbon dioxide and water.

[0347] For those designer photosynthetic organism(s) that contains a heat- and light-responsive promoter-controlled and nirA-promoter-controlled pathway(s) such as the designer transgenic *Prochlorococcus* that contains a set of designer groE-promoter-controlled and nirA-promoter-controlled Calvin-cycle 3-phophoglycerate-branched pathway genes of SEQ ID NOS. 110-118, light and heat are used in conjunction of nitrate addition to induce the expression of the designer pathway genes for photobiological production of isobutanol from carbon dioxide and water (FIG. **6**).

[0348] According to another embodiment, use of designer marine algae or marine oxyphotobacteria enables the use of seawater and/or groundwater for photobiological production of biofuels without requiring freshwater or agricultural soil. For example, designer Prochlorococcus marinus that contains the designer genes of SEQ ID NOS: 110-117 and 119-122 can use seawater and/or certain groundwater for photoautotrophic growth and synthesis of 3-methyl-1-butanol from carbon dioxide and water with its groE promoter-controlled designer Calvin-cycle-channeled pathway (identified as 34 (native), 35, 03-05, 53-55, 38-40, 42 and 57 in FIG. 6). The designer photosynthetic organisms can be used also in a sealed photobioreactor that is operated on a desert for production of isobutanol with highly efficient use of water since there will be little or no water loss by evaporation and/or transpiration that a common crop system would suffer. That is, this embodiment may represent a new generation of renewable energy (butanol and related higher alcohols) production technology without requiring arable land or freshwater resources.

[0349] According to another embodiment, use of nitrogenfixing designer oxyphotobacteria enables photobiological production of biofuels without requiring nitrogen fertilizer. For example, the designer transgenic *Nostoc* that contains designer hox-promoter-controlled genes of SEQ ID NOS. 104-109 is capable of both fixing nitrogen (N_2) and photobiologically producing 2-methyl-1-butanol from carbon dioxide and water (FIG. 6). Therefore, use of the designer transgenic *Nostoc* enables photoautotrophic growth and 2-methyl-1-butanol synthesis from carbon dioxide and water. **[0350]** Certain designer oxyphotobacteria are designed to

perform multiple functions. For example, the designer transgenic *Cyanothece* that contains designer nirA promoter-controlled genes of SEQ ID NOS. 123-127 is capable of (1) using seawater, (2) N₂ fixing nitrogen, and photobiological producing 1-hexanol from carbon dioxide and water (FIG. 8). Use of this type of designer oxyphotobacteria enables photobiological production of advanced biofuels such as 1-hexanol using seawater without requiring nitrogen fertilizer

[0351] According to one of various embodiments, a method for photobiological production and harvesting of butanol and related higher alcohols comprises: a) introducing a transgenic photosynthetic organism into a photobiological reactor system, the transgenic photosynthetic organism comprising transgenes coding for a set of enzymes configured to act on an intermediate product of a Calvin cycle and to convert the intermediate product into butanol and related higher alcohols; b) using reducing power and energy associated with the transgenic photosynthetic organism acquired from photosynthetic water splitting and proton gradient coupled electron transport process in the photobioreactor to synthesize butanol and related higher alcohols from carbon dioxide and water; and c) using a product separation process to harvest the synthesized butanol and/or related higher alcohols from the photobioreactor.

[0352] In summary, there are a number of embodiments on how the designer organisms may be used for photobiological butanol (and/or related higher alcohols) production. One of the preferred embodiments is to use the designer organisms for direct photosynthetic butanol production from CO₂ and H₂O with a photobiological reactor and butanol-harvesting (filtration and distillation/evaporation) system, which includes a specific operational process described as a series of the following steps: a) Growing a designer transgenic organism photoautotrophically in minimal culture medium using air CO₂ as the carbon source under aerobic (normal) conditions before inducing the expression of the designer butanolproduction-pathway genes; b) When the designer organism culture is grown and ready for butanol production, sealing or placing the culture into a specific condition to induce the expression of designer Calvin-cycle-channeled pathway genes; c) When the designer pathway enzymes are expressed, supplying visible light energy such as sunlight for the designer-genes-expressed cells to work as the catalysts for photosynthetic production of butanol and/or related higher alcohols from CO₂ and H₂O; d) Harvesting the product butanol and/or related higher alcohols by any method known to those skilled in the art. For example, harvesting the butanol and/or related higher alcohols from the photobiological reactor can be achieved by a combination of membrane filtration and distillation/evaporation butanol-harvesting techniques.

[0353] The above process to use the designer organisms for photosynthetic production and harvesting of butanol and related higher alcohols can be repeated for a plurality of operational cycles to achieve more desirable results. Any of the steps a) through d) of this process described above can also be adjusted in accordance of the invention to suit for certain specific conditions. In practice, any of the steps a) through d) of the process can be applied in full or in part, and/or in any adjusted combination as well for enhanced photobiological production of butanol and higher alcohol in accordance of this invention.

[0354] In addition to butanol and/or related higher alcohols production, it is also possible to use a designer organism or part of its designer butanol-production pathway(s) to produce certain intermediate products of the designer Calvin-cyclechanneled pathways (FIGS. 1 and 4-10) including (but not limited to): butyraldehyde, butyryl-CoA, crotonyl-CoA, 3-hydroxybutyryl-CoA, acetoacetyl-CoA, acetyl-CoA, pyruvate, phosphoenolpyruvate, 2-phosphoglycerate, 1,3-diphosphoglycerate, glyceraldehye-3-phosphate, dihydroxyacetone phosphate, fructose-1,6-diphosphate, fructose-6-phosphate, glucose-6-phosphate, glucose, glucose-1-phosphate, citramalate, citraconate, methyl-D-malate, 2-ketobutyrate, 2-ketovalerate, oxaloacetate, aspartate, homoserine, threonine, 2-keto-3-methylvalerate, 2-methylbutyraldehyde, 3-methylbutyraldehyde, 4-methyl-2-oxopentanoate, 3-isopropylmalate, 2-isopropylmalate, 2-oxoisovalerate, 2,3-dihydroxyisovalerate, 2-acetolactate, isobutyraldehyde, 3-keto-C6-3-hydroxy-C6-acyl-CoA, acyl-CoA, C6-enovl-CoA, C6-acyl-CoA, 3-keto-C8-acyl-CoA, 3-hydroxy-C8-acyl-CoA, C8-enoyl-CoA, C8-acyl-CoA, octanal, 1-pentanol, 1-hexanal, 1-heptanal, 2-ketohexanoate, 2-ketoheptanoate, 2-ketooctanoate, 2-ethylmalate, 3-ethylmalate, 3-methyl-1pentanal, 4-methyl-1-hexanal, 5-methyl-1-heptanal, 2-hydroxy-2-ethyl-3-oxobutanoate, 2,3-dihydroxy-3-methylpentanoate, 2-keto-4-methyl-hexanoate, 2-keto-5-methylheptnoate, 2-keto-6-methyl-octanoate, 4-methyl-1-pentanal, 5-methyl-1-hexanal, 6-methyl-1-heptanal, 2-keto-7-methyloctanoate, 2-keto-6-methyl-heptanoate, and 2-keto-5-methyl-hexanoate. According to one of various embodiments, therefore, a further embodiment comprises an additional step of harvesting the intermediate products that can be produced also from an induced transgenic designer organism. The production of an intermediate product can be selectively enhanced by switching off a designer-enzyme activity that catalyzes its consumption in the designer pathways. The production of a said intermediate product can be enhanced also by using a designer organism with one or some of designer enzymes omitted from the designer butanol-production pathways. For example, a designer organism with the butanol dehydrogenase or butyraldehyde dehydrogenase omitted from the designer pathway(s) of FIG. 1 may be used to produce butyraldehyde or butyryl-CoA, respectively.

Designer Calvin-Cycle-Channeled Aerobic Hydrogenotrophic Biofuel Pathways

[0355] According to one of the various embodiments, a designer hydrogenotrophic Calvin-cycle-channeled pathway technology (FIG. 11) is created that takes hydrogen (H_2) , oxygen (O2) and carbon dioxide (CO2) to produce advanced biofuels including butanol and related higher alcohols through the designer Calvin-cycle-channeled pathways (FIGS. 1 and 4-10). As illustrated in FIG. 11, one of the various embodiments here is the expression of designer oxygen (O₂)-tolerant hydrogenases in a designer microbial cell such as cyanobacteria to generate NAD(P)H and ATP from consumption of hydrogen. The expression of a membrane bound hydrogenase (MBH, 70 and its accessory proteins 72 as listed in Table 1) enables oxidation of H₂ through the respiratory electron transport chain (ETC) system to pump protons (H⁺) across the cytoplasm membrane to create transmembrane electrochemical potential for ATP synthesis; whereas the use of a soluble hydrogenase (SH, 71 and its accessory proteins 72) enables generation of NAD(P)H through SH-mediated reduction of NAD(P)⁺ by H₂. Use of ATP and NAD(P)H drives the designer Calvin-cycle-channeled pathways (FIGS. 1 and 4-10) for CO₂ fixation and biofuel butanol and related higher alcohol production. Therefore, this represents an innovative application of the designer Calvin-cycle-channeled biofuel-production pathways.

[0356] For example, the expression of a membrane bound hydrogenase (MBH, 70 and its accessory proteins 72) and a soluble hydrogenase (SH, 71 and its accessory proteins 72) in

a designer transgenic cyanobacterium that already contains the designer butanol-production-pathway genes of SEQ ID NOS: 58-69 and 72 (and/or 73) can create a hydrogenotrophic Calvin-cycle 3-phophoglycerate-branched 1-butanol production pathway as numerically labeled as 34, 35, 03-05, 36-42, and 12 in FIG. **4**. The net result of the designer hydrogenotrophic pathway is the production of 1-butanol (CH₃CH₂CH₂CH₂OH) from hydrogen (H₂), carbon dioxide (CO₂) and oxygen (O₂) according to the following process reaction:

$$\begin{array}{l} (12+2n)\mathrm{H}_2+4\mathrm{CO}_2+n\mathrm{O}_2\rightarrow\mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{OH}+(7+n) \\ \mathrm{H}_2\mathrm{O} \end{array} \tag{20}$$

The number (n) of oxygen (O_2) molecules used to oxidize hydrogen (H_2) by the respiratory electron-transport-coupled phosphorylation to support the synthesis of a 1-butuanol was estimated to be about 5 in this example.

[0357] Note, before the designer genes are turned on, the transgenic cyanobacteria (FIG. 11) can grow photoautotrophically using CO₂, H₂O and sunlight just like their wild-type parental strains. When they are grown and ready for use, they can then be placed into a bioreactor supplied with H₂ (about 85%) and CO_2 (about 10%) with limiting amount of O₂ (about 5%) for hydrogenotrophic synthesis of higher alcohols such as 1-butanol, for example, through the Calvincycle-channeled butanol-production pathway of FIG. 1 without requiring any photosynthesis or sunlight. Since hydrogen (H_2) can be made from a number of sources including the electrolysis of water, the designer hydrogenotrophic Calvincycle-channeled pathway technology (FIG. 11) enables utilization of inexpensive industrial CO2 and electricity from solar photovoltaic, wind and nuclear power stations to produce "drop-in-ready" liquid transportation fuel such as butanol without requiring any arable lands or photosynthesis.

Designer Anaerobic Hydrogenotrophic Reductive-Acetyl-CoA Biofuel-Production Pathways

[0358] According to one of the various embodiments, a designer hydrogenotrophic reductive-acetyl-CoA biofuelproduction pathway technology (FIG. 12) is created that takes hydrogen (H₂) and carbon dioxide (CO₂) to produce advanced biofuels such as butanol and related higher alcohols under anaerobic conditions. As illustrated in FIG. 12, one of the various embodiments here is the expression of a set of designer genes that confer a designer anaerobic hydrogenotrophic system and a reductive-acetyl-CoA butanol-producing pathway (FIG. 13) in a microbial host cell such as a cyanobacterium. Designer anaerobic hydrogenotrophic system includes, for example, energy converting hydrogenase (Ech, 91 in Table 1), [NiFe]-hydrogenase Mvh (95), Coenzyme F₄₂₀-reducing hydrogenase (Frh, 96), native (or heterologous) soluble hydrogenase (SH, 71), NAD(P)H, reduced ferredoxin (Fd_{red}²⁻), HS-CoM, HS-CoB, and heterodissulfide reductase (Hdr; 94); while designer reductive-acetyl-CoA butanol-producing pathway (as shown with the numerical labels 83-90 and 07-12/43 in FIG. 13) comprises formylmethanofuran dehydroganse 83, formyl transferase 84, 10-methenyl-tetrahydromethanopterin cyclohydrolase 85, 10-methylene- H_4 methanopterin dehydrogenase 86, 10-methylene-H_a-methanopterin reductase 87, methyl-H_amethanopterin: corrinoid iron-sulfur protein methyltransferase 88, corrinoid iron-sulfur protein 89, CO dehydrogenase/acetyl-CoA synthase 90, thiolase 07, 3-hydroxybutyryl-CoA dehydrogenase 08, crotonase 09, butyryl-CoA

dehydrogenase 10, butyaldehyde dehydrogenase 11, butanol dehydrogenase 12, and/or alcohol dehydrogenase 43. In this example, the net result of the designer anaerobic hydrogenotrophic reductive-acetyl-CoA butanol-production pathway technology (FIGS. **12** and **13**) is the production of 1-butanol(CH₃CH₂CH₂CH₂OH) from hydrogen (H₂) and carbon dioxide (CO₂) according to the following process reaction:

$$12H_2+4CO_2 \rightarrow CH_3CH_2CH_2CH_2OH+7H_2O$$
 [21]

The standard free energy change) ($\Delta_r G^\circ$) for this overall reaction is -244.7 kJ/mol 1-butanol, which demonstrates that this hydrogen-driven butanol-production technology is not in violation of thermodynamic laws. This equation shows that the use of 12 molecules (24 electrons) of hydrogen (H₂) can produce one molecule of 1-butanol from 4 molecules of carbon dioxide (CO₂). To produce 12 molecules of H₂ by electrolysis of water, it uses 24 electrons from electricity. Therefore, if electrolysis of water is used as a hydrogen source, then 24 electrons (from electricity) are sufficient to generate one molecule of 1-butanol from 4 molecules of CO₂ through the designer anaerobic hydrogenotrophic reductive-acetyl-CoA butanol-production pathway technology (FIGS. **12** and **13**).

[0359] Therefore, in one of the various embodiments, a designer autotrophic organism comprises a set of designer genes (e.g., designer DNA constructs) that express a set of enzymes conferring the designer anaerobic hydrogenotrophic butanol-production-pathway system (as shown in FIGS. 12 and 13) that comprises: energy converting hydrogenase (Ech) 91, [NiFe]-hydrogenase (Mvh) 95, Coenzyme F₄₂₀-reducing hydrogenase (Frh) 96, native (or heterologous) soluble hydrogenase (SH) 71, heterodissulfide reductase (Hdr) 94, formylmethanofuran dehydroganse 83, formyl transferase 84, 10-methenyl-tetrahydromethanopterin cyclohydrolase 85, 10-methylene-H₄ methanopterin dehydrogenase 86, 10-methylene- H_{a} -methanopterin reductase 87, methyl-H₄-methanopterin: corrinoid iron-sulfur protein methyltransferase 88, corrinoid iron-sulfur protein 89, CO dehydrogenase/acetyl-CoA synthase 90, thiolase 07, 3-hydroxybutyryl-CoA dehydrogenase 08, crotonase 09, butyryl-CoA dehydrogenase 10, butyaldehyde dehydrogenase 11, butanol dehydrogenase 12 and/or alcohol dehydrogenase 43.

[0360] Before the designer genes are turned on, the designer transgenic cyanobacteria (FIG. 12) can grow photoautotrophically using CO₂, H₂O and sunlight just like their wild-type parental strains. When they are grown and ready for use, they can then be placed into a bioreactor for butanol production from H₂ and CO₂ under anaerobic conditions without requiring any photosynthesis or any respiratory oxidation of H_2 by molecular oxygen (O_2). A unique feature of this designer reductive-acetyl-CoA butanol-production pathway (FIG. 13) is that it does not require any ATP; this pathway uses reduced ferredoxin (Fd_{red}²⁻), $F_{420}H_2$ and NAD(P)H that the designer anaerobic hydrogenotrophic system (FIG. 12) can supply from H₂ employing certain electro-protoncoupled bioenergetics bifurcating mechanism. In accordance with one of the various embodiments, this designer pathway (FIG. 13) represents one of the most energy-efficient butanolproduction processes identified so for. The standard free energy change (ΔG°) of this specific anaerobic hydrogenotrophic butanol-production process [Eq. 21] is -20.4 kJ/mol per H₂ used. Its maximum hydrogen (H₂)-to-butanol energy conversion efficiency was estimated to be about 91.4%.

[0361] According to one of the various embodiments, another designer anaerobic reductive-acetyl-CoA butanolproduction pathway (as shown with the numerical labels 74-81 and 07-12/43 in FIG. **14**) is created that can produce 1-butanol from H_2 and CO_2 through use of a set of enzymes comprising: formate dehydroganse 74, 10-formyl- H_4 folate synthetase 75, methenyltetrahydrofolate cyclohydrolase 76, 10-methylene- H_4 folate dehydrogenase 77, 10-methylene- H_4 folate corrinoid iron-sulfur protein methyltransferase 79, corrinoid iron-sulfur protein 80, CO dehydrogenase/acetyl-CoA synthase 81, thiolase 07, 3-hydroxybutyryl-CoA dehydrogenase 10, butyaldehyde dehydrogenase 11, butanol dehydrogenase 12, and/or alcohol dehydrogenase 43.

[0362] This designer pathway is similar to that of FIG. 13, except that it requires consumption of ATP at the step of 10-formyl- H_4 folate synthetase 75 (FIG. 14). Therefore, it requires ATP supply from other cellular processes in order to operate. According to one of the various embodiments, this pathway (FIG. 14) can be supported by a designer methanogenic hydrogenotrophic cell system (FIG. **15**) that produces ATP, $\operatorname{Fd}_{red}^{2-}$, $\operatorname{F}_{420}\operatorname{H}_2$, and NAD(P)H. This designer autotrophic organism comprises a set of designer genes (e.g., designer DNA constructs) that express the designer methanogenic hydrogenotrophic butanol-production-pathway system (as shown in FIGS. 14 and 16) comprising: methyl-H4MPT: coenzyme-M methyltransferase Mtr 92, native (or heterologous) A₁A_o-ATP synthase 97, methyl-coenzyme M reductase Mcr 93, energy converting hydrogenase (Ech) 91, [NiFe]-hydrogenase (Mvh) 95, Coenzyme F420-reducing hydrogenase (Frh) 96, native (or heterologous) soluble hydrogenase (SH) 71, heterodissulfide reductase (Hdr) 94, formylmethanofuran dehydroganse 83, formyl transferase 84, 10-methenyl-tetrahydromethanopterin cyclohydrolase 85, 10-methylene- H_4 methanopterin dehydrogenase 86, 10-methylene- H_4 -methanopterin reductase 87, methyl- H_4 methanopterin: corrinoid iron-sulfur protein methyltransferase 88, corrinoid iron-sulfur protein 89, CO dehydrogenase/acetyl-CoA synthase 90, thiolase 07, 3-hydroxybutyryl-CoA dehydrogenase 08, crotonase 09, butyryl-CoA dehydrogenase 10, butyaldehyde dehydrogenase 11, butanol dehydrogenase 12 and/or alcohol dehydrogenase 43.

[0363] For example, the designer methanogenic hydrogenotrophic system (FIG. 15) comprises methyl-H4MPT: coenzyme-M methyltransferase Mtr 92, A1Ao-ATP synthase 97, energy converting hydrogenase (Ech; 91 in Table 1), [NiFe]-hydrogenase Mvh (95), Coenzyme F420-reducing hydrogenase (Frh, 96), native (or heterologous) soluble hydrogenase (SH, 71), NAD(P)H, reduced ferredoxin (Fd_{red}²⁻), HS-CoM, HS-CoM, methyl-coenzyme M reductase Mcr 93, and heterodissulfide reductase (Hdr, 94). The Mtr 92 in this system can take a fraction of the CH₃-H₄ MPT intermediate to produce methane and generate a transmembrane electrochemical potential for synthesis of ATP, which can support the ATP-requiring anaerobic reductive-acetyl-CoA butanol-production pathway of FIG. 14. Therefore, the combination of the methanogenic hydrogenotrophic system (FIG. 15) and the ATP-requiring anaerobic reductive-acetyl-CoA butanol-production pathway (FIG. 14) results in a combined pathway (FIG. 16) for production of both butanol and methane. The net result is the production of both butanol and methane (CH₄) from hydrogen (H₂) and carbon dioxide (CO_2) according to the following process reaction where m is the number of CH_4 molecules co-generated per 1-butanol produced:

 $\begin{array}{l} (12+4m)\mathrm{H}_2+(4+m)\mathrm{CO}_2 \rightarrow \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{OH}+(7+m) \\ \mathrm{H}_2\mathrm{O}+m\mathrm{CH}_4 \end{array} \tag{22}$

[0364] The non-ATP-requiring anaerobic reductive-acetyl-CoA butanol-production pathway (FIG. 13) can, of course, operate with this designer methanogenic hydrogenotrophic system (FIG. 15) as well, resulting in another combined pathway for production of both butanol and methane (FIG. 17). Therefore, in one of the various embodiments, a designer autotrophic organism comprises a set of designer genes (e.g., designer DNA constructs) that express a designer methanogenic hydrogenotrophic butanol-production-pathway system (as shown in FIGS. 15,13, and 17) comprising: methyl-H4MPT: coenzyme-M methyltransferase Mtr 92, native (or heterologous) A₁A_o-ATP synthase 97, methyl-coenzyme M reductase Mcr 93, energy converting hydrogenase (Ech) 91, [NiFe]-hydrogenase (Mvh) 95, Coenzyme F₄₂₀-reducing hydrogenase (Frh) 96, native (or heterologous) soluble hydrogenase (SH) 71, heterodissulfide reductase (Hdr) 94, formate dehydroganse 74, 10-formyl-H₄ folate synthetase 75, methenyltetrahydrofolate cyclohydrolase 76, 10-methylene-H₄ folate dehydrogenase 77, 10-methylene-H₄ folate reductase 78, methyl-H₄ folate: corrinoid iron-sulfur protein methvltransferase 79, corrinoid iron-sulfur protein 80, CO dehydrogenase/acetyl-CoA synthase 81, thiolase 07, 3-hydroxybutyryl-CoA dehydrogenase 08, crotonase 09, butyryl-CoA dehydrogenase 10, butyaldehyde dehydrogenase 11, butanol dehydrogenase 12, and/or alcohol dehydrogenase 43. [0365] Some of these enzymes may naturally exist in some of the host organisms depending on their genetic background; some of these native enzymes may be used in constructing part of the designer pathways (FIGS. 12-17) along with designer genes. Therefore, according to one of the various embodiments, a designer autotrophic organism for production of biofuels such as butanol through anaerobic hydrogenotrophic reductive-acetyl-CoA biofuel-production-pathway(s) comprises designer genes that can express at least one of the enzymes selected from the group consisting of: energy converting hydrogenase (Ech) 91, methyl-H4MPT: coenzyme-M methyltransferase Mtr 92, methyl-coenzyme M reductase Mcr 93, heterodissulfide reductase (Hdr) 94, [NiFe]-hydrogenase (Mvh) 95, Coenzyme F₄₂₀-reducing hydrogenase (Frh) 96, soluble hydrogenase (SH) 71, A1A2-ATP synthase 97, formate dehydroganse 74, 10-formyl- H_4 folate synthetase 75, methenyltetrahydrofolate cyclohydrolase 76, 10-methylene-H₄ folate dehydrogenase 77, 10-methylene-H₄ folate reductase 78, methyl-H₄ folate: corrinoid iron-sulfur protein methyltransferase 79, corrinoid iron-sulfur protein 80, CO dehydrogenase/acetyl-CoA synthase 81, formylmethanofuran dehydroganse 83, formyl transferase 84, 10-methenyl-tetrahydromethanopterin cyclohydrolase 85, 10-methylene-H₄ methanopterin dehydrogenase 86, 10-methylene- H_4 -methanopterin reductase 87, methyl- H_4 methanopterin: corrinoid iron-sulfur protein methyltransferase 88, corrinoid iron-sulfur protein 89, CO dehydrogenase/acetyl-CoA synthase 90, thiolase 07, 3-hydroxybutyryl-CoA dehydrogenase 08, crotonase 09, butyryl-CoA dehydrogenase 10, butyaldehyde dehydrogenase 11, butanol dehydrogenase 12 and/or alcohol dehydrogenase 43.

[0366] SEQ ID NOS. 166-198 present examples for designer DNA constructs of designer enzymes for creation of designer hydrogenotrophic biofuel-producing organisms

such as designer cyanobacteria with reductive-acetyl-CoA biofuel-production pathways. Briefly, SEQ ID NO: 166 presents example 166 of a designer hox-promoter-controlled Formylmethanofuran dehydrogenase (Fmd; 83) DNA construct (6110 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-5659) selected/modified from the sequence of formylmethanofuran dehydrogenase subunits B, C, E (GenBank: ADL58895, ADL58894, ADL58893) of *Methanothermobacter marburgensis* and formylmethanofuran dehydrogenase subunits subunits A, D, and G (GenBank: ABC56660, ABC56658, ABC56657) of *Methanosphaera stadtmanae*, a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (5659-6090), and a PCR RE primer (6091-6110) at the 3' end.

[0367] SEQ ID NO: 167 presents example 167 of a designer hox-promoter-controlled Formyl transferase (84) DNA construct (1538 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1086) selected/modified from the sequence of a formylmethanofuran-tetrahydromethanopterin formyltransferase (GenBank: ADL59225) of *Methanothermobacter marburgensis*, a 432bp *Nostoc gor* terminator (1087-1518), and a PCR RE primer (1519-1538).

[0368] SEQ ID NO: 168 presents example 168 of a designer hox-promoter-controlled 5,10-Methenyl-tetrahydromethanopterin (H₄ methanopterin) cyclohydrolase (85) DNA construct (1631 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Anabaena* PCC 7120 hox promoter (21-192), an enzyme-encoding sequence (193-1179) selected from the sequence of a N(5),N(10)-methenyltetrahydromethanopterin cyclohydrolase (GenBank: ABC57615) of *Methanosphaera stadtmanae*, a 432-bp *Nostoc gor* terminator (1180-1161), and a PCR RE primer (1162-1631).

[0369] SEQ ID NO: 169 presents example 169 of a designer hox-promoter-controlled 5,10-Methylene-H₄-methanopterin dehydrogenase (86) DNA construct (1475 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Anabaena* PCC 7120 hox promoter (21-192), an enzyme-encoding sequence (193-1023) selected from the sequence of a F_{420} -dependent methylene-5,6,7,8-tetrahydromethanopterin dehydrogenase (GenBank: ADL57660) of *Methanothermobacter marburgensis*, a 432-bp *Nostoc* gor terminator (1023-1455), and a PCR RE primer (1456-1475).

[0370] SEQ ID NO: 170 presents example 170 of a designer hox-promoter-controlled Methylenetetrahydrofolate reductase and/or Methylene-H₄-methanopterin reductase (78, 87) DNA construct (2594 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc* sp. strain PCC 7120 (*Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-2142) selected/modified from the sequence of a methylenetetrahydrofolate reductase (Gen-Bank: YP_430048) of *Moorella thermoacetica* and a coenzyme F_{420} -dependent N(5),N(10)-methenyltetrahydromethanopterin reductase (GenBank: ADN36752) of *Methanoplanus petrolearius*, a 432-bp *Nostoc* gor terminator (2143-2574), and a PCR RE primer (2575-2594).

[0371] SEQ ID NO: 171 presents example 171 of a designer hox-promoter-controlled Methyltetrahydrofolate:corrinoid/ iron-sulfur protein methyltransferase (79, 88) DNA construct (2819 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena PCC 7120)* hox promoter (21-192), an enzyme-encoding sequence (193-2467) selected/ modified from the sequence of a methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (GenBank: YP_430950) of *Moorella thermoacetica*, and acetyl-CoA decarbonylase/synthase, subunit gamma (GenBank: ADL57900) of *Methanothermobacter marburgensis*, a 432bp *Nostoc* sp. strain PCC 7120 gor terminator (2468-2899), and a PCR RE primer (2900-2819).

[0372] SEQ ID NO: 172 presents example 172 of a designer hox-promoter-controlled Corrinoid iron-sulfur protein (80, 89) DNA construct (2771 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-2319) selected/modified from the sequence of a small subunit corrinoid iron-sulfur protein (GenBank: AAA23255) of *Moorella thermoacetica*, and acetyl-CoA decarbonylase/ synthase subunit delta (GenBank: ADL57899) of *Methanothermobacter marburgensis*, a 432-bp *Nostoc gor* terminator (2319-2751), and a PCR RE primer (2752-2771).

[0373] SEQ ID NO: 173 presents example 173 of a designer hox-promoter-controlled CO dehydrogenase/acetyl-CoA synthase (81, 90) DNA construct (7061 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp Nostoc (Anabaena PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-6609) selected/modified from the sequence of acetyl-CoA decarbonylase/synthase beta subunit/acetyl-CoA decarbonylase/synthase alpha subunit (GenBank: ABC19516) of Moorella thermoacetica, and acetyl-CoA decarbonylase/synthase subunits alpha, beta, epsilon (Gen-Bank: ADL 57895, ADL 59006, ADL 57897) of Methanothermobacter marburgensis, a 432-bp Nostoc sp. strain PCC 7120 gor terminator (6610-7041), and a PCR RE primer (7042-7061).

[0374] SEQ ID NO: 174 presents example 174 of a designer hox-promoter-controlled Thiolase (07) DNA construct (1847 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1395) selected/modified from the sequence of thiolase (GenBank: AB190764) of *Butyrivibrio fibrisolvens*, a 432-bp *Nostoc gor* terminator (1396-1827), and a PCR RE primer (1828-1847).

[0375] SEQ ID NO: 175 presents example 175 of a designer hox-promoter-controlled 3-Hydroxybutyryl-CoA dehydrogenase (08) DNA construct (1514 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1062) selected/modified from the sequence of 3-hydroxybutyryl coenzyme A dehydrogenase (GenBank: Z92974) of *Thermoanaerobacterium*, a 432-bp *Nostoc gor* terminator (1063-1494), and a PCR RE primer (1495-1514).

[0376] SEQ ID NO: 176 presents example 176 of a designer hox-promoter-controlled Crotonase (09) DNA construct (1430 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena PCC 7120)* hox promoter (21-192), an enzyme-encoding sequence (193-978) selected from the sequence of crotonase (GenBank: AF494018) of *Clostridium beijerinckii*, a 432-bp *Nostoc gor* terminator (979-1410), and a PCR RE primer (1411-1430).

[0377] SEQ ID NO: 177 presents example 177 of a designer hox-promoter-controlled Butyryl-CoA dehydrogenase (10) DNA construct (1784 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1332) selected/modified from the sequence of butyryl-CoA

dehydrogenase (GenBank: AF494018) of *Clostridium beijerinckii*, a 432-bp *Nostoc gor* terminator (1333-1764), and a PCR RE primer (1765-1784).

[0378] SEQ ID NO: 178 presents example 178 of a designer hox-promoter-controlled Butyraldehyde dehydrogenase (11) DNA construct (2051 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1599) selected/modified from the sequence of butyraldehyde dehydrogenase (GenBank: AY251646) of *Clostridium saccharoperbutylacetonicum*, a 432-bp *Nostoc gor* terminator (1600-2031), and a PCR RE primer (2032-2051).

[0379] SEQ ID NO: 179 presents example 179 of a designer hox-promoter-controlled NADH-dependent Butanol dehydrogenase (12) DNA construct (1808 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1356) selected/modified from the sequence of NADH-dependent butanol dehydrogenase (GenBank: YP_148778) of *Geobacillus kaustophilus*, a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (1367-1788), and a PCR RE primer (1789-1808) at the 3' end.

[0380] Note, use of SEQ ID NOS. 166-179 in genetic transformation of a microbial host cell including (but not limited to) bacterial cells such as a cyanobacterium *Anabaena* PCC 7120 can create a designer cyanobacterium such as designer *Anabaena* with a designer reductive-acetyl-CoA biofuel-production pathway (numerically labeled as 83-90 and 07-12 in FIG. 13) for production of 1-butanol from hydrogen and carbon dioxide without requiring photosynthesis or sunlight. That is, the expression of SEQ ID NOS. 166-179 in a bacterium such as *Anabaena* PCC 7120 represents a designer organism with the designer hydrogenotrophic reductive-acetyl-CoA biofuel-production pathway (83-90 and 07-12 in FIG. 13) that can operate for anaerobic chemolithoautotrophic production of butanol from hydrogen and carbon dioxide even if it is in complete darkness.

[0381] SEQ ID NO: 180 presents example 180 of a designer hox-promoter-controlled Energy converting hydrogenase (Ech) (91) DNA construct (10538 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-10086) selected/modified from the sequence of Energy converting hydrogenase subunits (EchA, B, C, D, E. F, G, H, I, J, K, L, M, N, O, P, Q) (GenBank: ABC57807, and ABC57812-ABC57827) of *Methanosphaera stadtmanae* DSM 3091, a 432-bp *Nostoc gor* terminator (10087-10518), and a PCR RE primer (10519-10538).

[0382] SEQ ID NO: 181 presents example 181 of a designer hox-promoter-controlled [NiFe]-hydrogenase MvhADG (95) DNA construct (3416 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-2964) selected/modified from the sequence of [NiFe]-hydrogenase MvhADG (GenBank: ADL59096, ADL59098, ADL59097) of *Methanothermobacter marburgensis*, a 432bp *Nostoc* sp. strain PCC 7120 gor terminator (2965-3396), and a PCR RE primer (3397-3416).

[0383] SEQ ID NO: 182 presents example 182 of a designer hox-promoter-controlled Heterodisulfide reductases (HdrABC, HdrDE) (94) DNA construct (6695 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Anabaena* PCC 7120 hox promoter (21-192), an enzyme-encoding sequence (193-6243) selected/modified from the sequence of Heterodisulfide reductases (HdrABC, HdrDE) (GenBank: AET63985, AET63982, AET63983, AET64166, AET64165) of *Methanosaeta harundinacea*, a 432-bp *Nostoc gor* terminator (6244-6675), and a PCR RE primer (6676-6695).

[0384] SEQ ID NO: 183 presents example 183 of a designer hox-promoter-controlled Coenzyme F_{420} -reducing hydrogenase (Frh) (96) DNA construct (3407 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc* sp. strain PCC 7120 (*Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-2955) selected/modified from the sequence of Coenzyme F_{420} -reducing hydrogenase (FrhB1-3) (GenBank: YP_003357229, YP_003357467, YP_003357509) of *Methanocella paludicola* SANAE, a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (2956-3387), and a PCR RE primer (3388-3407) at the 3' end.

[0385] Note, use of SEQ ID NOS. 180-183 in genetic transformation of a microbial host cell including (but not limited to) bacterial cells such as a cyanobacterium Anabaena PCC 7120 can confer an anaerobic chemolithoautotrophic hydrogen (H_2) utilization system [which, as shown in FIG. 12, comprises Energy converting hydrogenase (Ech) (91), [NiFe]-hydrogenase MvhADG (95), Coenzyme F420-reducing hydrogenase (Frh) (96), and Coenzyme F420-reducing hydrogenase (Frh) (96)] that can produce reducing power $(Fd_{red}^{2-} \text{ and } F_{420}H_2)$ from H_2 in support of the designer reductive-acetyl-CoA butanol-production pathway (83-90 and 07-12 in FIG. 13). Therefore, the expression of SEQ ID NOS. 180-183 along with SEQ ID NOS. 166-179 in a bacterium such as Anabaena PCC 7120 represents a designer organism (such as designer Anabaena) with a full designer reductive-acetyl-CoA biofuel-production pathway system (FIGS. 12 and 13) that can operate for anaerobic chemolithoautotrophic production of butanol from hydrogen and carbon dioxide without requiring photosynthesis or aerobic respiration. The net result in this example is the anaerobic chemolithoautotrophic production of butanol from hydrogen and carbon dioxide as shown in the process equation [21].

[0386] Also note, these designer genes (SEQ ID NOS. 166-183) are controlled by a designer hox anaerobic promoter. Therefore, under aerobic conditions such as in an open pond mass culture, the designer *Anabaena* in this example can quickly grow photoautotrophically using air carbon dioxide and water as the sources of carbon and electrons just like the wild-type parental strain. When the designer *Anabaena* cells cultures are grown and ready for use (as catalysts in this application), they can then be placed into an anaerobic reactor supplied with industrial CO_2 and H_2 gas for induction of the designer genes expression for anaerobic chemolithoautotrophic production of butanol (as shown in FIGS. **12** and **13**) in dark.

[0387] SEQ ID NO: 184 presents example 184 of a designer hox-promoter-controlled Methyl-H4MPT: coenzyme M methyltransferase (MtrA-H) (92) DNA construct (5417 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Anabaena* PCC 7120 hox promoter (21-192), an enzymeencoding sequence (193-4965) selected/modified from the sequence of Methyl-H4MPT: coenzyme M methyltransferase (MtrA-H) (GenBank: ABC56714, ABC56713,YP_ 447360, YP_447354, YP_447359,YP_447355) of *Methanosphaera stadtmanae*, and mtrEF (AET65445, NC_009051) of *Methanosaeta harundinacea* and *Metha*- *noculleus marisnigri*, a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (4966-5397), and a PCR RE primer (5398-5417).

[0388] SEQ ID NO: 185 presents example 185 of a designer hox-promoter-controlled Methyl-coenzyme M reductase (Mcr) (93) DNA construct (5042 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc* sp. strain PCC 7120 (*Anabaena* PCC 7120) hox promoter (21-192), an enzymeencoding sequence (193-4590) selected/modified from the sequence of methylcoenzyme M reductase subunits A, B. C, G (GenBank: CAE48306, CAE48303, ABC56709, CAE48305) of *Methanosphaera stadtmanae*, a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (4591-5022), and a PCR RE primer (5023-5042).

[0389] Note, use of SEQ ID NOS. 184 and 185 along with SEQ ID NOS. 180-183 in genetic transformation of a microbial host cell including bacterial cells such as a cyanobacterium Anabaena PCC 7120 can confer a methanogenic hydrogenotrophic system which, as shown in FIG. 15, comprises Methyl-H4MPT: coenzyme M methyltransferase (MtrA-H) (92), Methyl-coenzyme M reductase (Mcr) (93), Energy converting hydrogenase (Ech) (91), [NiFe]-hydrogenase MvhADG (95), Coenzyme F420-reducing hydrogenase (Frh) (96), Coenzyme F₄₂₀-reducing hydrogenase (Frh) (96). These enzymes along with a native ATPase 97 can produce ATP and reducing power $(Fd_{red}^{2-} \text{ and } F_{420}H_2)$ from H_2 in support of the designer reductive-acetyl-CoA methanogenic butanol-production pathways (FIGS. 16 and 17). Therefore, the expression of SEQ ID NOS. 180-185 along with SEQ ID NOS. 166-179 in a bacterium such as Anabaena PCC 7120 represents a designer organism (such as designer Anabaena) with a designer hydrogenotrophic reductive-acetyl-CoA methanogenic biofuel-production pathway system (FIGS. 15 and 17) that can operate for anaerobic production of both butanol and methane from hydrogen and carbon dioxide without requiring any photosynthesis. The net result in this example is the anaerobic chemolithoautotrophic production of butanol and methane from hydrogen and carbon dioxide as shown in the process equation [22].

[0390] SEQ ID NO: 186 presents example 186 of a designer hox-promoter-controlled Formate dehydrogenase (74) DNA construct (5450 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc* sp. strain PCC 7120 (*Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-4998) selected/modified from the sequence of formate dehydrogenase alpha and beta subunits (GenBank: AAB18330, AAB18329) of *Moorella thermoacetica*, a 432bp *Nostoc* sp. strain PCC 7120 gor terminator (4999-5430), and a PCR RE primer (5431-5450).

[0391] SEQ ID NO: 187 presents example 187 of a designer hox-promoter-controlled 10-Formyl-H₄ folate synthetase (75) DNA construct (2324 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1872) selected/modified from the sequence of 10-formyltetrahydrofolate synthetase (GenBank: YP_428991) of *Moorella thermoacetica*, a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (1873-2304), and a PCR RE primer (2305-2324).

[0392] SEQ ID NO: 188 presents example 188 of a designer hox-promoter-controlled 10-Methenyl-H₄ folate cyclohydrolase (76) DNA construct (1487 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1035) selected/modified from the sequence of methenyltetrahydrofolate cyclohydrolase (GenBank: YP_430368) of *Moorella thermoacetica* ATCC 39073, a 432-bp *Nostoc gor* terminator (1036-1467), and a PCR RE primer (1468-1487).

[0393] SEQ ID NO: 189 presents example 189 of a designer hox-promoter-controlled 10-Methylene-H₄ folate dehydrogenase (77) DNA construct (1487 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1035) selected/modified from the sequence of meth-enyltetrahydrofolate cyclohydrolase/5,10-methylenetetrahydrofolate dehydrogenase (GenBank: ABC19825) of *Moorella thermoacetica*, a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (1036-1467), and a PCR RE primer (1468-1487).

[0394] SEQ ID NO: 190 presents example 190 of a designer hox-promoter-controlled 10-Methylene-H₄ folate reductase (78) DNA construct (1565 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Nostoc (Anabaena* PCC 7120) hox promoter (21-192), an enzyme-encoding sequence (193-1113) selected/modified from the sequence of methylenetetrahydrofolate reductase (GenBank: ABC19505) of *Moorella thermoacetica*, a 432-bp *Nostoc gor* terminator (1114-1545), and a PCR RE primer (1546-1565).

[0395] SEQ ID NO: 191 presents example 191 of a designer hox-promoter-controlled Methyl-H₄ folate: corrinoid ironsulfur protein Methyltransferase (79) DNA construct (1442 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Anabaena* PCC 7120 hox promoter (21-192), an enzymeencoding sequence (193-690) selected/modified from the sequence of methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (GenBank: YP_430174) of *Moorella thermoacetica*, a 432-bp *Nostoc gor* terminator (691-1122), and a PCR RE primer (1123-1442).

[0396] SEQ ID NO: 192 presents example 192 of a designer hox-promoter-controlled Corrinoid iron-sulfur protein (80) DNA construct (2942 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Anabaena* hox promoter (21-192), an enzyme-encoding sequence (193-2490) selected/modified from the sequence of corrinoid iron-sulfur protein large and small subunits (GenBank: AEI90745, AEI90746) of *Clostridium autoethanogenum*, a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (2491-2922), and a PCR RE primer (2923-2942).

[0397] SEQ ID NO: 193 presents example 193 of a designer hox-promoter-controlled CO dehydrogenase/acetyl-CoA synthase (81) DNA construct (4859 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Anabaena* PCC 7120 hox promoter (21-192), an enzyme-encoding sequence (193-4407) selected/modified from the sequence of carbon monoxide dehydrogenase alpha subunit alpha and beta subunits (GenBank: AAA23229, AAA23228) of *Moorella thermoacetica*, a 432-bp *Nostoc gor* terminator (4408-4839), and a PCR RE primer (4840-4859).

[0398] Note, use of SEQ ID NOS. 186-193 along with SEQ ID NOS. 174-179 in genetic transformation of a microbial host cell such as a cyanobacterium *Anabaena* PCC 7120 confers an ATP-requiring reductive-acetyl-CoA butanol-production pathway (74-81 and 07-12/42 in FIG. 14). Similarly, the expression of SEQ ID NOS. 186-193 and SEQ ID NOS. 180-185 along with SEQ ID NOS. 174-179 in a bacterium such as *Anabaena* PCC 7120 represents a designer organism (such as designer *Anabaena*) with a designer ATP-requiring

reductive-acetyl-CoA methanogenic biofuel-production pathway and a hydrogenotrophic methanogenesis-coupled ATP-generating system (FIGS. **15** and **16**) that can operate for production of both butanol and methane from hydrogen and carbon dioxide. The net result in this example is the anaerobic chemolithotrophic production of both butanol and methane from hydrogen and carbon dioxide as shown in the process equation [22].

[0399] SEQ ID NO: 194 presents example 194 of a designer hox-promoter-controlled F420 synthesis enzymes (99) DNA construct (6428 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp Anabaena PCC 7120 hox promoter (21-192), enzymes-encoding sequence (193-4976) selected/modified from the sequence of lactaldehyde dehydrogenase CofA (GenBank: ADC46523,) of Methanobrevibacter ruminantium, 2-phospho-l-lactate guanylyltransferase (GenBank: ADL58588) of Methanothermobacter Marburgensis. 2-phospho-L-lactate transferase (GenBank: NP 987524) of Methanococcus maripaludis, coenzyme F420-0 gammaglutamyl ligase (YP_001030766) of Methanocorpusculum labreanum, FO synthase subunits 1 and 2 (YP_003357513, YP_003357511) of Methanocella paludicolam, a 432-bp Nostoc sp. strain PCC 7120 gor terminator (4977-6408), and a PCR RE primer (6409-6428).

[0400] SEQ ID NO: 195 presents example 195 of a designer hox-promoter-controlled Pyridoxal phosphate-dependent L-tyrosine decarboxylase(mfnA for methanofuran synthesis) (100) DNA construct (1778 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Anabaena* PCC 7120 hox promoter (21-192), an enzyme-encoding sequence (193-1326) selected/modified from the sequence of L-tyrosine decarboxylase (GenBank: YP_003355454) of *Methanocella paludicola*, a 432-bp *Nostoc gor* terminator (1327-1758), and a PCR RE primer (1759-1778).

[0401] SEQ ID NO: 196 presents example 196 of a designer hox-promoter-controlled Methanopterin synthesis enzymes (101) DNA construct (3215 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp *Anabaena* PCC 7120 hox promoter (21-192), an enzymes-encoding sequence (193-2763) selected/modified from the sequence of GTP cyclohydrolase (GenBank: YP_447347) of *Methanosphaera stadtmanae* DSM 3091, cyclic phosphodiesterase MptB (AB035741) of *Methanococcus maripaludis* C5, beta-ribo-furanosylaminobenzene 5'-phosphate synthase (YP_003356610) of *Methanocella paludicola* SANAE, a 432-bp *Nostoc* sp. strain PCC 7120 gor terminator (2764-3195), and a PCR RE primer (3195-3215).

[0402] SEQID NO: 197 presents example 197 of a designer hox-promoter-controlled Coenzyme M synthesis enzymes (102) DNA construct (4226 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp Nostoc sp. strain PCC 7120 (Anabaena PCC 7120) hox promoter (21-192), an enzymesencoding sequence (193-3774) selected/modified from the sequence of phosphosulfolactate synthase, 2-phosphosulfolactate phosphatase and sulfolactate dehydrogenase (Gen-Bank: ADL57861, YP_003850451, ADL59162) of Methamarburgensis, nothermobacter and sulfopyruvate decarboxylase (YP_003357048) of Methanocella paludicola SANAE, a 432-bp Nostoc sp. strain PCC 7120 gor terminator (3775-4026), and a PCR RE primer (4027-4226). [0403] SEQID NO: 198 presents example 198 of a designer hox-promoter-controlled Coenzyme B synthesis enzymes (103) DNA construct (5198 bp) that includes a PCR FD primer (sequence 1-20), a 172-bp Anabaena PCC 7120 hox

promoter (21-192), an enzymes-encoding sequence (193-4746) selected/modified from the sequence of isopropylmalate synthase, isopropylmalate dehydrogenase (GenBank: AAM01606, NP_614498) of *Methanopyrus kandleri*, isopropylmalate isomerase large and small subunits (ADP98363, ADP98362) of *Marinobacter adhaerens*, a 432bp *Nostoc gor* terminator (4747-5178), and a PCR RE primer (5179-5198).

[0404] Note, the expression of SEQ ID NOS. 194-198 in a microbial host cell such as cyanobacterium Anabaena PCC 7120 provides the ability of synthesizing some of the cofactors such as F_{420} , methanofuran, methanopterin, Coenzyme M, and Coenzyme B that are needed for the designer hydrogenotrophic reductive-acetyl-CoA biofuel-production pathways (of FIGS. 13,14,16 and 17) to properly operate. Depending on the genetic backgrounds of various host cells such as cyanobacteria, many of them may or may not possess some of these enzymes to synthesize this type of special cofactors. Therefore, in one of the various embodiments, it is a preferred practice to express this type of designer cofactorsynthesis enzymes (e.g., SEQ ID NOS. 194-198) along with the hydrogenotrophic designer reductive-acetyl-CoA biofuel-production pathway genes (e.g., SEQ ID NOS. 166-193) as shown in these examples.

[0405] Note, many of the hydrogenotrophic bacteria and methanogens such as Methanocella paludicola SANAE naturally possess certain hydrogenotrophic and/or reductive acetyl-CoA pathway(s) and the ability of synthesizing the associated cofactors including F420, methanofuran, methanopterin, Coenzyme M, and Coenzyme B. Therefore, in one of the various embodiments, it is also a preferred practice to express certain designer genes of biofuel-production-pathways (FIGS. 1, 4, 5, 6, 7, 8, 10, 13, and 14) such as SEQ ID NOS. 174-179 in a hydrogenotrophic and/or methanogenic host cell for chemolithotrophic production of advanced biofuels such as 1-buatanol from hydrogen (H₂) and carbon dioxide (CO₂). According to one of the various embodiments, a hydrogenotrophic and/or methanogenic host organism for this specific application is selected from the group consisting of: Methanocella paludicola SANAE, Acinetobacter baumannii ABNIH3, Acinetobacter baumannii ABNIH4, Acinetobacter sp. DR1, Agrobacterium sp. H13-3; Agrobacterium vitis S4, Alcaligenes sp., Allochromatium vinosum DSM 180, Amycolatopsis mediterranei S699, Anoxybacillus flavithermus WK1, Aquifex aeolicus VF5, Archaeoglobus fulgidus DSM 4304, Archaeoglobus veneficus SNP6, Azospirillum sp. B510, Burkholderia cenocepacia HI2424, Caldicellulosiruptor bescii DSM 6725, Carboxydothermus hydrogenoformans, Centipeda periodontii DSM 2778, Clostridium autoethanogenum, Clostridium ragsdalei, Clostridium sticklandii DSM 519, Clostridium sticklandii, Corynebacterium glutamicum, Cupriavidus metallidurans CH34, Cupriavidus necator N-1, Desulfobacca acetoxidans DSM 11109, Exiguobacterium sp. AT1b, Ferrimonas balearica DSM 9799, Ferroglobus placidus DSM 10642, Geobacillus kaustophilus

HTA426, Helicobacter bilis ATCC 43879, Herbaspirillum seropedicae SmR1, Hydrogenobacter thermophilus TK-6, Hydrogenovibrio marinus, Klebsiella variicola At-22, Methanobacterium sp. SWAN-1, Methanobrevibacter rumi-

nantium M1, Methanocaldococcus fervens AG86, Methanocaldococcus infernus ME, Methanocaldococcus jannaschii, Methanocaldococcus sp. FS406-22, Methanocaldococcus vulcanius M7, Methanococcus aeolicus Nankai-3, Methanococcus maripaludis C6, Methanococcus maripaludis S2, Methanococcus voltae A3, Methanocorpusculum labreanum Z, Methanoculleus marisnigri JR1, Methanohalophilus mahii DSM 5219, Methanolinea tarda NOBI-1, Methanoplanus petrolearius DSM 11571, Methanoplanus petrolearius, Methanopyrus kandleri AV19, Methanoregula boonei 6A8, Methanosaeta harundinacea 6Ac, Methanosalsum zhilinae DSM 4017, Methanosarcina acetivorans C2A, Methanosarcina barkeri str. Fusaro, Methanosarcina mazei Go1, Methanosphaera stadtmanae, Methanospirillum hungatei JF-1, Methanothermobacter marburgensis str. Marburg, Methanothermobacter marburgensis, Methanothermobacter thermautotrophicus, Methanothermococcus okinawensis IH1, Methanothermus fervidus DSM 2088, Methylobacillus flagellates, Methylobacterium organophilum, Methylococcus capsulatus, Methylomicrobium kenyense, Methylomonas methanica MC09, Methylomonas sp. LW13, Methylosinus sp. LW2, Methylosinus trichosporium OB3b, Methylotenera mobilis JLW8, Methylotenera versatilis 301, Methylovorus glucosetrophus SIP3-4, Moorella thermoacetica ATCC 39073, Moorella thermoacetica, Oligotropha carboxidovorans OM5, Paenibacillus terse HPL-003, Pelotomaculum thermopropionicum SI Planctomyces brasiliensis DSM 5305, Pyrococcus furiosus DSM 3638, Pyrococcus horikoshii OT3, Pyrococcus yayanosii CH1, Ralstonia eutropha H16, Rubrivivax sp., Selenomonas noxia ATCC 43541, Shewanella baltica BA175, Stenotrophomonas sp. SKA14, Synechococcus sp. JA-2-3B' a(2-13), Synechococcus sp. JA-3-3Ab, Thermococcus gammatolerans EJ3, Thermococcus kodakarensis KOD1, Thermococcus onnurineus NA1, Thermococcus sp. 4557, Thermodesulfatator indicus DSM 15286, Thermofilum pendens Hrk 5, Thermotoga lettingae TMO, Thermotoga petrophila RKU-1, Thiocapsa roseopersicina, Thiomonas intermedia K12, Xanthobacter autotrophicus, Yersinia pestis Antigua, and combinations thereof.

[0406] While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicant's general inventive concept.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 198

<210> SEQ ID NO 1 <211> LENGTH: 1809

```
-continued
```

<pre><112> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 1, Example 1:</pre>				
<400> SEQUENCE: 1				
agaaaatctg gcaccacacc tatatggtag ggtgcgagtg accccgcgcg acttggagct	60			
cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct attctgagct ggagaccgag	120			
gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggcttgaag gttcaaggga	180			
agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgctcccgg ccccgggctc	240			
ttgtgcgcgc attagggctt cgggtcgcaa gcaagacgat acatggccgc cgtcattgcc	300			
aagteeteeg teteegegge egtggetege eeggeeeget eeagegtgeg eeccatggee	360			
gcgctgaagc ccgccgtcaa ggctgccccc gtggctgccc cggctcaggc caaccagatg	420			
gagaatttta gatttaatgc atatacagag atgctttttg gaaagggaca aatagagaag	480			
cttccagagg ttttaaaaag atatggtaaa aatatattac ttgcatatgg tggtggaagt	540			
ataaaaaaga atggactcta tgatactatc caaaagctat tgaaagattt taatattgtt	600			
gaattaagtg gtattgaacc aaatccaaga attgaaactg taagacgtgg agttgaactt	660			
tgcagaaaaa ataaagtaga tgttatttta gctgttggtg gagggagtac aatagactgc	720			
tcaaaggtta taggggcagg ttattattat gctggagatg catgggacct tgtaaaaaat	780			
ccagctaaaa taggtgaggt tttaccaata gtgacagttt taacaatggc agctactggt	840			
tctgaaatga atagaaatgc tgttatttca aagatggata caaatgaaaa gcttggaaca	900			
ggatcaccta agatgatccc tcaaacttct attttagatc cagaatattt gtatacattg	960			
ccagcaattc aaacagctgc aggttgtgct gatattatgt cacacatatt tgaacaatat	1020			
tttaataaaa ctacagatgc ttttgtacaa gataaatttg cggaaggttt gttgcaaact	1080			
tgtataaaat attgccctgt tgctttaaag gaaccaaaga attatgaagc tagagcaaat	1140			
ataatgtggg ctagttcaat ggctcttaac ggacttttag gaagtgggaa agctggagct	1200			
tggacttgtc atccaataga acatgaatta agtgcatttt atgatataac tcatggagta	1260			
ggtettgeaa ttttaaetee aagttggatg agatatatet taagtgatgt aacagttgat	1320			
aagtttgtta acgtatggca tttagaacaa aaagaagata aatttgctct tgcaaatgaa	1380			
gcaatagatg caacagaaaa attetttaaa gettgtggta ttecaatgae tttaaetgaa	1440			
cttggaatag ataaagcaaa ctttgaaaag atggcaaaag ctgcagtaga acatggtgct	1500			
ttagaatatg catatgtttc attaaatgcc gaggatgtat ataaaatttt agaaatgtcc	1560			
ctttaataaa tggaggcgct cgttgatctg agccttgccc cctgacgaac ggcggtggat	1620			
ggaagatact gctctcaagt gctgaagcgg tagcttagct	1680			
tettttteaa eaegtaaaaa geggaggagt tttgeaattt tgttggttgt aaegateete	1740			
cgttgatttt ggcctctttc tccatgggcg ggctgggcgt atttgaagcg gttctctctt	1800			
ctgccgtta	1809			
AND SECTO NO				

<211> LENGTH: 2067
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<210> SEQ ID NO 2

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 2, Example 2:

designer Butyraldehyde-Dehydrogenase DNA construct (2067 bp)	
<400> SEQUENCE: 2	
agaaaatctg gcaccacacc tatatggtag ggtgcgagtg accccgcgcg acttggagct	60
cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct attctgagct ggagaccgag	120
gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggcttgaag gttcaaggga	180
agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgctcccgg ccccgggctc	240
ttgtgcgcgc attagggctt cgggtcgcaa gcaagacgat acatggccgc cgtcattgcc	300
aagteeteeg teteegegge egtggetege eeggeeeget eeagegtgeg eeeeatggee	360
gcgctgaagc ccgccgtcaa ggctgccccc gtggctgccc cggctcaggc caaccagatg	420
attaaagaca cgctagtttc tataacaaaa gatttaaaat taaaaacaaa tgttgaaaat	480
gccaatctaa agaactacaa ggatgattct tcatgtttcg gagttttcga aaatgttgaa	540
aatgetataa geaatgeegt acaegeacaa aagatattat eeetteatta tacaaaagaa	600
caaagagaaa aaatcataac tgagataaga aaggccgcat tagaaaataa agagattcta	660
gctacaatga ttcttgaaga aacacatatg ggaagatatg aagataaaat attaaagcat	720
gaattagtag ctaaatacac teetgggaca gaagatttaa etaetaetge ttggteagga	780
gataacgggc ttacagttgt agaaatgtct ccatatggcg ttataggtgc aataactcct	840
tctacgaatc caactgaaac tgtaatatgt aatagtatag gcatgatagc tgctggaaat	900
actgtggtat ttaacggaca tccaggcgct aaaaaatgtg ttgcttttgc tgtcgaaatg	960
ataaataaag ctattatttc atgtggtggt cctgagaatt tagtaacaac tataaaaaat	1020
ccaactatgg actetetaga tgeaattatt aageaeeett eaataaaaet aetttgegga	1080
actggagggc caggaatggt aaaaaccctc ttaaattctg gtaagaaagc tataggtgct	1140
ggtgctggaa atccaccagt tattgtagat gatactgctg atatagaaaa ggctggtaag	1200
agtatcattg aaggetgtte ttttgataat aatttaeett gtattgeaga aaaagaagta	1260
tttgtttttg agaacgttgc agatgattta atatctaaca tgctaaaaaa taatgctgta	1320
attataaatg aagatcaagt atcaaagtta atagatttag tattacaaaa aaataatgaa	1380
actcaagaat actctataaa taagaaatgg gtcggaaaag atgcaaaatt attcttagat	1440
gaaatagatg ttgagtctcc ttcaagtgtt aaatgcataa tctgcgaagt aagtgcaagg	1500
catccatttg ttatgacaga actcatgatg ccaatattac caattgtaag agttaaagat	1560
atagatgaag ctattgaata tgcaaaaata gcagaacaaa atagaaaaaca tagtgcctat	1620
atttattcaa aaaatataga caacctaaat aggtttgaaa gagaaatcga tactactatc	1680
tttgtaaaga atgctaaatc ttttgccggt gttggttatg aagcagaagg ctttacaact	1740
ttcactattg ctggatccac tggtgaagga ataacttctg caagaaattt tacaagacaa	1800
agaagatgtg tactcgccgg ttaataaatg gaggcgctcg ttgatctgag ccttgccccc	1860
tgacgaacgg cggtggatgg aagatactgc tctcaagtgc tgaagcggta gcttagctcc	1920
ccgtttcgtg ctgatcagtc tttttcaaca cgtaaaaagc ggaggagttt tgcaattttg	1980
ttggttgtaa cgateeteeg ttgattttgg eetettete eatgggeggg etgggegtat	2040
ttgaageggt tetetettet geegtta	2067

<210> SEQ ID NO 3 <211> LENGTH: 1815

<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 3, Example 3: designer Butyryl-CoA-Dehydrogenase DNA construct (1815 bp)</pre>						
		-CoA-Denydi	rogenase DNA	A construct	(1815 bp)	
<400> SEQUENCI						60
agaaaatctg gca						60
cgatggcccc gg						120
gcgcatgaaa ato						180
agggttcaaa cga						240
ttgtgcgcgc att						300
gtcattgcca agi	tcctccgt	ctccgcggcc	gtggetegee	cggcccgctc	cagcgtgcgc	360
cccatggccg cg	ctgaagcc	cgccgtcaag	gctgcccccg	tggctgcccc	ggctcaggcc	420
aaccagatga att	ttccaatt	aactagagaa	caacaattag	tacaacaaat	ggttagagaa	480
ttcgcagtaa ato	gaagttaa	gccaatagct	gctgaaatcg	acgaaacaga	aagattccct	540
atggaaaacg tto	gaaaaaat	ggctaagctt	aaaatgatgg	gtatcccatt	ttctaaagaa	600
tttggtggag ca	ggcggaga	tgttctttca	tatataatag	ctgtggaaga	attatcaaaa	660
gtttgtggta cta	acaggagt	tattctttca	gcgcatacat	cattatgtgc	atcagtaatt	720
aatgaaaatg gaa	actaacga	acaaagagca	aaatatttac	ctgatctttg	cagcggtaaa	780
aagatcggtg ct	ttcggatt	aactgaacca	ggtgctggta	cagatgctgc	aggacaacaa	840
acaactgctg ta	ttagaagg	ggatcattat	gtattaaatg	gttcaaaaat	cttcataaca	900
aatggtggag tt	gctgaaac	tttcataata	tttgctatga	cagataagag	tcaaggaaca	960
aaaggaattt cto	gcattcat	agtagaaaag	tcattcccag	gattctcaat	aggaaaatta	1020
gaaaataaga tg	gggatcag	agcatcttca	actactgagt	tagttatgga	aaactgcata	1080
gtaccaaaag aaa	aacctact	tagcaaagaa	ggtaagggat	ttggtatagc	aatgaaaact	1140
cttgatggag gaa	agaattgg	tatagctgct	caagctttag	gtattgcaga	aggagctttt	1200
gaagaagctg tta	aactatat	gaaagaaaga	aaacaatttg	gtaaaccatt	atcagcattc	1260
caaggattac aat	tggtatat	agctgaaatg	gatgttaaaa	tccaagctgc	taaatactta	1320
gtatacctag cto	gcaacaaa	gaagcaagct	ggtgagcctt	actcagtaga	tgctgcaaga	1380
gctaaattat tto	gctgcaga	tgttgcaatg	gaagttacaa	ctaaagcagt	tcaaatcttt	1440
ggtggatatg gti	tacactaa	agaataccca	gtagaaagaa	tgatgagaga	tgctaaaata	1500
tgcgaaatct aco	gaaggaac	ttcagaagtt	caaaagatgg	ttatcgcagg	aagcatttta	1560
agataatcta gat	taaatgga	ggcgctcgtt	gatctgagcc	ttgccccctg	acgaacggcg	1620
gtggatggaa gat	tactgctc	tcaagtgctg	aagcggtagc	ttageteece	gtttcgtgct	1680
gatcagtett tti	tcaacacg	taaaaagcgg	aggagttttg	caattttgtt	ggttgtaacg	1740
atcctccgtt gat	-			_		1800
tetettetge egt						1815
5 5						
<pre><210> SEQ ID I <211> LENGTH: <212> TYPE: DI <213> ORGANISI <220> FEATURE <223> OTHER II</pre>	1482 NA M: Artifi :	-			No. 4 Frame	

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 4, Example 4:

-continued

designer Crotonase DNA construct (1482 bp)

<400> SEQUENCE: 4 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg accccgcgcg acttggagct 60 cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct attctgagct ggagaccgag 120 gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggcttgaag gttcaaggga 180 agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgctcccgg ccccgggctc 240 ttgtgcgcgc attagggctt cgggtcgcaa gcaagacgat acctcgagca tatggccgcc 300 gtcattgcca agtcctccgt ctccgcggcc gtggctcgcc cggcccgctc cagcgtgcgc 360 420 cccatqqccq cqctqaaqcc cqccqtcaaq qctqcccccq tqqctqcccc qqctcaqqcc aaccagatgg aattaaaaaa tgttattett gaaaaagaag ggeatttage tattgttaca 480 atcaatagac caaaggcatt aaatgcattg aattcagaaa cactaaaaga tttaaatgtt 540 qttttaqatq atttaqaaqc aqacaacaat qtqtatqcaq ttataqttac tqqtqctqqt 600 gagaaatctt ttgttgctgg agcagatatt tcagaaatga aagatcttaa tgaagaacaa 660 ggtaaagaat ttggtatttt aggaaataat gtcttcagaa gattagaaaa attggataag 72.0 ccagttatcg cagctatatc aggatttgct cttggtggtg gatgtgaact tgctatgtca 780 tgtgacataa gaatagette agttaaaget aaatttggte aaccagaage aggaettgga 840 ataactccag gatttggtgg aactcaaaga ttagcaagaa tagttggacc aggaaaagct 900 aaagaattaa tttatacttg tgaccttata aatgcagaag aagcttatag aataggctta 960 gttaataaag tagttgaatt agaaaaattg atggaagaag caaaagcaat ggctaacaag 1020 attgcagcta atgctccaaa agcagttgca tattgtaaag atgctataga cagaggaatg 1080 caagttgata tagatgcagc tatattaata gaagcagaag actttgggaa gtgctttgca 1140 acagaagatc aaacagaagg aatgactgcg ttcttagaaa gaagagcaga aaagaatttt 1200 caaaataaag getgetgeee eggetgetge taatetagat aaatggagge getegttgat 1260 ctgagccttg ccccctgacg aacggcggtg gatggaagat actgctctca agtgctgaag 1320 cggtagetta geteecegtt tegtgetgat cagtettttt caacaegtaa aaageggagg 1380 agttttgcaa ttttgttggt tgtaacgatc ctccgttgat tttggcctct ttctccatgg 1440 gcgggctggg cgtatttgaa gcggttctct cttctgccgt ta 1482 <210> SEQ ID NO 5 <211> LENGTH: 1367 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 5, Example 5: designer 3-Hydroxybutyryl-CoA-Dehydrogenase DNA construct (1367 bp) <400> SEOUENCE: 5

agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60 caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccggctcgag catatggccg 120 ccgtcattgc caagtcetec gteteegegg ccgtggeteg cccgggecege teeagegtge 240 gceccatgge cgcgetgaag cccgcegtea aggetgecee cgtggetgee ccgggeteagg 240 ccaaccagat gaaaaagatt tttgtacttg gagcaggaac tatgggtget ggtategtte 300 aagcattege teaaaaggt tgtgaggtaa ttgtaagaga cataaaggaa gaatttgttg 360

-continued

acagaggaat agctgga	atc actaaaggat	tagaaaagca	agttgctaaa	ggaaaaatgt	420
ctgaagaaga taaagaa	gct atactttcaa	gaatttcagg	aacaactgat	atgaagttag	480
ctgctgactg tgatttag	gta gttgaagctg	caatcgaaaa	catgaaaatt	aagaaggaaa	540
tctttgctga gttagat	gga atttgtaagc	cagaagcgat	tttagcttca	aacacttcat	600
ctttatcaat tactgaa	gtt gcttcagcta	caaagagacc	tgataaagtt	atcggaatgc	660
atttctttaa tccagct	cca gtaatgaagc	ttgttgaaat	tattaaagga	atagctactt	720
ctcaagaaac ttttgat	gct gttaaggaat	tatcagttgc	tattggaaaa	gaaccagtag	780
aagttgcaga agctcca	gga ttcgttgtaa	acggaatctt	aatcccaatg	attaacgaag	840
cttcattcat ccttcaa	gaa ggaatagctt	cagttgaaga	tattgataca	gctatgaaat	900
atggtgctaa ccatcca	atg ggacctttag	ctttaggaga	tcttattgga	ttagatgttt	960
gcttagctat catggat	gtt ttattcactg	aaacaggtga	taacaagtac	agagctagca	1020
gcatattaag aaaatat	gtt agagctggat	ggcttggaag	aaaatcagga	aaaggattct	1080
atgattattc taaaggc	tgc tgccccggct	gctgctaatc	tagataaatg	gaggcgctcg	1140
ttgatctgag ccttgcc	ccc tgacgaacgg	cggtggatgg	aagatactgc	tctcaagtgc	1200
tgaageggta gettage	tee eegtttegtg	ctgatcagtc	tttttcaaca	cgtaaaaagc	1260
ggaggagttt tgcaatt	ttg ttggttgtaa	cgatcctccg	ttgattttgg	cctctttctc	1320
catgggcggg ctgggcg	tat ttgaagcggt	tctctcttct	gccgtta		1367
<212> TYPE: DNA <213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio	_	ic Construct	-	No. 6, Exam	ple 6:
<213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM	ATION: Synthet	ic Construct	-	No. 6, Exam	ple 6:
<213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio	ATION: Synthet olase DNA cons	ic Construct truct (1721	bp)		ple 6: 60
<213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6	ATION: Synthet plase DNA cons acc atggtagggt	ic Construct truct (1721 gcgagtgacc	bp)	tggaagggtt	-
<pre><213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatctg gcaccac</pre>	ATION: Synthet olase DNA cons acc atggtagggt cga acttttgtcg	ic Construc truct (1721 gcgagtgacc ggggggcgctc	bp) ccgcgcgact ccggctcgag	tggaagggtt catatggccg	60
<pre><213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatctg gcaccac caaacgaccc cgccgta</pre>	ATION: Synthet Dlase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg	ic Construct truct (1721 gcgagtgacc gggggggggctc ccgtggctcg	bp) ccgcgcgact ccggctcgag cccggcccgc	tggaagggtt catatggccg tccagcgtgc	60 120
<213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatctg gcaccac caaacgaccc cgccgta ccgtcattgc caagtcc	ATION: Synthet clase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg aag cccgccgtca	ic Construct truct (1721 gcgagtgacc ggggggcgctc ccgtggctcg aggctgcccc	bp) ccgcgcgact ccggctcgag cccggcccgc cgtggctgcc	tggaagggtt catatggccg tccagcgtgc ccggctcagg	60 120 180
<pre><213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatctg gcaccac caaacgaccc cgccgta ccgtcattgc caagtcc gccccatggc cgcgctg</pre>	ATION: Synthet plase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg aag cccgccgtca gaa agtagtttta	ic Construct truct (1721 gcgagtgacc ggggggggcgctc ccgtgggctcg aggctgcccc gctgtgcatg	bp) ccgcgcgcgact ccgggctcgag cccgggcccgc cgtggctgcc tcgtacagcc	tggaagggtt catatggccg tccagcgtgc ccggctcagg atcggaacaa	60 120 180 240
<213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatctg gcaccac caaacgaccc cgccgta ccgtcattgc caagtcc gccccatggc cgcgctg ccaaccagat gggcaaa	ATION: Synthet clase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg aag cccgccgtca gaa agtagttta aca attcctgcag	ic Construct truct (1721 gcgagtgacc gggggcgctc ccgtggctcg aggctgcccc gctgtgcatg tagatttagg	bp) ccgcgcgact ccggctcgag cccggcccgc cgtggctgcc tcgtacagcc tgctatcgtt	tggaagggtt catatggccg tccagcgtgc ccggctcagg atcggaacaa atcaaagagg	60 120 180 240 300
<pre><213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatctg gcaccac caaacgaccc cgccgta ccgtcattgc caagtcc gccccatggc cgcgctg ccaaccagat gggcaaa tgggtggatc tcttagc</pre>	ATION: Synthet clase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg aag cccgccgtca gaa agtagtttta aca attcctgcag gtt aaacctgaag	ic Construct truct (1721 gcgagtgacc ggggggcgctc ccgtggctcg aggctgcccc gctgtgcatg tagatttagg atgttgatca	bp) ccgcgcgcgact ccgggctcgag cccgggcccgc cgtggctgcc tcgtacagcc tgctatcgtt cgtatacatg	tggaagggtt catatggccg tccagcgtgc ccggctcagg atcggaacaa atcaaagagg ggatgcgtta	60 120 180 240 300 360
<213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatotg goaccac caaacgaccc cgccgta ccgtcattgc caagtcc gccccatggc cgcgctg ccaaccagat gggcaaaa tgggtggatc tottagc ctcttaaccg cgcaggtg	ATION: Synthet clase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg aag cccgccgtca gaa agtagtttta aca attcctgcag gtt aaacctgaag cag aacgttgctc	ic Construct truct (1721 gcgagtgacc gggggcgctc ccgtggctcg aggctgcccc gctgtgcatg tagatttagg atgttgatca gtcaggcttc	bp) ccgcgcgcgact ccggctcgag cccggcccgc cgtggctgcc tcgtacagcc tgctatcgtt cgtatacatg tatcaaggct	tggaagggtt catatggccg tccagcgtgc ccggctcagg atcggaacaa atcaaagagg ggatgcgtta ggtcttcctg	60 120 180 240 300 360 420
<pre><213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatctg gcaccac caaacgaccc cgccgta ccgtcattgc caagtcc gccccatggc cgcgctg ccaaccagat gggcaaa tgggtggatc tcttagc ctcttaaccg cgcaggt ttcaggcagg acagggag</pre>	ATION: Synthet clase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg aag cccgccgtca gaa agtagtttta aca attcctgcag gtt aaacctgaag cag aacgttgctc aca actaacgttg	ic Construct truct (1721 gcgagtgacc gggggcgctc ccgtggctcg aggctgcccc gctgtgcatg tagatttagg atgttgatca gtcaggcttc tatgtggttc	bp) ccgcgcgcgact ccgggctcgag cccggcccgc cgtggctgcc tcgtacagcc tgctatcgtt cgtatacatg tatcaaggct aggtcttaac	tggaagggtt catatggccg tccagcgtgc ccggctcagg atcggaacaa atcaaagagg ggatgcgtta ggtcttcctg tgtgttaacc	60 120 180 240 300 360 420 480
<pre><213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatotg gcaccacc caaacgaccc cgccgta ccgtcattgc caagtcc gccccatggc cgcgctg ccaaccagat gggcaaaa tgggtggatc tottagc ctottaaccg cgcaggtg ttcaggcagg acaggga tagaagtacc tgcagtt</pre>	ATION: Synthet clase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg aag cccgccgtca gaa agtagtttta aca attcctgcag gtt aaacctgaag cag aacgttgctc aca actaacgttg atg gctggagatg	ic Construct truct (1721 gcgagtgacc ggggggcgctc ccgtggctcg aggctgcccc gctgtgcatg tagatttagg atgttgatca gtcaggcttc tatgtggttc ctgatatcgt	bp) ccgcgcgcgact ccggctcgag cccggcccgc cgtggctgcc tcgtacagcc tgctatcgtt cgtatacatg tatcaaggct aggtcttaac tgttgccggt	tggaagggtt catatggccg tccagcgtgc ccggctcagg atcggaacaa atcaaagagg ggatgcgtta ggtcttcctg tgtgttaacc ggtatggaaa	60 120 180 240 300 360 420 480 540
<pre><213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatctg gcaccac caaacgaccc cgccgta ccgtcattgc caagtcc gccccatggc cgcgctg ccaaccagat gggcaaaa tgggtggatc tcttagc ctcttaaccg cgcaggt ttcaggcagg acaggga tagaagtacc tgcagtt aggcagctca gatgatc</pre>	ATION: Synthet clase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg aag cccgccgtca gaa agtagttta aca attcctgcag gtt aaacctgaag cag aacgttgctc aca actaacgttg atg gctggagatg ttt gcacttccta	ic Construct truct (1721 gcgagtgacc gggggcgctc ccgtggctcg aggctgcccc gctgtgcatg tagatttagg atgttgatca gtcaggcttc tatgtggttc ctgatatcgt atggccgtta	bp) ccgcgcgcgact ccgggctcgag cccgggccgc tgtggctgcc tgtacagcc tgctatcgtt cgtatacatg tatcaaggct aggtcttaac tgttgccggt cggatatcgt	tggaagggtt catatggccg tccagcgtgc ccggctcagg atcggaacaa atcaaagagg ggatgcgtta ggtcttcctg tgtgttaacc ggtatggaa atgatgtggc	60 120 180 240 300 360 420 480 540 600
<pre><213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatotg gcaccac caaacgaccc cgccgta ccgtcattgc caagtcc gccccatggc cgcgctg ccaaccagat gggcaaa tgggtggatc tottagc ctottaaccg cgcaggtg ttcaggcagg acaggga tagaagtacc tgcagtt aggcagctca gatgatc acatgtcact tgcaccac</pre>	ATION: Synthet plase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg aag cccgccgtca gaa agtagtttta aca attcctgcag gtt aaacctgaag cag aacgttgctc aca actaacgttg atg gctggagatg ttt gcacttccta ggt cttgtagaca	ic Construct truct (1721 gcgagtgacc ggggggcgctc ccgtggctcg aggctgcccc gctgtgcatg tagatttagg atgttgatca gtcaggcttc tatgtggttc ctgatatcgt atggccgtta ctatggttaa	bp) ccgcgcgcgact ccggctcgag cccggcccgc cgtggctgcc tcgtacagcc tgctatcgtt cgtatacatg tatcaaggct aggtcttaac tgttgccggt cggatatcgt ggatgctctt	tggaagggtt catatggccg tccagcgtgc ccggctcagg atcggaacaa atcaaagagg ggatgcgtta ggtcttcctg tgtgttaacc ggtatggaaa atgatgtggc tgggatgctt	60 120 180 240 300 360 420 480 540 600 660
<pre><213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer This <400> SEQUENCE: 6 agaaaatctg gcaccac caaacgaccc cgccgta ccgtcattgc caagtcc gccccatggc cgcgctga ccaaccagat gggcaaaa tgggtggatc tcttagc ctcttaaccg cgcaggt ttcaggcagg acaggga tagaagtacc tgcagtt aggcagctca gatgatc acatgtcact tgcacca caagccagag ccagggt </pre>	ATION: Synthet clase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg aag cccgccgtca gaa agtagttta aca attcctgcag gtt aaacctgaag cag aacgttgctc aca actaacgttg atg gctggagatg ttt gcacttccta ggt cttgtagaca atc cagacagcag	ic Construct truct (1721 gcgagtgacc gggggcgctc ccgtggctcg aggctgcccc gctgtgcatg tagattagg atgttgatca gtcaggcttc tatgtggttc ctgatatcgt atggccgtta acaacatctg	bp) ccgcgcgcgact ccggctcgag cccggcccgc cgtggctgcc tcgtacagcc tgctatcgtt cgtatacatg tatcaaggct aggtcttaac tgttgccggt cggatatcgt ggatgctctt cacagagtgg	tggaagggtt catatggccg tccagcgtgc ccggctcagg atcggaacaa atcaaagagg ggatgcgtta ggtcttcctg tgtgttaacc ggtatggaaa atgatgtggc tgggatgctt	60 120 180 240 300 360 420 480 540 600 660 720
<pre><213> ORGANISM: Ar <220> FEATURE: <223> OTHER INFORM designer Thio <400> SEQUENCE: 6 agaaaatctg gcaccac caaacgaccc cgccgta ccgtcattgc caagtcc gccccatggc cgcgctg ccaaccagat gggcaaa tgggtggatc tcttagc ctcttaaccg cgcaggt ttcaggcagg acaggga tagaagtacc tgcagtt aggcagctca gatgatc acatgtcact tgcacca caagccagag ccagggt tcaatgatta tcatatg</pre>	ATION: Synthet clase DNA cons acc atggtagggt cga acttttgtcg tcc gtctccgcgg agg ccgccgtca gaa agtagtttta aca attcctgcag gtt aaacctgaag cag aacgttgctc aca actaacgttg atg gctggagatg ttt gcacttccta ggt cttgtagaca atc cagacagcag ttt gcagctaaga	ic Construct truct (1721 gcgagtgacc ggggggcgctc ccgtggctcg aggctgcccc gctgtgcatg tagatttagg atgttgatca gtcaggcttc tatgtggttc ctgatatcgt atggccgtta acaacatctg gccagaacaa	bp) ccgcgcgcgact ccggctcgag cccggcccgc cgtggctgcc tcgtacagcc tgctatcgtt cgtatacatg tatcaaggct aggtcttaac tgttgccggt cggatatcgt ggatgctctt cacagagtgg ggcttgtgca	tggaagggtt catatggccg tccagcgtgc ccggctcagg atcggaacaa atcaaagagg ggatgcgtta ggtcttcctg tgtgttaacc ggtatggaa atgatgtggc tgggatgctt ggtcttacac ggcatcgaag	60 120 180 240 300 360 420 480 540 600 660 720 780

-continued

gtcctatcaa caaggatgga ttcgttacag ctggtaacgc ttcaggtatc aacgacggtg 1020 ctgcagcact cgtagttatg tctgaagaga aggctaagga gctcggcgtt aagcctatgg 1080 ctacattogt agotggagoa ottgotggtg ttogtootga agttatgggt atoggtootg 1140 tagcagctac tcagaaggct atgaagaagg ctggtatcga gaacgtatct gagttcgata 1200 tcatcgaggc taacgaagca ttcgcagctc agtctgtagc agttggtaag gatcttggaa 1260 topacqtoca caaqcaqoto aatootaacq qtqqtqctat cqotottqqa cacccaqttq 1320 1380 gagetteagg tgetegtate ettgttacae ttetteaega gatgeagaag aaagaegeta agaagggtet tgetacaett tgeateggtg geggtatggg atgegetaet ategttgaga 1440 1500 agtacgaagg ctgctgcccc ggctgctgct aatctagata aatggaggcg ctcgttgatc tgagccttgc cccctgacga acggcggtgg atggaagata ctgctctcaa gtgctgaagc 1560 ggtagettag etcecegttt egtgetgate agtettttte aacaegtaaa aageggagga 1620 gttttgcaat tttgttggtt gtaacgatcc tccgttgatt ttggcctctt tctccatggg 1680 cgggctgggc gtatttgaag cggttetete ttetgeegtt a 1721 <210> SEQ ID NO 7 <211> LENGTH: 4211 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 7, Example 7: designer Pyruvate-Ferredoxin-Oxidoreductase DNA construct (4211 bp) <400> SEOUENCE: 7 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60 caaacgaccc cgccgtacga acttttgtcg ggggggggcgctc ccggatggta gggtgcgagt 120 gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc 180 geteeegget egageatatg geegeegtea ttgeeaagte eteegtetee geggeegtgg 240 ctcgcccggc ccgctccagc gtgcgcccca tggccgcgct gaagcccgcc gtcaaggctg 300 cccccgtggc tgccccggct caggccaacc agatggcgca gaggtgcaag gagcccgtcg 360 acggaacgac agecacgacg cacgtggeet actteatgag egacagegeg tteatettee 420 ccatcacgcc cagctcggtc atgtccgagg tcgcccacga gtggtccatg aacggccgca 480 agaacgeett eggecageee acgatggtee gecagatgea gagegagget gggtetgeeg 540 gegeeetgea eggegegete agegagggag egetggegae gaegtteaeg ageageeagg 600 gcctgctgct catgatcccc aacatgtaca agatcgccgg cgagctcctg ccctgcgtca 660 tgcacatege egecegeace gtegecaceg aggeeetete tatettegge gaceacaegg 720 atg
tctacgc ggtgaggtcg acggggttcg cgttcctgtg ctccgcgacc gtccaggagt 780 gcatccacat gtccgccgcc gcgcacgccg ccaccctgtc cagcgaggtc ccgttcgccc 840 acttettega eggetteege acgteeeaeg agateeagaa gategaette eeeteggaeg 900 ccgacctgct ggcctgcatg aactttgacg acgtccgcag gttccgtggc cgctcgctgt 960 getgegageg ceegetgetg egegggaegg egeagaaeee egaegtette atgeaggegt 1020 ccgagtcgaa cctggcgacg ctggccaggg tccccgcggc catcgacgag gcgctggctc 1080 gtgtgaacaa ggtgttcggg accaactaca ggacctacga gtactatggc caccccgagg 1140

CONT	inued	

				-contir	nued	
ccacggacgt	gatcgtggcc	atgggaagcg	gcaccgaagt	ggccatctcg	actgccaact	1200
tcctcaactc	gcgcgacgcg	aactcgaggg	tcggcgtcgt	gagggtgcgg	ctgttccggc	1260
cgtttgtgtc	ggcggcgttt	gtggctgcgc	tgcccaagac	cgtcaagagg	atctgcgttc	1320
tggaccgcgg	gagggacggg	caggcggccg	cggaccccct	gcaccaggac	gtcctgtcgg	1380
cgctgggtct	ggcagcgccc	gggagggttc	aggtgtgcgt	gggaggcgtg	tacggtctgt	1440
cgtccaagga	cttcaacccc	gaccacgtga	tcgccgtgta	caggaacctc	gcgtcggcga	1500
gccccaagaa	caggttcagc	gtcggcatcg	tcgacgacgt	gacgcacaac	agcctggaca	1560
tgggagagca	cgtggacgcg	ctgccgcagg	ggacgaagca	gtgcctgctg	tggggcatcg	1620
gcggagacgg	gaccatcggg	gcgaacaaga	cggccatcaa	gctgatcgcg	gaccacacgg	1680
agctgcacgc	gcaggggtac	tttgcgtacg	acgccaacaa	ggccggcggc	ctgacagtct	1740
cgcacctgcg	gttcggcccg	acgcggttcg	aggcgccgta	cctggtgaac	gacagcaact	1800
acgtggcgtg	ccacaacttc	tcgtacgtgc	acaggttcaa	cctgctgtcg	tcgctgcgca	1860
ccggggggcac	gttcgtgctc	aactgcccgt	gccggaccgt	ggaggagctg	gacacggcac	1920
tcccggtgcg	cctgaggcgc	gagatcgcca	ggcggcaggc	caagttctat	gtgatcgacg	1980
cgaccaagat	cgccaaggac	aacgggatgg	gcccgttcat	caacatggtc	ctccaggccg	2040
tgttcttcta	tctgtcccac	gtgctcgatg	tgaacgaggc	agtggcactc	ctgaagaaga	2100
gcatccagaa	gatgtacgcg	cgcaagggcg	aggaggttgt	caggaagaac	gtggcatcgg	2160
tcgacgcgtc	gctggatccc	aaggcgttgc	tgcacatcga	gtaccccgca	gacaggtggc	2220
ttgcgctggc	cgacgagcac	gtgccccgca	tgggtctgct	cactgtcccc	gagegeetge	2280
agaagttcaa	cgccgagctg	tacgagccga	ccctcgcgta	cgatggggag	agcatcccgg	2340
tcagcaggtt	ccctcgcggc	ggcgagacgc	cgacgggcac	gactcagctg	ggcaagcgtg	2400
gcatcgccga	gagcgtgccg	cactggaacc	acgagaagtg	cgtgcagtgc	aaccagtgct	2460
cgttcgtgtg	cccgcacgcc	gtcatccggt	cgtaccagat	cagcgaggag	gagatgaaga	2520
acgcccctgc	cggcttcgac	actcttaagt	cgcgcaagcc	cgggtatcgt	ttccgcatca	2580
acgtcagcgc	cctggactgc	actggctgca	gcgtgtgcgt	ggagcagtgc	ccagtcaagt	2640
gcctggagat	gaagcetete	gagtccgagt	tcgagatgca	gaaggacgcc	atcaggttcg	2700
tccgcgagat	ggtcgcgccc	aagcccgagc	tgggagaccg	caagactccc	gtcggcatcg	2760
cgtctcacac	gccgctgttc	gagttcccgg	gagcctgcgc	cgggtgcggt	gagaccccgc	2820
tggtgcgcct	cgtgacgcag	atgttcggtg	agcgcatggt	catcgccgcg	gccactgggt	2880
gcaactcgat	ctggggagcg	tcgttcccga	acgtgccgta	cacaaccaac	gcccgcgggg	2940
agggccccgc	gtggcacaac	tcgctgttcg	aggacgcggc	ggageteggg	tatggcatta	3000
cgtgtgcgta	tcgccagcgc	cgcgagcgcc	tcatcggcat	cgtgcggagc	gtcgtcgacg	3060
atgcgggatc	cgtgcagggt	ctgtctgctg	agctgaaggc	tctgctggtc	gagtggctcg	3120
cgcacgtcag	ggacttcgag	aagacccgcg	agctccgcga	caggatgaac	cccctgatcg	3180
acgcaatccc	agcgaacgcg	gactgcaggg	ttctggagct	cagggagaag	cacaaccgcg	3240
agetgatege	gcgcacgagt	ttctggatcc	tcggtggcga	cgggtgggcg	tacgacatcg	3300
gcttcggtgg	actggaccac	gtgatcgcca	acaacgagga	cgtcaacatc	cttgttctcg	3360
acacggaggt	ctactccaac	actggtggcc	agcgctccaa	gtcgacgccg	ctcggcgccc	3420
gcgccaagta	cgctgtgctg	ggcaaggaca	ctgggaagaa	ggacctgggg	cgcatcgcga	3480

tgacctacga gaccgcgtac gtggccagca tcgcgcaggg agccaaccag cagcagtgca 3540 tggacgcgct gagggaggcc gaggcctacc agggcccctc gatcgtcatt gcgtacactc 3600 cgtgcatgga gcaccagatg gtccgcggga tgaaggagag ccagaagaac cagaagctgg 3660 ctgtggagac gggctactgg ctgctgtacc gcttcaaccc cgacctcatc cacgagggca 3720 agaaccoott caccotogac togaagcoto cotogaagco toccaaggag ttootggaca 3780 cqcaqqqccq tttcattact ctqcaqcqcq aqcaccccqa qcaqqcccac ctccttcacq 3840 3900 aggeacteac cegetetetg gecaceeget tegtgegeta ceagegeete gtgeagetgt 3960 acgagecege tgeccetgee geageteetg ceacgeatgg etgetgeeee ggetgetget 4020 aatctagata aatggaggeg ctegttgate tgageettge eeetgaega aeggeggtgg atggaagata ctgctctcaa gtgctgaagc ggtagcttag ctccccgttt cgtgctgatc 4080 agtettttte aacaegtaaa aageggagga gttttgeaat tttgttggtt gtaaegatee 4140 tccgttgatt ttggcctctt tctccatggg cgggctgggc gtatttgaag cggttctctc 4200 ttctqccqtt a 4211 <210> SEQ ID NO 8 <211> LENGTH: 2021 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 8, Example 8: designer Pyruvate-Kinase DNA construct (2021 bp) <400> SEQUENCE: 8 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60 caaacgaccc cgccgtacga acttttgtcg gggggggcgctc ccggctcgag catatggccg 120 ccgtcattgc caagteetee gteteegegg ccgtggeteg eceggeeege teeagegtge 180 gccccatggc cgcgctgaag cccgccgtca aggctgcccc cgtggctgcc ccggctcagg 240 ccaaccagat gtctagatta gaaagattga cctcattaaa cgttgttgct ggttctgact 300 tgagaagaac ctccatcatt ggtaccatcg gtccaaagac caacaaccca gaaaccttgg 360 ttgetttgag aaaggetggt ttgaacattg teegtatgaa etteteteae ggttettaeg 420 aataccacaa gtctgtcatt gacaacgcca gaaagtccga agaattgtac ccaggtagac 480 cattggccat tgctttggac accaagggtc cagaaatcag aactggtacc accaccaacg 540 atqttqacta cccaatccca ccaaaccacq aaatqatctt caccaccqat qacaaqtacq 600 ctaaqqcttq tqacqacaaq atcatqtacq ttqactacaa qaacatcacc aaqqtcatct 660 ccgctggtag aatcatctac gttgatgatg gtgttttgtc tttccaagtt ttggaagtcg 720 ttgacgacaa gactttgaag gtcaaggctt tgaacgccgg taagatctgt tcccacaagg 780 gtgtcaactt accaggtacc gatgtcgatt tgccagcttt gtctgaaaag gacaaggaag 840 atttgagatt cggtgtcaag aacggtgtcc acatggtctt cgcttctttc atcagaaccg 900 ccaacgatgt tttgaccatc agagaagtct tgggtgaaca aggtaaggac gtcaagatca 960 ttgtcaagat tgaaaaccaa caaggtgtta acaacttcga cgaaatcttg aaggtcactg 1020 acggtgttat ggttgccaga ggtgacttgg gtattgaaat cccagcccca gaagtcttgg 1080 ctgtccaaaa gaaattgatt gctaagtcta acttggctgg taagccagtt atctgtgcta 1140 cccaaatgtt ggaatccatg acttacaacc caagaccaac cagagctgaa gtttccgatg 1200

tcggtaacgc	tatcttggat	ggtgctgact	gtgttatgtt	gtctggtgaa	accgccaagg	1260
gtaactaccc	aatcaacgcc	gttaccacta	tggctgaaac	cgctgtcatt	gctgaacaag	1320
ctatcgctta	cttgccaaac	tacgatgaca	tgagaaactg	tactccaaag	ccaacctcca	1380
ccaccgaaac	cgtcgctgcc	tccgctgtcg	ctgctgtttt	cgaacaaaag	gccaaggcta	1440
tcattgtctt	gtccacttcc	ggtaccaccc	caagattggt	ttccaagtac	agaccaaact	1500
gtccaatcat	cttggttacc	agatgcccaa	gagctgctag	attctctcac	ttgtacagag	1560
gtgtetteee	attcgttttc	gaaaaggaac	ctgtctctga	ctggactgat	gatgttgaag	1620
cccgtatcaa	cttcggtatt	gaaaaggcta	aggaattcgg	tatcttgaag	aagggtgaca	1680
cttacgtttc	catccaaggt	ttcaaggccg	gtgctggtca	ctccaacact	ttgcaagtct	1740
ctaccgttgg	ctgctgcccc	ggctgctgct	aatctagata	aatggaggcg	ctcgttgatc	1800
tgagcettge	cccctgacga	acggcggtgg	atggaagata	ctgctctcaa	gtgctgaagc	1860
ggtagcttag	ctccccgttt	cgtgctgatc	agtctttttc	aacacgtaaa	aagcggagga	1920
gttttgcaat	tttgttggtt	gtaacgatcc	tccgttgatt	ttggcctctt	tctccatggg	1980
cgggctgggc	gtatttgaag	cggttctctc	ttctgccgtt	a		2021
<220> FEATU <223> OTHER	TH: 1815 : DNA NISM: Artif: JRE:	- DN: Synthet:	ic Construct		No. 9, Exam	ple 9:
-400> SEOU	ENCE. O					
<400> SEQUE		tatatootao	aatacaaata	accordence	actiggaget	60
agaaaatctg	gcaccacacc					60 120
agaaaatctg cgatggcccc	gcaccacacc gggttgtttg	gggcgtccgc	ctctcgcgct	attctgagct	ggagaccgag	60 120 180
agaaaatctg cgatggcccc gcgcatgaaa	gcaccacacc gggttgtttg atgcattcgc	gggcgtccgc ttccatagga	ctctcgcgct cgctgcattg	attctgagct tggcttgaag	ggagaccgag gttcaaggga	120
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa	gcaccacacc gggttgtttg	gggcgtccgc ttccatagga gtacgaactt	ctctcgcgct cgctgcattg ttgtcggggg	attetgaget tggettgaag gegeteeegg	ggagaccgag gttcaaggga ccccgggctc	120 180
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat	attctgagct tggcttgaag gcgctcccgg acctcgagca	ggagaccgag gttcaaggga ccccgggctc tatggccgcc	120 180 240
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc	attetgaget tggettgaag gegeteegg acetegagea eggeeegete	ggagaccgag gttcaaggga ccccgggctc tatggccgcc cagcgtgcgc	120 180 240 300
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg	attetgaget tggettgaag gegeteegg acetegagea eggeeegete tggetgeeee	ggagaccgag gttcaaggga ccccgggctc tatggccgcc cagcgtgcgc ggctcaggcc	120 180 240 300 360
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg aaccaggtga	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt cgctgaagcc	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag tgagaacatc	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg aacgctatta	attetgaget tggettgaag gegeteegg acetegagea eggeeegete tggetgeeee ttgeeeegg	ggagaccgag gttcaaggga ccccgggctc tatggccgcc cagcgtgcgc ggctcaggcc cctgaagggc	120 180 240 300 360 420
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg aaccaggtga atggaccccg	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt cgctgaagcc ccaaggctgt	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag tgagaacatc ggagattgac	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg aacgctatta cagaagatga	attctgagct tggcttgaag gcgctcccgg acctcgagca cggcccgctc tggctgcccc ttgcccccgc aggacctgga	ggagaccgag gttcaaggga ccccgggctc tatggccgcc cagcgtgcgc ggctcaggcc cctgaagggc cggcactgac	120 180 240 300 360 420 480
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg aaccaggtga atggaccccg aacaagggca	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt cgctgaagcc ccaaggctgt tcaagcaggc	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag tgagaacatc ggagattgac caacgccatc	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg aacgctatta cagaagatga ctggccgtct	attetgaget tggettgaag gegeteeegg acetegagea eggeeegete tggetgeeee ttgeeeegg aggaeetgga ceatggeegt	ggagaccgag gttcaaggga ccccgggctc tatggccgcc cagcgtgcgc ggctcaggcc cctgaagggc cggcactgac gtgcaaggcc	120 180 240 300 360 420 480 540
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg aaccaggtga atggaccccg aacaagggca ggtgccgctg	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt cgctgaagcc ccaaggctgt tcaagcaggc agctgggtgc	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag tgagaacatc ggagattgac caacgccatc gccctgtac	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg aacgctatta cagaagatga ctggccgtct aagcacattg	attctgagct tggcttgaag gcgctcccgg acctcgagca cggcccgctc tggctgcccc ttgcccccgc aggacctgga ccatggccgt	ggagaccgag gttcaaggga ccccgggctc tatggccgcc cagcgtgcgc ggctcaggcc cctgaagggc cggcactgac gtgcaaggcc cggcaacagc	120 180 240 300 420 480 540 600
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg aaccaggtga atggaccccg aacaagggca ggtgccgctg aagctgatcc	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt cgctgaagcc ccaaggctgt tcaagcaggc agctgggtgc agaagggcgt	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag tgagaacatc ggagattgac caacgccatc gccctgtac ctcgttcaac	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg aacgctatta cagaagatga ctggccgtct aagcacattg atcatcaacg	attetgaget tggettgaag gegeteeegg acetegagea eggeeegete tggetgeeee ttgeeeegg aggaeetgga ceatggeegt ggaeetgge	ggagaccgag gttcaagggat ccccgggctc tatggccgcc cagcgtgcgc ggctcaggcc cctgaagggc cggcactgac gtgcaaggcc cggcaacagc cggcaacagc	120 180 240 300 420 480 540 600 660
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg aaccaggtga atggaccccg aacaagggca ggtgccgctg aagctgatcc gccctggcta	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt cgctgaagcc ccaaggctgt tcaagcaggc agctgggtgc agaagggcgt tgcccgtgcc	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag tgagaacatc ggagattgac caacgccatc gccctgtac ctcgttcaac catgatcctg	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg aacgctatta cagaagatga ctggccgtct aagcacattg atcatcaacg cccgttggcg	attetgaget tggettgaag gegeteegg acetegagea eggeeegete tggetgeeee aggaeetgga eeatggeegt eggaeetgge geggeageea eetegagett	ggagaccgag gttcaaggga ccccgggctc tatggccgcc ggctcaggc cctgaagggc cggcactgac gtgcaaggcc cggcaacagc cggcaacagc cggcaacagc	120 180 240 300 420 480 540 600 660 720
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg aaccaggtga atggaccccg aacaagggca ggtgccgctg aagctgatcc gccctggcta atgcgcatgg	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt cgctgaagcc ccaaggctgt tcaagcaggc agctgggtgc agaagggcgt tgcccgtgcc tgcaggagtt	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag tgagaacatc ggagattgac caacgccatc gccctgtac ctcgttcaac catgatcctg gtaccacgcc	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg aacgctatta cagaagatga ctggccgtct aagcacattg atcatcaacg cccgttggcg ctgaagggcc	attetgaget tggettgaag gegeteeegg acetegagea eggeeegee tggetgeeee ttgeeeegg aggaeetgga ceatggeegt geggeageea ectegagett tgateaagge	ggagaccgag gttcaaggga ccccgggctc tatggccgcc cagcgtgcgc cggctcaggcc cctgaagggc cggcactgac gtgcaaggcc cggcaacagc cgccggcaac cctctgaggcc caagtacggc	120 180 240 300 420 480 540 600 660 720 780
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg aaccaggtga atggaccccg aagtgccgctg aagtgccgctg aagctgatcc gccctggcta atgcgcatgg caggacgcct	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt cgctgaagcc tcaaggcggtgc agaagggcgt tgcccgtgcc tgccgtgcc	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag tgagaacatc ggagattgac caacgccatc gccctgtac ctcgttcaac catgatcctg gtaccacgcc tgatgagggt	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg aacgctatta cagaagatga ctggccgtct aagcacattg atcatcaacg cccgttggcg ctgaagggcc ggcttcgccc	attctgagct tggcttgaag gcgctcccgg acctcgagca cggcccgctc tggctgcccc ttgcccccgc aggacctgga ccatggccgt gcggcagcca cctcgagctt tgatcaaggc ccaacatcgg	ggagaccgag gttcaaggga ccccgggctc tatggccgcc ggctcaggcc cctgaagggc cggcactgac gtgcaaggc cggcagcaac gtgcaaggc cggcggcaac cctcgaggca caagtacggc	120 180 240 300 420 480 540 660 720 780 840
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg aaccaggtga atggaccccg aacaagggca ggtgccgctg aagctgatcc gccctggcta atgcgcatgg caggacgcct	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt cgctgaagcc ccaaggctgt tcaagcaggc agaagggcgt tgcccgtgcc tgccaggagtt gctgcgaggt	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag tgagaacatc ggagattgac caacgccatc gccctgtac ctcgttcaac catgatcctg gtaccacgcc tgatgagggt cgaggccatc	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg aacgctatta cagaagatga ctggccgtct aagcacattg atcatcaacg cccgttggcg ctgaagggcc ggcttcgccc	attetgaget tggettgaag gegeteeegg acetegagea eggeeegete tggetgeeee tggeetgeeeg aggaeetgga ceatggeegt geggeageea eetegagett tgateaagge geacategg getaeaeeg	ggagaccgag gttcaaggga ccccgggctc tatggccgcc cagcgtgcgc cggctcaggcc cctgaagggc cggcactgac gtgcaaggcc cggcagcaac cgccggcaac ctctgaggcc caagtacggc ctccaacgat	120 180 240 300 420 480 540 600 660 720 780 840 900
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg aaccaggtga atggaccccg aagtgaccccg aagtgatcc gccctggcta atgcgcatgg caggacgcctg aacggacgctga	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt cgctgaagcc tcaaggagtgt agaagggcgt tgcccgtgcc tgcaggagtt gctgcgaggt gcaacgtggg acttggtgaa	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag tgagaacatc ggagattgac caacgccatc gccctgtaa ctcgttcaac catgatcctg gtaccacgcc tgatgagggt cgaggccatc gtcggagttc	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg aacgctatta cagaagatga ctggccgtct aagcacattg atcatcaacg cccgttggcg ctgaagggcc ggcttcgccc gagaaggccg tacaccgagg	attctgagct tggcttgaag gcgctcccgg acctcgagca cggcccgctc tggctgcccc ttgcccccgc aggacctgga ccatggccgt gcggcagcca cctcgagctt tgatcaaggc gctacaccgg acggcatgta	ggagaccgag gttcaaggga ccccgggctc tatggccgcc cagcgtgcgc cggctcaggcc cggcactgac gtgcaaggc cggcagcac cggcggcaac cggcggcaac cctgaggc caagtacggc ccaagtacggc ctccaacgat caaggtgaag	120 180 240 300 420 480 540 600 660 720 780 840 900 960
agaaaatctg cgatggcccc gcgcatgaaa agggttcaaa ttgtgcgcgc gtcattgcca cccatggccg aaccaggtga atggaccccg aacaagggca ggtgccgctg aagctgatcc gccctggcta atgcgcatgg caggacgcctg atcggcatgg ttcaagaacc	gcaccacacc gggttgtttg atgcattcgc cgaccccgcc attagggctt agtcctccgt cgctgaagcc ccaaggctgt tcaagcaggc agaagggcgt tgcccgtgcc tgccaggagtt gctacgtggg acttggtgaa acgtggcctc	gggcgtccgc ttccatagga gtacgaactt cgggtcgcaa ctccgcggcc cgccgtcaag tgagaacatc ggagattgac caacgccatc gccctgtac ctcgttcaac catgatcctg gtaccacgcc tgatgaggt cgaggccatc gtcggagttc	ctctcgcgct cgctgcattg ttgtcggggg gcaagacgat gtggctcgcc gctgcccccg aacgctatta cagaagatga ctggccgtct aagcacattg atcatcaacg cccgttggcg ctgaagggcc ggcttcgccc gagaaggccg tacaccgagg	attetgaget tggettgaag gegeteegge acetegagea eggeeegete tggetgeeee aggaeetgga ceatggeegt geggeageea eetegagett tgateaagge getaeaeegg acggeatgta aggageagat	ggagaccgag gttcaaggga ccccgggctc tatggccgcc cagcgtgcgc ggctcaggcc cctgaagggc cggcactgac gtgcaaggc cggcaacagc cgccggcaac ctctgaggcc caagtacggc ctccaacgat caaggtgaag	120 180 240 300 420 480 540 600 660 720 780 840 900 960 1020

1200 gactgggagc cctgcgccaa gctgaccacc gagaacatct gccaggtggt cggcgacgac atcctggtga ccaaccccgt gcgcgtgaag aaggccatcg acgccaaggc cgtcaacgct 1260 ctgctgctca aggtcaacca gatcggtacc attaccgagt ccattgaggc cgtgcgcatg 1320 gccaaggagg ccggctgggg tgtcatgacc agccaccgct cgggtgagac tgaggactct 1380 ttcatcqccq acctqqcqqt qqqcctqqcc tccqqccaqa tcaaqaccqq cqcccctqc 1440 1500 cqctcqqaqc qcaatqccaa qtacaaccaq ctqctqcqca tcqaqqaqqa qctqqqcqaq 1560 aacgetgtgt acgetggega gagetggege caeategget ggggetgetg ceeeggetge 1620 tgetaateta gataaatgga ggegetegtt gatetgagee ttgeeeeetg acgaacggeg 1680 gtggatggaa gatactgete teaagtgetg aageggtage ttageteeee gtttegtget gatcagtctt tttcaacacg taaaaagcgg aggagttttg caatttgtt ggttgtaacg 1740 atcctccgtt gattttggcc tctttctcca tgggcgggct gggcgtattt gaagcggttc 1800 1815 tctcttctqc cqtta <210> SEO ID NO 10 <211> LENGTH: 2349 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 10, Example 10: designer Phosphoglycerate-Mutase DNA construct (2349 bp) <400> SEOUENCE: 10 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg accccgcgcg acttggagct 60 cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct attctgagct ggagaccgag 120 gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggcttgaag gttcaaggga 180 agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgctcccgg ccccgggctc 240 ttgtgcgcgc attagggctt cgggtcgcaa gcaagacgat acctcgagca tatggccgcc 300 gtcattgcca agtcctccgt ctccgcggcc gtggctcgcc cggcccgctc cagcgtgcgc 360 cccatqqccq cqctqaaqcc cqccqtcaaq qctqcccccq tqqctqcccc qqctcaqqcc 420 aaccagatgg cgcacgacta caagctgaag gcccacccgg cgatteetge geeegaggge 480 ccgctgctgg tctgcattct ggacggcttc ggcgagaacg agtacaagga tgagttcaac 540 gccgtgcacg tggctaagac gcccactgtg gacgcgctgc gcgctgtgcc ccatcgcttc 600 cqttccatca aqqcqcacqq aaaqqctqtq qqcctqccca qcqatqccqa catqqqcaac 660 720 agcgaggtgg ggcacaacgc cctgggctcg ggccaggtgg tggaccaagg cgcgcgcctg gtggacctgg cgctggagac cggccgtatg ttctcggacc ccggctggaa gctcatcagc 780 gaggeettee ceteceacae egtecaette ateggeetge tgteegaegg eggegtgeae 840 tegegegeeg ateagetgea eggetgeetg egeggegeeg tggagegegg egecaagege 900 gtgegegtge acateetgae tgaeggeege gaegtgeegg aeggeageag cateeggtte 960 gtggaggagc tggaggcggt gctggcggag ctgcgcggca agggctgcga catcgccatc 1020 gcctcgggcg gcggccgcat gcaggtcacc atggaccgct acgaggcgga ctggagcatg 1080 gtgaagcgcg gctgggacgc gcacgtgctg ggcaaggcgc cccactactt caaggacgcc 1140 aagaccgcgg tcaccaccct gcgcggctcc gaggacgcgc cggtgtctga ccagtacgtg 1200 gccccctttg tgattgtgga cgaggcggac aagccggtgg gcaccattga ggacggcgac 1260

84

-continued

gcggtggtgc tgttcaactt ccgcgcggac cgcatggtgg agatcagcaa ggccttcgag 1320 tacgaggacg getteacege etttgagege gagegettee ceaagggeet gegettegtg 1380 ggcatgatgc agtacgacgg cgacctgaag ctgcccgcca acttcctggt gccgccgccc 1440 ctgattgage acgtgteggg egagtacetg tgeaagaacg ggetgageae ettegeetge 1500 tecoagaete agaagttegg geacgtgaeg ttettetgga acggeaaceg etecogetae 1560 1620 ctqqacqcca aqcaqqaqca qtacctqqaq atcccqtcqq acaaqatcqa qttcaacaaq 1680 geteeggaca tgaaggegeg egagateace geegeeggea ttgaggeget caagagegge 1740 aagtacaagg tggtgcgcat caactacgcc aacccggaca tggtcggcca caccggcgac 1800 atggetgeea cegteegege etgegagaee gtggaegggt gegtgaagga getgetggag gtggtggaca gcctgaacgg ccgctggatc gtcacgtccg accacggcaa cgccgacgac 1860 1920 atggtgcagc gcgacaagaa gggcaagccc ctgctgggcg aggacggcaa gccgctgccc 1980 ctgaccagcc acacgctggc gcccgtgccg ttcttcatcg gcggcaaggg cctgccggac ggcgtggtgc tgcgcgacga cctgccggac gccgggctgg ccaacgtggc cgccaccacc 2040 ttcaacctgc tgggcttcga ggcgcccggc atctacaagc ccagcatggt caaggcgtaa 2100 tctagataaa tggaggcgct cgttgatctg agccttgccc cctgacgaac ggcggtggat 2160 ggaagatact getetcaagt getgaagegg tagettaget eccegttteg tgetgateag 2220 tettttteaa caegtaaaaa geggaggagt tttgeaattt tgttggttgt aaegateete 2280 cgttgatttt ggcctctttc tccatgggcg ggctgggcgt atttgaagcg gttctctctt 2340 ctgccgtta 2349 <210> SEQ ID NO 11 <211> LENGTH: 1908 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 11, Example 11: designer Phosphoglycerate-Kinase DNA construct (1908 bp) <400> SEQUENCE: 11 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg accccgcgcg acttggagct 60 cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct attctgagct ggagaccgag 120 180 gegeatgaaa atgeattege tteeatagga egetgeattg tggettgaag gtteaaggga aqqqttcaaa cqaccccqcc qtacqaactt ttqtcqqqqq qcqctcccqq ccccqqqctc 240 ttqtqcqcqc attaqqqctt cqqqtcqcaa qcaaqacqat acatqqccct ctctatqaaq 300 atgegegeea acgegegegt gteeggtege egegtegeeg etgtggeeee eegegtggtg 360 cccttctcgt cggcctccag ctccgtgctg cgctctggct tcgcgctgag gtgtctgtgg 420 acateegeeg egtgggeege tetegeatee gtegtegagg eggtgaagaa gteggttgge 480 gacctgcaca aggctgacct ggagggcaag cgcgtgttcg tccgcgcgga cctgaacgtg 540 cctcttgaca aggccaccct ggccatcacc gacgacaccc gcattcgcgc ggccgtcccc 600 accctgaagt acctgctgga caacggtgct aaggtcctgc tgacctcgca cctgggtcgc 660 ccgaagggcg gtcccgagga caagtaccgc ctgacccccg tggtggcccg cctgtcggag 720 ctgctgggca agcccgtgac caaggtcgat gactgcatcg gccccgaggt ggagaaggcg 780 gtggggggca tgaagaacgg cgagctgctg ctgctggaga actgccgctt ctacaaggag 840

-continued

gaggagaaga	acgagcccga	gttcgccaag	aagctggccg	ccaacgccga	cctgtacgtg	900
aacgacgcgt	tcggcactgc	ccaccgcgcc	cacgcctcca	ccgagggtgt	gaccaagttc	960
ctgaagccct	ccgtggccgg	cttcctgctg	cagaaggagc	tggactacct	tgatggcgcc	1020
gtgtccaacc	ccaagcgccc	cttcgtggcc	attgtgggcg	gctccaaggt	gtcctccaag	1080
atcaccgtca	ttgaggcgct	gatggagaag	tgcgacaaga	tcatcatcgg	cggtggcatg	1140
atcttcacct	tctacaaggc	ccgcgcgctg	aaggtgggct	cctcgctggt	tgaggacgac	1200
aagatcgagc	tggccaagaa	gctggaggag	atggccaagg	ccaagggtgt	gcagctgctg	1260
ctgcccaccg	acgtggtggt	ggccgacaag	ttcgacgcca	acgccaacac	ccagaccgtg	1320
cccatcaccg	ccatccccga	tggctggatg	ggtctggaca	ttggcccgga	ctccgtcaag	1380
accttcaacg	acgccctggc	cgacgccaag	accgttgtgt	ggaacggccc	catgggtgtg	1440
ttcgagtttc	cccaagttcg	ccaacgcacc	gtgtcgatcg	ccaacaccct	ggccggcctg	1500
acgcccaagg	gctgcatcac	catcattggt	ggcggtgact	ccgtggctgc	cgtcgagcag	1560
gccggcgttg	ccgagaagat	gagccacatc	tccaccggcg	gcggtgcctc	cctggagctg	1620
ctggagggca	aggtcctgcc	cggcgtggcc	gccctggacg	agaagtaaat	ggaggcgctc	1680
gttgatctga	gccttgcccc	ctgacgaacg	gcggtggatg	gaagatactg	ctctcaagtg	1740
ctgaagcggt	agcttagctc	cccgtttcgt	gctgatcagt	ctttttcaac	acgtaaaaag	1800
cggaggagtt	ttgcaatttt	gttggttgta	acgatcctcc	gttgattttg	gcctctttct	1860
ccatgggcgg	gctgggcgta	tttgaagcgg	ttctctcttc	tgccgtta		1908
<210> SEQ ID NO 12 <211> LENGTH: 1677 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence						

<210> ORGANISM: AFTILICIAL Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 12, Example 12: designer NAD-dependent Glyceraldehyde-3-Phosphate-Dehydrogenase DNA construct (1677 bp)

<400> SEQUENCE: 12

agaaaatctg gcaccacacc tatatgg	ag ggtgcgagtg accccgcgcg acttggagct 60
cgatggcccc gggttgtttg gggcgtco	ege etetegeget attetgaget ggagaeegag 120
gcgcatgaaa atgcattcgc ttccatag	gga cgctgcattg tggcttgaag gttcaaggga 180
agggttcaaa cgaccccgcc gtacgaad	ett ttgtcggggg gegeteeegg eeeegggete 240
ttgtgcgcgc attagggctt cgggtcgo	caa gcaagacgat acatggccgc cgtcattgcc 300
aagteeteeg teteegegge egtggete	ege eeggeeeget eeagegtgeg eeceatggee 360
gcgctgaagc ccgccgtcaa ggctgcco	ccc gtggctgccc cggctcaggc caaccagatg 420
gctcccatca agatcggcat caatggtt	tt ggtcgtattg gccgcctcgt gtggcgtgcc 480
actettaace gtgaegatgt egaggte	gtc gccatcaatg atccattcat tgatgtgcca 540
tacatggtct acatggccaa gtatgact	ceg gtecaeggea acetgaecea egaegtteag 600
caaggcgacg gcaagctgat ggtcaat	ggc aagtcaatca ccatcttcgg caagatggat 660
gccaaggaga tcccatggaa ggaggcc	ggc gcgaccttcg tcgttgagtc gactggtgtg 720
ttcaccaccc tggagggggc cagetete	cac ctggtcggcg gtgctgagac cgtcgtcatc 780
teegeeccat caaacgatge ceccatg	tc gtcatgggtg tcaacgagga gggctacaag 840

-continued	1

-continued	
- ccagacatga aagtggtgtc caacgcgtct tgcaccacca actgcctggg ccccctggcc	900
aaggtcatcc accttaagtt cggcatcctg gagggcctga tgaccaccgt ccacgcgacc	960
accgccaccc agaagaccgt cgacgggccg tccaagaagg actggcgcgg cgggcgcggc	1020
atcctggaca acatcatccc ctcggcgact ggtgccgcca aggccgtcgg caaggtgctg	1080
cctgccctga acggcaagct caccggcatg gccttccgcg tgcccacccc cgatgtctcg	1140
gtcgtcgatc tgaccgtgcg cctggagaag ggtgcgtcgt acgacgccat caaggccgag	1200
atcaagcgcg cgagcgagaa cgagctcaag ggcatcctgg cctacaccga ggatgccgtg	1260
gtetecaceg actteategg caacaageae agetecatet tegaegeega ggeeggeate	1320
geeetcaaeg acaaetttgt caagetggte teetggtaeg acaaegagtg gggetaetee	1380
aaccgtgtcg tcgacctgat cgcgcacatg gccaaggtca aggccgccag ccactaaatg	1440
gaggcgctcg ttgatctgag ccttgccccc tgacgaacgg cggtggatgg aagatactgc	1500
teteaagtge tgaageggta gettagetee eegtttegtg etgateagte ttttteaaca	1560
cgtaaaaagc ggaggagttt tgcaattttg ttggttgtaa cgatcctccg ttgattttgg	1620
cctctttctc catgggcggg ctgggcgtat ttgaagcggt tctctcttct gccgtta	1677
<210> SEQ ID NO 13 <211> LENGTH: 2351 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 13, Exam 13: designer HydAl-promoter-linked Phosphoglycerate-Mutase Di construct (2351 bp)	-
<400> SEQUENCE: 13	
agaaaatctg gcaccacacc gagctgtcat gcgttgttcc gttatgtgtc gtcaaacgcc	60
ttcgagcgct gcccggaaca atgcgtacta gtataggagc catgaggcaa gtgaacagaa	120
gcgggctgac tggtcaaggc gcacgatagg gctgacgagc gtgctgacgg ggtgtaccgc	180
cgagtgtoog otgoattooc googgattgg gaaatogoga tggtogogoa taggoaagot	240
cgcaaatget gteagettat ettaeatgaa cacacaaaca etetegeagg caetageete	300
aaatggeege egteattgee aagteeteeg teteegegge egtggetege eeggeeeget	360
ccagegtgeg ecceatggee gegetgaage eegeegteaa ggetgeeeee gtggetgeee	420
cggeteagge caaccagatg gegeaegaet acaagetgaa ggeeeaeeeg gegatteetg	480
cgcccgaggg cccgctgctg gtctgcattc tggacggctt cggcgagaac gagtacaagg	540
atgagttcaa cgccgtgcac gtggctaaga cgcccactgt ggacgcgctg cgcgctgtgc	600
cccatcgctt ccgttccatc aaggegcacg gaaaggetgt gggeetgeee agegatgeeg	660
acatgggcaa cagcgaggtg gggcacaacg ccctgggctc gggccaggtg gtggaccaag	720
gegegegeet ggtggaeetg gegetggaga eeggeegtat gtteteggae eeeggetgga	780
ageteateag egaggeette eceteeeaea eegteeaett eateggeetg etgteegaeg	840
geggegtgea etegegegee gateagetge aeggetgeet gegeggegee gtggagegeg	900
gcgccaagcg cgtgcgcgtg cacateetga etgaeggeeg egaegtgeeg gaeggeagea	960
gcateeggtt egtggaggag etggaggegg tgetggegga getgegegge aagggetgeg	1020
acategecat egecteggge ggeggeegea tgeaggteae catggaeege taegaggegg	1080
actggagcat ggtgaagcgc ggctgggacg cgcacgtgct gggcaaggeg ccccactact	1140

-continued

tcaaggacge caagacegeg gtcaceacee tgegeggete egaggaegeg eeggtgtetg 1200 accagtacgt ggcccccttt gtgattgtgg acgaggcgga caagccggtg ggcaccattg 1260 1320 aqqacqqcqa cqcqqtqqtq ctqttcaact tccqcqcqqa ccqcatqqtq qaqatcaqca aggeettega gtaegaggae ggetteaceg cetttgageg egagegette eceaagggee 1380 tgcgcttcgt gggcatgatg cagtacgacg gcgacctgaa gctgcccgcc aacttcctgg 1440 tgccgccgcc cctgattgag cacgtgtcgg gcgagtacct gtgcaagaac gggctgagca 1500 1560 cettegeetg etcegagaet cagaagtteg ggeaegtgae gttettetgg aaeggeaace 1620 gctccggcta cctggacgcc aagcaggagc agtacctgga gatcccgtcg gacaagatcg 1680 agttcaacaa ggeteeggae atgaaggege gegagateae egeegeegge attgaggege 1740 tcaagagegg caagtacaag gtggtgegea tcaactaege caaceeggae atggteggee acaccggcga catggctgcc accgtccgcg cctgcgagac cgtggacggg tgcgtgaagg 1800 agetgetgga ggtggtggac ageetgaacg geegetggat egteaegtee gaeeaeggea 1860 acgccgacga catggtgcag cgcgacaaga agggcaagcc cctgctgggc gaggacggca 1920 ageogetgee cetgaceage cacaegetgg egecegtgee gttetteate ggeggeaagg 1980 gcctgccgga cggcgtggtg ctgcgcgacg acctgccgga cgccgggctg gccaacgtgg 2040 ccgccaccac cttcaacctg ctgggcttcg aggcgcccgg catctacaag cccagcatgg 2100 tcaaggcgta aatggaggcg ctcgttgatc tgagccttgc cccctgacga acggcggtgg 2160 atggaagata ctgctctcaa gtgctgaagc ggtagcttag ctccccgttt cgtgctgatc 2220 agtettttte aacaegtaaa aageggagga gttttgeaat tttgttggtt gtaaegatee 2280 tccgttgatt ttggcctctt tctccatggg cgggctgggc gtatttgaag cggttctctc 2340 ttctgccgtt a 2351 <210> SEQ ID NO 14 <211> LENGTH: 1796 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 14, Example 14: designer HydA1-promoter-linked Enolase DNA construct (1796 bp) <400> SEQUENCE: 14 agaaaatctg gcaccacacc gagctgtcat gcgttgttcc gttatgtgtc gtcaaacgcc 60 120 ttcgagcgct gcccggaaca atgcgtacta gtataggagc catgaggcaa gtgaacagaa 180 gegggetgae tggteaagge geacgatagg getgaegage gtgetgaegg ggtgtaeege cgagtgtccg ctgcattccc gccggattgg gaaatcgcga tggtcgcgca taggcaagct 240 cgcaaatgct gtcagcttat cttacatgaa cacacaaaca ctctcgcagg cactagcctc 300 360 aaatggccgc cgtcattgcc aagtcctccg tctccgcggc cgtggctcgc ccggcccgct ccagcgtgcg ccccatggcc gcgctgaagc ccgccgtcaa ggctgccccc gtggctgccc 420 cggctcaggc caaccaggtg accaaggctg ttgagaacat caacgctatt attgcccccg 480 ccctgaaggg catggacccc gtcaagcagg cggagattga ccagaagatg aaggacctgg 540 acggcactga caacaagggc aagctgggtg ccaacgccat cctggccgtc tccatggccg 600 tgtgcaaggc cggtgccgct gagaagggcg tgcccctgta caagcacatt gcggacctgg 660

-continued	

	<u></u>	<u></u>	<u></u>	-contir	nued	
ccggcaacag	caagctgatc	ctgcccgtgc	cctcgttcaa	catcatcaac	ggcggcagcc	720
acgccggcaa	cgccctggct	atgcaggagt	tcatgatcct	gcccgttggc	gcctcgagct	780
tctctgaggc	catgcgcatg	ggctgcgagg	tgtaccacgc	cctgaagggc	ctgatcaagg	840
ccaagtacgg	ccaggacgcc	tgcaacgtgg	gtgatgaggg	tggcttcgcc	cccaacatcg	900
gctccaacga	tgagggcctg	aacttggtga	acgaggccat	cgagaaggcc	ggctacaccg	960
gcaaggtgaa	gatcggcatg	gacgtggcct	cgtcggagtt	ctacaccgag	gacggcatgt	1020
acgacctgga	cttcaagaac	cagcccaacg	atggctcgca	gaagaagacc	aaggagcaga	1080
tgctggagct	gtacaacgag	ttctgcaaga	agtacccggt	catctccatc	gaggacccct	1140
tcgagcagga	cgactgggag	ccctgcgcca	agetgaceae	cgagaacatc	tgccaggtgg	1200
tcggcgacga	catcctggtg	accaaccccg	tgcgcgtgaa	gaaggccatc	gacgccaagg	1260
ccgtcaacgc	tctgctgctc	aaggtcaacc	agatcggtac	cattaccgag	tccattgagg	1320
ccgtgcgcat	ggccaaggag	gccggctggg	gtgtcatgac	cagccaccgc	tcgggtgaga	1380
ctgaggactc	tttcatcgcc	gacctggcgg	tgggcctggc	ctccggccag	atcaagaccg	1440
gcgccccctg	ccgctcggag	cgcaatgcca	agtacaacca	gctgctgcgc	atcgaggagg	1500
agctgggcga	gaacgctgtg	tacgctggcg	agagctggcg	ccacatcggc	tggtaaatgg	1560
aggcgctcgt	tgatctgagc	cttgccccct	gacgaacggc	ggtggatgga	agatactgct	1620
ctcaagtgct	gaagcggtag	cttagctccc	cgtttcgtgc	tgatcagtct	ttttcaacac	1680
gtaaaaagcg	gaggagtttt	gcaattttgt	tggttgtaac	gatcctccgt	tgattttggc	1740
ctctttctcc	atgggcgggc	tgggcgtatt	tgaagcggtt	ctctcttctg	ccgtta	1796
<220> FEATU <223> OTHER 15: d (1832	TH: 1832 DNA HISM: Artifi RE: NFORMATIC lesigner Hyd : bp)	-	ic Construct	-	No. 15, Exam se DNA constr	-
<400> SEQUE						60
				gttatgtgtc		60 120
				catgaggcaa		180
				gtgctgacgg		240
				tggtcgcgca ctctcgcagg		300
						360
				cgtggctcgc ggctgccccc		420
				cgtggtgggc		480
				tgccaatctg		540
				getgggeege		600
	5 - 5 - 5 - 5 - 5	J . J _ ACCA	JJ · J J ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		J J J ~	
	qaqaqqqqca	qqctqqaccc	aqcqccaqaq	qqqtqqaata	atcatcacca	660
cqcqcacqqa				gggtggggtg cacttacaqc		660 720
	cgtggacgcc	agcagcaacg	tgctgcccat	cacttacagc	aagttcacgg	
agatggcggt	cgtggacgcc caagggcgac	agcagcaacg accatctaca	tgctgcccat tcggccgcta		aagttcacgg ggcgcagaca	720

-continued

agaacgacgc	ggtgctggac	aacctactaa	caatattcca	cacaaaacac	tccataaaaa	900
ggctggccaa	cgtgcagaac	gacctgccgc	tgctgtccga	ctacgacaag	gagtgcctgc	960
acatcctggc	gcaggacttc	gagegegege	cctacatctc	caagctggag	tccatcgcct	1020
cctccgccgt	gcgcgccgcc	gaccgcgtgg	gcgccagcct	gattgtggtg	tacacgcaca	1080
ccggcaagac	ggcgcagctg	gtggccaagt	accggccgcc	catgcccatc	ctgacgctgg	1140
tggtgccgca	cctggtgtct	gaccagctca	agtggaagct	ggagggcagg	tccagcgcgc	1200
gccagtgcct	catcagtcgc	gcgctgctgc	cggtgctggc	cgcgccctcg	cccagcggcg	1260
accagctgct	gcaggaggcg	gtggccatgg	cgggccgcgt	caagctggtc	aagccgcacg	1320
accacgtggt	gtgcgtgcag	cgcatccacg	acgacttctg	cgtcaagatc	atctccgtgg	1380
acgacatggg	cgcgggcatc	aagcgcgacg	acacggtcat	gtcgcacagc	gtgtttggca	1440
gcagccccat	ggccgtgcag	ggctcgtccg	gctacgactc	gccgcgcgtg	cacaacaacc	1500
ccatcggcaa	caagttcggc	cccatgccgc	ccgccatcat	caccaccggc	aatagcttca	1560
ccctgggcgg	catgggcgtg	ggcgtgctgt	aaatggaggc	gctcgttgat	ctgagccttg	1620
ccccctgacg	aacggcggtg	gatggaagat	actgctctca	agtgctgaag	cggtagctta	1680
gctccccgtt	tcgtgctgat	cagtctttt	caacacgtaa	aaagcggagg	agttttgcaa	1740
ttttgttggt	tgtaacgatc	ctccgttgat	tttggcctct	ttctccatgg	gcgggctggg	1800
cgtatttgaa	gcggttctct	cttctgccgt	ta			1832

- <210> SEQ ID NO 16 <211> LENGTH: 4376 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence
- <220> FEATURE:
- <220> FIHER INFORMATION: Synthetic Construct- Sequence No. 16, Example 16: designer HydAl-promoter-linked Pyruvate-Ferredoxin-Oxidoreductase DNA construct (4376 bp)

<400> SEQUENCE: 16

agaaaatctg	gcaccacacc	gagctgtcat	gcgttgttcc	gttatgtgtc	gtcaaacgcc	60
ttcgagcgct	gcccggaaca	atgcgtacta	gtataggagc	catgaggcaa	gtgaacagaa	120
gcgggctgac	tggtcaaggc	gcacgatagg	gctgacgagc	gtgctgacgg	ggtgtaccgc	180
cgagtgtccg	ctgcattccc	gccggattgg	gaaatcgcga	tggtcgcgca	taggcaagct	240
cgcaaatgct	gtcagcttat	cttacatgaa	cacacaaaca	ctctcgcagg	cactagcctc	300
aaatggccgc	cgtcattgcc	aagtcctccg	tctccgcggc	cgtggctcgc	ccggcccgct	360
ccagcgtgcg	ccccatggcc	gcgctgaagc	ccgccgtcaa	ggctgccccc	gtggetgeee	420
cggctcaggc	caaccagatg	ggaaagaaaa	tgatgacgac	tgatggcaat	acagcgacag	480
cgcacgtggc	gtatgccatg	agcgaagtcg	ccgccatcta	ccccatcacc	ccttcctcga	540
ccatgggcga	ggaggctgac	gactgggcgg	cgcaaggacg	caagaacatc	tttggccaga	600
ccctgaccat	acgcgaaatg	cagtccgagg	ccggcgccgc	cggcgcggtg	cacggggccc	660
tggcggccgg	cgccctgacc	acgaccttca	cggcgtcgca	gggtctgctg	ctgatgatcc	720
ccaacatgta	caagatctcc	ggcgaacttc	tgcccggcgt	gttccacgtc	accgcccgcg	780
ccatcgccgc	gcacgccctg	tccatcttcg	gtgaccacca	ggatatctac	geegegegee	840
agacaggctt	cgccatgctc	gcctccagct	cggtgcagga	ggcccacgac	atggccctgg	900

				-contir	lued		
tggcccactt	ggcggccatc	gagtccaacg	tgccgttcat	gcacttcttc	gacggattcc	960	
gcacctcgca	cgaaatccag	aagatcgagg	tcctggacta	cgcggacatg	gcctcgctgg	1020	
tgaaccagaa	ggccctggcg	gaattccgcg	ccaagtccat	gaaccccgag	cacccccacg	1080	
tgcgcggcac	ggcccagaac	cccgacatct	acttccaggg	tcgcgaggca	gccaacccct	1140	
actacctcaa	ggtgcccggc	atcgttgccg	agtacatgca	gaaggtcgcc	tccctcacgg	1200	
gccgcagcta	caagctcttt	gactacgtgg	gtgctcccga	cgccgagcgc	gtcatcgtgt	1260	
ccatgggctc	ctcgtgcgag	accatcgagg	aggtcatcaa	ccacctcgcg	gccaagggcg	1320	
aaaagatcgg	cctgatcaag	gtccgcctgt	acaggccctt	cgtaagcgag	gccttcttcg	1380	
ctgctctgcc	cgcttcggcc	aaggtcatca	cggtcctcga	ccgcaccaag	gaacccggcg	1440	
cgcccggcga	tccgctctac	ctcgacgtgt	gctcggcctt	cgtggagcgc	ggcgaagcca	1500	
tgcccaagat	cctggccggc	cgctacggcc	tgggttccaa	ggaattcagc	ccggccatgg	1560	
tcaagtccgt	gtacgacaac	atgtccggcg	ctaagaagaa	ccacttcacc	gtgggcatcg	1620	
aagacgacgt	gaccggcact	tcgctgccgg	tggacaacgc	cttcgccgac	accacgccca	1680	
agggcaccat	ccagtgccag	ttctggggcc	tcggcgccga	cggcactgtg	ggcgccaaca	1740	
agcaggccat	caagatcatc	ggcgacaaca	cggacctgtt	tgcccagggt	tacttctcct	1800	
acgactccaa	gaaatcgggc	ggcatcacca	tctcgcacct	gcgcttcggc	gagaagccca	1860	
tccagtccac	ctacctggtc	aacagggccg	actatgtcgc	ctgtcacaac	ccggcctacg	1920	
tgggcatata	cgacatcctc	gaaggcatca	aggatggcgg	aaccttcgtg	ctcaactcgc	1980	
cttggagcag	cctcgaggac	atggacaagc	acctgccctc	cggcatcaag	cgcaccatcg	2040	
cgaacaagaa	gctcaagttc	tacaacatcg	acgcggtgaa	aatcgccacc	gatgtgggac	2100	
tgggcggccg	catcaacatg	atcatgcaga	cggccttctt	caagctggcc	ggagtgctgc	2160	
ccttcgaaaa	ggccgtggat	ctgctcaaga	agtccatcca	caaggcctac	ggcaaaaagg	2220	
gcgagaagat	cgtcaagatg	aacaccgacg	ccgtggacca	ggccgtcacc	tccctgcagg	2280	
aattcaagta	tccggattcc	tggaaggacg	ctcccgctga	gaccaaggcc	gagcccatga	2340	
cgaacgagtt	cttcaagaac	gtcgtcaagc	ccatcctgac	ccagcagggc	gacaagctgc	2400	
cggtgagcgc	cttcgaggcc	gacggccgtt	tccccctcgg	caccagccag	ttcgagaagc	2460	
gcggcgtggc	catcaacgtg	ccgcagtggg	tccccgagaa	ctgcatccag	tgcaaccagt	2520	
gcgccttcgt	ctgtccgcac	agcgccatcc	tgcccgtgct	ggccaaggaa	gaggagttgg	2580	
tcggcgcgcc	ggcgaacttc	acggccctgg	aagccaaggg	caaggagctc	aagggctaca	2640	
agttccgcat	ccagatcaac	accctggact	gcatgggctg	cggcaactgc	gccgacatct	2700	
gtccgcccaa	ggaaaaggct	ctggtcatgc	agcccctgga	tacccagcgc	gacgcgcagg	2760	
tgcccaacct	ggagtacgca	gcgcgcatcc	cggtcaaatc	cgaggtgctg	ccgcgcgact	2820	
cgctcaaggg	cagccagttc	caggagcctc	tcatggaatt	ctcgggcgcc	tgctcgggct	2880	
gcggcgagac	gccctacgtg	cgcgtcatca	cccagctctt	cggcgagcgc	atgttcattg	2940	
ccaacgccac	gggttgctcg	tccatctggg	gcgcgtcggc	tccttccatg	ccttacaaga	3000	
ccaaccgcct	cggacaaggc	ccggcctggg	gtaactccct	gttcgaagac	gcggccgaat	3060	
acggcttcgg	catgaacatg	tccatgttcg	cccgccgcac	gcatttggcc	gatcttgccg	3120	
ccaaggccct	ggagagcgat	gcctccggcg	atgtcaagga	agccctgcag	ggctggcttg	3180	
ccggcaagaa	cgatcccatc	aagtccaagg	aatacggcga	caagctcaag	aagctgctgg	3240	

-continued

ctggtcagaa ggatggtctg ctcggacaga tcgccgccat gtccgacctg tacaccaaga 3300 agagegtgtg gatetteggt ggegaegget gggeetaega eateggttae ggeggeetgg 3360 accatgtget egecteggge gaggaegtga acgtettegt eatggataee gaggtetaet 3420 ccaacaccgg cggccagtcc tccaaggcaa cgcccacggg cgccgtggcc aagttcgcgg 3480 cggccggcaa gcgtaccggc aagaaggacc tggcgcgcat ggtcatgacc tacggctacg 3540 3600 tctacgtggc tacggtctcc atgggttaca gcaagcagca gttcctcaag gtgctcaagg aageegaaag etteeeegge eeetegetgg teategeeta tgetaeetge ateaaeeagg 3660 3720 gtctgcgcaa gggcatgggc aagagccagg acgtcatgaa caccgcggtc aagtccggtt actggccgct gttccgctac gatccgcgct tggccgccca gggcaagaac cccttccagc 3780 tcgactccaa ggctcctgac ggttccgtcg aggagttcct gatggcccag aaccgcttcg 3840 3900 $\verb|ccgtcctcga| tcggtccttc| cccgaggacg| ccaagagact| gcgcgcccag| gtcgctcacg|$ aattggacgt gcgtttcaag gagttggagc acatggccgc cacgaacatc ttcgagtcct 3960 tcgcgccagc gggcggcaag gccgatggtt cggtggattt cggcgaaggt gcggagttct 4020 gcacgcgcga cgatactccc atgatggccc gacctgattc cggtgaggcc tgcgaccaga 4080 accgcgctgg cacgagcgaa cagcagggag acctcagcaa gcggacgaag aagtaaatgg 4140 aggegetegt tgatetgage ettgeceeet gaegaaegge ggtggatgga agataetget 4200 ctcaagtgct gaagcggtag cttagctccc cgtttcgtgc tgatcagtct ttttcaacac 4260 gtaaaaagcg gaggagtttt gcaattttgt tggttgtaac gatcctccgt tgattttggc 4320 ctctttctcc atgggcgggc tgggcgtatt tgaagcggtt ctctcttctg ccgtta 4376 <210> SEQ ID NO 17 <211> LENGTH: 6092 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 17, Example 17: designer HydA1-promoter-linked Pyruvate-NADP+-Oxidoreductase DNA construct (6092 bp)

<400> SEQUENCE: 17

agaaaatctg	gcaccacacc	gagctgtcat	gcgttgttcc	gttatgtgtc	gtcaaacgcc	60
ttcgagcgct	gcccggaaca	atgcgtacta	gtataggagc	catgaggcaa	gtgaacagaa	120
gcgggctgac	tggtcaaggc	gcacgatagg	gctgacgagc	gtgctgacgg	ggtgtaccgc	180
cgagtgtccg	ctgcattccc	gccggattgg	gaaatcgcga	tggtcgcgca	taggcaagct	240
cgcaaatgct	gtcagcttat	cttacatgaa	cacacaaaca	ctctcgcagg	cactagcctc	300
aaatggccgc	cgtcattgcc	aagtcctccg	tctccgcggc	cgtggctcgc	ccggcccgct	360
ccagcgtgcg	ccccatggcc	gcgctgaagc	ccgccgtcaa	ggctgccccc	gtggctgccc	420
cggctcaggc	caaccagatg	aagcagtctg	tccgcccaat	tatttccaat	gtactgcgca	480
aggaggttgc	tctgtactca	acaatcattg	gacaagacaa	ggggaaggaa	ccaactggtc	540
gaacatacac	cagtggccca	aaaccggcat	ctcacattga	agttccccat	catgtgactg	600
tgcctgccac	tgaccgcacc	ccgaatcccg	atgctcaatt	ctttcagtct	gtagatgggt	660
cacaagccac	cagtcacgtt	gcgtacgctc	tgtctgacac	agcgttcatt	tacccaatta	720
cacccagttc	tgtgatgggc	gagctggctg	atgtttggat	ggctcaaggg	aggaagaacg	780

-cont	inie	d.

				-contir	nued		
cctttggtca	ggttgtggat	gtccgtgaga	tgcaatctga	ggctggagcc	gcaggcgccc	840	
tgcatggggc	actggctgct	ggagctattg	ctacaacctt	cactgcctct	caagggttgt	900	
tgttgatgat	tcccaacatg	tataagattg	caggtgagct	gatgccctct	gtcatccacg	960	
ttgcagcccg	agagcttgca	ggccacgctc	tgtccatttt	tggaggacac	gctgatgtca	1020	
tggctgtccg	ccaaacagga	tgggctatgc	tgtgctccca	cacagtgcag	cagtctcacg	1080	
acatggctct	catctcccac	gtggccaccc	tcaagtccag	catccccttc	gttcacttct	1140	
ttgatggttt	ccgcacaagc	cacgaagtga	acaaaatcaa	aatgctgcct	tatgcagaac	1200	
tgaagaaact	ggtgcctcct	ggcaccatgg	aacagcactg	ggctcgttcg	ctgaacccca	1260	
tgcaccccac	catccgagga	acaaaccagt	ctgcagacat	ctacttccag	aatatggaaa	1320	
gtgcaaacca	gtactacact	gatctggccg	aggtcgttca	ggagacaatg	gacgaagttg	1380	
caccatacat	cggtcgccac	tacaagatct	ttgagtatgt	tggtgcacca	gatgcagaag	1440	
aagtgacagt	gctcatgggt	tctggtgcaa	ccacagtcaa	cgaggcagtg	gaccttcttg	1500	
tgaagcgtgg	aaagaaggtt	ggtgcagtct	tggtgcacct	ctaccgacca	tggtcaacaa	1560	
aggcatttga	aaaggtcctg	cccaagacag	tgaagcgcat	tgctgctctg	gatcgctgca	1620	
aggaggtgac	tgcactgggt	gagcetetgt	atctggatgt	gtcggcaact	ctgaatttgt	1680	
tcccggaacg	ccagaatgtg	aaagtcattg	gaggacgtta	cggattgggc	tcaaaggatt	1740	
tcatcccgga	gcatgccctg	gcaatttacg	ccaacttggc	cagcgagaac	cccattcaaa	1800	
gattcactgt	gggtatcaca	gatgatgtca	ctggcacatc	cgttcctttc	gtcaacgagc	1860	
gtgttgacac	gttgcccgag	ggcacccgcc	agtgtgtctt	ctggggaatt	ggttcagatg	1920	
gaacagtggg	agccaatcgc	tctgccgtga	gaatcattgg	agacaacagc	gatttgatgg	1980	
ttcaggccta	cttccaattt	gatgctttca	agtcaggtgg	tgtcacttcc	tcgcatctcc	2040	
gttttggacc	aaagcccatc	acagcgcaat	accttgttac	caatgctgac	tacatcgcgt	2100	
gccacttcca	ggagtatgtc	aagcgctttg	acatgcttga	tgccatccgt	gaggggggca	2160	
cctttgttct	caattctcgg	tggaccacgg	aggacatgga	gaaggagatt	ccggctgact	2220	
tccggcgcaa	gctggcacag	aagaaggtcc	gcttctacaa	tgtggatgct	cgaaagatct	2280	
gtgacagttt	tggtcttggg	aagcgcatca	atatgctgat	gcaggcttgt	ttetteaage	2340	
tgtctggggt	gctcccactg	gccgaagctc	agcggctgct	gaacgagtcc	attgtgcatg	2400	
agtatggaaa	gaagggtggc	aaggtggtgg	agatgaacca	agcagtggtg	aatgctgtct	2460	
ttgctggtga	cctgccccag	gaagttcaag	tccctgccgc	ctgggcaaac	gcagttgata	2520	
catccacccg	tacccccacc	gggattgagt	ttgttgacaa	gatcatgcgc	ccgctgatgg	2580	
atttcaaggg	tgaccagctc	ccagtcagtg	tgatgactcc	tggtggaacc	ttccctgtcg	2640	
ggacaacaca	gtatgccaag	cgtgcaattg	ctgctttcat	tccccagtgg	attcctgcca	2700	
actgcacaca	gtgcaactat	tgttcgtatg	tttgccccca	cgccaccatc	cgacctttcg	2760	
tgctgacaga	ccaggaggtg	cagetggeee	cggagagctt	tgtgacacgc	aaggcgaagg	2820	
gtgattacca	ggggatgaat	ttccgcatcc	aagttgctcc	tgaggattgc	actggctgcc	2880	
aggtgtgcgt	ggagacgtgc	cccgatgatg	ccctggagat	gaccgacgct	ttcaccgcca	2940	
cccctgtgca	acgcaccaac	tgggagttcg	ccatcaaggt	gcccaaccgc	ggcaccatga	3000	
cggaccgcta	ctccctgaag	ggcagccagt	tccagcagcc	cctcctggag	ttctccgggg	3060	
cctgcgaggg	ctgcggcgag	accccatatg	tcaagctgct	cacccagctc	ttcggcgagc	3120	

-continued

ggacggtcat	cgccaacgcc	accggctgca	gttccatctg	gggtggcact	gccggcctgg	3180
cgccgtacac	caccaacgcc	aagggccagg	gcccggcctg	gggcaacagc	ctgttcgagg	3240
acaacgccga	gttcggcttt	ggcattgcag	tggccaacgc	ccagaagagg	tcccgcgtga	3300
gggactgcat	cctgcaggca	gtggagaaga	aggtcgccga	tgagggtttg	accacattgt	3360
tggcgcaatg	gctgcaggat	tggaacacag	gagacaagac	cttgaagtac	caagaccaga	3420
tcattgcagg	gctggcacag	cagegeagea	aggatcccct	tctggagcag	atctatggca	3480
tgaaggacat	gctgcctaac	atcagccagt	ggatcattgg	tggtgatggc	tgggccaacg	3540
acattggttt	cggtgggctg	gaccacgtgc	tggcctctgg	gcagaacctc	aacgtcctgg	3600
tgctggacac	cgagatgtac	agcaacaccg	gtgggcaggc	ctccaagtcc	acccacatgg	3660
cctctgtggc	caagtttgcc	ctgggaggga	agcgcaccaa	caagaagaac	ttgacggaga	3720
tggcaatgag	ctatggcaac	gtctatgtgg	ccaccgtctc	ccatggcaac	atggcccagt	3780
gcgtcaaggc	gtttgtggag	gctgagtctt	atgatggacc	ttcgctcatt	gttggctatg	3840
cgccatgcat	cgagcatggt	ctgcgtgctg	gtatggcaag	gatggttcaa	gagtetgagg	3900
ctgccatcgc	cacgggatac	tggcccctgt	accgctttga	cccccgcctg	gcgaccgagg	3960
gcaagaaccc	cttccagctg	gactccaagc	gcatcaaggg	caacctgcag	gagtacctgg	4020
accgccagaa	ccggtatgtc	aacctgaaga	agaacaaccc	gaagggtgcg	gatctgctga	4080
agtctcagat	ggccgacaac	atcaccgccc	ggttcaaccg	ctaccgacgc	atgttggagg	4140
gccccaatac	aaaagccgcc	gcccccagcg	gcaaccatgt	gaccatcctg	tacggctccg	4200
aaactggcaa	cagtgagggt	ctggcaaagg	agctggccac	cgacttcgag	cgccgggagt	4260
actccgtcgc	agtgcaggct	ttggatgaca	tcgacgttgc	tgacttggag	aacatgggct	4320
tcgtggtcat	tgeggtgtee	acctgtgggc	agggacagtt	cccccgcaac	agccagctgt	4380
tctggcggga	gctgcagcgg	gacaagcctg	agggctggct	gaagaacttg	aagtacactg	4440
tetteggget	gggcgacagc	acatactact	tctactgcca	caccgccaag	cagatcgacg	4500
ctcgcctggc	cgccttgggc	gctcagcggg	tggtgcccat	tggcttcggc	gacgatgggg	4560
atgaggacat	gttccacacc	ggcttcaaca	actggatccc	cagtgtgtgg	aatgagetea	4620
agaccaagac	tccggaggaa	gcgctgttca	ccccgagcat	cgccgtgcag	ctcaccccca	4680
acgccacccc	gcaggatttc	catttcgcca	agtccacccc	agtgctgtcc	atcaccggtg	4740
ccgaacgcat	cacgccggca	gaccacaccc	gcaacttcgt	cactatccga	tggaagaccg	4800
atttgtcgta	ccaggtgggt	gactctcttg	gtgtcttccc	tgagaacacc	cggtcagtgg	4860
tggaggagtt	cctgcagtat	tacggcttga	accccaagga	cgtcatcacc	atcgaaaaca	4920
agggcagccg	ggagttgccc	cactgcatgg	ctgttgggga	tctcttcacg	aaggtgttgg	4980
acatcttggg	caaacccaac	aaccggttct	acaagaccct	ttcttacttt	gcagtggaca	5040
aggccgagaa	ggagcgcttg	ttgaagatcg	ccgagatggg	gccggagtac	agcaacatcc	5100
tgtctgagac	gtaccactac	gcggacatct	tccacatgtt	cccgtccgcc	cggcccacgc	5160
tgcagtacct	catcgagatg	atccccaaca	tcaagccccg	gtactactcc	atctcctccg	5220
cccccatcca	cacccctggc	gaggtccaca	gcctggtgct	catcgacacc	tggatcacgc	5280
tgtccggcaa	gcaccgcacg	gggctgacct	gcaccatgct	ggagcacctg	caggcgggcc	5340
aggtggtgga	tggctgcatc	caccccacgg	cgatggagtt	ccccgaccac	gagaagccgg	5400

-continued

-continued	
tggtgatgtg cgccatgggc agtggcctgg caccgttcgt tgctttcctg cgcgacggct	5460
ccacgctgcg gaagcagggc aagaagaccg ggaacatggc attgtacttc ggcaacaggt	5520
atgagaagac ggagtteetg atgaaggagg agetgaaggg teacateaae gatggtttge	5580
tgacacttcg atgcgctttc agccgagatg accccaagaa gaaggtgtat gtgcaggacc	5640
ttatcaagat ggacgaaaag atgatgtacg attacctcgt ggtgcagaag ggttctatgt	5700
attgctgtgg atcccgcagt ttcatcaagc ctgtccagga gtcattgaaa cattgcttca	5760
tgaaagctgg tgggctgact gcagagcaag ctgagaacga ggtcatcgat atgttcacga	5820
ccgggcggta caatatcgag gcatggtaat aaatggaggc gctcgttgat ctgagccttg	5880
ccccctgacg aacggcggtg gatggaagat actgctctca agtgctgaag cggtagctta	5940
gctccccgtt tcgtgctgat cagtcttttt caacacgtaa aaagcggagg agttttgcaa	6000
ttttgttggt tgtaacgatc ctccgttgat tttggcctct ttctccatgg gcgggctggg	6060
cgtatttgaa geggttetet ettetgeegt ta	6092
<pre><210> SEQ ID NO 18 <211> LENGTH: 1856 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 18, Exa 18: designer HydA1-promoter-linked Thiolase DNA construct (1856 bp)</pre>	umple
<400> SEQUENCE: 18	
agaaaatotg gcaccacacc gagotgtcat gogttgttoc gttatgtgto gtcaaacgoo	60
ttcgagcgct gcccggaaca atgcgtacta gtataggagc catgaggcaa gtgaacagaa	120
gegggetgae tggteaagge geacgatagg getgaegage gtgetgaegg ggtgtaeege	180
cgagtgtccg ctgcattccc gccggattgg gaaatcgcga tggtcgcgca taggcaagct	240
cgcaaatgct gtcagcttat cttacatgaa cacacaaaca ctctcgcagg cactagcctc	300
aaatggccgc cgtcattgcc aagteeteeg teteegegge cgtggetege eeggeeeget	360
ccagegtgeg ecceatggee gegetgaage eegeegteaa ggetgeeeee gtggetgeee	420
cggctcaggc caaccagatg aaagaagtag ttattgcaag tggtgtaagg actgctgtcg	480
ggaaatttgg tggcacgctt ctaaatgtac ctgcagtaga tttaggtgct gtgaataata	540
aaagaagcat aaaaagagcc aatgtgaaac ctgaagatgt tagtgaagtg ataatgggaa	600
atgtattgca ggcaggtctt gggcagaacc ccgcaagaca agctgaaata aaagcgggca	660
taccagtaga agttccggct atgactgtaa acatggtatg tggatcaggt cttagagctg	720
tgacacttgc tgctcaggca gttatgcttg gtgatgctga cattgttgta gccggtggaa	780
tggaaaatat gtcaagagca ccatatatat taaatgatgc tcgctttggg tacaggatga	840
acaatggcca gcttgtagat gaaatggtat atgatggttt aacagatgtt tttaaccaat	900
atcacatggg aatcactgcc gaaaatcttg ctgaaaaata cggcatatca agagaagagc	960
aggatgaatt tgcatataga agccaaaaat tagcgtcaga agcgatatca tcaggaagat	1020
ttgaggatga gatagtteet gtgattgtge egeagaaaaa aggtgaaeeg atagaattta	1080
aagttgatga acatgtgaga cctaatacga caattgaagc acttgcaaaa ttaaaaccag	1140
cattccaaaa agatggaact gtaactgctg gaaatgcatc aggaattaac gatgcagctg	1200

-continued cgattaaatc atttggttat gcaggtgttg accccagcat cacgggaatt ggtccagtat 1320 atgctacgag aaaggcatta gaaaaagcta atctaactgt agatgattta gatttaattg 1380 aagcaaatga agcatttgca gcacaatcac tggctgttgc aaaagaatta aaatttaata 1440 tggacagagt gaatgtaaat ggtggcgcaa ttgcgatagg tcatccaatc ggcgccagcg 1500 gatgtagaat tetagtgacg ettttatatg agatgcagaa gaggaatteg catactggae 1560 ttgcaacatt gtgcatcggc ggaggaatgg gaatagcaat ggttgtcgaa agataaatgg 1620 1680 aggegetegt tgatetgage ettgeceeet gaegaaegge ggtggatgga agataetget ctcaagtget gaageggtag cttageteec cgtttegtge tgateagtet tttteaacae 1740 1800 qtaaaaaqcq qaqqaqtttt qcaattttqt tqqttqtaac qatcctccqt tqattttqqc ctctttctcc atgggcgggc tgggcgtatt tgaagcggtt ctctcttctg ccgtta 1856 <210> SEO ID NO 19 <211> LENGTH: 1550 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 19, Example 19: designer HydA1-promoter-linked 3-Hydroxybutyryl-CoA-Dehydrogenase DNA construct (1550 bp) <400> SEQUENCE: 19 agaaaatctg gcaccacacc gagctgtcat gcgttgttcc gttatgtgtc gtcaaacgcc 60 ttcgagcgct gcccggaaca atgcgtacta gtataggagc catgaggcaa gtgaacagaa 120 gcgggctgac tggtcaaggc gcacgatagg gctgacgagc gtgctgacgg ggtgtaccgc 180 240 cgagtgtccg ctgcattccc gccggattgg gaaatcgcga tggtcgcgca taggcaagct cgcaaatgct gtcagcttat cttacatgaa cacacaaaca ctctcgcagg cactagcctc 300 aaatggccgc cgtcattgcc aagtcctccg tctccgcggc cgtggctcgc ccggcccgct 360 ccagegtgeg ecceatggee gegetgaage eegeegteaa ggetgeeeee gtggetgeee 420 cggctcaggc caaccagatg caaaagattt gtgtaatagg tgctggaaca atgggctcag 480 gcatcgctca agtatttgca caaaatggct ttgaagtaat tttacgcgat attgatatga 540 agttcgtaga aaaaggattt ggcacaattg aaaaaattta caaagaaatg ttgacaaagg 600 gaaaattaca gcagatgaga aaacgaattt taagcagaat cagaggtaca acaaatttgg 660 aagacgcaaa agaagcagat tttgtagttg aagcggctat agaaaatatg gatctcaaga 720 780 aacaaatatt caaagagcta gatgaaatat gcaaaatgga aacaatcott gogtcaaata catcatcact atccataaca gaaatagcaa gtgcgacaaa aagacctgag aaagtcatag 840 qaatqcattt cttcaaccca qttccaqtaa tqaaacttqt tqaaqtcata aaaqqattaa 900 agacatcaga gcaaacattt aatgtcgtca gagaattggc tttaaaagta gacaaaacac 960 ctatagaggt caaagaagca cctggatttg ttgtaaatag gattttaatc ccaatgatta 1020 atgaagcaat tggaatactt gcagtggtgt tggcaactga caagagcata gatgaagcta 1080 tgaaacttgg tgcaaatcat ccaataggac ctttggcatt gtctagtttg ataggcaatg 1140 acgtcgttct tgctataatg aatgtgcttt atgaagagta cggcgattcg aaatacagac 1200 cacatccact tctaaaaaaa gtggtaagag gcggattgct gggtagaaaa actggcaaag 1260 gtttctttga atacaaaatt aatcttttaa ggaggagaat atcatgataa atggaggcgc 1320

-continued

-continued
tegttgatet gageettgee eeetgaegaa eggeggtgga tggaagatae tgeteteaag 1380
tgctgaagcg gtagettage teeccegttte gtgetgatea gtetttttea acaegtaaaa 1440
ageggaggag ttttgeaatt ttgttggttg taaegateet eegttgattt tggeetettt 1500
ctccatgggc gggctgggcg tatttgaagc ggttctctct tctgccgtta 1550
<210> SEQ ID NO 20 <211> LENGTH: 1457 <212> TYPE: DNA <212> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 20, Example 20: designer HydA1-promoter-linked Crotonase DNA construct (1457 bp)
<400> SEQUENCE: 20
agaaaatotg gcaccacaco gagotgtoat gogttgttoo gttatgtgto gtoaaaogoo 60
ttcgagcgct gcccggaaca atgcgtacta gtataggagc catgaggcaa gtgaacagaa 120
gcgggctgac tggtcaaggc gcacgatagg gctgacgagc gtgctgacgg ggtgtaccgc 180
cgagtgtccg ctgcattccc gccggattgg gaaatcgcga tggtcgcgca taggcaagct 240
cgcaaatgct gtcagcttat cttacatgaa cacacaaaca ctctcgcagg cactagcctc 300
aaatggeege egteattgee aagteeteeg teteegegge egtggetege eeggeeeget 360
ccagegtgeg ecceatggee gegetgaage eegeegteaa ggetgeeeee gtggetgeee 420
cggctcaggc caaccagatg gattttaata atgttttatt aaataaggat gatgggatag 480
ctctcatcat tataaatcgt ccaaaggctt taaatgcatt aaactatgag acactaaaaag 540
agttagatag tgtgcttgat atagttgaaa atgataaaga gataaaagtt ttaattataa 600
ctggcagcgg tgaaaaaacc ttcgttgcag gtgctgatat agctgagatg agtaatatga 660
caccacttga agcgaagaag ttctctcttt atggacagaa agtatttagg aagatagaaa 720
tgctaagtaa gcctgttata gcagcggtaa atggttttgc acttggtggt ggatgcgagc 780
tttctatggc atgtgacata cgtattgcaa gtaaaaatgc aaaatttggt caacctgaag 840
taggacttgg aataatacct ggcttttcag gaactcaaag attaccacgt cttataggca 900
cttctaaagc taaagagctt attttcacag gtgacatgat aaattctgat gaagcatata 960
aaataggeet tatatetaaa gttgttgaae tatetgatet eattgaagaa geaaaaaaae 1020
tcgcgaaaaa aatgatgtca aaaagtcaaa tagcaatttc tctagcaaag gaagcaataa 🛛 1080
ataagggaat ggaaacagac ttagatacag gcaatactat agaagctgag aaattttcct 1140
tatgttttac aacagatgat caaaaagaag gtatgattgc gttttctgaa aagagggcgc 1200
ctaaatttgg caaataaatg gaggcgctcg ttgatctgag ccttgccccc tgacgaacgg 1260
cggtggatgg aagatactgc tctcaagtgc tgaagcggta gcttagctcc ccgtttcgtg 1320
ctgatcagtc tttttcaaca cgtaaaaagc ggaggagttt tgcaattttg ttggttgtaa 1380
cgateeteeg ttgattttgg eetettete eatgggeggg etgggegtat ttgaageggt 1440
tctctcttct gccgtta 1457
<210> SEQ ID NO 21 <211> LENGTH: 1817 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 21, Example

-cor	itin	ued

-continued	
21: designer HydA1-promoter-linked Butyryl-CoA-Dehydrogenase construct (1817 bp)	DNA
<400> SEQUENCE: 21	
agaaaatctg gcaccacacc gagctgtcat gcgttgttcc gttatgtgtc gtcaaacgcc	60
ttcgagcgct gcccggaaca atgcgtacta gtataggagc catgaggcaa gtgaacagaa	120
gcgggctgac tggtcaaggc gcacgatagg gctgacgagc gtgctgacgg ggtgtaccgc	180
cgagtgtccg ctgcattccc gccggattgg gaaatcgcga tggtcgcgca taggcaagct	240
cgcaaatget gteagettat ettaeatgaa eacaeaaaea etetegeagg eactageete	300
aaatggccgc cgtcattgcc aagteeteeg teteegegge cgtggetege eeggeeeget	360
ccagcgtgcg ccccatggcc gcgctgaagc ccgccgtcaa ggctgccccc gtggctgccc	420
cggctcaggc caaccagatg gacttttcat taacaaagga gcaagaaatg gtaaggcgtg	480
ttgtgagaga attcgctgaa aaagaagttg ctcctaaagc aaaagaaata gatatcacag	540
aagagtttcc atgggataca gtaagaaaaa tggctcaaaa cgatatgatg ggtattcctt	600
atccagaaga gtatggtgga gcaggtggag attacttgag ttatatcata gctgttgaag	660
agatatcaag agcttgtgct acgactggag taattttatc tgctcatact tcattgggaa	720
gttttccaat atatcaatgg ggaacagaag aacaaaaaag aaaatatcta gtgccacttg	780
caaaaggtga aaaattgggc gcttttggcc ttacagaacc taacgcaggt acagatgcag	840
ctggacagca gacaactgca gtattagatg gtgatcacta cgtattaaac ggctcaatat	900
ttattacaaa cggaggaaaa gctgacatat atataatctt tgcaatgaca gacaaatcaa	960
aaggcacaag aggcattagt gcatttatag ttgagaaaga ttttccgggt tttagcattg	1020
gcaaaattga agaaaaaatg ggtataagag cttcatcaac tgccgaactt gtgtttgaag	1080
attgtattgt accaaaagaa aatttacttg gtaaagaagg agaaggtttt aaaattgcga	1140
tggctacact agatggtgga agaataggaa tagcagcgca acgccttgga atagctcagg	1200
ctgctttaga tgaagagata aaatatgcaa aggaaagaca acagtttgga agaccaattg	1260
gaaaatttca aggcattcaa tggtatatag ctgatatggc aacgagaata aatgcttcaa	1320
gatggettgt atacaatgee gettggagaa ageaggtagg tetteegtae acaatggaag	1380
cagctatggc aaaattatat gcttccgaaa cagcaatgtt tgtaacgaca aaaacagttc	1440
agatatttgg cggctatggc tttacaaaag attatccagt ggaaagattt atgagagatg	1500
caaaaataac agaaatttat gaaggcacat cggaagtcca gaaaatggtt atttccggta	1560
acctattgaa aatgtaaatg gaggcgctcg ttgatctgag ccttgccccc tgacgaacgg	1620
cggtggatgg aagatactgc tctcaagtgc tgaagcggta gcttagctcc ccgtttcgtg	1680
ctgatcagtc tttttcaaca cgtaaaaagc ggaggagttt tgcaattttg ttggttgtaa	1740
cgatcctccg ttgattttgg cctctttctc catgggcggg ctgggcgtat ttgaagcggt	1800
tctctcttct gccgtta	1817

construct (2084 bp)

<400> SEQUENCE: 22

99

-continued

<400> SEQUENCE: ZZ					
agaaaatctg gcaccacacc	gagctgtcat	gcgttgttcc	gttatgtgtc	gtcaaacgcc	60
ttcgagcgct gcccggaaca	atgcgtacta	gtataggagc	catgaggcaa	gtgaacagaa	120
gcgggctgac tggtcaaggc	gcacgatagg	gctgacgagc	gtgctgacgg	ggtgtaccgc	180
cgagtgtccg ctgcattccc	gccggattgg	gaaatcgcga	tggtcgcgca	taggcaagct	240
cgcaaatgct gtcagcttat	cttacatgaa	cacacaaaca	ctctcgcagg	cactagcctc	300
aaatggeege egteattgee	aagtcctccg	tctccgcggc	cgtggctcgc	ccggcccgct	360
ccagcgtgcg ccccatggcc	gcgctgaagc	ccgccgtcaa	ggetgeeece	gtggctgccc	420
cggctcaggc caaccagatg	attaaagaca	cgctagtttc	tataacaaaa	gatttaaaat	480
taaaaacaaa tgttgaaaat	gccaatctaa	agaactacaa	ggatgattct	tcatgtttcg	540
gagttttcga aaatgttgaa	aatgctataa	gcaatgccgt	acacgcacaa	aagatattat	600
cccttcatta tacaaaagaa	caaagagaaa	aaatcataac	tgagataaga	aaggccgcat	660
tagaaaataa agagattcta	gctacaatga	ttcttgaaga	aacacatatg	ggaagatatg	720
aagataaaat attaaagcat	gaattagtag	ctaaatacac	tcctgggaca	gaagatttaa	780
ctactactgc ttggtcagga	gataacgggc	ttacagttgt	agaaatgtct	ccatatggcg	840
ttataggtgc aataactcct	tctacgaatc	caactgaaac	tgtaatatgt	aatagtatag	900
gcatgatagc tgctggaaat	actgtggtat	ttaacggaca	tccaggcgct	aaaaatgtg	960
ttgcttttgc tgtcgaaatg	ataaataaag	ctattatttc	atgtggtggt	cctgagaatt	1020
tagtaacaac tataaaaaat	ccaactatgg	actctctaga	tgcaattatt	aagcaccctt	1080
caataaaact actttgcgga	actggagggc	caggaatggt	aaaaaccctc	ttaaattctg	1140
gtaagaaagc tataggtgct	ggtgctggaa	atccaccagt	tattgtagat	gatactgctg	1200
atatagaaaa ggctggtaag	agtatcattg	aaggetgtte	ttttgataat	aatttacctt	1260
gtattgcaga aaaagaagta	tttgtttttg	agaacgttgc	agatgattta	atatctaaca	1320
tgctaaaaaa taatgctgta	attataaatg	aagatcaagt	atcaaagtta	atagatttag	1380
tattacaaaa aaataatgaa	actcaagaat	actctataaa	taagaaatgg	gtcggaaaag	1440
atgcaaaatt attcttagat	gaaatagatg	ttgagtctcc	ttcaagtgtt	aaatgcataa	1500
tctgcgaagt aagtgcaagg	catccatttg	ttatgacaga	actcatgatg	ccaatattac	1560
caattgtaag agttaaagat	atagatgaag	ctattgaata	tgcaaaaata	gcagaacaaa	1620
atagaaaaca tagtgcctat	atttattcaa	aaaatataga	caacctaaat	aggtttgaaa	1680
gagaaatcga tactactatc	tttgtaaaga	atgctaaatc	ttttgccggt	gttggttatg	1740
aagcagaagg ctttacaact	ttcactattg	ctggatccac	tggtgaagga	ataacttctg	1800
caagaaattt tacaagacaa	agaagatgtg	tactcgccgg	ttaaatggag	gcgctcgttg	1860
atctgagcct tgccccctga	cgaacggcgg	tggatggaag	atactgctct	caagtgctga	1920
agcggtagct tagctccccg	tttcgtgctg	atcagtcttt	ttcaacacgt	aaaaagcgga	1980
ggagttttgc aattttgttg	gttgtaacga	tectecgttg	attttggcct	ctttctccat	2040
gggcgggctg ggcgtatttg	aagcggttct	ctcttctgcc	gtta		2084

<210> SEQ ID NO 23 <211> LENGTH: 1733 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE: <223> OTHER INFORMATION: 23: designer HydAl- construct (1733 bp)		:- Sequence No. 23, E: anol-Dehydrogenase DI	-
<400> SEQUENCE: 23			
agaaaatctg gcaccacacc gag	ctgtcat gcgttgttcc	gttatgtgtc gtcaaacgc	c 60
ttcgagcgct gcccggaaca atg	cgtacta gtataggagc	catgaggcaa gtgaacaga	a 120
gcgggctgac tggtcaaggc gca	cgatagg gctgacgagc	gtgctgacgg ggtgtaccg	c 180
cgagtgtccg ctgcattccc gcc	ggattgg gaaatcgcga	tggtcgcgca taggcaagc	t 240
cgcaaatgct gtcagcttat ctt	acatgaa cacacaaaca	ctctcgcagg cactagect	c 300
aaatggccgc cgtcattgcc aag	teeteeg teteegegge	cgtggctcgc ccggcccgc	t 360
ccagcgtgcg ccccatggcc gcg	ctgaagc ccgccgtcaa	ggctgccccc gtggctgcc	c 420
cggctcaggc caaccagatg aaa	ggttttg caatgctagg	tattaataag ttaggatgga	a 480
tcgaaaaaga aaggccagtt gcg	ggttcat atgatgctat	tgtacgccca ttagcagta	t 540
ctccgtgtac atcagatata cat	actgttt ttgagggagc	tcttggagat aggaagaat	a 600
tgattttagg gcatgaagct gta	ggtgaag ttgttgaagt	aggaagtgaa gtgaaggat	t 660
ttaaacctgg tgacagagtt ata	gtteett gtacaactee	agattggaga tctttggaa	g 720
ttcaagctgg ttttcaacag cac	tcaaacg gtatgctcgc	aggatggaaa ttttcaaat	t 780
tcaaggatgg agtttttggt gaa	tattttc atgtaaatga	tgcggatatg aatcttgcg	a 840
ttctacctaa agacatgcca tta	gaaaatg ctgttatgat	aacagatatg atgactacte	g 900
gatttcatgg agcagaactt gca	gatattc aaatgggttc	aagtgttgtg gtaattggca	a 960
ttggagctgt tggcttaatg gga	atagcag gtgctaaatt	acgtggagca ggtagaata	a 1020
ttggagtggg gagcaggccg att	tgtgttg aggctgcaaa	attttatgga gcaacagata	a 1080
ttctaaatta taaaaatggt cat	atagttg atcaagttat	gaaattaacg aatggaaaa	g 1140
gcgttgaccg cgtaattatg gca	ggcggtg gttctgaaac	attatcccaa gcagtatct	a 1200
tggttaaacc aggaggaata att	tctaata taaattatca	tggaagtgga gatgcttta	c 1260
taataccacg tgtagaatgg gga	tgtggaa tggctcacaa	gactataaaa ggaggtctt	t 1320
gtcctggggg acgtttgaga gca	gaaatgt taagagatat	ggtagtatat aatcgtgtt	g 1380
atctaagtaa attagttaca cat	gtatatc atggatttga	tcacatagaa gaagcactg	t 1440
tattaatgaa agacaagcca aaa	gacttaa ttaaagcagt	agttatatta taaatggagg	g 1500
cgctcgttga tctgagcctt gcc	ccctgac gaacggcggt	ggatggaaga tactgctct	c 1560
aagtgctgaa gcggtagctt agc	teeeegt ttegtgetga	tcagtctttt tcaacacgta	a 1620
aaaagcggag gagttttgca att	ttgttgg ttgtaacgat	cctccgttga ttttggcct	c 1680
tttctccatg ggcgggctgg gcg	tatttga agcggttctc	tettetgeeg tta	1733

<210> SEQ ID NO 24 <211> LENGTH: 1556 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 24, Example 24: designer Fructose-Diphosphate-Aldolase DNA construct (1556 bp)

<400> SEQUENCE: 24

agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60

-continued

caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120	
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcgggggggc	180	
gctcccggat	ggccctgatg	atgaagtcgt	cggccagcct	gaaggctgtg	tcgctggccg	240	
ctctcgccgc	gccgtcgttg	tgcgcgccgg	gcaagtacga	tgaggagctg	attaagaccg	300	
ctggcaccgt	tgcctccaag	ggccgcggta	tcctggccat	ggacgagtca	aacgccacct	360	
gcggcaaacg	cctggactcc	atcggcgtgg	agaacaccga	ggagaaccgc	cgcgcctacc	420	
gcgagctgct	ggtgaccgcc	cccggcctgg	gccagtacat	ctccggcgct	atcctgttcg	480	
aggagaccct	gtatcagtcc	accgcctccg	gcaagaagtt	cgtcgatgtg	atgaaggagc	540	
agaacatcgt	gcccggcatc	aaggtcgaca	agggcctggt	gccctgtcca	acaccaacga	600	
tgagctggtg	catgggcctg	gacggctgga	caagcgctgc	tgagtactac	aaggccggcg	660	
ctcgcttcgc	caagtggcgc	tcggtcgtct	cgatccccca	cggcccctcg	atcatgctgc	720	
cgcgactggc	ctacggcctg	gcccgctacg	ccgccatcgc	ccagaacgcc	ggtctggtgc	780	
ccattgtgga	gcccgaggtc	ctgctggacg	gtgagcacga	catcgaccgc	tgcctggagg	840	
tgcaggaggc	catctgggcc	gagaccttca	agtacatggc	cgacaacaag	gtcatgttgc	900	
agggtatcct	gctgaagccc	gccatggtca	cccccggcgc	tgactgcaag	aacaaggccg	960	
gccccgccaa	ggttgccgag	tacaccctga	agatgctggc	cgcgcgtgcc	cccccggtcc	1020	
ccggcatcat	gttcctgtcg	ggcggccagt	ccgagctgga	gtcgaccctg	aacctgaacg	1080	
ccatgaacca	gagccccaac	ccgtggcacg	tgtcgttctc	gtacgcccgc	gctctgacga	1140	
acaccgttct	gaagacctgg	caggcaagcc	cgagaacggt	ccaggcgccc	aggctcgctg	1200	
ctcaagcgcg	caaggccaac	tcggacgctc	agcagggcaa	gtacgacgcc	accaccgagg	1260	
gcaaggaggc	tgcccagggc	atgtacgaga	agggaaaagg	ctacgtctac	taataaatgg	1320	
aggegetegt	tgatctgagc	cttgccccct	gacgaacggc	ggtggatgga	agatactgct	1380	
ctcaagtgct	gaagcggtag	cttagctccc	cgtttcgtgc	tgatcagtct	ttttcaacac	1440	
gtaaaaagcg	gaggagtttt	gcaattttgt	tggttgtaac	gatcctccgt	tgattttggc	1500	
ctctttctcc	atgggcgggc	tgggcgtatt	tgaagcggtt	ctctcttctg	ccgtta	1556	
<220> FEAT <223> OTHE	TH: 1379 : DNA NISM: Artif. URE: R INFORMATIO	ON: Synthet:	ic Construct		No. 25, Exa truct (1379		
<400> SEQU	ENCE: 25						
agaaaatctg	gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60	
caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120	
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcgggggggc	180	
gctcccggat	ggcagctacc	tctctcactg	cccctccttc	tttctccggt	ctccgccgca	240	
tttctcccaa	gctcgacgct	gccgccgtct	cctcccacca	atccttcttc	caccgcgtca	300	
attcctctac	ccgtctcgtt	tcttcctctt	cttcttctca	tegeteecee	agaggtgttg	360	
ttgccatggc	tggatccgga	aagtttttcg	ttggaggaaa	ctggaagtgt	aacgggacta	420	
aggactccat	cgccaagctt	atctccgatc	tcaacagtgc	aaccttggaa	gcagatgtag	480	

ont		

atgttgttgt gtcacctcca	a tttgtctaca	tcgaccaggt	caaatcctcg	ttgacagacc	540	
gtattgacat atcaggtcag	g aactettggg	ttgggaaagg	tggagcette	actggtgaaa	600	
tcagcgtgga acagctcaa	a gaccttggct	gcaagtgggt	cattcttggg	cattccgaac	660	
ggagacatgt catcggaga	a aaagatgagt	ttatcgggaa	gaaagctgca	tatgcattga	720	
gtgagggtct tggagtgata	a gcttgtattg	gggaaaagct	agaagagagg	gaagcaggca	780	
agacgtttga tgtttgctte	c gcgcaactga	aggcgtttgc	tgatgctgtg	cctagctggg	840	
acaatatagt tgttgcata	c gagcctgtat	gggcaattgg	aactggtaaa	gttgcatctc	900	
ctcagcaagc acaagaagt	c catgtagctg	tccgcggttg	gctaaagaag	aatgtctctg	960	
aggaagttgc ttccaaaac	g agaatcatat	atggaggttc	tgtcaatgga	ggcaacagtg	1020	
cagagettge caaagaagaa	a gacattgatg	gatttcttgt	tggtggtgcc	tccttgaagg	1080	
gtcctgagtt tgcaaccat	t gtgaactcag	tcacgtcgaa	gaaagttgct	gcttgataaa	1140	
tggaggcgct cgttgatct	g agcettgeee	cctgacgaac	ggcggtggat	ggaagatact	1200	
geteteaagt getgaageg	g tagettaget	ccccgtttcg	tgctgatcag	tctttttcaa	1260	
cacgtaaaaa gcggaggag	tttgcaattt	tgttggttgt	aacgatcctc	cgttgatttt	1320	
ggcctctttc tccatgggc	g ggetgggegt	atttgaagcg	gttctctctt	ctgccgtta	1379	
<pre><211> LENGTH: 2156 <212> TYPE: DNA <213> ORGANISM: Arti: <220> FEATURE: <223> OTHER INFORMAT:</pre>	-		t- Sequence	No. 26. Exa	umple	
26: designer Pl	nosphofructo				-	
	nosphofructo				-	
26: designer Pl		se-Kinase DI	NA construct	t (2156 bp)	60	
26: designer Pl <400> SEQUENCE: 26	c atggtagggt	se-Kinase Di gcgagtgacc	NA construct	tggaagggtt	_	
26: designer Pl <400> SEQUENCE: 26 agaaaatctg gcaccacac	e atggtagggt a acttttgtcg	se-Kinase D gcgagtgacc ggggggcgctc	NA construct ccgcgcgact ccggatggta	tggaagggtt gggtgcgagt	60	
26: designer Pl <400> SEQUENCE: 26 agaaaatctg gcaccacac caaacgaccc cgccgtacg	c atggtagggt a acttttgtcg g ggttcaaacg	se-Kinase DJ gcgagtgacc ggggggcgctc accccgccgt	NA construct ccgcgcgact ccggatggta acgaactttt	tggaagggtt gggtgcgagt gtcggggggc	60 120	
26: designer PD <400> SEQUENCE: 26 agaaaatctg gcaccacac caaacgaccc cgccgtacg gaccccgcgc gacttggaag	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt	se-Kinase D gcgagtgacc gggggcgctc accccgccgt cctccgtctc	NA construct ccgcgcgact ccggatggta acgaactttt cgcggccgtg	tggaagggtt gggtgcgagt gtcggggggc gctcgcccgg	60 120 180	
26: designer Pl <400> SEQUENCE: 26 agaaaatotg goaccacaco caaacgacco cgoogtacga gaccoogogo gacttggaag gotocoggat ggoogcogt	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc	se-Kinase DJ gcgagtgacc ggggggcgctc accccgccgt cctccgtctc tgaagcccgc	NA construct ccgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct	tggaagggtt gggtgcgagt gtcggggggg gctcgccgg gccccgtgg	60 120 180 240	
26: designer PI <400> SEQUENCE: 26 agaaaatctg gcaccacac caaacgaccc cgccgtacg gaccccgcgc gacttggaa gctcccggat ggccgccgt cccgctccag cgtgcgccc	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc c cagatggaag	gcgagtgacc ggggggcgctc accccgccgt cctccgtctc tgaagcccgc	NA construct ccgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct gtttctgggg	tggaagggtt gggtgcgagt gtcggggggc gctcgccgg gcccccgtgg tcaacaaaac	60 120 180 240 300	
26: designer PI <400> SEQUENCE: 26 agaaaatctg gcaccacac caaacgaccc cgccgtacg gaccccgcgc gacttggaa gctcccggat ggccgccgt cccgctccag cgtgcgcccd ctgccccggc tcaggccaa	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc c cagatggaag c ccttcttcaa	se-Kinase DJ gcgagtgacc ggggggcgctc accccgccgt cctccgtctc tgaagcccgc cttcgatttc acgtccttcc	NA construct ccgcgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct gtttctgggg tcgtagagat	tggaagggtt gggtgcgagt gtcggggggg gctcgccgg gcccccgtgg tcaacaaaac ttccctcttc	60 120 180 240 300 360	
26: designer PI <400> SEQUENCE: 26 agaaaatctg gcaccacac caaacgaccc cgccgtacg gaccccgcgc gacttggaag gctcccggat ggccgccgt cccgctccag cgtgcgcccd ctgccccggc tcaggccaa ccaatatttc cttgtttaa	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc c cagatggaag c ccttcttcaa a gtttcagtgc	gcgagtgacc ggggggcgctc accccgccgt cctccgtctc tgaagcccgc cttcgatttc acgtccttcc tgcctcgatt	NA construct ccgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct gtttctgggg tcgtagagat cttgcaccag	tggaagggtt gggtgcgagt gtcggggggc gctcgccgg gcccccgtgg tcaacaaaac ttccctcttc aaacgactca	60 120 180 240 300 360 420	
26: designer PI <400> SEQUENCE: 26 agaaaatotg goaccacado gaccoogoogo gacttggaag gotocoogat ggoogoogo coogotocag ogtgogoood ctgocooggo toaggooaad coaatattto ottgtttaad ctgotttgaa attgaagaad	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc c cagatggaag c ccttcttcaa a gtttcagtgc c ggattcaaac	se-Kinase DJ gcgagtgacc ggggggcgctc accccgccgt tgaagcccgc cttcgattc acgtccttcc tgcctcgaat cagaggaaga	NA construct ccgcgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct gtttctgggg tcgtagagat cttgcaccag cgatgggttt	tggaagggtt gggtgcgagt gtcggggggg gctcgccgg gcccccgtgg tcaacaaaac ttccctcttc aaacgactca gtcctagaag	60 120 180 240 300 360 420 480	
26: designer PI <400> SEQUENCE: 26 agaaaatctg gcaccacac caaacgaccc cgccgtacg gaccccgcgc gacttggaag gctcccggat ggccgccgc ccgctccag cgtgcgcccd ctgccccggc tcaggccaa ccaatatttc cttgtttaa ctgctttgaa attgaagaa tcagagctca gtgctctga	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc c cagatggaag c ccttcttcaa a gtttcagtgc c ggattcaaac a tttctccctg	gcgagtgacc ggggggcgctc accccgccgt cctccgtctc tgaagcccgc cttcgattc acgtccttcc tgcctcgaat cagaggaaga atttaccgtc	NA construct ccgcgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct gtttctgggg tcgtagagat cttgcaccag cgatgggttt atatccaaat	tggaagggtt gggtgcgagt gtcggggggc gctcgccgg gcccccgtgg tcaacaaaac ttccctcttc aaacgactca gtcctagaag ccattgaaag	60 120 180 240 300 360 420 480 540	
26: designer PI <400> SEQUENCE: 26 agaaaatotg goaccacado gaccoogaco ogoogtacg gaccoogac gacttggaaa gotocogga ggoogoogt coogotocag ogtgogood ctgocooggo toaggooaa coaatattto ottgtttaaa toagagotoa gtgototgaa acgttoctoa ottgaccaa	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc c cagatggaag c ccttcttcaa a gtttcagtgc c ggattcaaac a tttctccctg c gttaagcgaa	se-Kinase DJ gcgagtgacc ggggggcgctc accccgccgt cctccgtctc tgaagcccgc cttcgatttc acgtccttcc tgcctcgaat cagaggaaga atttaccgtc ctttgtcag	NA construct ccgcgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct gtttctgggg tcgtagagat cttgcaccag cgatgggttt atatccaaat ttccgaagat	tggaagggtt gggtgcgagt gtcggggggg gctcgcccgg gcccccgtgg tcaacaaaac ttccctcttc aaacgactca gtcctagaag ccattgaaag	60 120 180 240 300 360 420 480 540 600	
26: designer PI <400> SEQUENCE: 26 agaaaatctg gcaccacac caaacgaccc cgccgtacg gaccccgcgc gacttggaag gctcccggat ggccgcccd ccgctccag cgtgcgcccd ctgccccgc tcaggccaa ccaatatttc cttgtttaa tcagagctca gtgctctga aagtcctca cttgaccaa aaagccaagc atatgccat	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc c cagatggaag c ccttcttcaa a gtttcagtgc c ggattcaaac a tttctccctg c gttaagcgaa g ggaagtaagc	gegagtgace ggggggegete acceegeegt eeteegtete tgaageeege ettegattte acgteettee tgeetegat eagaggaaga atttacegte etttgteag gaggagtaca	NA construct ccgcgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct gtttctgggg tcgtagagat cttgcaccag cgatgggttt atatccaaat ttccgaagat cttaggcga	tggaagggtt gggtgggggg gctcgggggg gctcgccgg gcccccgtgg tcaacaaaac ttccctctc aaacgactca gtcctagaag gtggttgcgc gcagggcctc	60 120 180 240 300 360 420 480 540 600 660	
26: designer PI <400> SEQUENCE: 26 agaaaatotg goaccacaca gaccoogoo gacttggaaa gotocogga ggoogoogo coogotocag ogtgogooo ctgocoogo toaggooaa coaatatto ottgttaaa toagagotoa gtgototgaa aagtcotca ottgaccaaa aaagcoaago atatgocata	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc c cagatggaag c ccttcttcaa a gtttcagtgc c ggattcaaac a tttctccctg c gttaagcgaa g ggaagtaagc a tcagatgaag	se-Kinase DJ gcgagtgacc ggggggcgctc accccgccgt cctccgtctc tgaagcccgc cttcgatttc acgtccttcc tgcctcgaat cagaggaaga atttaccgtc ctttgtcag gaggagtaca taaaagcttg	NA construct ccgcgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct gtttctgggg tcgtagagat cttgcaccag cgatgggttt atatccaaat ttccgaagat cttaggcga catagtgact	t (2156 bp) tggaagggtt gggtgcgagt gtcggggggg gcccccgtgg tcaacaaaac ttccctcttc aaacgactca gtcctagaag gtggttgcgc gcagggcctc tgtggggggct	60 120 180 240 300 360 420 480 540 600 660 720 780 840	
26: designer PI <400> SEQUENCE: 26 agaaaatctg gcaccacac caaacgaccc cgccgtacg gaccccgcgc gacttggaa gctcccggat ggccgccc ccgctccag cgtgcgccc ctgccccgc tcaggccaa ccaatattc cttgtttaa tcagagctca gtgctctga aaagccaag atatgccat aaaatattg agtccaga gagaaagag gtacttcag	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc c cagatggaag c ccttcttcaa a gtttcagtgc c ggattcaaac a tttctccctg ggaagtaagc a tcagatgaag c gttatacggg	se-Kinase DJ gcgagtgacc gggggcgctc accccgccgt tgaagcccgc cttcgattc tgaagcccgc tgcctcgattc tgcctcgat cagaggagaga atttaccgtc ctttgtcag gaggagtaca taaaagcttg aattgtatg	NA construct ccgcgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct gtttctgggg tcgtagagat cttgcaccag cgatgggttt atatccaaat ttccgaagat ctttaggcga catagtgact tggattgaac	tggaagggtt gggtgcgagt gtcggggggc gctcgccgg gcccccgtgg tcaacaaaac ttccctctc aaacgactca gtcgtggaggc gcagggcctc tgtgggggct aatatgtatg	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900	
26: designer PI <400> SEQUENCE: 26 agaaaatctg gcaccacac caaacgaccc cgccgtacg gaccccgcgc gacttggaad gctcccggat ggccgccgt cccgctccag cgtgcgcccd ctgccccggc tcaggccad ccaatatttc cttgtttaa ctgctttgaa attgaagaa tcaggctca gtgctctga aaagccaagc atatgccata gagaaagagt gtacttcag tgtgccctgg aatcaatac gtgttaataa cattccggu	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc c cagatggaag c ccttcttcaa a gttcagtgc c ggattcaaac a tttctccctg g ggaagtaagc a tcagatgaag c gttatacggg c attcagggag a gttaacgata	gegagtgace ggggggegete acccegeegt ceteegtete tgaageeege ettegattee acgteettee tgeetegat aattacegte etttgteag gaggagtaca taaaagettg aaattgtatg gatatagagg tteataaaeg	NA construct ccgcgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct gttctgggg tcgtagagat cttgcaccag cgatgggttt atatccaaat ttccgaagat ctttaggcga catagtgact tggattgaac ctttactcc cggtggcact	tggaagggtt gggtgcgagt gtcggggggg gctcgccgg gcccccgtgg tcaacaaaac ttccctcttc aaacgactca gtcgtggggctt gcagggcctc tgtggggggct aatatgtatg aaaaacacta ttccttcaaa	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960	
26: designer PI <400> SEQUENCE: 26 agaaaatctg gcaccacac gaccccgcgc gacttggaag gctcccggat ggccgccgt cccgctccag cgtgcgccc ctgcctcggc tcaggccaa ctaatttc cttgtttaa tcagagctca gtgctctga aaagccaag attgcacaa gagaaagag gtacttcag tgtgcctgg aatcaatac gggtaataa cattctcgg	c atggtagggt a acttttgtcg g ggttcaaacg c attgccaagt c atggccgcgc c cagatggaag c ccttcttcaa a gttcagtgc c ggattcaaac a tttctccctg g ggaagtaagc a tcagatgaag c gttatacggg c attcagggag a gttaacgata	gegagtgace ggggggegete acccegeegt ceteegtete tgaageeege ettegattee acgteettee tgeetegat aattacegte etttgteag gaggagtaca taaaagettg aaattgtatg gatatagagg tteataaaeg	NA construct ccgcgcgcgact ccggatggta acgaactttt cgcggccgtg cgtcaaggct gttctgggg tcgtagagat cttgcaccag cgatgggttt atatccaaat ttccgaagat ctttaggcga catagtgact tggattgaac ctttactcc cggtggcact	tggaagggtt gggtgcgagt gtcggggggg gctcgccgg gcccccgtgg tcaacaaaac ttccctcttc aaacgactca gtcgtggggctt gcagggcctc tgtggggggct aatatgtatg aaaaacacta ttccttcaaa	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900	

-continued

aagttgagag gcgtggtctt caagtggcgg tttctggcat tcct	aagaca attgataatg 1140
atattgetgt gattgacaaa teatttgget ttgataegge ggtt	gaggaa gcacaacgag 1200
ctattaatgc tgcacatgta gaggtcgaga gcgtggaaaa tgga	gttggt atcgttaaac 1260
tcatgggcag atacagtggt tttattgcca tgattgcaac ttta	gcgaat cgtgatgtgg 1320
attgttgctt gattccagag tctccatttt ttcttgaagg aaag	ggtggg ctctttgagt 1380
ttattgaaga acgactcaaa gagaataggc acatggttat tgtg	atagct gaaggagctg 1440
gacaggatta tgttgctcaa agcatgcgtg catctgaaac taaa	gacgcc tcaggaaata 1500
gactettget tgatgttggt etatggttga etcaacagat aaag	gatcac tttacaaatg 1560
ttcggaaaat gatgataaat atgaagtaca tagacccaac gtat	atgata agagcaatac 1620
cgagtaacgc atcagacaat gtctattgca ctcttcttgc ccaa	agtgca gttcatggag 1680
caatggetgg gtaeteaggt tteaetgtag gaeeagttaa eagt	agacat gcttacatcc 1740
caatttetgt gaeggaagtg acaaataegg tgaagttaae tgat	aggatg tgggctagac 1800
teettgeate gacaaateaa eegagtttet tgaetggtga agga	gcattg cagaatgtga 1860
tcgacatgga aactcaagaa aagatcgata acatgaagat ctct	tctatc taataaatgg 1920
aggegetegt tgatetgage ettgeeeeet gaegaaegge ggtg	gatgga agatactgct 1980
ctcaagtget gaageggtag ettageteee egtteegtge tgat	cagtct ttttcaacac 2040
gtaaaaagog gaggagtttt gcaattttgt tggttgtaac gato	ctccgt tgattttggc 2100
ctctttctcc atgggcgggc tgggcgtatt tgaagcggtt ctct	cttctg ccgtta 2156
<pre><210> SEQ ID NO 27 <211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp)</pre>	
<pre><211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S</pre>	
<211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp)	ynthase-iRNA DNA
<211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp) <400> SEQUENCE: 27	ynthase-iRNA DNA cgcgcg acttggagct 60
<211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp) <400> SEQUENCE: 27 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg acco	ynthase-iRNA DNA cgcgcg acttggagct 60 tgagct ggagaccgag 120
<211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp) <400> SEQUENCE: 27 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg acco cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct atto	ynthase-iRNA DNA cgcgcg acttggagct 60 tgagct ggagaccgag 120 ttgaag gttcaaggga 180
<pre><211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se</pre>	ynthase-iRNA DNA cgcgcgg acttggagct 60 tgagct ggagaccgag 120 ttgaag gttcaaggga 180 tcccgg ccccgggctc 240
<pre><211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp) <400> SEQUENCE: 27 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg acco cgatggcccc gggttgttg gggcgtccgc ctctcgcgct atto gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggc agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgo </pre>	ynthase-iRNA DNA cgcgcg acttggagct 60 tgagct ggagaccgag 120 ttgaag gttcaaggga 180 tcccgg ccccgggctc 240 gccagc cggctcacca 300
<pre><211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp) <400> SEQUENCE: 27 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg acco cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct atto gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggc agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgc ttgtgcgcgc attagggctt cgggtcgcaa gcaagacgat acat</pre>	ynthase-iRNA DNA cggcgcg acttggagct 60 tgagct ggagaccgag 120 ttgaag gttcaaggga 180 tcccgg ccccgggctc 240 gccagc cggctcacca 300 ttctgc agaaactcct 360
<pre><211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp) <400> SEQUENCE: 27 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg acco cgatggcccc gggttgttg gggcgtccgc ctctcgcgct atto gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggc agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgo ttgtgcgcgc attagggctt cgggtcgcaa gcaagacgat acat ccgccaccag cggcttgcgg gggtccacct ccaggcccag acco </pre>	ynthase-iRNA DNA cgcgcgcg acttggagct 60 tgagct ggagaccgag 120 ttgaag gttcaaggga 180 ttcccgg ccccgggctc 240 gccagc cggctcacca 300 ttctgc agaaactcct 360 ggcagc agcgcgtcag 420
<pre><211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp) <400> SEQUENCE: 27 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg acco cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct atto gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggc agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgc ttgtgcgcgc attagggctt cgggtcgcaa gcaagacgat acat ccgccaccag cggcttgcgg gggtccacct ccaggcccag acco tgcacagcgc cttcccggcg gggcggtcgg cgtcgaagtt ggct</pre>	ynthase-iRNA DNA cggcgcg acttggagct 60 ttgagct ggagaccgag 120 ttgaag gttcaaggga 180 ttcccgg ccccgggctc 240 gccagc cggctcacca 300 ttctgc agaaactcct 360 ggcagc agcgcgtcag 420 ttggaac ttggagcgca 480
<pre><211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp) <400> SEQUENCE: 27 agaaaatotg gcaccacacc tatatggtag ggtgcgagtg acco cgatggcccc gggttgttg gggcgtccgc ctctcgcgct atto gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggc agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgo ttgtgcgcgc attagggctt cgggtcgcaa gcaagacgat acat ccgccaccag cggcttgcgg gggtccacct ccaggcccag acco tgcacagcgc cttcccggcg gggcggtcgg cgtcgaagtt ggct tggccagggt ccactcctca cagtcaatgc cgttcaggat gcct tggccgggtt ccactcctca cagtcaatgc cgtcaggat gcct</pre>	ynthase-iRNA DNA cgcgcgcg acttggagct 60 ttgagct ggagaccgag 120 ttgaag gttcaaggga 180 ttcccgg ccccgggctc 240 gccagc cggctcacca 300 ttctgc agaaactcct 360 ggcagc agcgcgtcag 420 ttggaac ttggagcgca 480 ccttggg cacctcgatg 540
<pre><211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp) <400> SEQUENCE: 27 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg accc cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct attc gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggc agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgc ttgtgcgcgc attagggctt cgggtcgcaa gcaagacgat acat ccgccaccag cggcttgcgg gggtccacct ccaggcccag accc tgcacagcgc cttcccggcg gggcggtcgg cgtcgaagtt ggct tggccgggtt ccactcctca cagtcaatgc cgttcaggat gcc gctcggggtt ccactcctca cagtcaatgc cgtccaggat gcc gctcggggtg cgcgaaggtg gatctcgccg tcccagcggt agcc gctcggggcg cgcgaaggtg gatctcgccg tcccagcggt agcc</pre>	ynthase-iRNA DNA cgcgcgcg acttggagct 60 ttgagct ggagaccgag 120 ttgaag gttcaaggga 180 tcccgg ccccgggctc 240 gccagc cggctcacca 300 ttctgc agaaactcct 360 ggcagc agcgcgtcag 420 tggaac ttggagcgca 480 cttggg cacctcgatg 540 cctcgta gaacggcagc 600
<pre><211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp) <400> SEQUENCE: 27 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg acco cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct atto gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggc agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgc ttgtgcgcgc attagggctt cgggtcgca gcaagacgat acat ccgccaccag cggcttgcgg gggccacct ccaggcccag acco tgcacagcgc cttcccggcg gggcggtcgg cgtcgaagtt ggct tggccgggtt ccactcctca cagtcaatgc cgttcaggat gccg gctcggggtg cgcgaaggtg gatctcgccg tcccagcggt acco tcgcattcgt gcttgaggcc ctcaatctgg tcccagcgg agcc tcgcattcgt gcttgaggcc ctcaatctgg tcctgggca gca</pre>	ynthase-iRNA DNA cgcgcgcg acttggagct 60 ttgagct ggagaccgag 120 ttgaag gttcaaggga 180 ttcccgg ccccgggctc 240 gccagc cggctcacca 300 ttcttgc agaaactcct 360 ggcagc agcgcgtcag 420 ttggaac ttggagcgca 480 cttggg cacctcgatg 540 cctcgta gaacggcagc 600 ccttgcc ccctgacgaa 660
<pre><211> LENGTH: 860 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Se 27: designer Nial-promoter-linked Starch-S construct (860 bp) <400> SEQUENCE: 27 agaaaatctg gcaccacacc tatatggtag ggtgcgagtg acco cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct atto gcgcatgaaa atgcattcgc ttccatagga cgctgcattg tggc agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgc ttgtgcgcgc attagggctt cgggtcgcaa gcaagacgat acat ccgccaccag cggcttgcgg gggcggtcgg cgtcgaagtt ggcc tgcacagcgc cttcccggcg gggcggtcgg cgtcgaagtt ggcc tggccgggtt ccactcctca cagtcaatgc cgttcaggat gcc gctcggggcg cgcgaaggtg gatctcgccg tcccagcggt agco tcgcattcgt gcttgaggcc ctcaatctgg tcctgggca gca atgaccgtca cgaagtgtaa atggaggcgc tcgttgatct gagca atgaccgtca cgaagtgtaa atggaggcg tcgttgatct gagca atgaccgtca cgaagtgtaa atggaggtg tcgttgatca atgaccgtca cgaagtgtaa atggaggcg tcgttgatca atgaccgtca cgaagtgtaa atggaggg atgacagag tcgttgatca atgaccgtca cgaagtgtaa atggaggg atgacagaggtga atgacagacaga atgacagacaga atgacagacagacaga atgacagacagacagacaga atgacagacagacaga atgacagacaga atgacagacagacagacaga atgacagacagacagacaga atgacagacagacagacagaca atgacagacagacagaca atgacagacagacacacacacacacacacacacacacaca</pre>	ynthase-iRNA DNA cgcgcgcg acttggagct 60 tgagct ggagaccgag 120 ttgaag gttcaaggga 180 tcccgg ccccgggctc 240 gccagc cggctcacca 300 ttctgc agaaactcct 360 ggcagc agcgcgtcag 420 tggaac ttggagcgca 480 tcttggg cacctcgatg 540 cctcgta gaacggcagc 600 ccttgcc ccctgacgaa 660 ccttgcc tcccgttc 720

qqttctctct tctqccqtta 860 <210> SEQ ID NO 28 <211> LENGTH: 1328 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 28, Example 28: designer HydAl-promoter-linked Starch-Synthase-iRNA DNA construct (1328 bp) <400> SEQUENCE: 28 agaaaatetg geaceacaee gagetgteat gegttgttee gttatgtgte gteaaaegee 60 ttcqaqcqct qcccqqaaca atqcqtacta qtataqqaqc catqaqqcaa qtqaacaqaa 120 gcgggctgac tggtcaaggc gcacgatagg gctgacgagc gtgctgacgg ggtgtaccgc 180 cgagtgtccg ctgcattccc gccggattgg gaaatcgcga tggtcgcgca taggcaagct 240 cqcaaatqct qtcaqcttat cttacatqaa cacacaaaca ctctcqcaqq cactaqcctc 300 aaatgaagag cttcatgcgg agggatgcgc tcggcgcggg gctccgcggt gcagccagca 360 caaagcccgt ctcaagggtc gccagcgtga ggcctgcgcc taccgcctac cgcactgcct 420 gccaagttgc gaaggtggat gaaatggtgt cggtggatga ggagcttact cgtctccgca 480 aggagaacga geteetgege geceaactgg egetgtacea geagaaceag eageegteeg 540 tgggtgccgc tgccgttgcc ccgcctgctg ccgccacgaa ggtgctggag aagccggcgc 600 cgtaagtaac ctaacggtga gcagcatgca atattttagc gtcgatactc ggaaactata 660 ggagcgcatc agccgaccga tgttcgcgtt gctgtcgcag gcccaaccgt gccaccgccg 720 tggtgtgcaa ggcgcagaag gcggccaggc cgccgctgcc gctgctctgg ccataagtaa 780 cctaacggcg ccggcttctc cagcaccttc gtggcggcag caggcggggc aacggcagcg 840 gcacccacgg acggetgetg gttetgetgg tacagegeea gttgggegeg caggageteg 900 tteteettge ggagaegagt aageteetea teeaeegaea eeattteate eaeettegea 960 acttggcagg cagtgcggta ggcggtaggc gcaggcctca cgctggcgac ccttgagacg 1020 qqctttqtqc tqqctqcacc qcqqaqcccc qcqccqaqcq catccctccq catqaaqctc 1080 ttcattaaat ggaggcgctc gttgatctga gccttgcccc ctgacgaacg gcggtggatg 1140 gaagatactg ctctcaagtg ctgaagcggt agcttagctc cccgtttcgt gctgatcagt 1200 ctttttcaac acgtaaaaag cggaggagtt ttgcaatttt gttggttgta acgatcctcc 1260 gttgattttg gcctctttct ccatgggcgg gctgggcgta tttgaagcgg ttctctcttc 1320 taccatta 1328 <210> SEO ID NO 29 <211> LENGTH: 1889 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 29, Example 29: designer Amylase DNA construct (1889 bp) <400> SEQUENCE: 29 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60 caaacgaccc cgccgtacga acttttgtcg ggggggggcgctc ccggatggta gggtgcgagt 120 gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc 180

-continued

-continued	
gctcccggct cgagcatatg gccgccgtca ttgccaagtc ctccgtctcc gcggccgtgg	g 240
ctcgcccggc ccgctccagc gtgcgcccca tggccgcgct gaagcccgcc gtcaaggctg	300
cccccgtggc tgccccggct caggccaacc agatggcgaa caaacacatg tccctttctc	360
tetteategt ceteettgge etetegtgea gettggeete egggeaagte etgttteagg	g 420
gttttaactg ggagtcgtgg aagcacaatg gcgggtggta caactteetg atgggeaagg	g 480
tggacgacat cgccgccgct ggcgtcacgc acgtgtgggct ccccccggcg tcgcagtccg	g 540
tegeegagea agggtacatg eegggeegge tetaegaeet ggaegeetee aagtaeggea	600
acaaggegea geteaagtee eteateggeg egeteeaegg caagggegte aaggeeateg	660
ccgacatcgt catcaaccac cgcacggcgg agcgcaagga cggccggggc atctactgca	720
tettegaggg eggeaceeeg gaegegeee tegaetgggg ecceeatg atetgeegeg	g 780
acgaccggcc ctacgccgac ggcaccggca acccggacac cggcgccgac ttcggggccg	g 840
cgccggacat cgaccacctc aacccgcgcg tccagaagga gctcgtcgag tggctcaact	900
ggetcaggac cgaegtegge ttegaegget ggegettega ettegeeaag ggetaeteeg	960
cggacgtggc caagatctac gtcgaccgct ccgagcccag cttcgccgtc gccgagatat	1020
ggacgteget ggegtaegge ggggaeggea ageegaaeet caaceaggae eegeaeegge	1080
aggagetggt gaactgggtg aacaaggtgg geggeteegg eccegeeace acgttegaet	1140
tcaccaccaa gggcatcete aaegtggeeg tggagggega getgtggege etgegeggea	1200
ccgacggcaa ggcgccgggc atgatcgggt ggtggccggc caaggcggtg accttcgtcg	1260
acaaccacga caccggetee acgeageaca tgtggeeett eeetteegae agggteatge	: 1320
agggatatgc ctacateetc aegeaceeag ggaceeeatg catettetae gateattee	1380
tcgactgggg cttgaaggag gagatcgatc gtctggtgtc aatcaggacc cgacagggga	1440
tacacagtga gagcaagctg cagatcatgg aggccgacgc cgacctttac cttgccgaga	1500
tcgacggcaa ggtcatcgtc aagctcgggc caagatacga tgtcggacac ctcattcctg	1560
aaggottcaa ggtggtcgcg catggcaatg actatgccgt atgggagaaa gtataaggot	1620
gctgccccgg ctgctgctaa tctagataaa tggaggcgct cgttgatctg agccttgccc	1680
cctgacgaac ggcggtggat ggaagatact gctctcaagt gctgaagcgg tagcttagct	1740
ccccgtttcg tgctgatcag tctttttcaa cacgtaaaaa gcggaggagt tttgcaattt	1800
tgttggttgt aacgateete egttgatttt ggeetettte teeatgggeg ggetgggegt	1860
atttgaageg gttetetett etgeegtta	1889
<210> SEQ ID NO 30 <211> LENGTH: 3089 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 30, Ex 30: designer Starch-Phosphorylase DNA construct (3089 bp)	ample
<400> SEQUENCE: 30	
agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt	60
caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccggatggta gggtgcgagt	120
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcgggggg	180
geteeeggat ggeegeegte attgeeaagt eeteegtete egeggeegtg getegeeegg	g 240

-continued

	-continued	
cccgctccag cgtgcgcccc atggccgcgc	tgaageeege egteaagget geeeeegtgg	300
ctgccccggc tcaggccaac cagatggcgg	g atgcgaaagc aaacggaaag aatgaggcgg	360
ccaaactggc gaaaattccg gcggctgcga	a atccattggc taatgaacca tcggcgattg	420
catcaaatat aagttaccac gtgcagtaca	a gtcctcattt ctcgccgact aagttcgagc	480
cggagcaagc tttctttgcc acggcggagg	g ttgtccgcga tcgtcttatt caacaatgga	540
atgagacata ccaccatttt aataaagtto	g atccgaagca aacatactac ctatcaatgg	600
aatttettea aggaaggaet ttgaetaate	g caattggcag tttggacatt cagaatgcat	660
atgetgatge tttaaataat ttggggeate	g teettgagga gatagetgaa caggaaaaag	720
atgetgeact aggaaatggt gggetgggea	a ggctagcttc atgcttctta gactccatgg	780
caacattgaa tttgcctgca tggggttatg	g gtttgagata ccggtatggg ctgttcaagc	840
agaagatcac caagcagggt caagaagaag	g ttgctgaaga ttggcttgag aaatttagtc	900
cttgggaagt tgtcaggcat gatgtggtat	: ttccggtcag attttttggg agtgttatgg	960
ttaatccaaa tggaacgaga aaatgggtto	g ggggtgaagt tgtccaagcc gtagcttatg	1020
atataccaat tccagggtac aaaaccaaga	a acactatcag tcttcgtctc tgggacgcta	1080
aagctagcgc tgaggatttc aatttatttc	e agtttaatga tggacaatac gaatctgctg	1140
cacagettea ttetegaget caacagattt	gtgetgtget ctaceceggg gattetaetg	1200
aagaagggaa gcttttaagg ctgaaacaac	aattetttet etgeagtget teactteagg	1260
atatgattct tagattcaag gagaggaaaa	a gtggaaggca gtggtctgaa tttcccagca	1320
aggtagctgt acaactgaat gatactcato	caacacttgc aattccagag ttgatgcgat	1380
tgctaatgga tgaggaagga cttggatggo	y atgaagcatg ggatataaca acaaggactg	1440
ttgcttatac caatcacaca gtacttcctc	g aagcacttga gaagtggtca caagcagtaa	1500
tgtggaaget tetteetege catatggaaa	a taattgaaga gattgacaag agattcattg	1560
caatggteeg eteeaaagg agtgaeette	g agagtaagat teecageatg tgeatettgg	1620
ataataatcc caaaaagccg gttgttagga	a tggcaaactt atgtgtagta tctgcgcata	1680
cggtaaatgg tgttgctcag ttgcacagto	g atatettaaa ggeegaettg ttegetgaet	1740
atgtttetet atggeeaaac aaacteeaaa	a ataaaactaa tggcattact cctcgtcgat	1800
ggeteeggtt ttgeaateet gageteagea	a aaattatcac aaaatggtta aaaaccgatc	1860
agtgggttac gaacettgae etgettgtag	g gtettegtea gtttgetgae aacaeagaae	1920
tccaagctga atgggaatct gctaagatgg	g ccagtaagaa acatttggca gactacatat	1980
ggcgagtaac cggtgtaacg attgatccta	a atagcttatt tgacatacaa gtcaagcgca	2040
ttcatgaata caagagacaa ctgctaaata	a ttttgggcgc aatctacaga tacaagaagt	2100
tgaaggagat gagccctcag gagcggaaga	a aaactactcc acgcaccatt atgtttggag	2160
ggaaagcatt tgcaacatat acaaacgcaa	a aaagaatagt aaagttggtt aatgatgttg	2220
gtgaagtogt caacacogat ootgaggtoa	a atagttattt gaaggtggta tttgttccaa	2280
attacaatgt ctctgttgcg gagttgctta	a ttccaggaag tgagctatct cagcatatta	2340
gcacagcagg catggaggca agtggcacaa	a gcaacatgaa attttctcta aatggttgcc	2400
tcattatagg aacattggat ggagctaatg	g tggaaatcag gcaggagata ggagaggaga	2460
atttettet etttggtgea ggageagaee	aagteeetaa getgeggaag gaaagagaag	2520
atggattgtt caaaccagat cctcggttto	g aagaggccaa gcaatttata agaagtggag	2580

-continued

catttggaag ctatgactac aaccegette ttgatteeet ggaggggaac actggttatg 2640 gtcgtggtga ttattttcta gttggttatg acttcccaag ttacttagag gctcaggaca 2700 gagttgacca agcttacaag gaccggaaga agtggctgaa gatgtctata ttaagtacag 2760 ctggcagtgg gaaattcagc agtgatcgca caattgcaca gtatgctaag gaaatctgga 2820 acataacaga atgccgtaca tcatgataaa tggaggcgct cgttgatctg agccttgccc 2880 2940 3000 ccccgtttcg tgctgatcag tctttttcaa cacgtaaaaa gcggaggagt tttgcaattt tgttggttgt aacgateete egttgatttt ggeetettte teeatgggeg ggetgggegt 3060 atttqaaqcq qttctctctt ctqccqtta 3089 <210> SEO ID NO 31 <211> LENGTH: 1949 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 31, Example 31: designer Hexose-Kinase DNA construct (1949 bp) <400> SEQUENCE: 31 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60 caaacgaccc cgccgtacga acttttgtcg ggggggggcgctc ccggatggta gggtgcgagt 120 gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc 180 geteeeggat ggeegeegte attgeeaagt ceteegtete egeggeegtg getegeeegg 240 cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg 300 ctgccccggc tcaggccaac cagatggcta taacaccccg ccgaaaacct tcccggaagg 360 gatcaatggc tgatatgccg aaggatgtgc ttgaccagct caagacgctg gaagagctct 420 tcacagttga ccaggagaag ctgaagcaga tcgttgagca tttcatcaag gagttacaga 480 agggcctcag tgtcgaaggc ggaaacattc ccatgaacgt gacttgggtt ctgggatttc 540 ccactggcca tgagaaaggt acatttctgg ctctggacat gggggggcacc aacctgcgcg 600 totgogaaat tgagototoo gaagagaagg gogagtttga tgtoacacag tocaagtato 660 gaatccccga agagctcaag agcggtgaat catcagaact atgggaatat attgccgact 720 780 gtgtacagca gttcatagaa tactaccatg acggttgcac ggctttgcca gacctgccgc tqqqctttac cttttcqtac cctqctactc aaqaatatqt tqaccacqqt qtcctacaqa 840 900 gatggaccaa gggttttgat attgacggcg tcgagggcaa agacgtcgtc ccaatgttag aagaagettt ggetaagaag gttaaaaatt cagetettte eccatttte tttggetata 960 tggtgctaat tactttacag ggtctcccca ttaaagttgc cgctctagta aacgacacga 1020 ctggcacact tattgcttcc gcctacactg acccagagat gaaaatcggc tgtatcttcg 1080 gcacaggcgt caacgccgcc tacatggaaa atgcgggctc tatccctaaa atagcccact 1140 acaatttacc tcccgacacc ccagtcgcta tcaactgcga atacggcgcc ttcgacaacg 1200 aactcattgt cctcccccga acgcagtatg acgacgtatc ccaactacgt aaaccatact 1260 ccctggactc ctccttccta gccttcatcg aagaagatcc cttcgagaac ctgtcagaaa 1320 cgcgagatct cttcgaacgc accctgggga tctacgcatt gccctcggag ctagaattct 1380 gcagacgeet ggeggaattg ateggeacae gtgeegeacg ceteteeget tgeggtgttg 1440

-continued

cggccatctg caagaagaaa aatatcaccc attgccatgt cggagcggac gggtcggtgt 1500 tcgagaagta cccgcatttc aaggccaggg gcgccagagc cctgcgggag atccttgact 1560 ggccagatag tgaaccggat cgggttgtga tgagcggagc ggaggatggg tctggcgttg 1620 gtgcggcgct tattgcggct ttgacgcttg agagggttaa acaagcttct tgggaatgga 1680 agtacategg aageggtetg tettaataaa tggaggeget egttgatetg ageettgeee 1740 1800 ccccgtttcg tgctgatcag tctttttcaa cacgtaaaaa gcggaggagt tttgcaattt 1860 tgttggttgt aacgateete egttgatttt ggeetettte teeatgggeg ggetgggegt 1920 1949 atttgaageg gttetetett etgeegtta

<210> SEQ ID NO 32 <211> LENGTH: 2249 <212> TYPE: DNA

<213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 32, Example 32: designer Phosphoglucomutase DNA construct (2249 bp)

<400> SEQUENCE: 32

agaaaatctg gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60
caaacgaccc cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120
gaccccgcgc gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcgggggggc	180
geteeeggat ggeegeegte	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240
cccgctccag cgtgcgcccc	atggccgcgc	tgaageeege	cgtcaaggct	gcccccgtgg	300
ctgccccggc tcaggccaac	cagatgtccg	atttctccgt	ccagaccatt	gccaccacgg	360
ccttcacaga ccaaaagcct	ggaacctctg	gtctcagaaa	gaaagttact	gtgtttcaac	420
agcctcacta cactgaaaac	ttcattcagg	ctattctcga	tgccattccg	gaaggtgccc	480
aaggtgccac tcttgttgta	ggaggtgatg	gccgtttcta	caacgacaag	gtcatcaact	540
tgatcgccaa aatcgcctcg	gccaacggag	tttccaagtt	gattttgggt	caagacggga	600
ttctttccac tccagcaact	tcgcatgtaa	tcaggatcag	gggtgcaact	ggaggaatta	660
ttctcactgc ttcacacaac	cccggaggcc	ccaaaaacga	tttgggtatt	aagtacaact	720
tgggaaacgg tgcaccagct	ccagaatcgg	ttaccaacaa	gatctatgat	gtctccaagg	780
aattgacttc gtacaagctc	attgatttac	ccgacattga	tttgtccaaa	acccagaccg	840
tgcaattggg ccctcttgaa	gtggaaatca	ttgactccac	ctctgattac	gtagccatgt	900
tgaaggatat ctttgacttc	cccttgatca	agtcgttcct	cgagactgcc	actaaggagc	960
agggattcaa ggttttattt	gattcgctca	atggtgtcac	tggcccctac	ggctacaaga	1020
tcttcgttga agaattagga	ttgcctctta	actcaatcca	aaattaccac	ccattgcctg	1080
actttggtgg tttacaccca	gatccaaact	tgacctatgc	tcatactttg	gtcgagaggg	1140
tcgataagga gaatattgcc	tttggtgctg	catctgatgg	tgacggtgac	agaaacatga	1200
tctacggtgc tggtaccttt	gtttcgcctg	gtgactctgt	agccatcatc	tcggaatacg	1260
ccgattccat cccttacttc	aagaagcaag	gtgtctacgg	tttggccaga	tccatgccta	1320
cctctggagc catcgatttg	gtagcaaagg	ctaaaggatt	gaatgtttac	gaagtgccaa	1380
ccggttggaa gttcttctgc	aaccttttcg	acgctgacaa	gttgagtatc	tgtggtgaag	1440

	20	nt	ירר	וור	00
_	-	ידדר	· 十十	тu	eu

agtcgtttgg aacaggctcc aaccacatca gagaaaagga cggcctttgg gctgtagttg 1500 cctggttgaa cgtgctagca gattacaacg tcaagaatcc agaatccaag acatctattt 1560 ctgtagtgca gaactcgttt tggaagaaat acggaagaac tttcttcact agatatgact 1620 acgaaaacgt atcgtctgaa ggtgctgccg agctcatcaa cttgttgtct tctattgttg 1680 actotaagaa accaggaagt agottagotg atggotacgt cgtcaaggaa gotgotaact 1740 tctcqtacac cqatttqqac qqctctqttt cqtccaacca aqqtttqttc atcaaqtttq 1800 1860 aaageggett gagatteata gtaagattgt etggtaetgg ateateeggt getaeagtea 1920 gattatatet egaaaageae tetgeegaeg aateeaceta tggettagge gtagaceagt 1980 acttagttga tgacatcaag tttgtcttgg acttgttgaa gttcaagcag ttcttgggaa 2040 aggatgaacc agatgttcgt acctagtaaa tggaggcgct cgttgatctg agccttgccc 2100 2160 ccccgtttcg tgctgatcag tctttttcaa cacgtaaaaa gcggaggagt tttgcaattt tgttggttgt aacgateete egttgatttt ggeetettte teeatgggeg ggetgggegt 2220 atttgaageg gttetetett etgeegtta 2249 <210> SEQ ID NO 33 <211> LENGTH: 2231 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 33, Example 33: designer Glucosephosphate-Isomerase DNA construct (2231 bp) <400> SEQUENCE: 33 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60 caaacgaccc cgccgtacga acttttgtcg ggggggggcgctc ccggatggta gggtgcgagt 120 gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc 180 gctcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg 240 cccqctccaq cqtqcqcccc atqqccqcqc tqaaqcccqc cqtcaaqqct qcccccqtqq 300 ctgccccggc tcaggccaac cagatgtcca ataactcatt cactaacttc aaactggcca 360 ctgaattgcc agcctggtct aagttgcaaa aaatttatga atctcaaggt aagactttgt 420 ctgtcaagca agaattccaa aaagatgcca agcgttttga aaaattgaac aagactttca 480 ccaactatqa tqqttccaaa atcttqttcq actactcaaa qaacttqqtc aacqatqaaa 540 tcattqctqc attqattqaa ctqqccaaqq aqqctaacqt caccqqtttq aqaqatqcta 600 tgttcaaagg tgaacacatc aactccactg aagatcgtgc tgtctaccac gtcgcattga 660 gaaacaqaqc taacaaqcca atqtacqttq atqqtqtcaa cqttqctcca gaaqtcqact 720 ctgtcttgaa gcacatgaag gagttctctg aacaagttcg ttctggtgaa tggaagggtt 780 ataccggtaa gaagatcacc gatgttgtta acatcggtat tggtggttcc gatttgggtc 840 cagtcatggt cactgaggct ttgaagcact acgctggtgt cttggatgtc cacttcgttt 900 ccaacattga cggtactcac attgctgaaa ccttgaaggt tgttgaccca gaaactactt 960 tgtttttgat tgcttccaag actttcacta ccgctgaaac tatcactaac gctaacactg 1020 ccaagaactg gttcttgtcg aagacaggta atgatccatc tcacattgct aagcatttcg 1080

ctgctttgtc cactaacgaa accgaagttg ccaagttcgg tattgacacc aaaaacatgt

-continued

ttggtttcga aagttgggtc ggtggtcgtt actctgtctg gtcggctatt ggtttgtctg 1200 ttgccttgta cattggctat gacaactttg aggctttctt gaagggtgct gaagccgtcg 1260 acaaccactt cacccaaacc ccattggaag acaacattcc attgttgggt ggtttgttgt 1320 ctgtctggta caacaacttc tttggtgctc aaacccattt ggttgctcca ttcgaccaat 1380 acttgcacag attcccagcc tacttgcaac aattgtcaat ggaatctaac ggtaagtctg 1440 ttaccaqaqq taacqtqttt actqactact ctactqqttc tatcttqttt qqtqaaccaq 1500 ctaccaacgc tcaacactct ttcttccaat tggttcacca aggtaccaag ttgattccat 1560 1620 ctgatttcat cttagctgct caatctcata acccaattga gaacaaatta catcaaaaga tgttggcttc aaacttcttt gctcaagctg aagctttaat ggttggtaag gatgaagaac 1680 aagttaaggc tgaaggtgcc actggtggtt tggtcccaca caaggtcttc tcaggtaaca 1740 gaccaactac ctctatcttg gctcaaaaga ttactccagc tactttgggt gctttgattg 1800 1860 aatggggtgt tgaattgggt aaagtettgg etaaagteat eggeaaggaa ttggacaaet 1920 cctccaccat ttctacccac gatgettcta ccaacggttt aatcaatcaa ttcaaggaat 1980 ggatgtgata aatggaggcg ctcgttgatc tgagccttgc cccctgacga acggcggtgg 2040 atggaagata ctgctctcaa gtgctgaagc ggtagcttag ctccccgttt cgtgctgatc 2100 agtotttttc aacacgtaaa aagoggagga gttttgcaat tttgttggtt gtaacgatcc 2160 tccgttgatt ttggcctctt tctccatggg cgggctgggc gtatttgaag cggttctctc 2220 ttctgccgtt a 2231 <210> SEQ ID NO 34 <211> LENGTH: 1709 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 34, Example 34: designer oxyphotobacterial Butanol Dehydrogenase DNA construct (1709 bp) <400> SEQUENCE: 34 agaaaatctg gcaccacacc atccaaactc gccacccgca aaccaatggc atggccgagc 60 getgeaacgg tegeattgee aagattetge gtgetgageg etttgtetee getgetgate 120 tgcaagagac getcaegega tacetetggg egtgeaatea eegeatteee caaegegett 180 240

tgggccacat gacccccatc gagagactcc gaacgtggca aatggaggga ccagagttgt tcagttcaca ggtagataat gtcgcgggtc ttgatagtta gcaataaata cagtttcaga 300 atatctgtaa tacaaaaact gtatcgagac aagaaaaaag tagcaaaatt tacaaatgtt 360 catgattcat ctggctaaat tggatgttca actgacccat tgaagacaag ggcaacaacc 420 atggagaatt ttagatttaa tgcatataca gagatgcttt ttggaaaggg acaaatagag 480 aagcttccag aggttttaaa aagatatggt aaaaatatat tacttgcata tggtggtgga 540 agtataaaaa agaatggact ctatgatact atccaaaagc tattgaaaga ttttaatatt 600 gttgaattaa gtggtattga accaaatcca agaattgaaa ctgtaagacg tggagttgaa 660 ctttgcagaa aaaataaagt agatgttatt ttagctgttg gtggagggag tacaatagac 720 tgctcaaagg ttataggggc aggttattat tatgctggag atgcatggga ccttgtaaaa 780

-con	t.	Ĩ.	nı	100	

			-contin	lued		
aatccagcta aaataggtga	ggttttacca	atagtgacag	ttttaacaat	ggcagctact	840	
ggttctgaaa tgaatagaaa	tgctgttatt	tcaaagatgg	atacaaatga	aaagcttgga	900	
acaggatcac ctaagatgat	ccctcaaact	tctattttag	atccagaata	tttgtataca	960	
ttgccagcaa ttcaaacagc	tgcaggttgt	gctgatatta	tgtcacacat	atttgaacaa	1020	
tattttaata aaactacaga	tgcttttgta	caagataaat	ttgcggaagg	tttgttgcaa	1080	
acttgtataa aatattgccc	tgttgcttta	aaggaaccaa	agaattatga	agctagagca	1140	
aatataatgt gggctagttc	aatggctctt	aacggacttt	taggaagtgg	gaaagctgga	1200	
gcttggactt gtcatccaat	agaacatgaa	ttaagtgcat	tttatgatat	aactcatgga	1260	
gtaggtettg caattttaae	tccaagttgg	atgagatata	tcttaagtga	tgtaacagtt	1320	
gataagtttg ttaacgtatg	gcatttagaa	caaaaagaag	ataaatttgc	tcttgcaaat	1380	
gaagcaatag atgcaacaga	aaaattcttt	aaagcttgtg	gtattccaat	gactttaact	1440	
gaacttggaa tagataaagc	aaactttgaa	aagatggcaa	aagctgcagt	agaacatggt	1500	
gctttagaat atgcatatgt	ttcattaaat	gccgaggatg	tatataaaat	tttagaaatg	1560	
tccctttaat aaggctgaga	tcttcttcag	tgcattgtag	ttgaatgaag	ggttaggggg	1620	
gaaatgeeee eetattttt	gtctagccat	cctgccacgt	ttgacagggt	agcaatttcg	1680	
acacgatagg gttctctctt	ctgccgtta				1709	
<213> ORGANISM: Artif <220> FEATURE:					-	
<220> FEATURE: <223> OTHER INFORMATI 35: designer ox construct (1967	ON: Syntheti yphotobactei	lc Construct				
<pre><220> FEATURE: <223> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35</pre>	ON: Syntheti yphotobacter bp)	ic Construct rial Butyral	.dehyde Dehy	drogenase D	NA	
<pre><220> FEATURE: <223> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35 agaaaatctg gcaccacacc</pre>	ON: Syntheti yphotobacter bp) atccaaactc	ic Construct rial Butyral gccacccgca	.dehyde Dehy aaccaatggc	drogenase D atggccgagc	NA 60	
<pre><220> FEATURE: <223> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35 agaaaatctg gcaccacacc gctgcaacgg tcgcattgcc</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc	lc Construct rial Butyral gccacccgca gtgctgagcg	dehyde Dehy aaccaatggc ctttgtctcc	rdrogenase D atggccgagc gctgctgatc	NA 60 120	
<pre><220> FEATURE: <223> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35 agaaaatctg gcaccacacc gctgcaacgg tcgcattgcc tgcaagagac gctcacgcga</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg	ic Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc	rdrogenase D atggccgagc gctgctgatc caacgcgctt	NA 60	
<pre><220> FEATURE: <223> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35 agaaaatctg gcaccacacc gctgcaacgg tcgcattgcc</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc	ic Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca gaacgtggca	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt	60 120 180	
<pre><220> FEATURE: <223> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35 agaaaatctg gcaccacacc gctgcaacgg tcgcattgcc tgcaagagac gctcacgcga tggggccacat gacccccatc</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc	lc Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca gaacgtggca ttgatagtta	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagtttcaga	60 120 180 240	
<pre><220> FEATURE: <223> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35 agaaaatctg gcaccacacc gctgcaacgg tcgcattgcc tgcaagagac gctcacgcga tgggccacat gacccccatc tcagttcaca ggtagataat</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc gtatcgagac	ic Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca gaacgtggca ttgatagtta aagaaaaaag	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata tagcaaaatt	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagtttcaga tacaaatgtt	00 120 180 240 300	
<220> FEATURE: <220> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35 agaaaatctg gcaccacacc gctgcaacgg tcgcattgcc tgcaagagac gctcacgcga tgggccacat gacccccatc tcagttcaca ggtagataat atatctgtaa tacaaaaact	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc gtatcgagac tggatgttca	c Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca gaacgtggca ttgatagtta aagaaaaaag actgacccat	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata tagcaaaatt tgaagacaag	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagtttcaga tacaaatgtt ggcaacaacc	60 120 180 240 300 360	
<pre><220> FEATURE: <220> OTHER INFORMATI</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc gtatcgagac tggatgttca ttctataaca	ic Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca gaacgtggca ttgatagtta aagaaaaaag actgacccat aaagatttaa	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata tagcaaaatt tgaagacaag aattaaaaac	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagtttcaga tacaaatgtt ggcaacaacc aaatgttgaa	NA 60 120 180 240 300 360 420	
<pre><220> FEATURE: <220> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35 agaaaatctg gcaccacacc gctgcaacgg tcgcattgcc tgcaagagac gctcacgcga tgggccacat gacccccatc tcagttcaca ggtagataat atatctgtaa tacaaaaact catgattcat ctggctaaat atgattaaag acacgctagt</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc gtatcgagac tggatgttca ttctataaca caaggatgat	c Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca gaacgtggca ttgatagtta aagaaaaaag actgacccat aaagatttaa tcttcatgtt	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata tagcaaaatt tgaagacaag aattaaaaac tcggagttt	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagtttcaga tacaaatgtt ggcaacaacc aaatgttgaa cgaaaatgtt	60 120 180 240 300 360 420 480	
<pre><220> FEATURE: <220> OTHER INFORMATI</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc gtatcgagac tggatgttca ttctataaca caaggatgat cgtacacgca	ic Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca gaacgtggca ttgatagtta aagaaaaaag actgacccat aaagatttaa tcttcatgtt caaaagatat	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata tagcaaaatt tgaagacaag aattaaaaac tcggagtttt tatcccttca	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagtttcaga tacaaatgtt ggcaacaacc aaatgttgaa cgaaaatgtt ttatacaaaa	00 120 180 240 300 360 420 480 540	
<pre><220> FEATURE: <220> OTHER INFORMATI</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc gtatcgagac tggatgttca ttctataaca caaggatgat cgtacacgca aactgagata	ic Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca gaacgtggca ttgatagtta aagaaaaaag actgacccat aaagatttaa tcttcatgtt caaaagatat agaaaggccg	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata tagcaaaatt tgaagacaag aattaaaaac tcggagtttt tatcccttca cattagaaaa	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagtttcaga tacaaatgtt ggcaacaacc aaatgttgaa cgaaaatgtt ttatacaaaa taaagagatt	60 120 180 240 300 360 420 480 540 600	
<pre><220> FEATURE: <220> OTHER INFORMATI</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc gtatcgagac tggatgttca ttctataaca caaggatgat cgtacacgca aactgagata agaaacacat	ic Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca gaacgtggca ttgatagtta aagaaaaaag actgacccat aaagatttaa tcttcatgtt caaaagatat agaaaggccg atgggaagat	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata tagcaaaatt tgaagacaag aattaaaaac tcggagtttt tatcccttca cattagaaaa atgaagataa	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagtttcaga tacaaatgtt ggcaacaacc aaatgttgaa cgaaaatgtt ttatacaaaa taaagagatt aatattaaag	NA 60 120 180 240 300 360 420 480 540 600 660	
<pre><220> FEATURE: <220> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35 agaaaatctg gcaccacacc gctgcaacgg tcgcattgcc tgcaagagac gctcacgcga tggggccacat gacccccatc tcagttcaca ggtagataat atatctgtaa tacaaaaact catgattcat ctggctaaat atggatcaat taagcaatgc gaaaatgcta taagcaatgc gaacaagag aaaaaatcat ctagctacaa tgattcttga</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc gtatcgagac tggatgttca ttctataaca caaggatgat cgtacacgca aactgagata agaaacacat cactcctggg	ic Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca gaacgtggca ttgatagtta aagaaaaaag actgacccat aaagatttaa tcttcatgtt caaaagatat agaaaggccg atgggaagat acagaagatt	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata tagcaaaatt tggaggagaaaa tcggagttt tatcccttca cattagaaaa atgaagataa taactactac	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagtttcaga tacaaatgtt ggcaacaacc aaatgttgaa cgaaaatgtt ttatacaaaa taaagagatt aatattaaag tgcttggtca	NA 60 120 180 240 300 360 420 480 540 600 660 720	
<pre><220> FEATURE: <220> OTHER INFORMATI</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc gtatcgagac tggatgttca ttctataaca caaggatgat cgtacacgca aactgagata agaaacacat cactcctggg tgtagaaatg	ic Construct rial Butyral gccaccegea gtgctgageg cgtgcaatca gaacgtggca ttgatagtta aagaaaaaag actgacccat aaagatttaa tetteatgtt caaaagatat agaaaggeeg atgggaagat acagaagatt tetecatatg	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata tagcaaaatt tgaagacaag aattaaaaac tcggagtttt tatcccttca cattagaaaa atgaagataa taactactac gcgttatagg	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagtttcaga tacaaatgtt ggcaacaacc aaatgttgaa cgaaaatgtt ttatacaaaa taaagagatt aatattaaag tgcttggtca tgcaataact	NA 60 120 180 240 300 360 420 480 540 600 660 720 780	
<pre><220> FEATURE: <220> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35 agaaaatctg gcaccacacc gctgcaacgg tcgcattgcc tgcaagagac gctcacgcga tggggccacat gacccccatc tcagttcaca ggtagataat atatctgtaa tacaaaaact catgattcat ctggctaaat atggattaag acacgctagt aatgccaatc taaagaactag gaacaaagag aaaaaatcat ctagctacaa tgattcttga catgaattag tagctaaata ggagataacg ggcttacagt</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc gtatcgagac tggatgttca ttctataaca caaggatgat cgtacacgca aactgagata agaaacacat cactcctggg tgtagaaatg aactgtaata	ic Construct rial Butyral gccacccgca gtgctgagcg cgtgcaatca gaacgtggca ttgatagtta aagaaaaaag actgacccat aaagatttaa tcttcatgtt caaaagatat agaaaggccg atgggaagat accgaagatt tctccatatg tgtaatagta	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata tagcaaaatt tggaagacaag aattaaaaac tcggagtttt tatcccttca cattagaaaa atgaagataa taactactac gcgttatagg taggcatgat	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagtttcaga tacaaatgtt ggcaacaacc aaatgttgaa cgaaaatgtt ttatacaaaa taaagagatt aatattaaag tgcttggtca tgcataact agctgctgga	NA 60 120 180 240 300 360 420 480 540 600 660 720 780 840	
<pre><220> FEATURE: <220> OTHER INFORMATI 35: designer ox construct (1967 <400> SEQUENCE: 35 agaaaatctg gcaccacacc gctgcaacgg tcgcattgcc tgcaagagac gctcacgcga tggggccacat gacccccatc tcagttcaca ggtagataat atatctgtaa tacaaaaact catgattcat ctggctaaat atgattaaag acacgctagt aatgccaatc taaagaacta gaaaaatgcta taagcaatgc gaacaaagag aaaaaatcat ctagctacca tgattcttga catgattag tagctaaata ggagataacg ggcttacagt ccttctacga atccaactga</pre>	ON: Syntheti yphotobacter bp) atccaaactc aagattctgc tacctctggg gagagactcc gtcgcgggtc gtatcgagac tggatgttca ttctataaca caaggatgat cgtacacgca aactgagata agaaacacat cactcctggg tgtagaaatg aactgtaata actgtaata	ic Construct rial Butyral gccaccegea gtgctgageg cgtgcaatea gaacgtggea ttgatagtta aagaaaaaag actgacecat aaagatttaa tetteatgtt caaaagattt agaaaggeeg atgggaagat teteeatag teteeatag	dehyde Dehy aaccaatggc ctttgtctcc ccgcattccc aatggaggga gcaataaata tagcaaaatt tgaagacaag aattaaaaac tcggagttt tatcccttca cattagaaaa atgaagataa taactactac gcgttatagg taggcatgat	rdrogenase D atggccgagc gctgctgatc caacgcgctt ccagagttgt cagttcaga tacaaatgtt ggcaacaacc aaatgttgaa cgaaaatgtt ttatacaaaa taaagagatt aatattaaag tgcttggtca tgcaataact agctgctgga	NA 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900	

-continued

aatccaacta	tggactctct	agatgcaatt	attaagcacc	cttcaataaa	actactttgc	1080
ggaactggag	ggccaggaat	ggtaaaaacc	ctcttaaatt	ctggtaagaa	agctataggt	1140
gctggtgctg	gaaatccacc	agttattgta	gatgatactg	ctgatataga	aaaggctggt	1200
aagagtatca	ttgaaggctg	ttcttttgat	aataatttac	cttgtattgc	agaaaaagaa	1260
gtatttgttt	ttgagaacgt	tgcagatgat	ttaatatcta	acatgctaaa	aaataatgct	1320
gtaattataa	atgaagatca	agtatcaaag	ttaatagatt	tagtattaca	aaaaaataat	1380
gaaactcaag	aatactctat	aaataagaaa	tgggtcggaa	aagatgcaaa	attattctta	1440
gatgaaatag	atgttgagtc	tccttcaagt	gttaaatgca	taatctgcga	agtaagtgca	1500
aggcatccat	ttgttatgac	agaactcatg	atgccaatat	taccaattgt	aagagttaaa	1560
gatatagatg	aagctattga	atatgcaaaa	atagcagaac	aaaatagaaa	acatagtgcc	1620
tatatttatt	caaaaaatat	agacaaccta	aataggtttg	aaagagaaat	cgatactact	1680
atctttgtaa	agaatgctaa	atcttttgcc	ggtgttggtt	atgaagcaga	aggctttaca	1740
actttcacta	ttgctggatc	cactggtgaa	ggaataactt	ctgcaagaaa	ttttacaaga	1800
caaagaagat	gtgtactcgc	cggttaataa	ggctgagatc	ttcttcagtg	cattgtagtt	1860
gaatgaaggg	ttagggggga	aatgcccccc	tatttttgt	ctagccatcc	tgccacgttt	1920
gacagggtag	caatttcgac	acgatagggt	tctctcttct	gccgtta		1967

<210> SEQ ID NO 36

<211> LENGTH: 1602

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 36, Example 36: designer oxyphotobacterial Butyryl-CoA Dehydrogenase DNA construct (1602 bp)

<400> SEQUENCE: 36

60 agaaaatctg gcaccacacc tgatctgcaa gagacgctca cgcgatacct ctgggcgtgc aatcaccgca ttcccccaacg cgctttgggc cacatgaccc ccatcgagag actccgaacg 120 tggcaaatgg agggaccaga gttgttcagt tcacaggtag ataatgtcgc gggtcttgat 180 agttagcaat aaatacagtt tcagaatatc tgtaatacaa aaactgtatc gagacaagaa 240 aaaagtagca aaatttacaa atgttcatga ttcatctggc taaattggat gttcaactga 300 cccattgaag acaagggcaa caaccatgaa tttccaatta actagagaac aacaattagt 360 acaacaaatg gttagagaat tcgcagtaaa tgaagttaag ccaatagctg ctgaaatcga 420 cgaaacagaa agattcccta tggaaaacgt tgaaaaaatg gctaagctta aaatgatggg 480 tatcccattt tctaaagaat ttggtggagc aggcggagat gttctttcat atataatagc 540 tgtggaagaa ttatcaaaag tttgtggtac tacaggagtt attctttcag cgcatacatc 600 attatgtgca tcagtaatta atgaaaatgg aactaacgaa caaagagcaa aatatttacc 660 tgatctttgc agcggtaaaa agatcggtgc tttcggatta actgaaccag gtgctggtac 720 agatgctgca ggacaacaaa caactgctgt attagaaggg gatcattatg tattaaatgg 780 ttcaaaaaatc ttcataacaa atggtggagt tgctgaaact ttcataatat ttgctatgac 840 agataagagt caaggaacaa aaggaatttc tgcattcata gtagaaaagt cattcccagg 900 atteteaata ggaaaattag aaaataagat ggggateaga geatetteaa etaetgagtt 960

continuea	

-continued	
gttatggaa aactgcatag taccaaaaga aaacctactt agcaaagaag gtaagggatt	1020
ggtatagca atgaaaactc ttgatggagg aagaattggt atagctgctc aagctttagg	1080
attgcagaa ggagcttttg aagaagctgt taactatatg aaagaaagaa aacaatttgg	1140
aaaccatta tcagcattcc aaggattaca atggtatata gctgaaatgg atgttaaaat	1200
caagetget aaataettag tataeetage tgeaacaaag aageaagetg gtgageetta	1260
tcagtagat gctgcaagag ctaaattatt tgctgcagat gttgcaatgg aagttacaac	1320
aaagcagtt caaatctttg gtggatatgg ttacactaaa gaatacccag tagaaagaat	1380
atgagagat gctaaaatat gcgaaatcta cgaaggaact tcagaagttc aaaagatggt	1440
atcgcagga agcattttaa gataaggctg agatcttctt cagtgcattg tagttgaatg	1500
agggttagg ggggaaatgc ccccctattt tttgtctagc catcctgcca cgtttgacag	1560
gtagcaatt togacaogat agggttotot ottotgoogt ta	1602
 210> SEQ ID NO 37 211> LENGTH: 1248 212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 223> OTHER INFORMATION: Synthetic Construct- Sequence No. 37, Exa 37: designer oxyphotobacterial Crotonase DNA construct (1248) 	
400> SEQUENCE: 37	
gaaaatctg gcaccacacc tgatctgcaa gagacgctca cgcgatacct ctgggcgtgc	60
atcacegea tteeceaaeg egetttggge cacatgaeee ceategagag acteegaaeg	120
ggcaaatgg agggaccaga gttgttcagt tcacaggtag ataatgtcgc gggtcttgat	180
gttagcaat aaatacagtt tcagaatatc tgtaatacaa aaactgtatc gagacaagaa	240
aaagtagca aaatttacaa atgttcatga ttcatctggc taaattggat gttcaactga	300
ccattgaag acaagggcaa caaccatgga attaaaaaat gttattcttg aaaaagaagg	360
gcatttagct attgttacaa tcaatagacc aaaggcatta aatgcattga attcagaaac	420
uctaaaagat ttaaatgttg ttttagatga tttagaagca gacaacaatg tgtatgcagt	480
atagttact ggtgctggtg agaaatcttt tgttgctgga gcagatattt cagaaatgaa	540
igatettaat gaagaacaag gtaaagaatt tggtatttta ggaaataatg tetteagaag	600
ittagaaaaa ttggataagc cagttatcgc agctatatca ggatttgctc ttggtggtgg	660
itgtgaactt gctatgtcat gtgacataag aatagcttca gttaaagcta aatttggtca	720
uccagaagca ggacttggaa taactccagg atttggtgga actcaaagat tagcaagaat	780
gttggacca ggaaaagcta aagaattaat ttatacttgt gaccttataa atgcagaaga	840
gottataga ataggottag ttaataaagt agttgaatta gaaaaattga tggaagaago	900
aaagcaatg gctaacaaga ttgcagctaa tgctccaaaa gcagttgcat attgtaaaga	960
gctatagac agaggaatgc aagttgatat agatgcagct atattaatag aagcagaaga	1020
tttgggaag tgetttgeaa cagaagatea aacagaagga atgaetgegt tettagaaag	1080
agagcagaa aagaattttc aaaataaata aggctgagat cttcttcagt gcattgtagt	1140
gaatgaagg gttaggggggg aaatgeeeee ctattttttg tetageeate etgeeaegtt	1200
gacagggta gcaatttcga cacgataggg ttctctcttc tgccgtta	1248

-continued

- <211> LENGTH: 1311
- <212> TYPE: DNA
- <213> ORGANISM: Artificial Sequence
- <220> FEATURE:
- <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 38, Example 38: designer oxyphotobacterial 3-Hydroxybutyryl-CoA Dehydrogenase DNA construct (1311 bp)
- <400> SEQUENCE: 38

agaaaatctg	gcaccacacc	tgatctgcaa	gagacgctca	cgcgatacct	ctgggcgtgc	60
aatcaccgca	ttccccaacg	cgctttgggc	cacatgaccc	ccatcgagag	actccgaacg	120
tggcaaatgg	agggaccaga	gttgttcagt	tcacaggtag	ataatgtcgc	gggtcttgat	180
agttagcaat	aaatacagtt	tcagaatatc	tgtaatacaa	aaactgtatc	gagacaagaa	240
aaaagtagca	aaatttacaa	atgttcatga	ttcatctggc	taaattggat	gttcaactga	300
cccattgaag	acaagggcaa	caaccatgaa	aaagattttt	gtacttggag	caggaactat	360
gggtgctggt	atcgttcaag	cattcgctca	aaaaggttgt	gaggtaattg	taagagacat	420
aaaggaagaa	tttgttgaca	gaggaatagc	tggaatcact	aaaggattag	aaaagcaagt	480
tgctaaagga	aaaatgtctg	aagaagataa	agaagctata	ctttcaagaa	tttcaggaac	540
aactgatatg	aagttagctg	ctgactgtga	tttagtagtt	gaagctgcaa	tcgaaaacat	600
gaaaattaag	aaggaaatct	ttgctgagtt	agatggaatt	tgtaagccag	aagcgatttt	660
agcttcaaac	acttcatctt	tatcaattac	tgaagttgct	tcagctacaa	agagacctga	720
taaagttatc	ggaatgcatt	tctttaatcc	agctccagta	atgaagcttg	ttgaaattat	780
taaaggaata	gctacttctc	aagaaacttt	tgatgctgtt	aaggaattat	cagttgctat	840
tggaaaagaa	ccagtagaag	ttgcagaagc	tccaggattc	gttgtaaacg	gaatcttaat	900
cccaatgatt	aacgaagctt	cattcatcct	tcaagaagga	atagcttcag	ttgaagatat	960
tgatacagct	atgaaatatg	gtgctaacca	tccaatggga	cctttagctt	taggagatct	1020
tattggatta	gatgtttgct	tagctatcat	ggatgttta	ttcactgaaa	caggtgataa	1080
caagtacaga	gctagcagca	tattaagaaa	atatgttaga	gctggatggc	ttggaagaaa	1140
atcaggaaaa	ggattctatg	attattctaa	ataaggctga	gatcttcttc	agtgcattgt	1200
agttgaatga	agggttaggg	gggaaatgcc	cccctatttt	ttgtctagcc	atcctgccac	1260
gtttgacagg	gtagcaattt	cgacacgata	gggttetete	ttctgccgtt	a	1311
-210× 8E0 -						

<210> SEQ ID NO 39 <211> LENGTH: 1665 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 39, Example 39: designer oxyphotobacterial Thiolase DNA construct (1665 bp) <400> SEQUENCE: 39 agaaaatctg gcaccacacc tgatctgcaa gagacgctca cgcgatacct ctgggcgtgc 60 aatcaccgca ttccccaacg cgctttgggc cacatgaccc ccatcgagag actccgaacg 120 tggcaaatgg agggaccaga gttgttcagt tcacaggtag ataatgtcgc gggtcttgat 180 agttagcaat aaatacagtt tcagaatatc tgtaatacaa aaactgtatc gagacaagaa 240 aaaagtagca aaatttacaa atgttcatga ttcatctggc taaattggat gttcaactga 300 cccattgaag acaagggcaa caaccatggg caaagaaagt agttttagct gtgcatgtcg 360

-cont	inued
-conc	THUEU

-continued	
tacagccatc ggaacaatgg gtggatctct tagcacaatt cctgcagtag atttaggtgc	420
tatcgttatc aaagaggctc ttaaccgcgc aggtgttaaa cctgaagatg ttgatcacgt	480
atacatggga tgcgttattc aggcaggaca gggacagaac gttgctcgtc aggcttctat	540
caaggetggt etteetgtag aagtaeetge agttaeaaet aaegttgtat gtggtteagg	600
tettaaetgt gttaaecagg cageteagat gateatgget ggagatgetg atategttgt	660
tgccggtggt atggaaaaca tgtcacttgc accatttgca cttcctaatg gccgttacgg	720
atatogtatg atgtggocaa gocagagoca gggtggtott gtagacacta tggttaagga	780
tgetetttgg gatgetttea atgattatea tatgateeag acageagaea acatetgeae	840
agagtggggt cttacacgtg aagagctcga tgagtttgca gctaagagcc agaacaaggc	900
ttgtgcagca atcgaagctg gcgcattcaa ggatgagatc gttcctgtag agatcaagaa	960
gaagaaagag acagttatct tcgatacaga tgaaggccca agacagggtg ttacacctga	1020
atctctttca aagcttcgtc ctatcaacaa ggatggattc gttacagctg gtaacgcttc	1080
aggtatcaac gacggtgctg cagcactcgt agttatgtct gaagagaagg ctaaggagct	1140
cggcgttaag cctatggcta cattcgtagc tggagcactt gctggtgttc gtcctgaagt	1200
tatgggtatc ggtcctgtag cagctactca gaaggctatg aagaaggctg gtatcgagaa	1260
cgtatetgag ttegatatea tegaggetaa egaageatte geageteagt etgtageagt	1320
tggtaaggat cttggaatcg acgtccacaa gcagctcaat cctaacggtg gtgctatcgc	1380
tettggacae ceagttggag etteaggtge tegtateett gttaeaette tteaegagat	1440
gcagaagaaa gacgctaaga agggtettge tacaetttge ateggtggeg gtatgggatg	1500
cgctactatc gttgagaagt acgaataagg ctgagatctt cttcagtgca ttgtagttga	1560
atgaagggtt agggggggaaa tgccccccta ttttttgtct agccatcctg ccacgtttga	1620
cagggtagca atttcgacac gatagggttc tctcttctgc cgtta	1665
<210> SEQ ID NO 40 <211> LENGTH: 4071 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 40, Examp 40: designer oxyphotobacterial Pyruvate-Ferredoxin Oxidoreduct DNA construct (4071 bp) <400> SEQUENCE: 40	
agaaaattg gcaccacacc tgatctgcaa gagacgctca cgcgatacct ctgggcgtgc	60
aatcacegca tteeccaaeg egetttggge cacatgaece ceategagag acteegaaeg	120
tggcaaatgg agggaccaga gttgttcagt tcacaggtag ataatgtcgc gggtcttgat	180
agttagcaat aaatacagtt tcagaatatc tgtaatacaa aaactgtatc gagacaagaa	240
aaaagtagca aaatttacaa atgttcatga ttcatctggc taaattggat gttcaactga	300
cccattgaag acaagggcaa caaccatggc gcagaggtgc aaggagcccg tcgacggaac	360
gacagccacg acgcacgtgg cctacttcat gagcgacagc gcgttcatct tccccatcac	420
geccageteg gteatgteeg aggtegeeea egagtggtee atgaaeggee geaagaaege	480
cttcggccag cccacgatgg tccgccagat gcagagcgag gctgggtctg ccggcgccct	540
gcacggcgcg ctcagcgagg gagcgctggc gacgacgttc acgagcagcc agggcctgct	600
geteatgate eccaacatgt acaagatege eggegagete etgeeetgeg teatgeacat	660

-continued

cgccgcccgc	accgtcgcca	ccgaggccct	ctctatcttc	ggcgaccaca	cggatgtcta	720
cgcggtgagg	tcgacggggt	tcgcgttcct	gtgctccgcg	accgtccagg	agtgcatcca	780
catgtccgcc	gccgcgcacg	ccgccaccct	gtccagcgag	gtcccgttcg	cccacttctt	840
cgacggcttc	cgcacgtccc	acgagatcca	gaagatcgac	ttcccctcgg	acgccgacct	900
gctggcctgc	atgaactttg	acgacgtccg	caggttccgt	ggccgctcgc	tgtgctgcga	960
gcgcccgctg	ctgcgcggga	cggcgcagaa	ccccgacgtc	ttcatgcagg	cgtccgagtc	1020
gaacctggcg	acgctggcca	gggtccccgc	ggccatcgac	gaggcgctgg	ctcgtgtgaa	1080
caaggtgttc	gggaccaact	acaggaccta	cgagtactat	ggccaccccg	aggccacgga	1140
cgtgatcgtg	gccatgggaa	gcggcaccga	agtggccatc	tcgactgcca	acttcctcaa	1200
ctcgcgcgac	gcgaactcga	gggtcggcgt	cgtgagggtg	cggctgttcc	ggccgtttgt	1260
gtcggcggcg	tttgtggctg	cgctgcccaa	gaccgtcaag	aggatctgcg	ttctggaccg	1320
cgggagggac	gggcaggcgg	ccgcggaccc	cctgcaccag	gacgtcctgt	cggcgctggg	1380
tctggcagcg	cccgggaggg	ttcaggtgtg	cgtgggaggc	gtgtacggtc	tgtcgtccaa	1440
ggacttcaac	cccgaccacg	tgatcgccgt	gtacaggaac	ctcgcgtcgg	cgagccccaa	1500
gaacaggttc	agcgtcggca	tcgtcgacga	cgtgacgcac	aacagcctgg	acatgggaga	1560
gcacgtggac	gcgctgccgc	aggggacgaa	gcagtgcctg	ctgtggggca	tcggcggaga	1620
cgggaccatc	ggggcgaaca	agacggccat	caagctgatc	gcggaccaca	cggagctgca	1680
cgcgcagggg	tactttgcgt	acgacgccaa	caaggccggc	ggcctgacag	tctcgcacct	1740
gcggttcggc	ccgacgcggt	tcgaggcgcc	gtacctggtg	aacgacagca	actacgtggc	1800
gtgccacaac	ttctcgtacg	tgcacaggtt	caacctgctg	tcgtcgctgc	gcaccgggggg	1860
cacgttcgtg	ctcaactgcc	cgtgccggac	cgtggaggag	ctggacacgg	cactcccggt	1920
gcgcctgagg	cgcgagatcg	ccaggcggca	ggccaagttc	tatgtgatcg	acgcgaccaa	1980
gatcgccaag	gacaacggga	tgggcccgtt	catcaacatg	gtcctccagg	ccgtgttctt	2040
ctatctgtcc	cacgtgctcg	atgtgaacga	ggcagtggca	ctcctgaaga	agagcatcca	2100
gaagatgtac	gcgcgcaagg	gcgaggaggt	tgtcaggaag	aacgtggcat	cggtcgacgc	2160
gtcgctggat	cccaaggcgt	tgctgcacat	cgagtacccc	gcagacaggt	ggettgeget	2220
ggccgacgag	cacgtgcccc	gcatgggtct	gctcactgtc	cccgagcgcc	tgcagaagtt	2280
caacgccgag	ctgtacgagc	cgaccctcgc	gtacgatggg	gagagcatcc	cggtcagcag	2340
gttccctcgc	ggcggcgaga	cgccgacggg	cacgactcag	ctgggcaagc	gtggcatcgc	2400
cgagagcgtg	ccgcactgga	accacgagaa	gtgcgtgcag	tgcaaccagt	gctcgttcgt	2460
gtgcccgcac	gccgtcatcc	ggtcgtacca	gatcagcgag	gaggagatga	agaacgcccc	2520
tgccggcttc	gacactctta	agtcgcgcaa	gcccgggtat	cgtttccgca	tcaacgtcag	2580
cgccctggac	tgcactggct	gcagcgtgtg	cgtggagcag	tgcccagtca	agtgcctgga	2640
gatgaagcct	ctcgagtccg	agttcgagat	gcagaaggac	gccatcaggt	tcgtccgcga	2700
gatggtcgcg	cccaagcccg	agctgggaga	ccgcaagact	cccgtcggca	tcgcgtctca	2760
cacgccgctg	ttcgagttcc	cgggagcctg	cgccgggtgc	ggtgagaccc	cgctggtgcg	2820
cctcgtgacg	cagatgttcg	gtgagcgcat	ggtcatcgcc	gcggccactg	ggtgcaactc	2880
gatetgggga	gcgtcgttcc	cgaacgtgcc	gtacacaacc	aacgcccgcg	gggagggccc	2940

					-
-	CO	nt	11	nu	ed

cgcgtggcac aactegetgt tegaggaege ggeggagete gggtatggea ttaegtgtge 3000 gtategeeag egeegegage geeteategg eategtgegg agegtegteg aegatgeggg 3060	
gtategeeag egeegeage geeteategg eategtgegg agegtegteg aegatgeggg 3060	
atccgtgcag ggtctgtctg ctgagctgaa ggctctgctg gtcgagtggc tcgcgcacgt 3120	
cagggacttc gagaagaccc gcgagctccg cgacaggatg aaccccctga tcgacgcaat 3180	
cccagcgaac gcggactgca gggttctgga gctcagggag aagcacaacc gcgagctgat 3240	
cgcgcgcacg agtttctgga tcctcggtgg cgacgggtgg gcgtacgaca tcggcttcgg 3300	
tggactggac cacgtgatcg ccaacaacga ggacgtcaac atccttgttc tcgacacgga 3360	
ggtctactcc aacactggtg gccagcgctc caagtcgacg ccgctcggcg cccgcgccaa 3420	
gtacgctgtg ctgggcaagg acactgggaa gaaggacctg gggcgcatcg cgatgaccta 3480	
cgagaccgcg tacgtggcca gcatcgcgca gggagccaac cagcagcagt gcatggacgc 3540	
gctgagggag gccgaggcct accagggccc ctcgatcgtc attgcgtaca ctccgtgcat 3600	
ggagcaccag atggtccgcg ggatgaagga gagccagaag aaccagaagc tggctgtgga 3660	
gacgggctac tggctgctgt accgcttcaa ccccgacctc atccacgagg gcaagaaccc 3720	
cttcaccctc gactcgaagc ctccctcgaa gcctcccaag gagttcctgg acacgcaggg 3780	
ccgtttcatt actctgcagc gcgagcaccc cgagcaggcc cacctccttc acgaggcact 3840	
caccegetet etggecaece gettegtgeg etaceagege etegtgeage tgtaegagee 3900	
cgctgcccct gccgcagctc ctgccacgca ttaaggctga gatcttcttc agtgcattgt 3960	
agttgaatga agggttaggg gggaaatgcc cccctattt ttgtctagcc atcctgccac 4020	
gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <211> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example 41: designer oxyphotobacterial Pyruvate Kinase DNA construct (1806 bp) <400> SEQUENCE: 41 agaaaatctg gcaccacacc tgatctgcaa gagacgctca cgcgatacct ctgggcgtgc 60 aatcaccgca ttccccaacg cgctttgggc cacatgaccc ccatcgagag actccgaacg 120 tggcaaatgg agggaccaga gttgttcagt tcacaggtag ataatgtcgc gggtcttgat 180 agttagcaat aaatacagtt tcagaatatc tgtaatacaa aaactgtatc gagacaagaa 240</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 211> LENGTH: 1806 212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 2223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example 41: designer oxyphotobacterial Pyruvate Kinase DNA construct (1806 bp) <400> SEQUENCE: 41 agaaaatctg gcaccacacc tgatctgcaa gagacgctca cgcgatacct ctgggcgtgc 60 aatcaccgca ttccccaacg cgctttgggc cacatgacce ccatcgagag actccgaacg 120 tggcaaatgg agggaccaga gttgttcagt tcacaggtag ataatgtcgc gggtcttgat 180 agttagcaat aaatacagtt tcagaatatc tgtaatacaa aaactgtatc gagacaagaa 240 aaaagtagca aaatttacaa atgttcatga ttcatctggc taaattggat gttcaactga 300</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 </pre> <pre><210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	
<pre>gtttgacagg gtagcaattt cgacacgata gggttctctc ttctgccgtt a 4071 <210> SEQ ID NO 41 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 41, Example</pre>	

-continued	
------------	--

gctctctcgg ttcagagacg acgtagacta cgtgg	gecete ageettgtga gagaeggage 900	
agacgtgagg aaaatgagga gcgtcgtcga ggagg	getggg etcaceteeg geataatgge 960	
caaaatagag acgaagagcg cagtagataa aatco	gaggag ataatcaatg cggccgacta 1020	
catagttata gegagaggeg atetggeget geact	acgga ctggagtaca ttootaaagt 1080	
acagaggete ttggtggaga gatetetete ggeag	ggaagg ceegtggegg tggeeaegea 1140	
gettttggac tetatgeaga eeaacaegae geeea	actagg gcggaggtca acgacgtgta 1200	
cacaacggcg agtctcggag tggactctct gtggc	tgacc aacgagactg cgagcggaga 1260	
gcacccgtta gaggcagtgg attggctgag gagga	atagtg tegeaggteg agttegggag 1320	
acttaaggct gcgtcgccgg ccgacgcacg cgata	aggttc gccaaagccg tggtagatat 1380	
ggccgaggac atgggagggg aaatcgcagt atact	caatg acgggaactc tggcgaagag 1440	
aatagctaaa tttaggccga tgacgacagt ctacc	gtegga gteaaegaga ggaggetege 1500	
gaggatgttg gageteegeg aggatgttgg agete	catatg gggcctagag cctgtggtcg 1560	
tgccggcgca tacttacgag gagggcctcg agagg	geteet etecagatte teegacaaag 1620	
tettgatage caegtatggg etcagaggeg geaca	acatac tattaataag gctgagatct 1680	
tetteagtge attgtagttg aatgaagggt tagge	ggggaa atgcccccct attttttgtc 1740	
tagccatect gecaegtttg acagggtage aattt	cgaca cgatagggtt ctctcttctg 1800	
ccgtta	1806	
<210> SEQ ID NO 42		
<211> LENGTH: 1696 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E	Enolase DNA construct (1696 bp)	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42	Enolase DNA construct (1696 bp) agactc cgaacgtggc aaatggaggg 60	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatctg gcaccacacc tgacccccat cgaga	Enolase DNA construct (1696 bp) agactc cgaacgtggc aaatggaggg 60 gcgggt cttgatagtt agcaataaat 120	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatctg gcaccacacc tgacccccat cgaga accagagttg ttcagttcac aggtagataa tgtcg	Enolase DNA construct (1696 bp) agactc cgaacgtggc aaatggaggg 60 gcgggt cttgatagtt agcaataaat 120 ccgaga caagaaaaaa gtagcaaaat 180	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <222> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatctg gcaccacacc tgacccccat cgaga accagagttg ttcagttcac aggtagataa tgtcg acagtttcag aatatctgta atacaaaaac tgtat	Enolase DNA construct (1696 bp) agactc cgaacgtggc aaatggaggg 60 gcgggt cttgatagtt agcaataaat 120 ccgaga caagaaaaaa gtagcaaaat 180 atgttc aactgaccca ttgaagacaa 240	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor</pre>	Enolase DNA construct (1696 bp) agactc cgaacgtggc aaatggaggg 60 gegggt cttgatagtt agcaataaat 120 cegaga caagaaaaaa gtagcaaaat 180 atgttc aactgaceca ttgaagacaa 240 atgegt teatteeagg ataaaeggea 300	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatctg gcaccacacc tgaccccat cgaga accagagttg ttcagttcac aggtagataa tgtog acagtttcag aatatctgta atacaaaaac tgtat ttacaaatgt tcatgattca tctggctaaa ttgga gggcaacaac cttattttt cttcaagtta aagaa</pre>	Agactc cgaacgtggc aaatggaggg 60 gegggt cttgatagtt agcaataaat 120 ccgaga caagaaaaaa gtagcaaaat 180 atgttc aactgaccca ttgaagacaa 240 atgcgt tcattccagg ataaacggca 300 gattgt attttgctac tetgtetgtt 360	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> THER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatctg gcaccacacc tgacccccat cgaga accagagttg ttcagttcac aggtagataa tgtcg acagtttcag aatatctgta atacaaaaac tgtat ttacaaatgt tcatgattca tctggctaaa ttgga gggcaacaac cttattttt cttcaagtta aagaa atgctgccaa gctcttcttc aattctcaag agctg</pre>	Agactc cgaacgtggc aaatggaggg 60 gegggt cttgatagtt agcaataaat 120 cegaga caagaaaaaa gtagcaaaat 180 atgttc aactgaceca ttgaagacaa 240 atgcgt teatteeagg ataaaeggea 300 gattgt attttgetae tetgtetgtt 360 ctactg caacaacaag gteageaatt 420	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatctg gcaccacacc tgaccccat cgaga accagagttg ttcagttcac aggtagataa tgtog acagtttcag aatatctgta atacaaaaac tgtat ttacaaatgt tcatgattca tctggctaaa ttgga gggcaacaac cttattttt cttcaagtta aagaa atgctgccaa gctcttcttc aattctcaag agctg cttgacggtg cacctgtctt tatctgacca gcatt</pre>	Agactc cgaacgtggc aaatggaggg 60 gegggt cttgatagtt agcaataaat 120 cegaga caagaaaaaa gtagcaaaat 180 atgttc aactgaccca ttgaagacaa 240 atgcgt tcattccagg ataaacggca 300 gattgt attttgetac tetgtetgtt 360 ctactg caacaacaag gtcagcaatt 420	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatotg gcaccacacc tgacccccat cgaga accagagttg ttcagttcac aggtagataa tgtog acagtttcag aatatotgta atacaaaaac tgtat ttacaaatgt tcatgattca totggctaaa tggag gggcaacaac cttattttt ottcaagtta aagaa atgctgccaa gotottotto aattotcaag agotg cttgacggtg cacctgtott tatotgacca gcatt gtgtatott cagtotcacc tgatotgtg gatad</pre>	Agactc cgaacgtggc aaatggaggg 60 gegggt cttgatagtt agcaataaat 120 cegaga caagaaaaaa gtagcaaaat 180 atgttc aactgaceca ttgaagacaa 240 atgegt teatteeagg ataaaeggea 300 gattgt attttgetae tetgtetgtt 360 etactg caacaacaag gteageaatt 420 caactg cagtgtagee tgetetattt 480 eteeta tetgattaag ettaateaat 540	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatctg gcaccacacc tgacccccat cgaga accagagttg ttcagttcac aggtagataa tgtcg acagtttcag aatatctgta atacaaaaac tgtat ttacaaatgt tcatgattca tctggctaaa ttgga gggcaacaac cttattttt cttcaagtta aagaa atgctgccaa gctcttcttc aattctcaag agctg cttgacggtg cacctgtctt tatctgacca gcatt gttgtatctt cagtctcacc tgatctgtg gatad gccatttcaa tagcttctaa agttctgta agtgtg</pre>	Agactc cgaacgtggc aaatggaggg 60 gegggt cttgatagtt agcaataaat 120 acgaga caagaaaaaa gtagcaaaat 180 atgttc aactgaccca ttgaagacaa 240 atgcgt tcattccagg ataaacggca 300 gattgt attttgctac tctgtctgtt 360 ctactg caacaacaag gtcagcaatt 420 caactg cagtgtagcc tgctctattt 480 ctccta tctgattaag cttaatcaat 540 caagcc tctttgtgtt tgtaacaaac 600	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <220> THER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatotg gcaccacacc tgacccccat cgaga accagagttg ttcagttcac aggtagataa tgtog acagtttcag aatatotgta atacaaaaac tgtat ttacaaatgt tcatgattca totggctaaa tggag gggcaacaac ottattttt ottcaagtta aagaa atgctgccaa gotottotto aattotcaag agotg cttgacggtg cacctgtott tatotgacca goatt gttgtatott cagtotcacc tgatotgtg gatac gccatttcaa tagottctaa agttotgta agtgt atgagttg caacgccaag ttotattoco tttgg</pre>	Agactc cgaacgtggc aaatggaggg 60 gegggt cttgatagtt agcaataaat 120 cegaga caagaaaaaa gtagcaaaat 180 atgttc aactgaccca ttgaagacaa 240 atgcgt tcattccagg ataaacggca 300 gattgt attttgctac tetgtetgtt 360 ctactg caacaacaag gtcagcaatt 420 caactg cagtgtagcc tgetctattt 480 ctecta tetgattaag ettaatcaat 540 caagee tetttgtgtt tgtaacaaac 600 gtgett cagttagcat ettecageet 660	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatctg gcaccacacc tgacccccat cgaga accagagttg ttcagttcac aggtagataa tgtcg acagttcag aatatctgta atacaaaaac tgtat ttacaaatgt tcatgattca tctggctaaa ttgga gggcaacaac cttattttt cttcaagtta aagaa atgctgccaa gctcttcttc aattctcaag agctg cttgacggtg cacctgtctt tatctgacca gcatt gttgtatctt cagtctcace tgatctgtg gataa gccatttcaa tagcttctaa agttctgta agtgg attgagttg caacgccaag ttctattccc tttgg aaatcatcac ccacaagctg aatcttcttg ccaag</pre>	Agactc cgaacgtggc aaatggaggg 60 gegggt cttgatagtt agcaataaat 120 cegaga caagaaaaaa gtagcaaaat 180 atgttc aactgaccca ttgaagacaa 240 atgcgt tcattccagg ataaacggca 300 gattgt attttgetac tctgtctgtt 360 ctactg caacaacaag gtcagcaatt 420 caactg cagtgtagcc tgctctattt 480 ctecta tctgattaag cttaatcaat 540 caagec tctttgtgtt tgtaacaaac 600 gtgett cagttageat cttccagect 660 atacaa ttgggtactt ttcaacaagt 720 caactt taccttect ttcgaaatga 780	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> THER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatotg gcaccacacc tgacccccat cgaga accagagttg ttcagttcac aggtagataa tgtog acagtttcag aatatotgta atacaaaaac tgtat ttacaaatgt tcatgattca totggctaaa ttgga gggcaacaac ottattttt ottcaagtta aagaa atgotgccaa gotottotto aattotcaag agotg cttgacggtg cacctgott tatotgacca goata gtgtatott cagtotcacc tgatotgtg gataa gccatttcaa tagottctaa agttotgta agtgt attgagttg caacgccaag ttotattoco tttgg aaatcatcac ccacaagotg aatottottg ccaag tcocagtoot ottotgcaac acogtottca attgg attgcagtot cttotgcaac acogtottca attgg</pre>	Agactc cgaacgtggc aaatggaggg 60 gegggt cttgatagtt agcaataaat 120 cegaga caagaaaaaa gtagcaaaat 180 atgttc aactgaccca ttgaagacaa 240 atgcgt tcattccagg ataaacggca 300 gattgt attttgetac tctgtctgtt 360 ctactg caacaacaag gtcagcaatt 420 caactg cagtgtagcc tgctctattt 480 ctecta tctgattaag cttaatcaat 540 caagec tctttgtgtt tgtaacaaac 600 gtgett cagttageat cttecagect 660 atacaa ttgggtactt ttecaacaagt 720 caactt tacettect ttegaaatga 780	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Cor 42: designer oxyphotobacterial E <400> SEQUENCE: 42 agaaaatctg gcaccacacc tgacccccat cgaga accagagttg ttcagttcac aggtagataa tgtcg acagttcag aatatctgta atacaaaaac tgtat ttacaaatgt tcatgattca tctggctaaa ttgga gggcaacaac cttattttt cttcaagtta aagaa atgctgccaa gctcttcttc aattctcaag agctg cttgacggtg cacctgtctt tatctgacca gcatt gttgtatctt cagtctcacc tgatctgtg gatac gccatttcaa tagcttcaa agttctgta agtgt attgagtttg caacgccaag ttctattccc tttgg aaatcatcac ccacaagctg aatcttcttg ccaag ttcccagtcct cttctgcaca accgtcttca attga tttacccaga attctaccat ttctttt gttct</pre>	Agactc cgaacgtggc aaatggaggg 60 gegggt cttgatagtt agcaataaat 120 cegaga caagaaaaaa gtagcaaaat 180 atgttc aactgaceca ttgaagacaa 240 atgegt teatteeagg ataaaeggea 300 gattgt attttgetae tetgetgtt 360 ctactg caacaacaag gteageaatt 420 caactg cagtgtagee tgetetattt 480 cteeta tetgattaag ettaateaat 540 caagee tetttgtgtt tgtaacaaae 600 gtgett cagttageat etteeageet 660 ataeaa ttgggtaett tteaaeaagt 720 caactt taeettetet ttegaaatga 780 ctegeag ggteaagege aattgeaata 840	

-con		
-con	. L J	 ieu

cttgccttca atacatttct taattgatgg aatgtctcag cacacatcct gagtgcttcg 1020 ctaaaagatt ttgcaccaac tggcattatc ataaactctt gtaggtcaac agagttgtca 1080 gcatgctttc caccgttcaa aatattcatc attggcacag gtaaatactt tgcattgaca 1140 ccaccaatgt attggtacag tggaagacca agtgcgtttg ccgctgcctt cgcaactgcc 1200 aaagatacac ccaaaattgc attgcacca agettgctct tgttctctgt cccatcaage 1260 tcaatcataa qcctqtcaat ctcaacttqq ttaaqaqcqt tcattccaat tatttctqqc 1320 gcaataacct cgtttacatt ttcgactgct ttgagaaccc cttttcccat atatcttttt 1380 ttatcaccgt ctctgagttc aacagcctcg aacatacctg ttgacgcacc tgatggaaca 1440 1500 qcaqctctac ctacaaattc atcatttaca acaacttcta cttcaacaqt tqqqtttcct cttqaatcca qaatttctct tqcttttaca qctqtaattq aaaqatcaac cttcattaaq 1560 1620 gctgagatct tcttcagtgc attgtagttg aatgaagggt tagggggggaa atgcccccct attttttgtc tagccatcct gccacgtttg acagggtagc aatttcgaca cgatagggtt 1680 ctctcttctq ccqtta 1696 <210> SEQ ID NO 43 <211> LENGTH: 2029 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 43, Example 43: designer oxyphotobacterial Phosphoglycerate-Mutase DNA construct (2029 bp) <400> SEOUENCE: 43 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60 accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120 acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180 ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240 gggcaacaac cctacgccgg cgcctgcttc tcctcctgcc ggcagcactt ctccaaaggg 300 tgcacgttcg cttctcttgt aatcagggtc tggccggtca tctcggccgg tttcgggatg 360 cccagcaggt gcaggatggt ggggggccaca tcccgcaggc tgccgtcccg cagcgcaatg 420 ccggcggtat cccgcccgat caggatgaac ggcaccgggc tggtggtgtg ggccgtatga 480 ggetgteect ettegteeae cateteatee geattgeegt ggtetgeegt tateaggage 540 600 gtgeegteet ttteeaggae ggeeegegee acettteeaa ggeageggte gattgtttet atggccttta ccgttgcctt catgtcgccg gtatgcccga ccatgtcggg attggcgtaa 660 ttcattatga ttacgtcgta cttgcccgag gccagccgct ccagaaaggt gccggtgacc 720 tcgttggcgc tcatttcggg cttcaggtcg taggtggcca cccgcgggga gggcaccagg 780 atcctgtctt cgccggggta tggcttttct aagccgccgt tgaagaagaa ggtcacatgg 840 gcgtactttt ccgtttcggc caggcggagc tgggtcatgc cgtgcctgct taaaacctcg 900 cccagggtat tgcgcagctc ctgcggctga aacgccaccg gcgccttaat ggtcttgtcg 960 taaagggtca tgcaggtaaa atgcacggca gggtagccct gctttctggc aaacccggtg 1020 aaatcetegt ceacaaagge cetggtaate tggegggeee ggteeggeeg gaagttaaag 1080 aaaataacgg cgtcgccctt cattattttg gcggccggcc cacccgaccc gtttaccacg 1140

- con	tt.	п	n	11	ρ	а	

				-contir	nued	
acggtgggct ggal	taaactc	gtcggtttca	tecetteegt	accccaggtc	aaccgcctcc	1200
agcgggcttg ttg	cctgaat	gccctcgcct	aaaaccattg	cgttgtacgc	ccgctcggtg	1260
cggtcccagc ggc	ggtctct	gtccatggcg	taatagcgcc	ccattaccgt	tgccaccgcc	1320
ccaaagccca gtto	cgcccag	cttcttcctt	aactgctcga	agtattettt	tgcgttggcc	1380
ggcggcacgt cgc	gcccgtc	caggaaggca	tggacaaaga	cgttgcgcat	gttctcgcgg	1440
geggeeaggt eea	ggagggc	gaaaaggtgg	ctgatatggc	tgtgcactcc	gccgtccgat	1500
aaaagcccca tca	ggtgaag	ggccttatta	ttctccctgg	cgtatctcac	cgcctccagc	1560
aggacttcgt tct	tgaaaaa	ggtcccgtcc	ttgatggcgc	ggcttattct	ggtaagctcc	1620
tggtacacca ccc	tgeegge	gcctatgttc	aagtgtccca	cctcggaatt	gcccatctgg	1680
ccctcgggaa gcco	ccacgtc	ctcgccggaa	cageteaggg	cacagtgggg	gtaaccggcc	1740
agaaagctct tgaa	aattcgg	tgtgctggcc	agggctatgg	cattgccccg	gacattggaa	1800
ctgaggcccc agco	cgtccag	aaccaccagc	accagggggcc	tgeegeegge	ataccggccg	1860
cagggcgttg cag	ctacgtc	ttccttcaat	aaggctgaga	tcttcttcag	tgcattgtag	1920
ttgaatgaag ggt1	taggggg	gaaatgcccc	cctattttt	gtctagccat	cctgccacgt	1980
ttgacagggt agca	aatttcg	acacgatagg	gttetetett	ctgccgtta		2029
<213> ORGANISM <220> FEATURE: <223> OTHER INI 44: desig construct	FORMATIO gner oxy	N: Syntheti photobacter	ic Construct	:- Sequence oglycerate H		ample
<400> SEQUENCE		(व्				
<400> SEQUENCE agaaaatctg gcad	: 44	-	cgagagactc	cgaacgtggc	aaatggaggg	60
agaaaatctg gca	: 44 ccacacc	tgacccccat				60 120
	: 44 ccacacc agttcac	tgacccccat aggtagataa	tgtcgcgggt	cttgatagtt	agcaataaat	
agaaaatctg gcad accagagttg ttca acagtttcag aata	: 44 ccacacc agttcac atctgta	tgacccccat aggtagataa atacaaaaac	tgtcgcgggt tgtatcgaga	cttgatagtt caagaaaaaa	agcaataaat gtagcaaaat	120
agaaaatctg gcad accagagttg ttca	: 44 ccacacc agttcac atctgta tgattca	tgacccccat aggtagataa atacaaaaac tctggctaaa	tgtcgcgggt tgtatcgaga ttggatgttc	cttgatagtt caagaaaaaa aactgaccca	agcaataaat gtagcaaaat ttgaagacaa	120 180
agaaaatctg gcaa accagagttg ttc: acagtttcag aat; ttacaaatgt tcal	: 44 ccacacc agttcac atctgta tgattca atttatc	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg	cttgatagtt caagaaaaaa aactgaccca gcagttgctt	agcaataaat gtagcaaaat ttgaagacaa cccttccaga	120 180 240
agaaaatctg gcad accagagttg ttca acagtttcag aata ttacaaatgt tcal gggcaacaac ctta	: 44 ccacacc agttcac atctgta tgattca atttatc cgccgcc	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc gccggttgag	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg atatgggtca	cttgatagtt caagaaaaaa aactgaccca gcagttgctt ttttgccggc	agcaataaat gtagcaaaat ttgaagacaa cccttccaga tacgccggcc	120 180 240 300
agaaaatctg gcad accagagttg ttca acagtttcag aata ttacaaatgt tcal gggcaacaac ctta aactccaggg aage	: 44 ccacacc agttcac atctgta tgattca atttatc cgccgcc ccgccgt	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc gccggttgag gtcaccgccg	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg atatgggtca ccgattacgg	cttgatagtt caagaaaaaa aactgaccca gcagttgctt ttttgccggc tgacggcgtt	agcaataaat gtagcaaaat ttgaagacaa cccttccaga tacgccggcc taattcggcc	120 180 240 300 360
agaaaatctg gcad accagagttg ttca acagtttcag aata ttacaaatgt tcal gggcaacaac ctta aactccaggg aag ttcttggccg ccg	: 44 ccacacc agttcac atctgta tgattca atttatc cgccgcc ccgccgt ttgcttc	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc gccggttgag gtcaccgccg ggtgcccctg	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg atatgggtca ccgattacgg gcaaaaggat	cttgatagtt caagaaaaaa aactgaccca gcagttgctt ttttgccggc tgacggcgtt ccatttcaaa	agcaataaat gtagcaaaat ttgaagacaa coottocaga tacgooggoo taattoggoo aacgoocatt	120 180 240 300 360 420
agaaaatctg gcad accagagttg ttca acagtttcag aata ttacaaatgt tca gggcaacaac ctta aactccaggg aaga ttcttggccg ccga agcgtccggg ctal	: 44 ccacacc agttcac atctgta tgattca atttatc cgccgcc ccgccgt ttgcttc ccacggt	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc gccggttgag gtcaccgccg ggtgcccctg cctggccgcc	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg atatgggtca ccgattacgg gcaaaaggat ctgagggctt	cttgatagtt caagaaaaaa aactgaccca gcagttgctt ttttgccggc tgacggcgtt ccatttcaaa cggtgaaaag	agcaataaat gtagcaaaat ttgaagacaa cccttccaga tacgccggcc taattcggcc aacgcccatt tctgatggac	120 180 240 300 360 420 480
agaaaatctg gcad accagagttg ttca acagtttcag aata ttacaaatgt tcal gggcaacaac ctta aactccaggg aag ttcttggccg ccgd agcgtccggg ctal ggtccgttcc agad	: 44 ccacacc agttcac atctgta tgattca cgccgcc ccgccgc ttgcttc ccacggt ccagggc	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc gccggttgag gtcaccgccg ggtgcccctg cctggccgcc catccactcc	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg atatgggtca ccgattacgg gcaaaaggat ctgagggctt gccgggattt	cttgatagtt caagaaaaaa aactgaccca gcagttgctt ttttgccggc tgacggcgtt ccatttcaaa cggtgaaaag gatcgaccgg	agcaataaat gtagcaaaat ttgaagacaa cccttccaga tacgccggcc taattcggcc aacgcccatt tctgatggac caccgtcctt	120 180 240 300 360 420 480 540
agaaaatctg gcad accagagttg ttca acagttcag aata ttacaaatgt tca gggcaacaac ctta aactccaggg aaga ttcttggccg ccga agcgtccggg ctal ggtccgttcc agaa tcgggcccta tata	: 44 ccacacc agttcac atctgta tgattca atttatc cgccgcc tcgccgt ttgcttc ccacggt ccacggg gcgccgg	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc gccggttgag gtcaccgccg ggtgcccctg cctggccgcc catccactcc ccccggcgcc	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg atatgggtca ccgattacgg gcaaaaggat ctgagggctt gccgggattt accaccacat	cttgatagtt caagaaaaaa aactgaccca gcagttgctt ttttgccggc tgacggcgtt ccatttcaaa cggtgaaaag gatcgaccgg ccaccggcag	agcaataaat gtagcaaaat ttgaagacaa cccttccaga tacgccggcc taattcggcc aacgcccatt tctgatggac caccgtcctt gaggagcttt	120 180 240 300 360 420 480 540 600
agaaaatctg gcad accagagttg ttca acagtttcag aata ttacaaatgt tcat gggcaacaac ctta aactccaggg aaga ttcttggccg ccga agcgtccggg ctat ggtccgttcc agaa tcgggcccta tata	: 44 ccacacc agttcac atctgta tgattca atttatc ccgccgc tgccgcc tgccgcg ccacggt ccacggc gcgccgg tggcttc	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc gccggttgag gtcaccgccg ggtgcccctg cctggccgcc catccactcc ccccggcgcc tgcaatcagc	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg atatgggtca ccgattacgg gcaaaaggat ctgagggctt gccgggattt accaccacat ttcctggcca	cttgatagtt caagaaaaaa aactgaccca gcagttgctt ttttgccggc tgacggcgtt ccattcaaa cggtgaaaag gatcgaccgg ccaccggcag ggtcaatctt	agcaataaat gtagcaaaat ttgaagacaa cocttocaga tacgooggoo taattoggoo aacgoocatt totgatggac cacogtoott gaggagottt gtoggootco	120 180 240 300 420 480 540 600 660
agaaaatctg gcad accagagttg ttca acagtttcag aata ttacaaatgt tcal gggcaacaac ctta aactccaggg aag ttcttggccg ccgd agcgtccggg ctal ggtccgttcc agaa tcgggcccta tata tgctcctggc cggg acttccctgc ttcl	: 44 ccacacc agttcac atctgta tgattca cgccgcc ccgccgc ttgcttc ccacggc gcgccgg tggctcc cgacgct	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc gccggttgag gtcaccgccg ggtgcccctg cctggccgcc catccactcc ccccggcgcc tgcaatcagc gtacccttgt	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg atatgggtca ccgattacgg gcaaaaggat ctgagggctt gccgggattt accaccacat ttcctggcca gccttcagaa	cttgatagtt caagaaaaaa aactgaccca gcagttgctt ttttgccggc tgacggcgtt ccatttcaaa cggtgaaaag gatcgaccgg gatcaatctt aggtattggc	agcaataaat gtagcaaaat ttgaagacaa cccttccaga tacgccggcc taattcggcc aacgcccatt tctgatggac caccgtcctt gaggagcttt gtcggcctcc catcccgccg	120 180 240 300 420 480 540 600 660 720
agaaaatctg gcad accagagttg ttca acagtttcag aata ttacaaatgt tcat gggcaacaac ctta aactccaggg aaga ttcttggccg ccga agcgtccggg ctat ggtccgttcc agaa tcgggcccta tata tgctcctggc tcd agcagggact tac	: 44 ccacacc agttcac atctgta tgattca atttatc cgccgcc tgccgcc ttgcttc ccacggt tggcttc cgacgct tatcgac	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc gccggttgag gtcaccgccg ggtgcccctg cctggccgcc catccactcc ccccggcgcc tgcaatcagc gtacccttgt	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg atatgggtca ccgattacgg gcaaaaggat ctgagggctt gccgggattt accaccacat ttcctggcca gccttcagaa aggttgaaaa	cttgatagtt caagaaaaaa aactgaccca gcagttgctt ttttgccggc tgacggcgtt ccattcaaa ggtggaaaag gatcgaccgg ggtcaatctt aggtattggc ttactcccag	agcaataaat gtagcaaaat ttgaagacaa coottocaga tacgooggoo taattoggoo aacgoocatt totgatggac caccgtoott gaggagottt gtoggootoo catooogoog ottgtoggaa	120 180 240 300 420 480 540 600 660 720 780
agaaaatctg gcad accagagttg ttca acagtttcag aata ttacaaatgt tcal gggcaacaac ctta aactccaggg aag ttcttggccg ccgd agcgtccggg ctal ggtccgttcc aga tcgggcccta tata tgctcctggc cgg acttccctgc ttcl agcagggact tac ccaatgataa ccgl	: 44 ccacacc agttcac atctgta tgattca cgecgce ccgccgc ttgcttc ccacggt tggcttc cgacgct tatcgac	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc gccggttgag gtcaccgccg ggtgcccctg cctggccgcc catccactcc ccccggcgcc tgcaatcagc gtacccttgt tttggtcagc ggctgcaaaa	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg atatgggtca ccgattacgg gcaaaaggat ctgagggctt gccgggattt accaccacat ttcctggcca gccttcagaa aggttgaaaa	cttgatagtt caagaaaaaa aactgaccca gcagttgctt ttttgccggc tgacggcgtt ccatttcaaa cggtgaaaag gatcgaccgg ggtcaatctt aggtattggc ttactcccag ggctggtcag	agcaataaat gtagcaaaat ttgaagacaa cccttccaga tacgccggcc taattcggcc aacgcccatt tctgatggac caccgtcctt gaggagcttt gtcggcctcc catcccgcg cttgtcggaa cagcctgcc	120 180 240 300 420 480 540 600 660 720 780 840
agaaaatctg gcaa accagagttg ttca acagttcag aata ttacaaatgt tcat gggcaacaac ctta aactccaggg aaga ttcttggccg ccga agcgtccggg ctat ggtccgttcc agaa tcgggcccta tat tgctcctggc tcg acttccctgc tcc agcagggact tac ccaatgataa ccgf acttccgagc cgc	: 44 ccacacc agttcac atctgta tgattca atttatc cgccgcc ccgccgt ttgcttc ccacggt tggcttc cgacgct tatcgac ccacgac	tgacccccat aggtagataa atacaaaaac tctggctaaa gagcagcgcc gccggttgag gtcaccgccg ggtgcccctg cctggccgcc tgcaatcagc gtacccttgt tttggtcagc ggctgcaaaa catcagcagg	tgtcgcgggt tgtatcgaga ttggatgttc cttactcccg atatgggtca ccgattacgg gcaaaaggat ctgagggctt gccgggattt accaccacat ttcctggcca gccttcagaa aggttgaaaa gggcgctccg cctgccacgg	cttgatagtt caagaaaaaa aactgaccca gcagttgctt ttttgccggc tgacggcgtt ccattcaaa cggtgaaaag gatcgaccgg ggtcaatctt aggtattggc ttactcccag ggctggtcag ccggcaaaaa	agcaataaat gtagcaaaat ttgaagacaa cccttccaga tacgccggcc taattcggcc aacgcccatt tctgatggac caccgtcctt gaggagcttt gtcggcctcc catcccgccg cttgtcggaa cagcctgccc	120 180 240 300 420 480 540 600 660 720 780 840 900

-	CO	1C	ıt	1	n	u	e	a

cggacgtttt ccagcagcac cacgtccccg tcctgcatct gggcaacggc ggacctggcg 1140 getteteeca egeagtegee ggeettaace acegttttee ceageagtte ggaaaggege 1200 ctggcaacgg gatccatttt gtacctctcg tccaccctgc ccttgggccg gcccaggtgc 1260 gaaaccagaa taaccctggc tttttgtccg ataaggtagt ttatggtggg cacggcctcc 1320 tttattttaa cgtcatcggc cacceggeeg ttttccateg geaegttgaa gtecaeeege 1380 aacaqqaccc qcttqccctt tacatctata tcccttaccq tttttttqqc cactaaqqct 1440 1500 gagatettet teagtgeatt gtagttgaat gaagggttag gggggaaatg ceceetatt ttttgtctag ccatcctgcc acgtttgaca gggtagcaat ttcgacacga tagcgtgctg 1560 tactqttttt tqctcqtcaq qqttqqqttt tqtcatcqac acccaaqqat tqqaqtcqqt 1620 gctcaataat cgccagttgc tgttgggcag ccgccaattg cgcctgaggt tctctcttct 1680 1687 gccgtta <210> SEQ ID NO 45 <211> LENGTH: 1514 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 45, Example: designer oxyphotobacterial Glyceraldehyde-3-Phosphate Dehydrogenase DNA construct (1514 bp) <400> SEQUENCE: 45 agaaaatctg gcaccacacc tgatctgcaa gagacgctca cgcgatacct ctgggcgtgc 60 aatcaccgca ttcccccaacg cgctttgggc cacatgaccc ccatcgagag actccgaacg 120 tggcaaatgg agggaccaga gttgttcagt tcacaggtag ataatgtcgc gggtcttgat 180 agttagcaat aaatacagtt tcagaatatc tgtaatacaa aaactgtatc gagacaagaa 240 aaaagtagca aaatttacaa atgttcatga ttcatctggc taaattggat gttcaactga 300 cccattgaag acaagggcaa caaccaatgg atttgggcgg atcggacgtt tagcattcag 360 aagaattcaa gatgtagaag gtcttgaagt agttgcagtt aacgacttaa cagatgacga 420 tatgttaget catttattaa aataegatae tatgeaaggt egttteaetg gagaagttga 480 agttatcgaa ggtggattcc gtgttaacgt aaaagaaatt aaatcattcg atgaccagat 540 gctgggtaaa ttaccatggg gcgatttaga tatcgacgta gtattagaat gtactggttt 600 ctatactgat aaagaaaaag cacaagetca categatgea ggtgetaaaa aagtattaat 660 720 ctcagctcca gctaaaggtg atgtaaaaac aatcgtattc aacactaacc atgacgcatt agacggttca gaaacagttg tttcaggtgc ttcttgtact actaactcat tagcaccagt 780 tgcaaaagtt ttaagtgatg aattcggttt agttgaaggt ttcatgacta caattcacgc 840 ttacactggt gaccaaaata cacaagacgc acctcacaga aaaggtgaca aacgtcgtgc 900 acgtgcagca gcagaaaata ttatccctaa ctcaacaggt gctgctaaag ctatcggtaa 960 agttattcca gaaatcgatg gtaaattaga cggtggagca caacgtgttc cagttgctac 1020 tgggtcttta actgaattaa ctgtagtatt agacaaacaa gatgtaactg ttgaccaagt 1080 taacagtgct atgaaacaag cttcagacga atcattcggt tacactgaag acgaaatcgt 1140 atcttctgat atcgttggta tgacttacgg ttcattattc gatgcgactc aaactcgtgt 1200 tatgactgtt ggagatcgtc aattagttaa agttgcagct tggtacgaca aagagtgggg 1260

-continued

-continued
taaggetgag atettettea gtgeattgta gttgaatgaa gggttagggg ggaaatgeee 1320
ccctattttt tgtctagcca tcctgccacg tttgacaggg tagcaatttc gacacgatag 1380
cgtgctgtac tgttttttgc tcgtcagggt tgggttttgt catcgacacc caaggattgg 1440
agteggtget caataatege cagttgetgt tgggeageeg ecaattgege etgaggttet 1500
ctcttctgcc gtta 1514
<210> SEQ ID NO 46 <211> LENGTH: 609 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 46, Example 46: designer Nial-promoter-controlled Proton-Channel DNA construct (609 bp)
<400> SEQUENCE: 46
agaaaatctg gcaccacacc tatatggtag ggtgcgagtg accccgcgcg acttggagct 60
cgatggcccc gggttgtttg gggcgtccgc ctctcgcgct attctgagct ggagaccgag 120
gegeatgaaa atgeattege tteeatagga egetgeattg tggettgaag gtteaaggga 180
agggttcaaa cgaccccgcc gtacgaactt ttgtcggggg gcgctcccgg ccccgggctc 240
ttgtgcgcgc attagggctt cgggtcgcaa gcaagacgat acatggccgg catcggcgcc 300
gtgctgaagg teetgaceae eggeetgeee geeetgatea getggateaa gegeaagege 360
cagcagtaaa tggaggcgct cgttgatctg agccttgccc cctgacgaac ggcggtggat 420
ggaagatact gctctcaagt gctgaagcgg tagcttagct
tetttteaa eaegtaaaaa geggaggagt tttgeaattt tgttggttgt aaegateete 540
cgttgatttt ggcetettte teeatgggeg ggetgggegt atttgaageg gttetetett 600
ctgccgtta 609
<pre><210> SEQ ID NO 47 <211> LENGTH: 1360 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 47, Example</pre>
<400> SEQUENCE: 47
agaaaatctg gcaccacacc cttcttgcag aacatgcatg atttacaaaa agttgtagtt 60
tetgttacea attgegaate gagaaetgee taatetgeeg agtatatgaa eggatttgge 120
aggataggac gactggtgtt gcgggcggcg gtggagaagg gcacggtgga ggtggtggcg 180
gtgaacgatc cgttcatctt cccggacgcg gcgtacgctg cgtacatgct gcagtacgac 240
tcgacgcacg gggcgttccc gggtgaggtg ggcagcgacg gggagcactt ggtggtgaac 300
gggaagaagc tggcgtgctt tgcgatccgc gatccggcgg agatcccgtg gggctcggtc 360
ggcgccgact acgtcgtgga gtccaccggc gtgttcaccg tgaccgagaa ggcgtcgttg 420
cacgtcaagg gcggcgcgaa gaaggtggtt atatcggcgc cgtcgaagga tgcgcccatg 480
tttgtgatgg gegtgaacca tgaegeetac accaaggaet tgaeggtggt gtegaatgeg 540
tettgeacea ceaacttgtt tggegeeget ggeeaagate ategaegagg egtteggeat 600
cgggatgggc ctcatgagca ccatccacgc ggtgacggcc acgcaaaaga cggtggatgg 660

			nt					
_	<u> </u>	Οı		- -	. エ.エ	u	-	u

gccgagctcc	aaagactggc	gcggtgtcgc	ggcgcgttcc	agtcgattat	tcccagcagc	720
accggcgctg	cgaaagcggt	cggcaaggtg	tacccgaagc	tgaacggcaa	gctgaccggc	780
atggcgttcc	gcgtgccggt	gcccgacgtg	tccgtggtag	acttgacagt	gaccctgaag	840
aaggagacca	actacgagga	gatcaaaaag	gctgtcaagc	aggcgtcgca	gagcccgcac	900
tacaagggca	tcgtggcgta	caccgagcac	cccatcgtgt	cggccgacct	ggtgcacaac	960
ccgtactcgt	cggtgttcga	tgccgaagcc	ggtatcatgc	tgtcgcccac	gtttgtgaaa	1020
ctggtcagct	ggtaatagtg	ateceggeeg	ctactaaagc	ctgatttgtc	ttgatagctg	1080
ctcctgcctt	tgggcagggg	ctttttctg	tctgccattc	ttgaggatgg	cggactcttt	1140
cccttttgct	ctacgcccat	gaatgcgatc	gcagtctccc	ctgtccagca	cgttggagtg	1200
attggtggtg	gccagttagc	ttggatgctg	gcaccagcag	cgcaacagtt	ggggatgtcg	1260
ctgcacgttc	aaacacccaa	tgatcacgac	ccagcagtag	cgatcgcgga	tcaaaccgta	1320
ttagcagcag	ttgctgacgc	ggttetetet	tctgccgtta			1360
<220> FEAT <223> OTHE 48: 0	TH: 1621 : DNA NISM: Artif: URE: R INFORMATI(DN: Syntheit rA-promoter	te Construct		No. 48, Exa cerate-Kinas	
<400> SEQU	ENCE: 48					
agaaaatctg	gcaccacacc	cttcttgcag	aacatgcatg	atttacaaaa	agttgtagtt	60
tctgttacca	attgcgaatc	gagaactgcc	taatctgccg	agtatatgtc	atttgtcttc	120
gagcgcgacg	acacccggca	gctgttttcc	ttccataaac	tcgagcgaag	cgccgccgcc	180
ggtggagata	tgatccattt	tgtcggccaa	gccgaatttc	tcaaccgccg	ccgccgaatc	240
cccgccgccg	atgaccgaat	aggtgtcggg	cgcttccgcc	agtgcttcgg	cgatcgcttt	300
tgtcccatgg	gcgaacgctt	ccatttcaaa	gacgcccatc	gggccgttcc	agacaacgag	360
cttcgattga	cgaatgacat	cgcggtacaa	ttcgcgcgtt	ttcgggccga	tgtcaagcgc	420
ctcccaatcg	ctcggaatgg	cgtcgatggc	gacgactttc	gtgttggcgt	cgttcgcaaa	480
ccggtcggcg	acgaccacgt	ccaccggcat	ataaaaacgg	acgccttttt	ctttcgcctt	540
ttccataaac	gatttggcga	gttcgatttt	gtcctcctca	agcagcgact	tgccgacgtc	600
atggccgagc	gctttgacga	acgtatacgc	cagteegeeg	ccgatgatca	agttgtcgac	660
tttttcaagc	aaattgtcga	tgacgccgat	tttgtctttc	actttcgcgc	cgccgatgat	720
cgccgtaaac	gggcggtccg	gattcgagag	cgctttgccg	agcacttcga	gttctttttc	780
catcaaaaac	ccggccaccg	caggcaagta	atgggcgatg	ccttccgtcg	acgcatgagc	840
gcggtgggcg	gcgccgaacg	catcgttgac	atacagatcc	gcgagctccg	caaacgcttt	900
ggccagctct	ggatcgtttt	tctcttcgcc	agggtaaaaa	cggacgttct	caagcaagag	960
cacgtcgcct	tcgttcaaac	ggtcgaccgc	cgctttcacc	tcatcgccga	ccgcttcatt	1020
cgttttggcg	accggccgtt	caagcagctc	gccgagccgc	ttcgcaacgg	catccaaacg	1080
caattetteg	accacttttc	ctttcgggcg	gccgaggtgg	ctcgccaaaa	tgactttcgc	1140
cccgtgctcg	atcaaatagc	ggatcgtcgg	gagtgcggcg	cgaatgcgcg	tgtcatcggt	1200

continue	

-continued	
gatggegeet tgetecateg gaaegttgaa ategaegegg caaaagaege gettteeeet	1260
caceteaacg tegeggateg tettettgtt cattaatagt gateeeggee getactaaag	1320
cctgatttgt cttgataget geteetgeet ttgggeaggg gettttttet gtetgeeatt	1380
cttgaggatg geggaetett teeettttge tetaegeeea tgaatgegat egeagtetee	1440
cctgtccagc acgttggagt gattggtggt ggccagttag cttggatgct ggcaccagca	1500
gcgcaacagt tggggatgtc gctgcacgtt caaacaccca atgatcacga cccagcagta	1560
gcgatcgcgg atcaaaccgt attagcagca gttgctgacg cggttctctc ttctgccgtt	1620
a	1621
<210> SEQ ID NO 49 <211> LENGTH: 1990 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 49, Exa 49: designer nirA-promoter-controlled Phosphoglycerate-Mutas construct (1990 bp)	
<400> SEQUENCE: 49	
agaaaatctg gcaccacacc cttcttgcag aacatgcatg atttacaaaa agttgtagtt	60
tetgttacea attgegaate gagaaetgee taatetgeeg agtatatget egageattta	120
tttaataata agcgagcttc ccttcatctc tgaaggtttt tctaacccta agatgtctaa	180
gattgttgga gcaatgtctg ctaagattcc atcatctctt aatttaacat tgccatatcc	240
cacaagatac aaaggcacct tatttgttgt atgagctgta tgaggctcac ctgtctcata	300
atcaatcatc tgttcacagt tgccatggtc agcagtaata ataaccactc cacccttttc	360
taaaaccttg ttaacaactt ttccaataca ctcatctaca gcctcaactg cctttattgc	420
agcetetaaa aegeetgtgt geeetaeeat gteaceattt geatagttae atattateae	480
atcatattca tctctttcaa ttctctcaag taaagcttct gttacctcgt atgcactcat	540
ctcaggttta agatcatatg ttgcaacctt tggtgatggt accaataccc tgtcttctcc	600
gacatttggt acttccacac cgccgttgaa gaaaaaggtg acatgagcat acttttctgt	660
ctcagcaatt cgaagttgtt ttaaccctaa cttgctaaaa tactctccca aagtgtttgt	720
caggttetet ggtttgaatg caacatggea attttttatt gteacateat aetgagteat	780
gcatacaaag aacacttega aatateettt ttteetttea aaacegteaa atteaacate	840
acaaaacgct cttgtaagct gtcttgctct gtcaggtctg aagttaaaga aaataatact	900
gtcatgttca tttattgttg cgacaggttt tccattttca agcacaacag tcggaattac	960
aaactcatca gtgttacctt ttttatacga cttttcaacc gcctctaatc ctgagcttgc	1020
atactcgcct tcaccaaaga ccattgcatt atatgccttt tcaactcttt cccatctttt	1080
gtetetgtee attgeatagt atetgeeeat caetgttgea atettaeeae aaceaattte	1140
ttttatcttc tgttcaagct cttcaatgta aatttttgcg ctcgaaggtg gaacatctcg	1200
cccatccaaa aagcaatgaa catatacttt ttcaagattg tgcctctttg caagttttaa	1260
aagtgcgtaa agatgtgtgt tgtggctgtg aacaccacca tctgataaaa gtcccatcag	1320
atgaagagaa gagttatatt ttttgcaatt ctctattgcc atcaaaaact cttcttttc	1380
aaaaaaatca ccgtctttaa ttgactttgt tattcttgta aattcttggt aaacaattct	1440
teetgeacee aggtteagat gteeaactte agaatteeee atttgteett egggaagaee	1500

aacatccata	ccactgctac	caatcagggt	atatgggtaa	ttcttttcgt	aatagtcaag	1560
gttaggggtc	ttacccaaag	caacagcgtt	tccctcttgc	tttgggttat	aaccccaacc	1620
gtccatgata	atcaacacaa	caggtttttt	cattaatcta	gataatagtg	atcccggccg	1680
ctactaaagc	ctgatttgtc	ttgatagctg	ctcctgcctt	tgggcagggg	cttttttctg	1740
tctgccattc	ttgaggatgg	cggactcttt	cccttttgct	ctacgcccat	gaatgcgatc	1800
gcagtctccc	ctgtccagca	cgttggagtg	attggtggtg	gccagttagc	ttggatgctg	1860
gcaccagcag	cgcaacagtt	ggggatgtcg	ctgcacgttc	aaacacccaa	tgatcacgac	1920
ccagcagtag	cgatcgcgga	tcaaaccgta	ttagcagcag	ttgctgacgc	ggttetetet	1980
tctgccgtta						1990
<220> FEATU <223> OTHEN 50: c (1765	TH: 1765 : DNA NISM: Artif: JRE: R INFORMATIC designer nim 5 bp)		ic Construct	t- Sequence Enolase DN <i>i</i>	No. 50, Exa A construct	mple
<400> SEQUE		attattaasa	aacatooato	atttadaaco	adtataatt	60
				atttacaaaa agtatatgct		120
				gagaaatttt		120
			_	gggetttegg		240
				aattacggga		300
				acgttataga		360
				tcgatcacac		420
				ctatccttgc		480
				tgtaccgtta		540
				ttaacggggg		600
gataataacg	tagacttcca	ggagtttatg	attatgccag	tgggtgcgga	ctcttttaaa	660
gaagctttga	ggtggggggc	cgaagtgttt	gcttccctca	gtaaagttct	aaaagagcgt	720
aaattgctct	ctggggtagg	agacgagggg	ggatacgccc	cgaacctggg	atcgaaccag	780
gaagcettag	atttgctcat	agaagccatt	gaaaaggcgg	ggtataagcc	aggggaacag	840
gtggctttag	cgatggatgt	ggcttcaagt	gagttttata	aggatggcga	atatatttat	900
gatggttctc	cccattcccc	tcaagaattt	atcgattatt	taggtaaatt	agtggatcaa	960
tatcctatta	tttccattga	agatggctta	caagaagatg	actgggatag	ctggaaaagt	1020
ttgaccgata	cgttaggatc	tcgcattcag	ttagttgggg	acgatctttt	tgtcacgaac	1080
cccactcgtc	tgcaaaaagg	cattgatatg	ggtgtgggta	atagtattct	cattaaactc	1140
aatcaaattg	gtagtttaac	ggaaacgtta	gatacgattg	ctttagcgac	tcgtcatcaa	1200
tatagttccg	ttatttccca	tcgttccgga	gaaaccgaag	acactaccat	tgcagactta	1260
gccgtagcta	cacgcgctgg	acaaatcaaa	accggttctc	tgtgtcgtag	tgaacgggta	1320
gccaaatata	accgactatt	acgtattgaa	gaagaattag	gcgatcgcgc	agtttatgct	1380

-continued

-continued	
gcaaaagtgg gtttaggccc tcaataaggc tgctgccccg gctgctgcta atctagataa	1440
tagtgatece ggeegetaet aaageetgat ttgtettgat agetgeteet geetttggge	1500
aggggetttt ttetgtetge cattettgag gatggeggae tettteeett ttgetetaeg	1560
cccatgaatg cgatcgcagt ctcccctgtc cagcacgttg gagtgattgg tggtggccag	1620
ttagettgga tgetggeaee ageagegeaa eagttgggga tgtegetgea egtteaaaea	1680
cccaatgatc acgacccagc agtagcgatc gcggatcaaa ccgtattagc agcagttgct	1740
gacgcggttc tctcttctgc cgtta	1765
<210> SEQ ID NO 51 <211> LENGTH: 1888 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 51, Exa 51: designer nirA-promoter-controlled Pyruvate-Kinase DNA construct (1888 bp)	ample
<400> SEQUENCE: 51	
agaaaatctg gcaccacacc cttcttgcag aacatgcatg atttacaaaa agttgtagtt	60
tetgttacca attgegaate gagaaetgee taatetgeeg agtatatget egageatatg	120
ttaaaaaaga cgaaaatcgt ttgcacgcag ggtccgtcca cagagaaacc gggcgtaatt	180
gatgcactga ttgccaatgg catgaactgc gcacgcttca atttctccca tggtgaccac	240
gaagaacatc ttggccgtat caatatggtt cgtgaagctg ccaagaaggc tggcaaggtt	300
atototttaa tootogatao caaaggtoog gaaatgogto tgggogagtt caaagatggo	360
aaagttatgc tcgaaaaggg caacaagttc actttgacct atgacgatga accgggtgat	420
gaaactcatg tttccgtaaa ccacaaaggt ctttacacgg aagttaagcc gggcgacacc	480
ctgctcctct ccgatggcct cgtagctctc aaagttgatg aaatcaaggg caaggatatc	540
gttacgacga ttcagaacag cggtaagatg agcacgegca agegegtage tgeteeggge	600
gtaccccttg gtctgcctcc tatctccgaa caggatgcta aggacatcat ctttggctgc	660
gaacaggata tggatttcgt agctgcttcc ttcatccagc gtccggatga tgttatcgcc	720
atccgcaagc tcatcgaaga gcacaatggc cacatggaaa ttctgccgaa gatcgaaaac	780
ctcgaaggtg ttaagaactt cgatgcaatc ctggaagttt ccgacggcat catggttgcc	840
cgtggtgacc tgggcgtaga agttccggca gaagatgtgc cccttattca gaaggaaatc	900
atccgcaagt gcaacgctgc tggcaagccg gttatcgttg ctacgcagat gctcgactcc	960
atggaacgca acccgcgtcc gacccgtgca gaagtttctg acgttggtaa cgccatcctc	1020
gatggtacgg atgccatcat gctgtccggc gaaacggctt ccggtgacta tccggtagaa	1080
gcagttgcca cgatgaaccg cattgcacag cgcatggaaa gctcccttga atacaaggaa	1140
ctctatgtag aacgtggtct gcagcacatg gaatcccgta cgcgtgctat cgctcatgct	1200
acggttcaga tggcttatga gctcgatgct ccggctatta tcacgccgac cgaatccggt	1260
tacacgacga aggtcgtttc caagtatcgt ccgaaggctg ctatcgtagc ttacacgccg	1320
agcgaaaaag ttctgcgtca gctgaacctg cgttgggggcg tatatccggt actcggcacc	1380
cagtggagcg atgtggatga aatgatcagc aatgcaacgg ctgctgctgt taaggaagac	1440
ctcgtacage geggegaeet caccateate aceteeggtg tgaagatgga ateeegtaeg	1500
cgtgctatcg ctcatgctac ggacatctaa ggctgctgcc ccggctgctg ctaatctaga	1560

taatagtgat	cccggccgct	actaaagcct	gatttgtctt	gatagctgct	cctgcctttg	1620
ggcagggggct	tttttctgtc	tgccattctt	gaggatggcg	gactctttcc	cttttgctct	1680
acgcccatga	atgcgatcgc	agtctcccct	gtccagcacg	ttggagtgat	tggtggtggc	1740
cagttagctt	ggatgctggc	accagcagcg	caacagttgg	ggatgtcgct	gcacgttcaa	1800
acacccaatg	atcacgaccc	agcagtagcg	atcgcggatc	aaaccgtatt	agcagcagtt	1860
gctgacgcgg	ttetetette	tgccgtta				1888
<220> FEATU <223> OTHEN 52: c const	TH: 2188 DNA NISM: Artifi JRE: NINFORMATIC designer nin truct (2188	rA-promoter	ic Construct		No. 52, Exam ecarboxylase	
<400> SEQUI						
	-	cttcttgcag				60
		gagaactgcc				120
-	-	agaggttact		_		180
		tttcggcttg				240
		tatgaggtgg		-		300
		cagaataaag				360
		aaacggagtt				420
		atccatatcg				480
		cactgttttt				540
		ctctattgca				600
		agtttatgtt				660
		aactccaatt				720
		aacagtcctg				780
		cctcagacac				840
		ctttacaact				900
		ctatgtcggg				960
		actatctgtt				1020
		gacgaagaat				1080
atcagacagg	ccaccttccc	aggagttcaa	atgaaagaag	ccttgcaaca	gttgataaaa	1140
agggtctctt	cttacatcaa	tccaagctac	attcctactc	gagtteetaa	aaggaaacag	1200
ccattgaaag	ctccatcaga	agctcctttg	acccaagaat	atttgtggtc	taaagtatcc	1260
ggctggttta	gagagggtga	tattatcgta	accgaaactg	gtacatctgc	tttcggaatt	1320
attcaatccc	attttcccag	caacactatc	ggtatatccc	aagtettgtg	gggctcaatt	1380
ggtttcacag	taggtgcaac	agttggtgct	gccatggcag	cccaggaaat	cgaccctagc	1440
aggagagtaa	ttttgttcgt	cggtgatggt	tcattgcagt	tgacggttca	ggaaatctct	1500
acgttgtgta	aatgggattg	taacaatact	tatctttacg	tgttgaacaa	tgatggttac	1560

			-
-con	tη	nu	ed

-continued	
actatagaaa ggttgatcca cggcaaaagt gccagctaca acgatataca gccttggaac	1620
catttatect tgettegett atteaatget aagaaataee aaaatgteag agtategaet	1680
gctggagaat tggactcttt gttctctgat aagaaatttg cttctccaga taggataaga	1740
atgattgagg tgatgttatc gagattggat gcaccagcaa atcttgttgc tcaagcaaag	1800
ttgtctgaac gggtaaacct tgaaaattga ggctgctgcc ccggctgctg ctaatctaga	1860
taatagtgat cooggoogot actaaagoot gatttgtott gatagotgot ootgootttg	1920
ggcaggggct tttttctgtc tgccattctt gaggatggcg gactctttcc cttttgctct	1980
acgcccatga atgcgatcgc agtctcccct gtccagcacg ttggagtgat tggtggtggc	2040
cagttagett ggatgetgge accageageg caacagttgg ggatgteget geaegtteaa	2100
acacccaatg atcacgaccc agcagtagcg atcgcggatc aaaccgtatt agcagcagtt	2160
gctgacgcgg ttctctcttc tgccgtta	2188
<210> SEQ ID NO 53 <211> LENGTH: 1510 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 53, Exa 53: designer nirA-promoter-controlled NAD(P)H-dependent Alco Dehydrogenase DNA construct (1510 bp)	
<400> SEQUENCE: 53	
agaaaatctg gcaccacacc cttcttgcag aacatgcatg atttacaaaa agttgtagtt	60
tetgttacca attgegaate gagaaetgee taatetgeeg agtatatgtt agetaeetet	120
gtgccagaaa cccaaaaggg tgttattttc tatgagaatg gtggtaaatt ggaatacaag	180
gacattecag ttecaaagee aaageeaaat gaaatettga teaaegteaa gtaeteeggt	240
gtgtgtcata ccgatttgca cgcatggaag ggtgactggc cattgccaac caagttgcca	300
ttggtcggtg gtcacgaagg tgctggtgtc gttgttgcta tgggtgaaaa cgtcaagggc	360
tggaacattg gtgactttgc gggtatcaaa tggttgaacg gttcttgtat gtcctgtgaa	420
tactgtgaat tgtccaatga atccaactgt ccagatgctg acttgtctgg ttacacccac	480
gatggttett tecaacaata eegtaeegea gatgetgtte aagetgeeag aatteeaaag	540
ggtaccgatt tggctgaagt tgctccaacc ctatgtgccg gtgttactgt ttacaaggct	600
ttgaaaagtg ctaacttgaa ggctggtgac tgggttgcca tctctggtgc tgctggtggt	660
ctaggttete tagetgteca atacgecaag gecatgggtt acagagtegt tggtategae	720
ggtggtgaag aaaagggtaa gttggtcaag caattgggtg gtgaagcctt tgttgatttc	780
accaaaacca aggacatggt tgctgaaatc caagaaatca ccaacggtgg tccacacggt	840
gtcattaacg tototgttto tgaagotgoo atgaacgott coactoaatt ogtoagacoa	900
actggtactg togtattggt oggtttgooa gotggtgoog toatoaagto ogaagtotto	960
tcccacgtcg ttaagtctat taacatcaag ggttcttacg tcggtaacag agctgacacc	1020
agagaageta teaacttett egetaacggt caegtecaet etecaateaa ggttgttggt	1080
ttgtccgaac taccaaaggt ttacgaattg atggaacaag gtaagatttt gggtagatac	1140
gttgttgaca cetecaacta gggetgetge ceeggetget getaatagtg atceeggeeg	1200
ctactaaage ctgatttgte ttgatagetg etectgeett tgggeagggg etttttetg	1260
totgocatto ttgaggatgg oggactottt coottttgot otaogoocat gaatgogato	1320

-continued

gcagteteee etgtecagea egttggagtg attggtggtg gecagttage ttggatgetg 1380 gcaccagcag cgcaacagtt ggggatgtcg ctgcacgttc aaacacccaa tgatcacgac 1440 ccagcagtag cgatcgcgga tcaaaccgta ttagcagcag ttgctgacgc ggttctctct 1500 tctgccgtta 1510 <210> SEQ ID NO 54 <211> LENGTH: 56 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 54, Example 54: designer selected Hyd1 transit peptide (amino acids sequence) <400> SEQUENCE: 54 Met Ser Ala Leu Val Leu Lys Pro Cys Ala Ala Val Ser Ile Arg Gly 1 5 10 15 Ser Ser Cys Arg Ala Arg Gln Val Ala Pro Arg Ala Pro Leu Ala Ala 20 25 30 Ser Thr Val Arg Val Ala Leu Ala Thr Leu Glu Ala Pro Ala Arg Arg 40 35 45 Leu Gly Asn Val Ala Cys Ala Ala 50 55 <210> SEQ ID NO 55 <211> LENGTH: 45 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 55, Example 55: designer selected RbcS2 transit peptides (amino acids sequence) <400> SEQUENCE: 55 Met Ala Ala Val Ile Ala Lys Ser Ser Val Ser Ala Ala Val Ala Arg 5 10 15 1 Pro Ala Arg Ser Ser Val Arg Pro Met Ala Ala Leu Lys Pro Ala Val 20 25 30 Lys Ala Ala Pro Val Ala Ala Pro Ala Gln Ala Asn Gln 40 35 45 <210> SEQ ID NO 56 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 56, Example 56: designer selected ferredoxin transit peptide (amino acids sequence) <400> SEQUENCE: 56 Met Ala Met Ala Met Arg Ser 1 5 <210> SEQ ID NO 57 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 57, Example 57: designer selected CF0CF1 subunit-a transit peptide (amino acids sequence)

<400> SEQUENCE: 57 Met Leu Ala Ala Lys Ser Ile Ala Gly Pro Arg Ala Phe Lys Ala Ser 1 10 Ala Val Arg Ala Ala Pro Lys Ala Gly Arg Arg Thr Val Val Val Met 20 25 30 Ala <210> SEQ ID NO 58 <211> LENGTH: 1417 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 58, Exmaple 58: designer nirA-promoter-controlled NADPH-dependent Glyceraldehyde-3-Phosphate Dehydrogenase DNA construct (1417 bp) <400> SEOUENCE: 58 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60 accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120 acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180 ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240 gggcaacaac catgacttgc acttacagtt tcttttgatg tcaaaagtgc tccaatttgc 300 tcagcaacat ctacaactct atttgaataa ccccattcat tatcatacca agcaataact 360 tttactttat tccctgacat gaccattgtt gattttgcat caataatagc tgaatttgga 420 ttagtattaa aatcaacaga cactagtggt tgatgttcga cttctatgat accttctaaa 480 cctgcatttt caaaagcttg gtttacttct tctgcagtta cttctttttc taaatcaaca 540 600 ccttctaatt ctggtaatac ttcttttaaa gctttcgccg caccagtaga agtaggaata 660 atgettteat tacatgaacg tgeacgtett aaatetttat gtggattate aatattttt 720 tggtcatttg taatagcgtg aacagtagtc attaaaccat taactattcc aaactgatta 780 tttaaaactt ttgcaactgg accaatgcaa ttagtagtac atgaagcatt actaaaaatg 840 tcaaatgctt ctatatctaa ttggttatca tttacgcctt taactaacat ttgaacatgt 900 ccaccttttq aaqqaccaqt taacaatact tttttqqcac ctqctttaat atqtqcqatq 960 getttateac catgattaaa tttaccagtt geatetatag caatategat atetaattet 1020 ttccatggca agttttcagg attgcgatca gcaaccaatt taattttatg atcaccaact 1080 tqcaatccat tttcaatcqq ttcaactttt aqattatatt ttccatqtqt tqtatcqtaa 1140 ttgattaaat gtgcaattgt ttcgggtgga taactagcat ttatcgctac tacatttaaa 1200 tttttatttt gtaatgcaat acgtaatacc attcttccaa ttctacccat accattaatt 1260 gcaatattcg ttgacattaa ggctgagatc ttcttcagtg cattgtagtt gaatgaaggg 1320 ttagggggga aatgcccccc tatttttgt ctagccatcc tgccacgttt gacagggtag 1380 caatttcgac acgatagggt tctctcttct gccgtta 1417

<210> SEQ ID NO 59 <211> LENGTH: 1387 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

-cor	רדו	nu	ed

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 59, Exmaple 59: designer nirA-promoter-controlled NAD-dependent Glyceraldehyde-3-Phosphate Dehydrogenase DNA construct (1387 bp) <400> SEQUENCE: 59 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60 accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120 acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180 ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240 gggcaacaac catgcttaga gatgtgtgcg atcagatcca gaactttgtt ggagtagcca 300 gtttcgttgt cataccaaga aaccagtttc acgaagttgt cgttcagaga gataccggcg 360 tcggcatcaa acacggaggt gcatacttcg ccgttgaagt cggtagaaac gacggcttcg 420 teggtgtage ceagaaegee ttteattteg eetteagaag eggeetteat eaegteaeag 480 atctgctgat aggtcgccgg cttggccagg cgagcagtca ggtcaacaac ggagacgttc 540 ggggtcggaa cgcggaaagc cataccggtc agtttgccgt tcagctccgg gatgaccttg 600 ccaacggcct tggctgcacc ggtagaggac gggatgatgt tctggctagc gccgcggccg 660 ccgcgccaat ctttcatgga cgggccgtcg acagttttct gggtcgcggt ggtagcgtga 720 acggtggtca tcagcgcttc aacgatgccg aagttgtcgt tcaggacttt agccagcgga 780 gccaggcagt tggtggtgca ggatgcgttg gaaacgatct cctggccagc gtagttcttg 840 tggtttacgc ccataacgaa catcggggta gcatctttag acgggccagt catgacgact 900 ttettggcae eggeggegat gtgettaege geggtttegt eggteaggaa eagaeeggte 960 getteggeaa caacgteaac geegattteg tteeaettea ggttageegg atetettea 1020 gcggtaacac ggatttttt accgttaacg atcaggtggc catctttcac ttcaacagtg 1080 ccgttgaaac gaccgtgagt agagtcgtac ttcagcatgt atgccatgta gttggcatcc 1140 agcagatogt tgatgocaac gatttogatg toagaacgtt cotgagoago acggaaaaca 1200 atacggccga tacggccaaa accgttgata cctactttga tagtcattaa ggctgagatc 1260 ttetteagtg cattgtagtt gaatgaaggg ttaggggggga aatgeeeccc tatttttgt 1320 ctagccatcc tgccacgttt gacagggtag caatttcgac acgatagggt tctctcttct 1380 1387 gccgtta <210> SEQ ID NO 60 <211> LENGTH: 1627 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 60, Exmaple 60: designer nirA-promoter-controlled phosphoglycerate mutase DNA construct (1627 bp) <400> SEOUENCE: 60 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60 accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120 acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180 ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240 gggcaacaac catgggcccc gaacttttgc agcttgcccg cgtgcgccag caggagcggc 300 agcacgtggg tgccgtgcag gtcgccgagc gcgccccctg ccgcctcgtc ctcggtgaag 360

cggcgggccg	cgtcggcgcg	caggttgggg	ccgtagagca	ggaagggcac	cgggtgccag	420	
gagtgcgcct	tcatcacgct	gggcgtggag	tggtcgccgg	tgatggcgat	cacctcgggc	480	
tccagcgcca	gcagctcggg	cagcagggcg	tcgaaggcct	cgatcttgtg	caccttcgcg	540	
tcgaagtcgc	cgtcctcgcc	ggtggagtcg	gtcttcttga	agtgcaggta	gaagtagtcg	600	
aaggcttccc	agtgggcctt	cagggccgcg	agettgeett	cggggggcgtc	ggggtcctcg	660	
cccacctcga	cctccagcgc	ggtcatcccc	accagcgagg	ccaccccgcg	gtacatcggg	720	
tagctggcga	ccgccgcggg	ggtgageeeg	gtgatctcgc	ccagggtggg	ccagaccggg	780	
cgcttggaga	cgccgcgaag	cagcaccccg	ttgatcctgg	getegteege	gagcgcctgc	840	
cgcgccagcg	cgctgaactt	gttgagcacg	tcggccgtct	tggcgctggg	ctcgtcgctt	900	
tcgtcgtgcg	gacgggccgc	gagcggcggc	accccggtct	tctgggggtc	ggtgtcgtgg	960	
acccggtcgc	ccagccccac	gccccgcagc	accagcacga	agcggtgctc	cgactcggtg	1020	
tggagctcga	tcctgacgcc	gtcgatctcg	cggatgcgct	ccctcagctt	ggcgagcacc	1080	
cgccggtttt	cctcggtggg	ggggcggccg	gcgcggcggt	cggcgatggt	gccgtcgggg	1140	
ttcaaggtgg	cgaagttgcc	gcgcaccgcg	acgtcgtcgg	gccccagctc	gatgcccagc	1200	
cccagcgccg	agaggacgcc	gcgcccgacc	tcgtagcgga	aggggtcgta	gccgaagagg	1260	
ctcaggtggc	cgggcccgga	gccgggcgcg	aagccggggg	ccaccagggt	gactcgcccc	1320	
aggttggcct	tttcggccag	ggcgtcgagg	ttgggggtgc	gggccgcggc	cageteegtg	1380	
ggcccgcccg	gctcgcgggg	cagcccgccc	accccgtcga	gcacgacgaa	gaggatettg	1440	
ctgggcgtgg	tgcggctcag	ttccttgagg	tgggggagga	ggtccattaa	ggctgagatc	1500	
ttcttcagtg	cattgtagtt	gaatgaaggg	ttaggggggga	aatgcccccc	tatttttgt	1560	
ctagccatcc	tgccacgttt	gacagggtag	caatttcgac	acgatagggt	tctctcttct	1620	
gccgtta						1627	
<220> FEAT <223> OTHE 61:	TH: 1678 : DNA NISM: Artif. URE: R INFORMATIO	icial Sequer DN: Synthet: rA-promoter	ic Construct	-	No. 61, Exm A construct	aple	
<400> SEQU	ENCE: 61						
agaaaatctg	gcaccacacc	tgacccccat	cgagagactc	cgaacgtggc	aaatggaggg	60	
accagagttg	ttcagttcac	aggtagataa	tgtcgcgggt	cttgatagtt	agcaataaat	120	
acagtttcag	aatatctgta	atacaaaaac	tgtatcgaga	caagaaaaaa	gtagcaaaat	180	
ttacaaatgt	tcatgattca	tctggctaaa	ttggatgttc	aactgaccca	ttgaagacaa	240	
gggcaacaac	catgtttttg	taaattatag	aaaaccccca	acccacgata	cagcccgata	300	
tcgcttaatt	cttcttctat	ccgcaacagc	tggttgtatt	tcgctacccg	gtcagtcctg	360	
gccggagccc	cggtctttat	ctgccctacg	ttggtcgcta	ctaccaggtc	agcgatgaag	420	
gtgtcctccg	tctccccgga	acggtgggat	actacacagg	tgtaaccggc	tcttttagcc	480	
atttcaatcg	tatccaaggt	ctcagtgacc	gtgcctatct	gattcagttt	gataagtatg	540	
ctgttggcca	cacccttttt	tattcctgtg	gtaaaacgct	ggggattggt	tacgaaaata	600	

						-
-con	t.	Т	nı	1	e	d

-continued	
tcatctccga cgatctgaat cttcttgccc agcttacggg tgagcttttt ccacccttcc	660
cagtettett cetgeageee gtetteeagg gatatgatag gataettaeg eacaaggeea	720
tcgtaaaact cgaccacctc atcggcggtc agctcttggc cggtgctggc aaaaacgtat	780
ttcccgtcct tgaaaatctc attggcagca acatccagtc ccaggtaaat atccttcccc	840
ggettgtace eegeegtttt aatageetee aaaattaett caategegge tteattegaa	900
ggcaagttgg gagcaaatcc tccttcatcc ccgatggaag tagaaaaccc ttttttactc	960
aatacettet teagggtatg gtagaeetee acceeeatge geagggeete ggeaaaagaa	1020
gtageteeta eeggtaggat caagaattet tgaatgteea cattattate egegtgettg	1080
ccgccgttca agatgttcat ttgcgggatc ggcagttctt tggcgtttac gccgcccagg	1140
tactggtaaa gcggcatgga taggtaggaa gcagcagccc gcgccacagc catcgacacg	1200
cctaagatag cgttagctcc cagcttgccc ttgttgtcag tcccatcgag gtcaatcatc	1260
aaccggtcaa teeccaectg gtegagegea teeateecea caaceteegg ggegatgaee	1320
gtgttgacgt tatccaccgc attcagcacg cctttgccgc cgaaacgctc tgcgtcccca	1380
teeegeagtt ceacegeete aaaageacea gtggaegege eggaaggaae egeageeegt	1440
cccatggtcc catcttctaa aaggacctcg acctccaccg tcgggtttcc ccgcgaatcc	1500
agtatttete tggegtaaae eteggtgata ataeteaeta aggetgagat ettetteagt	1560
gcattgtagt tgaatgaagg gttaggggggg aaatgccccc ctattttttg tctagccatc	1620
ctgccacgtt tgacagggta gcaatttcga cacgataggg ttctctcttc tgccgtta	1678
<210> SEO ID NO 62	
<210> SEQ ID NO 62 <211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm 62: designer nirA-promoter-controlled Pyruvate Kinase DNA construct (2137 bp)	aple
<pre><211> LENGTH: 2137 <212> TYPE: DNA <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm 62: designer nirA-promoter-controlled Pyruvate Kinase DNA</pre>	aple
<pre><211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm 62: designer nirA-promoter-controlled Pyruvate Kinase DNA construct (2137 bp)</pre>	aple 60
<211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm 62: designer nirA-promoter-controlled Pyruvate Kinase DNA construct (2137 bp) <400> SEQUENCE: 62	
<pre><211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm</pre>	60
<pre><211> LENGTH: 2137 <212> TYPE: DNA <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm</pre>	60 120
<211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm 62: designer nirA-promoter-controlled Pyruvate Kinase DNA construct (2137 bp) <400> SEQUENCE: 62 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat	60 120 180
<211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm 62: designer nirA-promoter-controlled Pyruvate Kinase DNA construct (2137 bp) <400> SEQUENCE: 62 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa	60 120 180 240
<pre><211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm</pre>	60 120 180 240 300
<pre><211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm 62: designer nirA-promoter-controlled Pyruvate Kinase DNA construct (2137 bp) <400> SEQUENCE: 62 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa gggcaacaac catgccgcac ttgggcttgg ccgcggtaga tttgtcccct agccgtatcc atggttatgg tttctccgtc ttggatgaca cgggttgcct cggcggctcc aacgatgaca</pre>	60 120 180 240 300 360
<pre><211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm</pre>	60 120 180 240 300 360 420
<pre><211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm</pre>	60 120 180 240 300 360 420 480
<pre><211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm</pre>	60 120 180 240 300 360 420 480 540
<pre><211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm</pre>	60 120 180 240 300 360 420 480 540 600
<pre><211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm</pre>	60 120 180 240 300 360 420 480 540 600 660
<pre><211> LENGTH: 2137 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 62, Exm 62: designer nirA-promoter-controlled Pyruvate Kinase DNA construct (2137 bp) <400> SEQUENCE: 62 agaaaatotg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatatotgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat ttacaaatgt tcatgattca totggctaaa ttggatgttc aactgaccca ttgaagacaa gggcaacaac catgccgcac ttgggcttgg ccgcggtaga tttgtcccct agccgtatcc atggttatgg tttctccgtc ttggatgaca cgggttgcct cggcggctcc aacgatgaca ggaatatcca agttaatacc tactatggct gcatgagaag tcaggcctcc ctgttccgtg ataatccccc cggcctttc caacaacggc atatagtcct tgtctgttcc gactgccacc actatatcc ccggagcaaa cgagcccggt ttgcccggat ccagtatcac ccgcgcctta ctggtaacgg cccggctacc tatacccgtt cccttaacca gcaccttgcc tactacttga actctcagta gattggtagt cccagggatt ccaggagac ctgcggttat gactaccagg tcaccggggg agattagccc tcgcctgact gcggcatca gggctgttc tatcattgg tcaccggggg agattagcc tcgcctgact gcggcatca gggctgttc tatcattgg</pre>	60 120 180 240 300 360 420 480 540 600 660 720

gtagcggtag	cacaggtggc	ataactgatg	gcatcggtca	cggtacgcct	gccttcgaat	960
cgtcttgccg	ccagcatgtt	ctcatagggc	aaagccatct	ccgtccgccg	ggctattcgc	1020
gccatggttt	ccaccgcaac	taccggatat	ttaccggctg	cggtctctgc	cgacagcata	1080
atggcgtctg	ccccctcaaa	tatggcatta	gccacgtctg	acgcttcggc	ccgggtgggg	1140
cgcggcacgt	ttaccatcga	ttcgagcatc	tgggtggcaa	ttatcaccgg	cttaccctga	1200
gcccggcatt	tctcgattat	aaccttttgc	accagaggta	cttcttcggt	aggtatttca	1260
acccccaggt	ctccccgggc	gaccatgacg	ccatcagcaa	cctttattat	gtcatccagg	1320
ttgtccagcc	cctcctggct	ctcaatctta	gcgattatat	cgatgtcggc	tcccttttcc	1380
tctaatatgc	gtctgatatc	caaaacatca	tcggccgtcc	ttacgaacga	ggcagcaatg	1440
aaatccatat	tctgctggat	gccgaagtta	atgtcttcga	tgtctttctg	gctcaaaaaa	1500
ggcaggttgg	ttctcacacc	cggcaggttt	atgcctttcc	tttcaccgag	tactcctccc	1560
gcaaccacct	ggcagacgat	gtcggtgtcg	ttcgcctcta	aaacagacag	ctggatgacg	1620
ccgtcagcga	tcaatatgca	gtcacccgct	tttacctgcg	aaggtaactc	atggtaactt	1680
atctggacct	cgtcttcgtt	accttcaacc	ggacggttgg	tgagaacgaa	cttttgacca	1740
ggacgcagct	ctatcttacc	ttctttcaag	ggcccggtcc	tgatctccgg	ccctttggta	1800
tcaagcatca	accctacttc	cgcattcagt	tcccgcgcca	cctcacgcac	catgcggatg	1860
cggcgctcat	gctcatcata	agtgccgtgt	gaaaaattca	aacgggccac	gttcatgccg	1920
ttggtgatca	aagctcttag	ccgctcataa	tcatcggtgg	aaggtcccag	ggtacagatg	1980
attttggtct	tccgcaataa	ggctgagatc	ttcttcagtg	cattgtagtt	gaatgaaggg	2040
ttaggggggga	aatgcccccc	tatttttgt	ctagccatcc	tgccacgttt	gacagggtag	2100
caatttcgac	acgatagggt	tctctcttct	gccgtta			2137
<220> FEAT <223> OTHEN 63: 0	TH: 2163 : DNA NISM: Artif: JRE: R INFORMATIC	DN: Synthet: rA-promoter	ic Construct		No. 63, Exa e synthase D	
<400> SEQUI	ENCE: 63					
agaaaatctg	gcaccacacc	tgatctgcaa	gagacgctca	cgcgatacct	ctgggcgtgc	60
aatcaccgca	ttccccaacg	cgctttgggc	cacatgaccc	ccatcgagag	actccgaacg	120
tggcaaatgg	agggaccaga	gttgttcagt	tcacaggtag	ataatgtcgc	gggtcttgat	180
agttagcaat	aaatacagtt	tcagaatatc	tgtaatacaa	aaactgtatc	gagacaagaa	240
aaaagtagca	aaatttacaa	atgttcatga	ttcatctggc	taaattggat	gttcaactga	300
cccattgaag	acaagggcaa	caaccatgga	gcaggttttt	atctacgaca	ccaccttgag	360
ggatggctcg	caggcagaag	gtataaactt	ttccgtagag	gataagatgc	gcatacttca	420
aaaactggac	gaatttggag	tgcattacat	agagtgcgga	tggcccggtg	cgaacccaaa	480
agacactatt	ctctttgaaa	ggctgagaaa	gataaaaact	caaaatgcca	aaatagtagc	540
ctttggtgca	acaagaaaag	ctggaaagaa	ggcgcacgaa	gataagcagg	tggaaaacct	600
tttgaaatcg	ggtgccaagg	tgataaccgt	atttggcaag	agctgggact	ttcatgtaac	660

-	\sim	\sim	n	÷.	Ť.	n	11	ρ	a	

-continued	
gcatgccata gggaccacct tagaggaaaa cctggacatg gtttacgaga cggtaagcta	720
tettaaaaag catgtggagg aggttatett tgaegeagag caettetttg aeggataeag	780
gcacaacgaa agctatgctt ttaaggtatt ggaggcagct tttcaggcag gtgcggactg	840
gatagteete tgegataeea aeggtggeae eetteeeaat gaggtttatg agataaeeaa	900
aaaggttgta caaaagtttc cacaggcacg cgtaggcata cacgctcaca acgattcaga	960
tactgctgtg gctaactctc ttatggcggt gcttgcaggt gcaaggcagg ttcacggcac	1020
tataaacggc ttggggggaaa gaacgggcaa tgctaatctg tgttccataa tacctaacct	1080
tcagetcaag etgggettta gtgtagtgee tteecaaaae etcaaaaage teaeegaget	1140
tgeteacttt gteteegaaa teteeaacae geeaetgeee aaaaacatge ettatgtagg	1200
ggagagtget tttacecaca aagcaggegt acaegeetet geagttatga aaaggteaga	1260
aacatacgaa cacatagacc cttctttggt aggaaacaga aggaaggtga cagtgtctga	1320
cctttctgga aggagtaata tactttacaa gctcagggaa atggggcttg aggtggatga	1380
taagtcccct gagcttatca aactccttga aaagataaag gaacttgaga aggaaggcta	1440
ccactttgaa gcagctgaag cttcttttga gcttctttgc aagaggcatt ttgggcttgt	1500
taaaaactat tttgaccttg atgcttacag ggtgctaata gccagaagga gtacagacct	1560
atctcctgtt tcggaagcca ccgtaagact ctatgtggaa gacataaagg agcatacagc	1620
agetettggt aacggaccag tgagegeeet tgacagagee etcagaaaag eettggaaga	1680
gttttatcca agccttaaag atgttcagct catagactac aaggtgagaa tagttaacga	1740
atcggagggt acatctgcca aagtgagggt gcttatagaa tctaccgatg gtagaagaaa	1800
gtggggaacg gtgggagttt cggaaaacat aatagaagcc tcttggatag ccttaactga	1860
tagcetegta tataaaetet taaaagaega agaagagggt ataatgtgat aaggetgaga	1920
tettetteag tgeattgtag ttgaatgaag ggttaggggg gaaatgeeee eetattttt	1980
gtctagccat cctgccacgt ttgacagggt agcaatttcg acacgatagc gtgctgtact	2040
gttttttgct cgtcagggtt gggttttgtc atcgacaccc aaggattgga gtcggtgctc	2100
aataatcgcc agttgctgtt gggcagccgc caattgcgcc tgaggttctc tcttctgccg	2160
tta	2163
<210> SEQ ID NO 64 <211> LENGTH: 2878 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 64, Exam 64: designer nirA-promoter-controlled 3-Isopropylmalate/(R)-2 Methylmalate Dehydratase DNA construct (2878 bp)	
<400> SEQUENCE: 64	
agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg	60
accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat	120
acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat	180
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa	240
gggcaacaac catgtaccat gtctgctgtt gctatctcgc ccttgattgc tgatgctgta	300
acagtageeg etgaageaag atatacaaaa gaatetttat gteetgeaeg teeettgaag	360
tttcgtgtac ctgtactgat aagagtetea eeetcaeega taacaeeetg acagetteee	420

cagcatacag	agcagttagg	attcataaca	attgcacctg	cgtccatgaa	tatatcaagg	480
agtccctctt	tcatagcctg	aagatatacc	gaacggcttg	caggaactac	aaggaatctt	540
accttaggag	caaccttttt	ccctttgatg	atcgctgcgc	caactcttaa	atcctcgatt	600
cgtccattgt	tacatgaacc	aagaaatgct	tcatcaatct	ttacaccaag	tgattcctta	660
gccggaacta	cattgtcaac	aaaatgtggc	tttgcaacaa	ttggctgtat	tgttgaaagg	720
tcaatatcat	aaacctgctc	aaatactgca	tcatcatctg	atgtaaagca	tgeetttgge	780
tctctgccat	gctccttaag	ataatccatt	gcaacatcat	caacttccat	gagtgcagtc	840
ttagcacctg	cctctacaca	aaggttacag	attgatattc	tgtctgccat	tgaaaggctg	900
tgtaagcctt	ctcctgcaaa	ttccattgct	ttatagttag	caccgttagc	gccaatcttt	960
ccaataatag	agagtattaa	atctcttgca	tatactccat	cgttaagctt	tcccttaagg	1020
ttgaatctta	atgttcccgg	aaccattacc	catgatgttc	ctgtaaccat	tgcatacaaa	1080
taatctgtac	aaccaacacc	tgtaccaaat	gcacctaacg	caccatatgc	acaagtatgg	1140
ctgtctgctc	caaatataag	ctcacccggc	actacatgat	tttccatcat	aacctgatga	1200
cacacaccct	cgccctcgta	gaacttaata	tcattagcct	tagcaaagtc	tctcatcttc	1260
ttctgtgagg	ctgctgtctt	aggactgtct	gatggaatat	tgtggtctac	aatccataca	1320
agcttatcct	tgtcagcaat	atgaggattc	tttaacttct	catacatacc	aatagtaaga	1380
tgtgttgttc	catcattact	cataagtctg	tcaagagtaa	cagttgcaat	atcaccagcc	1440
ttaacctgtg	aaagacctgc	tgcccttgcg	ataatcttct	ctgcaatagt	catgccatgc	1500
tttgcctcat	ctgcaggtac	ggctgtactc	tcagactctt	ctttctcacc	atcaagtgat	1560
gcaataagac	caccctgatt	aagaatagcc	tgcatcttgg	ctggaagctt	agtacatgta	1620
taagtettte	cattaacagt	tataattcca	tcttctaatg	aaagctcaca	ttcatccccc	1680
gcattaactt	cgtcatggag	ttctttacat	acaataacag	gaagtcctat	attaatagca	1740
ttacgataga	atattettge	aaatgatttg	gcaatcactg	ccttgacacc	taatgcctta	1800
agtacgcttg	gtgcctgctc	tcttgatgaa	ccacatccaa	agttgtcatc	tgcaacaacg	1860
aaatctcccg	gctttacggc	agaagcaaaa	tcagagtcta	atgattcaaa	tgtatgactc	1920
ttcatctcat	caattgtcgg	aaacaaaaga	tactgcgatg	caataatctg	atctgtatca	1980
acatctttat	caaacttaaa	tatcctaccc	attgaccccc	atcgagagac	tccgaacgtg	2040
gcaaatggag	ggaccagagt	tgttcagttc	acaggtagat	aatgtcgcgg	gtcttgatag	2100
ttagcaataa	atacagtttc	agaatatctg	taatacaaaa	actgtatcga	gacaagaaaa	2160
aagtagcaaa	atttacaaat	gttcatgatt	catctggcta	aattggatgt	tcaactgacc	2220
cattgaagac	aagggcaaca	accatggtca	agaccgttaa	gctttctcat	tgccttaaca	2280
agtccgcctg	cattaagtat	atccacaaga	ttatcaggaa	gtgaagcaat	aggatatgct	2340
tttccattgt	gtgtaatctt	tgcatttact	tcaacatcaa	tagtatcgcc	ttccgtaact	2400
tcgtcgtgaa	ggtctgcatt	ctctataagg	agaagtccgt	tattaataga	atttctgaag	2460
aatattcttg	catatgattt	ggcaataaca	catttaatac	ctaatgcctt	aataacctca	2520
ggtgcctgct	ctcttgatga	accacaacca	aagttettte	ctgcaacaat	gatgtcgcct	2580
ggcttaatct	gacctgcaag	ttetggtett	aatggcgaaa	atgcatatgg	tttcatatct	2640
tctactgtct	ttaatgcaag	gtactctgta	gggataatga	tatctgtatc	aatgtcatca	2700

- ~ ~	nt	٦r	iued	4
			lucc	

-continued							
ccaagtaccc atactttacc gctaaatttc tcgttcatta aggctgagat cttcttcagt	2760						
gcattgtagt tgaatgaagg gttaggggggg aaatgccccc ctattttttg tctagccatc	2820						
ctgccacgtt tgacagggta gcaatttcga cacgataggg ttctctcttc tgccgtta	2878						
<210> SEQ ID NO 65 <211> LENGTH: 2380 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 65, Exa 65: designer nirA-promoter-controlled 3-isopropylmalate dehydratase DNA construct (2380 bp)	umple						
<400> SEQUENCE: 65							
agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg	60						
accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat	120						
acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat	180						
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa	240						
gggcaacaac catgaatgaa tcttcttgga tctgtgatgt atccggttac cgcggtggct	300						
gccgccgttg caggagaagc aaggtatatc tccgcattgg gattccccat ccttcccttg	360						
aagtttetgt tetgegtgga aagtaecete teteegtete caagaacaee catgtggatt	420						
ccaacacatg ggccgcaacc tggtggtata actgccgctc cgagttcaac aaatttcttg	480						
attattccct tttcaagggc gtccatgtag accttccttg aagcggggcc gacgatcagc	540						
ctcacatecg ggtgetttee gtgtttetea agaattttea aagegatete aagateetga	600						
agtetteegt tegtacaggt teetatgaae aettgateta tetttatett tteetttea	660						
acctcgctca cctttctcac gttgtccaca tagtgaggca aagagacgag tggttcgagt	720						
gtgtcggcat ctatctctat ctctgtctcg taaaccgcgt ctggatctgc tttcaactct	780						
ctgaagteet eetettee catettette aggaaetete tggtettete ateagaagge	840						
atgagacetg etttegetee caetteeace gecatgttgg aaatggtgag tetgteetee	900						
acattcatat tttcgataca gcttccatgg aactccaacg ctttgtaagt tgcgccgtcg	960						
cttcccagaa ttctcgcgat ctcgagaatg atgtctttcg cgtaaactcc atcctgtaac	1020						
ttcccgttca ccacaacctt gatcgtctca ggtactttga accagttctg tccaagcccg	1080						
aagatgatcg caacatctgt ggaccccatt cccgttccga aagcaccgag cccaccggca	1140						
gtgcaggtgt gcgaatccgc acctgctacc agatcgccgg gtttcacgta tttttccgcg	1200						
aggatetggt gggatatece gtetecegea tegaaaaeet tgaeteeeat etetttteea	1260						
aattetetea teatettetg egaattegaa agetetttee tegggetegg agaagegtga	1320						
tcgatgaaga ggaaggcctt cgggaccttc acttctttga agccgagttc tctgaattcg	1380						
tttatcatca gggggcctgt tccatcctgg gccatggcta tatccactct cgcgagtacg	1440						
atttctccgg ctttcacgtc tcttccagta tgttcagaaa agatcttttc tgcgagtgtc	1500						
ttacccattg acccccatcg agagactccg aacgtggcaa atggagggac cagagttgtt	1560						
cagttcacag gtagataatg tcgcgggtct tgatagttag caataaatac agtttcagaa	1620						
tatctgtaat acaaaaactg tatcgagaca agaaaaaagt agcaaaattt acaaatgttc	1680						
atgattcatc tggctaaatt ggatgttcaa ctgacccatt gaagacaagg gcaacaacca	1740						
tgaactettg ggaaggaace gtgettttte agatagttea etatacegte ttettteagt	1800						

-	cont	1 111	ed

atctcgagga gaaacttcgg aatcggagtg aatctgtatt cttttcctgt tgtgaggttc 18	60
ttcaaaacac cgttttcgag atctatctca agttcgtctc cctggttgat ctcgtcgact 19	20
teettgaget etatgaetgg aagteeeaca ttgatggegt tteggtagaa gateettgeg 19	80
aaagacttcg ccacgataca ggaaacacca gcgatcttta tgatacgcgc agcgtgctct 20	40
ctggaagaac caagteegaa gttettgeea geeaegatga tgteaeettt etgeaeette 21	.00
ttcgcgaaat cctccatggc atcttccaag acgtgttttg cgagctcctc aagattgttc 21	.60
ctcagatgaa aatacettee aggtgetata tggteagteg atatattgte acegaattte 22	20
cagactette ecettateat taaggetgag atettettea gtgeattgta gttgaatgaa 22	80
gggttagggg ggaaatgccc ccctatttt tgtctagcca tcctgccacg tttgacaggg 23	40
tagcaatttc gacacgatag ggttctctct tctgccgtta 23	80
<210> SEQ ID NO 66 <211> LENGTH: 1456 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 66, Example 66: designer nirA-promoter-controlled 3-Isopropylmalate Dehydrogenase DNA construct (1456 bp)	
<400> SEQUENCE: 66	
agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg	60
accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 1	20
acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 1	.80
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 2	40
gggcaacaac catgccatat ttcttcgagt tttttacata tgagatctcc catctgagag 3	00
gtcgaaaccg ccttttctgg atcctctgcg atgtctctgg ttctgtatcc ctcttctatc 3	60
accageteaa eegetettte tatetttett geetetteea eeatteeaaa ggaatgeteg 4	20
agcatcatgg cgagagagag gatctgtgcg atcgggttgg cgatgttctt tccggctata 4	80
tcaggagegg aaceteetge eggetegtag aggttettat eacegaaaga egeggaegge 5	40
agaagaccaa gagaaccagg aagtgccgca ctctcatccg agagaatgtc tccaaacatg 6	00
ttcgttgtga ggatcacatc gaactgcgat ggtttcagga tgagctgcat ggcagcgttg 6	60
tccacataca tgtgcgtcag ctccacatca gggtattete tegetaette gttcacaaet 7	20
ttcctccaca gcatggaact gtagaggacg ttcgctttgt caacggaggt gaccttttt 7	80
cttctgtttt ttgcgatttc aaaggcagtt ctcgcgatcc gttccacggt ttttctgtcg 8	40
tagatcatgg tgtcgaatcc cttttcttca tccaatcccc tcggctggcc gtagtaaact 9	00
ccgtaggaaa gttccctgac ggtcacaaga tcgaccccgg atccaatcac cttttctttc 9	60
aaaggagaga catgcacaag cgatctgtag acctttatcg gtcttatgtt tgcgtaaagg 10	20
ttgagcatet teettaggge aagaageeee eetattteeg geetettete eggaggaaga 10	80
tegteecatt taggteetee gaegetteea aggaagateg egteggette eagaeatate 11	.40
ttttttgtct cttcaggaag gggttcaccg aatttgtcta tggcatcccc tccgatgtgt 12	00
ccaaagactt teteaaaggt ttteeegtt ttetttteea ceaeetegag eaetttaaga 12	60
getteeetta caaceteggg acetatgeeg teteeaggea aaacegetat etteattaag 13	20

-continued

-continued	
gctgagatct tottoagtgo attgtagttg aatgaagggt taggggggggaa atgoocooot	1380
attttttgtc tagccatcct gccacgtttg acagggtagc aatttcgaca cgatagggtt	1440
ctctcttctg ccgtta	1456
<210> SEQ ID NO 67 <211> LENGTH: 1933 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 67, Exam 67: designer nirA-promoter-controlled 2-Isopropylmalate Synth DNA construct (1933 bp)	
<400> SEQUENCE: 67	
agaaaatotg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg	60
accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat	120
acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat	180
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa	240
gggcaacaac catgctcagc acccccgttt tttctgagaa ggcctttagc gatgaggtac	300
ttgtttattg cgtttatgta agctatcgca gaggcttcca ctatgtccgt ggagacaccc	360
cttccactgt agagttcacc gtttattctc aacgtgagtt tgacctctcc ctgtgcgttc	420
tttccagttc caaccgcctg aattatgtac tcctcgagct tcggttgaat accgagcgct	480
ttgtctatag cettgaagat ageateeact ggaeegttte etgeetetge tgettettte	540
ttttcatctc caacctgaag cacgaccgcc gcggttggaa gcagcgtgtt tccggtgtgt	600
acatggaagt gaacgagctt gtaaccgttg atgggctccc tcaaaacttc cgagacgatc	660
gagaaaagat catcgtcgta aacctctttc tttctgtcgg cgagttctgt gaacttctcg	720
aacactttet ggaaggtete ttegtegagt ttgatgeegt ageteteeag ettettetg	780
agggcgtgct ttccggagtg tcttccaagc acgagcgtct cggaagacct gccgatatcg	840
gatggtttca tgatctcgta ggtctccctg tgtttcagca caccatcctg gtgtataccc	900
gactogtgaa ggaacaogtt ctotocoact atgggtttgt ttotggaogg gatgagoooo	960
gttatatgtg tgaggagcot ggaagoggg tatatgagot otgtotttat accogtotog	1020
tagggaagtt tgtotttoot cacottgagg atoatcacga actottooag ggcacagtt	1080
cetgecetet eteogatace gtteagagte acttegacet gggtggetee gttetgaaeg	1140
gcagcgaggg agttegeeae agegagteea agategttgt gacagtgeae agaaagateg	1200
acatteteta tacegggeae accetetete aaggtettta tgagttetee aaaeteateg ggaagggegt acceeacegt gteeggaaea ttgategttg tggeteegge ttegategee	1260
gtettgtagg ettetateaa aaagggaaee teegtteteg aagegtette egeegagaae	1320
tecacaaggt egaaaaactg ttttgegtag eegaegtate ttetgateet etegagaat	1440
tectettet ceatteteag titgtattit etgigaateg gagaggtege tatgaaaaeg	1500
tgtatcatac gtttgtcttt tggtcgatcc ttgagagcct cgtacaccgc gtctatgtcc	1560
ttttcaacac accttgcgag tcccaccact atgggtttct gaacggcgct cgcaactctt	1620
tttacagott caaactgcac gggagatgaa acgggaaacc cagootcgat gagatcgaca	1680
ccgagateet etaacatgag tgeeattet aettttteet eaacegaeat egaageeeet	1740
ggggattget etceateeet caaegttgta tegaagatet taatteteet eattaagget	1800

				0011011	14.04					
gagatcttct	tcagtgcatt	gtagttgaat	gaagggttag	gggggaaatg	ccccctatt	1860				
ttttgtctag	ccatcctgcc	acgtttgaca	gggtagcaat	ttcgacacga	tagggttctc	1920				
tcttctgccg	tta					1933				
<220> FEAT <223> OTHE 68:	TH: 2632 : DNA NISM: Artif: URE: R INFORMATI(rA-promoter	ic Construct		No. 68, Exam alate Isomera					
<400> SEQUENCE: 68										
agaaaatctg	gcaccacacc	tgacccccat	cgagagactc	cgaacgtggc	aaatggaggg	60				
accagagttg	ttcagttcac	aggtagataa	tgtcgcgggt	cttgatagtt	agcaataaat	120				
acagtttcag	aatatctgta	atacaaaaac	tgtatcgaga	caagaaaaaa	gtagcaaaat	180				
ttacaaatgt	tcatgattca	tctggctaaa	ttggatgttc	aactgaccca	ttgaagacaa	240				
gggcaacaac	catgacagac	cggctcggct	tcaagctggc	gcacatcgac	aaaatgtccg	300				
taaatcgcag	ccgccgcggc	catcaccggg	ctgacgagat	gcgtgcgcgc	cccttttcct	360				
tgccgccctt	caaagttgcg	gttcgacgtt	gacgcacagt	gctcgccttc	tgggatgatg	420				
tccgggttca	tgcccaaaca	ggcgctgcag	ccggagtcgc	gccattcaaa	accggcgtcg	480				
atgaaaattt	gtgccaaccc	ttccgcttcg	gcttgtttt	tcacttgctg	cgatccaggc	540				
acgacgagcg	cccgtacacc	aggagccact	ttttccctt	tcacgatgct	cgccgccgcg	600				
cgcaaatcgc	tgaggcgtga	gttggtgcac	gaaccgatga	agacgtgctg	caccggaata	660				
tccgtaatcg	gcgtgcccgg	cttgageeee	atgtactcaa	gcgcccggcg	caccgcgttt	720				
tgctctgttt	tgctttcaaa	ttgctcggga	tgcggcacga	cgccatcgac	ggaagtgctc	780				
atcgcggggt	tcgtccccca	cgtcaccatc	ggagcgatcg	tcgacgcatc	gatttcaatc	840				
gttttatcgt	attttgcccc	ctcatcgctg	getaacgeee	gccaccgttc	caccgccttg	900				
tcaaactcct	cgccttttgg	tgcatatttg	cggccgcgca	aataggcgaa	cgtcgtttca	960				
tccggactga	tgaggccggc	tctcgcccca	gcttcaatcg	acatgttgca	aatcgtcatt	1020				
cgctcttcca	tcgacatgcg	tcggatcgct	tcgcctgtaa	attcgataat	ataaccggtg	1080				
ccgacgccaa	cgccatagcg	gccgataatg	gccaagatga	cgtctttggc	ggtcactcct	1140				
ttgccgaggc	ggccgttgat	gcagatttgc	agcgttttcg	gcttatgctg	ccaaagcgtt	1200				
tgtgtagcca	atacatgctc	gacttcgctc	gtgccgatgc	caaacgccaa	ggcgccaaac	1260				
gccccgtgcg	tcgacgtatg	gctgtcgccg	caaacgatcg	ttttccccgg	ctgggtcaac	1320				
ccgagctctg	ggccgatgac	gtgaacgatt	ccttgctctt	cgctgtgtag	gtcggcgagc	1380				
ggaatgccga	actcgcggca	gttgcgctca	agcgcagcga	tttggttgcg	cgccacttcg	1440				
tcggtaatca	caaatcggtt	aacggttggc	acgttatggt	ccatcgtcgc	aaaggtcaaa	1500				
tccggccgcc	gcaccttccg	tcctttttgc	cgcaaccctt	caaacgcttg	cggcgaggtc	1560				
acttcatgca	ctaagtgcaa	atcgatgtac	aataaatccg	gtttgccctc	ctcacggtag	1620				
acgacgtggt	tttcccaaat	tttatcgatg	atcgttttcg	gcttcattga	cccccatcga	1680				
gagactccga	acgtggcaaa	tggagggacc	agagttgttc	agttcacagg	tagataatgt	1740				

-continued	

-continued							
cgcgggtctt gatagttagc	aataaataca gtttcaga	at atctgtaata caaaaac	tgt 1800				
atcgagacaa gaaaaaagta	gcaaaattta caaatgtt	ca tgattcatct ggctaaa	ttg 1860				
gatgttcaac tgacccattg	aagacaaggg caacaacc	at gcggccgtgg acaatgc	cgt 1920				
cgttcgtagg cggcgatatg	cgcttcgtac acaaacgt	ca aatcaatttc gtcccat	cct 1980				
tttagcaaca gctgttttcg	atacgggtcg atgtcaaa	cg gacgcgaaaa tccttca	tcg 2040				
tcaaataccc gctgttcttc	aagcgaaacc gtcagttc	at agtctgcgcg ctcgctt	tgg 2100				
cgcagcaagt agcggacatc	ctctttatcc agccggat	cg gcaacagtcc attttt	aag 2160				
cagttgttgt aaaaaatatc	ggcaaacgat ggggcaat	ga ttacgcggaa tccgtaa	tct 2220				
tgcagcgccc acggcgcatg	ttcgcgcgat gagccgca	ac cgaagttttc atcggcg	act 2280				
aaaatcgtcg ccccttcgtt	ttccgggcgg ttgagctc	aa actccggatt tggcgtg	ccg 2340				
tcgctcaaat accgccaatc	gtaaaagaga aactggcc	aa agccggtgcg ttcaatc	cgt 2400				
ttcaaaaact gctttggaat	gatttgatcg gtatcaat	at tegecegate gatgeeg	gcg 2460				
gtttttccgc gatggatcgt	aaacggcttc attaaggc	tg agatettett cagtgea	ttg 2520				
tagttgaatg aagggttagg	ggggaaatgc ccccctat	tt tttgtctagc catcctg	cca 2580				
cgtttgacag ggtagcaatt	tcgacacgat agggttct	ct cttctgccgt ta	2632				
DNA construct (rA-promoter-controlle	uct- Sequence No. 69, ed 2-Keto Acid Decarb					
<400> SEQUENCE: 69							
agaaaatctg gcaccacacc							
accagagttg ttcagttcac							
acagtttcag aatatctgta							
ttacaaatgt tcatgattca							
gggcaacaac catgtataca			-				
ttgaagaaat ttttggagtt		-					
cacgcgaaga tatgaaatgg atggttatgc tcgtactaaa							
	adagetyeey called	u.u.u.uyya yuuyyuy					
	deaddaadtt atdooraa	aa tttaccacta ctacaaa	ttg 540				
ttggttcacc aacttcaass		aa tttaccagta gtagaaa tt tgtccatcat acactag					
ttggttcacc aacttcaaaa atggtgattt taaacacttt	gtacaaaatg acggaaaa	tt tgtccatcat acactag	cag 600				
atggtgattt taaacacttt	gtacaaaatg acggaaaa atgaagatgc atgaacctg	tt tgtccatcat acactag gt tacagcagcg cggactt	cag 600 tac 660				
atggtgattt taaacacttt tgacagcaga aaatgccaca	gtacaaaatg acggaaaa atgaagatgc atgaacctg tatgaaattg accgagta	tt tgtccatcat acactag gt tacagcagcg cggactt ct ttctcaatta ctaaaag	cag 600 tac 660 aaa 720				
atggtgattt taaacacttt tgacagcaga aaatgccaca gaaaaccagt ctatattaac	gtacaaaatg acggaaaat atgaagatgc atgaacctg tatgaaattg accgagta ttaccagtcg atgttgctg	tt tgtccatcat acactag gt tacagcagcg cggactt ct ttctcaatta ctaaaag gc agcaaaagca gagaagc	cag 600 tac 660 aaa 720 ctg 780				
atggtgattt taaacacttt tgacagcaga aaatgccaca gaaaaccagt ctatattaac cattatcttt agaaaaagaa	gtacaaaatg acggaaaad atgaagatgc atgaacctg tatgaaattg accgagtad ttaccagtcg atgttgctg agctctacaa caaatacad	tt tgtccatcat acactag gt tacagcagcg cggactt ct ttctcaatta ctaaaag gc agcaaaagca gagaagc ac tgaacaagtg attttga	cag 600 tac 660 aaa 720 ctg 780 gta 840				
atggtgattt taaacacttt tgacagcaga aaatgccaca gaaaaccagt ctatattaac	gtacaaaatg acggaaaad atgaagatgc atgaacctg tatgaaattg accgagtad ttaccagtcg atgttgctg agctctacaa caaatacad aatgcccaaa aaccagtag	tt tgtccatcat acactag gt tacagcagcg cggactt ct ttctcaatta ctaaaag gc agcaaaagca gagaagc ac tgaacaagtg attttga gt gattgcagga cacgaag	cag 600 tac 660 aaa 720 ctg 780 gta 840 taa 900				
atggtgattt taaacacttt tgacagcaga aaatgccaca gaaaaccagt ctatattaac cattatcttt agaaaaagaa agattgaaga aagtttgaaa	gtacaaaatg acggaaaat atgaagatgc atgaacctg tatgaaattg accgagtaa ttaccagtcg atgttgctg agctctacaa caaatacaa aatgcccaaa aaccagtag acggtaactc agtttgttg	tt tgtccatcat acactag gt tacagcagog oggactt ct ttctcaatta ctaaaag gc agcaaaagca gagaago ac tgaacaagtg attttga gt gattgcagga caogaag tc agaaacaaaa ctaccga	cag 600 tac 660 aaa 720 ctg 780 gta 840 taa 900 tta 960				
atggtgattt taaacacttt tgacagcaga aaatgccaca gaaaaccagt ctatattaac cattatcttt agaaaaagaa agattgaaga aagtttgaaa ttagttttgg tttagaaaaa	gtacaaaatg acggaaaad atgaagatgc atgaacctg tatgaaattg accgagtad ttaccagtcg atgttgctg agctctacaa caaatacad aatgcccaaa aaccagtag acggtaactc agtttgttg	tt tgtccatcat acactag gt tacagcagcg cggactt ct ttctcaatta ctaaaag gc agcaaaagca gagaagc ac tgaacaagtg attttga gt gattgcagga cacgaag tc agaaacaaaa ctaccga	cag 600 tac 660 aaa 720 ctg 780 gta 840 taa 900 tta 960 tat 1020				

-continued

taatgcttgg	agtgaagctt	acggactcct	caacaggtgc	attcacacat	catttagatg	1140
aaaataaaat	gatttcacta	aacatagatg	aaggaataat	tttcaataaa	gtggtagaag	1200
attttgattt	tagagcagtg	gtttcttctt	tatcagaatt	aaaaggaata	gaatatgaag	1260
gacaatatat	tgataagcaa	tatgaagaat	ttattccatc	aagtgctccc	ttatcacaag	1320
accgtctatg	gcaggcagtt	gaaagtttga	ctcaaagcaa	tgaaacaatc	gttgctgaac	1380
aaggaacctc	atttttgga	gcttcaacaa	ttttcttaaa	atcaaatagt	cgttttattg	1440
gacaaccttt	atggggttct	attggatata	cttttccagc	ggctttagga	agccaaattg	1500
cggataaaga	gagcagacac	cttttattta	ttggtgatgg	ttcacttcaa	cttaccgtac	1560
aagaattagg	actatcaatc	agagaaaaac	tcaatccaat	ttgttttatc	ataaataatg	1620
atggttatac	agttgaaaga	gaaatccacg	gacctactca	aagttataac	gacattccaa	1680
tgtggaatta	ctcgaaatta	ccagaaacat	ttggagcaac	agaagatcgt	gtagtatcaa	1740
aaattgttag	aacagagaat	gaatttgtgt	ctgtcatgaa	agaagcccaa	gcagatgtca	1800
atagaatgta	ttggatagaa	ctagttttgg	aaaaagaaga	tgcgccaaaa	ttactgaaaa	1860
aaatgggtaa	attatttgct	gagcaaaata	aatagtaagg	ctgagatctt	cttcagtgca	1920
ttgtagttga	atgaagggtt	aggggggaaa	tgccccccta	tttttgtct	agccatcctg	1980
ccacgtttga	cagggtagca	atttcgacac	gatagggttc	tctcttctgc	cgtta	2035

<210> SEQ ID NO 70

<211> LENGTH: 1426

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 70, Example 70: designer nirA-promoter-controlled NAD-dependent Alcohol Dehydrogenase DNA construct (1426 bp)

<400> SEQUENCE: 70

agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60 accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120 acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180 ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240 gggcaacaac catggggtat caggactgcc ctgcctagaa cttcaccttt ctctagcctc 300 tcaagcacat cgtttatttc atctagcttg tggatatcaa cctctaccct gaccttaccc 360 tgaagggcta acgtgactag ctcatggagc tctacatagt ttcctactag gcttccttca 420 aaggatacct cagaggatat caccetgate gtggggaate taageteace eccatageet 480 acgatgataa gcctccccat cctccctagc aggtatggtg tataatcgac tgtagcctga 540 gagectaega agtecattge aacgttaact ceteteeece tggtaagete catgaeetge 600 tttacagggt ctcgtctagc gtcaaccacg tgatccgctc caagcctctc ggccagcttt 660 agtttttctt ccttaacgtc cagtgctatc accgtcgcgg gtgtcataac tttaagtagc 720 tgaactgcaa tatgacctaa tcctcccacg cccactatag cgacgtatgc gccgggatag 780 agggtteggg eggeettett aacageeeta taageegtta teecagegte egetagaggg 840 gccatttcaa caagtttctc cctgctaata tccttaggca gctttatcac agacctgtgc 900 gaggteetea tgaactetge aaateeacea tegatattaa gteetgggaa etetaggtte 960

tcgcagtgca tatcctcacc	agctctacag	gctagacagg	ttccatctgt	gaccgccggg	1020
tgaagaatta ccgggtcccc	cttctctaag	ccttccactc	cttcggcaac	ttcttcaata	1080
tacccgacgt tctcatggcc	taaagtgtag	ggtagcttag	gctgcaatag	ctcatgccac	1140
atteeetgga caaggtggag	gtccgtatgg	catacgccag	cgcctgcaat	ccttacaata	1200
acgtcaaatc taccttctag	cctcggatag	tcgacatcct	ctatcctcaa	cggcttgtta	1260
tactcgtgga gcctggcagc	tttcaataag	gctgagatct	tcttcagtgc	attgtagttg	1320
aatgaagggt taggggggaa	atgcccccct	attttttgtc	tagccatcct	gccacgtttg	1380
acagggtagc aatttcgaca	cgatagggtt	ctctcttctg	ccgtta		1426
<210> SEQ ID NO 71 <211> LENGTH: 1468 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI 71: designer ni Dehydrogenase D	ON: Synthet: rA-promoter	ic Construct -controlled			
<400> SEQUENCE: 71					
agaaaatctg gcaccacacc	tgacccccat	cgagagactc	cgaacgtggc	aaatggaggg	60
accagagttg ttcagttcac	aggtagataa	tgtcgcgggt	cttgatagtt	agcaataaat	120
acagtttcag aatatctgta	atacaaaaac	tgtatcgaga	caagaaaaaa	gtagcaaaat	180
ttacaaatgt tcatgattca	tctggctaaa	ttggatgttc	aactgaccca	ttgaagacaa	240
gggcaacaac catggcgtac	ccagacacct	ttgaaggatt	tgccgtcact	gacactgcaa	300
aatggtccac aaccaagaag	atagaattca	ccccaaaaag	gttccaggaa	catgatatcg	360
atgtcaagat ccatgcctgt	ggtatctgcg	ggagtgatgt	tcacactgtt	tgcgggggat	420
gggcaaaacc agaccttccc	gtgatcccag	gacatgagat	cgttggtgag	gttgttagag	480
tgggcccaaa agtgaaggga	tttgaaattg	ggcaaagagt	tggtgttgga	gctcaagttt	540
gggcctgtct agagtgcgac	acatgcaagg	ataacaacga	aacgtactgt	cctcaatggg	600
tggacactta caatgccact	tatcctgatg	gtgacaaggc	atggggtggt	tattcctctc	660
acatcagagt ccacgatcac	tttgtattcc	ctattcctga	tgaacttcca	actaatgctg	720
tggccccaat gttgtgcgct	ggtatcacca	cgtactctcc	gttggtaaga	aatggagctg	780
gtccaggaaa gaaggtgggt	atcatcggaa	ttggagggtt	gggacatttt	gccatcatgt	840
gggetaggge tettggttge	gaagtgtaca	cgttttctag	aacacatagc	aaggaagctg	900
atgctaagaa attgggaact	gaccatttta	ttgcgacgtg	ggaggacaaa	gactgggcca	960
agaagattgg cagaaagctg	gactttatca	tttcgtgtgg	aaattcggcc	acgaactttg	1020
atatggatgg ttacctcagt	gtgctgaagg	ttcatggtaa	actcatttcc	gtcggccttc	1080
cagaggagcc attcacgctg	tctgctggaa	gctttatcaa	gaacggttgc	tacttgggat	1140
cgtcccactt ggggaacaga	caggagatgc	ttgatatgct	gaaacttgct	gctgataagg	1200
gcattggttc ttggtatgag	gagctcccaa	tctctgagga	agggctgaag	gaaggactgg	1260
agagatgcca caacaatgac	gttaagtata	ggttcaccct	gaccggttac	gataaggcat	1320
tcaaatagta aggctgagat	cttcttcagt	gcattgtagt	tgaatgaagg	gttagggggg	1380
aaatgccccc ctatttttg	tctagccatc	ctgccacgtt	tgacagggta	gcaatttcga	1440
cacgataggg ttctctcttc	tgccgtta				1468

<210> SEQ ID NO 72 <211> LENGTH: 1555 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 72, Example 72: designer nirA-promoter-controlled NADH-dependent Butanol Dehydrogenase DNA construct (1555 bp) <400> SEQUENCE: 72 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60 120 accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 180 acaqtttcaq aatatctqta atacaaaaac tqtatcqaqa caaqaaaaaa qtaqcaaaat ttacaaatqt tcatqattca tctqqctaaa ttqqatqttc aactqaccca ttqaaqacaa 240 gggcaacaac catgcaggga agcgcgcaaa atggcgagca catcatcgcg gttcaatgtt 300 ttgaaacggc cgaactcgcc aaacgccatc gctttatcgg ccatcagctc caagttttcc 360 tegeegatge catagteege aageegegae ggegeeeega ggetegaeea gaaetegege 420 agcogotoga tgoottoaag ogcoacatoo ogotoogatt tgooogoogg atogacatoa 480 aagacgcgca ccgcgagctg ggcgaaacgg ctgacatttt catcgagcac atgcttcatc 540 cagtteggga acaaaatege caateeeeg gegtgeggga tgteataeae ggeggaaaeg 600 gcatgctcaa tattgtgcgt cgcccagtcg ccgcggacgc ccatttgcaa gaagccgttt 660 aaggegateg tgeeegagta catgategte tegegeaget egtagtttte caaategttg 720 atcagtttgg gcgccgtttc gatcacggtt ttcaacaccg cttcacacat ccggtcttgc 780 aatggcgtgt tcggcgtatg gtggaaatat tgctcaaaca catgcgacat catatcgaca 840 atgeogtaaa cogtatggte tttoggaacg gteategtat acgteggate caaaategaa 900 aattgeggga acgtaaacgg getgeeecag eegtattttt etttegtete eeagtttgtg 960 atcaccgaac cagaattcat ctccgacccg gtcgccgcca gcgtcaagac gacgccaaac 1020 ggcagggcgc cggtgacggg cgcttttttc gtgataaact cccacggatc gccatcgaat 1080 ttcgcccccqg cggcgatcgc tttcgtgcag tcgatgacgc tgccgccgcc aaccgccagc 1140 aaaaattega egeetteeeg ettgeaaatg teeacceett ttettaeggt egagaegege 1200 gggttcggtt cgacgcctgg cagttcgatg acctcggcgc caatattccc caatatcttc 1260 atgactteet catacaatee gtttegtttg atgetgeege egecatacae gageageact 1320 ttettgeegt agegeggeac ttettetttg agaegttega getgeeettt teegaaaate 1380 aqtttcqtcq qqttqcqqaa aataaactct tqcattaaqq ctqaqatctt cttcaqtqca 1440 ttgtagttga atgaagggtt agggggggaaa tgccccccta ttttttgtct agccatcctg 1500 ccacgtttga cagggtagca atttcgacac gatagggttc tctcttctgc cgtta 1555

<210> SEQ ID NO 73

<211> LENGTH: 1558

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 73, Example 73: designer nirA-promoter-controlled NADPH-dependent butanol dehydrogenase DNA construct (1558 bp)

<400> SEQUENCE: 73

						-
-con	÷.	Ť.	n	11	ρ	d l

		-contin	ued			
agaaaatctg gcaccacacc	tgacccccat cgagagactc	cgaacgtggc	aaatggaggg	60		
accagagttg ttcagttcac	aggtagataa tgtcgcgggt	cttgatagtt	agcaataaat	120		
acagtttcag aatatctgta	atacaaaaac tgtatcgaga	caagaaaaaa	gtagcaaaat	180		
ttacaaatgt tcatgattca	tctggctaaa ttggatgttc	aactgaccca	ttgaagacaa	240		
gggcaacaac catgaaaatc	cacatcactg ccgtaatatg	cacaagtata	taatttttcc	300		
atagtttcat cattaatctc	ccttggattt gatcctgtgc	atggatctaa	aacagcatta	360		
tgagctataa atttaagatt	agctttaaat tcattctcat	ctattccata	ctctttcatt	420		
gatgaaggta tatttaattc	cttattaaac ttatttatta	aatctattag	gtcatctgtt	480		
aattetettt caetttetee	ctttaatcca atatgtcttg	caatgttagc	atatctattt	540		
tcacaagett ttetattata	tttaattaca tatggcaaga	agatagcatt	agcacatcca	600		
tgtggtatat ggaatacagc	ccctacctta tgagccatag	aatgtactat	tcctaaaagg	660		
gcattagaga aggccattcc	tgctaaacat tgagcctcat	gcatttctcc	cctagcttcc	720		
atateteect tatatgaatt	tactaagtgc atattaacca	tttcaattgc	ctttaaagct	780		
aaaggatctg taaagtttga	tcttaaactt gcagtataag	cctcaatagc	atgagttaag	840		
gcatccattc ctgtgtgagc	tactaacttc tctggcatag	tttctgctaa	gctaggatca	900		
acaatagcta tatctggagt	tatttcaaaa tctgctaaag	gatatttaat	cttagcctta	960		
taatcagtta ttactgagaa	ggcagttacc tctgtagcag	ttccagaagt	tgatggaata	1020		
gctacaaact ttgcttttct	tctaagctta ggtaatccaa	aaggaacaat	ggccttttca	1080		
aaagtaaaat caggatactc	gtagaaaatc cacatagcct	ttgctgcatc	aataggtgaa	1140		
cctcctccta tggaaactat	ccagtctgga ttaaattcct	ccatttcctt	tgcacccttc	1200		
ataacagttt ctactgatgg	atctggttct actccttcaa	aaacctttgt	ttccatatta	1260		
gcttccttta aataacttaa	aaccttatct aaaaagccaa	atcttttcat	tgatccgcca	1320		
ccaataacta taaaggcctt	tttaccttct aaactcttta	atacttctaa	ggaatcttt	1380		
ccatgatata tgtcccttgg	taaagtaaat cttgccatta	aggctgagat	cttcttcagt	1440		
gcattgtagt tgaatgaagg	gttagggggg aaatgccccc	ctattttttg	tctagccatc	1500		
ctgccacgtt tgacagggta	gcaatttcga cacgataggg	ttctctcttc	tgccgtta	1558		
<pre><210> SEQ ID NO 74 <211> LENGTH: 3646 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 74, Example 74: designer nirA-promoter-controlled Phosphoenolpyruvate Carboxylase DNA construct (3646 bp)</pre>						
<400> SEQUENCE: 74						
agaaaatctg gcaccacacc	tgacccccat cgagagactc	cgaacgtggc	aaatggaggg	60		
accagagttg ttcagttcac	aggtagataa tgtcgcgggt	cttgatagtt	agcaataaat	120		
acagtttcag aatatctgta	atacaaaaac tgtatcgaga	caagaaaaaa	gtagcaaaat	180		
ttacaaatgt tcatgattca	tctggctaaa ttggatgttc	aactgaccca	ttgaagacaa	240		
gggcaacaac catggccggc	gttccgcaag cccgccgcga	tgcccaggat	ggagagcagc	300		
agegeeeget eeagggeegg	gcgctcgggg tcgccttccg	gcgaggcccg	gtaccgggcc	360		
agcageteca eetgeaggta	gctgatgggg tcgacgtacg	ggttgcgcaa	ggccgtctgc	420		

cgcgccagca	cggggtggtg	ggccagaagc	ggcccgccga	aggtctcctc	caagagcgcc	480
cgggtccgca	ccatggcctc	ctcgagccgg	gggaagaacc	ggttcgccag	gggcccgggc	540
accagccgca	ggtactccct	ggccacggcc	aggtcggcct	tggccagggc	cagggccgcg	600
ccgtccagca	ccgagcggaa	gaagggccag	cgggcaaaca	tcgcctggcg	aaggtcccgc	660
ggcaccgccg	caagaccttc	ggccagcccg	taccagccgg	gcagcagaag	acgcacctgg	720
gtccaggcca	tcacccaggg	gatggcccgc	agateetgga	cgcgccgggc	ccggcccgtg	780
cgggccaccg	ggcgggaagc	gatcttcagg	gcggcgatct	cccggatcgg	ggtgaagtgc	840
tcgaagaact	cgaagaaccc	gggctccgcc	agcagctggc	ggtaggcctc	cgccgaccgg	900
gcggcggccc	ggtccatggc	ctcccgccag	gccgccggga	cggggggaacc	gcccggggcg	960
agcccctggc	gcccgccgcc	cggcctgctc	ggcgcggtcc	cggccccgcc	gggcgggccg	1020
ggttcctccg	gcgaaagcac	cgcctcttgg	gcctgggcca	gcgtgtcccg	ggccgccgcc	1080
agaaggaagt	ggtagaggag	ctgctccagg	ttgcgcaggg	ccagctcggg	gtgagcgtag	1140
cggtccgcca	gcgcctctcc	ctgctcggtg	agccgcaggc	ggcggcccac	ggtgcccggc	1200
ggcaggctgg	cgatggcgcg	gccggcggtc	cccccgccgc	cccgggctgt	ggacgtgccg	1260
cgaccgtgga	agaaggacac	cggcacgccc	gccgcccggg	ccaccgccgc	gatgccctcc	1320
tgggcccggt	agagggccca	gttggccgcc	aggtagcccg	cgtccttgct	ggagtcggag	1380
tagccgatca	tcacctcgca	gccgccgcgg	ccgcgggcgt	ggacgccgaa	gacggggttc	1440
tgcagcagct	gctccatggc	gcggggcgcc	gcctccaggt	cggccagggt	ctcgaacagg	1500
gggaccacgt	caaagggcaa	ggggtggccg	gggcggtaca	gccccacctc	ccgcgccagg	1560
acgaacacct	ccagcacgtc	ggcgggggccg	cggcagccgc	tgatgatgta	agccccccgg	1620
tcctgccagg	cccgcagagc	atccagggcc	acggccagct	cgcggctgcg	gggccggtag	1680
cccaccggcg	ccagcggccg	gggcgaagcc	agctcccggg	tcagcaccgc	ctcccgcccg	1740
gcggcatcca	gggccaggta	ctcccctgcc	gccatgaccc	caccggcttc	cagcagctcc	1800
gccaccgccc	gcccgtgggc	ctcggcatgc	tcccgcaggt	cgagggggcgc	catggcctcg	1860
ccaaagacct	gggcccgcca	gcgcagggga	cgcaccaggg	tggccgccgc	ctcgcccagc	1920
ccggcatccc	gcagcccctc	ttccacctgg	aagagcaggc	gatccagggc	ggtggaaccg	1980
gcggcctccg	gcccctcgcc	ggccggcggt	tccccggcgg	tcccctttgg	tggcgcggcc	2040
gcggcgggcc	gggaaggccg	ttcgccggct	gggtccgctg	gaacggcggg	ccctccaggg	2100
atgccctccg	ctgaagcggg	cggccgggga	ggcattgccg	ctccctccgg	cggagccgcc	2160
ggccggggag	gcggtgccgt	tgcctcgact	gcagcgtccg	gccggtgggg	tacagccggt	2220
gcctcggctg	gagccgccgc	ccgggcgggc	gtctcgctcc	acacctcttc	cggcaccgcc	2280
cttgccgccc	agtgccgctg	cagccggtag	gcgaaccgcc	ggtagggctc	gccggggaac	2340
cggccggcgg	ccgccggcgg	cagggggggc	acggcctctg	cgggcaagga	gggcagggga	2400
ggcagggaag	cccgttcttc	cgccacggac	agatcccgcg	tcagggcggc	caggcctccg	2460
gcgtactttc	gggcgatctc	ggcccgcgcg	taggcctggg	cccaggcggt	gacctccggg	2520
gtcacaaagg	ggttgccgtc	ccggtcacca	ccgatccagc	tccggaaggc	caggcgcggg	2580
ggaagaaccg	gccgccgccc	gtagcgggcg	gccaccgccc	cctcgagggc	ctccatgagc	2640
cggggcaccg	cctcccacag	ggtggtgggc	aggtagtaga	ggccgccgcg	gacctcgtcc	2700

-cont	ir	nned

			-contir	nued		
tccacccggg gcggggccgg	gcgcagctcg	cgggtggtcc	agagcagggt	gacccgggcc	2760	
accacctcgt ccaggtcccc	ctcgccccgc	tccagccggt	ccagggcctg	gttgagctgc	2820	
agcaggtggt ggcgcagggt	gcgccgccgc	gtctcggtcg	gatgggccgt	gaaggtcagc	2880	
tccagccggg ccgaggcgag	gaggcgcacc	acgtcgtcga	attccatccc	ttgggcctga	2940	
agctgggtga ccagggccag	cagcgactcg	ggccgggggcc	ggtcgggcgt	gctggcctgc	3000	
tcgcgccggc ggttcacccg	cacccggtgc	cgctcctccg	ccaggttgac	cagatggaaa	3060	
taggtcgaaa aggcccggat	cagcccttcg	gccgcggcca	ccgaaagccc	gccgatctcg	3120	
geeegeageg eetgeeggge	ggcgtcgtcc	cccgggtgct	gccggaggtg	cttggtgtgg	3180	
gcgcggatgt cctcttccag	ttcgaacagg	cgatcccccg	agaggcggcg	gatggcctcc	3240	
cccagggccc gtcccaggag	gtcgacctcc	cgcttgagaa	gggggtacag	ctcctcttcc	3300	
ggccgcccat ccggcggggg	aacggatccc	gccggggcag	gcaacgcctc	gccggacgag	3360	
ccggccgccg cagggcggct	cccctgcccg	ccgccccggt	cctggcggtc	ctgaccgtcc	3420	
ttgeggteee ggeegteett	caggtcccgg	eteccettee	ccgccgccga	gccggcccct	3480	
geeggeeggt caecetegee	gctcactaag	gctgagatct	tcttcagtgc	attgtagttg	3540	
aatgaagggt tagggggggaa	atgececet	attttttgtc	tagccatcct	gccacgtttg	3600	
acagggtagc aatttcgaca	cgatagggtt	ctctcttctg	ccgtta		3646	
<212> TYPE: DNA <213> ORGANISM: Artifi	cial Sequen	ice				
<pre><220> FEATURE: <223> OTHER INFORMATIO 75: designer nir DNA construct (1)</pre>	A-promoter-					
<223> OTHER INFORMATIO 75: designer nir	A-promoter-					
<223> OTHER INFORMATIO 75: designer nir DNA construct (1	A-promoter- 591 bp)	controlled	Aspartate A	Aminotransfe		
<223> OTHER INFORMATIO 75: designer nir DNA construct (1 <400> SEQUENCE: 75	A-promoter- 591 bp) tgacccccat	controlled	Aspartate A	Aminotransfe aaatggaggg	rase	
<223> OTHER INFORMATIO 75: designer nir DNA construct (1 <400> SEQUENCE: 75 agaaaatctg gcaccacacc	A-promoter- 591 bp) tgacccccat aggtagataa	controlled cgagagactc tgtcgcgggt	Aspartate 2 cgaacgtggc cttgatagtt	Aminotransfe aaatggaggg agcaataaat	rase 60	
<223> OTHER INFORMATIO 75: designer nir DNA construct (1 <400> SEQUENCE: 75 agaaaatctg gcaccacacc accagagttg ttcagttcac	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac	controlled cgagagactc tgtcgcgggt tgtatcgaga	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa	Aminotransfe aaatggaggg agcaataaat gtagcaaaat	60 120	
<223> OTHER INFORMATIO 75: designer nir DNA construct (1 <400> SEQUENCE: 75 agaaaatctg gcaccacacc accagagttg ttcagttcac acagtttcag aatatctgta	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa	controlled cgagagactc tgtcgcgggt tgtatcgaga ttggatgttc	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa	rase 60 120 180	
<223> OTHER INFORMATIO 75: designer nir DNA construct (1 <400> SEQUENCE: 75 agaaaatctg gcaccacacc accagagttg ttcagttcac acagtttcag aatatctgta ttacaaatgt tcatgattca	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa tcggaaagat	controlled cgagagactc tgtcgcgggt tgtatcgaga ttggatgttc caaaaaaggc	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca gccggcgagt	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa cccataagaa	rase 60 120 180 240	
<223> OTHER INFORMATIO 75: designer nir DNA construct (1 <400> SEQUENCE: 75 agaaaatctg gcaccacacc accagagttg ttcagttcac acagtttcag aatatctgta ttacaaatgt tcatgattca gggcaacaac catgagaatt	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa tcggaaagat gaagctgtaa	controlled cgagagactc tgtcgcgggt tgtatcgaga ttggatgttc caaaaaaggc aaaaaggtaa	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca gccggcgagt aaaaatctat	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa cccataagaa tatttaaaca	rase 60 120 180 240 300	
<223> OTHER INFORMATIO 75: designer nir DNA construct (1 <400> SEQUENCE: 75 agaaaatotg gcaccacacc accagagttg ttcagttcac acagtttcag aatatotgta ttacaaatgt tcatgattca gggcaacaac catgagaatt aattagtgcc atttgccgag	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa tcggaaagat gaagctgtaa acaccttcaa	controlled cgagagactc tgtcgcgggt tgtatcgaga ttggatgttc caaaaaaggc aaaaaggtaa tttattttca	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca gccggcgagt aaaaatctat gtatgaggaa	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa cccataagaa tatttaaaca aaacacagac	rase 60 120 180 240 300 360	
<223> OTHER INFORMATIO 75: designer nir DNA construct (1 <400> SEQUENCE: 75 agaaaatctg gcaccacacc accagagttg ttcagttcac acagtttcag aatatctgta ttacaaatgt tcatgattca gggcaacaac catgagaatt aattagtgcc atttgccgag taggtcaacc tgatatacca	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa tcggaaagat gaagctgtaa acaccttcaa cactcagcag	controlled cgagagactc tgtcgcgggt tgtatcgaga ttggatgttc caaaaaaggc aaaaaggtaa tttattttca gtcttctgcc	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca gccggcgagt aaaaatctat gtatgaggaa actgagggag	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa cccataagaa tatttaaaca aaacacagac gcttttacaa	rase 60 120 180 240 300 360 420	
<pre><223> OTHER INFORMATIO 75: designer nir DNA construct (1 <400> SEQUENCE: 75 agaaaatotg gcaccacacc accagagttg ttcagttcac acagtttcag aatatotgta ttacaaatgt tcatgattca gggcaacaac catgagaatt aattagtgcc atttgccgag taggtcaacc tgatatacca cccagattgt agottataca</pre>	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa tcggaaagat gaagctgtaa acaccttcaa cactcagcag atagatgttt	controlled cgagagactc tgtcgcgggt tggatgttc caaaaaaggtaa tttattttca gtcttctgcc tcccggatga	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca gccggcgagt aaaaatctat gtatgaggaa actgagggag aatcatcgtt	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa cccataagaa tatttaaaca aaacacagac gcttttacaa accaatggtg	rase 60 120 180 240 300 360 420 480	
<pre><223> OTHER INFORMATIO 75: designer nir DNA construct (1) <400> SEQUENCE: 75 agaaaatctg gcaccacacc accagagttg ttcagttcac acagtttcag aatatctgta ttacaaatgt tcatgattca gggcaacaac catgagaatt aattagtgcc atttgccgag taggtcaacc tgatatacca cccagattgt agcttataca aatattacgc cagattcgat</pre>	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa tcggaaagat gaagctgtaa acaccttcaa cactcagcag atagatgttt gctatgacag	controlled cgagagactc tgtcgcgggt tgtatcgaga ttggatgttc caaaaaaggc aaaaaggtaa tttattttca gtcttctgcc tcccggatga tcgtggcgga	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca gccggcgagt aaaaatctat gtatgaggaa actgagggag aatcatcgtt tccgggagat	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa cccataagaa tatttaaaca aaacacagac gcttttacaa accaatggtg gaaatacttg	rase 60 120 180 240 300 360 420 480 540	
<pre><223> OTHER INFORMATIO 75: designer nir DNA construct (1) <400> SEQUENCE: 75 agaaaatctg gcaccacacc accagagttg ttcagttcac acagtttcag aatatctgta ttacaaatgt tcatgattca gggcaacaac catgagaatt aattagtgcc atttgccgag taggtcaacc tgatatacca cccagattgt agcttataca aatattacgc cagattcgat gaagtgaagc tgtcctgttc</pre>	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa tcggaaagat gaagctgtaa acaccttcaa cactcagcag atagatgttt gctatgacag aattacgctg	controlled cgagagactc tgtcgcgggt tgtatcgaga ttggatgttc caaaaaaggtaa tttattttca gtcttctgcc tcccggatga tcgtggcgga gatttgctgc	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca gccggcgagt aaaaatctat gtatgaggaa actgagggag aatcatcgtt tccgggagat tcaacttggt	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa cccataagaa tatttaaaca aaacacagac gcttttacaa accaatggtg gaaatacttg atcaatcttg	rase 60 120 180 240 300 360 420 480 540 600	
<pre><223> OTHER INFORMATIO 75: designer nir DNA construct (1) <400> SEQUENCE: 75 agaaaatctg gcaccacacc accagagttg ttcagttcac acagtttcag aatatctgta ttacaaatgt tcatgattca gggcaacaac catgagaatt aattagtgcc atttgccgag taggtcaacc tgatatacca cccagattgt agcttatacca aatattacgc cagattcgat gaagtgaagc tgtcctgttc ttctggagcc gttctatgcc</pre>	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa tcggaaagat gaagctgtaa acaccttcaa cactcagcag atagatgttt gctatgacag aattacgctg gaggatggat	controlled cgagagactc tgtcgcgggt tgtatcgaga ttggatgttc caaaaaaggc aaaaaggtaa tttattttca gtcttctgcc tcccggatga tcgtggcgga gatttgctgc atcaaatacc	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca gccggcgagt aaaaatctat gtatgaggaa aatcatcgtt tccgggagat tcaacttggt aaagatgggt	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa cccataagaa tatttaaaca aaacacagac gcttttacaa accaatggtg gaaatacttg atcaatcttg gattttctgg	rase 60 120 180 240 300 360 420 480 540 600 660	
<pre><223> OTHER INFORMATIO 75: designer nir DNA construct (1) <400> SEQUENCE: 75 agaaaatctg gcaccacacc accagagttg ttcagttcac acagtttcag aatatctgta ttacaaatgt tcatgattca gggcaacaac catgagaatt aattagtgcc atttgccgag taggtcaacc tgatatacca cccagattgt agcttataca aatattacgc cagattcgat gaagtgaagc tgtcctgttc ttctggagcc gttctatgcc ttccagttag aactcgcccg</pre>	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa tcggaaagat gaagctgtaa acaccttcaa cactcagcag atagatgttt gctatgacag aattacgctg aaagcaatca	controlled cgagagactc tgtcgcgggt tgtatcgaga ttggatgttc caaaaaaggtaa tttattttca gtcttctgcc tcccggatga tcgtggcgga gatttgctgc atcaaatacc ttttttccaa	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca gccggcgagt aaaaatctat gtatgaggaa actgagggag aatcatcgtt tccgggagat tccacttggt aaagatgggt	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa cccataagaa tatttaaaca aaacacagac gcttttacaa accaatggtg gaaatacttg atcaatcttg gatttcctgg cctacggggg	rase 60 120 180 240 300 360 420 480 540 600 660 720	
<pre><223> OTHER INFORMATIO 75: designer nir DNA construct (1) <400> SEQUENCE: 75 agaaaatctg gcaccacacc accagagttg ttcagttcac acagtttcag aatatctgta ttacaaatgt tcatgattca gggcaacaac catgagaatt aattagtgcc atttgccgag taggtcaacc tgatatacca cccagattgt agcttataca aatattacgc cagattcgat gaagtgaagc tgtcctgttc ttctggagcc gttctatgcc ttccagttag aactcgcccg agaaaatcag tcacaggact</pre>	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa tcggaaagat gaagctgtaa acaccttcaa cactcagcag atagatgttt gctatgacag aattacgctg gaggatggat aaagcaatca cttgaagtta	controlled cgagagactc tgtcgcgggt tgtatcgaga ttggatgttc caaaaaaggc aaaaaggtaa tttattttca gtcttctgcc tcccggatga gatttgctgc atcaaatacc ttttttccaa	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca gccggcgagt aaaaatctat gtatgaggaa aatcatcgtt tccgggagat tccacttggt aaagatgggt tccctgcaat tgcttgaag	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa cccataagaa tatttaaaca aaacacagac gcttttacaa accaatggtg gaaatacttg atcaatcttg gatttcctgg cctacggggg agagatttgt	rase 60 120 180 240 300 360 420 480 540 600 660 720 780	
<pre><223> OTHER INFORMATIO 75: designer nir DNA construct (1) <400> SEQUENCE: 75 agaaaatctg gcaccacacc accagagttg ttcagttcac acagtttcag aatatctgta ttacaaatgt tcatgattca gggcaacaac catgagaatt aattagtgcc atttgccgag taggtcaacc tgatatacca cccagattgt agcttataca aatattacgc cagattcgat gaagtgaagc tgtcctgttc ttctggagcc gttctatgcc ttccagttag aactcgcccg agaaaatcag tcacaggact ctgtttacga tgaaaaacaa</pre>	A-promoter- 591 bp) tgacccccat aggtagataa atacaaaaac tctggctaaa tcggaaagat gaagctgtaa acaccttcaa cactcagcag atagatgttt gctatgacag aattacgctg aattacgctg aatgaatca cttgaagta tatagagat	controlled cgagagactc tgtcgcgggt tgtatcgaga ttggatgttc caaaaaaggtaa tttattttca gtcttctgcc tcccggatga gatttgctgc atcaaatacc ttttttccaa ttgctgaagt tcgctgaagt	Aspartate 2 cgaacgtggc cttgatagtt caagaaaaaa aactgaccca gccggcgagt aaaaatctat gtatgaggaa actgagggag aatcatcgtt tccgggagat tccacttggt aaagatgggt tccctgcaat tgctttgaag	Aminotransfe aaatggaggg agcaataaat gtagcaaaat ttgaagacaa cccataagaa tatttaaaca aaacacagac gcttttacaa accaatggtg gaaatacttg atcaatcttg gatttcctgg cctacggggg agagattgt gccatatcta	rase 60 120 180 240 300 360 420 480 540 600 660 720 780 840	

-continued

cagctatgaa actggctcag gcgagactct gtcctgctat gacatctcaa tacggtacta 1080 ttggtcttct gacgcttgac gatttgtatt attcacaaat gagaaaagag tatgaaatga 1140 gaagagatgt tgtttacgaa gaacttcagc gcattgatgg agcagtcttc aagaaacctc 1200 acggggcttt ttatatttcg gtgaaacttc caatcgacaa ttctgaagat tttgtgaaat 1260 ttatgttgac ggagtatgag gttgaaggaa aaacgacaat ggtggcacct ctcagtggat 1320 tttatqtaac accatctacq qqqatqaqtq aqatcaqaat aqcqtatqtt ctqqaacqcq 1380 aacaactgag ggatgcagtt gcaattttga cttcaggttt gaaaacttac atagagagaa 1440 1500 gaaataaata ataaggetga gatettette agtgeattgt agttgaatga agggttaggg qqqaaatqcc cccctatttt ttqtctaqcc atcctqccac qtttqacaqq qtaqcaattt 1560 cgacacgata gggttctctc ttctgccgtt a 1591 <210> SEO ID NO 76 <211> LENGTH: 1588 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 76, Example 76: designer nirA-promoter-controlled Aspartate Kinase DNA construct (1588 bp) SEQUENCE: 76 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60 accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120 acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180 ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240 gggcaacaac catgtagtcc gaaaacttga cagagttctt tcaacaaatc ttctgcttta 300 tetteatgta caaggeatga tatetttatt teagaagttg ttateattte tggetetatg 360 tttttctttc tcaaaacttc aaaaaatttt gctgcaacac ctcgttgata tttcattcct 420 aaacctatta ttgatacctt agaaaacccc cctgtgatct taatttcaca atcaagatct 480 ctcattgcct tctgtacgtc aaccgagtta ctttcaacaa ttgtgaaaga tagattaatg 540 teteetgagt taeteaceaa egatateata teaaegttaa ageettttte agegagttet 600 ctaaatacgt cggcggttgc tttagaattt ttcaagctat aaacgctgac ctttacctga 660 tttttctcta tcqtcqcqcc tqtaacaacq qqtcqctcaa qccattccqq aaqttttccc 720 atcacccacg ttecctecte atttgaaaac gaagaagege aataaattgg taegetgtat 780 ttttttgcta tctcaacact tcgagaatgt agaaccctgg caccaagtgc ggagaattcc 840 aacatttcat cqtatqtaat ataaqacaqt ttttttqcct qqqqaaaqat cctqqqatct 900 gttgtatata tgccagcgac gtcgctgtat atttcgcaga ttgttccaag ttttgcggca 960 atagcaacag cagaagtatc tgatcctcct cttccaagag ttgtcagttc atcgttttcg 1020 tttattccct gaaaccctgt aacaagtaaa acatcgttat gaaaagccag cgatcttaat 1080 tttcggtcat ctatatcttt tatccttgcc gaattaaaat cgctggttgt cagaatccga 1140 gcctgaaacg cattcaaaga tacagctttc atacctattc tgtcaaggta tatggatagc 1200 aaagcagcgg atatttgttc gccacaggat aacaacatat ccagttctct tggattgggt 1260 ttttcagaca gccttcttgc aagaaaaacc aatttgtctg ttgtttttcc cattgcagag 1320 acaacaacga ttaacttttt cccatttttt actgttttca ctattttctc ggtaattttt 1380

-continued

-continued	
ttgattettt etatgetgge aagegatgag eeaceatatt tttgtacaae aagttteaga	1440
aaaatcacta aggctgagat cttcttcagt gcattgtagt tgaatgaagg gttagggggg	1500
aaatgccccc ctattttttg tctagccatc ctgccacgtt tgacagggta gcaatttcga	1560
cacgataggg ttctctcttc tgccgtta	1588
<210> SEQ ID NO 77 <211> LENGTH: 1411 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 77, Exa 77: designer nirA-promoter-controlled Aspartate-Semialdehyde Dehydrogenase DNA construct (1411 bp)	
<400> SEQUENCE: 77	
agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg	60
accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat	120
acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat	180
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa	240
gggcaacaac catgtcccct gaaaatatta taaatctctg cattgagaac tgcacacccg	300
gcagcccctc tgattgtatt atgaacaaga gcaacgaacc caaactgttt gttcgaatac	360
tgtttcaacc tgccaacact gacactcatt ccaccaccaa gatctctgtg aaacttcggc	420
tgcggagaat caactcctgt caaataaaaa acaggttttt caggtgcggt tggaagatac	480
atteettaa gtggttgaaa atetteaaaa geteteacaa ttteaettaa agtggeettt	540
teetgagttt tgatagttat agatageata tgaeegteaa eaaeggetae eetgttgeae	600
tgtgcgaaaa tatcgagatt cgccgggtat atttttccat ctttcaatct gccaagtatt	660
ttttttgatt cggtcatgat tttttcttcc tcatttttta tgaacggcac aacattgtca	720
attatatcca tagatggtac accgggatat cccgcgccag agatagcctg cattgtgaca	780
acatttgcct cttctatacc gaatctatcc attatgggtt taagaaccat tgtaaaacct	840
atcgttgagc aattagggtt ggtgattatt tttccttttc tcttttgagt ttcggttatt	900
ttcaaatgat ccagattaac ttcagggata attagaggta catcctcgtc cattctatgg	960
cttgcggcat ttgagaaaac aatgtateet gegtttgeaa atteeteete aatttegeet	1020
gcaacatctg aaggcaaagc agaaaacaca taatcacaat ctatatcagg tgtgcatttt	1080
tttaaaacca tatctcctgc tttttcggct acaggaacat tcaagcgcca ttgaactgct	1140
tetetgtaet ttttteeege agaattatea gaagetgeea gagetgttat eteaaaaaat	1200
ggatgatttg aaagcaattg aacaaatctc tgtccaacaa gccctgttgc accaagaata	1260
gctaccttca ttaaggctga gatcttcttc agtgcattgt agttgaatga agggttaggg	1320
gggaaatgcc cccctatttt ttgtctagcc atcctgccac gtttgacagg gtagcaattt	1380
cgacacgata gggttctctc ttctgccgtt a	1411
<210> SEQ ID NO 78 <211> LENGTH: 1684	

<210> SEQ 1D NO 76
<211> LENGTH: 1684
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 78, Example 78: designer nirA-promoter-controlled Homoserine Dehydrogenase DNA construct (1684 bp)

<400> SEQUENCE: 78							
agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaa	atggaggg 60						
accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt ago	caataaat 120						
acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gta	agcaaaat 180						
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttg	gaagacaa 240						
gggcaacaac catgaacttt actatetteg eettecaeee ggatgaegtt gea	aaatctct 300						
gccactatac tcatttctcc caacaccatc agggcatctc gcaggtcaga tto	aggaact 360						
ctatgggtca ctaagaccag ctgggcgaac teetegeege ttgtettetg cag	gcacggta 420						
gctatgctca gctgatggct gccaaaaacc ccggcgatgg ccgccaatac ccc	agggcgg 480						
teettaacea geateegaat atagaaettg eteteeaett tgtegatagg aat	aatctcc 540						
ttggetteaa aacaagtaca geeeageatg eeggtggtae eatgaetgag gtt	atggcat 600						
atotocatta tgtotocoac cacogogota goagtgggoa totgoootgo ooo	stottoca 660						
aagaacatga cttctcccac cgcgtccccg ttcacgaata cggcgttgta aac	ccccttt 720						
accgeggeea gagggtggtg cataggtatg aaageegggt ggaeeeggge tte	gcacccgg 780						
ccgtcgattt cctgcgcgat agccaggagc ttcaccacat agcccaattc ata	aaccgtac 840						
ttgatatcta aagggcttaa acgggtaatt ccttcaacgt aaacgttttc gaa	acgtaacc 900						
cggctgttga aggcgatcga agccaggatg gcaattttac gagcagcatc ata	agcettet 960						
acgtetgaag taggateage tteageatae eecagtteet gegeetettt eaa	agccctc 1020						
gaaaactcta ggccttcctc gctcatctta gtaaggatgt agttggttgt ccc	gttaaca 1080						
atccccatta cttctttgat tcgattggca cctagcgaat gcttcaaagg ata	aattaag 1140						
gggatgeece caccaacact ggetteaaaa aagaagteea eettgttete tte	agctgcg 1200						
gccagcagtt cctgcccgtg gaccgctatt aaatctttat tggcagtcac cac	gttettg 1260						
cctttgcgta acgcctgcaa aataaaggtt cgagccggtt cgatgcctcc tat	gagttct 1320						
acaacaacac ttatatggtc atcatccagt atgtctttga tatcggcgca aag	ggacgtct 1380						
tegettaaac ctagacteaa aacettetee gggtettttt egaggatteg ett	gategeg 1440						
acteettgte eggtaeggag egaaataaca teeeggtttg aggetaaaag ett	gaccaca 1500						
ceggateeaa eegtteeaca acceaagagg eeaatattaa eeactaagge tga	agatette 1560						
ttcagtgcat tgtagttgaa tgaagggtta ggggggaaat gcccccctat ttt	ttgtcta 1620						
gccatcctgc cacgtttgac agggtagcaa tttcgacacg atagggttct ctc	ettetgee 1680						
gtta	1684						
<210> SEQ ID NO 79 <211> LENGTH: 1237 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 79, Example 79: designer nirA-promoter-controlled Homoserine Kinase DNA construct (1237 bp) <400> SEQUENCE: 79							
agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaa	atggaggg 60						
accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt ago	caataaat 120						

-con	t-	Ť.	n	11	ρ	d	

-continued	
	180
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa	240
gggcaacaac catgaaggtc ctggtaccgg ccacaacgac caatctcgga gcgggattcg	300
acgtetttgg actegegetg gatettttea aegaagtgga gttttettte gatacaaaag	360
agacaaccat agaaagtact ggaaaatacg cttcggattt gaaggaccac aatctgtttt	420
tcgaagtett caggttettt gagagaaaaa eegggtaeag agtteegeea gteaggatea	480
agcagacatg caacateeet gtategageg gtettggate gagegeeget gtgategteg	540
cggcactcca cattgcgaac gaaggaacgg gcagaaatct ttcacgggaa gatcttatga	600
aactcgctgt ggagctggaa ggacaccctg acaacgttgt acccgctttc acaggggggc	660
ttgtggtctg ttatcaaaac ggaagtcatc ttgattttga aaagttcgag atcgatcttt	720
ctctcacatt tttcgttcca aacttttcga tgtgcacgaa cgagatgaga aagatccttc	780
cggagaaggt ccctttcgaa gatgcggtct tcaacataaa gaattcatgc cagttccttg	840
caaagatcgc agctggaaag atcaaagagg ctctgaaata cgtgggagat cgacttcacc	900
agaactacag gataaacggc aataagaaga tgaaagagtt tgtggaagcc atcttatcaa	960
aaaatcccga gtactggttt gtgagcggat ccggtccttc tgtttgttcc aatataaatg	1020
actttgaagg gattccctat ctcaaggacg ttctgaagct gagggtgaac aacaggggga	1080
tgatagtttc agaatagtaa ggctgagatc ttcttcagtg cattgtagtt gaatgaaggg	1140
ttaggggggga aatgeeeece tatttttgt ctageeatee tgeeaegttt gaeagggtag	1200
caatttegae aegatagggt tetetettet geegtta	1237
<210> SEQ ID NO 80 <211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp)	-
<211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I	-
<211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp)	-
<211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80	ANA
<pre><211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg</pre>	DNA 60
<211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat	60 120
<pre><211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggagggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat</pre>	60 120 180
<211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatactgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa	60 120 180 240
<pre><211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatactgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa gggcaacaac catgaaattg ggaatactcg aaaagtacag agaatttctt cccgtaacag</pre>	60 120 180 240 300
<pre><211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatactgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa gggcaacaac catgaaattg ggaatactcg aaaagtacag agaatttctt cccgtaacag accaaaacccc catgctctct ttgaatgaag ggaacactcc tctcataccc ctcgtgaaca</pre>	60 120 180 240 300 360
<pre><211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80 agaaaatctg gcaccacacc tgaccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatactgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa gggcaacaac catgaaattg ggaatactcg aaaagtacag agaatttctt cccgtaacag accaaaacccc catgctctct ttgaatgaag ggaacactcc tctcataccc ctcgtgaaca tgagcaggga actcggaata aacatctacg taaaatacga aggggccaat ccgacggggt</pre>	60 120 180 240 300 360 420
<pre><211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80 agaaaatctg gcaccacacc tgaccccat cgagagactc cgaacgtggc aaatggagggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat ttacaaatgt tcatgattca tctggctaaa ttggatgtte aactgaccca ttgaagacaa gggcaacaac catgaaattg ggaatactcg aaaagtacag agaatttctt cccgtaacag accaaaacccc catgctctct ttgaatgaag ggaacactce tctcatacce ctcgtgaaca tgagcaggga actcggaata aacatctacg taaaatacga aggggccaat ccgacggggt ccttcaaaga cagaggaatg gtcgttgccg tcgcaaaggc actggaagaa ggctcgaaag</pre>	60 120 180 240 300 360 420 480
<pre><211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80 agaaaatctg gcaccacacc tgaccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatactgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgacca ttgaagacaa gggcaacaac catgaaattg ggaatactcg aaaagtacag agaatttct cccgtaacag accaagagta actcggaata aacatctacg taaaatacga aggggccaat ccgacggggt ccttcaaaga cagaggaatg gtcgttgccg tcgcaaaggc actggaagaa ggccgaaag ccatcatgtg cgcttcaacg gggaacacct ccgcatccgc tgccgcgtac gccgcaaggg</pre>	60 120 180 240 300 360 420 480 540
<pre><211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> GTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80 agaaaatctg gcaccacacc tgaccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatactgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa gggcaacaac catgaaattg ggaatactcg aaaagtacag agaatttctt cccgtaacag accaagagtag actcggaata aacatctacg taaaatacga aggggccaat ccgacggggt ccttcaaaga cagaggaatg gtcgttgccg tcgcaaaggc actggaagaa ggctcgaaag ccatcatgtg cgcttcaacg gggaacacct ccgcatccgc tgccgcgtac gccgcaaggg caggaataaa ggcgatcgtt ctgataccag aagggaagat cgcactcgga aagctggctc</pre>	60 120 180 240 300 360 420 480 540
<pre><211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 80, Exa 80: a designer nirA-promoter-controlled Threonine Synthase I construct (1438 bp) <400> SEQUENCE: 80 agaaaatctg gcaccacacc tgaccccat cgagagactc cgaacgtggc aaatggaggg accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatactgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa gggcaacaac catgaaattg ggaatactcg aaaagtacag agaatttct cccgtaacag accaaaacccc catgctctt ttgaatgaag ggaacactcc tctcataccc ctcgtgaaca tgagcaggga acccggaata aacatctacg taaaatacga aggggccaat ccgacggggt ccttcaaaga cagaggaatg gtcgttgccg tcgcaaaggc actggaaga ggctcgaaag ccatcatgtg cgcttcaacg gggaacacct ccgcatccgc tgccgcgtac gccgcaaggg caggaataaa ggcgatcgtt ctgataccag aagggaagat cgcactcgga aagtgtctga </pre>	60 120 180 240 300 360 420 480 540 600 660

-continued

acaaggagta ttatcagcat gggttctcca ccaaactgcc gaagatgatg ggattccagg 900 cggaaggggc cgcccccata gttcgcggtc atcccataga aaacccggag acggtcgcca 960 ctgcaataag gatcggtaac cccgcgaact gggaaaaagc ggtccgggca cgcgatgaat 1020 cgggtggaga catcgacatg gtgagcgacg aagaaatact gcgcgcacag agactcttgg 1080 ctcagaaaga agggatette tgtgageeeg categgetge atcgatageg gggettttga 1140 agaagcacag acagggaatc ttcaggggtg gagagatcgt tgtgtgtacc ctcacaggga 1200 1260 acggtttgaa agatccgaac atcgtcatct cacagcttga acccccaagg atcatagaag 1320 gaagagtaga agagattetg gaggtaeteg acatatgata aggetgagat ettetteagt 1380 gcattgtagt tgaatgaagg gttagggggg aaatgccccc ctattttttg tctagccatc ctgccacgtt tgacagggta gcaatttcga cacgataggg ttctctcttc tgccgtta 1438 <210> SEO ID NO 81 <211> LENGTH: 1600 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 81, Example 81: designer nirA-promoter-controlled Threonine Ammonia-Lyase DNA construct (1600 bp) <400> SEQUENCE: 81 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60 accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120 acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180 ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240 gggcaacaac catgttgaca ttagcagaca ttgaacaagc gcgagcgaaa atgaaaggca 300 tcgtccatca aacgccgctt gagcattcgc aaacgttcag ccggctgtct ggcaatgatg 360 tatatatgaa actcgaaaat ttgcaaaaaa cgggctcgtt taaagtaaga ggttcattca 420 ataaaattat gtcgctcacg gaagaagaga gggcgcgcgg cgtcatcgcc gcttcggccg 480 gcaaccacgc ccaaggggtc gcctatgcga gcggcatgct tcatattccg tgcacgatcg 540 tcatgccaaa aggcgcgccg ctcagcaaaa ttgaagcgac gaaaagctac ggggcggaag 600 tcgtgctgta cggcgatgtg tttgacgagt ctttggaata tgcgttagag ttgcagcgtg 660 aacggggggat gacgtttgtt catccgtttg acgacttggc ggtgatggcc ggccaaggga 720 780 cgatcggctt agagctgatc gagcagcttc ccgacgtcga tgtcgttctt tgtccagtcg gcggcggcgg gttgcttgcg ggggtggcgc ttacgttaaa acagctgaag ccgtcggttg 840 aagtgtacgg cgttgagtca tcggcttgcc ccggcatgac ggcggccata cgccataaac 900 agecegtete cattgeegea tegaataega tegeegatgg gattgeegtg aaaaageegg 960 gcaatattac gtaccaatac attgagcaat acgtcgatgg cgttgtatgc gtggaagagg 1020 cggaaatttc gcggacgatg ctgtatgtgc tcgagcggaa caagctgttg atcgaagggg 1080 cggcagcttg tccgctggcg gcattgttgt atcaaaagct gccgtttcgc ggcaaaaaag 1140 tegeogecat tttaagegge ggcaacgteg atgtgaeget cattteeege atcategage 1200 ggggggctcgt cgaageeggg cgattegtta cgtttacaae ggteatetee gaeaageegg 1260 gccagttgaa caagctgctg cgcattattg cggagcttga ggcaaacgtg atgtcgattc 1320

			-
cont	1	nu	ed

			-contir	nued		_
atcatcagcg catcggcgcc	aaagtgctgc	caggtcaggc	ggaaattcac	ttttcgctcg	1380	
agacaaaaaa cgaagaccac	attcagcaaa	tctaccaagt	gttgttgaaa	gaaggctacg	1440	
atgtacagtt ttaccgatga	taaggctgag	atcttcttca	gtgcattgta	gttgaatgaa	1500	
gggttagggg ggaaatgccc	ccctatttt	tgtctagcca	tcctgccacg	tttgacaggg	1560	
tagcaatttc gacacgatag	ggttctctct	tctgccgtta			1600	
<pre><210> SEQ ID NO 82 <211> LENGTH: 2107 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI 82: designer ni construct (2107)</pre>	ON: Synthet: rA-promoter	ic Construct	-		-	
<400> SEQUENCE: 82						
agaaaatctg gcaccacacc	tgacccccat	cgagagactc	cgaacgtggc	aaatggaggg	60	
accagagttg ttcagttcac	aggtagataa	tgtcgcgggt	cttgatagtt	agcaataaat	120	
acagtttcag aatatctgta	atacaaaaac	tgtatcgaga	caagaaaaaa	gtagcaaaat	180	
ttacaaatgt tcatgattca	tctggctaaa	ttggatgttc	aactgaccca	ttgaagacaa	240	
gggcaacaac catgttgaca	aaagcaacaa	aagaacaaaa	atcccttgtg	aaaaacagag	300	
gggcggagct tgttgttgat	tgcttagtgg	agcaaggtgt	cacacatgta	tttggcattc	360	
caggtgcaaa aattgatgcg	gtatttgacg	ctttacaaga	taaaggacct	gaaattatcg	420	
ttgcccggca cgaacaaaac	gcagcattca	tggcccaagc	agtcggccgt	ttaactggaa	480	
aaccgggagt cgtgttagtc	acatcaggac	cgggtgcctc	taacttggca	acaggcctgc	540	
tgacagcgaa cactgaagga	gaccctgtcg	ttgcgcttgc	tggaaacgtg	atccgtgcag	600	
atcgtttaaa acggacacat	caatctttgg	ataatgcggc	gctattccag	ccgattacaa	660	
aatacagtgt agaagttcaa	gatgtaaaaa	atataccgga	agctgttaca	aatgcattta	720	
ggatagcgtc agcagggcag	gctggggccg	cttttgtgag	ctttccgcaa	gatgttgtga	780	
atgaagtcac aaatacgaaa	aacgtgcgtg	ctgttgcagc	gccaaaactc	ggtcctgcag	840	
cagatgatgc aatcagtgcg	gccatagcaa	aaatccaaac	agcaaaactt	cctgtcgttt	900	
tggtcggcat gaaaggcgga	agaccggaag	caattaaagc	ggttcgcaag	cttttgaaaa	960	
aggttcagct tccatttgtt	gaaacatatc	aagctgccgg	taccetttet	agagatttag	1020	
aggatcaata ttttggccgt	atcggtttgt	tccgcaacca	gcctggcgat	ttactgctag	1080	
agcaggcaga tgttgttctg	acgatcggct	atgacccgat	tgaatatgat	ccgaaattct	1140	
ggaatatcaa tggagaccgg	acaattatcc	atttagacga	gattatcgct	gacattgatc	1200	
atgettacea geetgatett	gaattgatcg	gtgacattcc	gtccacgatc	aatcatatcg	1260	
aacacgatgc tgtgaaagtg	gaatttgcag	agcgtgagca	gaaaatcctt	tctgatttaa	1320	
aacaatatat gcatgaaggt	gagcaggtgc	ctgcagattg	gaaatcagac	agagcgcacc	1380	
ctcttgaaat cgttaaagag	ttgcgtaatg	cagtcgatga	tcatgttaca	gtaacttgcg	1440	
atatcggttc gcacgccatt	tggatgtcac	gttatttccg	cagctacgag	ccgttaacat	1500	
taatgatcag taacggtatg	caaacactcg	gcgttgcgct	tccttgggca	atcggcgctt	1560	
cattggtgaa accgggagaa	aaagtggttt	ctgtctctgg	tgacggcggt	ttcttattct	1620	
cagcaatgga attagagaca	gcagttcgac	taaaagcacc	aattgtacac	attgtatgga	1680	

	gacatg gttgcattco	addaattdaa	aaaatataad	catecetata	1740
					1800
	aatatc gatatcgtga				
	ccagac cagctggcag				1860
	gatgtc ccggttgact				1920
agcttccgaa agaat	tcggg gaactcatga	aaacgaaagc	tctctagtaa	ggctgagatc	1980
ttetteagtg catte	gtagtt gaatgaaggg	ttaggggggga	aatgcccccc	tatttttgt	2040
ctagccatcc tgcca	acgttt gacagggtag	caatttcgac	acgatagggt	tctctcttct	2100
gccgtta					2107
<220> FEATURE: <223> OTHER INFO 83: design		ic Construc			
<400> SEQUENCE:	83				
agaaaatctg gcaco	cacacc tgacccccat	cgagagactc	cgaacgtggc	aaatggaggg	60
accagagttg ttcag	gttcac aggtagataa	tgtcgcgggt	cttgatagtt	agcaataaat	120
acagtttcag aatat	cctgta atacaaaaad	tgtatcgaga	caagaaaaaa	gtagcaaaat	180
ttacaaatgt tcato	gattca tctggctaaa	ttggatgttc	aactgaccca	ttgaagacaa	240
gggcaacaac catgt	tttac ctctttaage	caaggcatca	tcgccctaag	ttccttacct	300
actttttcta tcage	gtgete etgeeettte	ctccgcaagg	cactgaagac	cggacggccc	360
acttggaatt cgago	caagag ctcccgggca	aaagttccat	cctggatggc	agccaaaacc	420
tttttcatct caged	cetggt gttttegttt	attatgcgcg	gacctaccgt	gaggtcgccg	480
tactcagcgg tatca	actgac cgagtaccgc	ataaggccga	taccgccttc	gtatataagg	540
tctactatga gctta	aagctc gtgcaggcac	tcgaaatagg	ctatctccgg	ctggtatcct	600
gcctctacca aggta	atcaaa accggcttta	ataagttcag	tgaccccgcc	acagagcaca	660
cattgttctc cgaat	aggtc ggtctcggtt	tcttctttaa	aagtagtagc	gatgacacct	720
gcacgggtac agcco	gatacc tttagcatag	gctaaccccg	tttccaaggc	tttccccgta	780
tggtcattat gtace	ggctat gagcccgggg	actcccactc	cttgcctgta	catacgcctg	840
accagatgac cagga	actett aggegetaee	atgaagacat	cgacggaagg	cggaggcaca	900
atttgcccga aatgt	atgtt gaacccatga	gaaaatccca	acgcatcgcc	ttcgttaagg	960
taaggttega tettt	tcccg gtaaaccttg	gcctggatat	catccggcac	caaaatctgg	1020
attatctggg cagct	ceggge egetteatet	accggtaaag	gcgtaagccc	gtcggctaca	1080
acctgattcc actco	cgcagt ggtaaaatcg	tcctccggct	tacgcaaccc	taccaccact	1140
tcgagaccac tgtcg	gtgaag gttctgggcc	tgagcgtgtc	cctggctgcc	ataaccgatc	1200
acggcaatgg tette	geettt aageaggtea	aggtttgcat	cagcatcata	atacatccta	1260
gccattaagg ctgag	gatett etteagtgea	ttgtagttga	atgaagggtt	aggggggaaa	1320
tgccccccta ttttt	tgtct agccatcctg	ccacgtttga	cagggtagca	atttcgacac	1380
gatagggttc tctct	ttctgc cgtta				1405

```
-continued
```

<210> SEQ ID NO 84 <211> LENGTH: 2056 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 84, Example 84: designer nirA-promoter-controlled Dihydroxy-Acid Dehydratase DNA construct (2056 bp) <400> SEQUENCE: 84 agaaaatetg geaceacaee tgaceecat egagagaete egaaegtgge aaatggaggg 60 120 accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180 ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240 gggcaacaac catggggctt cctgaagatt gcccccttgc tcgccgactg tacgaagaat 300 gcgtacette teaggtaate getgtecaet tettteacea gaggegtgaa etettteatt 360 cttctttcga actcttcgtc tgagatcaag agattcaggg ttctcttttc aaaatctatc 420 tegatgaggt cecegtettt caegataeet ataggaeege ettetgeege ttetggagaa 480 acgtgaccta tcacggcacc gtgcgatcca cccgagaacc taccgtctgt gatgagagcc 540 acgteeteeg caaggeeeat ecceaegatg geggaggtgg gtgagageat eteteteate 600 ccgggaccgc ccttcggccc ttcgtagcgg atcacaacca catctccttt tttgatcttt 660 ccagatagaa tggcttttgt cgcctcttct ccgtcttcaa agacgacggc cgggccaacg 720 tggtgcatca tcttctcggg aacaccggag agtttggcaa ccgctccttc tggagcgagg 780 ttcccgaaga ggataccgag tccgccctct ttgtggtacg gattatcgaa gggcctgatc 840 acatetteat teaggatett ageetetetg acgagatete caatettet caaatagatg 900 gtcatggcgt cttccttcaa aagaccattt tcctggagac gtttcatcac agcgtagata 960 ccaccagcat cgtcgagatc ctggatgtgg tacggaccaa cgggagagat gttgcagatg 1020 tgaggaatct tcctgctgag ttcgtcaaag agctttatat cgaaatctat tccaaaactc 1080 toggotatog cottoaaatg cagaactgtg ttogtggaac ctocogttgc gaggtocaco 1140 atgacagegt teatgaaaga gteeagagtg aegatateee ttggttttae atetettte 1200 acgagtteea caacgageat eccegettet tregecatte teaacetett egegtggaeg 1260 1320 gccggtacag tcccattccc cctcggtgca attccgagag cttccgccag agagttcatc gtgttcgcgg tgaacaatec ageacacgaa ccggcaccgg gacacgcgag gtettetate 1380 getttgageg tttetteate gaetttteee aetttgtate caecaacege ttegaagaeg 1440 gtgatgagat cgatgtctct gccgttgtag cgacctgcga gcatgggacc gccggatatc 1500 agaacggacg ggatgttcaa tetteccatg gecateatea tgeegggtgt gatettgteg 1560 cagttgggga cgaagaccaa accatcgaag gggaaaccgc ttgcaacgat ctctatggag 1620 tccgctatga gttccctcga gggcaaggaa aacttcatcc ccctgtgatc cattgctatt 1680 $\verb|ccgtcacaga tcccgatcgt tggaaagacg aagggaactc ccccggccat tctcacaccg||$ 1740 gctttcaccg cttcaacgac cttgtcaagg tggacatggc cgggaatgat ctcgttccac 1800 gaggacacta tgccgatgaa aggccttcgc atttcgtcgt ccgttattcc gagcgctttc 1860 aaaagtgatc tatggggagc cctttcgaga cctttctta tcacatcact cctcattaag 1920 gctgagatct tcttcagtgc attgtagttg aatgaagggt tagggggggaa atgcccccct 1980

-	cont	ınu	ed

-continued	
attttttgtc tagccatcct gccacgtttg acagggtagc aatttcgaca cgatagggtt	2040
stetettetg cogtta	2056
<pre>2210> SEQ ID NO 85 2211> LENGTH: 1360 2212> TYPE: DNA 2213> ORGANISM: Artificial Sequence 2200> FEATURE: 2223> OTHER INFORMATION: Synthetic Construct- Sequence No. 85, Exam 85: designer nirA-promoter-controlled 2-Methylbutyraldehyde Reductase DNA construct (1360 bp)</pre>	mple
<400> SEQUENCE: 85	
agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg	60
ccagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat	120
cagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat	180
tacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa	240
ggcaacaac catggettet gtaaatgaet aetttgagaa egecaagaeg aegtaettta	300
tttgagatc gggtgacaag atccccgctg ttggattggg tacttggcaa tcacccacca	360
cgagactaa agaggcagtc aagtacgctt tgcagcacgg ttaccgtcac atcgatgctg	420
cgccattta tggtaacgaa gacgaggttg gtgacggtat caaggagagt ggaatcoctc	480
tgaccaaat ctgggtcaca tctaagctct ggtgcaatgc tcatgctccc gaggctgtcc	540
caaggettt ggagaagaee ttgegtgage tgaaaettga ttaeettgae etttaeetea	600
ccactggcc tatttctttg aagaccggcg atgacttggt tcccaaggac aaggacggca	660
caccatcac tgtcgaaatt cccctcgagg acacctggaa ggctatggag ggtcttgtga	720
gtccggcaa ggtgaagaac attggtattt ccaatttcaa caacgaagag ttggatcgta	780
tttgaaggt tgeegagatt eeteetgeeg teeaceaaat ggaaaeteat eettaettga	840
gcagacgga gttcattgag aagcacaaga agcttggcat tcacgtcacc gcttactcgc	900
tttggccaa ccaaaatgct ctttacggca atgccgttcc caagttgatt gagcacaaga	960
tettgtega cattgeeaag accaagggtg agggegteae tggtgeeaae attgetattt	1020
ttgggcagt caagcgcggt acttcggtta ttcctaagtc tgttcatgcc aacagaatta	1080
gagcaactt cetegttgtt eeettgaetg atgaegagat gaaggeeate gataaeattg	1140
tgtcagcaa gcgtttcaat tggagcaaag ttttctgcaa tgagaattgt ttctacggtc	1200
tgaggatgg teeteagtaa taaggetgag atettettea gtgeattgta gttgaatgaa	1260
ggttagggg ggaaatgeee eestatttt tgtetageea teetgeeaeg tttgaeaggg	1320
agcaattte gacaegatag ggttetetet tetgeegtta	T200
<pre>2210> SEQ ID NO 86 2211> LENGTH: 1420 2212> TYPE: DNA 2213> ORGANISM: Artificial Sequence 220> FEATURE: 2223> OTHER INFORMATION: Synthetic Construct- Sequence No. 86, Exam 86: designer nirA-promoter-controlled 3-Methylbutanal Reducts DNA construct (1420 bp)</pre>	

<400> SEQUENCE: 86

-continued	
COncinuca	

-continued	
– accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120	
acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180	
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240	
gggcaacaac catgtcagtt ttcgtttcag gtgctaacgg gttcattgcc caacacattg 300	
tcgatctcct gttgaaggaa gactataagg tcatcggttc tgccagaagt caagaaaagg 360	
ccgagaattt aacggaggcc tttggtaaca acccaaaatt ctccatggaa gttgtcccag 420	
acatatctaa gctggacgca tttgaccatg ttttccaaaa gcacggcaag gatatcaaga 480	
tagttetaca taeggeetet ceattetget ttgatateae tgaeagtgaa egegatttat 540	
taatteetge tgtgaaeggt gttaagggaa tteteeacte aattaaaaaa taegeegetg 600	
attetgtaga acgtgtagtt etcacetett ettatgeage tgtgttegat atggeaaaag 660	
aaaacgataa gtctttaaca tttaacgaag aatcctggaa cccagctacc tgggagagtt 720	
gccaaagtga cccagttaac gcctactgtg gttctaagaa gtttgctgaa aaagcagctt 780	
gggaatttet agaggagaat agagaetetg taaaattega attaaetgee gttaaeeeag 840	
tttacgtttt tggtccgcaa atgtttgaca aagatgtgaa aaaacacttg aacacatctt 900	
gcgaactcgt caacagcttg atgcatttat caccagagga caagataccg gaactatttg 960	
gtggatacat tgatgttcgt gatgttgcaa aggctcattt agttgccttc caaaagaggg 1020	
aaacaattgg tcaaagacta atcgtatcgg aggccagatt tactatgcag gatgttctcg 1080	
atateettaa egaagaette eetgttetaa aaggeaatat teeagtgggg aaaceaggtt 1140	
ctggtgctac ccataacacc cttggtgcta ctcttgataa taaaaagagt aagaaattgt 1200	
taggtttcaa gttcaggaac ttgaaagaga ccattgacga cactgcctcc caaattttaa 1260	
aatttgaggg cagaatataa taaggctgag atcttcttca gtgcattgta gttgaatgaa 1320	
gggttagggg ggaaatgeee eestatttt tgtetageea teetgeeaeg tttgaeaggg 1380	
tagcaattte gacacgatag ggttetetet tetgeogtta 1420	
<210> SEQ ID NO 87 <211> LENGTH: 1540 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 87, Example 87: designer nirA-promoter-controlled 3-Ketothiolase DNA construct (1540 bp)	
<400> SEQUENCE: 87	
agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60	
accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120	
acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180	
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240	
gggcaacaac catgcgtgaa gcggtcattg tcgaagcggt caggacgccg gtcggcaagc 300	
ggaacggegt etteegggae gtteateegg teeatttgge egeggtggtg etegatgaag 360	
tcgtgcgccg ggccggcatg gacaaagggg cggtggaaga catcgtcatg ggctgcgtga 420	
cgccggtcgc cgaacaaggg tacaacatcg gccggctggc ggcgcttgag gccggattcc 480	
cgatcgaagt gccggcagtg caaatcaacc gaatgtgcgg ctcggggcag caggcgattc 540	
atttegeege ceaggaaate egeteeggeg atatggatgt caegategee geeggggteg 600	

-continued

aaagcatgac	gaaagtgccg	attttaagcg	atggcaacga	gcggacgatt	ccgccgtcgc	660
tgcatgaaaa	atacgaattc	atccaccaag	gcgtctcggc	tgagcggatc	gccaaaaaat	720
acggcctaac	gcgcgaggag	cttgacgcct	acgcgtacga	aagccatcaa	cgcgccttgg	780
cggccttgcg	cgaagggaag	tttcgcgcgg	aaatcgtccc	ggtgaaaggg	cttgaccgcg	840
atggccgcga	aatccttgtc	accgatgatg	aagggccgcg	ggccgacaca	tcgccggaag	900
cgctcgccgc	gctcaagccg	gtgtttcaag	aagacggtct	catcaccgct	ggcaatgcga	960
gccaaatgag	cgacgggggcg	gccgctgtgc	ttttgatgga	acgggaggcg	gcgaggcggt	1020
tcggactgaa	gccgaaagcg	cgcattgtcg	cgcaaacggt	cgtcggctcc	gacccgacgt	1080
atatgctcga	tggcgtcatt	ccggcgacga	ggcaagtgct	gaaaaaagcc	ggcctctcga	1140
tcgatgacat	cgacctcatt	gaaatcaacg	aagcgttcgc	cccggtcgtg	ctcgcctggc	1200
aaaaagaaat	cggcgctccg	cttgagaagg	tgaatgtcaa	cggcggcgcc	attgcgcttg	1260
gccatccgct	cggcgccacc	ggtgcgaagc	tcatgacgtc	gcttgttcat	gaacttgaac	1320
ggcgcggcgg	ccgctatggg	ctattgacga	tttgcatcgg	ccacgggatg	gcgacggcca	1380
cgatcatcga	gcgggagtaa	taaggctgag	atcttcttca	gtgcattgta	gttgaatgaa	1440
gggttagggg	ggaaatgccc	ccctatttt	tgtctagcca	tcctgccacg	tttgacaggg	1500
tagcaatttc	gacacgatag	ggttetetet	tctgccgtta			1540

<210> SEQ ID NO 88

<211> LENGTH: 1231

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 88, Example 88: designer nirA-promoter-controlled 3-Hydroxyacyl-CoA Dehydrogenase DNA construct (1231 bp)

<400> SEQUENCE: 88

agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60 accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120 acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180 ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240 gggcaacaac catgatactt aaagaaacct teteeggtet taegeeeeag etteeetgea 300 cggaccatct taaccaagag cgggcaagga cgatacttgt catcgccaaa ctcgcgatgc 360 aaagtetgea tgatageeaa acatatatet ageeeaatea tgtetgetaa agegagggga 420 cccataggat gccctgctcc gagcttcatg gaggtatcca cgtcctcggg gcttgcaacc 480 ccctccatga cggcatacat accttcgttc agcattggaa taagcaggcg gttgacaaca 540 aagccaggag cttcgttgat ctcaaccggg gtcttgccca gcttaattga aagatccttg 600 atggtattaa aagtttcctg gctagtagaa gcccctttga taatctcgat aagcttcatt 660 gccggtaccg ggttgaagaa atgcatgcct attaccctgt ctgcccgctt ggttgctgct 720 cctatctcgg ttatgctcag agctgatgtg ttagaagcca ggatacattc aggcttgcag 780 atctcgtcca gttccttgaa aatcgctttt ttgatgtcca tattctcgat agcagcttca 840 attaccacat ccacatettt ggeegeagee atgtegaeeg tacegetaat eetggeeate 900 accgcgttct tgtcatctgc gctcatcttg cccttttcga ccattttgct gagacccttg 960

·cont	٦.	nu	ed

-continued			
tcgatgcett ttataceatt gteaacaaae tettgtttaa tateaegtae gattaetteg 1020			
aacccagctt gagcagcgac ttgaacaatc ccagctccca tagtacctgc gcctaaaacc 1080			
attattttca ttaaggetga gatettette agtgeattgt agttgaatga agggttaggg 1140			
gggaaatgee eeestattt ttgtetagee ateetgeeae gtttgaeagg gtageaattt 1200			
cgacacgata gggttetete ttetgeegtt a 1231			
<pre><210> SEQ ID NO 89 <211> LENGTH: 1162 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <220> OTHER INFORMATION: Synthetic Construct- Sequence No. 89, Example 89: designer nirA-promoter-controlled Encyl-CoA Dehydratase DNA construct (1162 bp)</pre>			
<400> SEQUENCE: 89			
agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60			
accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120			
acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180			
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240			
gggcaacaac catgacggtt cgactggaat acgatggcgg gttcgcgcac ctgacgctca 300			
gccgcccgca ggtcctgaat gcgctcagtt tcgagctgct cgccgagttg agccgggcgc 360			
ttgeeggegt egeegaatee gatgegegeg eeetgategt eaegggegag ggegaeaagg 420			
cgttctgcgc cggcgcggac attcccgagc tgatgaatcg gccgctcatg caagagctcg 480			
aaggggccgc gaaaggccag gcggtgttca gccggatcgc cgagctgaag attccgtctg 540			
tegeegteat eeagggttat geetteggeg gegggetgga gettgeeetg geatgeacat 600			
teegegttge caetgatege geeegeatgg ggetgeeega ggteaagete ggeetgatee 660			
cgggttatgg cggaacgcag cgtctgccga ggctgatcgg cgaggggcgc gcactcgacc 720			
tgatcatgtc cggccgcacg atagacggcg gggaagccga gcgaatcggc ctggtcaatc 780			
gcatagacaa cgaggggacg cccctggaga tcggcaagcg gtttctggag ccttatctca 840			
agcacagtet etgegeettg tattttgeee gegaggeegt geagagggga ggeggtgteg 900			
ccattgcgga tggcctgcgc atcgagcggg atctttccac gctggcttac cggagccagg 960			
atgeggeega ggggetgege gettttgtgg aaaaaeggee egegtettte aaggaetget 1020			
gataaggetg agatettett cagtgeattg tagttgaatg aagggttagg ggggaaatge 1080			
ccccctattt tttgtctagc catcctgcca cgtttgacag ggtagcaatt tcgacacgat 1140			
agggttetet ettetgeegt ta 1162			
<210> SEQ ID NO 90 <211> LENGTH: 1561 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 90, Example 90: designer nirA-promoter-controlled 2-Enoyl-CoA Reductase DNA construct (1561 bp)			
<400> SEQUENCE: 90			
agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60			
accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaataaat 120			

acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtago	aaaat 180			
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaa	igacaa 240			
gggcaacaac catggccggc gcgcagcagg atcttgccgc tgcgtccggg cttgt	cgctg 300			
gccgcggcgg ccttggcggc atcgtgcagg tcgaacaccg cttccaccgg cageg	Jccagg 360			
ctgccatcga gcgcggcggt gagcagttcg ccgatcatgc ggcgcttgtc ctcgg	geettg 420			
gtggcctgca tcaccttgct gccccagaag ccacgcacgg tggcctgctt gaaga	itcaca 480			
tegeegetgg atatetgeag eggetegeeg gteategage caaaggaaat eaget	cgccg 540			
cetteggeea geaaggeeat cageteacee getgeattge eggeeacega atega	tggcg 600			
cgcacgatgg gcgcatcgcc ggccagcgcg cgcaccttgt cctgccagcc tgctt	gcgca 660			
gtggagattg cgttgccgat gcccagcgct ttcagctcgt ccacgccggc gtcgc	ggcgc 720			
accaggttga tcacgttgat gccgcgtgcg gcggcgagca tcgccaccgt cttgc	cgacc 780			
gcaccgttgg cggtgttctg cacgatccag tcgccctgtt tcacctgcag gaatt	cgatc 840			
agcatcageg egeteagegg catggegate aactggeaae eaegetegte gteea	aggcca 900			
tccggcaacg gcaccacgcc ggaggcgtcg gcaaggaagt actcggccca ggcct	catgc 960			
acaccggcgg cgaccacgcg ctggccaacc tgcaagccct cgacaccctc accca	agogca 1020			
tcgatgacac ccgccgcttc gctgccgccg atggctggca gttccggctt gtage	cgtaa 1080			
ttgccgcgca cggtccacag gtcatggtta tggatcggcg cgcgccgcat cgcaa	acgcgc 1140			
acctggccct tgcctggctg cggcgtgggg cgctcgccca gttcgagcac cttgg	jccgga 1200			
tcgccgaatt gggtatggat ggctgcgcgc atggaggtct cctgccgggc acgct	cttgc 1260			
tgcgacgcgc ccgatcgttg tgaaaggtgg cgcgatgcta tcggcagggc tgcaa	nggaag 1320			
ggatgaagcg aacggaactg ctgtgtgaag ttgttggcgt gcgcgcgtag tgacg	atgct 1380			
ctgctgcagc gccggaggac tgcgtgcagg ccgaccctca ttaaggctga gatct	tette 1440			
agtgcattgt agttgaatga agggttaggg gggaaatgcc cccctatttt ttgtc	tagcc 1500			
atcctgccac gtttgacagg gtagcaattt cgacacgata gggttctctc ttctg	jeegtt 1560			
a	1561			
<210> SEQ ID NO 91 <211> LENGTH: 1747 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 91, Example 91: designer nirA-promoter-controlled Acyl-CoA Reductase DNA construct (1747 bp)				
<400> SEQUENCE: 91				
agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatg	Igaggg 60			
accagagttg ttcagttcac aggtagataa tgtcgcgggt cttgatagtt agcaa	ataaat 120			
acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtago	aaaat 180			
ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaa	ugacaa 240			
gggcaacaac catgtagttg tctactaact acgtaagtca tttcctgcaa attgt	gcatt 300			
ccatcatgag aagtteetgg ataatgtget ggeattteee etggettagt gaeta	tgctt 360			
acaccaagta acgtcatttt ttcaataaat tcgtggtcgt caccactata cccca	itagtt 420			

				-contir	nued		
tgaaggaatt	gctttaaatt	ttcttcaaca	taatcatgta	cttcatcttt	attttcatat	480	
gggcaaacaa	atataagtct	attaaagcat	ctatcaatat	ccttttttc	aggcattctg	540	
ttgcttaaaa	tcacagtata	gtcggcatta	cacgatgcaa	acacctttgc	cggtttctcc	600	
tcatcaacac	tatattttaa	taaacaatac	tgtcggtctt	gtattgattt	catagaactc	660	
caaggactca	gatatgcctt	tgggaaaacc	tctgtaagct	ctttcaagct	ttctgctaca	720	
gtttctgcaa	gaatattaat	gtctatttt	ttattggcaa	ataccatcct	aggagacaaa	780	
caggetttt	gctcccaaca	tatcacatca	ctagcaatac	cttttgcaat	agtcttaata	840	
tcttctactt	tatctataac	ttcaaaacta	attttagcac	catgcattat	taaatgagaa	900	
ttatattttg	cacataactc	tgccattatc	cttcctgaat	attctccacc	ccaatgtata	960	
acacaatcca	tttctctcac	gacagtctca	tatatatcag	aacattcact	actaaagtat	1020	
aaaacagata	gtctatcttt	tatacttgga	tcaagctgta	ccaaactttc	atagaaagca	1080	
tacgcaaaat	atggttcatc	agcagaaacc	tttactaaat	tacagttctt	tgataataac	1140	
cccataccta	tacttgtcgg	aacaactaca	aatgcatttc	cagaaatatt	atgaaacatc	1200	
acacctcttg	gctgtctatg	cacagctcca	taacttgttg	gaacccaatt	atctagtata	1260	
tcaatgttac	caagttcttc	tttaatgatt	atctcaagat	tttctcttaa	aagcattctc	1320	
atactatttt	caagttcata	tgttacaagt	tcttcacttt	gattcaatat	gttagctaat	1380	
ctttctatat	gtactttgga	gtatcctcta	tcaagccaca	atcttccaca	cctatccaaa	1440	
agatcaattg	tatcctgcac	tgatattgca	tgactcttac	ttttactttt	tctaagtctt	1500	
tttatttcct	caattacctg	atctctactt	gagtaagtta	attctaattc	caggccattt	1560	
atattcttta	ttaaaacatt	actttcacaa	acagtttcgc	tcttcattaa	ggctgagatc	1620	
ttcttcagtg	cattgtagtt	gaatgaaggg	ttaggggggga	aatgcccccc	tatttttgt	1680	
ctagccatcc	tgccacgttt	gacagggtag	caatttcgac	acgatagggt	tctctcttct	1740	
gccgtta						1747	
<220> FEAT <223> OTHE 92: 0	TH: 1450 : DNA NISM: Artif: URE: R INFORMATI(DN: Synthet: rA-promoter	ic Construc		No. 92, Exau nydronase DNA		
<400> SEQUI	ENCE: 92						
agaaaatctg	gcaccacacc	tgacccccat	cgagagactc	cgaacgtggc	aaatggaggg	60	
accagagttg	ttcagttcac	aggtagataa	tgtcgcgggt	cttgatagtt	agcaataaat	120	
acagtttcag	aatatctgta	atacaaaaac	tgtatcgaga	caagaaaaaa	gtagcaaaat	180	
ttacaaatgt	tcatgattca	tctggctaaa	ttggatgttc	aactgaccca	ttgaagacaa	240	
gggcaacaac	catggaactc	gacctcgacg	gtcccggggt	tggtgaagtg	ctgatcaagt	300	
acaccgccgc	ggggttgtgc	cattcggacc	tgcacttgac	cgacgggggac	ctaccgccgc	360	
gctatccaat	cgtcgggggg	cacgaggggt	caggcatcat	cgaggacgtc	ggacctgggg	420	
tcaccaaggt	caaaccaggc	gatcacgttg	tttgcagctt	catcccgaac	tgcggaacct	480	
gtcggtactg	cgccaccgga	cgctccaacc	tctgcgatat	gggcgccacc	atcctcgaag	540	
ggtgcatgcc	cgacggcagt	taccggttcc	acagtaacgg	cctggatttc	ggtgcgatgt	600	

-con		

660

gcatgctcgg		5 5 5				660	
acgactggct	gccgctcgag	accgcggtgg	tcgtcggctg	cggcgtgccg	actggctggg	720	
gcacctccgt	ctatgccggc	ggggttcgtt	gcggtgacac	caccgtcatc	tatggcgtcg	780	
gcggcctggg	agtcaacgcc	gtccaaggcg	cggtgagtgc	gggcgcgaag	tacatcgtgg	840	
tcgtcgatcc	ggttgcgttc	aaacgcgaca	ccgcgctcaa	gttcggcgcc	acccacgcgt	900	
tegeegaege	cgccaccgcc	gcggccaagg	tcgacgaact	gacctgggga	cagggtgccg	960	
atcaggcgct	gatcctggtc	ggcaccgtcg	acgaggacgt	ggtctcggcg	gcgactgcgg	1020	
tgatcggtaa	gggaggcacc	gtcgtgatca	ccggactggc	ggacccagca	aagctcacgg	1080	
tgcacgtttc	gggaacggac	ctgacgctta	acgagaagac	aatcaagggc	acgttgttcg	1140	
gctcgtccaa	tccgcaatac	gacatcgtac	ggctgctccg	tctctacgac	gccggccagc	1200	
taaaactcga	cgatctgatc	accacccgat	acacgctcga	ccaggtcaac	cagggctacc	1260	
aggatctgcg	agacggcaag	aacatccgcg	gcgtgatcat	ccacgcctga	taaggctgag	1320	
atcttcttca	gtgcattgta	gttgaatgaa	gggttagggg	ggaaatgccc	ccctatttt	1380	
tgtctagcca	tcctgccacg	tttgacaggg	tagcaatttc	gacacgatag	ggttetetet	1440	
tctgccgtta						1450	
<220> FEAT <223> OTHEN 93: 0	TH: 1074 : DNA NISM: Artif: URE: R INFORMATI(DN: Synthet: rA-promoter	ic Construct		No. 93, Exa nydrogenase :		
<400> SEQUI	ENCE: 93						
agaaaatctg	gcaccacacc	tgacccccat	cgagagactc	cgaacgtggc	aaatggaggg	60	
accagagttg	ttcagttcac	aggtagataa	tgtcgcgggt	cttgatagtt	aqcaataaat		
acagtttcag	aatatctgta				5	120	
ttacaaatgt		atacaaaaac	tgtatcgaga			120 180	
	tcatgattca			caagaaaaaa	gtagcaaaat		
gggcaacaac	tcatgattca catgttggga	tctggctaaa	ttggatgttc	caagaaaaaa aactgaccca	gtagcaaaat ttgaagacaa	180	
		tctggctaaa ggccaagaag	ttggatgttc ccgctggtga	caagaaaaaa aactgaccca ttgaggacat	gtagcaaaat ttgaagacaa tgaggtggcg	180 240	
ccacctcagg	catgttggga	tctggctaaa ggccaagaag tcgcatcaag	ttggatgttc ccgctggtga attacagcca	caagaaaaaa aactgaccca ttgaggacat ctggcgtttg	gtagcaaaat ttgaagacaa tgaggtggcg ccacacggat	180 240 300	
ccacctcagg tctttttcgt	catgttggga cttggcaggt	tctggctaaa ggccaagaag tcgcatcaag tgatcctgag	ttggatgttc ccgctggtga attacagcca ggtctctttc	caagaaaaaa aactgaccca ttgaggacat ctggcgtttg ccgtggtcct	gtagcaaaat ttgaagacaa tgaggtggcg ccacacggat tggccatgag	180 240 300 360	
ccacctcagg tctttttcgt ggcgccggca	catgttggga cttggcaggt tgagcggctc	tctggctaaa ggccaagaag tcgcatcaag tgatcctgag cgttggcgag	ttggatgttc ccgctggtga attacagcca ggtctctttc ggcgtaacca	caagaaaaaa aactgaccca ttgaggacat ctggcgtttg ccgtggtcct actttaaggc	gtagcaaaat ttgaagacaa tgaggtggcg ccacacggat tggccatgag cggcgatcat	180 240 300 360 420	
ccacctcagg tctttttcgt ggcgccggca gtcattgccc	catgttggga cttggcaggt tgagcggctc tcgtggagag	tctggctaaa ggccaagaag tcgcatcaag tgatcctgag cgttggcgag ccagtgcaat	ttggatgttc ccgctggtga attacagcca ggtctctttc ggcgtaacca gagtgcaaat	caagaaaaaa aactgaccca ttgaggacat ctggcgtttg ccgtggtcct actttaaggc tctgcaagag	gtagcaaaat ttgaagacaa tgaggtggcg ccacacggat tggccatgag cggcgatcat cggcaagaca	180 240 300 360 420 480	
ccacctcagg tctttttcgt ggcgccggca gtcattgccc aatctctgcc	catgttggga cttggcaggt tgagcggctc tcgtggagag tctacatacc	tctggctaaa ggccaagaag tcgcatcaag tgatcctgag cgttggcgag ccagtgcaat cctcacccag	ttggatgttc ccgctggtga attacagcca ggtctctttc ggcgtaacca gagtgcaaat ggcgctggtg	caagaaaaaa aactgaccca ttgagggacat ctggcgtttg ccgtggtcct actttaaggc tctgcaagag tcatgcccaa	gtagcaaaat ttgaagacaa tgaggtggcg ccacacggat tggccatgag cggcgatcat cggcaagaca tggatcctcc	180 240 300 360 420 480 540	
ccacctcagg tctttttcgt ggcgccggca gtcattgccc aatctctgcc cgcttgtcgt	catgttggga cttggcaggt tgagcggctc tcgtggagag tctacatacc agaagattcg	tctggctaaa ggccaagaag tcgcatcaag tgatcctgag cgttggcgag ccagtgcaat cctcacccag gcagctgttc	ttggatgttc ccgctggtga attacagcca ggtctctttc ggcgtaacca gagtgcaaat ggcgctggtg catttcatgg	caagaaaaaa aactgaccca ttgaggacat ctggcgtttg ccgtggtcct actttaaggc tctgcaagag tcatgcccaa gcacctcaac	gtagcaaaat ttgaagacaa tgaggtggcg ccacacggat tggccatgag cggcgatcat cggcaagaca tggatcctcc tttcgccgag	180 240 360 420 480 540 600	
ccacctcagg tctttttcgt ggcgccggca gtcattgccc aatctctgcc cgcttgtcgt tacgcggtgg	catgttggga cttggcaggt tgagcggctc tcgtggagag tctacatacc agaagattcg gcaagggtca	tctggctaaa ggccaagaag tcgcatcaag tgatcctgag cgttggcgag ccagtgcaat cctcacccag gcagctgttc atcggtgacc	ttggatgttc ccgctggtga attacagcca ggtctctttc ggcgtaacca gagtgcaaat ggcgctggtg catttcatgg aaaatcaacg	caagaaaaaa aactgaccca ttgaggacat ctggcgtttg ccgtggtcct actttaaggc tctgcaagag tcatgcccaa gcacctcaac agtcggctcc	gtagcaaaat ttgaagacaa tgaggtggcg ccacacggat tggccatgag cggcgatcat cggcaagaca tggatcctcc tttcgccgag attggagaag	180 240 360 420 480 540 600 660	
ccacctcagg tcttttcgt ggcgccggca gtcattgccc aatctctgcc cgcttgtcgt tacgcggtgg gtgtgccttc	catgttggga cttggcaggt tgagcggctc tcgtggagag tctacatacc agaagattcg gcaagggtca tggccgacat	tctggctaaa ggccaagaag tcgcatcaag tgatcctgag cgttggcgag ccagtgcaat cctcacccag gcagctgttc atcggtgacc catttccacg	ttggatgttc ccgctggtga attacagcca ggtctctttc ggcgtaacca gagtgcaaat ggcgctggtg catttcatgg aaaatcaacg ggctatggtg	caagaaaaaa aactgaccca ttgagggtctg ccgtggtcct actttaaggc tctgcaagag tcatgcccaa gcacctcaac agtcggctcc ccgccttgaa	gtagcaaaat ttgaagacaa tgaggtggcg ccacacggat tggccatgag cggcgatcat cggcaagaca tggatcctcc tttcgccgag attggagaag cacctttagg	180 240 300 420 480 540 600 660 720	
ccacctcagg tcttttcgt ggcgccggca gtcattgccc aatctctgcc cgcttgtcgt tacgcggtgg gtgtgccttc tggaacctgg	catgttggga cttggcaggt tgagcggctc tcgtggagag tctacatacc agaagattcg gcaagggtca tggccgacat tgggctgtgg	tctggctaaa ggccaagaag tcgcatcaag cgttggcgag ccagtgcaat cctcacccag gcagctgttc atcggtgacc catttccacg	ttggatgttc ccgctggtga attacagcca ggtctctttc ggcgtaacca gagtgcaaat ggcgctggtg catttcatgg aaaatcaacg ggctatggtg gtctgggtgc	caagaaaaaa aactgaccca ttgagggacat ctggcgtttg ccgtggtcct actttaaggc tctgcaagag tcatgccaaa gcacctcaac agtcggctcc ccgccttgaa tgttggactg	gtagcaaaat ttgaagacaa tgaggtggcg ccacacggat tggccatgag cggcgatcat cggcaagaca tggatcctcc tttcgccgag attggagaag cacctttagg	180 240 360 420 480 540 600 660 720 780	
ccacctcagg tcttttcgt ggcgccggca gtcattgccc aatctctgcc cgcttgtcgt tacgcggtgg gtgtgccttc tggaacctgg tgggctgcaa	catgttggga cttggcaggt tgagcggctc tcgtggagag tctacatacc agaagattcg gcaagggtca tggccgacat tgggctgtgg cagcacttgc	tctggctaaa ggccaagaag tcgcatcaag cgttggcgag ccagtgcaat cctcacccag gcagctgttc atcggtgacc catttccacg gccgtctggg gccgccaagg	ttggatgttc ccgctggtga attacagcca ggtctctttc ggcgtaacca gagtgcaaat ggcgctggtg catttcatgg aaaatcaacg ggctatggtg gtctgggtgc tctacggcat	caagaaaaaa aactgaccca ttgagggtctg ccgtggtcct actttaaggc tctgcaagag tcatgcccaa gcacctcaac agtcggctcc ccgccttgaa tgttggactg cgacatcaat	gtagcaaaat ttgaagacaa tgaggtggcg ccacacggat tggccatgag cggcgatcat cggcaagaca tggatcctcc tttcgccgag attggagaag cacctttagg gcagtgggtc ccctccaaat	180 240 300 420 480 540 600 660 720 780 840	
ccacctcagg tcttttcgt ggcgccggca gtcattgccc aatctctgcc cgcttgtcgt tacgcggtgg gtgtgccttc tggaacctgg tgggctgcaa tcgagctgca	catgttggga cttggcaggt tgagcggctc tcgtggagag tctacatacc agaagattcg gcaagggtca tggccgacat tgggctgtgg cagcacttgc gaaggctggc	tctggctaaa ggccaagaag tcgcatcaag cgttggcgag ccagtgcaat cctcaccag gcagctgttc atcggtgacc catttccacg gccgtctggg gccgccaagg	ttggatgttc ccgctggtga attacagcca ggtctctttc ggcgtaacca gagtgcaaat ggcgctggtg catttcatgg aaaatcaacg ggctatggtg gtctgggtgc tctacggcat actttaaggc	caagaaaaaa aactgaccca ttgagggacat ctggcgtttg ccgtggtcct actttaaggc tcatgccaagag tcatgcccaa gcacctcaac agtcggctcc ccgccttgaa tgttggactg cgacatcaat	gtagcaaaat ttgaagacaa tgaggtggcg ccacacggat tggccatgag cggcgatcat cggcaagaca tggatcctcc tttcgccgag attggagaag cacctttagg gcagtgggtc ccctccaaat ttcagtgcat	180 240 360 420 480 540 600 660 720 780 840 900	

gcatgctcgg cacattetee gaacgegeaa etateteea geatteggtg gteaagateg

cacgtttgac agggtagcaa tttcgacacg atagggttct ctcttctgcc gtta

-cont	יר	nnad
COILC		<i>iucu</i>

1074

<210> SEQ ID NO 94 <211> LENGTH: 1096 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 94, Example 94: designer nirA-promoter-controlled Short Chain Alcohol Dehydrogenase DNA construct (1096 bp) <400> SEQUENCE: 94 agaaaatctg gcaccacacc tgacccccat cgagagactc cgaacgtggc aaatggaggg 60 accagagttg ttcagttcac aggtagataa tgtcgcgqgt cttgatagtt agcaataaat 120 acagtttcag aatatctgta atacaaaaac tgtatcgaga caagaaaaaa gtagcaaaat 180 ttacaaatgt tcatgattca tctggctaaa ttggatgttc aactgaccca ttgaagacaa 240 gggcaacaac catgaaggtt gccgtaatta ctggggcatc ccgtggaatc ggggaagcta 300 tagcaaaggc ccttgctgaa gatggatatt cccttgcctt aggggctaga agtgttgata 360 ggttagagaa gattgccaag gaactcagcg aaaaacatgg ggtggaggta ttttacgact 420 acctcgatgt atcaaaacca gaaagcgttg aagagtttgc aaggaaaacg ctagctcact 480 ttggagatgt ggacgttgtt gtggccaatg cggggcttgg ttactttggt aggcttgaag 540 agettacaga agageagtte caegaaatga ttgaagtaaa eettttggga gtttggagaa 600 caataaaagc tttcttaaac tccttaaagc ggactggagg agtggctatt gttgttactt 660 cagatgtttc tgcaaggcta cttccatacg gtggaggtta tgtggcaact aaatgggctg 720 caagagcatt ggtaaggacc ttccagattg agaatccaga tgtgaggttc ttcgagctaa 780 gacctggagc agtagataca tattttggag ggagcaaagc tgggaagcca aaggagcaag 840 ggtatttaaa acctgaggaa gttgctgagg cagtaaaata cctcctaaga cttccaaagg 900 atgttagggt tgaggaatta atgttgcgct caatttatca aaaacctgag tattgataag 960 gctgagatct tcttcagtgc attgtagttg aatgaagggt tagggggggaa atgcccccct 1020 attttttgtc tagccatcct gccacgtttg acagggtagc aatttcgaca cgatagggtt 1080 ctctcttctg ccgtta 1096 <210> SEQ ID NO 95 <211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 95. Example 95: designer Synechococcus sp. strain PCC 7942 nirA-promotercontrolled NADPH-dependent Glyceraldehyde-3-Phosphate-Dehydrogenase DNA construct (1438 bp) <400> SEQUENCE: 95 agaaaatctg gcaccacacc cttcttgcag aacatgcatg atttacaaaa agttgtagtt 60 tctgttacca attgcgaatc gagaactgcc taatctgccg agtatatgat gtcaacgaat 120 attgcaatta atggaatggg tagaattgga agaatggtgc taagaatagc actaaagaat 180 gaagcattga atgtagttgc catcaatgct agctatcctc ctgaaacaat tgcacattta 240 attaattatg acacaacaca tgggagatac gataaaagag tagaacctat tgaaagtgga 300 attcgagtgg aaggccatga tattaaatta gtgtctgata gaaacccaga aaatttaccc 360

-cont	ın	ned

<pre>ggaaagatt tagaataga tatogtott gaagegaceg gtaattta cotogtgat 420 agottaag coctatta ageagaget aaaaagtg tatageagg acottaaa 440 goggaaagt tatggteg gettaaget getaagtg gtaagetg aagottag tatgaegg acottaaa 440 atgecata tatggtag gregetat egaaatgg tatageag acottaga tacagatag 540 atgecata tatggteg tegetgat egaaatgg tatgeaga eggacatg tegaaaagt 660 atcaaata atatggta tegetgetget aaagttag eggacatg tegaaaagt tegggggat 720 gtattata Caactaaa aggtgetget aaagtata aagagtta tatggaga 720 gtattata Caactaaa aggtgetget aaagttag aggeggtt tatgagag 700 atggaaat aaatggat agaatteg gtegaatga tatagatga gagagtta tatgagag 700 atggaaat aaaggaat teggtega gaagtegg gtaatgag tatatag at 300 caattca aggaatt tiggtgega gagagtag tatatagt ataggag 1020 ttaagts tatggatg tagaatgeg teggaatga teggaagg agtatag 1020 ttaagts taggagat taggatgeg teggaagt coopy agtatag 1020 ttaagts taggagat tiggtgge eggtagt geogy agtatag 1020 ttaagts taggagat tiggtgge eggtagt geogy agtatag 1020 ttaagts taggagat tggtgge eggtagt geogy agtatag 1020 ttaagts taggagat tggtgge eggtagt geogy agtatag 1020 ttaagts taggagat tggtgge eggtagt geogy agtatag 1020 ttaagtag gatgeget egaactgg geogytag teggaacag agtogge agtatag 1020 tceagacag ttggagat tggtgge eggtagt 130 aacagtag ggatgeget egaagttg geogygget ttttetge tgeoatese 1340 aacggtag ggatgeget egaagttg geogyggg tettets tgeogaagg 1340 tceagacag taggagggt tgeoge egataget geogyagga attatag 1340 tceagacag taggagget tageagtgg teggaagte beogyggaa acageageg 1340 tceagacag tageatgee tgeogytea acaccaatg acaegace ageagtage 1340 tceagacag tageatgee tatgeaga ageactege ageagtage 1340 tceagacag tageatgee tatgeaga acatgeag attaceas a agttgaga 144 aagtageg gaaatge 144 aagtage gaaatge 144 aagtage gaaatge 144 aagtage gaatgee tageatge 144 aagtage gaaatge 144 aagtage gaatgee 144 aagtage 144</pre>					-contir	nued		
<pre>geggaaaag tacagatgi ggtaaaggi gttaacgat atacgatc aagattaga tacagatcaa 540 atgacatat ttagtaatgo gtogtgatct acgaatigt teggaccagt tgoaaagtt 660 tacaagatg gttitggoet tgaaaaggo ttatagaca oggtaatga attacaaat 660 tacaagata attacagata toogeataa gattagaag gaogogtto ttitgigggaa 720 gtattatc cacactcaco aggrgotg tagaagtag gtagaggott tgotaggtat g 600 caactaco aaggaatta toggacag gagatgaag ttaacotg attagatgat 900 caactaco attagacgi talagatga gaggocott aggttata ggagatataag 1020 ttaagtat tagotggot aggacagat aggaggott tattagagt 1000 caactaco attagacgi talagatgat aagaatgaa gtaggag ttaatcatg attagaggat 1000 caactaco attagacgi talagatgot aaatataca toggcatgg agatataag 1020 ttaagtat tgotggigg cagtaggo cout aggttotg cagatgaag 1140 attagt tgatggigg cagtaggo couts aggtotgot attaaggot 1140 aattagt gatgetogot edecottg gegagggg ttittetogt tgocagtat 1200 aagatggog gattottoo ottugott acgocada atogacga gatotcoot 1260 tocagoaog ttggaggat tggiggigg cagtagogg totottot tgogtig 1320 aacagtigg ggatgoooc gaogttaa acaccaatg atcagacg agotagagg 1320 aacagtigg ggatgococ gaogttaa acaccaatg atcagacg agotage 1320 tocagoaog ttggaggat tggiggigg cagtagaegy totottot tgogita 1348 2100 SDO ID N 0 96 2133 JUMUM JNFORMITION: synthetic Construct - Sequence No. 96, Example 96 Signer Synshooccau gp. Estim PCC 7942 NirA-Prometer- controlled NAD-dependent. (Lyceraldehyde-3-Phorphate-Dehydrogename DAA construct (147 bg) 400 SEQUENCE: 96 gmaattig gacactgc aggtagat taggiggad tagaggag tagggotgad 1200 taggaata taggigtag gagtagged ttaaggigad tagaggag tagggotgad 1200 taggaata taggigtaga gagtagat tagaggag taggaggad tagaggag tagggotgad 200 taggaatag aggtagga gataatag agtagga gattaggad 120 taggaata aggttag agtaagga gataatag 120 taggaata taggaatgag tagatgga gatagga gatagga gatagaa 120 taggaata taggaatgag tagaatgga tagaggaga 120 taggaata aggttag gatagga 120 taggaatag agtagga gatagga gatagga gatagga gatagga gatagga 120 taggaatag agtagga gatagga gatagga gatagga gagtagga gatagga gatagga gatagga gatagga 120 t</pre>	tggaaagatt ta	agaaataga	tatcgtcatt	gaagcgaccg	gtaaatttaa	ccatggtgat	420	
<pre>targeasta titagtaatg geogigtaet acgaatgit toggaccagt tgeaaaagtt 600 taaatgata gtttiggeat tgaaatgge ttatgacaa eggteatge aatacaaat 660 atcaaaata atatagataa teegetaaa gattgagaa gageogitte tigtggggaa 720 geattatae caacateae aggtgetget aasgeatta agaagtat geogagattg 780 atggeaaat tactaggeat gacattegi ggeegetee aasgegate attaggaat 970 caacatea aaggtgaet ggeegetee aasgegate attaggaat 970 caacatea aaggtgaet ggeegetee aasgegaete attaggeat 970 caacatea aaggtgaet ggeegetee aaggegeete tagttegag 970 caacatea aaggtgaet ggeegetee aaggegeete tagttegag 970 caacatea aaggtgaet ggeegetee aaggegeete tagttegag 970 caacatea aggaattat tgeegetga gaggegeete tagttegag 970 caacatea aggaattat tgeegetga aaggegeete tagttegag 970 caacatea aggegete tgetaacgaa tggeggeete tagttegag 970 caacatea aggegete tgetaacgaa tggeggeete tagttegag 970 caacatea aggegetee tagttega gaggegeete tutteege ggagatgaat 960 caacatea teegeeget tgataacgaa tggegeeget attaagagt 900 caacatea teegeeget tgataacgaa tggegeeget attaggag 970 ttaaagta tagoetgyt tgataacgaa tggegeeget attaggag 970 ttaaagta tagoetgyt tgataacgaa tggegeeget attaggat 970 aggatggeg gaetettee cuttgeet ggeegetga ggatgeege 120 tacageaeg tggagege gaegtteaa acaccaatg ateeggaee gaegetgeeg 1320 ateeggate aaccetat ageageagt getgaegege ttetetet tgeogta 1320 teegeggee gaacettee ottegeeget getgaegege 1320 teegeggee gaacettee ottegee teegeetgae 972 212 bENDFM: 1447 213 OKENIN: Artificial Sequence 223 offNR INDMONTON: Synthetic Constrain PCC 792 hill promoter construct (1447 bp) 400 SRQUENCE: 96 gaaateg geaectee tactegee tagaagaat teagaagat 120 teegeate atggtting tagaatgge ettaacgae tagaggag tagaggat 120 teegeate atggtting tagaatgge ettaacgae eggetgae tagagagat 120 teegeate atggtting tagaatgge ettaacgae tagaggae tagaggaet 120 tagaatga teggitaega gaataacgae taacagae teagagaat teagaagaa 120 teegeate atggtting tagaatgge ettaacgae eggeegeat 140 aaggetgeate gadegeeget aagaegeege caacagaege 120 tagaatga teggitaega agaatagee taacagae teagagae teagagae 120 tagaatga teggitaega agataacgae taacagae teagaggae taacagae 120 ta</pre>	aaagctaagg ca	acatattca	agcaggagct	aaaaagtgt	tattgacagg	accatcaaaa	480	
<pre>taatgata gittiggeat isaaatgge tiatgaaa gagegegite itgggggaa 720 giattatae caacatcaac aggigetget aaagcattaa aagaagtat googaaattg 780 atggcaaa tacatggeat ageettegi gigecaact aaaagtata tgoogaattg 780 atggcaaa tacatggeat ageettegi gigecaact aaaagtata aggaagtat googaattg 780 caaatcaac tacatggeat ageettegi gigecaact aaaagtata aggaagtat googaatta 480 tagteatig atttaaaca aaagtgea giaagtgaag tiatcatege attaagagt 900 caaatcaac attaggaagt tatagatgi aaggeetect aggteataa 960 caaatcaac tiggagaat aattaaataa taargggat (catataggg agstaataag 1020 tiaaagtta tageoggat dataagtget oogecet aggeegett 1200 aggatggeg gactettee ettiggee aggegette coogeceg aggeget 1200 aaaccaac tiggagagat gattaaa taargggat coogece agcagtageg 1320 aaacgatig giggigteet geegiteaa acacceast atcaegeee ageagtageg 1380 treegeage aaacegtat ageageeget getageeget gatgaegeg 1320 aacagtigg gigsteet geegiteaa acacceast atcaegeee ageagtageg 1380 treegeage aaacegtat ageageeget getageegete 200 200 ENO IN NO 96 200 ENO 9</pre>	ggcggaaaag ta	acagatggt	ggttaaaggt	gttaacgatc	aagacttaga	tacagataca	540	
<pre>ccaatcaact attagataat toogoataaa gattigagaa gagooggito tigtgggggaa 720 gtattatac caacatcaac aggigotgot aaagoattaa aagaagtata goosgaattg 780 atggcaaac tooatggcat agoactog giggcgaact aaagattaa aagaagtata goosgaattg 780 caaatcact attagagaat tgatgitgaa gagggcoott tagttetaa gagaattaat 900 caaatcact attagagagt tigtgtgaa gagggcoott tagttetaa ggaatataag 1020 ttaaagtat tagotggta tgatagatgat gaaaatcaca tggcatggg gagtaataag 1020 ttaaagtat tagotggta tgatacgaat ggagggatt claataggg agataataag 1020 ttaaagtat tagotggtat tgatacgaa gggggatt claataggg agataataag 1020 ttaaagtat tagotggtat tgatacgaa gggggatt claataggg agataataag 1020 ttaaagtat tagotggtat tgatacgaa gggggatt claataggg agataataag 1020 caaatcac tiggagact aattaataa taatagtgat cooggooget actaaagoot 1140 adtitig gatagotgg of toosoft agoagtggot titticig to gooattat tagoagt tiggaggat tggtggigg cagttaget ggaggggg toog tacagacgg 1220 aaccagttgg ggatgtoot googttcaa accoccaag atcogacc agoagtagg 1380 tracgggat aaacogtatt agoagogt googt googt toottootto tgoogtaa 1438 210- sB00 ID NO 96 320 FDRO NO 96 320</pre>	tatgacatat tt	agtaatgc	gtcgtgtact	acgaattgta	tcggaccagt	tgcaaaagtt	600	
gattatac cacataac aggtgotgot aaagcatta angaagtat gocagaat y 780 atggocaac tacatggot acactog gtgocgocacto aaatgtato attagtaga 940 tagtcattg attaaaca aaagtgaca gtagatgaag ttaatcatgo attagagat 900 caaacttac aaggaattat tgatgttga guggococto tagtttotaa ggactataat 960 caaactot attagoogt tatgatgot aaaatacaa tggtcatggg ggatataag 1020 ttaaagta tagootggta tgataagaa tgggggatat ctaatagag agttgaggt 1080 caaatoto attagoogt tatgatgot aaaatacaa tggtcatggg agatataag 1020 ttaaagtta tagootggta tgataagaa tggggaggt ttittetgto tgocatcht 1200 aggatggog gactottoc cottotgot aggtaggt ggatggt o coggocgot attaaggot 120 aacagttgg ggatgtat tggtggg cagtagat ggatggatg acaagcagg 1220 aacagttgg ggatgtagt ggtggtgg cagtaget ggatggtog agtocatcot 1260 tocagocag ttggaggat tggtggg cagtaget ggatggtog acagcagcg 1220 aacagttgg ggatgtagt ggacgggo tottoto tggoagggg ttotottot tgcogta 1439 210- SEO ID NO 96 211- ISDOTH: IA47 213- OKENINER: Artificial Sequence 223- OTHER INFORMITOR: Synthetic Construct- Sequence No. 96, Example 96: designer Synchooccous gn. stain PCC 7942 nif-promoter- controlled NAD-dependent Olyceraldehyde-3-Phophate-Dehydrogenaee DNA connutrut (1447 bp) 400- SEQUENCE: 96 9aaaatotg goaccacco ctictotgcg gatatgag aggagatg tgaggagg aggatata aggtaggaag taatggotgt gatggagg caggtag tagaggag taggagg taggagtag 120 tagaaatg aggtgatag agatagacg titaccaga gagagatg tgaggggg 300 tocgocgaa aggtgatag agatagacg titaccagatg aggacatgt gaggagata aggacatgg caccatagca aggtogtt caaggtgag tgaggagg tgaggaggg 300 tocgocgaa aggtaatag agttagato gttagatg tgatggagg agatatact 360 ggaagact taatagga agttagatog titacagatg agagagatgt tgatggggg 300 tocgocgaa aggtaatag agttagatag titagatg actocaca gagtgagg taggagg 420 aagacatag cacatatoga agtagatg tgatggag tgaggagg agagagatgt gataggag 540 ttggtaata atggtataga gattagato ttaacagatg acgagatgt gataggat 340 aggacatag cotaattog agatggat agacagact aggtggat agatggag tgaggggg 300 tocgocga atggtaatag agtaaaca tcaagtag agtagacg ttotaagat 420 aagacatag cotaattog agacgag taaaaagat taactoaa cogtggaa 540 tt	ttaaatgata gt	tttggcat	tgaaaatggc	ttaatgacaa	cggtacatgc	aattacaaat	660	
arggcaac tacatggcat agcacttog gtgccactc aaatgtatc attagtagt 840 tagtcattg atttaaaca aaagtgaca gtagatgaag ttaatcatgo atttagagat 900 caaacttac agggaattat tgatgttgaa gaggccotc tagtttotaa ggactataat 960 caaacttac attagcoggt tatagatgct aaaatacaa tggtcatggg agataataag 1020 ttaaagtta tagcotggta tgataacgaa tgggggatat ctaatagagt agttgaggta 1080 caaatcac ttggaggat tatataataa tatagtgat cooggocgt attaaagcot 1140 atttgtott gatagotgot cocgoctgt ggeaggggt tttttotgot gecattott 1200 aggatggog gastette cottutgota aegecatga atgegatogg accagcagg 1120 aacagtegg ggatggat tggtggtgge cagttagot gatgotgge accagcageg 1120 aacagtegg ggatgott ggtggtgge cagttagot ggtotgge accagcageg 1130 tocgocag ttggagtgat tggtggtgge cagttagot gg ttotetett tgcogtta 1439 210- S50 ID NO 96 211- ISDNTN: 1447 213- OKENIISG: Artificial Sequence 220- FSAUNES; 223- OTHER INFORMATION: Synchetic Construct - Sequence No. 96, Example 96; designer Synchotecocus gr. attain PCC 7942 nirA-promoter- controlied NAD-dependent Glyceraldehyde-3-Phogphate-Dehydrogename DNA construct (1447 bp) 400- SSQCENCE: 96 gaaaatctg gcaccaccc ctictgcag accagcagt gcgagtagag agitagaga 120 tagcaata atggttage aggaatge thaccagatg aggagatgt cagagataga 120 tagcaata atggttage agataged thaccagatg agagatgt gaggagtaga 120 tagcaata atggttage agatage thaccagatg agagatgt gagagatgt 240 aaggccaga ctaattga agttgatage thacagatg tagaggtagt tgatggggg 300 tocgcgtaa aggtgataga agatagact thacagatg agagatgt gataggat 300 tocgcgtaa aggtaataga agttagateg thacagatg agagatgt tgatgggggg 300 tocgcgtaa aggtaataga agttagateg thacagatg agagagatgt totgaaca 340 ggaagact taatadag ticaacatgt atcaacat taacagatg attatagag accagagat 420 aagaccag ctaattiga agatggatga taagaggagg totgaacagat 420 aagacacag ctaattiga agatggatga taagaggagg totgaagat 420 aagacacag ctaattiga agatgatga taagagagg totgaagag 540 ttgttagtg aggtaataga agttaatea ttacteaga accagat 420 aagacacag ctaattiga agatgaat agacagat gatggagg totgaaga 540 ttgttag ggattaa aacaatgt atcaacat accaccaag agttgedgg totgaaca 540 ttgttagt gatggttaag tacaacat battageac cagttgotaa agt	gatcaaaata at	atagataa	tccgcataaa	gatttgagaa	gagcgcgttc	ttgtggggaa	720	
 attagradtį attaaaca azagtgac gtągatgag traatcatge attagagat 900 caacttae azgaatta tągatgtęja gaggecete tągttetaa ggetataat 960 caactee attegeagt tatagatget azaataca tggeedigg agataataag 1020 ttaaagtta tajeetggta tgataaegaa tggggatat etaatagig agtgeggg agataataag 1020 ttaaagtta tajeetggta tgataaegaa tggggatat etaatagig agtgeggg agatataa ttittegett gatagetget eetgeettig geegggget titteetae tggeedige aceageageet 1140 attigtett gatagetget eetgeettig geegggge eagtaget ggatgetgge aceageageg 1320 aacagtteg ggatgegt geeegteaa aceeceast ateeegaeee ageagtageg 1380 tegeggate aaacegatt ageageagt getgeeggeg tetetette tgeegta 1438 110. ISONT. 1447 111. ISONT. 1447 122. TYPE: DIA 233. OKHER IDENDENATION: Synthetic Construct - Sequence No. 96, Example 96; designer Synechoccous gp. strain PC 7942 nirA-promoter-controlle ND. 46pondent Glyceraldehyde-3-Phosphate-Dehydrogenase DNA construct (1447 bp) 400. SEQUENCE: 96 gaaaatetg geacecaeee etaaetgee daaetgeeg agetaget aceagaagta 120 tageaatta atgegaate gagaaetgee taateggeag tegaagtage cagaegagat 120 tageaatta aggitging egitaategi cegitageig agetatage geagataaa 120 tageaatta atgegaate gagaaetgee taategeeg agetaget aceagaagta 120 tageaatta aggitging egitagetge cegitageig agetatage geagaata 120 tageaatta atgegaate gagaaetgee taategeeg agetaget aceagaagta 120 tageaatta atgegaate gagaatget egitageig agetagitageig aceagaagt 120 tageattag agetgette agetgette acegitgag tagaggagt tegatgeigg 300 teegegaat atgegaaag agttaatea taetegae agetgeeg 240 aagetagae taatatea tatatea taetegae agetgeeg aceagetae 140 gaaagtet taatatega agetgeet acaeceaga gettaget gattage 540 teagettig agetgetget teatetgeeg agetgeeg aceagete 140 aagetagae atgesaetage agetgeegt aaaaagtat taateceaga aget 420 aagetagae taatatea tageagetgetgeegaeagetgeegaeageegaea 540 t	agtattatac ca	aacatcaac	aggtgctgct	aaagcattaa	aagaagttat	gccagaattg	780	
caaactta aaggaatta tigatgitgaa gaggocoot tagtittaa gagataataa 960 caaactoo atcagcagt tatagatgot aaaaataca tggtoatgg agataataag 1020 ttaaagtta tagootggta tgataacgaa tggggatat otaatagagt agtiggagta 1080 caaatcaac tiggagaact aattaaataa taatagigat ocoggoogd actaaagoot 1140 attigtott gatagotgot ocigoottig ggcaggggot tittitotgot gocaatcat 1200 aggatggog gactetitee ottittgote acgocatga atgogatege agtococet 1260 tecageaeg tiggagtgat tggtgggge cagttaget ggatgotgge accageageg 1320 aacagtigg ggatgtogt goacgiteaa acacceatg atcacgace agcagtageg 1380 tegeggate aaacgit ageageagt gotgaegegg tittetete tgeogta 1438 210- SEO ID NO 96 111- ISEONT NA 147 212- TYEE IDA 213- SEONTER: Artificial Sequence 220- PEATURE: 230- SEQUENCE: 96 gaaaatetg gacceacee cittetgoeg aactgoeg gatataga agitgagt 160 ciggiacae atgegaate gagaatgge citaactgoeg agatataga gitgagga 120 tagoaatta atggitigg agitatage taacgga gagatga teaggagat tagagaga 120 tagoaatta taggatgge gaatgee taategee gagatagea gagatagaa 120 tagoaatta taggattig agitaatge citaagitga cagatgaga tagagagat 180 aaggtotti aatgegaate gagaactge taategee gagatage cagatagaga 120 tagoaatta atggitig agitaategi cegitagei gacgacatgi ageogataa 120 tagoaatta atggitig agitaategi cegitagei gacagatgi ageogata 240 tagaaateti gacactagea gagactgee taategee gacagatgi ageogataa 120 tagoaatta atggitage agitaatea ticaagigaa cagatgaagi tagaggata 120 tagoaatta atggitage agitagategi cegitagei gacagatgi ageogataaa 120 aaggooti aatgegaate gagactgee taategee gacagatgi ageogata 240 tagaaatat aacaategi agitagei gaatgitagi cagitagei gacagagat taatagai 420 aagacaaagi teaatatega tgaaggeet aaaaagit taatecea ticaagaagi 420 aagacaagi teaatata ageogeeet aaaaagit gadgitagi gacagaeet 480 gigactta aaacaategi atteaacea teatagea cagitegae agitagaea 540 tigticag gigotteat tacacaat accoccaag agitagaee digtitaaac 600 atacceaga accoccae cagaaagge gacaacgie gideetaee agitgitaga 640 atacceaga ageoectea cagaaagge gacaacgie gideetaee agitgitaga 640 atacceag ageoectea cagaaagge gacaacgie gacagitagi ageogaad 72	aatggcaaac ta	acatggcat	agcacttcgt	gtgccaactc	aaaatgtatc	attagttgat	840	
 List agatgit tatagatgit aaaatacaa tggtatggg agatataag 1020 ttaagtia tagocigit tgaagtgat iggggattit ciaatagagt agitggaggi 1000 caaatacaa tiggagaact aataatatga tgggagget titteteigte tgocattet 1200 aggatggog gactottee ettigetig accgocatga atgegatege agteteeet 1260 tecageaeg tiggagtgat iggtggge cagttaget iggatgetig accageageg 1320 aacagtigg ggatgtegt geaegiteaa accaceaatg atecageae ageagtageg 1380 tegeggaa aaacegit ageageagt getigaeeggg titeteette tgeogita 1438 210- SEO ID NO 96 211- LENGTH: 1447 223- YTFE: NNA 223- OTHER INFORMATION; Synthetic Construct - Sequence No. 96, Example 96 deeijner Syncheococus gp. strain PCC 7942 nirA-promoter-controlled ND-dependent Glyceraldehyde-3-Phorphate-Dehydrogenase DNA construct (1447 bp) 400- SEQUINCE: 96 gaaaatetg gacaccace ettetigea gacagtgit gatgagat tgaaggatg tgagggitg 1300 tegegaaa tatggtaaaga agitaaata tteaagaga tegaaggag tagaeggag 1300 tegegaa atggtaaaga agitaaate teaagagag acgaatatgat gaggatgaa 120 taaaatatg accatage aggtegitte acaggtga tgaggatgit gaggatgaa 120 taaaatatg acctatge aggtegitte acaggaga tgagagatgit gaggatgaa 120 taaaatatg accatage aggtegitte acaggaga tgagagatgit gaggatgaa 120 taaaatatg accatage aggtegitte acaggaga tgagagatgit gaggatgaa 120 taagatatta taggittiga tagaataga ttaacagat taagagaa 120 tageaatta atggtaaaga agitaaate tteagtgaa cgaatatgat gaegatata 240 taaaatatg accatage aggtegitte acaggtaga tgagagtag tgatggitgi 300 teegegaa atggaaaga agitaaate tteagtgaa caagaaga acaatacet 360 ggaaagaet taaataega tgtagytgi agaatgat taatecaga accaegaa 440 taaatatega tgtagtgit agaatgae cagitgateg gittetaaa 440 taaatateg accatatga ageageget aaaaagtat taatecaga accae 440 ggaagaeaagg tataaaae teatagae cagitgaee agitgaaag 410 tigtitag agettaag atacaae teatagee cagitgetaa agittaaae 420 aageacaag teatatig accaet acceac	ttagtcattg at	ttaaaaca	aaaagtgaca	gtagatgaag	ttaatcatgc	atttagagat	900	
taaagtta tagoctggta tgataegga tgggggatatt ctaataggt agttgaggta (caaatcaac ttggagaact aattaata taatagtgat cccggcoggt actaaggcct 1140 atttgtett gatagetget octgocttg ggeagggget tittetetgie tgocattet 1200 aggatggeg gaetottice cittiget acgocoatg atgogatege agteteecet 1260 tecageaeg tiggagtgat tggtggtgge cagtaget ggatgetgge accageageg 1320 aacagttgg ggatgtegt geaegtteaa accaceaatg atcaegaece ageagtageg 1380 tegeggate aaacegtatt ageageagt getgaegegg titetetete tgeogtta 1438 210- SEO ID NO 96 211- LENGTH: 1447 212- YTPE: NNA 213- ORGANIGN: Artificial Sequence 223- OfHER INVERNATION; Synthetic Construct- Sequence No. 96, Example 96 designer Syncheococcus pp. strain PCC 7942 nirA-prometer- controlled ND-dependent Glyceraldehyde-3-Phorphate-Dehydrogenage DNA construct (1447 bp) 400- SEQUINE: 96 gaaaatetg gcaceacece ettettgeag accagetg agtatatgat ggeagtaaa 120 tageaatta atggtttgg tagaatggt cgttaacgat teagaagat teagagagta 180 aaggtettg aagttgtage agtaaacgae ttaacagatg acgacatgt agegegtta 240 taaaatatg accetatgea aggtegtte acaggtga tgatggtgg tgataggeg 1300 teegegtaa atggtaaaga agttaaate tteagtgaac cagatgeag caaattacet 360 ggaaageet taaatatega tgtagtgta gaatgteg ggtteteace tgataagagt 420 aagecaag cteatatta agegeget aaaaagat taatecage accagetae 480 gtgeettaa aacaateg atteaacaet acceecaag agttagaeg teegaaca 540 ttgtteeg gtgetetetg tateacaaet cattageae cagttgetaa agtttaace 600 atgaettg gtttagtga aggataatg accaatege aggtegete aaaggat 720 aacaatega agegaeete caagaaggt gecaacete gtgeteea agtteacae 660 ataacacaag aegeacetee cagaaaggt gecaacete gtgeteea aggtegea 720	gcaaacttac aa	aggaattat	tgatgttgaa	gaggcccctc	tagtttctaa	ggactataat	960	
caaatcaac ttgggggaact aattaaataa taatagtgat ccoggcoget actaaagcet 1140 attggetget gatagtetget eetgeetgg ggagggget tttttetgte tgeeattett 1200 agggatggeg gaetetttee etttggetet acgeeeatga atgeggatege ageetgeegg 1320 aacagttgg ggagtgat tggggggge cagttagett ggaggetgge accageagegg 1380 tegeoggate aaacegtat ageageagt getgaegegg ttetetette tgeegta 1438 210> SEQ ID NO 96 211> LENGTN: 1447 212> TYPE: NNA 213> OREATINGS: Artificial Sequence 220> FEATURE: 230> OTHER INFORMATION: Synthetic Construct- Sequence No. 96, Example 96: designer Synechococcus gp. strain PCC 7942 nirA-promoter- controlled NDA-dependent Glyceraldehyde-3-Phosphate-Dehydrogemase DNA construct (1447 bp) 400> SEQUENCE: 96 gaaaatetg geaceacee ettetgeag acatgeag attacagaa agttgagt 60 etgttacea attggsate gagaactge taategeag tegaggagt tgatggtg 300 tegeggate agagtegge taateacga ttacagaga tegaggat tgatgggg 120 aaggtettg aggttgag agttaateg taatgag acgacatgt agegeatta 240 taaaatag accatage aggtegtte acatggaag tagaggtag tgatgggg 20 aaggeacag eteaatteg tgatggtgt gaatgtaeg gtttetacae tgatagagt 420 aaggeacag eteaattega tgatgageg aaaatge daaggtag tgatggag 20 ggaaggaet taaatateg tgatggtt gaatgtaeg gtttetacae tgataagat 420 aaggeacag eteaattega tgatgaget acaacgae agttgeag acaatteet 360 ggaaggaet taaatateg attaacae teacagaag attageeg accagetaet 480 ggaaggaet taaatateg attaacae taacgaag agttagetg ttetgaaaca 540 ttgtteteag gtgetteatg taetacaaa teactaga agttageeg ttetgaaca 540 ttgtteteag gtgetteatg taetacaaa teactate agegtaaca agttgtaag 720 atacacaag acgeacete caacacagg gseaaagtg gseaaagte tgetgtgta 370	acaaatcctc at	tcagcagt	tatagatgct	aaaaatacaa	tggtcatggg	agataataag	1020	
attgtott gatagetget ettggetgget geagggeg titttegge tiggegge gattett gatagetget ettggigge gattett gatagetgge eagtte accelerate accele	gttaaagtta ta	agcctggta	tgataacgaa	tggggatatt	ctaatagagt	agttgaggta	1080	
aggatggeg gactetttee ettttgete aegeecatga atgegatege agteteeet 1260 teeageaeg tiggagtgat tggtgggge eagttaget ggatgetgge accageageg 1320 aacagttgg ggatgeegt geaegtteaa acaeceaatg ateaegaeee ageagtageg 1380 tegeggate aaacegtat ageageagt getgaegegg teetetette tgeegta 1438 210> 582 DD NO 96 211> LENGTH: 1447 212> TPE: DNA 213> ORGANISM: Artificial Sequence 220> PEATKE: 223> OFHER INFORMATION: Synthetic Construct- Sequence No. 96, Example 96: designer Syncheococcus gp. atrain PCC 7942 nirA-promoter- controlled RAD-dependent Glyceraldehyde-3-Phosphate-Dehydrogenase DNA construct (1447 bp) 400> SEQUENCE: 96 gaaaatetg geaceacee ettettette tgaagat ggeagtagaa 120 tageaatta atggtttgg tagaattggt egttaget teagagagt teagagtat 180 aaggtettg aagttgtage agtaaaegae ttaacagatg acgacatgtt agegeatta 240 taaaatatg acaetatge aggatette acaggtgaag tagaggtagt tgatgggtg 300 teegegtaa atggtaaaga agttaaatea tteagtgaag tagaggtagt tgataagaat 420 aaggacatga teaaatatga tgaagtget aaaaggat taatecaag acaattaeet 360 ggaaagaet taaatatega tgtagtgta gaatggaetg gtteteaee tgataagaat 420 aaggeacag cteaatatga ageageget aaaaagtat taatecage acaattaeet 360 ggaaagaet taaatatega tgtagtgta gaatgtaetg gtteteaee tgataaagat 420 aaggeacag teetaattga ageaggeget aaaaagtat taatecage acaattaeet 360 ggaaagaet taaatateg atteaaeat taetagaag agttagaeg gttetgaaaa 540 ttgttee gtgteteatg taetaaaa tettagae cagtgeae aggtgtaaa 660 atgaeettg gtttagttg aggttaatg actaeaatte acgettaee aggtgeaga 720 aasteacee taaetatea aggtetget aaagetaetg gteetegte ageggeagaa 720	gcaaatcaac tt	ggagaact	aattaaataa	taatagtgat	cccggccgct	actaaagcct	1140	
tccagcacg ttggagtgat tggtgggg cagttagct ggatgtgg accagcagcg 1320 aacagttgg ggatgtcgct gcacgttcaa acacccaatg atcacgaccc agcagtagcg 1380 tcggggatc aaaccgtatt agcagcagt gctgacgcgg ttctctcttc tgccgta 1438 210> 5EQ ID NO 96 211> LENKTH: 1447 212> TTPE: DIM 213> ORGANISM: Artificial Sequence 223> OTHER INFORMATION: Synthetic Construct- Sequence No. 96, Example 96: designer Synechococcus gp. strain PCC 7942 nirA-promoter- controlled RAD-dependent Glyceraldehyde-3-Phosphate-Dehydrogenase DNA construct (1447 bp) 400> SEQUENCE: 96 gaaaatctg gcaccacacc cttcttgcag aacatgcatg attacaaaa agttgtagtt 60 ctgttacca attgcgaatc gagaactgc taatctgccg agtatatgat ggcagtaaa 120 tagcaatta atggtttgg tagaatggt cgttagcat tcagaagaat tcagaagata 180 aaggtcttg aagttgtagc agtaaacgac ttaacagtag agacatgt tagtggtggt 300 tccgcgtaa atggtaaaga agttaaatca ttcagtgaac cagatgcaag caaattacct 360 ggaaagact taaatatcga tgtagtgtta gaatgtacg gttctcaca tgataagaat 420 aaggcacaag ctcaattga agcagggct aaaaaggta taatccaag agttagacgat 420 tagcaataa atggttaga gtagaggt agaaggacg tcagaagga fagaaggat 420 ggaaagact taaatatcga tgtagtgtta gaatgtacg gttctcaca tgataagaat 420 aaggcacaag ctcaattga agcagggct aaaaaggta taatccag accagtaca 480 gtgacttaa aaacaatcgt attcaacaa accaccaag agttagacg ttctgaaaca 540 ttgttctca gtgtctcatg tactacaaa tcattagca cagttgctaa agtttaaac 600 atgactttg gtttagttg aggttaatg actacattc acgcttaca ggtggcaaa 720 aacacaag acgcaccta cagaaaggt gacaagtc gttccgtgc agcggcagaa 720	gatttgtctt ga	atagctgct	cctgcctttg	ggcagggggct	tttttctgtc	tgccattctt	1200	
aacagttgg ggatgteget geaegtteaa acaeceaatg ateaegaece ageagtageg 1380 tegeggate aaaeegtatt ageageagtt getgaegegg tetetetet tgeegta 1438 210> SEQ ID NO 96 211> LENOTH: 1447 212> TYPE: DNA 213> ORGANISM: Artificial Sequence 223> OTHER INFORMATION: Synthetic Construct- Sequence NO. 96, Example 96: designer Synchhoccoccus op. strain PCC 7942 nirA-promoter- controlled NDD-dependent Glyceraldehyde-3-Phosphate-Dehydrogenase DNA construct (1447 bp) 400> SEQUENCE: 96 gaaaatetg geaceacaec ettettgeag aacatgeatg atttacaaaa agttgtagtt 60 etgttacea attgegaate gagaactgee taactgeeg agtatatgat ggeagtaaaa 120 tageaatta atggtttgg tagaattggt cgtttageat teagaagaat teagaagata 180 aaggtettg aagttgtage agtaaacgae ttaacagtag aggacagt ageegatata 240 taaaatatg acaetatgea aggtegtte acaggtgaag tagaggtagt tgatggtggt 300 teegegtaa atggtaaaga agttaaatea tteagtgaac cagatgeag caaattaect 360 ggaaagaet taaatatega tgtaagtgt agaatgtaet taatetaega eccageteet 480 gtgaettaa aaacaateg atteaacae taategeae agttgaagg ttegaaaca 540 ttgttteag gtgeetteag tateacaaa teaceagaa gattagaegg ttegaaaca 540 ttgttteag gtgeetteag tateacaaa teaceagaagta aggetaaaca 600 atgaeettg gtttagttg aggtttaatg aceaaatte acgetgaaa 720 aacaeaag aceacaeag agttegatg gaeaacgte gtgeetgg ageggaaa 720 aacaeacae ctaateteae aggtgetget aaagetat teetegaaat 100	gaggatggcg ga	actctttcc	cttttgctct	acgcccatga	atgcgatcgc	agtctcccct	1260	
togoggato aaacogtatt agcagcagtt gotgaegegg ttototott tgoogta 1438 210> SEQ ID NO 96 211> LENGTH: 1447 212> TTPE: DNA 213> OKGANISM: Artificial Sequence 220> FPATURE: 223> OTHER INFORMATION: Synthetic Construct- Sequence No. 96, Example 96: designer Synchocococu mg. strain PCC 7942 nirA-promoter- controlled NAD-dependent Glyceraldehyde-3-Phosphate-Dehydrogenase DNA construct (1447 bp) 400> SEQUENCE: 96 gaaaatotg gcaccacacc ottottgcag aacatgcatg atttacaaaa agttgtagtt 60 otgttacca attgcgaatc gagaactgoo taatotgcog agtatatgat ggcagtaaaa 120 tagcaatta atggttttgg tagaattggt ogttagcat tcagaagaat tcaagaagta 180 aaggtottg aagttgtagc agtaaacgac ttaacagtag acgacatgt agoggcatta 240 taaaatatg accatatgca aggtggttt acaggtgaag tagaggtagt tgatggtggt 300 tocgogtaa atggtaaaga agttaaatca ttocagtgaac cagatgcaag caaattacct 360 ggaaagact taaatatoga tgtagtgtta gaatgtactg gtttagcat taatcaca tgataaagat 420 aaggacaaga ctcatattga agcaggogt aaaaagatat taatctcage accagctact 480 gtgacttaa aaacaatog attcaacaat aaccaccaag agttagacgg ttotgaaca 540 ttgtttcag gtgottcatg tactacaaac tcattagcac cagttgctaa agtttaaac 600 atgactttg gtttagttga aggttgatatg actacaatt accgttaca aggtgataa 720 aacacaag acgcaccta cagaaaggt gacaaagt gtaaggtat tootgaaaca 720 aacacaag acgcaccta aggtgcgtt aaagctatg gtaagtatt tootgaaca 780	gtccagcacg tt	ggagtgat	tggtggtggc	cagttagctt	ggatgctggc	accagcagcg	1320	
210> SEQ ID NO 96 211> LENGTH: 1447 212> TTPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 223> OTHER INFORMATION: Synthetic Construct- Sequence No. 96, Example 96: designer Synchococcus up. strain PCC 7942 nitA-promoter- controlled NAD-dependent Glyceraldehyde-3-Phosphate-Dehydrogenase DNA construct (1447 bp) 400> SEQUENCE: 96 gaaaatctg gcaccacacc cttcttgcag aacatgcatg atttacaaaa agttgtagtt 60 ctgttacca attgcgaatc gagaactgcc taatctgccg agtatatgat ggcagtaaaa 120 tagcaatta atggttgtgg tagaattggt cgtttagcat tcagaagaat tcaagaagta 180 aaggtcttg aagttgtagc agtaaacgac ttaaccagtag acgacatgt agcgcattta 240 taaaatatg acactatgca aggtcgttc acaggtgaag tagaggtagt tgatggtggt 300 tcccgcgtaa atggtaaaga agttaaatca ttcagtgaac cagatgcaag caaattacct 360 ggaaagact taaatatcga tgtagtgtt gatgtactg gttctcace tgataaagat 420 aagcaccaag ctcatattga agcaggcg taaaaagtat taatctcagc accagctact 480 gtgacttaa aaacaatcgt attcaacact aaccaccaag agttgaacg gttctgaaca 540 ttgtttcag gtgcttcatg tactacaact cattagcac cagttgctaa agttttaaac 600 atgactttg gtttagttg aggttgtag actacattc acgctacca aggtgacaa 720 aacatcatcc ctaactcac aggtgctgt aaagtattg gtaaggtagt tcctgaaaca 780	caacagttgg gg	gatgtcgct	gcacgttcaa	acacccaatg	atcacgaccc	agcagtagcg	1380	
<pre>211> LINGTH: 1447 212> TYPE: DNA 213> ORCANISM: Artificial Sequence 220> FEATURE: 230> OTHER INFORMATION: Synthetic Construct- Sequence No. 96, Example 96: designer Synechococcus sp. strain PCC 7942 nirA-promoter- controlled NAD-dependent Glyceraldehyde-3-Phosphate-Dehydrogenase DNA construct (1447 bp) 400> SEQUENCE: 96 gaaaatctg gcaccacacc cttcttgcag aacatgcatg attacaaaa agttgtagt 60 ctgttacca attgcgaatc gagaactgc taatctgccg agtatatgat ggcagtaaaa 120 tagcaatta atggtttgg tagaattggt cgtttagcat tcagaagat tcaagaagta 180 aaggtcttg aagttgtagc agtaaacgac ttaacagatg aggacatgt agtagtggtg 300 tcccgcgtaa atggtaaga agttaaatca ttcagtgaac cagatgcaag caaattacct 360 ggaaagact taaatatcga tgtagtgtta gaatgtacg gttctacac tgataaagat 420 aagcacaag ctcatatga agcaggcgct aaaaagtat taatccagc accagctac 480 gtgacttaa aacaatcgt attcacaaac tactagcac cagttgctaa agtttaaaca 600 atgactttg gttagtga aggttaatg accaatta accactag aggttagtaa aftu accacag acgcacctca cagaaaaggt gacaaacgtc gtgctcgtg agcggcagaa 720 acacacc ctaactcaac aggtgcgt a aaggtatg gtaagttat tcctgaaacc 780</pre>	atcgcggatc aa	aaccgtatt	agcagcagtt	gctgacgcgg	ttetetette	tgccgtta	1438	
gaaaatctg gcaccacac cttettgeag aacatgeatg atttacaaaa agttgtagtt 60 etgttacea attgegaate gagaactgee taatetgeeg agtatatgat ggeagtaaaa 120 tageaatta atggtttgg tagaattggt egtttageat teagaagaat teaagaagta 180 aaggtettg aagttgtage agtaaacgae ttaacagatg aegacatgtt agegeattaa 240 taaaatatg acactatgea aggtegtte acaggtgaag tagaggtagt tgatggtggt 300 teegegtaa atggtaaaga agttaaatea tteagtgaae cagatgeaag caaattaeet 360 ggaaagaet taaatatega tgtagtgtt gaatgtaetg gttetaeae tgataaagat 420 aaggeacaag eteatatga ageaggeget aaaaaagtat taateteage accagetaet 480 gtgaettaa aaacaategt atteaacaet accaceag agttagaegg ttetgaaaca 540 ttgttteag gtgetteatg taetaeaae teattageae cagttgetaa agtttaaae 660 atagaecaag aegeecetea cagaaaaggt gacaaaegte gtgetegte ageggeagaa 720 acateatee etaacteae aggtgetget aaagetateg gtaagttat teetgaaate 780	<212> TYPE: I <213> ORGANIS <220> FEATURE <223> OTHER I 96: des control	DNA 5M: Artifi 5: INFORMATIC signer Syn Lled NAD-d	N: Syntheti hechococcus lependent Gl	ic Construc sp. strain	PCC 7942 n	IrA-promoter	-	
ctgttacca attgcgaatc gagaactgcc taatctgccg agtatatgat ggcagtaaaa 120 tagcaatta atggtttgg tagaattggt cgtttagcat tcagaagaat tcaagaagta 180 aaggtcttg aagttgtagc agtaaacgac ttaacagatg acgacatgtt agcgcattta 240 taaaatatg acactatgca aggtcgtttc acaggtgaag tagaggtagt tgatggtggt 300 tccgcggtaa atggtaaaga agttaaatca ttcagtgaac cagatgcaag caaattacct 360 ggaaagact taaatatcga tgtagtgtta gaatgtactg gttctacac tgataaagat 420 aagcacaag ctcatattga agcaggcgct aaaaaagtat taatctcagc accagctact 480 gtgacttaa aaacaatcgt attcaacact aaccaccaag agttagacgg ttctgaaaca 540 ttgtttcag gtgcttcatg tactacaaac tcattagcac cagttgctaa agtttaaac 600 atgaccttg gtttagttga aggtttaatg actacaattc acgcttacca aggtgatcaa 660 ataacacag acgacectca cagaaaaggt gacaaacgtc gtgctcgtgc agcggcagaa 720 acatcatcc ctaactcaac aggtgctgct aaagctatcg gtaaagttat tcctgaaatc 780	<400> SEQUENC	CE: 96						
tagcaatta atggttttgg tagaattggt cgtttagcat tcagaagaat tcaagaagta 180 aaggtettg aagttgtage agtaaacgae ttaacagatg acgacatgtt agegeattta 240 taaaatatg acactatgea aggtegttte acaggtgaag tagaggtagt tgatggtggt 300 teegegtaa atggtaaaga agttaaatea tteagtgaae cagatgeaag caaattaeet 360 ggaaagaet taaatatega tgtagtgtta gaatgtaetg gtteetaeae tgataaagat 420 aageacaag eteatattga ageaggeget aaaaaagtat taateteage accagetaet 480 gtggaettaa aaacaategt atteaaeae teattageae cagttgetaa agttetgaaea 540 ttgttteag gtgetteatg taetaeaae teattageae cagttgetaa agttetaaae 600 atgaeettg gtttagttga aggtttaatg actaeaatte acgettaea agttetaaae 720 aageacaag aegeeetee cagaaaaggt gacaaaegte gtgetegtge ageggeagaa 720 aaeateatee etaaeteaae aggtgetget aaagetateg gtaaagttat teetagaate 780	agaaaatctg go	caccacacc	cttcttgcag	aacatgcatg	atttacaaaa	agttgtagtt	60	
aaggtettg aagttgtage agtaaacgae ttaacagatg acgacatgtt agegeattta 240 taaaatatg acactatgea aggtegttte acaggtgaag tagaggtagt tgatggtggt 300 teegegtaa atggtaaaga agttaaatea tteagtgaae cagatgeaag caaattacet 360 ggaaagaet taaatatega tgtagtgtta gaatgtaetg gttetaeae tgataaagat 420 aageaeaag eteatattga ageaggeget aaaaaagtat taateteage aceagetaet 480 gtgaettaa aaacaategt atteaaeae teattageae eagttgetaa agtttaaae 540 ttgttteag gtgetteatg taetaeaae teattageae cagttgetaa agttttaaae 600 atgaeettg gtttagttga aggttaatg actaeeatte acgettaeea aggtgateaa 660 ataeeeaag aegeeetea cagaaaaggt gaeaaegte gtgetegtge ageggeagaa 720 acateetee etaaeteeae aggtgetget aaagetateg gtaaagttat teetgaaate 780	tctgttacca at	tgcgaatc	gagaactgcc	taatctgccg	agtatatgat	ggcagtaaaa	120	
taaaatatg acactatgca aggtcgtttc acaggtgaag tagaggtagt tgatggtggt 300 tccgcgtaa atggtaaaga agttaaatca ttcagtgaac cagatgcaag caaattacct 360 ggaaagact taaatatcga tgtagtgtta gaatgtactg gtttctacac tgataaagat 420 aagcacaag ctcatattga agcaggcgct aaaaaagtat taatctcagc accagctact 480 gtgacttaa aaacaatcgt attcaacact aaccaccaag agttagacgg ttctgaaaca 540 ttgtttcag gtgcttcatg tactacaaac tcattagcac cagttgctaa agttttaaac 600 atgactttg gtttagttga aggtttaatg actacaattc acgcttacca aggtggatcaa 660 atacacaag acgcacctca cagaaaaggt gacaaacgtc gtgctcgtgc agcggcagaa 720 acatcatcc ctaactcaac aggtgctgct aaagctatcg gtaaagttat tcctgaaatc 780	gtagcaatta at	ggttttgg	tagaattggt	cgtttagcat	tcagaagaat	tcaagaagta	180	
tccgcgtaa atggtaaaga agttaaatca ttcagtgaac cagatgcaag caaattacct 360 ggaaagact taaatatcga tgtagtgtta gaatgtactg gttctacac tgataaagat 420 aagcacaag ctcatattga agcaggcgct aaaaaagtat taatctcagc accagctact 480 gtgacttaa aaacaatcgt attcaacact aaccaccaag agttagacgg ttctgaaaca 540 ttgtttcag gtgcttcatg tactacaaac tcattagcac cagttgctaa agttttaaac 600 atgactttg gtttagttga aggtttaatg actacaattc acgctacac aggtggatcaa 660 atacacaag acgcacctca cagaaaaggt gacaaacgtc gtgctcgtgc agcggcagaa 720 acatcatcc ctaactcaac aggtgctgct aaagctatcg gtaaagttat tcctgaaatc 780	gaaggtcttg aa	agttgtagc	agtaaacgac	ttaacagatg	acgacatgtt	agcgcattta	240	
ggaaagact taaatatcga tgtagtgtta gaatgtactg gtttctacac tgataaagat 420 aagcacaag ctcatattga agcaggcgct aaaaaagtat taatctcagc accagctact 480 gtgacttaa aaacaatcgt attcaacact aaccaccaag agttagacgg ttctgaaaca 540 ttgtttcag gtgcttcatg tactacaaac tcattagcac cagttgctaa agttttaaac 600 atgactttg gtttagttga aggtttaatg actacaattc acgcttacac aggtggtcaa 660 atacacaag acgcacctca cagaaaaggt gacaaacgtc gtgctcgtgc agcggcagaa 720 acatcatcc ctaactcaac aggtgctgct aaagctatcg gtaaagttat tcctgaaatc 780	ttaaaatatg ac	cactatgca	aggtcgtttc	acaggtgaag	tagaggtagt	tgatggtggt	300	
aagcacaag ctcatattga agcaggcgct aaaaaagtat taatctcagc accagctact 480 gtgacttaa aaacaatcgt attcaacact aaccaccaag agttagacgg ttctgaaaca 540 ttgtttcag gtgcttcatg tactacaaac tcattagcac cagttgctaa agtttaaac 600 atgactttg gtttagttga aggtttaatg actacaattc acgcttacac aggtgatcaa 660 atacacaag acgcacctca cagaaaaggt gacaaacgtc gtgctcgtgc agcggcagaa 720 acatcatcc ctaactcaac aggtgctgct aaagctatcg gtaaagttat tcctgaaatc 780	ttccgcgtaa at	ggtaaaga	agttaaatca	ttcagtgaac	cagatgcaag	caaattacct	360	
gtgacttaa aaacaatcgt attcaacact aaccaccaag agttagacgg ttctgaaaca 540 ttgtttcag gtgcttcatg tactacaaac tcattagcac cagttgctaa agttttaaac 600 atgactttg gtttagttga aggtttaatg actacaattc acgcttacac aggtggatcaa 660 atacacaag acgcacctca cagaaaaggt gacaaacgtc gtgctcgtgc agcggcagaa 720 acatcatcc ctaactcaac aggtgctgct aaagctatcg gtaaagttat tcctgaaatc 780	tggaaagact t <i>a</i>	aatatcga	tgtagtgtta	gaatgtactg	gtttctacac	tgataaagat	420	
ttgtttcag gtgcttcatg tactacaaac tcattagcac cagttgctaa agttttaaac 600 atgactttg gtttagttga aggtttaatg actacaattc acgcttacac aggtgatcaa 660 atacacaag acgcacctca cagaaaaggt gacaaacgtc gtgctcgtgc agcggcagaa 720 acatcatcc ctaactcaac aggtgctgct aaagctatcg gtaaagttat tcctgaaatc 780	aaagcacaag ct	catattga	agcaggcgct	aaaaaagtat	taatctcagc	accagctact	480	
atgactttg gtttagttga aggtttaatg actacaattc acgcttacac aggtgatcaa 660 atacacaag acgcacctca cagaaaaggt gacaaacgtc gtgctcgtgc agcggcagaa 720 acatcatcc ctaactcaac aggtgctgct aaagctatcg gtaaagttat tcctgaaatc 780	ggtgacttaa aa	aacaatcgt	attcaacact	aaccaccaag	agttagacgg	ttctgaaaca	540	
atacacaag acgcacctca cagaaaaaggt gacaaacgtc gtgctcgtgc agcggcagaa 720 acatcatcc ctaactcaac aggtgctgct aaagctatcg gtaaagttat tcctgaaatc 780	gttgtttcag gt	gcttcatg	tactacaaac	tcattagcac	cagttgctaa	agttttaaac	600	
acatcatcc ctaactcaac aggtgctgct aaagctatcg gtaaagttat tcctgaaatc 780	gatgactttg gt	ttagttga	aggtttaatg	actacaattc	acgcttacac	aggtgatcaa	660	
	aatacacaag ac	egcacetea	cagaaaaggt	gacaaacgtc	gtgctcgtgc	agcggcagaa	720	
atggtaaat tagatggtgg tgcacaacgt gttcctgtag ctacaggttc attaactgaa 840	aacatcatcc ct	aactcaac	aggtgctgct	aaagctatcg	gtaaagttat	tcctgaaatc	780	
	gatggtaaat ta	agatggtgg	tgcacaacgt	gttcctgtag	ctacaggttc	attaactgaa	840	

continued

-continued
ttaacagtag tattagaaaa acaagacgta acagttgaac aagttaacga agctatgaaa 900
aatgetteaa aegaateatt eggttaeaet gaagaegaaa tegtttette agaegttgta 960
ggtatgactt acggttcatt attcgacgct acacaaactc gtgtaatgtc agttggcgac 1020
cgtcaattag ttaaagttgc agcttggtat gataacgaaa tgtcatatac tgcacaatta 1080
gttegtaeat tageataett agetgaaett tetaaataat aatagtgate eeggeegeta 1140
ctaaagcetg atttgtettg atagetgete etgeetttgg geaggggett ttttetgtet 1200
gccattettg aggatggegg actettteee ttttgeteta egeceatgaa tgegategea 1260
gteteeeetg teeageaegt tggagtgatt ggtggtggee agttagettg gatgetggea 1320
ccagcagcgc aacagttggg gatgtcgctg cacgttcaaa cacccaatga tcacgaccca 1380
gcagtagega tegeggatea aacegtatta geageagttg etgaegeggt tetetettet 1440
gccgtta 1447
<pre><210> SEQ ID NO 97 <211> LENGTH: 2080 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 97, Example 97: designer Synechococcus sp. strain PCC 7942 nirA-promoter- controlled 2-Keto Acid Decarboxylase DNA construct (2080 bp)</pre>
<400> SEQUENCE: 97
agaaaatctg gcaccacacc cttcttgcag aacatgcatg atttacaaaa agttgtagtt 60
tetgttacea attgegaate gagaaetgee taatetgeeg agtatatgat gtataeagta 120
ggagattacc tgttagaccg attacacgag ttgggaattg aagaaatttt tggagttcct 180
ggtgactata acttacaatt tttagatcaa attatttcac gcgaagatat gaaatggatt 240
ggaaatgeta atgaattaaa tgettettat atggetgatg gttatgeteg taetaaaaaa 300
getgeegeat tteteaceae atttggagte ggegaattga gtgegateaa tggaetggea 360
ggaagttatg ccgaaaattt accagtagta gaaattgttg gttcaccaac ttcaaaagta 420
caaaatgacg gaaaatttgt ccatcataca ctagcagatg gtgattttaa acactttatg 480 aaqatgcatg aacctgttac aqcaqcqcqq actttactga caqcaqaaaa tqccacatat 540
gaaattgacc gagtactttc tcaattacta aaagaaagaa aaccagtcta tattaactta 600 ccagtcgatg ttgctgcagc aaaagcagag aagcctgcat tatctttaga aaaagaaagc 660
totacaacaa atacaactga acaagtgatt ttgagtaaga ttgaagaaag tttgaaaaaat 720
goccaaaaac cagtagtgat tgcaggacac gaagtaatta gttttggttt agaaaaaacg 780
gtaactcagt ttgtttcaga aacaaaacta ccgattacga cactaaattt tggtaaaagt 840
gctgttgatg aatctttgcc ctcattttta ggaatatata acgggaaact ttcagaaatc 900
agtettaaaa attttgtgga gteegeagae tttateetaa tgettggagt gaagettaeg 960
gacteetcaa caggtgeatt cacacateat ttagatgaaa ataaaatgat tteaetaaae 1020
atagatgaag gaataatttt caataaagtg gtagaagatt ttgattttag agcagtggtt 1080
tettettat cagaattaaa aggaatagaa tatgaaggae aatatattga taageaatat 1140
gaagaattta ttocatcaag tgotocotta toacaagaco gtotatggoa ggoagttgaa 1200
agtttgactc aaagcaatga aacaatcgtt gctgaacaag gaacctcatt ttttggagct 1260
tcaacaattt tottaaaato aaatagtogt tttattggac aacotttatg gggttotatt 1320

ggatatactt	ttccagcggc	tttaggaagc	caaattgcgg	ataaagagag	cagacacctt	1380
ttatttattg	gtgatggttc	acttcaactt	accgtacaag	aattaggact	atcaatcaga	1440
gaaaaactca	atccaatttg	ttttatcata	aataatgatg	gttatacagt	tgaaagagaa	1500
atccacggac	ctactcaaag	ttataacgac	attccaatgt	ggaattactc	gaaattacca	1560
gaaacatttg	gagcaacaga	agatcgtgta	gtatcaaaaa	ttgttagaac	agagaatgaa	1620
tttgtgtctg	tcatgaaaga	agcccaagca	gatgtcaata	gaatgtattg	gatagaacta	1680
gttttggaaa	aagaagatgc	gccaaaatta	ctgaaaaaaa	tgggtaaatt	atttgctgag	1740
caaaataaat	agtaatagtg	atcccggccg	ctactaaagc	ctgatttgtc	ttgatagctg	1800
ctcctgcctt	tgggcagggg	cttttttctg	tctgccattc	ttgaggatgg	cggactcttt	1860
cccttttgct	ctacgcccat	gaatgcgatc	gcagtctccc	ctgtccagca	cgttggagtg	1920
attggtggtg	gccagttagc	ttggatgctg	gcaccagcag	cgcaacagtt	ggggatgtcg	1980
ctgcacgttc	aaacacccaa	tgatcacgac	ccagcagtag	cgatcgcgga	tcaaaccgta	2040
ttagcagcag	ttgctgacgc	ggttctctct	tctgccgtta			2080
<220> FEAT <223> OTHE 98: 0 cont: (160)	: DNA NISM: Artif: URE: R INFORMATIC designer Syn rolled NADH 3 bp)	DN: Synthet: nechococcus	ic Construc† sp. strain	PCC 7942 n:	No. 98, Exa irA-promoter NA construc	-
<400> SEQU	ENCE: 98					
agaaaatctg	gcaccacacc	cttcttgcag	aacatgcatg	atttacaaaa	agttgtagtt	60
tctgttacca	attgcgaatc	gagaactgcc	taatctgccg	agtatatgat	gtcaagattt	120
acactaccaa	gagatattta	tttcggagaa	aacactttag	aaactttaaa	aactttaaaa	180
ggtaagaaag	ctataattgt	tgttggagga	ggatcaatga	aaaaatttgg	tttccttcaa	240
aaagttgaag	aatatctaaa	agaagcagga	atggaaataa	aattaataga	aggtgttgaa	300
	cagttgaaac					360
	tatccatagg					420
_	acccagaatt				-	480
	aagctaaatt					540
	cagttataac					600
	cagatgtagc	_				660
	atacaggtat					720
-	atttctcaga	-			-	780
	cctatgaagg			-		840
	tggcattctc			-		900
	tattccacat					960
-	ataagaaaac			-		1020
	atactgatga					1080
aataagaaaa	tggatatacc	actaaactta	aaagaatatg	gagtaacaga	agaagatttt	1140

-continued

aatgaaaact	tagatttcat	agcacataat	gcagtgttag	atgcatgtac	tggatcaaat	1200
ccaagaccta	taactgaaga	agaaatgaaa	aaagtattca	aatgcacatt	tactggagag	1260
aaagttaatt	tttaataata	gtgatcccgg	ccgctactaa	agcctgattt	gtcttgatag	1320
ctgctcctgc	ctttgggcag	gggcttttt	ctgtctgcca	ttcttgagga	tggcggactc	1380
tttccctttt	gctctacgcc	catgaatgcg	atcgcagtct	cccctgtcca	gcacgttgga	1440
gtgattggtg	gtggccagtt	agcttggatg	ctggcaccag	cagcgcaaca	gttggggatg	1500
tcgctgcacg	ttcaaacacc	caatgatcac	gacccagcag	tagcgatcgc	ggatcaaacc	1560
gtattagcag	cagttgctga	cgcggttctc	tcttctgccg	tta		1603

<210> SEQ ID NO 99

<211> LENGTH: 1654

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 99, Example 99: designer Synechococcus sp. strain PCC 7942 nirA-promotercontrolled NADPH-dependent Butanol Dehydrogenase DNA construct (1654 bp)

<400> SEQUENCE: 99

agaaaatctg gcaccacacc cttcttgcag aacatgcatg atttacaaaa agttgtagtt 60 totgttacca attgcgaatc gagaactgcc taatctgccg agtatatgct agaaatcaac 120 ttctgtatcg taataacagc acttaagcag tttttccatt tcttctacgc ttggctgtct 180 tgggttagaa cctgtgcagg catcgcctat ggcattaact gcaatgtcat gtaacctctc 240 caggaataca ttttcaggca caaatccctg tgcaaccgga tagctgtctg caccgtaatt 300 tttaatgcag tgcggtatat taagttcatc attcatctta cggagataac cgattaatga 360 agetacettt teateaaggt etgeteegee aagteeeatg aaateageaa ttteaceata 420 acgettetta geetgtteat cetttgegtt aaatgeaatt acettaggga gatacattge 480 attcgcagca ccgtgaatga tgtgtgcgcc gtaatcggca aatgccgcac ctgttttatg 540 cgccattgaa tgtacaatac caagaagtgc attagaaaat gccattcctg cgagacattg 600 tgcattatgc attgaatete ttttttecat ateacegtta tatgaacega caaggtetet 660 720 ttgaatcatt ttaattgcat ggagtgccaa tgggtctgta aaatcacaat ttgcggtgga tacatatgcc tcgatagcat gtgtcattgc atccatacct gtatgtgcca ccaattttg 780 tggcatggtc tctgccagtt cagggtctac tattgcaaca tcaggtgtta tttcaaaatc 840 ggctattgga tattttattc ctttttcata atctgtaata attgaaaaag cagttacctc 900 ggtagcggtt cctgaagtag aagatattgc acaaaaatgt gcttttttac gaagtgaagg 960 1020 tatgccaaat actttacaca tatcctcaaa ggtaatatca ggatattcat atttaatcca cattgettta geogeateaa teggagaace teegeetatt geaacaatee agteaggtte 1080 aaactctgac atcgctttgg cacctttcat aacggtttcc accgaagggt caggttcaat 1140 tccttcaaaa agtctgactt ccataccggc ttccttaaga tactgttctg ccctgtcaag 1200 gaaaccaaaa cgtttcattg aacctccgcc aacacaaatc atggcttttt tgccttgaaa 1260 tgtcttaagt gcctctaatg caccctttcc atgatacaaa tctcttggta acgtaaatct 1320 tgccattaat agtgatcccg gccgctacta aagcctgatt tgtcttgata gctgctcctg 1380 cctttgggca ggggcttttt tctgtctgcc attcttgagg atggcggact ctttcccttt 1440

-continued

tgetetaege ceatgaatge gategeagte teeeetgtee ageaegttgg agtgattggt 1500
ggtggccagt tagcttggat gctggcacca gcagcgcaac agttggggat gtcgctgcac 1560
gttcaaacac ccaatgatca cgacccagca gtagcgatcg cggatcaaac cgtattagca 1620
gcagttgctg acgcggttct ctcttctgcc gtta 1654
<pre><210> SEQ ID NO 100 <211> LENGTH: 1440 <212> TYPE: DNA <211> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 100, Example 100: designer Synechocystis sp. PCC 6803 nirA-promoter-controlled NAD-dependent Glyceraldehyde-3-Phosphate Dehydrogenase DNA construct (1440 bp)</pre>
<400> SEQUENCE: 100
atggtagtta aagttggtat taacggtttc ggtcgtatcg gacgtcttgc attccgccgt 60
attcaaaata tcgaaggtgt tgaagtaact cgtatcaacg accttacaga tccaaatatg 120
cttgcacact tgttgaaata cgatacaact caaggtcgtt ttgatggaac agttgaagtt 180
aaagaaggtg gatttgaagt aaacggaaac ttcattaaag tttctgctga acgtgatcca 240
gaaaacatcg actgggcaac tgatggggtt gaaatcgttc ttgaagcaac tggtttcttt 300
gctaaaaaag aagcagctga aaaacactta catgctaacg gtgctaaaaa agttgttatc 360
acageteetg gtggaaaega tgttaaaaea gttgttttea aeaetaaeea egaeattett 420
gacggtactg aaacagttat ctcaggtgct tcatgtacta caaactgttt agctcctatg 480
gctaaagctc ttcacgatgc attcggtatt caaaaaggtc ttatgactac aatccacgct 540
tacactggtg accaaatgat ccttgacgga ccacaccgtg gtggtgacct tcgtcgtgca 600
cgcgctggtg ctgcaaatat cgttcctaac tcaactggtg ctgctaaagc tatcggtctt 660
gttatcccag aacttaacgg taaacttgac ggtgctgcac aacgtgttcc tgttccaact 720
ggatcagtaa ctgagttggt tgtaactett gacaaaaacg tttetgttga cgaaatcaac 780
getgetatga aagetgette aaaegatage tteggttaea etgaagatee aategtttet 840
tcagatatcg taggcgtatc atacggttca ttgtttgacg caactcaaac taaagtaatg 900
gaagttgacg gatcccaatt ggttaaagtt gtatcatggt atgacaacga aatgtcttac 960
actgeteaac ttgtaegtae tettgagtae ttegeaaaaa ttgetaaata atagtaatga 1020
gttacagttt tggcaattac taaaaaactg acttcaattc aatgttagcc cgctcccgcg 1080
ggttttttgt tgctttttca cagtgactat aggtaatcag caacacaata cggccctgtt 1140
ctttggacag tttttgtata atgttgaccg catcctgacc ggatttttta tctaagtggg 1200
gaattgtcaa ttgtcaatta aagctaagtt ctactaatgt tttagaaggc attgtcgatt 1260
gaaaataagg gttgaatgga gaaaattttg agcctttgtc aaagataaaa atttatttca 1320
acagtttttt aactageega accagagaat gaeecagtgg egetgaettt geteeegagt 1380
ttttgttaga aattaccctc aagaagtaat ctaataataa ggttctctct tctgccgtta 1440
<210> SEQ ID NO 101 <211> LENGTH: 2182 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 101, Example

-continued	

101: designer Syn 2-Keto Acid Decan					
<400> SEQUENCE: 101					
agaaaatctg gcaccacacc d	ctaaatgcgt	aaactgcata	tgccttggct	gagtgtaatt	60
tacgttacaa attttaacga a	aacgggaacc	ctatattgat	ctctacatga	tgtatacagt	120
aggagattac ctgttagacc g	gattacacga	gttgggaatt	gaagaaattt	ttggagttcc	180
tggtgactat aacttacaat t	ttttagatca	aattatttca	cgcgaagata	tgaaatggat	240
tggaaatgct aatgaattaa a	atgcttctta	tatggctgat	ggttatgctc	gtactaaaaa	300
agetgeegea ttteteacea 🤇	catttggagt	cggcgaattg	agtgcgatca	atggactggc	360
aggaagttat gccgaaaatt t	taccagtagt	agaaattgtt	ggttcaccaa	cttcaaaagt	420
acaaaatgac ggaaaatttg t	tccatcatac	actagcagat	ggtgatttta	aacactttat	480
gaagatgcat gaacctgtta d	cagcagcgcg	gactttactg	acagcagaaa	atgccacata	540
tgaaattgac cgagtacttt d	ctcaattact	aaaagaaaga	aaaccagtct	atattaactt	600
accagtcgat gttgctgcag (caaaagcaga	gaagcctgca	ttatctttag	aaaaagaaag	660
ctctacaaca aatacaactg a	aacaagtgat	tttgagtaag	attgaagaaa	gtttgaaaaa	720
tgcccaaaaa ccagtagtga t	ttgcaggaca	cgaagtaatt	agttttggtt	tagaaaaaac	780
ggtaactcag tttgtttcag a	aaacaaaact	accgattacg	acactaaatt	ttggtaaaag	840
tgctgttgat gaatctttgc d	cctcattttt	aggaatatat	aacgggaaac	tttcagaaat	900
cagtcttaaa aattttgtgg a	agtccgcaga	ctttatccta	atgcttggag	tgaagcttac	960
ggactcctca acaggtgcat t	tcacacatca	tttagatgaa	aataaaatga	tttcactaaa	1020
catagatgaa ggaataattt t	tcaataaagt	ggtagaagat	tttgatttta	gagcagtggt	1080
ttcttcttta tcagaattaa a	aaggaataga	atatgaagga	caatatattg	ataagcaata	1140
tgaagaattt attccatcaa 🤉	gtgctccctt	atcacaagac	cgtctatggc	aggcagttga	1200
aagtttgact caaagcaatg a	aaacaatcgt	tgctgaacaa	ggaacctcat	tttttggagc	1260
ttcaacaatt ttcttaaaat 🤇	caaatagtcg	ttttattgga	caacctttat	ggggttctat	1320
tggatatact tttccagcgg (ctttaggaag	ccaaattgcg	gataaagaga	gcagacacct	1380
tttatttatt ggtgatggtt d	cacttcaact	taccgtacaa	gaattaggac	tatcaatcag	1440
agaaaaactc aatccaattt o	gttttatcat	aaataatgat	ggttatacag	ttgaaagaga	1500
aatccacgga cctactcaaa g	gttataacga	cattccaatg	tggaattact	cgaaattacc	1560
agaaacattt ggagcaacag a	aagatcgtgt	agtatcaaaa	attgttagaa	cagagaatga	1620
atttgtgtct gtcatgaaag a	aagcccaagc	agatgtcaat	agaatgtatt	ggatagaact	1680
agttttggaa aaagaagatg 🤇	cgccaaaatt	actgaaaaaa	atgggtaaat	tatttgctga	1740
gcaaaataaa tagtagtaat q	gagttacagt	tttggcaatt	actaaaaaac	tgacttcaat	1800
tcaatgttag cccgctcccg o	cgggtttttt	gttgcttttt	cacagtgact	ataggtaatc	1860
agcaacacaa tacggccctg t	ttctttggac	agtttttgta	taatgttgac	cgcatcctga	1920
ccggattttt tatctaagtg o	gggaattgtc	aattgtcaat	taaagctaag	ttctactaat	1980
gttttagaag gcattgtcga t	ttgaaaataa	gggttgaatg	gagaaaattt	tgagcctttg	2040
tcaaagataa aaatttattt o	caacagtttt	ttaactagcc	gaaccagaga	atgacccagt	2100
ggegetgaet ttgeteeega g	gtttttgtta	gaaattaccc	tcaagaagta	atctaataat	2160

170

			-001011	lueu		
aaggttetet ettetgeegt	ta				2182	
<pre><210> SEQ ID NO 102 <211> LENGTH: 1705 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI 102: designer S NDVL designer S</pre>	ON: Syntheti ynechocystis	ic Construct s sp. PCC 68	303 nirA-pro	moter-contro		
NADH-dependent	Butanoi Deny	/drogenase	JNA CONSTIU	(qa 2011) Jo		
<400> SEQUENCE: 102 agaaaatctg gcaccacacc	ataaataaat	appatageta	taaattaaat	apatatoott	60	
tacgttacaa attttaacga		-			120	
tacactacca agagatattt		_	_		180	
aggtaagaaa gctataattg					240	
aaaagttgaa gaatatctaa			_	-	300	
accagateca teagttgaaa			_		360	
tgattggata gtatccatag					420	
attctatgaa tacccagaat		-			480	
tttaagacaa aaagctaaat	_				540	
tactgctttt tcagttataa					600	
taatttaaca ccagatgtag	ctattataga	tccagctctt	gctcaaacaa	tgcctgcaaa	660	
attaacagct catacaggta	tggatgcttt	aactcatgca	atagaagctt	atgtagcagg	720	
attaagatca tatttctcag	atcctcttgc	aatgcaagct	atagttatga	caaaagataa	780	
tttaataaaa tcctatgaag	gagataaaga	agcaagagat	gaaatgcata	tagctcaatg	840	
tttagcagga atggcattct	caaatgcgct	acttggaatt	actcatagta	tggcacataa	900	
gacaggagca gtattccaca	ttcctcatgg	ttgtgcaaat	gctatattcc	ttccttatgt	960	
aatagatttt aataagaaaa	catgtaaaga	tagatatgca	actatagcta	aaactttagg	1020	
tttagcagga aatactgatg	atgaattagt	agatgcatta	acttctatga	tacaagaaat	1080	
gaataagaaa atggatatac	cactaaactt	aaaagaatat	ggagtaacag	aagaagattt	1140	
taatgaaaac ttagatttca	tagcacataa	tgcagtgtta	gatgcatgta	ctggatcaaa	1200	
tccaagacct ataactgaag	aagaaatgaa	aaaagtattc	aaatgcacat	ttactggaga	1260	
gaaagttaat ttttaatagt	aatgagttac	agttttggca	attactaaaa	aactgacttc	1320	
aattcaatgt tagcccgctc	ccgcgggttt	tttgttgctt	tttcacagtg	actataggta	1380	
atcagcaaca caatacggcc	ctgttctttg	gacagttttt	gtataatgtt	gaccgcatcc	1440	
tgaccggatt ttttatctaa	gtggggaatt	gtcaattgtc	aattaaagct	aagttctact	1500	
aatgttttag aaggcattgt	cgattgaaaa	taagggttga	atggagaaaa	ttttgagcct	1560	
ttgtcaaaga taaaaattta	tttcaacagt	ttttaacta	gccgaaccag	agaatgaccc	1620	
agtggcgctg actttgctcc	cgagtttttg	ttagaaatta	ccctcaagaa	gtaatctaat	1680	
aataaggttc tctcttctgc	cgtta				1705	

<210> SEQ ID NO 103 <211> LENGTH: 1756 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 103, Example 103: designer Synechocystis sp. PCC 6803 nirA-promoter-controlled NADPH-dependent Butanol Dehydrogenase DNA construct (1756 bp) <400> SEQUENCE: 103 agaaaatctg gcaccacacc ctaaatgcgt aaactgcata tgccttggct gagtgtaatt 60 tacgttacaa attttaacga aacgggaacc ctatattgat ctctacatgc tagaaatcaa 120 cttctqtatc qtaataacaq cacttaaqca qtttttccat ttcttctacq cttqqctqtc 180 ttgggttaga acctgtgcag gcatcgccta tggcattaac tgcaatgtca tgtaacctct 240 ccaggaatac attttcaggc acaaatccct gtgcaaccgg atagctgtct gcaccgtaat 300 ttttaatqca qtqcqqtata ttaaqttcat cattcatctt acqqaqataa ccqattaatq 360 aagetacett tteateaagg tetgeteege caagteeeat gaaateagea attteaceat 420 aacgettett ageetgttea teetttgegt taaatgeaat taeettaggg agataeattg 480 cattegeage accgtgaatg atgtgtgege egtaategge aaatgeegea eetgttttat 540 gcgccattga atgtacaata ccaagaagtg cattagaaaa tgccattcct gcgagacatt 600 gtgcattatg cattgaatct cttttttcca tatcaccgtt atatgaaccg acaaggtctc 660 tttgaatcat tttaattgca tggagtgcca atgggtctgt aaaatcacaa tttgcggtgg 720 atacatatgc ctcgatagca tgtgtcattg catccatacc tgtatgtgcc accaattttt 780 gtggcatggt ctctgccagt tcagggtcta ctattgcaac atcaggtgtt atttcaaaat 840 cggctattgg atattttatt cctttttcat aatctgtaat aattgaaaaa gcagttacct 900 cggtagcggt tcctgaagta gaagatattg cacaaaaatg tgcttttta cgaagtgaag 960 gtatgccaaa tactttacac atatcctcaa aggtaatatc aggatattca tatttaatcc 1020 acattgettt ageegeatea ateggagaae eteegeetat tgeaacaate eagteaggtt 1080 caaactetga categetttg geacetttea taaeggttte caeegaaggg teaggtteaa 1140 ttccttcaaa aagtetgaet teeataeegg etteettaag ataetgttet geeetgteaa 1200 ggaaaccaaa acgtttcatt gaacctccgc caacacaaat catggctttt ttgccttgaa 1260 atgtettaag tgeetetaat geaceettte catgatacaa atetettggt aaegtaaate 1320 ttgccattag taatgagtta cagttttggc aattactaaa aaactgactt caattcaatg 1380 ttagcccqct cccqcqqtt ttttqttqct ttttcacaqt qactataqqt aatcaqcaac 1440 acaatacggc cctgttcttt ggacagtttt tgtataatgt tgaccgcatc ctgaccggat 1500 tttttatcta agtggggaat tgtcaattgt caattaaagc taagttctac taatgtttta 1560 gaaggcattg tcgattgaaa ataagggttg aatggagaaa attttgagcc tttgtcaaag 1620 ataaaaattt atttcaacaq ttttttaact aqccqaacca qaqaatqacc caqtqqcqct 1680 gactttgctc ccgagttttt gttagaaatt accctcaaga agtaatctaa taataaggtt 1740 ctctcttctg ccgtta 1756

<210> SEQ ID NO 104

<211> LENGTH: 1655

<212> TYPE: DNA

- <213> ORGANISM: Artificial Sequence
- <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 104, Example 104: designer Anabaena PCC 7120 hox-promoter-controlled NADdependent Glyceraldehyde-3-Phosphate Dehydrogenase DNA construct (1655 bp)

-continued

agaaattt goacaaca gagaaat agggdag agttgagg attoggt attoggt 1 ggaaatt gggagat t cooctaa agtootaa attattoo tataaaaat 120 agataagg taaagtg gitagag gotggagaa aattact coacgoota 1 ggagtagat igagggg taagtag gotggagaa actgataa aattact coacgoota 3 gatcaaga tiaaggg giggattga ataaggg tiggagaa cogagggg tiggaata gotggagaa 4 gatcagg tiaagaagg giggattga gaaaacaa coacgoog gottogaa agggggg tigaaatag totagag 4 aagtigt t toogaaaa agaagag gagtagaa coagggg tigaaatag totagag 4 aagtigt t taaagaag iggattga gaaaacat tacatgad gotggaga 4 aagtigt t taaagaag tiggagaa gagtaaa agatggg ticaaaaagg 4 aagtigt t taaagaag tigaaaag agggaaa gagtaaa agatggt taaaaagg 4 aagtigt t taaagaag tigaaaga dictaaa agatgg 4 aagtigt t taaagaag tigaaaga aggaaat actgagg 4 aagtigt tataaaga gatgagaa attogag 4 aagtigt tataaagag tigaaaga 4 attogagg 4 aagtigt tataaagag tigaaaga aggagaa gagtaga agggggag 4 aagtigt a taaagag 4 aagtigt a attagaag 4 aagtigt a attagaag 4 aagtigt a attagaag 4 aagtigt a attagaag 4 aagtigt a agtiggaaa 4 aagtigt a attagaag 4 aagtigt a agtiggaaa 4 aagtigt a attagaag 4 aagtigt a aagtigt a agtiggaaa 4 aagtigt a aagtigt 4 aagaaata agtigtag 4 aagtigt a taaagag 4 aagtigt a aagtigg 4 aagtigt a aagtigg 4 aagtigt a aagtigg 4 aagtigg 4 aagtigt a aagtigg 4 aagtigg 4 aagtigt 4 aagtig	<400> SEQUE	ENCE: 104						
<pre>spatatang toaaactig agtatang gotgagtaa aattacti cocegoted 100 gotgagtag togagtag taagtag taagtag gotgagtaa cocegotga oggacgad oggacgad oggacgad tagaggg gotgaga attagagg gotgaga attagagg gotgaga attagagg gotgaga attagagg gotgaga attagagg gotgaga attagagg togaacgad gotgagag attagaggg togaacgad gotgagag attagagg togaacgad gotgagag attagag gotcagag gotgagag attagagg togaacgad gotgagag attagag totagagg totagagg totagagg totagagg togaacgad gotgagag attagag gotgagg gotgagag gotgagag gogacgacg gotgggg attagag gotgagg gotgagag attagagg togaacg gotgagg gotgagag attagagg togaacgad gotgagg attagagg gotgagag attagagg gotgagag attagagg gotgagag attagaggg togaacag gotgagag attagagg gotgagaga attggagg attagaggg attagaggg attagaggg attagaggag attagagga attggagag attggagag attagagg gotgagaga attggagag attggagaga attggagag attggagag attggagag attgagaga attggagag attggagg att</pre>	agaaaatctg	gcaccacacc	gcagaaatat	aggggctagg	agttgagggt	actctggttc	60	
<pre>gagtagata tgatggtagt taaagttggt attaacggtt tcggtcgtat cggacgtctt 240 gcattccgcc gtattcaaaa tatcgaaggt gttgaagtaa ctcgtatcaa cgaccttaca 300 gatccaaata tgctgcaca cttgttgaaa tacgatacaa ctcaaggtcg tttgatggag 360 acagttgaag ttaaagaagg tggattgaa gtaaacggaa acttcattaa agttctgct 420 gaacgtgatc cagaaaacat cgactgggca actgatgggg ttgaaatcgt tctgaagca 480 actggtttet ttgctaaaa agaagcaget gaaaaacact tacatgctaa cggtgctaaa 540 aaagttgtta tcacagetce tggtggaaac gatgttaaaa cagttgttt caaacatac 600 cacgacatte ttgacggtae tgaaacagt atecaggtg cttcatgtae tacaactgt 660 ttageteeta tggetaaage tetteacgat getteagg gaccacaecg tggtggtgae 790 cttegtegt accggeteg tgetgeaaat ategtteeta actaactgg tgetgetaaa 840 getateggt c tggatagt agaccaatg ateettgaeg gaccacaecg tggtggtgae 790 ccttgteeta ctggatcagt aactgagtg gttgtaacte ttgacaaaa gttetatgae 1900 cctgtteeaa etggatcagt aactgagtg gttgtaaate tggetgetge acaacgtgt 900 cctgtteeaa ctggatcagt aactgagtg gttgtaacte ttgacaaaa gtteettg 960 gacgaaatea acgetgeta gaagetga teatacggt attatgae gecaacaetg 1900 cctgtteeaa etggatagt aggagetge teataggt agttgaaaa 1020 ccaategtt etteaggta eggagetge teataggt agttgaaaa 1140 gaaatgtett acaetgetea actgaggg actedggt acttggae 1140 gaaatgtet acaetgetea actgtageg actetgga acteggaaa attgaeaaa 1140 gaaatgtet acaetgetea actgtageg tegecaaa ttgaeaaa 1200 taatgaagta agtaggaage agggageagg ggaaagaaa ttgaeaactg tacaagatta 1260 ategegetet tgageaatg acgaggat ttacaaggt tagetee 1330 cctgatetea atgetagta tteeaacae taceetea ggeteaaa 1360 cctgatetea atgetaggaag caggagatagt ateaaatea gegecaaa attgaeaaa 1360 cctgatetge ttattee attgetage caaaateat taceetea ggecaaaa attgaeaat 1360 cctgatetge ttetteteag acaeggta ttacaagta agtagegg 1560 ccagttegg ttettetee attgetge caaaategg taagaagetg tcaeaagtt 1420 gcaaaaacg atataggtte tetteteg egta </pre>	gtcaagcatt	tgggatgatt	tcccctcaca	agttcctcaa	attattctcc	tataaacaat	120	
<pre>gcattccgcc gtattcaaa tatcgaaggt gttgaagtaa ctcgatcaa cgaccttaca 300 gatccaaata tgctgcaca cttgtgaaa tacgatacaa ctcaaggtcg tttgatgga 360 acagttgaag ttaaagaagg tggattgaa gtaagacggaa acttcataa agttctgct 420 gaacgtgatc cagaaaacat cgactgggga actgatgggg ttgaaatcgt tctgaagca 480 actggtttet ttgctaaaa agaagcaget gaaaaacact tacatgctaa cggtgctaaa 540 aaagttgtta tcacagetce tggtggaaac gatgttaaa cagttgttt caaacatae 600 cacgacatte ttgacggtae tgaaacagt atccaggt gttcatgtae tacaaactgt 660 ttageteet tggetaaag tetteegat acteggt getteeggt atccaaaagg tettatgaet 720 acaatecaeg ettacaetgg tgaceaaatg atcettgaeg gaceacaecg tggtggtgae 780 ettegtegtg caegegetgg tgetgeaaa atggtteet a acteaaetgg tgetgetaaa 440 getateggte ttgttatee agaaettaae ggtaaaettg acggtgetg caeaegtgtt 900 ectgtteeaa etggateagt actgagtg gttgtaaete ttgaeaaaa egtteetgt 960 gacgaaatea acgetgeta gaaagetge teaaacgata gettggte acaeagtgt 1900 ectgtteeaa etggateagt agtgaggt actaggt aggtgedge acaegtgtt 900 cetgtteeaa etggatagt aggaggeg teaaagetg etgaaaaa 1020 caategatt etcaaggt actgaggtg tegtaaat 1920 caateggte ttgttatee agaagetge teaaacgata getteggta acaegagt 1920 caatagata aggagage ggggageag ggaaagaaa ttgaeaaaa 1920 caataggta agtggaage aggggagagg ggaaagaaa ttgaeaaet tacaagata 1220 taatgaagt agtaggaage aggggaeggg ggaaagaaa ttgaeaaet tacaaagta 1440 geegeaatt teeetgata ttegeaaget ttegeeaaa teaeetea getaeaate 1380 cetgactea atgetggta attteteag taacatea eggecaaat taaeaagtt 1440 geegeaatt teeetgata ttegeaaget tedeetea acgeetag ttaageggt 1500 ttaactgetg ettactagg acaeggata ttaeeaatea eggecaaat taaeaagtt 1420 geaaaaacg atataggtte teetette egta 2210> SEQ ID N0 105 <2210> SEQ ID N0 105 <2210> CTUNE: DN3 </pre>	agatataagg	tcaaaacttg	agttatgagt	gctgagtaaa	aaattactct	ccacgcctca	180	
<pre>gatccaaata tgcttgcaca cttgtgaaa tacgatacaa ctcaaggtcg tttgatggag 360 acagttgaag ttaaagaagg tggattgaa gtaacggaa acttcattaa agttctgct 420 gaacgtgatc cagaaaacat cgactgggca actgatgggg ttgaaatcgt cttgaagca 480 actggtttt ttgctaaaaa agaagcagt gaaaaacac tacatgctaa cggtgctaaa 540 aaagttgtta tcacagctc tggtggaac gatgttaaaa cagttgttt caacactaac 600 cacgacatt ttgacggtac tgaaacagt atctcaggt ctcatgtac tacaaactgt 660 ttagctccta tggctaaagc tctcacgat gcattcggt atcaaaagg tctatgac 720 acaatccacg cttacactgg tgaccaaatg atccttgacg gaccacacg tggtggtgac 780 cttcgtcgt cacgogctgg tgctgcaaat atcgttcct a actcaactgg tgctgctaaa 840 gctatcggtc ttgttatccc agaacttaac ggtaacttg acggtgctg acaacgtgt 900 cctgttccaa ctggatcagt aactgagtg gttgtaact ttgacaaaa cgttctgtt 960 gacgaaatca acgctgct gaaacggt tcataggt atcataggt acttggtg accaacgtg 1900 cctgttccaa ctggatcagt aactgagtg gttgtaact ttgacaaaa cgttctgt 960 gacgaaatca acgctgct gaaacggc tcaaaggt atcataggt agttgaagat 1020 ccaatcgtt cttcagata cgtaggtg atcataggt atcataggt agttgaaac 1140 gaaatgtett acacgcca acttgtacgt acttggta acttggta 2100 taatgaagt a gtgagage agggagcagg ggaagaaaa ttgacaacg tacaagata 1200 ttagcgaag cacaagata tagcaacgt tcgccaaa ttacatag ctacagata 1200 ttagcgaag cacaagata tagcaggt ttcgccaaa tcacatac gctacaatc 1380 cctgatcta atgctggtg a ttttcag ttaacatca cgcgcaaa tcacaacat 1380 cctgatcta atgctggtg attttctca ttacagta aacggtg taggtctag 1500 ttaactgctg cttactagg acagcgata ttacaagat aacgctag ttatagcg 1500 ttaactgctg cttactagg acagcgata ttacaagat aacgctag ttatagcg 1620 gcaacaaacg atatagttc tctttctg cgtta </pre>	gaggtagata	tgatggtagt	taaagttggt	attaacggtt	tcggtcgtat	cggacgtctt	240	
acagttgaag ttaaagaagg tggatttgaa gtaaacggaa acttcattaa agtttctgct 420 gaacgtgatc cagaaaacat cgactgggca actgatgggg ttgaaatcgt tcttgaagca 480 actggtttet ttgetaaaa agaageaget gaaaaacaet tacatgetaa eggtgetaa 540 aaagttgtta teaeagetee tggtggaaae gatgtaaaa eagttgttt caacaetae 600 caegacatte ttgeegtaa tgaacagt ateteaggtg etteatgtae tacaaaetgt 660 ttageteeta tggetaaage tetteaegat geatteagg gateaaaegg tettatgaet 720 acaateeaeg ettacaetgg tgaceaaatg ateeteggeg gaeeaeeeg tggtggtgae 780 ettegtegg eaegegetgg tgetgeaaat ategteeta acteaaetgg tgetgetaa 840 getateggte ttgttatee agaaettaae ggtaaaettg aeggtggte eaeaegtgt 900 eetgteeaa etggateag aaetgagttg gttgtaaete ttgaceaaaa egtteetgt 960 gaegaaatea aegetgetat gaaagetget teaaaegata getteggta eaeaegtgt 900 eetgteeaa etggateagt agetgeggta teataeggta eaetgggta eaeaggtgt 900 eetgtteeaa etggateagt agetgeggta teataeggt eatteggta eaeagata 1020 eeaategtte ttetaagat eggageggt teaaagata getteggta eaeagata 1020 eeaategtte etteeaaat eggageggt eetgaaa ateggtea eatteggaaa 1020 eeaategtte etteeaaat eggagegga eagaagaaa ttggeaaaea 1140 gaaatgtett acaetgetea aettgtaegt actetggat aettegeaaa attgetaaa 1200 taatgaagta agtaggaage agggageagg ggaaagaaa ttggeaaetg tacaagata 1220 etagegaag eaeagatat tageaaget tegeeeaaa tteaeaaat 1380 eetgaeaag eaeagatat tageaagetg ttegeeeaa tteaeaaate 1380 eetgaeag eaeagatat tageaagetg tegeeeaa teaeaate 1380 eetgaeag ettaetegg aattteeeg ttaeeaatea gegtaeaate 1380 eetgaeag ettaetegg aatteeeaa taaegetga taggtetag ttaageegg 1500 ttaaetgeeg ettaetegg acagegatat ttaeeaagate aaegeetag ttaageegg 1600 eeagttegg ttatteae ateggtgee caaaatggt gaagaagetg teaeaagtt 1620 geaacaaaeg atataggtte teeteteg egtta 2130 oFRANTSM: Artificial Sequence 2200 > FRANTSM: Artificial Sequence 2200 > FRANTSM: Artificial Sequence 2200 > FRANTSME INNORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Aceelactate Synthase DNA construct (2303 bp) <<00> SEQUENCE: 105 agaaaatetg geaecaee geagaaat aggggedag agttgagggt actetggtte	gcattccgcc	gtattcaaaa	tatcgaaggt	gttgaagtaa	ctcgtatcaa	cgaccttaca	300	
<pre>gaacgtgatc Cagaaaacat cgactgggGa actgatgggg ttgaaatcgt tcttgaagca 480 actggtttct ttgctaaaaa agaagcagct gaaaaacact tacatgctaa cggtgctaa 540 aaagttgtta tcacagctcc tggtggaaac gatgtaaaa cagttgttt caacaactac 600 cacgacattc ttgacggat ctgaacagt atctcaggt gcttcatgtac tacaacatgt 660 ttagctcca tggctaaagc tcttcacgat gcattcggt ttcaaaaagg tcttatgact 720 acaatccacg cttacactgg tgaccaaatg atcctgacg gaccacacg tggtggggac 780 cttcgtcgt cacgocgctgg tgctgcaaat atcgtccta actcaactgg tgctgctaa 840 gctatcggt ttgttaccc agaacttac ggtaaactg acgggggcg gacacaccg tggtggtgac 780 ctcgtccaa ctggatcag aactgagttg gttgaactc ttgacaaaa cgtttctgt 900 cctgttccaa ctggatcag aactgagtg gttgtaact tgacaaaa cgttctgtt 900 cctgttccaa ctggatcag aactgagttg gttgtaact tgacaaaa cgttctgt 900 cctgttccaa ctggatcag aactgagtg gttgtaact tgacaaaa cgttctgt 900 cctgttccaa tggaagtga cgaagegg gttgaaact gatgacaaa 1020 ccaatcgtt cttcagat gaagctgct tcaacaggt acttggta cactgagat 1020 ccaatcgtt acctggta cgaagegg ggaagaaa ttgacaactg 140 gaaagta agtaggaagc agggagcagg ggaaagaaa ttgacaactg tacaagata 1200 taatgaagta agtaggaag accaaatact ctacctcac ggtttcttc cagccccat 1320 tctgcgaaag cacaagatat tagcaagct ttcgccaaa ttcaataca gctaacagtt 1440 gccgaaatt tccctgataa ttctcagaca atacgctga taggttcag 1500 ccagtttgg ttttatcc atggtgc caaaatgcg taggtagac agcgagagg gaagaaact gagaagatg ttaacaagtt 1420 gccgaaatt tccctgataa ttctgaacca atacgctga taggttcag ttatgcggt 1500 ttaactgctg ctatctag acatggtcg caaaatggt gaagagag tgaagaagt ttatgcaagtt 1620 gcaacaaacg atataggtt tcttcttog cgta </pre>	gatccaaata	tgcttgcaca	cttgttgaaa	tacgatacaa	ctcaaggtcg	ttttgatgga	360	
actggtttct ttgstaaaa agaagcagst gaaaacast tasatgstaa cggtgstaaa 540 aaagtgstta tossagst gaasasas cagtgsttaaa cggtgstaaa 540 cacgasatte ttgseggtae tgaaacagt atsteaggtg etteatgtae tasaaastgt 660 ttagsteeta tggetaaage tetteacgat geatteaggt getteatgtae tasaaastgt 660 ttagsteeta tggetaaage tetteacgat geatteaggt geteatgtae tasaaastgt 720 acaateeta tggetaaage tetteacgat geatteggt atteaaaaagg tettatgaet 720 acaateeta tggetaaage tetteacgat geatteggg gecacaceg tggtggtgae 780 ettegstegg caegegetgg tgetgeaaat ategteeta acteaactgg tgetgetaaa 840 getateggte ttgttatee agaaettaae ggtaaaettg aeggtgetge acaaegtgt 900 cetgtteeaa etggateagt gaagetgt getgaaaet gegtgegt a caategagt 1020 ceaategtte etteagata gaaagetget teaaeggat getteggta caategagat 1020 ceaategtte etteagata gaaagetget teaaeggat agetteggta caategagat 1020 ceaategtte etteagata egtaggegta teataeggt eattgttga egeaaeteaa 1080 actaaagtaa tggaagteg eggaeeceaa ttggtaaag ttgtacatg gtatgacaae 1140 gaaatgteet acaetgetea aettgtaegt actetgggt acteeggaa aattgeeaa 1200 taatgaagta agtaggaage agggageagg ggaaagaaa ttgacaaetg tacaagatta 1260 ategegteet etgageaatga ceaaataet etaeecteac ggttteete eageeetaa 1380 cetgateeaa tegeggtga atteeteag tasaaate gegeeeaaat 1380 cetgateeaa teeeggetga atteeteag tasaagetg teaaeaget 1440 geegeaatt teeetgataa tteegaacea ataaegetga taggteeaa teaaeaaget 1440 geegeaatt teeetgataa tteegaacea ataaegetga taggteeaa teaaeaaget 1620 geaacaaaeg atataggtee teetetee geta 2210 > SEQ ID NO 105 <2211 > LENGTH: 2303 <2122 TTPE DNA 2130 OREN INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolaeetae Synthase DNA construct (2303 bp) <400 > SEQUENCE: 105 agaaaatetg geaceacaec geagaatat agggeetag agtgaggt actetggte co	acagttgaag	ttaaagaagg	tggatttgaa	gtaaacggaa	acttcattaa	agtttctgct	420	
aaagttgtta tcacagctoc tggtggaaac gatgttaaaa cagttgttt caacactaac 600 cacgacatto ttgacggtac tgaacagtt atotcaggtg ottoatgtac tacaaactgt 660 ttagotocta tggotaaage tottoacgat goattoggta ttoaaaagg tottatgact 720 acaatocacg ottacactgg tgaccaaatg atocttgacg gaccacaccg tggtggtgac 780 ottogtogtg cacgogotgg tgotgcaaat atogttocta actoaactgg tgotgotaaa 840 gotatoggto ttgttatoco agaacttaac ggtaaacttg acggtgotgc acaacgtgt 900 cotgttcoaa otggatoagt aactgagtg gttgtaacto ttgacaaaaa ogttoctgt 960 gacgaaatca acgotgota gaaagtggt toaaacgata gottoggta cactgaagat 1020 coaatogtt ottoagata dgtaggotga toatacggt cattgttga ogcaactoaa 1080 actaaagtaa tggaagttga cggatoccaa ttggttaag ttgtatoatg gtatgacaac 1140 gaaatgtott acactgotoa acttgtacgt actottgag acttogotaa aattgotaaa 1200 taatgaagta agtaggaag agggagcagg ggaaagaaaa ttgacaatg tacaagatta 1220 toagogaat caaagatat tagcaagogt tcoacactoca ggtttotto cagcococta 1320 totgogaaag cacaagatat tagcaagogt ttogoccaaa ttogotaacata 1380 cotgatocta atgotggtga attttcoag taacatca cgogccaaat toaacaagtt 1440 gocgcaattt tocotgataa ttotgaaca ataaggtg taggttaggt taagagat 1620 coagttggt ottatcagg acaggagata ttacaagta aggttoaggt ttatgacggt 1500 ttaactgotg ottatctagg acagcgatat ttacaagta aaggttag ttatagcg 1500 ctaatcgtg tttttatoco attggtgc caaaatggt gaagaagct toacaagtt 1440 gocgcaattt tocotgataa ttotgaacca ataacgctga taggttcag ttaacaagtt 1620 gcaacaaacg atataggtto totottog cgta 1655 <211> EENGTH: 2203 <212> TYPE: DNA <213> ORINISM: Artificial Sequence <223> OHEN INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <<00> SEQUENCE: 105	gaacgtgatc	cagaaaacat	cgactgggca	actgatgggg	ttgaaatcgt	tcttgaagca	480	
<pre>cacgacattc ttgacggtac tgaacagtt atctcaggtg cttcatgtac tacaaactgt 660 ttagctcca tggctaaagc tcttcacgat gcattcggt ttcaaaagg tcttatgact 720 acaatccacg cttacactgg tgaccaaatg atccttgacg gaccacaccg tggtggtgac 780 cttcgtcgg cacgcgcgg tgctgcaaat atcgttcca actcaactgg tgctgcaaa 840 gctatcggtc ttgttatccc agaacttaac ggtaaacttg acggtgctg cacaacgttt 900 cctgttccaa ctggatcagt aactgagttg gttgtaactc ttgacaaaa cgttcgtt 960 gacgaaatca acgctgctat gaaagctgct tcaaacgata gcttcggtta cactgaagat 1020 ccaatcgttt cttcagatat cgtaggcgta tcatacggtt cattgttga cgcaactcaa 1080 actaaagtaa tggaagtga cggatcccaa ttggttaagt tggtacatg gtagacaca 140 gaaatgtct acactgcca acttgtacgt actctgag acatcggt atcataggt 1200 taatgaagta agtaggaag cagggagcagg ggaaagaaa ttgacaacg tacaagatta 1200 tctgcgaaag cacaagatat tagcaagcgt ttcgccaaa ttcacatac gcdgccaat 1320 tctgcgaaag cacaagatat tagcaagcgt ttcgccaaa ttcacataca gtacacagt 1440 gccgcaatt tccctgata ttctaga atacgtcg tacaagatg 1500 ttaactgctg cttatctag acagcgatat ttacaagta aaggtgtg 1500 ttaactgctg cttatctag acagcggta ttcatacggt aggtagaggt 1600 ttaactgctg cttatctag acagcgatat ttacaagta acagctga ttatagcgg 1500 ccagtttgg tttttatcc attggtgc caaaatggt gaagaagctg tcacaagattg 1620 gcaacaacg atataggttc tctcttcg cgta </pre>	actggtttct	ttgctaaaaa	agaagcagct	gaaaaacact	tacatgctaa	cggtgctaaa	540	
ttageteeta tggetaaage tetteaegat geatteggta tteaaaaagg tettatgaet 720 acaateeaeg ettaeaetgg tgaecaaatg ateettgaeg gaecaeaegg tgetggetgae 780 ettegtegtg eaegegetgg tgetgeaaat ategtteeta aeteaaetgg tgetgetaaa 840 getateggte ttgttateee agaaettaae ggtaaaettg aeggtgetge acaaegtgtt 900 eetguteeaa etggateagt aaetgagtg gttgtaaete ttgaeaaaaa egtteetytt 960 gaegaaatea aegetgetat gaaagetget teaaaegata getteggtta eaetgaagat 1020 eeaateggtt etteaaata egtaagetgt teaaaegata getteggtta eaetgaagat 1020 eeaateggtt etteaaata egtaageegta teataeggtt eattgttga egeaaeteaa 1080 aetaaagtaa tggaagttga eggateeeaa ttggtaaaag ttgtateatg gtagaeaae 1140 gaaatgteet acaetgetea aettgtaegt aetettgag aetteggaaa aattgetaaa 1200 taatgaagta agtaggaage agggageagg ggaaagaaaa ttgaeaaetg taeaagatta 1260 ategegaaag eaeaagaat tageaagegt teegeeeaa tteaeeaagt 1380 eetgateeea ageteggga aetteeea ggttteete eageeede 1380 eetgaeaag eaeaagaat tageaagegt ttegeeeaaa tteaeeaaget 1380 eetgaeaag eaeaagaat tageaagegt ttegeeeaaa teaaeaagt 1440 geegeaatt teeetgaga atteeea ataaegetga taggteeag 1560 eeagttegg ettatetagg aeagegatat ttaeeaatea egegeeaaat teaaeaagt 1620 geaacaaeag atataggte teettetge eaaatgget gaagaagetg teaeaagttg 1620 geaacaaeag atataggte teettetge egta 220> FEN DNO 105 <2212> TYEE DNN 2213> ORGANISM: Artificial Sequence 220> FENTWEE: 223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolaetate Synthase DNA construct (2303 bp) <<400> SEQUENCE: 105	aaagttgtta	tcacagetee	tggtggaaac	gatgttaaaa	cagttgtttt	caacactaac	600	
acaatccacg cttacactgg tgaccaaatg atccttgacg gaccacacg tggtggtgac 780 cttcgtcgtg cacgcgctgg tgctgcaaat atcgtccta actcaactgg tgctgctaaa 840 gctatcggtc ttgttatccc agaacttaac ggtaaacttg acggtgctgc acaacgtgtt 900 cctgttccaa ctggatcagt aactgagttg gttgtaactc ttgacaaaaa cgttctgtt 960 gacgaaatca acgctgctat gaaagctgct tcaaacgata gcttcggtta cactgaagat 1020 ccaatcgttt cttcagatat cgtaggcgta tcatacggtt cattgttga cgcaactcaa 1080 actaaagtaa tggaagttga cggatcccaa ttggttaaag ttgtatcatg gtatgacaac 1140 gaaatgtctt acactgctca acttgtacgt actctgagt acttcgcaaa aattgctaaa 1200 taatgaagta agtaggaagc agggagcagg ggaaagaaaa ttgacaactg tacaagatta 1260 atcgcgtct tgagcaatga ccaaatacat ctacctccac ggtttcttc cagcccccta 1320 tctgcgaaag cacaagatat tagcaagcgt ttcgaccaaa ttcaactaac gctaacaatc 1380 cctgatcca atgctggtga atttctcag ttaacaatca cgcgccaaat tcaacaagtt 1440 gccgcaattt tccctgataa ttcgaacca ataacgtga taggttctag tttaggcggt 1500 ttaactgctg cttactagg acaggatat ttacaagtac aacgcttag tttattagcg 1560 ccagtttggt ttttatccc attggttgc caaaatggt gaagaagatg tcacaagttg 1620 gcaacaaacg atataggtc tctcttctg cgtta 1655 <210> SEQ ID NO 105 <212> TYPE: DNA <213> ORCANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatctg gcaccaacg gcagaaatt aggggctagg agttgaggt actctggttc 60	cacgacattc	ttgacggtac	tgaaacagtt	atctcaggtg	cttcatgtac	tacaaactgt	660	
cttegtegtg caegegetgg tgetgeaaat ategtteeta aeteaaetgg tgetgetaaa 840 getateggte ttgttateee agaaettaae ggtaaaettg aeggtgetge acaaegtgtt 900 ectgtteeaa etggateagt aaetgagttg gttgtaaete ttgacaaaaa egtteegtt 960 gaegaaatea aegetgetat gaaagetget teaaaegata getteeggta eaetgaagat 1020 eeaategttt etteagatat egtaggegta teataeeggtt eattgttga egeaaeteaa 1080 aetaaagtaa tggaagttga eggageega teataeeggtt eattgttga egeaaeteaa 1080 aetaaagtaa tggaagtega eggageegg ggaaagaaa ttgaeaaet gaeagata 1200 taatggagta agtaggaage agggageegg ggaaagaaaa ttgaeaaetg taeaagata 1200 tetgegaaag eacaagatat tageaagegt teegeeeaa teaeetee egeeeeaa 1380 eetgegaaag eacaagatat tageaagegt teegeeeaaa teaeetee egeeeea 1320 tetgegaaag eacaagatat tageaagegt teegeeeaaa teaeetee egeeeea 1380 eetgateete atgetggtga attteteeag ttaeeaatee geeaeaate 1380 eetgateete atgetggtga attteteeag taaeaatee egeeeeaa teaeeaaget 1440 geegeeaatt teeetgataa ttetgaaeea ataeegetga taggteetag ttaageeggt 1500 ttaaetgeeg ettatetagg aeagegatat ttaeeaagtee aeegetag ttaageeggt 1500 eeagtteggt ttettatee attggtege eaaaatgget gaagaagetg teaeeaagtt 1620 geeaeaaaeeg atataggtte tetettege egtta 1655 <210> SEQ ID NO 105 <211> LENOTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaen PCC 7120 hox-promoter-controlled Aeetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatetg geaceacaee geagaaata aggggetagg agttgagggt actetggtte 50	ttagctccta	tggctaaagc	tcttcacgat	gcattcggta	ttcaaaaagg	tcttatgact	720	
<pre>gctatcggtc ttgttatccc agaacttaac ggtaaacttg acggtgctgc acaacgtgtt 900 cctgttccaa ctggatcagt aactgagttg gttgtaactc ttgacaaaaa cgtttctgtt 960 gacgaaatca acgctgctat gaaagctgct tcaaacgata gcttcggtta cactgaagat 1020 ccaatcgttt cttcagatat cgtaggcgta tcatacggtt cattgttga cgcaactcaa 1080 actaaagtaa tggaagttga cggatcccaa ttggttaaag ttgtatcatg gtatgacaac 1140 gaaatgtctt acactgctca acttgtacgt actcttgagt acttcgcaaa aattgctaaa 1200 taatggaagt agtaggaagc agggagcagg ggaaagaaaa ttgacaacgt tacaagatta 1260 atcgcgtactc tgagcaatga ccaaatacat ctacctccac ggtttcttc cagccccta 1320 tctgcgaaag cacaagatat tagcaagcgt ttcgcccaaa ttcacataca gctaacaatc 1380 cctgatctca atgctggtga atttctcag ttaacaatca cgcgccaat tcaacaagtt 1440 gccgcaattt tccctgataa ttctgaacca ataacgctga taggttcag tttattagcg 1560 ccagtttggt tttttatccc attggttgc caaaatggt gaagaagacgt tcacaagtt 1620 gcaacaaacg atataggtt tctctctgc cgta 1655 <211> LENOTH: 2303 <222> TYPE: DNA <213> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 120> EATURE: <223> OTHER INFORMATION: Synthetic Construct - Sequence No. 105, Example 120> CAUO> SEQUENCE: 105 agaaaatct g gaccacacc gcagaaatt aggggctagg agttgaggt actctggtt acttggtt c</pre>	acaatccacg	cttacactgg	tgaccaaatg	atccttgacg	gaccacaccg	tggtggtgac	780	
<pre>cctgttccaa ctggatcagt aactgagttg gttgtaactc ttgacaaaaa cgtttctgtt 960 gacgaaatca acgctgctat gaaagctgct tcaaacgata gcttcggtta cactgaagat 1020 ccaatcgttt cttcagatat cgtaggcgta tcatacggtt cattgtttga cgcaactcaa 1080 actaaagtaa tggaagttga cggatcccaa ttggttaaag ttgtatcatg gtatgacaac 1140 gaaatgtctt acactgctca acttgtacgt actctggat acttcgcaa aattgctaaa 1200 taatgaagta agtaggaagc agggagcagg ggaaagaaaa ttgacaactg tacaagatta 1260 atcgcgaaag cacaagatat tagcaagcgt ttcgcccaa ggtttcttc cagcccccta 1320 tctgcgaaag cacaagatat tagcaagcgt ttcgcccaa ttcacataca gctaacaatc 1380 cctgatcca atgctggtga atttctcag ttaacaatca cgcgccaaat tcaacaagtt 1440 gccgcaattt tccctgataa ttctgaacca ataacgctga taggttctag tttaggcggt 1500 ttaactgctg cttatctagg acagcgatat ttacaagta acgcttagt tttattagcg 1560 ccagtttggt tttttatccc attggttgcc caaaatgggt gaagaagctg tcacaagttg 1620 gcaacaaacg atataggttc tctcttctgc cgtta 1655 <211> LENGTH: 2303 <212> TYPE: DNA 213> ORGNISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <220> FEATURE: <220> FEATURE: <220> CTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example</pre>	cttcgtcgtg	cacgcgctgg	tgctgcaaat	atcgttccta	actcaactgg	tgctgctaaa	840	
<pre>gacgaaatca acgctgctat gaaagctgct tcaaacgata gcttcggtta cactgaagat 1020 ccaatcgttt cttcagatat cgtaggcgta tcatacggtt cattgtttga cgcaactcaa 1080 actaaagtaa tggaagttga cggatcccaa ttggttaaag ttgtatcatg gtatgacaac 1140 gaaatgtctt acactgctca acttgtacgt actctgagt acttcgcaaa aattgctaaa 1200 taatgaagta agtaggaagc agggagcagg ggaaagaaaa ttgacaactg tacaagatta 1260 atcgcgtctc tgagcaatga ccaaatacat ctacctccac ggtttcttc cagcccccta 1320 tctgcgaaag cacaagatat tagcaagcgt ttcgcccaaa ttcacataca gctaacaatc 1380 cctgatctca atgctggtga atttctcag ttaacaatca cgcgccaaat tcaacaagtt 1440 gccgcaattt tccctgataa ttctgaacca ataacgtga taggttctag tttaggcggt 1500 ttaactgctg cttatctagg acagcgatat ttacaagtac aacgcttag tttattagcg 1560 ccagtttggt tttttatccc attggttgc caaaatgggt gaagaagctg tcacaagtt 1620 gcaacaaacg atataggttc tctcttctgc cgtta 1655 <2110 > SEQ ID NO 105 <2111 > LENGTH: 2303 <2120 > FEATURE: <2200 > FEATURE: <2200 > FEATURE: <2200 > FEATURE: <2200 > FEATURE: <2200 > FEATURE: <2200 > SEQUENCE: 105 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60</pre>	gctatcggtc	ttgttatccc	agaacttaac	ggtaaacttg	acggtgctgc	acaacgtgtt	900	
<pre>ccaatcgttt cttcagatat cgtaggcgta tcatacggtt cattgtttga cgcaactcaa 1080 actaaagtaa tggaagttga cggatcocaa ttggttaaag ttgtatcatg gtatgacaac 1140 gaaatgtott acactgotca acttgtacgt actcttgagt acttcgcaaa aattgotaaa 1200 taatgaagta agtaggaagc agggagcagg ggaaagaaaa ttgacaactg tacaagatta 1260 atcgcgtotc tgagcaatga ccaaatacat ctacctocac ggttttottc cagcococta 1320 tctgcgaaag cacaagatat tagcaagcgt ttogoccaaa ttcacataca gctaacaatc 1380 cctgatctca atgotggtga atttoccag ttaacaatca cgogccaaat tcaacaagtt 1440 gccgcaattt tcoctgataa ttotgaacca ataacgctga taggttctag tttaggcggt 1500 ttaactgctg cttatctagg acagcgatat ttacaagtac aacgcttagt ttattagcg 1560 ccagtttggt ttttatccc attggttgcc caaaatgggt gaagaagctg tcacaagttg 1620 gcaacaaacg atataggttc tctcttctgc cgtta 1655 </pre>	cctgttccaa	ctggatcagt	aactgagttg	gttgtaactc	ttgacaaaaa	cgtttctgtt	960	
actaaagtaa tggaagttga cggatcccaa ttggttaaag ttgtatcatg gtatgacaac 1140 gaaatgtctt acactgctca acttgtacgt actcttgagt actcegcaaa aattgctaaa 1200 taatgaagta agtaggaage agggageagg ggaaagaaaa ttgacaactg tacaagatta 1260 ategegtete tgageaatga ecaaatacat etaeeteeae ggtttette eageeceeta 1320 tetgegaaag eacaagatat tageaagegt ttegeecaaa tteaeataca getaaeaate 1380 eetgatetea atgetggtga attteeag ttageeceaa tteaeataca getaaeaate 1380 geegeaattt teeetgataa ttetgaaeea ataaegetga taggttetag ttaggeeggt 1500 ttaaeetgetg ettaetagg acagegatat ttaeeagtae aaegettag tttattageg 1560 ecagtteggt ttttateee attggttgee caaaatgggt gaagaagetg teaeaagttg 1620 geeaacaaaeeg atataggtte teetetteg egtta 1655 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <222> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolaetate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatetg geaceacaee geagaaatat aggggetagg agttgagggt actetggtte 260	gacgaaatca	acgctgctat	gaaagctgct	tcaaacgata	gcttcggtta	cactgaagat	1020	
<pre>gaaatgtott acactgotca acttgtacgt actottgagt actotgcaaa aattgotaaa 1200 taatgaagta agtaggaagc agggagcagg ggaaagaaaa ttgacaactg tacaagatta 1260 atcgcgtoto tgagcaatga ocaaatacat otacotocac ggtttotto cagoococta 1320 totgogaaag cacaagatat tagcaagogt ttogoccaaa ttocacataca gotaacaato 1380 cotgatotca atgotggtga atttocoag ttaacaatca ogogocaaat tocaacaagtt 1440 googocaattt tocotgataa ttotgaacca ataacgotga taggttotag tttaggoggt 1500 ttaactgotg ottatotagg acagogatat ttacaagtac aacgottagt tttattagog 1560 cocagtttggt ttttatoco attggttgoc caaaatgggt gaagaagotg tocacaagtg 1620 gcaacaaacg atataggto totottotgo cgtta 1655 <210> SEQ ID NO 105 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatotg gcaccacacc gcagaaatat aggggotagg agttgagggt actotggtto 60</pre>	ccaatcgttt	cttcagatat	cgtaggcgta	tcatacggtt	cattgtttga	cgcaactcaa	1080	
<pre>taatgaagta agtaggaagc agggagcagg ggaaagaaaa ttgacaactg tacaagatta 1260 atcgcgtctc tgagcaatga ccaaatacat ctacctccac ggttttcttc cagcccccta 1320 tctgcgaaag cacaagatat tagcaagcgt ttcgcccaaa ttcacataca gctaacaatc 1380 cctgatctca atgctggtga atttctcag ttaacaatca cgcgccaaat tcaacaagtt 1440 gccgcaatt tccctgataa ttctgaacca ataacgctga taggttctag tttaggcggt 1500 ttaactgctg cttatctagg acagcgatat ttacaagtac aacgcttagt ttattagcg 1560 ccagtttggt tttttatccc attggttgcc caaaatgggt gaagaagctg tcacaagttg 1620 gcaacaaacg atataggtc tctcttctgc cgtta 1655 <210> SEQ ID NO 105 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60</pre>	actaaagtaa	tggaagttga	cggatcccaa	ttggttaaag	ttgtatcatg	gtatgacaac	1140	
atcgcgtctc tgagcaatga ccaaatacat ctacctccac ggttttcttc cagcccccta 1320 tctgcgaaag cacaagatat tagcaagcgt ttcgcccaaa ttcacataca gctaacaatc 1380 cctgatctca atgctggtga atttctcag ttaacaatca cgcgccaaat tcaacaagtt 1440 gccgcaattt tccctgataa ttctgaacca ataacgctga taggttctag tttaggcggt 1500 ttaactgctg cttatctagg acagcgatat ttacaagtac aacgcttagt ttattagcg 1560 ccagtttggt ttttatccc attggttgcc caaaatgggt gaagaagctg tcacaagttg 1620 gcaacaaaacg atataggttc tctcttctgc cgtta 1655 <210> SEQ ID NO 105 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <222> THE INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60	gaaatgtctt	acactgctca	acttgtacgt	actcttgagt	acttcgcaaa	aattgctaaa	1200	
<pre>tctgcgaaag cacaagatat tagcaagcgt ttcgcccaaa ttcacataca gctaacaatc 1380 cctgatctca atgctggtga atttctcag ttaacaatca cgcgccaaat tcaacaagtt 1440 gccgcaattt tccctgataa ttctgaacca ataacgctga taggttctag tttaggcggt 1500 ttaactgctg cttatctagg acagcgatat ttacaagtac aacgcttagt tttattagcg 1560 ccagtttggt tttttatccc attggttgcc caaaatgggt gaagaagctg tcacaagttg 1620 gcaacaaaacg atataggttc tctcttctgc cgtta 1655 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60</pre>	taatgaagta	agtaggaagc	agggagcagg	ggaaagaaaa	ttgacaactg	tacaagatta	1260	
<pre>cctgatctca atgctggtga attttctcag ttaacaatca cgcgccaaat tcaacaagtt 1440 gccgcaattt tccctgataa ttctgaacca ataacgctga taggttctag tttaggcggt 1500 ttaactgctg cttatctagg acagcgatat ttacaagtac aacgcttagt ttattagcg 1560 ccagtttggt tttttatccc attggttgcc caaaatgggt gaagaagctg tcacaagttg 1620 gcaacaaacg atataggttc tctcttctgc cgtta 1655 <210> SEQ ID NO 105 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <2220> FEATURE: <2223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60</pre>	atcgcgtctc	tgagcaatga	ccaaatacat	ctacctccac	ggttttcttc	cagcccccta	1320	
<pre>gccgcaattt tccctgataa ttctgaacca ataacgctga taggttctag tttaggcggt 1500 ttaactgctg cttatctagg acagcgatat ttacaagtac aacgcttagt tttattagcg 1560 ccagtttggt tttttatccc attggttgcc caaaatgggt gaagaagctg tcacaagttg 1620 gcaacaaacg atataggttc tctcttctgc cgtta 1655 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60</pre>	tctgcgaaag	cacaagatat	tagcaagcgt	ttcgcccaaa	ttcacataca	gctaacaatc	1380	
<pre>ttaactgctg cttatctagg acagcgatat ttacaagtac aacgcttagt tttattagcg 1560 ccagtttggt ttttatccc attggttgcc caaaatgggt gaagaagctg tcacaagttg 1620 gcaacaaacg atataggttc tctcttctgc cgtta 1655 <210> SEQ ID NO 105 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <222> THER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60</pre>	cctgatctca	atgctggtga	attttctcag	ttaacaatca	cgcgccaaat	tcaacaagtt	1440	
<pre>ccagtttggt tttttatccc attggttgcc caaaatgggt gaagaagctg tcacaagttg 1620 gcaacaaacg atataggttc tctcttctgc cgtta 1655 <210> SEQ ID NO 105 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <2223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60</pre>	gccgcaattt	tccctgataa	ttctgaacca	ataacgctga	taggttctag	tttaggcggt	1500	
<pre>gcaacaaacg atataggttc tctcttctgc cgtta 1655 <210> SEQ ID NO 105 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60</pre>	ttaactgctg	cttatctagg	acagcgatat	ttacaagtac	aacgcttagt	tttattagcg	1560	
<pre><210> SEQ ID NO 105 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60</pre>	ccagtttggt	tttttatccc	attggttgcc	caaaatgggt	gaagaagctg	tcacaagttg	1620	
<211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp) <400> SEQUENCE: 105 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60	gcaacaaacg	atataggttc	tetettetge	cgtta			1655	
	<211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 105, Example 105: designer Anabaena PCC 7120 hox-promoter-controlled Acetolactate Synthase DNA construct (2303 bp)							
gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat 120	agaaaatctg	gcaccacacc	gcagaaatat	aggggctagg	agttgagggt	actctggttc	60	
	gtcaagcatt	tgggatgatt	tcccctcaca	agttcctcaa	attattctcc	tataaacaat	120	

agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca 180

173

		-
-cont	' ı n	ned

			-contir	nued	
gaggtagata tgctaagggg	tgcagctgag	ctccccaaga	cgttggttaa	agcgcagatt	240
ttcactatag tccacaggga	catcaatgag	agtgggaaca	ttctgtgcca	aggcggtttt	300
gagggttggg ataaagtcag	tggtctcctc	aatgcgatag	cctttgagtc	ccatgctttc	360
ggctaacttg acaaaatcgg	gattactaaa	gtggacatag	gcagattcac	caaagtagcg	420
ctgctgcttc cactcaatga	gaccatagcc	gccgtcatta	aagatgatgg	tggtaaagtt	480
tgtccccata cgcagggcag	tttccagttc	ttggaaattc	atcatgaagc	caccatcccc	540
cgtgactgcc accacatgcc	gctgcggata	gactaatttg	gcggccattg	cccccggtac	600
cgcaatcccc attgccgcaa	agccattgga	aatcaagcag	gtgttggggc	gatcgcagtg	660
gtagtgacga gcaatccaca	ttttatgggc	acccacatca	gaaataacaa	tgtcctcggg	720
ccccatgact tggcgcaggt	catagattag	cttttgggggc	ttaaccggaa	aactctcatc	780
ctgggcatat tggtaatagt	ccgccacaat	ctcctgacgc	agttgcacgg	catagggggt	840
gggcttatct tggcgatcgg	cccgcttaag	aatttcatag	agggagtcag	aaatatcgcc	900
gacaacctca acgacaggga	tatagctgct	gtcaatttcc	gcaggagtgg	ccgcaatatg	960
gataatcggc aagcggccct	cggggttcca	gctttttggg	gaatactcaa	ttaagtcata	1020
gccaacggca atcactaagt	cagcatgatc	aaagccgcag	ctaatgtaat	cccgctgttg	1080
gageceeacg gteeacagag	caaggggggtg	ttgataggga	atgacccctt	tgcccatgaa	1140
ggtattggcc acggggatat	tcagcttttc	ggcaaaatgg	gtgagggcag	cggcagcatg	1200
ggcgcgaatg gcgccattcc	ccactaggat	cagggggttc	tcggcagcat	tgatgagttc	1260
agcggcctta agaatactct	ggaaagaggc	ataggttttt	tcgggggagc	tgggcttaag	1320
gggagcgccc tcggcttcca	tggcggcaat	gttttcaggc	acatcaatgt	gaacggcgcc	1380
cggcttctca ttctgggcaa	ttttaaaggc	cttgcggaca	atttctgggg	taatactagg	1440
gcggacaatc tgggcattcc	atttggttac	ggggctaaac	atggccacca	agtccaaata	1500
ttggtgggac tcgatgtgca	tgcgatccgt	ccccacttgc	cctgtaatcg	ccaccagggg	1560
agcgccgtcg aggttggcat	cggcaacacc	ggtcattaaa	ttcgtggccc	cgggggccgag	1620
ggtagaaaga cagacccctg	ctttgccggt	gaggcgacca	tagacatcgg	ccataaaggc	1680
cgccccctgt tcgtggcggg	tggttataaa	ttgaatccga	gagcgatgga	gggcatggag	1740
gacatctaga ttetetteec	ccggcaaacc	aaaaatatat	tcaacgcctt	cattttcaag	1800
gcattttacg agtaattcgg	cggtattcat	aggatgggcg	atcgcaggca	ctgaagtaag	1860
taggaagcag ggagcagggg	aaagaaaatt	gacaactgta	caagattaat	cgcgtctctg	1920
agcaatgacc aaatacatct	acctccacgg	ttttcttcca	gccccctatc	tgcgaaagca	1980
caagatatta gcaagcgttt	cgcccaaatt	cacatacagc	taacaatccc	tgatctcaat	2040
gctggtgaat tttctcagtt	aacaatcacg	cgccaaattc	aacaagttgc	cgcaattttc	2100
cctgataatt ctgaaccaat	aacgctgata	ggttctagtt	taggcggttt	aactgctgct	2160
tatctaggac agcgatattt	acaagtacaa	cgcttagttt	tattagcgcc	agtttggttt	2220
tttatcccat tggttgccca	aaatgggtga	agaagctgtc	acaagttggc	aacaaacgat	2280
ataggttete tettetgeeg	tta				2303
-210, CEO ID NO 106					

<210> SEQ ID NO 106 <211> LENGTH: 1661 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 106, Example 106: designer Anabaena PCC 7120 hox-promoter-controlled Ketol- Acid Reductoisomerase DNA construct (1661 bp)							
<400> SEQUENCE: 106							
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc	60						
gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat	120						
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca	180						
gaggtagata tgttaatttt tatccttatc cactatcttt ccttttccaa gccagctcat	240						
catacttcta agtttagatc ccacctgctc gatgggatgg	300						
ggcattaaat actggtctgc cagctttatt ttccagcatc cattcttttg caaattctcc	360						
tgattgtatc tgtcttaaaa cttccctcat gttgtcttta acctggggat ctattaccac	420						
aggccccctt gtgaggtcac catattgggc tgtgttgctt atggaatate tcatgttgga	480						
gataccacct tcatagagaa gatccactat cagttttacc tcatgcatac attcaaaata	540						
agccatttct ggagcgtagc cagcctccac caatgtttca aaaccatatt taataagctg	600						
tgtcaaacca ccacataaaa ccgcctgctc accgaaaaga tctgtttctg tttcctcttt	660						
gaagtttgtt tcaagcacac ctgctctggc tccaccaatg gcagctgcgt atgacaaagc	720						
cacctetett gaateaeegg aatagtettg atgeaeageg atgaggeatg gtacteegee	780						
accettigta tattetgete tiacaagatg eeetggeeet tiaggigeaa teattataae	840						
gtttacgttt ttaggaggca ctatctgtcc aaaatggatg ttgaaaccgt gggcaaatgc	900						
aagatatgtc ccctcttta tataaggggc aatctgctct ctgtaaagat ccccctgtat	960						
ctcatcagga acgagtatca tgatgaggtc tgcccatttt gtggcctctg atatctccat	1020						
aactttaagc ccggagcttt ccgctttttt ccaggaatca ccaccctttc ttagggcaac	1080						
ggcaacgtca acaccactat ctttgaggtt attagaatgt ccataaccct gacttccgta	1140						
accaactatg gccacctttt tctttttaat caattctaaa tttgcatcct tttcgtagta	1200						
tactttcatt gaagtaagta ggaagcaggg agcaggggaa agaaaattga caactgtaca	1260						
agattaatcg cgtctctgag caatgaccaa atacatctac ctccacggtt ttcttccagc	1320						
cccctatctg cgaaagcaca agatattagc aagcgtttcg cccaaattca catacagcta	1380						
acaatccctg atctcaatgc tggtgaattt tctcagttaa caatcacgcg ccaaattcaa	1440						
caagttgccg caattttccc tgataattct gaaccaataa cgctgatagg ttctagttta	1500						
ggcggtttaa ctgctgctta tctaggacag cgatatttac aagtacaacg cttagtttta	1560						
ttagcgccag tttggttttt tatcccattg gttgcccaaa atgggtgaag aagctgtcac	1620						
aagttggcaa caaacgatat aggttetete ttetgeegtt a	1661						

<210> SEQ ID NO 107 <211> LENGTH: 2324 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 107, Example 107: designer Anabaena PCC 7120 hox-promoter-controlled Dihydroxy-Acid Dehydratase DNA construct (2324 bp)

<400> SEQUENCE: 107

agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60

CONT	inued	

				-contir	nued		_
gtcaagcatt	tgggatgatt	tcccctcaca	agttcctcaa	attattctcc	tataaacaat	120	
agatataagg	tcaaaacttg	agttatgagt	gctgagtaaa	aaattactct	ccacgcctca	180	
gaggtagata	tgttataaat	ccgttataca	tccaaaagat	gctgatgata	ccagettget	240	
atacttcctt	aagcttccac	tcacatttcg	ctcgggcttt	ataggagttt	gctcctttcg	300	
tttttcccat	teetetteet	ccatcaatac	actaattgaa	ttttccactg	catctattct	360	
gatgcggtcg	ccattttcta	cataagctaa	tgcgccatta	tcaaaagctt	cgggtgaaat	420	
gtgtcccact	acaaaaccgt	gagttcctcc	tgagaacctt	ccatctgtaa	tgagggctac	480	
tttctttccc	aaacctgctc	ccattatagc	agcagttggc	tttaacattt	cgggcattcc	540	
aggacctcct	tttggccctt	catatcgaat	caccactaca	tcaccttctt	ttatctcgcc	600	
tctggcaata	ccatcattgg	ccagaaattc	accatcataa	actctagcag	ttccttcgaa	660	
tatctctcct	tcctttccgg	tgattttagc	aacagctcct	ccaggtgcta	aattgccttt	720	
caatattcgc	aaatgacctg	agcttttgat	tggattttc	acagagtgaa	tgatgtcttg	780	
cttttcgcct	aaaccctgaa	catctttata	attttcagct	aaagttttac	ctgttatggt	840	
catgcaatcg	ccatgaagaa	gtccttcccc	caacatcatt	ttcatcactg	caggaatccc	900	
gccattttga	tgaagatctt	ccatcaagta	tttaccagaa	ggctttaagt	cggctagata	960	
aggagtttcg	gcactgattc	gagcgaaatc	ttccaatgtt	aaatcgattt	caaaagcatt	1020	
ggcaacagct	aataaatgta	aaactgcatt	ggtcgatcct	cccaaaactg	taatcaaccg	1080	
tatggcgttt	tcaaatgatt	ttttagtgac	gatatcccgt	ggcttcaaat	cattttcaat	1140	
caatttttta	atggctaaac	cagcetetge	acattctttc	cttttctcag	cactttgagc	1200	
gggattggaa	gcaccataag	gcaagcataa	tcctaaggct	tcaatagcgg	atgccatcgt	1260	
attggcagtg	tacattcctc	cacaggetee	aggacctggg	catgcatttg	ccactactcc	1320	
cttaaaatct	tcttcagaaa	tagtgttggc	ttgcttctta	cctaaagctt	caaaagcaga	1380	
aaccacatct	aatttttctc	cattatggca	acctggagca	atggttcctc	cataaattat	1440	
gagtgaaggt	cgattcaatc	tgcccatagc	cagtaaggcg	cctggcatat	ttttatcgca	1500	
tcccgtaata	gcaatcatgg	catcgtaagc	ttgcgcattc	actaccgttt	ccatggaatc	1560	
ggctatgata	tcgcgggaag	gcaatgaata	gcgcattccg	ttggtaccca	tagaaatacc	1620	
atcgcttact	ccaatagtat	tgaaaatcaa	ccctacccac	tcataagatt	tgatgctttt	1680	
cttgacctct	acagccaaat	cattcaaatg	catattacat	ggattgccct	caaaaccagt	1740	
gcttgcaata	cctatttgtg	gtttttccaa	atcttcatca	gacaaaccaa	tggcatgcaa	1800	
catggcttga	gcggcaggtt	gtgtaggatc	ttgtgtaact	gctttactat	atggatttaa	1860	
tteettegee	attgaagtaa	gtaggaagca	gggagcaggg	gaaagaaaat	tgacaactgt	1920	
acaagattaa	tegegtetet	gagcaatgac	caaatacatc	tacctccacg	gttttcttcc	1980	
agececetat	ctgcgaaagc	acaagatatt	agcaagcgtt	tcgcccaaat	tcacatacag	2040	
ctaacaatcc	ctgatctcaa	tgctggtgaa	ttttctcagt	taacaatcac	gcgccaaatt	2100	
caacaagttg	ccgcaatttt	ccctgataat	tctgaaccaa	taacgctgat	aggttctagt	2160	
ttaggcggtt	taactgctgc	ttatctagga	cagcgatatt	tacaagtaca	acgcttagtt	2220	
ttattagcgc	cagtttggtt	ttttatccca	ttggttgccc	aaaatgggtg	aagaagctgt	2280	
cacaagttgg	caacaaacga	tataggttct	ctcttctgcc	gtta		2324	

<pre><210> SEQ ID NO 108 <211> LENGTH: 2288 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 108,</pre>	branched-
<400> SEQUENCE: 108	
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggt	tc 60
gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaaca	at 120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcct	ca 180
gaggtagata tgatgtatac agtaggagat tacctgttag accgattaca cgagttgg	ga 240
attgaagaaa tttttggagt tootggtgao tataaottao aatttttaga toaaatta	tt 300
tcacgcgaag atatgaaatg gattggaaat gctaatgaat taaatgcttc ttatatgg	ct 360
gatggttatg ctcgtactaa aaaagctgcc gcatttctca ccacatttgg agtcggcg	aa 420
ttgagtgcga tcaatggact ggcaggaagt tatgccgaaa atttaccagt agtagaaa	tt 480
gttggttcac caacttcaaa agtacaaaat gacggaaaat ttgtccatca tacactag	ca 540
gatggtgatt ttaaacactt tatgaagatg catgaacctg ttacagcagc gcggactt	ta 600
ctgacagcag aaaatgccac atatgaaatt gaccgagtac tttctcaatt actaaaag	aa 660
agaaaaccag tctatattaa cttaccagtc gatgttgctg cagcaaaagc agagaagc	ct 720
gcattatett tagaaaaaga aagetetaea acaaataeaa etgaacaagt gattttga	gt 780
aagattgaag aaagtttgaa aaatgcccaa aaaccagtag tgattgcagg acacgaag	ta 840
attagttttg gtttagaaaa aacggtaact cagtttgttt cagaaacaaa actaccga	tt 900
acgacactaa attttggtaa aagtgctgtt gatgaatctt tgccctcatt tttaggaa	ta 960
tataacggga aactttcaga aatcagtett aaaaattttg tggagteege agaettta	tc 1020
ctaatgettg gagtgaaget taeggaetee teaacaggtg catteacaca teatttag	at 1080
gaaaataaaa tgatttcact aaacatagat gaaggaataa ttttcaataa agtggtag	aa 1140
gattttgatt ttagagcagt ggtttcttct ttatcagaat taaaaggaat agaatatg	aa 1200
ggacaatata ttgataagca atatgaagaa tttattccat caagtgctcc cttatcac	aa 1260
gaccgtctat ggcaggcagt tgaaagtttg actcaaagca atgaaacaat cgttgctg	aa 1320
caaggaacct cattttttgg agcttcaaca attttcttaa aatcaaatag tcgtttta	tt 1380
ggacaacctt tatggggttc tattggatat acttttccag cggctttagg aagccaaa	tt 1440
gcggataaag agagcagaca ccttttattt attggtgatg gttcacttca acttaccg	ta 1500
caagaattag gactatcaat cagagaaaaa ctcaatccaa tttgttttat cataaata	at 1560
gatggttata cagttgaaag agaaatccac ggacctactc aaagttataa cgacattc	ca 1620
atgtggaatt actcgaaatt accagaaaca tttggagcaa cagaagatcg tgtagtat	ca 1680
aaaattgtta gaacagagaa tgaatttgtg tctgtcatga aagaagccca agcagatg	tc 1740
aatagaatgt attggataga actagttttg gaaaaagaag atgcgccaaa attactga	aa 1800
aaaatgggta aattatttgc tgagcaaaat aaatagtgaa gtaagtagga agcaggga	gc 1860
aggggaaaga aaattgacaa ctgtacaaga ttaatcgcgt ctctgagcaa tgaccaaa	ta 1920
catctacctc cacggttttc ttccagcccc ctatctgcga aagcacaaga tattagca	ag 1980

-continued

	-continu	ued	
- cgtttcgccc aaattcacat acagctaaca a	tccctgatc tcaatgctgg t	gaattttct	2040
cagttaacaa tcacgcgcca aattcaacaa g	uttgeegeaa tttteeetga t	aattctgaa :	2100
ccaataacgc tgataggttc tagtttaggc g	gtttaactg ctgcttatct a	aggacagcga	2160
tatttacaag tacaacgctt agttttatta g	gegeeagttt ggttttttat e	ccattggtt :	2220
gcccaaaatg ggtgaagaag ctgtcacaag t	tggcaacaa acgatatagg t	tetetette	2280
tgccgtta		:	2288
<pre><210> SEQ ID NO 109 <211> LENGTH: 1613 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic 109: designer Anabaena PCC 2-Methylbutyraldehyde Reduct</pre>	: Construct- Sequence N 7120 hox-promoter-cont	rolled	ple
<400> SEQUENCE: 109			
agaaaatctg gcaccacacc gcagaaatat a	uggggctagg agttgagggt a	actctggttc	60
gtcaagcatt tgggatgatt tcccctcaca a	gtteeteaa attattetee t	tataaacaat	120
agatataagg tcaaaacttg agttatgagt g	octgagtaaa aaattactct c	ccacgcetca	180
gaggtagata tgatggette tgtaaatgae t	actttgaga acgccaagac g	gacgtacttt	240
actttgagat cgggtgacaa gatccccgct g	uttggattgg gtacttggca a	atcacccacc	300
aacgagacta aagaggcagt caagtacgct t	tgcagcacg gttaccgtca c	catcgatgct	360
gccgccattt atggtaacga agacgaggtt g	gtgacggta tcaaggagag t	ggaateeet	420
cgtgaccaaa tctgggtcac atctaagctc t	ggtgcaatg ctcatgctcc c	cgaggetgte	480
cccaaggctt tggagaagac cttgcgtgag c	tgaaacttg attaccttga c	cctttacctc	540
atccactggc ctatttcttt gaagaccggc g	atgacttgg ttcccaagga c	caaggacggc	600
aacaccatca ctgtcgaaat tcccctcgag g	yacacctgga aggctatgga g	gggtettgtg	660
aagteeggea aggtgaagaa eattggtatt t	ccaatttca acaacgaaga g	gttggatcgt	720
attttgaagg ttgccgagat tcctcctgcc g	jtccaccaaa tggaaactca t	ccttacttg	780
aagcagacgg agttcattga gaagcacaag a	agettggea tteaegteae e	egettaeteg	840
cctttggcca accaaaatgc tctttacggc a	atgeegtte eeaagttgat t	cgagcacaag	900
actcttgtcg acattgccaa gaccaagggt g	agggcgtca ctggtgccaa c	cattgctatt	960
tettgggeag teaagegegg taetteggtt a	itteetaagt etgtteatge e	caacagaatt	1020
aagagcaact teetegttgt teeettgaet g	atgacgaga tgaaggccat c	cgataacatt	1080
ggtgtcagca agcgtttcaa ttggagcaaa g	utttctgca atgagaattg t	ttctacggt	1140
cttgaggatg gtcctcagta atgaagtaag t	aggaagcag ggagcagggg a	aaagaaaatt	1200
gacaactgta caagattaat cgcgtctctg a	gcaatgacc aaatacatct a	acctccacgg	1260
ttttcttcca gccccctatc tgcgaaagca c	aagatatta gcaagcgttt c	cgcccaaatt	1320
cacatacagc taacaatccc tgatctcaat g	octggtgaat tttctcagtt a	acaatcacg	1380
cgccaaattc aacaagttgc cgcaattttc c	ctgataatt ctgaaccaat a	aacgctgata	1440
ggttctagtt taggcggttt aactgctgct t	atctaggac agcgatattt a	acaagtacaa	1500
cgcttagttt tattagcgcc agtttggttt t	ttatcccat tggttgccca a	aaatgggtga	1560
agaagctgtc acaagttggc aacaaacgat a	ltaggttete tettetgeeg t	ta	1613

<210> SEQ ID NO 110 <211> LENGTH: 1300 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 110, Example 110: designer Prochlorococcus marinus MIT9313 groE-promotercontrolled NAD-dependent Glyceraldehyde-3-Phosphate Dehydrogenase DNA construct (1300 bp) <400> SEQUENCE: 110 60 aqaaaatctq qcaccacacc ccctttcaqa qcqqcqcaac attaccactq catqqcqaqa tettetcaqq qtteqqtqac ecqcacaqqt atecactaqt eqqcacaqca teaacacaca 120 tagggttggc actcaatggc cacgagtgct actcatgtta tgccaagccg actttacgaa 180 ccaatteege ggtgegegtg gegtaaceea tttegttgte ataceaagtg tagattttea 240 ccattcgctt accaaccacc atggtggaga gcgcatccac aattgttgaa cgttgatcgc 300 cttggtaatc aatcgacacc agtggacgct cttcaaaacc cagaatgcct ttaagctcgt 360 tttctgaggc ttgttttaac agctgattga tctcttccac cgtcgtatca cgctgcacat 420 caaaaatgat gtcggttaac gaggcattcg ccaacggtac acgtacggcg tgtccatcaa 480 tettgeettt cagateeggg aaaatttega taategettt ageagageeg gtggttgtgg 540 ggatgagget catacegeaa geacgtgeae ggegtaaate tttatgeggt geatecaaaa 600 tggtttgcgt attggttagg ttatggatgg tagtaaaaga ggcttgtgcg atacccagtt 660 tttcatggat tactttcacc actggagcaa tacagttagt ggtacaagaa gcggcagtga 720 caatgcgatg ttgctccgga ttgaagatgt gatcgttcac cccgaccacg atattggcga 780 teccetette tttgacagge getgaaacga egacgegttt tacteettgt gecaaataet 840 ggttcaagaa ttcgccttta cggtgcttac ccgtagcctc aatcaccaca tcacagcccg 900 accaatccac tgcatcaatc gatttttctt gtgttgtgcg aatgcgtttg ccgttgatca 960 ggatagcatc cgcttcactg cccacagcat gatgccaacg accttgtacc gaatcgaact 1020 ccaaaaggtg cgctaatgtt gcagcatcac ccgccacatc gttgatctgt acaaactcaa 1080 totcaggoca atcaaacgaa gotottaaag coaaacgooo aatacgacca aatcoattaa 1140 ttccgacttt aattgccatt gatttagttt cggtgtctat ctcttaatag cctcgattta 1200 ttttcqqqqc tattaatcaa ctctcaqaqq cqacaaqctt cttcttccct tacqacqttt 1260 ttattggttg gacatggcaa ggttctctct tctgccgtta 1300 <210> SEO ID NO 111 <211> LENGTH: 1498 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 111, Example 111: designer Prochlorococcus marinus MIT9313 groE-promotercontrolled Phosphoglycerate Mutase DNA construct (1498 bp) <400> SEOUENCE: 111 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga 60 tettetcagg gtteggtgae eegcacaggt atceactagt eggeacagea teaacacaca 120 tagggttggc actcaatggc cacgagtgct actcatgaaa tatgtaatct tacttggcga 180 cggcatggcc gacgaaaaaa ttgccgaact ggacggcaaa acgcctcttc aatacgccag 240

-continued

cacacccaat	atggacaggc	tggcggcagg	cggggaaacc	ggcatggtac	ataccgtccc	300		
ggatggattt	ccgcctggca	gcgatgtagc	caacctctcg	gtaatggggt	acaatccgcg	360		
ggaatattat	accgggcgtt	ctccgctgga	agcggtaagc	atgggggttg	aactttcaga	420		
tgacgatgta	gccttccgct	gcaacctggt	taccctgtca	gaagaagagg	tatatgaaaa	480		
caagattatg	gtggattaca	gctcggacga	aattaccacc	tctgaatcgc	atgaactgat	540		
cagggaagtc	gccaaccgcc	tgggcagtaa	agagttgcgc	ttttacccgg	gtttcggatt	600		
tagacacctt	cttgtatgga	aaacagggcc	tgttggcggg	aagctaacac	caccccacga	660		
tatctcgggg	cgtaccattg	ccccatacct	ccccaaaggc	gagggtagcg	acactttaaa	720		
gcggttaatg	aaagaaagca	acaggttcct	gccagagcac	ccggttaacc	aaaaagggt	780		
aagggccggt	cttaggcctg	ccacttccat	ctggttctgg	ggacagggaa	agaaaccctc	840		
gataccgaag	ttctacgaca	aatacggggt	aaccggctct	gttatctctg	ccgtggacct	900		
gattaagggg	attggcatct	gtgccggctt	cgatatagtt	aaggtggagg	gtgtaacggg	960		
caccatccat	accaacttcc	gggggaaagt	gcaggccgcc	ctggaagaac	tgaaaaaggg	1020		
aaaggacctg	gtctacattc	acgttgaggc	tccggacgca	gcaagccaca	ggggtgaaac	1080		
tgttaccaaa	gttaaagcta	ttgaaatggt	ggacaacatg	ctgggccagc	ttttaaacaa	1140		
actggacgaa	ttcggcatgt	acaaaataat	gctcttgccc	gatcatccaa	ccccgctcag	1200		
cactaaaacc	cactctaaca	gccctgtccc	ctttgttatc	tatgccaagg	ggcggaaaaa	1260		
taaaagcgcc	gcttcttttg	acgaagaaac	ggcggcaaaa	agcggacttg	ttttccgggc	1320		
gggccatgag	ttaatggatt	actttatccg	cagctaatga	tttagtttcg	gtgtctatct	1380		
cttaatagcc	tcgatttatt	ttcgggggcta	ttaatcaact	ctcagaggcg	acaagcttct	1440		
tcttccctta	cgacgttttt	attggttgga	catggcaagg	ttetetette	tgccgtta	1498		
<pre><210> SEQ ID NO 112 <211> LENGTH: 1588 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 112, Example 112: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Enolase DNA construct (1588 bp)</pre>								
<400> SEQU	ENCE: 112							
agaaaatctg	gcaccacacc	ccctttcaga	gcggcgcaac	attaccactg	catggcgaga	60		
tcttctcagg	gttcggtgac	ccgcacaggt	atccactagt	cggcacagca	tcaacacaca	120		
tagggttggc	actcaatggc	cacgagtgct	actcatggtg	tacgtggaaa	tcgtggatgt	180		
aagagcaaga	gaggtcctgg	attcgagagg	aaatcccacc	gttgaagcgg	aagtcgtgct	240		
tgaagacgga	acaatgggaa	gagccatcgt	gccctctggt	gcctccactg	gaaaattcga	300		
agccctggaa	atcagagaca	aagacaagaa	gagatacctc	gggaagggtg	ttctgaaggc	360		
cgtagagaac	gtgaacgaaa	ccatagetee	cgcgctgatt	ggaatgaacg	cattcgacca	420		
gccactcgtt	gacaagacac	tgatagaact	ggatggcaca	gagaacaaat	ctaaactggg	480		
tgccaacgct	atactcgccg	tttctatggc	agttgccaga	gcggcggcga	attacctcgg	540		
attgcccctc	tacaaatacc	ttggaggagt	caacgcaaag	gttctgccag	tacctttgat	600		
gaacgtgatc	aacggtggac	agcacgcaga	caacaatctt	gaccttcagg	aattcatgat	660		

- con	ιt-	п	n	11	ρ	a	

-continued	
cgttcccgcc ggatttgaca gcttcagaga agctttgagg gcaggagcgg aaatattcca	720
cacgttgaaa aagatactcc acgaagccgg tcacgtgaca gcagtaggag acgagggtgg	780
attcgcaccc aatctgtctt ccaacgaaga agccataaag gttctgattg aagccataga	840
gaaagctggc tacaagcccg gagaagaagt cttcatagct cttgattgcg cagcatcttc	900
cttctacgat gaggaaaaagg gagtttacta cgtcgatggt gaagaaaaat ccagcgaagt	960
teteatggga tactaegaag aactggtgge gaagtaeeee ateatateea tegaagatee	1020
gttcgcggag gaagactggg atgcatttgt ggaattcaca aagagagtag gaaacaaggt	1080
tcagatcgtt ggagatgacc tttacgtgac caacgtgaaa agactttcca aaggaataga	1140
actcaaagcg accaactcca tactcatcaa actcaatcag ataggcaccg tcacggaaac	1200
tetegaegeg gtggagatgg cacagaagaa caacatgaca gecateattt eccacagate	1260
tggagagagt gaagacacgt tcattgcgga tctcgctgtg gcaacgaacg ctggtttcat	1320
caagacaggt teeetteea gaagegaaag gatagecaag tacaaceage ttttgagaat	1380
cgaggaagaa ctcggaaaag tggcagaatt cagaggtttg aaatctttct actctataaa	1440
gagataatga tttagtttcg gtgtctatct cttaatagcc tcgatttatt ttcggggcta	1500
ttaatcaact ctcagaggcg acaagcttct tcttccctta cgacgttttt attggttgga	1560
catggcaagg ttctctcttc tgccgtta	1588
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Ex 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp)	-
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Ex 113: designer Prochlorococcus marinus MIT9313 groE-promoter-	-
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Ex 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp)	-
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Ex 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp) <400> SEQUENCE: 113	
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, E> 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp) <400> SEQUENCE: 113 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga	60
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, E> 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp) <400> SEQUENCE: 113 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga tcttctcagg gttcggtgac ccgcacaggt atccactagt cggcacagca tcaacacaca	60 120
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Ex 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp) <400> SEQUENCE: 113 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga tcttctcagg gttcggtgac ccgcacaggt atccactagt cggcacagca tcaacacaca tagggttggc actcaatggc cacgagtgct actcatgatg agaaaaacca agcttatatg	60 120 180
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, E> 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp) <400> SEQUENCE: 113 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga tcttctcagg gttcggtgac ccgcacaggt atccactagt cggcacagca tcaacacaca tagggttggc actcaatggc cacgagtgct actcatgatg agaaaaacca agcttatatg ttcgatagga cctaaaaccg agaaaccaga gaaaataaag gaattgctaa aaagaggggt	60 120 180 240
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Ex 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp) <400> SEQUENCE: 113 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga tcttctccagg gttcggtgac ccgcacaggt atccactagt cggcacagca tcaacacaca tagggttggc actcaatggc cacgagtgct actcatgatg agaaaaacca agcttatatg ttcgatagga cctaaaaccg agaaaccaga gaaaataaag gaattgctaa aaagaggggt aaatgctttt aggataagcg cagttcatta cacgatggaa aaaatcacag agctggtaga	60 120 180 240 300
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Ex 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp) <400> SEQUENCE: 113 agaaaatotg gcaccacacc cocttocaga goggoggcaac attaccactg catggoggaga tottotcagg gttoggtgac cocgacaggt atcoactagt oggcacagca toaacacaca tagggttggc actoaatggc cacgagtgct actoatgatg agaaaaacca agottatatg ttogatagga cotaaaacog agaaaccaga gaaaataaag gaattgotaa aaagaggggt aaatgotttt aggataagog cagttoatta cacgatggaa aaaatcacag agotggtaga gotaatcaaa gatattagat atgaactoaa aatgootgtt tooatcatto ttgatttaco agggttgcaaa ctocggacgg gagatcagaa agaagaaatc atogaactta gacaaggtga aaaagtgact gtaacaagog aaaaacttt ttottotogg gatactataa goataaattt	60 120 180 240 300 360 420 480
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, ES 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp) <400> SEQUENCE: 113 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga tcttctcagg gttcggtgac ccgcacaggt atccactagt cggcacagca tcaacacaca tagggttggc actcaatggc cacgagtgct actcatgatg agaaaaacca agcttatatg ttcgatagga cctaaaaccg agaaaccaga gaaaataaag gaattgctaa aaagaggggt aaatgctttt aggataagcg cagttcatta cacgatggaa aaaatcacag agctggtaga gctaatcaaa gatattagat atgaactcaa aatgcctgtt tccatcattc ttgatttacc aggttgcaaa ctccggacgg gagatcagaa agaagaaatc atcgaactta gacaaggtga aaaagtgact gtaacaagcg aaaaaacttt ttcttctcgg gatactataa gcataaattt ttccggacca tttcagggtg taaaaaccgg cgatttaatc ctcgtagatg atggaaaaat	60 120 180 240 300 360 420 480 540
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Es 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp) <400> SEQUENCE: 113 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga tcttctcagg gttcggtgac ccgcacaggt atccactagt cggcacagca tcaacacaca tagggttggc actcaatggc cacgagtgct actcatgatg agaaaaacca agcttatatg ttcgatagga cctaaaaccg agaaaccaga gaaaataaag gaattgctaa aaagaggggt aaatgctttt aggataagcg cagttcatta cacgatggaa aaaatcacag agctggtaga gctaatcaaa gatattagat atgaactcaa aatgcctgtt tccatcattc ttgatttacc agggtggcaaa ctccggacgg gagatcagaa agaagaaatc atcgaactta gacaaggtga aaaagtgact gtaacaagcg aaaaaacttt ttcttctcgg gatactataa gcataaattt ttccggacca tttcagggtg taaaaaccg cgatttaatc ctcgtagatg atggaaaaat acaactcaga gtggaaagaa ttctcccaaa aaagtagaa tgcgtcgtgg agataggagg	60 120 180 240 300 360 420 480 540
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, ES 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp) <400> SEQUENCE: 113 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga tcttctcagg gttcggtgac ccgcacaggt atccactagt cggcacagca tcaacacaca tagggttggc actcaatggc cacgagtgct actcatgatg agaaaaacca agcttatatg ttcgatagga cctaaaaccg agaaaccaga gaaaataaag gaattgctaa aaagaggggt aaatgctttt aggataagcg cagttcatta cacgatggaa aaaatcacag agctggtaga gctaatcaaa gatattagat atgaactcaa aatgcctgtt tccatcattc ttgatttacc aggttgcaaa ctccggacgg agaaccaga agaagaaatc atcgaactta gacaaggtga aaaagtgact gtaacaagcg aaaaacctt ttcttctcgg gatactataa gcataaatt ttccggacca tttcagggtg taaaaaccgg cgatttaatc ctcgtagatg atggaaaaat acaactcaga gtggaaagaa ttctcccaaa aaaagtagaa tgcgtcgtgg agataggagg aattttgaag aaaacagtg gcgtcaattt tcccaattc gatcacctg tcgaagtagc	60 120 180 240 300 360 420 480 540 600 660
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Explific designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp)<400> SEQUENCE: 113agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcggaa tcttctcagg gttcggtgac ccgcacaggt atccactagt cggcacagca tcaacacaca tagggttggc actcaatggc cacgagtgct actcatgatg agaaaaacca agcttatatg ttcgatagga cctaaaaccg agaaaccaga gaaaataaag gaattgctaa aaagaggggt aaatgcttt aggataagcg cagttcatta cacgatggaa aaaatcacag agctggtaga gctaatcaaa gatattagat atgaactcaa aatgcctgtt tccatcattc ttgatttacc aggttgcaaa ctccggacgg agaacagaa agaagaaatc atcgaactta gacaaggtga aaaagtgact gtaacaagcg aaaaaacttt ttcttctcgg gatactataa gcataaatt ttccggacca tttcagggtg taaaaaccgg cgatttaatc ctcgtagatg atggaaaaat acaactcaga gtggaaagaa tttctccaaa aaagtagaa tgcgtcgtgg agataggagg aattttgaag aaaaacagtg gcgtcaattt tcccaattct gatctacctg tcgaagtacc aacagaagaa gatattaaga tcatagctga aactgtcaat atggactgg agataggagg	60 120 180 240 300 360 420 480 540 600 660 720
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, ES 113: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp)<400> SEQUENCE: 113agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga tcttctcagg gttcggtgac ccgcacaggt atccactagt cggcacagca tcaacacaca tagggttggc actcaatggc cacgagtgct actcatgatg agaaaaacca agcttatatg ttcgatagga cctaaaaccg agaaaccaga gaaaataaag gaattgctaa aaagaggggt aaatgctttt aggataagcg cagttcatta cacgatggaa aaaatcacag agctggtaga gctaatcaaa gatattagat atgaactcaa aatgcctgtt tccatcattc ttgatttacc aggttgcaaa ctccggacgg gagatcagaa agaagaaatc atcgaactta gacaaggtga aaaagtgact gtaacaagcg aaaaacctt ttcttctcgg gatactataa gcataaatt ttccggacca tttcagggtg taaaaaccgg cgatttaatc ctcgtagatg atggaaaaat acaactcaga gtggaaagaa tttctccaaa aaagtagaa tgcgtcgtgg agataggagg aattttgaag aaaaacagtg gcgtcaattt tcccaattct gatctacctg tcgaagtacc aacagaagaa gatattaaga tcatagctga aactgtcaat atgggactgg actattactg tgtatcatt gcaagaaacg caaaagatg tcaaaaatca atgggactgg actattactg tgtatcatt gcaagaacg caaaagatg tcaaaaatca atgggactgg actattactg	60 120 180 240 300 360 420 480 540 600 660 720 780
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Explifit designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp)<400> SEQUENCE: 113agaaaatotg gcaccacacc coctttoaga goggogoaac attaccactg catggoggaa tottotcagg gttoggtgac cogcacaggt atcoactagt oggoacagca toaacaacaa tagggttggc actoaatggc cacgagtget actoatgat gaaaaaacca agottatatg ttogatagga cotaaaacog agaaaccaga gaaaataaag gaattgotaa aaagaggggt aaatgotttt aggataagog cagttoatta cacgatggaa aaaatcacag agotggtaga gotaatcaaa gatattagat atgaactoaa aatgootgtt tocatcatto ttgatttaco agggttgcaa coccgacgg gagatcagaa agaagaaatc atogaactta gacaaggtga aaaagtgact gtaacaagog aaaaacctt ttottotogg gatactataa goataaatt ttocggacca tttoagggtg taaaaaccgg cgatttaatc ctogtagatg atggaaaaat acaactcaga gtggaaagaa ttootcaaa aaagtagaa tgogtogtgg agataggagg aattttgaag aaaaacagtg gogtcaattt toccaattot gatotactg togaagtacc aacagaagaa gatattaga toatagotga aactgtoaat atgggactgg actattactg tgatoattt gcaagaaacg caaaagtg tocaaaaat atgggactgg actattactg tgatoattt gcaagaacg caaaagtg tocaaaaat acaaacato ttgaattott cgattcaagt gcgaaaatto ttacgaaat agaacaaacat atgggactgg actattactg tgatoattt gcaagaacg caaaagtg tocaaaaat acaacato ttgaatott	60 120 180 240 300 360 420 480 540 600 660 720 780
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Exili3: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp)<400> SEQUENCE: 113agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga tcttctcagg gttcggtgac ccgcacaggt atccactagt cggcacagca tcaacacaca tagggttggc actcaatggc cacgagtgct actcatgatg agaaaaacca agcttatatg ttcgatagga cctaaaaccg agaaaccaga gaaaataaag gaattgctaa aaagaggggt aaatgcttt aggataagcg cagttcatta cacgatggaa aaaatcacag agctggtaga gctaatcaaa gatattagat atgaactcaa aatgcctgtt tccatcattc ttgatttacc aggttgcaaa ctccggacgg gagatcagaa agaagaaatc atcgaactta gacaaggtga aaaagtgact gtaacaagcg aaaaaactt ttcttccgg gatactataa gcataaatt ttccggacca tttcagggtg taaaaaccgg cgatttaatc ctcgtagatg atggaaaaat acaactcaga gtggaaagaa tttctccaaa aaaagtagaa tgcgtcgtgg agataggagg aattttgaag aaaaacagtg gcgtcaattt tccatatct gatctacctg tcgaagtacc aacagaagaa gatattaaga tcatagctga aactgtcaat atgggactgg actattacg tgtatcattt gcaagaaacg caaaagatgt tcaaaaaatc aaaaacatc ttgaatcttt cgattcaagt gcgaaaatc ttacgaaat agaaacaaa aaatccatag aacgctgga agatatatgt cgcgtgagcg atggaataat cgtagcaaga gagattag cggtggaga agatatatgt cgcgtgagcg atggaataat cgtagcaaga gagattag cggtggagac	60 120 180 240 300 360 420 480 540 600 620 720 780 840 900
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 113, Explifit designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Pyruvate Kinase DNA construct (1717 bp)<400> SEQUENCE: 113agaaaatotg gcaccacacc coctttoaga goggogoaac attaccactg catggoggaa tottotcagg gttoggtgac cogcacaggt atcoactagt oggoacagca toaacaacaa tagggttggc actoaatggc cacgagtget actoatgat gaaaaaacca agottatatg ttogatagga cotaaaacog agaaaccaga gaaaataaag gaattgotaa aaagaggggt aaatgotttt aggataagog cagttoatta cacgatggaa aaaatcacag agotggtaga gotaatcaaa gatattagat atgaactoaa aatgootgtt tocatcatto ttgatttaco agggttgcaa coccgacgg gagatcagaa agaagaaatc atogaactta gacaaggtga aaaagtgact gtaacaagog aaaaacctt ttottotogg gatactataa goataaatt ttocggacca tttoagggtg taaaaaccgg cgatttaatc ctogtagatg atggaaaaat acaactcaga gtggaaagaa ttootcaaa aaagtagaa tgogtogtgg agataggagg aattttgaag aaaaacagtg gogtcaattt toccaattot gatotactg togaagtacc aacagaagaa gatattaga toatagotga aactgtoaat atgggactgg actattactg tgatoattt gcaagaaacg caaaagtg tocaaaaat atgggactgg actattactg tgatoattt gcaagaacg caaaagtg tocaaaaat acaaacato ttgaattott cgattcaagt gcgaaaatto ttacgaaat agaacaaacat atgggactgg actattactg tgatoattt gcaagaacg caaaagtg tocaaaaat acaacato ttgaatott	60 120 180 240 300 360 420 480 540 600 660 720 780

ont		

aagggttgaa ataatggatg ttgcaaacat agttttagat ggagcagatg ctatactgct 1080 aacctctgaa acagctgtgg ggaactttcc gatcgaaaca gttgaaaaaa ttaatgagat 1140 tgttgaaaat gttgagaact acctacccga aatcaatgct cattttaaag aacgcaggtt 1200 tgaaaaaatc gaagatccat ctgaagctat tgcaaggagt agttactaca tttctgaaga 1260 aataaatgoo aaagotataa taatatcaac agottotgga agoactgoaa gaagggtggo 1320 ctatttcaaq ccacttcqtc ctatcataqc tacqacccca qatqaaaaca cctttcatca 1380 1440 gttgtctatt gtttgggggga tagttccgat gctaattcca gaagtccatt ccacagatat 1500 aatgatecae gtggeegteg agaaggttaa agetgtegga tatgtteaaa atteegaeat 1560 tgtggttgtt acttetggtg etcegtgtgg tattgttgga acaactaaca tgeteaaagt tcacatagtt gagtagtgat ttagtttcgg tgtctatctc ttaatagcct cgatttattt 1620 tcggggctat taatcaactc tcagaggcga caagcttctt cttcccttac gacgttttta 1680 1717 ttggttggac atggcaaggt tctctcttct gccgtta <210> SEO ID NO 114 <211> LENGTH: 2017 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 114, Example 114: designer Prochlorococcus marinus MIT9313 groE-promotercontrolled Acetolactate Synthase DNA construct (2017 bp) <400> SEQUENCE: 114 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga 60 tettetcagg gtteggtgae eegcacaggt atceactagt eggcacagea teaacacaca 120 tagggttggc actcaatggc cacgagtgct actcatgtca agattgctta gaggcttctt 180 tattaaaatg ttcctcaaat ttttttggaa aacgctgatc ggccaaatga atgttgtcgc 240 tgtaatcgac cggaatatca atgacaacag gcccctctgc atcaagacca gctttaagca 300 cctctgccaa ttcgtcaggt gaattgaccc ttaaaccttt tgcaccaaag ctttcagcat 360 attttacaat atcgattccg ccgaagtcga ctccggacgt ccgcttgtat ttcatctcct 420 getggaacge aaccatateg tatgtgetgt catteeagae aatgtgaacg ateggegett 480 ttaatctgac cgctgtctca agctccatcg cggagaacag gaagcccccg tccccggaaa 540 cagacacgac tttctgtccc ggattgacca gcgttgctgc aatcgcccac ggcaaagcca 600 ccccaagegt ctgcatgeeg ttggaaatea geagteeatg eggaeggtag gtgeggaaat 660 atctagacat ccaaatcgca tgggagccga tgtcgcaagt caccgttatg tcatcgctca 720 gcagttcacg caaatcgcga acgatttgca gcggatgaac aagatcagtt tttgtttctt 780 taggaggttc gctttgctcc tccagtgctt tcttcaagta atcaaggaca ggtgcaaagg 840 actcgtcgat ggaaaccggc agagaatcat gttcaatatg gtttaacgtc tctgcgatat 900 cgccgatcaa ctcgatttcg ggctgatagt catgatcgat atcggcttgt atttcgtcaa 960 gatgaatcac gettegtteg cettteeat tecaaaagae eggategtat teaateggat 1020 catageogae egteaaaaeg acateogett ttteeaatag eatgteteeg ggetgattge 1080 ggaatagtee gateeggeeg aagtaetggt etteeaaate gtgagaeage gtaecegetg 1140 cttggtatgt ttcaacaaac ggcagtttca ctttccttag cagacgccga accgcttcaa 1200

-continued

tegetteagg tetteegeet tteateega caageaegae aggaaggtte geattgtgaa 1260 ttttggegat ggeegegetg attgttegt eegaageege geeeagette ggegeeggea 1320

tggttttcac (cggcttggca	gttgccggac	cggccgtaac	gtcctgcgga	aagctgagaa	1380		
acgetgegee a	agcetgteea	gaageegeeg	ctctgaatgc	attggttaca	gcctcaggta	1440		
tgttgttcgc	atcttccact	tctgcgctat	atttcgtaat	cggctgaaac	aacgccgcat	1500		
tatccatcga	ttgatgagtt	ttttgagac	gatccgctct	ttttacagca	cccgccaggg	1560		
caacaaccgg	atctccttct	gtattggctg	ttacaagacc	ggtcgctaaa	ttagacgctc	1620		
ccggacctga	agtcaccagg	caaacaccgg	gctttccagt	caatcgtccg	actgccgccg	1680		
ccataaatgc	tgcattctgc	tcgtgacggc	aaacgatcaa	ttcaggcccc	ttgtctttca	1740		
atacgtcaaa	caccgcatcg	attttcgctc	ccggaatacc	gaaaacatga	gtgacacctt	1800		
gctgaatgag	actatccacc	acaagctctg	ctcctcttac	agtaagagtt	tcatttttag	1860		
cggctacatt a	attcaatgat	ttagtttcgg	tgtctatctc	ttaatagcct	cgatttattt	1920		
tcggggctat	taatcaactc	tcagaggcga	caagcttctt	cttcccttac	gacgttttta	1980		
ttggttggac a	atggcaaggt	tctctcttct	gccgtta			2017		
<210> SEQ ID NO 115 <211> LENGTH: 1588 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 115, Example 115: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Ketol-Acid Reductoisomerase DNA construct (1588 bp)								
<400> SEQUE	NCE: 115							
agaaaatctg g	gcaccacacc	ccctttcaga	gcggcgcaac	attaccactg	catggcgaga	60		
tcttctcagg	gttcggtgac	ccgcacaggt	atccactagt	cggcacagca	tcaacacaca	120		
tagggttggc	actcaatggc	cacgagtgct	actcatgtca	ctcctcatcc	acgttcctct	180		
ccttgagcca a	aggcatcatt	tttctgagtt	cttttcctac	tttttctatg	agatgctctg	240		
attetttett i	tctcatggtg	tagaagtagg	gtetteeege	ctgattttcg	agtatccagt	300		
ccttggcgaa	ctttcccgtc	tgaatgtcct	tgagcatctg	cttcatgttc	tccctcactt	360		
cttttgtaac g	gatettttee	tgactgatgt	agtcaccgta	ctccgcggtg	ttgctgacgg	420		
agtatctcat	gaaagagaga	ccaccctcgt	agatgaggtc	aacgatgagc	ttgagctcat	480		
tgagacactc a	aaagtaagct	atttccggtt	gataacccgc	ctccacaaga	gtttcgaaac	540		
cagcttttat g	gagagccgtt	actccaccac	agaggaccgc	ctgctctcca	aacaaatccg	600		
tttccgtctc	tteettgaag	gtcgtctcta	tcacacccgc	ccttgtcaca	ccgatacctt	660		
tggcataagc	gagcgctata	tctttggctt	taccggtgta	gtcctgatag	accgctacga	720		
gagccggcac	accccttcct	tcgacgtatt	ctcttctcac	gatgtgacca	gggctcttcg	780		
gagcgatcat	cgtcacatcc	acgttcttcg	gaggtatgat	ctggtgatag	tggatgttga	840		
acccgtgggc	gaacatcagc	atcttaccct	cggtgaggtg	tttttctatg	tatttttgt	900		
agatctccgg	ctggttctca	tctgggatga	gcatcatgat	gatgtcggcc	tcttttgccg	960		
cttcttctat	tgettteacg	gtgagaccct	gttcctccgc	cttcttccag	ctcttgcttc	1020		
cctctctcaa	tccgaccaca	acgttgagac	cgctgtcttt	cagattcaac	gcgtgcgcat	1080		
geccetgaet	tccgtaccct	atgategega	tettttgte	cctgatcagt	tcgagatccg	1140		
-			-					

-continued

cgtetttgte ataataaate actgeeattg atttagttte ggtgtetate tettaatage 120	200					
ctcgatttat tttcggggct attaatcaac tctcagaggc gacaagcttc ttcttccctt 120						
acgacgtttt tattggttgg acatggcaaa acaatccagt cgagagctag cgcttgaacg 133						
ccgtaaggcc ctgagtaatt caggtaagaa atcaaccaca ttaaatggat caagtcctaa 13	80					
togcatoogt actgoototg atgoacgtot aaccaggact gatcaatott togttaaggo 144	40					
tgggaaagaa tctgtgcagc taaccgctcc taagagagag caactagata cgtcttttgt 150	500					
tgettetaga gaateateeg gagettegeg eegteaagtg aaaaegatee gaaatteaag 156	60					
cagagaatgg ttctctcttc tgccgtta 15						
<pre><210> SEQ ID NO 116 <211> LENGTH: 1960 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 116, Example 116: designer Prochlorococcus marinus MIT9313 groE-promoter- controlled Dihydroxy-Acid Dehydratase DNA construct (1960 bp)</pre>						
<400> SEQUENCE: 116						
agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga	60					
tetteteagg gtteggtgae eegeacaggt atceaetagt eggeacagea teaaeaeaea 12	.20					
tagggttggc actcaatggc cacgagtgct actcatgcta atctttcaag atagcgcctg	.80					
tactggcgga ttgcaccatt tttgaatatc ttttcatata gcctgagttt atcttgggtt 24	40					
ccggaactcg ccactgcgtt ctcctggcag caagtteete gtegetaagt egtacactaa 30	00					
ggctgtggtt cggtatatca atgacgatta tgtctccgtc ctgaataaga gcaatattgc 34	60					
ccccttgtgc cgcctcggga gatacgtgcc ctatagaagc tccccgggta gcaccagaaa 42	20					
aacggccatc ggttataagg gctacgtcct tgtctagccc catccccgct atagcagaag 4	80					
taggegtgag cattleectc atceetggee etcegegegg ceetteatae eggattaega 54	540					
cgacttetee ttttteaate ttgeeteeta gaatggetge aacagettet tetteegagt 60	00					
cgaaaacccg tgctttaccc tcgtgataga gcatgtccgg gtcaactgcc cccttcttca 66	60					
ccacegegee etecteggee aggttacega acagtatage caaceeeeg gtagtactgt 72	20					
geggattete tatactaegg atgaeetegt ggteetteae agggtagtea ttgataaeet 79	80					
ccccaaccgt cttaccagta accgtcaggc actggcggtt taccagccct gccttgtcta 84	340					
actcgttgaa aatggcctga actccacccg cagcgtacaa gtcttctata aaatggttgc 90	00					
cggcaggttc gattttacat aggtgaggag tggtatcgct gatatggttt atcaggttca 94	960					
agtccagctt aacgccggct tcgtgagcga tagccataag atgcaaaacc gtattggtag 102	020					
aacaacctat tgccatgtcc aggcgtaagg cattgatgaa agcctcttgg gtcatgatat 100	080					
cccgggggtt tatgtccctt tcccatagct ccatcacttt catgcccgcc tgtttggcta 114	.40					
gacggattcg ttcagagtgt accgccggta tagttccgtt cccgggtaag cccattccta 120	00					
ccgcttccgt caggcagttc atggaattag cggtaaacat accggcacag ctgccacaac 126	60					
ccgggcaagc tacatettea ageteegeta agteegaaag egacatetta eetgegetga 132	20					
ccgcgcctac cccttcaaag accgtgttga ggctgacctt gcgcccccgg aaattgccag 13	80					
ccaacatcgg ccctccgctg acaaacatac aaggaagatt gaggcgagcg gccgccatca 144	40					

-continued

						*
gcatcccagg gatgatttg	tcgcagttag	gtataaaaac	cagggcatcg	aaaggatgag	1500	
ccatagccat tatctcaata	gaatcggcaa	tcagttcccg	gctggccaga	gagtatttca	1560	
taccgatatg gttcatggca	ataccatcgc	atacccctat	agtagaaaac	tctataggag	1620	
tgcccccttt catcctcacc	ccggctttga	ccgcctcggc	tatacggtct	agatgaatat	1680	
gccctggaat aatctcgttg	ı geegagttga	ctataccgac	taagggtctc	tccaactcct	1740	
catcggtcaa tcctaaagct	ttaaacagtg	aacggtgagg	tgctttttct	agaccettt	1800	
tcgccaggtc acttctcatt	gatttagttt	cggtgtctat	ctcttaatag	cctcgattta	1860	
ttttcggggc tattaatcaa	ctctcagagg	cgacaagctt	cttcttccct	tacgacgttt	1920	
ttattggttg gacatggcaa	ggttetetet	tctgccgtta			1960	
<pre><210> SEQ ID NO 117 <211> LENGTH: 1945 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI</pre>	ON: Synthet	ic Construct cus marinus	MIT9313 gro	DE-promoter-	mple	
agaaaatctg gcaccacacc	ccctttcaga	qcqqcqcaac	attaccactq	catqqcqaqa	60	
tettetcagg gtteggtgad	-		_		120	
tagggttggc actcaatggc		-			180	
atagtttacc cattttttc					240	
tccagtacat tctatttgga	tctgcttgag	cttctttcat	gacagacaca	aattcatttt	300	
cagttctaac gattttcgag	actactcgtt	cttctgttgc	tccaaatgat	tctggtaatt	360	
ttgagtaatt ccacattgga	atatcattgt	agctttgatt	tggtccatga	atttctcttt	420	
cgactgtata accatcatta	. ttgataataa	agcaaattgg	attaatttt	tctctgattg	480	
ctaatcctaa ttcttgcact	gtaagttgaa	gtgaaccatc	accaataaat	aaaaggtgtc	540	
tgctttcttt atctgcaatt	tggcttccta	atgctgctgg	gaatgtatat	ccaattgatc	600	
cccataaggg ttgaccaata	aaatgactct	ttggttttaa	gaaaattgat	gaagcgccaa	660	
agaatgatgt cccttgttca	gcaacgattg	tttcattgct	ttgagttagg	ttttcaactg	720	
cttgccatag gcggtcttgt	gataaaagcg	catttgatgg	aacaaagtct	tcttgctttt	780	
tatcgatata ttttcctttg	tattctattc	cgcttaggtc	taagagagag	gagatgaggg	840	
attcaaaatc aaaattttgg	atgctttcgt	taaatatttt	tccttcgtct	atgttcagtg	900	
aaatcatttt attttcattt	aaatgatggg	taaatgctcc	tgttgaagag	tctgtgagtt	960	
taactccaag catcaggatg	aagtcggctg	attccacgaa	ttctttaaga	ttaggctctg	1020	
agagtttacc attatagatt	cctaaaaatg	aagggagagt	ttcatcaact	gaactttttc	1080	
caaagtttaa tgtcgtaata	gggagttttg	tctttgaaat	aaattgagtg	actgtatttt	1140	
ctaagccaaa gctaattatt	tcatgtcctg	taatcacgat	tggtttttg	gcatttttca	1200	
agctttcttg aattttattc	aaaatctctt	ggtcacttgt	atttgaagtt	ggattttctt	1260	
ttttcaaagg gagtgagggt	ttctctgctt	ttgcagcagc	aacatcaact	ggtaagttga	1320	
tatagacagg ttttctttct	tttagtagtg	cagaaagtac	tcggtcaatt	tcaacggttg	1380	
cattttctgc tgtcagtaaa	gttcgagctg	ctgtaacagg	ttcgtgcatt	ttcataaagt	1440	

-continued

gtttaaaatc	accgtcagcc	agcgtatgat	gaacaaattt	tccttcattt	tggacttttg	1500
atgtaggtga	tcccactatt	tctactactg	gtaaattttc	ggcgtaactt	cctgctaatc	1560
cattaactgc	actcaattca	cctactccaa	aggttgtaag	aaatgcggca	gcttttttag	1620
tacgagcata	gccatcagcc	atataagaag	catttaattc	attagcattt	ccgacccatt	1680
tcatatcctt	gcgggaaata	atttgatcta	aaaattgtaa	gttatagtct	ccagggactc	1740
caaaaatttc	ttcaattcct	aactcgtgta	atcggtctaa	taggtaatct	cctactgtat	1800
acattgattt	agtttcggtg	tctatctctt	aatagcctcg	atttatttc	ggggctatta	1860
atcaactctc	agaggcgaca	agcttcttct	tcccttacga	cgtttttatt	ggttggacat	1920
ggcaaggttc	tctcttctgc	cgtta				1945

<210> SEQ ID NO 118

- <</pre><</pre>

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 118, Example 118: designer Prochlorococcus marinus MIT9313 nirA-promoter-controlled Alcohol Dehydrogenase DNA construct (1138 bp)

<400> SEQUENCE: 118

agaaaatctg go	caccacacc	cctctagttg	ccaacatcag	ccgggttcag	aatgtacaca	60
aagacaccaa tt	tcttgaatt	tcacacaaat	gctcagtttt	gttcaatctg	ataccgccaa	120
taccetette ca	atcaggctt	aatgactcca	ttcgcaactt	accettgett	caataatggc	180
agggcctaaa aa	accatggct	atcgaatgcg	cgaataaaat	ttaaacaaca	tgatcacttc	240
ttttcaagtt ta	aatttcaac	aaaatttcat	gttgtcaccg	gtggagcgaa	tgggatcggc	300
aaggcgatcg ct	tagagcaat	tcgcaaaaca	gggagcgaac	gtcgtgatca	tcgaccgcga	360
tattcaaaac go	gtgaagcgt	tcgccgcgca	attgcaatcg	gacgggttcg	aggcgatctt	420
tgtggcggcg ga	atgtgcgga	aggtggacga	tattgaacgg	tttgtacaag	aagctgccgg	480
ccgcttcggc co	gcattgact	atttgatcaa	caatgctggc	gtctcacgct	ggaagtcgcc	540
gtatgagetg ad	cggttgagg	agtgggatga	cgtgctgtca	acgaatttgc	gcagcgcttt	600
ttttgcttct co	gagaagcag	ctaaatatat	gcgccgcaat	gcaaaaggcg	gagcaatcgt	660
caacattgcc to	cgacaaggg	cgctcatgtc	cgagccgaat	tccgaggcgt	acgctgcatc	720
gaaaggcggc ct	ttgtcgctt	tgacccatgc	gctggcggtg	tcgtttgcgg	atgatcgcat	780
tcgcgtcaat to	gcatcagcc	ccggttggat	tgaaacgggc	gattatgggc	aactgcgaga	840
cattgaccac co	ggcagcacc	cggccggccg	cgtcggcaaa	ccggatgata	tcgcccgcgc	900
ttgtctgtat tt	tatgcgatg	aggaaaacga	ttttatcacc	ggggtaaatt	tggtcatcga	960
cggggggaatg ad	ccaggaaaa	tgatttatat	tgagtagtga	tttagtttcg	gtgtctatct	1020
cttaatagcc to	cgatttatt	ttcgggggcta	ttaatcaact	ctcagaggcg	acaagcttct	1080
tetteeetta eg	gacgttttt	attggttgga	catggcaagg	ttetetette	tgccgtta	1138

<210> SEQ ID NO 119 <211> LENGTH: 1816

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 119, Example 119: designer Prochlorococcus marinus MIT9313 groE-promoter-

-continuea	-con	tinu	led
------------	------	------	-----

controlled 2-Isopropylmalate Synthase D	NA construct (1816 bp)
<400> SEQUENCE: 119	
agaaaatctg gcaccacacc ccctttcaga gcggcgcaac a	ttaccactg catggcgaga 60
tetteteagg gtteggtgae eegcacaggt atceactagt e	ggcacagca tcaacacaca 120
tagggttggc actcaatggc cacgagtgct actcatggtg ag	gccagcgcg tttatatttt 180
tgacaccact ttgagggacg gcgagcagtc gcccggcgta ag	gcctgaacg taggcgagaa 240
ggtgcaaatt gccaggcagt tagccaagct cggggtggac a	taattgagg ccggctttcc 300
gattacctcg ccggggggact ttaaagccgt aagcgaaatt g	cccggcagg tgaagggcgt 360
tacggtggcc gccctggcca gggccaactt ccaggatatc ga	accgggcct gggaggccgt 420
gcgccacgcc gagcagccgc ggattcatac ctttattgcc a	cttccgaca ttcatttaaa 480
atacaagctg cgcatgagcc gggaggaagt cctggatgcg g	cggtggcgg cggtaaagcg 540
cgccagggcc tacaccggcg atgtggagtt ttcggcggag ga	acgeeteee geteegaeet 600
ggactteete tgeegggtge tggeegegge cattgaggeg g	gggctaccg taataaatat 660
accggatacg gtcggttatg ccgttcctga ggaatggggg as	aatttatca atactattta 720
tcataaagtt cccggaattg aaaaggtcat tgtcagcgtg ca	actgccaca acgacctggg 780
catggeogtg gecaacteee ttgetgeegt aatgaaegge ge	ccaggcagg tggaaggggc 840
catcaacggc attggcgagc gggcgggaaa cgctgccatc ga	aagagatgg taatggccct 900
ttataccogt aaagatcagt acaacottta caccaacato aa	aaaccgagg aaatttacag 960
gaccagcaag ctggtgagcg ccctgacggg catgaaggtg ca	agccgaaca aggccgtggt 1020
gggcaaaaac gcctttgccc acgaggccgg cattcaccag g	acggggtgc tgaaggagcg 1080
caccacctac gagataatga accoggocat ggtagggatc ag	gcaagagca acctggtgct 1140
gggcaagcat teegggegge atgeatteeg ceaeeggetg ga	aggaaatgg gctacaatct 1200
ttcggacgaa gagctgaaca gcgcctttga gcgcttcaaa aa	agctggccg acaagaagat 1260
ggagattacc gacgaagacc tggaagccat tatagaagaa ga	aaatgegee ttgtgeegea 1320
cacctacacc cttgagtacc tgcatatttc cagcggcacc ac	cggtggtgc ctaccgccac 1380
ggtgggctta aagcgggacg ggcagcttat ggaagaggcg g	cctgcggca acggcccggt 1440
ggacgccatc tgcaaggcaa ttgataaaat aacggggctt aa	actgcacca tgacgagctg 1500
gggaatcaac geegteactg egggeaagga egeeettgge ga	acgtcagcc tgaaggtgac 1560
cgccgacggc gagaaggttt acgttgggcg cggaatcagc ac	ccgatgtgc tggaggccag 1620
cgccaaagct tacgtcaacg cggtcaacaa actcatctgg ga	attcgcaga aataatgatt 1680
tagttteggt gtetatetet taatageete gatttatttt eg	ggggctatt aatcaactct 1740
cagaggegac aagettette tteeettaeg aegttttat te	ggttggaca tggcaaggtt 1800
ctctcttctg ccgtta	1816

<210> SEQ ID NO 120 <211> LENGTH: 2199 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 120, Example 120: designer Prochlorococcus marinus MIT9313 groE-promoter-controlled 3-Isopropylmalate Dehydratase DNA construct (2199 bp)

-continued

agaaaatctg	gcaccacacc	ccctttcaga	gcggcgcaac	attaccactg	catggcgaga	60
tcttctcagg	gttcggtgac	ccgcacaggt	atccactagt	cggcacagca	tcaacacaca	120
tagggttggc	actcaatggc	cacgagtgct	actcatgatg	gccatgacca	taaccgaaaa	180
aattctggcc	gatcacgccg	gcaaaaagca	ggttgagccc	ggcgaactga	tcagcgtaaa	240
ggttgatctg	gtgctgggca	acgacataac	ggcgccggtg	gcgattaaag	agtttgagaa	300
aataggggtg	gcggaagtct	ttgaccggga	gcgggtggcc	ctggtcccgg	atcactttac	360
ccctaacaag	gacattaagt	cggcggaaca	gtctaaaatt	ctaagggagt	tttccaaaaa	420
gcacaacctt	gccaactatt	tcgaggtggg	ccgggccggc	attgagcact	gccttctgcc	480
cgaggaaggg	ctggtaggcc	ccggcgacct	ggttatcggc	gccgactcgc	acacctgcac	540
ctacggcgcc	ctgggggcct	tctccacggg	cgtgggcagc	accgacctgg	cggctgccat	600
ggcgctgggg	gaaacctggc	tgaaagtgcc	ggagtcaatc	aaattcgaat	atgacgggga	660
aatgcagccc	tgggtaggcg	gcaaggacat	gatcctgcac	acaatcgggg	atatcggggt	720
ggacgggggcc	ctttacaagg	ctatggagtt	taccggcccg	gccgttgaaa	aactttccat	780
ggacgggcgc	tttaccatgt	gcaacatggc	cgtagaggcc	gggggtaaga	acggcattat	840
tgctccggac	gaaacaaccc	gggtctatgt	cgagggccgc	tgcaagcgac	cctatcgttt	900
ttatcggagc	gacccggacg	ccaaatacga	aaagatctac	cgctacgacg	cggcgcagat	960
cgaaccgcag	gtggcctttc	cccacctgcc	cgaaaactcc	cggccggtca	gcgaggcagg	1020
caacattgaa	atcgatcagg	ttgttatcgg	ctcctgcacc	aacggccgga	tggaggacct	1080
gcgggaggcc	gccagggtgc	tgaagggcag	aaaagtgcat	aaaaacgtcc	gccttattat	1140
ttttccggga	acgccgaaaa	tttacctgca	ggccttgcgg	gaggggctga	tcgaaacttt	1200
tgtcgaagct	ggcggagtcg	tgagcacgcc	cacctgcggg	ccctgcctgg	gcggccactc	1260
gggcattctg	gccaggggag	agcgctgcgt	tgccaccacc	aaccgcaact	ttgtaggcag	1320
gatggggcat	cctgaaagcg	aagtgtacct	gtccaacccg	gcagttgccg	cggcttcggc	1380
cgtgctgggc	cggataggcg	gtccatggga	ggtggattga	ccctttcaga	gcggcgcaac	1440
attaccactg	catggcgaga	tcttctcagg	gttcggtgac	ccgcacaggt	atccactagt	1500
cggcacagca	tcaacacaca	tagggttggc	actcaatggc	cacgagtgct	actcatgatg	1560
gaaattaaag	ggaaagtgtg	gaagttcggc	ccggatatcg	atacagacgc	cattataccg	1620
gcaaggtacc	tcaacacctc	cgacccggaa	gaactggcca	ggcactgcat	ggaggatgcc	1680
gacccgtcct	ttcccgcccg	ggtcaggccc	ggcgacgtga	ttgtggccgg	caagaatttc	1740
gggtgcggca	gttcccggga	gcacgccccc	atagcaatca	aggccgccgg	ggtgtcgtgc	1800
gtgattgccg	cgtcgtttgc	gcggatcttc	taccgcaacg	ccttcaacat	agggctgccc	1860
attttcgagt	ctcccgaagc	cgccggggggc	attggccagg	gcgacgaggt	ggcggtggac	1920
gcggctgccg	gcattataac	cgacctgacc	accggcaaga	cctaccgggc	ggcgccggtt	1980
ccgcctttca	tgcggcagat	cattgccgcc	ggagggctga	tcaattacgt	ggccgggaag	2040
gtgagaggca	atgcataatg	atttagtttc	ggtgtctatc	tcttaatagc	ctcgatttat	2100
tttcgggggct	attaatcaac	tctcagaggc	gacaagcttc	ttetteeett	acgacgtttt	2160
tattggttgg	acatggcaag	gttctctctt	ctgccgtta			2199

<210> SEQ ID NO 121

```
-continued
```

<211> LENGTH: 1378 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 121, Example 121: designer Prochlorococcus marinus MIT9313 groE-promotercontrolled 3-Isopropylmalate Dehydrogenase DNA construct (1378 bp) <400> SEOUENCE: 121 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga 60 tettetcagg gtteggtgae eegcacaggt atecactagt eggcacagea teaacacaca 120 taqqqttqqc actcaatqqc cacqaqtqct actcatqcta cacctcqacc tectcaactt 180 ttetegetae taaateacee attteeetgg tgttaaceag ettetgatee ggeteegtaa 240 tgtccggcgt ccggtagcct tcggccagaa cttcgcggac cgcctgctca accgccaaag 300 cctcttgttc caaatcgaac gaatacctca gcatcatggc agccgacagt atcgtagcca 360 acgggtttgc tttcccctgc ccggcgatat cgggagctga cccgtgagaa ggctcataca 420 tteetaettt eeegeeaata gaggeagaag gtageattee caaagateeg gteageatag 480 aggettegte ggteaatata tetecaaaca tgtttteagt taegateaca tegaattgae 540 gcggattgcg tatgagctgc atggcacagt tgtcgacgta catgtggctg aattcgacgt 600 caggatactc cagagctact cgattggcca cctcgcgcca taacctagag ctttctagaa 660 cattggcctt gtccaccgat gtcactttct ttctccgttt cctcgccgcc tcgcaggcca 720 aacgaactat gcgttcgatc tcatacgtcg agtactccag aacatcgata gccctttctc 780 cgcccagaag cttctcccgc cgcttctccc cgaagtacaa cccgccggtc agttccctca 840 ctaccaagag atctactccc tcgataatat cgggtttcag ggaggaagca tgaaccagtt 900 ccgggaacag gtaagcgggc cgcaggttag cgtaaagccc aagttcctta cgcagagcca 960 acagegetge egecteggge etgagegeag eeggeaggtt atcceatttg ggaceaceta 1020 tggctcctag aagaacagcg tcgctatctt tgcacagggc cagggtttct tcaggcaaag 1080 gaacccccac ctcgtcgata gccgctcccc cgaccagggc ttcggtaaaa gcgaattcgt 1140 gtttgaacct cttagcaact gctttcaata ctttttgcgc ttcaggtacg atctcggtcc 1200 cgataccatc cccgggtaac acggctatct taaacactga tttagtttcg gtgtctatct 1260 cttaatagcc tcgatttatt ttcggggcta ttaatcaact ctcagaggcg acaagcttct 1320 1378 tetteeetta egaegttttt attggttgga catggeaagg ttetetette tgeegtta <210> SEQ ID NO 122 <211> LENGTH: 1327 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 122, Example 122: designer Prochlorococcus marinus MIT9313 groE-promotercontrolled 3-Methylbutanal Reductase DNA construct (1327 bp) <400> SEQUENCE: 122 agaaaatctg gcaccacacc ccctttcaga gcggcgcaac attaccactg catggcgaga 60 tettetcagg gtteggtgae eegcacaggt atceactagt eggeacagea teaacacaca 120 tagggttggc actcaatggc cacgagtgct actcatgatg tcagttttcg tttcaggtgc 180 taacgggttc attgcccaac acattgtcga tctcctgttg aaggaagact ataaggtcat 240 cggttctgcc agaagtcaag aaaaggccga gaatttaacg gaggcctttg gtaacaaccc 300

-continued

aaaattctcc	atggaagttg	tcccagacat	atctaagctg	gacgcatttg	accatgtttt	360
ccaaaagcac	ggcaaggata	tcaagatagt	tctacatacg	gcctctccat	tctgctttga	420
tatcactgac	agtgaacgcg	atttattaat	tcctgctgtg	aacggtgtta	agggaattct	480
ccactcaatt	aaaaaatacg	ccgctgattc	tgtagaacgt	gtagttctca	cctcttctta	540
tgcagctgtg	ttcgatatgg	caaaagaaaa	cgataagtct	ttaacattta	acgaagaatc	600
ctggaaccca	gctacctggg	agagttgcca	aagtgaccca	gttaacgcct	actgtggttc	660
taagaagttt	gctgaaaaag	cagcttggga	atttctagag	gagaatagag	actctgtaaa	720
attcgaatta	actgccgtta	acccagttta	cgtttttggt	ccgcaaatgt	ttgacaaaga	780
tgtgaaaaaa	cacttgaaca	catcttgcga	actcgtcaac	agcttgatgc	atttatcacc	840
agaggacaag	ataccggaac	tatttggtgg	atacattgat	gttcgtgatg	ttgcaaaggc	900
tcatttagtt	gccttccaaa	agagggaaac	aattggtcaa	agactaatcg	tatcggaggc	960
cagatttact	atgcaggatg	ttctcgatat	ccttaacgaa	gacttccctg	ttctaaaagg	1020
caatattcca	gtggggaaac	caggttctgg	tgctacccat	aacacccttg	gtgctactct	1080
tgataataaa	aagagtaaga	aattgttagg	tttcaagttc	aggaacttga	aagagaccat	1140
tgacgacact	gcctcccaaa	ttttaaaatt	tgagggcaga	atataatgat	ttagtttcgg	1200
tgtctatctc	ttaatagcct	cgatttattt	tcggggctat	taatcaactc	tcagaggcga	1260
caagcttctt	cttcccttac	gacgttttta	ttggttggac	atggcaaggt	tctctcttct	1320
gccgtta						1327

<210> SEQ ID NO 123 <210> BLg 1D NO 12: <211> LENGTH: 2004 <212> TYPE: DNA

<213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 123, Example 123: designer Cyanothece sp. ATCC 51142 nirA-promoter-controlled 2-Isopropylmalate Synthase DNA construct (2004 bp)

<400> SEQUENCE: 123

agaaaatctg gcaccacacc tattaaatct aaaatagctg ttttagctaa aatagtcaat	60
agcaagtott ataggtaato aaacgcaact aaaatgcaaa aaatocataa ttaaaatgca	120
aaaaacggat ttttaataca attttgttac attagctaca aaatatctca aatggtagag	180
gttaaatagg tacaactcga ccagatggag ggttttccct gtgatgaact gttccttctt	240
cccttatact ctccttggat agaatgtagt tccttctcat gatggctctg tttaaggcat	300
ctacaaaacc gcttacgctg gcttttatta tgtccgtatc cacgcctcta cctgaggctt	360
ttacattatc cagetetatc acaaggegeg cetetgeetg egeateegtg ttgggggtga	420
gagettttat agaaaagtea atgagtetgg geteeacett aagagettte tgtatggett	480
ttatcacagc atccacagga ccgtttcccg tagatgtggc agtcctttct tcacctctaa	540
ageteageae taetgtageg gtaggaagea ggttgteeee tgtetgaaee tgatagtgtt	600
ttacctttat aggetettee teeteeacet teataaaete ttegtatatg agggetteea	660
aatootoato atatacotoo tttttottat oogoaagago ottgaacttt toaaagatoo	720
tetecaggte tteategett agettaaage caagtteatt cagteteete tttagagegt	780
gcctccctga gtgtttacca agtattattc tggtggaggg aaaacctaca tcctcggggt	840

-con	÷ •	in	110	d

-continued	
ccattatete gtaggtgaga gggtgageea geacaeegtg etggtgtatg eeegatteat	900
gagcaaaggc attatccccc actatagcct tgttgggttg aacaaaagag ccggttatcc	960
tgcaaaggag cctgctggtt ttgtatatct ctctggtgtt tatgtccgtg tagagccctc	1020
caaagaagtc tttgcgcact ttgagagcca tcactatctc ctcaagggct gcgtttcctg	1080
ctctttcacc tatgccgttg atggtgcact ctacctgtct tgcaccgtgc tttaccgcca	1140
taagggagtt ggcaacagcc atcccaaggt catcatgaca gtgcacgctt ataatggctc	1200
tgtctatgtt gggcacgttg ttccttatgt cctctatgag ccttgcaaac tcttctggca	1260
ccgcatagcc aacggtgtcg ggaatgttta taacggtagc acctgccttt atggctgttt	1320
ctatcaccct gtagaggaac tctctctggc ttctggtggc atcctcgcag gaaaactcca	1380
categteagt aaacettetg geaaaeteea eagetttttt ageeettee agaaeeteet	1440
ctggggacat cctaagcttg tacttcatgt gtatctcgga agtagctatg aaggtgtgta	1500
ccctctttct tctggctggc tttagageet eccetgetag etetatgtee tttteeaatg	1560
ctctggcaag ggagcatatt atcggacctt ctacctgctg tgctatcaga tggacgctct	1620
caaagtetee ettagatget getgeaaage etgeetetat aacateeace eecagettgg	1680
caagttggtg agccatctga agtttttcat cagcagtcat agaaaaaccc ggcgcttgct	1740
ctccgtctct cagcgtggtg tcaaatatgt aaaccttctc cattaagctg ttttagagaa	1800
atttgttcgg taaatattag cctacctaca gttgttgtgg gtaggctaat attatgaatt	1860
yagteetaet gaaccaatga ttategttae gactaaaagt aataaatgte ateageagga	1920
taggggttga taggaaaagt tttttaatcg gatggttttc gagttagagg ttagggtttc	1980
tttaggttet etettetgee gtta	2004
<pre><210> SEQ ID NO 124 <211> LENGTH: 2648 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 124, Exa 124: designer Cyanothece sp. ATCC 51142 nirA-promoter-control Isopropylmalate Isomerase large/small subunits DNA construct (2648 bp)</pre>	
<400> SEQUENCE: 124	
agaaaatctg gcaccacacc tattaaatct aaaatagctg ttttagctaa aatagtcaat	60
agcaagtott ataggtaato aaacgcaact aaaatgcaaa aaatocataa ttaaaatgca	120
aaaaacggat ttttaataca attttgttac attagctaca aaatatctca aatggtagag	180
gttaaatagg tacaactoga ocagatggag ggttttooot gtgatggtgo caaagaogat	240
tattgaaaaa atttgggatg aacacgtggt ttaccgtgaa gatgggaaac ccgatttatt	300
atatattgat ttacatctcg ttcatgaagt gacatcgccg caagcttttg aaggattgcg	360
acaaaaagga agaaaagtgc gtcgcccaga tttaacattt gcgacgatgg accataacgt	420
tccaacgatt aatcggtccg ttgttgaaga tgaagtggcg aaaaatcaaa tgacagcatt	480
ggageggaae tgtegtgagt teggtgttee gettgeegat ttaaaeagte eagaaeaagg	540
gattgttcat gtcatcggtc cagaactcgg gttgacacag cctgggaaaa ccattgtgtg	600
tggagatagc catacgtcta cacatggcgc ttttggggca ttagcgttcg ggatcggaac	660
yagtgaagtc gaacacgtat tagcgacgca aacgttatgg caacatcgtc caaagacgat	720

191

inued

				-contir	nued		
gcaagtgaac	gttacgggat	cgttagcacc	gggcgtatca	gcaaaagacg	ttattttagc	780	
gatcattggc	aagtttggag	ttgattttgg	cacaggctac	gtgcttgagt	ttacaggcga	840	
tgttattcgt	cgtatgtcaa	tggaagagcg	gatgacaatt	tgcaatatgt	cgattgaagc	900	
agggggcacga	gctgggttaa	ttgccccaga	tgatgtgacg	tttgcatatt	taaaagagag	960	
aaaatatgca	ccgaaaggag	aagcgtttga	gcaggcagtt	gaaaagtgga	agcagttatg	1020	
cacagatgaa	ggagcggtat	acgatcgtgt	cgttcatatt	gatggaagtg	aaattgctcc	1080	
aacagtgaca	tggggcacaa	cgccagcaat	gageteteeg	atcgatggaa	ctgttccaga	1140	
tccgaacgag	tttgcgacag	aaacagagag	aaaagctgta	cagttagcgt	tgcaatatat	1200	
gggattaaag	ccaggaacga	aaatgacgga	tattgcggtg	caacatgtgt	ttatcggatc	1260	
atgcacaaac	tcgcgcataa	gcgatttacg	ggaagcggcg	caaattgtaa	aaggaaaaaa	1320	
agtcgcaccg	ggcgtcagag	cgctcgtcgt	tccgggctca	caacaagtaa	aaaagcaggc	1380	
agaagaagaa	ggaattgctc	aaacgtttat	tgacgcaggc	tttgaatggc	gcgattccgg	1440	
ctgtagcatg	tgtcttggaa	tgaatccaga	tactgttcca	gcaggggaac	attgcgcctc	1500	
aacgtcaaac	cgcaatttcg	aagggagaca	aggaaaaggg	gcgcgcacgc	atctcgtgag	1560	
tccagcaatg	gcagccgcgg	ctgcgattta	cgggcatttt	gtcgatgtgc	gtacattgta	1620	
taaagaagtg	gtaagatagt	attaaatcta	aaatagctgt	tttagctaaa	atagtcaata	1680	
gcaagtctta	taggtaatca	aacgcaacta	aaatgcaaaa	aatccataat	taaaatgcaa	1740	
aaaacggatt	tttaatacaa	ttttgttaca	ttagctacaa	aatatctcaa	atggtagagg	1800	
ttaaataggt	acaactcgac	cagatggagg	gttttccctg	tgatggaacc	attcgtcgtt	1860	
cataaaggaa	aagtggctgg	cttagatcga	gcaaatatag	atacggatca	aattattccg	1920	
aaacaatttt	taaaacgaat	tgaacgcacc	ggatttggtc	aatttettt	ttacgattgg	1980	
cgttatttat	cggacggaac	accaaaccca	cattttgagt	taaaccgtcc	tgaaaacgag	2040	
ggcgcgacca	ttttagtcgc	aaatgaaaat	ttcggatgtg	gttcatcgcg	cgaacacgct	2100	
ccttgggcgc	ttgcggatta	cggatttcgt	gccattattg	ctccttcatt	tgctgatatt	2160	
ttttacaaca	actgtttgaa	aaatagttta	cttcctatta	aacttccaaa	agaagacgtc	2220	
gcttatttgt	taaaacaagc	ggaacgggca	gattacgaac	taacgatttc	gcttgaacaa	2280	
caagtcgttt	ttgatgatga	agggtttaca	agctcgttcg	acatcgatcc	gtatcgaaaa	2340	
cagctccttt	taaaaggttg	ggacgaaatt	gatttaacgt	tcgtgtatga	accatatatt	2400	
atcgcctacg	aaaaaaacg	ctcttgataa	gctgttttag	agaaatttgt	tcggtaaata	2460	
ttagcctacc	tacagttgtt	gtgggtaggc	taatattatg	aattgagtcc	tactgaacca	2520	
atgattatcg	ttacgactaa	aagtaataaa	tgtcatcagc	aggatagggg	ttgataggaa	2580	
aagtttttta	atcggatggt	tttcgagtta	gaggttaggg	tttctttagg	ttetetette	2640	
tgccgtta						2648	

<210> SEQ ID NO 125 <211> LENGTH: 1530 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 125, Example 125: designer Cyanothece sp. ATCC 51142 nirA-promoter-controlled 3-Isopropylmalate Dehydrogenase DNA construct (1530 bp)

-continued

agaaaatctg	gcaccacacc	tattaaatct	aaaatagctg	ttttagctaa	aatagtcaat	60
agcaagtctt	ataggtaatc	aaacgcaact	aaaatgcaaa	aaatccataa	ttaaaatgca	120
aaaaacggat	ttttaataca	attttgttac	attagctaca	aaatatctca	aatggtagag	180
gttaaatagg	tacaactcga	ccagatggag	ggttttccct	gtgatggcaa	ccacgtatcg	240
cattgctgtt	ttggcggggg	atggtattgg	cccagaaatt	acggccgttg	cccttgatgt	300
attgcgggcg	atcgcccctc	gctttgggtt	ggactttgac	tttgttcccg	cccttgtggg	360
gggctgcgcc	attgatgctg	tgggggaacc	cttgccagca	gcaacgctag	ccacctgtcg	420
tcagagtgat	geegtgetee	tagetgeeat	tggcggaacg	cagtgggata	gcctaccccg	480
tcatctgcgc	ccggaaaccg	gattacttgc	cctgcggtct	ggtctaggtt	tatttgccaa	540
cctacgcccc	gccaaaatct	ttccccagct	tctccatgcc	tcctccctca	agccggaagt	600
gattgccggt	gtggatctca	tggtggtgcg	cgaactgacg	ggtggcattt	actttggtca	660
accgcgcggt	attttcacca	ctgaaacggg	tgagcagcgg	ggggtgaata	cgatggccta	720
taccgccacg	gaaattgatc	gcattggccg	tgttgccttt	gaaaccgctc	gcaaacggca	780
gggcaaactc	tgctccgtgg	ataaggccaa	tgtccttgaa	gtctcccaac	tgtggcgcga	840
tcgcctgacc	gccctcagtg	ctgagtaccc	ggatgtggaa	ctgacgcacc	tttatgtgga	900
caatgcagca	atgcaactgg	tgcgcgcccc	gaaacagttt	gacacgattg	tgaccagtaa	960
cctctttggt	gatatcctct	ccgatattgc	cgccatgctc	accggtagta	ttggcatgct	1020
tccctccgcc	agcctagggg	aatcgggggcc	agctctgttt	gaaccggttc	atggctctgc	1080
ccccgacatt	gccggccaag	acaaggccaa	ccccctcgcc	atggtgctca	gtgcggcaat	1140
gatgctgcgt	tatggtctga	accaaccagc	ggcagcgcaa	gcgatcgaag	aggccattac	1200
tgccgtttta	gatcagggct	accgcaccgg	cgatttaatg	tctgagggct	gcacgcttgt	1260
gggctgtcgc	gaaatgggca	acctcctaat	caaggaattg	tcccgataat	aagctgtttt	1320
agagaaattt	gttcggtaaa	tattagccta	cctacagttg	ttgtgggtag	gctaatatta	1380
tgaattgagt	cctactgaac	caatgattat	cgttacgact	aaaagtaata	aatgtcatca	1440
gcaggatagg	ggttgatagg	aaaagttttt	taatcggatg	gttttcgagt	tagaggttag	1500
ggtttcttta	ggttctctct	tctgccgtta				1530
<220> FEATU <223> OTHEN 126:	TH: 2088 : DNA NISM: Artif: JRE: R INFORMATI(DN: Synthet: Yanothece sp	ic Construct p. ATCC 5114	12 nirA-prot	No. 126, Exa noter-control	
<400> SEQUI	ENCE: 126					
agaaaatctg	gcaccacacc	tattaaatct	aaaatagctg	ttttagctaa	aatagtcaat	60
agcaagtctt	ataggtaatc	aaacgcaact	aaaatgcaaa	aaatccataa	ttaaaatgca	120
aaaaacggat	ttttaataca	attttgttac	attagctaca	aaatatctca	aatggtagag	180
gttaaatagg	tacaactcga	ccagatggag	ggttttccct	gtgatgtata	cagtaggaga	240
ttacctgtta	gaccgattac	acgagttggg	aattgaagaa	atttttggag	ttcctggtga	300
ctataactta	caatttttag	atcaaattat	ttcacgcgaa	gatatgaaat	ggattggaaa	360

							-
_	con	tt.	п	n	11	ρ	α

-continued	
tgctaatgaa ttaaatgctt cttatatggc tgatggttat gctcgtacta aaaaagctgc	420
cgcatttete accaeatttg gagteggega attgagtgeg atcaatggae tggeaggaag	480
ttatgccgaa aatttaccag tagtagaaat tgttggttca ccaacttcaa aagtacaaaa	540
tgacggaaaa tttgtccatc atacactagc agatggtgat tttaaacact ttatgaagat	600
gcatgaacct gttacagcag cgcggacttt actgacagca gaaaatgcca catatgaaat	660
tgaccgagta ctttctcaat tactaaaaga aagaaaacca gtctatatta acttaccagt	720
cgatgttgct gcagcaaaag cagagaagcc tgcattatct ttagaaaaag aaagctctac	780
aacaaataca actgaacaag tgattttgag taagattgaa gaaagtttga aaaatgccca	840
aaaaccagta gtgattgcag gacacgaagt aattagtttt ggtttagaaa aaacggtaac	900
tcagtttgtt tcagaaacaa aactaccgat tacgacacta aattttggta aaagtgctgt	960
tgatgaatet ttgeeeteat ttttaggaat atataaeggg aaaettteag aaateagtet	1020
taaaaatttt gtggagtccg cagactttat cctaatgctt ggagtgaagc ttacggactc	1080
ctcaacaggt gcattcacac atcatttaga tgaaaataaa atgatttcac taaacataga	1140
tgaaggaata attttcaata aagtggtaga agattttgat tttagagcag tggtttcttc	1200
tttatcagaa ttaaaaggaa tagaatatga aggacaatat attgataagc aatatgaaga	1260
atttattcca tcaagtgctc ccttatcaca agaccgtcta tggcaggcag ttgaaagttt	1320
gactcaaagc aatgaaacaa tcgttgctga acaaggaacc tcattttttg gagcttcaac	1380
aattttetta aaateaaata gtegttttat tggaeaaeet ttatggggtt etattggata	1440
tacttttcca gcggctttag gaagccaaat tgcggataaa gagagcagac accttttatt	1500
tattggtgat ggttcacttc aacttaccgt acaagaatta ggactatcaa tcagagaaaa	1560
actcaatcca atttgtttta tcataaataa tgatggttat acagttgaaa gagaaatcca	1620
cggacctact caaagttata acgacattcc aatgtggaat tactcgaaat taccagaaac	1680
atttggagca acagaagatc gtgtagtatc aaaaattgtt agaacagaga atgaatttgt	1740
gtctgtcatg aaagaagccc aagcagatgt caatagaatg tattggatag aactagtttt	1800
ggaaaaagaa gatgcgccaa aattactgaa aaaaatgggt aaattatttg ctgagcaaaa	1860
taaatagtaa gctgttttag agaaatttgt tcggtaaata ttagcctacc tacagttgtt	1920
gtgggtaggc taatattatg aattgagtcc tactgaacca atgattatcg ttacgactaa	1980
aagtaataaa tgtcatcagc aggatagggg ttgataggaa aagtttttta atcggatggt	2040
tttcgagtta gaggttaggg tttctttagg ttctctcttc tgccgtta	2088
<210> SEQ ID NO 127 <211> LENGTH: 1503 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 127, Exa 127: designer Cyanothece sp. ATCC 51142 nirA-promoter-control Hexanol Dehydronase DNA construct (1503 bp)	
<400> SEQUENCE: 127	
agaaaatctg gcaccacacc tattaaatct aaaatagctg ttttagctaa aatagtcaat	60
agcaagtett ataggtaate aaaegeaaet aaaatgeaaa aaateeataa ttaaaatgea	120
aaaaacggat ttttaataca attttgttac attagctaca aaatatctca aatggtagag	180
gttaaatagg tacaactcga ccagatggag ggttttccct gtgatggaac tcgacctcga	240

-continued

cggtcccggg gttggtgaag tgctgatcaa gtacaccgcc gcggggttgt gccattcgga	300
cctgcacttg accgacgggg acctaccgcc gcgctatcca atcgtcgggg ggcacgaggg	360
gtcaggcatc atcgaggacg tcggacctgg ggtcaccaag gtcaaaccag gcgatcacgt	420
tgtttgcagc ttcatcccga actgcggaac ctgtcggtac tgcgccaccg gacgctccaa	480
cctctgcgat atgggcgcca ccatcctcga agggtgcatg cccgacggca gttaccggtt	540
ccacagtaac ggcctggatt tcggtgcgat gtgcatgctc ggcacattct ccgaacgcgc	600
aactatctcc cagcattcgg tggtcaagat cgacgactgg ctgccgctcg agaccgcggt	660
ggtcgtcggc tgcggcgtgc cgactggctg gggcacctcc gtctatgccg gcggggttcg	720
ttgcggtgac accaccgtca tctatggcgt cggcggcctg ggagtcaacg ccgtccaagg	780
cgcggtgagt gcgggcgcga agtacatcgt ggtcgtcgat ccggttgcgt tcaaacgcga	840
cacegegete aagtteggeg ceacecaege gttegeegae geegeeaeeg eegeggeeaa	900
ggtcgacgaa ctgacctggg gacagggtgc cgatcaggcg ctgatcctgg tcggcaccgt	960
cgacgaggac gtggtctcgg cggcgactgc ggtgatcggt aagggaggca ccgtcgtgat	1020
caccggactg gcggacccag caaagctcac ggtgcacgtt tcgggaacgg acctgacgct	1080
taacgagaag acaatcaagg gcacgttgtt cggctcgtcc aatccgcaat acgacatcgt	1140
acggctgctc cgtctctacg acgccggcca gctaaaactc gacgatctga tcaccacccg	1200
atacacgete gaccaggtea accagggeta ceaggatetg egagaeggea agaacateeg	1260
cggcgtgatc atccacgcct gataagctgt tttagagaaa tttgttcggt aaatattagc	1320
ctacctacag ttgttgtggg taggctaata ttatgaattg agtcctactg aaccaatgat	1380
tatcgttacg actaaaagta ataaatgtca tcagcaggat aggggttgat aggaaaagtt	1440
ttttaatcgg atggttttcg agttagaggt tagggtttct ttaggttctc tcttctgccg	1500
tta	1503
<210> SEQ ID NO 128 <211> LENGTH: 1149 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 128, Exat 128: designer Cyanothece sp. ATCC 51142 nirA-promoter-control: short-chain Alcohol Dehydrogenase DNA construct (1149 bp) <400> SEQUENCE: 128	
agaaaatctg gcaccacacc tattaaatct aaaatagctg ttttagctaa aatagtcaat	60
agcaagtott ataggtaato aaacgcaact aaaatgcaaa aaatocataa ttaaaatgca	120
aaaaacggat ttttaataca attttgttac attagctaca aaatatctca aatggtagag	180
gttaaatagg tacaactcga ccagatggag ggttttccct gtgatgaagg ttgccgtaat	240
tactggggca tcccgtggaa tcggggaagc tatagcaaag gcccttgctg aagatggata	300
ttcccttgcc ttaggggcta gaagtgttga taggttagag aagattgcca aggaactcag	360
cgaaaaacat ggggtggagg tattttacga ctacctcgat gtatcaaaac cagaaagcgt	420
tgaagagttt gcaaggaaaa cgctagctca ctttggagat gtggacgttg ttgtggccaa	480
tgcggggctt ggttactttg gtaggcttga agagcttaca gaagagcagt tccacgaaat	
	540
gattgaagta aaccttttgg gagtttggag aacaataaaa gctttcttaa acteettaaa	540 600

continued

<pre>goggategua goggateguta tigtigtia tigtigate tiggategua citationata é0 goggageuta tigtiggate citatiggate grandenes citaguage citationata é0 goggageuta tigtiggate citatiggate aggateguta eactiggage actionage e0 doggateguaa citacicota godticaa aggateguag gitaguaga citatitung e0 citatitut cinaaaceu gitutgata aggitutta gagaatute tinggtaan e0 datagotate citacaguteg tigtiggate citatitu gagaatuteg tingggata citatitung e0 diaaagatet gitungate aaggituge citatitu gagaatuteg tingggata citatitung aaggitute atogategu tigtiggategi citatitu gagaatuteg tingggata citatitung citacitut atogategu tigtiggategi citatitu gagaatuteg tingggata citati citacitut atogategu tituggategi gagategu gitutetua gitutetua gitutetua citacitut atogategu tituggategi gagategu gitutetua gitutetua gitutetu citacitut atogategu tituggategi gagategu gitutetua gitutetua gitutetu citacitut atogategu tituggategi gagategu citacitus citaguagei 100 citacitut atogategu tituggage gagategu citacitus citaguagei 100 citacitut atogategu gituteguage gageguete citacitus citaguagei 100 citacitus citaguagei gitutegae gituteguete citabi fibropholyparte filau seguenee fibropholyparte filau seguenee citabi fibropholyparte filau seguenee citabi fibrophol citabi fibropholyparte filau seguenee</pre>					-contir	nued		
<pre>seture seture setu</pre>	gcggactgga	ggagtggcta	ttgttgttac	ttcagatgtt	tctgcaaggc	tacttccata	660	
agggagadaa getagggaage caaaggagea agggtgttagg getgaggaa taatgttgetg 900 creattiat caaaacetg agtatgata agetgttta gagaattg treggtaaat 960 attageetae cheegitgt tgigggtagg etaatatat gaatgagte claetgaace 1020 aaagtittt aateggaage tittogggt ag gatgatagg gittottag gatataga cegoogta 1149 eeloo EBO ID 0 139 eeloo EBO ID 0 130 eeloo EBO ID 0 130	cggtggaggt	tatgtggcaa	ctaaatgggc	tgcaagagca	ttggtaagga	ccttccagat	720	
<pre>creations tacctoctas gatticas gitgiagg gitgiaggant taigtitgi 900 citcattiti casasaccig agiatigat agigtitig gagaatitg toggiaasi 900 attagottac ciccagigt gigggiagg citatatta gaattgagte ciccigaace 1020 aatgattate gitaegacia aasgtaataa atgleateag eaggiaggg gitgatagga 1080 aaagittit aaceggatgg tittegagti agaggitagg gittetting gitectotti 1140 cigcogita 1149 cilos ED ID 10 128 cills EBOTTS 1010 cills EBOTTS</pre>	tgagaatcca	gatgtgaggt	tcttcgagct	aagacctgga	gcagtagata	catattttgg	780	
ttcatttat caaaacctg agtattgata agetgtttt gaganatttg ttoggtaat 960 attageetac etacagttg tgtgggtagg etaattat gaatgagg gttgatagga 1000 aaagttitt aateggatg tttegggt agaggtaag getgatagg gttgatagga 1000 aaagttitt aateggatg tttegggt agaggtagg gttettag gtteettel 1140 etgeegta 1149 ello ENGINE: Artificial Sequence *200 FEDTURE: *200 FEDTURE: NUM *210 StRUTE NUMAMATION: Synthetic Construct: Sequence No. 129, Example 210 StRUTE: 139 agaasgatett ggacacaca attggtaggt geoggtgace coggacaget tggagggtgace Construct: Sequence No. 129, Example 210 StRUTE: 139 agaasgatet structegga aggtcacaca attggtagg geoggeggt 120 210 Structagga ggacgacage catggaggg geoggace coggacage ggacggate 120 211 StRUTE Structagg ggacggace catggacgace coggacage gaasttite Const 212 Structagga ggategace catggacgace aggacgacage gaasttite Const 213 Structagga ggacgace structaga gatggacgace catggacage gaasttgace 730 214 Structagga ggategace catggacegace aggacgacage gaasttgace 730 215 Structagga ggategace catggace gaasgacgace gaasatgate coggacage 740 215 Structagga gga	agggagcaaa	gctgggaagc	caaaggagca	agggtattta	aaacctgagg	aagttgctga	840	
Attagotac taxagtigt tgiggigigg ciaitatta gaatgagt ciaitaga ciaitagagi (120) aatgattac gitacgacia aaagtaataa atgicacag caggataggg gitgitagg 1080 aaagtittit aatoggatgg titlegagit agaggitagg gittettag gitectet 1140 cigeegita 1149 *210> SEO ID NO 129 *211> LEMMTH: 1910 *212> TYBE IDAR 2213> OKAANLEN: Attificial Sequence *223> OKAANLEN: Attificial Sequence *223> OKAANLEN: Attificial Sequence *223> OKAANLEN: Attificial Sequence *223> OKAANLEN: Attificial Sequence *203> Gittege Nial-promoble-controlled chloroplast-targeted Phosphoglycerate Mutaero But construct (1910 bp) agaaaatotg goaccaace atggtagggt gogagtgace cogogoaget tggaagggt 60 caaacgace egeegtaaga actitige ggggggeget coggaaggta geegegege 120 gaecceegge gaetiggaag ggttcaaacg acceegeeg tagageegg 120 geecceegge taggeegeegt attgeeagg egtaggeeg egeagaettit gtoggggggg 180 geteceggat ggeegeegte attgeeagge tgaageege egeaagtig geesegtag 360 cigeecegge taggeegee taggeegeeg egeagaettit aeegeaagta 360 catataatgt tgaaegaeg tacceaggae gitatgateg giteaatta aeegeaagt 360 cigeecegge tegteggees egeagaege egeageagaet tateegeagt aggiteggg 420 gieggaegga tgeteggaag egteegaega egeagaagta tateegeagt gagteggg 420 ceggaaeggit ateceaggae giteegae egeagaatta teageaatta aeegeaatat 480 aacattegte egitgaag giteegaega acteeggeaga agtiteega gaaatgit teegeata 480 aacattegte egitgaagaeg ateceagga agtitegae agaaagtit teegeate 720 cagtetegge titateaga gaageaga agtiteega egeagaega gaattite 720 cagtetegge titateaga agateggae agtiteega egaaagtig atecegeag 940 cittiggaatgit teeteat gitgaaaa atagtataa eegeatatag 940 cittigaat teeteetag eigigegaaa gaetgeetage egateaagae 940 tittaaatt tgeeggitggittiggegaa gaatgata taegatataa gaatatta 1200 tittaaattega agateetta eegetteg egaagaaat geeaagaatag 1200 tittaaatgea titteetti ggitgaat eegeaagaa tgeeggaaga agatgaa 1200 titteetaga gaategtee agaageeag eegeaaaata tgeeggaaata 1200 titteetaga gaateette egeegeege eagaagaata teegeagaatage 1200 titteetaga agateette seetatteg agatagaaa teggeaaata 1200 titteetaga geeteetaga tateagagt tegeegeege 220	ggcagtaaaa	tacctcctaa	gacttccaaa	ggatgttagg	gttgaggaat	taatgttgcg	900	
antigattatc gitacgacta aagtaata atgicatcag caggataggg gitgatagga 1080 aagtittit aatcggatg tittogagit agaggitagg gittottag gittottat 1140 cigocgita 1149 ~210> 550 ID NO 129 ~211> LEMNTH: 1910 ~212> TPR: NAN ~213> ORGANISM: Atilicial Sequence ~200> FEATURE HONGBOYCERE Makae DA construct (S10 bp) ~400> 550 UDNO: 129 agaaatctg gaccacacc atggtaggg gogagigacc coggogot iggagggg 120 gaccocgocg gactiggaa gittacaacg accocgocgi acgaactit gitogggggg 180 gciccogget aggocgoc atigocage tiggacogg citaagget ggitaaggt 360 citgocogge taggocaac cagiggacg gitagago gitagago gitagagat gitogagitag gitagagat 360 catataatgi tgaacgacg accorgoga gitaggag giccagag gitagaggi gaggitagag 360 citgocogge toggitaga gitogaagg gitagaag citaggita gigagatat acgocagat 480 aacattoga cigaataga gitotgaaa gitaggacg igagagata taicgocag gaattii acgocaatat 480 aacattoga cigaataga dittaga gigagaga gittagaa gigagaga gittagaag 660 aacattoga cigaatagat atcocggiga aggitaga coggigaaca gigacaatti cigigaa 660 aacattoga cigaataga dittaga aggittaga aggitaga gigagaga dittaga 480 aacattoga cigaatagat dittaga aggitaga cigaggaca gigacaatta cigigaa 660 aacgitccag cigaataga dittaga agtittaga aggigaacaga gaactitto 720 cagtittigg titatatgi tigaacgaaga aggittaga gigaacaga gaactitto 720 cagtittigg titatatgi tigaacgaaga aggigaataa cigigaacaa gigaaaatag 660 aacattoga cigaatagat dittigaa ataggatata cicigagaa gaattita citigigg 600 citigaaggaga littataga cigigaagaa gittogaa aggigaatag cicigagi gitagiga dittigaa afgi fitatataga agatatta cicittig gigaagaa gittaga agattaga gitatagag 600 cititaatti tigoggigigi tigogigata cigigacaata taggatta cicigaga 600 tittaaatti tigoggigi tigogigata cigigacaata ciaitaga agatga 600 tittaaatti tigoggigi tigogigata cigitacaga ciaitagaag agataga 600 tittaaatti tigoggigi tigogigata cigitacaga ciaitagaa gitagaaga 600 tittaaatti tigoggigi tigogigata cigitacaga agatagaa agatagaa 600 aacattoga agatattia cicittig gicaaata taggatta ciaitagaga 600 tittaaatti tigoggigi tigogaaga agagaaaata tagagata agatagaa 600 aacattoga agatatt	ctcaatttat	caaaaacctg	agtattgata	agctgttta	gagaaatttg	ttcggtaaat	960	
aagtittit aateggatgg titteggagt agggtagg gtitettiag gtiedetta 1140 etgeogtia 1149 (210- SED ID NO 120 (112- TDTM: 130 (210- SED ID NO 120 (112- TDTM: 130 (210- SED ID NO 120 (112- TDTM: 130 (210- SEDTER: (220- FEATURE: (220- FEATURE: (220- FEATURE: (220- FEATURE: (220- FEATURE: (220- SEQUENCE: 129 agaaaatetig geaceacec atggtaggt gegagtgace deggaggt ggagggt 120 gacedegge gattiggaag ggtteaaag accedegge actit ggaagggt 120 gacedegge gattiggaag ggtteaaag accedeged acgaattit gteggagggg 130 gedeceggat ggeogede atigeeaag accedeged acgaattit gteggagggg 140 eceggteeag egteggaea atggeegg tigaageee tigaageeg geoeag 240 eceggteeag egteggaea atggeege tigaageege tigaageege geoegg 240 eceggteeag egteggaea atggeege tigaageege tigaageeg geoeag 240 eceggteeag egteggaea atggeege tigaageege tigaageege geoeag 300 etggeeggt teggeege taggeege tigaageege gteaaget gtegaaggt 360 eatataatgt tigaaegaegt acceaggae gteeggaat tatggeatg gteaaagt 420 gteggagega tigetiggaaag gtgetigaaa deggegaa atategeatt aaggaataa 480 aatacategt egtgateag gtitetigaae ateggigaa agtitedig ggaaggag 540 eagggaaget ateceaggae gattigaag eggagaega egggaaaga gattite eggataggt 940 ecaggaatgt ateceag gegaagaega eageggaaa tategeatg agtaggtig 540 aacattege titatatga eageeaga agttegga aggaegae gagaagaeg agattig 272 eagtetigg titatatgae cageeagaa agtitege gaaaggaa gattitee 780 aaggggaaat tateeetig gtitataee gigteagae aggatagae gaaatgit atelegaeg 900 tittataatt tiegeggigt tigggiaaa aggteaga agtteaga gaattata eetig 900 tittataatt tiegeggigt tigggiaaa aggteagaa agtita agaatata agaatta 1020 tagtaegtea tiggaaatta coeattig gegeaaae tigggagaat ataagaeg 900 tittataatti tiegeggigt tigggiaaa aggteaga aggteagaa ggteagae 900 tittataatti tiegeggaagt tigggiaaa aggeeaaa tigggaaaa tigggaagae 1100 tiggeetiga tittigetit agaegeaag tiggegeaaa taggaaaa gigteagae caaattagaeg 900 tittataatti tiegegaagt tigggiaaac aggeeaaaa tigggagaaa gattaatagaeg 1080 ticteeaa gaaggaaat gategtaa gagegeaaa tigggegeaa eaggaaaaat geggaaaaat 1200 tittataatti tiegegaageeag adgeea	attagcctac	ctacagttgt	tgtgggtagg	ctaatattat	gaattgagtc	ctactgaacc	1020	
ctgccqtta 1149 ctgccqtta 1149 ctgccqtta 1149 ctgccqtta 115 ctgctff; 1910 ctgccqtta 115 ctgctff; 1910 ctgccqtta 115 ctgctff; 1910 ctgccqtta 125; a designer Nial-promoter-controlled chloroplast-targeted Phoophoglycerate Musee DNA construct (1010 bp) ctgccqtcqg qacttggaag ggttcaaacg acccqccqt acgacgtgta gggtgcgagt 120 gaccccqcqc qgccqtacga acttttgtcg ggggggcqtc ccgqaggta gggtgcgagt 120 gaccccqcqc ggcqtacga actttgtcg ggggggcqct ccgqaggtg ggtgcgagg 130 ggtcccqgcq gacttggaag ggttcaaacg accccqccqt acgacgtgt gccaccqcgg 240 cccqctccaa ggtqcqccc atggccqgc tgagacgccg gtcaaggct ggtcaaagt 360 ctgcccqgcg tcaggccaac cagatgacg ggttcatat tgtgcggt ggtcaaagt 420 ggtcgcqgga tgctggtaaa ggggtaagacg ggtcagaat tatgccattt acggataggt 540 aacattegt cgaagaagt atctagaa ggtgcgaaa tatgcqag ggtaggag 140 accattegt cgtgatcag ggtaagacga dgtgtgaa at tatgccatt acggatagg 540 ccqgaagtt atcctctga ggtaagacga dgtgggaaa tatgcqgg ggaaggtgg 540 ccqgaagtgt atcctgata ggtagaggaa dgtgtgaaa tatggtg ggaaggtgg 540 aacattegt cgtgatcag ggtaagacga cagggaaaa tatgcqaa gatgtggg 540 caggaagtt atcctctgaa ggtaagaga aggttcaaag gggaaagagt 120 gaggaagta tatctctgaa atgatgta atggtgta aggaagagt 120 gacttegg cttaataag tgtaagagaa ggttcaaag aggtccaaa cgggaaaga gaatgtta ccttggg 540 caggaagtt tatcccaacga ggtaagacga cagggaaaa tatggaag ggt caggaagtt tatcctcat gttgaaagaga gttctggaa aggaagatgtt cctgtata 780 aaggggaaac tatctcat gttgagaata atggtataa ccgcgctg atatagag 940 ctttgggtat tcctcccaa gatggaata ggttcaaga ggatcaaca gggaaagg 940 ctttgggtat tcctcccaa gatggaata ggttcaagg aggtcaaag gtctaatga 940 ctttgggtat tcctcccaa gatggaata ggttcaaga ggttcaaga ggaaaggt 940 ctttgggtat tcctcccaa gatggaata ggttcaaga aggtcaaa gggaaaggt 940 ctttgggtat tcctcccaa gatggaata ggttcaaga ggtcaaga ggtatagag 940 ctttgggtat tcctcccaa gatggaata ggttcaaga ggtcaaaa gggaaaggt 940 ctttgggtat tcctcccaa gatggaata ggtcaaga ggtcaagaa ggtcaagag 940 ctttgggtat tcctcccaa gatggaaac ggtcaagaa ggtcaagaac gagaacgag 940 ctttgggtaa ggat	aatgattatc	gttacgacta	aaagtaataa	atgtcatcag	caggataggg	gttgatagga	1080	
210) SKQ ID NO 129 (211) LENTH: 1910 (212) TTFE: DNA (220) FEATURE: (220) FEATURE: (220) GRANGATION: Synthetic Construct - Sequence No. 129, Example 129: a demigner Nial-promoter-controlled chloroplast-targeted Phosphoglycearte Mutase DNA construct (1910 bp) (400) SEQUENCE: 129 agaacatotg gcaccacac atggtagggt gcgagtgacc ccgcgcgatt ggaagggt 120 gaccccgccg acttggaag ggttcaaacg accccgccgt acgaactttt gtcgggggg 180 gctcccggg aggecgccgt atggcaagt ctccggcgcgt gctcgcccgg 240 cccgtccag gggcgccca atggcaggt ctccgggacgt ggtcgcacgt ggtcgcccgg 240 ccgtcccgg tcaggccac cagatgact gtgtcatagt gtcgcacgt ggtcgcccgg 240 ccgtcccgg tcaggccac cagatgact gtgtcatagt ggtcacactt agggaggt 300 ctgccccgg tcaggccac cagatgacg gtgtcatagt ggtcgatg ggtcgaaggt 500 catataatgt tgaacgacgt atccaagga ggtctaaga ggtcgaag ggtcacattt agggataag 420 gtcggaggag tgcggtaaa gtgggtaaa gccgggaaa tattcgcag ggatgagt 540 aacattcgtc cgtgattcag gtttctgaac atcggtgg agaagttt accttgtggg 600 caggaaggt atdctgtaa gtgaggaag aggtcaga aggggaaat tattcgcagg gaacttttc 720 cagttctgg tttatatg dtgaagaag agtttctgaa dgggacaca ggggaacga ggaatttg 720 cagttctgg tttatatga caagccaag agtttgga agtatta ccgggatagg 900 ttttaaattt tgogggtggt ttggggtaa gggtcaa tgggcaacg gcattagg 900 ttttaaatt tgogggggg tggggaac gacggaag agttcaag gattcaatg attagacg 960 aacattgga ggatactta cccattgg gaccaaca ggtacaagg agatttat 1020 tagtacggi tggggaaac gaagggaag cggcaaga gggaaaca tggggaagg 110 ttttaaattt tgogggtggt ttggggtaa gggccaa tgggagga ggttcaagg 1140 tggcgrtig ttitagtig agaaggac gacagga aggggaatt ttcccaaggg 1140 tggcgrtig ttitagtig agaagga agatggaa ggttcaagg ggaaaca gagaacag 120 tttcaaga gcatgctgat ataaagtgg attacag agggagat gggaaaca 1200 ttctcaaga gcatgctgat ataaagtgg attacaga aggtttccg gagaatagg 120	aaagtttttt	aatcggatgg	ttttcgagtt	agaggttagg	gtttctttag	gttctctctt	1140	
<pre>clis LENGTH: 1910 clis LENGTH: 1910 clis LENGTH: Artificial Sequence clos PERTURE: </pre>	ctgccgtta						1149	
agaaatteg geaccacace atggtaggt gegagtgace eegegeat tggaagggtt 60 caaacgacee egeegacga acttttgteg gggggegete eeggatggta gggtgegagt 120 gaeeeegge gaettggaag ggtteaaaeg acceegeegt acgaacttt gtegggggge 180 geteeegga ggeegeegte attgeeaagt eeteegeeg eggeegegg getegeeegg 240 eeegeteegg etgegeeee atggeegge tgaageeeg egteaageet geeeeegtg 300 etgeeeegge teaggeeae eagatgaete gtgteateat tgteggetat ggteaaagta 360 eatataatgt tgaaegaegt atceaaggae gtaetgatge gteaaetta aeggataagt 420 gteggageg tgetggtaaa gtgggtaaag eeetggagaat tatgeeagt geeaaatt 480 atageagtee teetaaeg gegaagaega eageggaaat tattegeagt gagttggttg 540 aacattegte egtgateag gttetgaae atceggtga atteetgat ggtaatagt atteggag gaaettte 720 eaggtetgg tattetga ggtaaagga agtteetg tggaeeae egggaaatta tetggegg gaaetttee 720 eagttetgge ttatatagaa caageeaga agtttggea agaaatgtta tetegteat 720 eagttetgge ttatatagaa caageeaga agtttggea agaaatgtta tetegteat 780 aaggggaaa tattetet gtgggtgata eggttaata eggetata gteatatg attageegg 900 ttttaaattt tgegggtgg ttggggtaa ggeteaget agatteaatg aategaeg 960 aacatttgga agatettta ceeaettge gaeeaaate teaaggatt agattatat 1020 tagtaegtea tggggaaa gaaatgta eggeagaaa tgggagge 1140 tteetegaa tgatagge agaageega eggeagaaa tggeggatt geegaagg 1140 tgeeggtig ttitgeg agaageega eggeagaaa tggeggatt etceeaaggg 1140 tgeegettg tittateg gaaggeega eaggaaaaa tggeggatt etceeaaggg 1140 tgeegettg tittgett agtageega aaaaggaa tggeggaat 120 ttetteaga geatgett ataaggtg aattaetag tggegtee aaaagaaaa geggaaatta 1200 ttetteaga geatgetgat ataaagtgg aattaetag tggttaeeg gaaategte 126	<211> LENG <212> TYPE <213> ORGAI <220> FEAT <223> OTHEI 129: Phos	TH: 1910 : DNA NISM: Artif. JRE: R INFORMATIG a designer phoglycerate	ON: Synthet Nial-promo	ic Construct ter-control:	led chlorop			
caaacgaccc cgccgtaga acttttgtcg gggggggctc ccggatggta gggtggggt 120 gacccogog gacttggaag ggttcaaacg acccogogt acgaacttt gtoggggggg 180 gctcccggat ggccgccgt attgcaagt cctccgtct cgcggccgtg gctcgcccgg 240 cccgctccag cgtgogccc atggccgcg tgaagcccg cgtaaggct goccccgtgg 300 ctgccccgge tcaggccaac cagatgact gtgtcatcat tgtgggtcat ggtcaaagta 360 catataatgt tgaacgacgt atccaaggac gtactgatg gtcaacttt acggataaag 420 gtcggaggg tgctggtaaa gtgggtaaag ccctgagta tatagcattt acaggataaag 420 gtcggagcga tgctggtaaa gtgggtaaag ccctgagta tatagcatt acaggataag 420 gtcggagcg tgctggtaa gtgggtaaag ccgggaaat tattcgcagt gagttggtg 540 aacattcgtc cgtgattcag gtttctgaac atctggtga agtagatta cctttgtggg 600 caggaatgt atcctatg tggaaagga agtttcctg tgactatagt atttggaaaa 660 aacgtcccc cgaattgca atgatgtc gtgaccaac cgggacaac gggacacg gaaatttt Cctgtcac 720 caggttcgg tttataga caagccaag agtttgga agaaatgta tctcgtcat 780 aagggggaa tattctat gtggacaa atggtataa ccgcgcttg attagtacgg 900 ttttaaatt tgcgggtgt ttgggtgata cggtcaget agtcaatg attagacgg 900 ttttaattt tgcgggtgg ttgggtgat cggtcagct agatcaatg aatcagacg 960 aacatttgga agatactta cccacttg gaccaaata tcaaggatt agattaat 1020 tagtaqtca tggggaaaa gaatggaa cggcaaaat tgggagg caaattga 1140 tggcgctg tttatagg agataggaa cggcaaaa tggggg caaattgag 1140 tggcgctg ttttgga agaaggcaa tggcggcaa tgggggaaaa tggggaaat 120 gtgagagtga tttggtf ataaggg agggcaaa tgggggg caaatag 120 ttcttcaga gcatgctga tataaagtgg aattactag tggcggtc aaaagaaca gcggaaatta 1200							6.0	
gacccogge gacttggaag ggttcaaacg acccogcegt acgacttt gtoggggge 180 gctocoggat ggcogcegte attgocagt octoogtot ogoggoogt gotogoogg 240 cocgetcoag ogtgogoco atggoogge tgaagooge ogtcaagget gococogteg 300 ctgocoogge toaggooad cagatgacte gtgtoatcat tgtgogtoat ggtcaaagta 360 catataatgt tgaacgacgt atcoaaggae gtactgatge gtoaacttta acggataaag 420 gtoggagoga tgotggtaaa gtgggtaaag occtgagtaa tatagoattt acagcaatat 480 atagoagtoe totoaacoga gogaagaega cagoggaaat tattogoagt gagttggttg 540 aacattogte ogtgattoag gtttetgaae atctggtga agtagatta cotttgtggg 600 caggaatgtt atcottgat gtgaaagaeg aggtggacaa cagoggaaat tattogoag gaactttee 720 caggtatgge tgattoag gtttetgaae atctggtga agtagatta cottggtaga ag aaggtococ ogaattgoat atgattgoa gtgacgeaca ogggacaega gaactttee 720 cagttotgge ttatatga caagocage agtttggaca agaatgtat cotogtoate 780 aaggggaac tattotat gttggacata atggtataa cogocottg attagtaegg 900 ttttaaattt tgogggtgt ttggtggata oggtcaaget gactaage agttcaagg agttcaatg atcagaeg 960 aacatttgga agataettta cocacttge gaccaaata tataggaatt agattatta 1020 tagtaegtea tggggaaaca gaatggaate gtocaaggta gtttcaagg caaatgaeg 1080 ttototgaa tgatagge agagogaa cagoggaaaa tggggaggaa tgggaggaat 1200 ttototaga tgataatge agagogaa gaatgteg aaaagaaa goggaaata 1200 ttottoaga goatgetga ttagatgaa ttaggtega agaagaaca goggaaatag 1260 accggaattg ggaaggcaag tttggtega aaatgaaca agagtttee gaaatggg 1320								
gsteeeggat ggeegeegte attgeeaagt eeteegte egegeegge gstegeegg 240 eeegeteeag egtgegeeee atggeegee tyaageeege egteaaget geeeeegg 300 etgeeeegge teaggeeaae eagatgaete gtgteateat tgtgegteat ggteaaagta 360 eatataatgt tgaaegaegt ateeeaaggae gtaetgatge gteaaettta aeggataaag 420 gteggagega tgetggtaaa gtgggtaaag eeetgatge gteaaettta aeggataaag 420 gteggagega tgetggtaaa gtgggtaaag eeetgatge gteaaettta aeggataaag 420 gteggagega tgetggtaaa gtgggtaaag eeetgatga tatageattt aeageataat 480 atageagtee teteaaeega gegaagaega eageggaaat tattegeagt gagttggttg 540 aaeattegte egtgatteag gttetgaae atetggttga agtagattta eetttgggg 600 eaggaatgtt atetettga gtgaaagaag agtteetga tgaetatagt atttggaaaa 660 aaegteeee egaattgeat atgattgea gtgaegeaee egggaeaetga gaaetttee 720 eagttetgge tttatagaa eaageeaage agttttggea agaaatgtta tetegteate 780 aaggggaaae tatteeeat gtgggaeaa atggtattaa eeggetegg 900 ttttaaattt tgeggtggt ttgggtgata eggteeaget agatteaatg aateagaege 960 aaeattegga agateetta eccaetteg gaecaaatea teaaggatt agattatat 1020 tagtaegtea tggggaaaca gaatggaat egteeaagta gttteaagg eaaattgae 1080 tteetetgaa tgataagge agaegeaag eaggaaaaae tggggagtt eteeaaggg 1140 tggegettga tttteett gtageacat tggeggtea eaaagaaaaa tgggagaatat 1220 tteetetgaa geatgeega ataaggegaaa taggegeega egggaaata 1220 tteeteega geatgeega tatgagegaa aaaagaaaa agggttaegg gaaateagte 1260 aeggeegttg tttgettt agtageacta tggeegetee aaaagaaaea geggaaatta 1220	-							
cecgetecag cytgegeece atggeegeg tgaageege egteaagget geeceegtgg 300 etgeeegge teaggeeae cagatgaete gtgteateat tytgegteat gyteaaagta 360 eatataatgt tgaaegaegt atecaaggae gtaetgatge gteaaettta aeggaataag 420 gteggagega tgetggtaaa gtgggtaaag eedgggaaat tategeattt aeegeaatat 480 atageagtee teteaaeegg gegaagaega eageggaaat tategeagt gagttggttg 540 aaeattegte egtgatteag gtttetgaae atetggttga agtagattta eettgggg 600 eaggaatgtt atetettga gtgaaagaga agtteetga tgaetatagt atteggaaa 660 aaegteeee egaattgeat atgatgte gtgaeegeae egggaeaeg agaatgtta tetegteag gaaetttee 720 eaggtetgge tttaatgaa eaageeaage agtttggea agaaatgtta tetegteate 720 eagttetgge tttaatgaa caageeaage agtttggea agaaatgtta tetegteag 940 etttgggtat teeteeeag gtttateeeg gaetaeeag ggaetageg 900 ttttaaattt tgeeggtggt ttgggtgata eggtteaget agatteaatg aateagaege 960 aaeattegte tgggaaaea gaatggaate gteaaggea gttteaagg eaaatagae 960 aaeatttgga agataetta eceaettge gaecaaata teaaggatt agattatat 1020 tagtaegtea tggggaaae gaatggaate gteaaggta gtteaagge caaatggag 1140 tggegettga ttttegett agaaggeeag eaggaaaaa gtteeaagg eaaatgaeg 1140 tggegettga tttttegttt agtageeag eaggaaaaa tgggtagtt eteeeaaggagg 1140 tggegettga tttttegett agaagteg aataetaga tggttaegg gaaateegge 1260 aeeggeagttg gaaaggeeag tttgggega aaatagaaea agagttteee gagggaaate 1260								
ctgccccggctcaggccaaccagatgactcgtgtcatcattgtgcgtcatggtcaacttaacggataag360catataatgttgaacgacgtatccaaggacgtactgatgcgtcaacttaacggataag420gtcggagcgatgctggtaaagtgggtaaagccctgagtaatatagcatttacagcaatat480atagcagtcctctcaaccgagcggaagacgacagcggagaattattcgcagtgagtggtgg540aacattcgtccgtgattcaggttctgaacatctggtgaagagtagtattacctttgggg600caggaatgttatctcttgatgtgaagagaagttcctgatgactatagtatttggaaaa660aacgtccccacgaattgcaatggtgtcaagtgacgcaaccgggacacgagaacatttcc720cagttggtatattctcattgttggacataatggtattacctcgtcatc780aagggggaaatattcacggactacaacagtctaattggcgattagcg900ttttaaatttgcggtggtttgggtgatcggtcagctagattata1020tagtacgtcatggggaaacgacaggcagacagggagattatcacaggg1140tggcgcttgatttgctttagtagcacatggggaaactggggaatt1200ttctcagaagcatgctgattatagtagaatggggaattagtggtttacggaagtttacg1260ttctcagaagcatgctgatttaggtcgaatagaacagcggaaattag1200ttttctcagaagcatgctgatataagttggaatagaacagcggagattggg1260tttttccagaagcatgctgatttaggtcagaatagaacagcggagaattagg1260ttttccagaagc								
catataatgt tgaacgacgt atccaaggac gtactgatge gteaacttta acggataaag 420 gteggagega tgetggtaaa gtgggtaaag eeetgagaa tatageattt acageaatat 480 atageagtee teteaacega gegaagaega eageggaaat tattegeagt gagttggttg 540 aacattegte egtgatteag gttetgaae atetggttga agtagatta eettggggg 600 eaggaatgtt atetettgat gtgaaagaga agtteetga tgaetatagt atteggaaaa 660 aacgteege egaattgeat atgattgtea gtgaegeaea egggaeaeg gaaetttee 720 eagttetgge tttatatgaa eaageeaga agtttegga agaaatgtta tetegteate 780 aagggggaaae tatteetat gttggeeata atggtattaa eeggeeteg attagtaegg 900 tettgggta teeteecag gttateaeg gaetaeaaea gtetaatge agaatatga attagae 960 aacatttgga agataettta eecaettge gaecaaaea gtetaatga aategaeeg 960 aacatttgga agataetta eecaettge gaecaaaea teagggatt agattatat 1020 tagtaegtea tggggaaaca gaatggaate gteaaggtaa gttteeagge caaattgaeg 1080 tteetegaa tgataatgge agaegeeag eaggaaaaae tggggagtt etceaaggg 1140 tggegeettga tttgeettt agtageeata tggegegee aaaagaaaea geggaaatta 1200 tteeteagaa geatgetgat ataaagttgg aattaetaga tggtttaeeg gaaategate 1260 aeggeagtt ggaaggeag tttgagteag aaatagaaea agagtteee ggagtgtgg 1320								
gtoggagoga tgotggtaaa gtgggtaaag ocotgagtaa tatagoatt acagoaatat 480 atagoagtoo totoaacoga gogaagaoga cagoggaaat tattogoagt gagttggttg 540 aacattogto ogtgattoag gttotgaac atotggttga agtagattta ootttgtggg 600 caggaatgtt atotottgat gtgaaagaga agttootga tgactatagt atttggaaaa 660 aacgtococa ogaattgoat atgattgtoa gtgacgoaca ogggacaoga gaactttoo 720 cagttotggo tttatatgaa caagocaago agtttggoa agaaatgtta totogtoato 780 aaggggaaac tattotoatt gttggacata atggtattaa cogogototg attagtaogg 840 otttgggtat tootocoagt gtttacoag gactacaaca gtotaattgo gogattagog 900 ttttaaattt tgogggtggt ttgggtgaa ggacaata toaaggatt agattatat 1020 tagtacgtoa tggggaaaca gaatggaato gtoaagtaa gtttcaagg caaattgacg 960 atagtacgtoa tggggaaaca gaatggaato gtoaaggtaa gtttcaaggo caaattgacg 1080 ttoototgaa tgataatggo agaagocaag caggaaaaac tggggagtt otocaagagg 1140 tggogottga tttgottt agtagcacta tggogogtoc aaaagaaaca goggaaatta 1200 ttottcagaa goatgotgat ataaagttg aattactaga tggtttacogg gaaatcagto 1260 acggcagttg ggaaggcaag tttgagtoag aaatagaaca agagtttoco ggagtgttg 1320							420	
atagcagtee teteaacega gegaagaega cageggaaat tattegeagt gagttggttg 540 aacattegte egtgatteag gttetgaae atetggttga agtagatta eetttgtggg 600 caggaatgtt atetettgat gtgaaagaga agtteettga tgaetatagt atteggaaaa 660 aaeegteecea egaattgeat atgattgtea gtgaegeaea egggaeaega gaaetttee 720 cagttetgge titatatgaa eaageeaage agttitegga agaaatgtta tetegteate 780 aagggggaaae tatteeteatt gtiggaeata atggtattaa eegegetetg attagtaegg 840 etttgggtat teeteecagt gittateaeg gaetaeaaea gtetaattge gegattageg 900 tittaaatti tgegggtggt tigggtgata eggteaget agatteaatg aateagaege 960 aaeeattegga agaateetta eecaettige gaeeaaatea teaaggatt agattatat 1020 tagtaegtea tggggaaaea gaatggaate gteeaagtaa gitteaagge caaattgaeg 1080 titeettegaa tgataatgge agagegeaag eaggaaaaae tggggagtt eteeaaggg 1140 tggegettga tittgettt agtageeata tggeegte aaaagaaaea geggaaatta 1200 tietteagaa geatgetgat ataaagttgg aattaetaga tggttaegg gaaateagte 1260 aeeggeagttg ggaaggeaag titgagteag aaatagaaea agagtteee ggagtgtgg 1320								
aacattegte egtgatteag gtteetgaae atetggttga agtagattta eetttgtggg 600 eaggaatgtt ateteettgat gtgaaagaga agtteetga tgaetatagt atttggaaaa 660 aaeggeeeteg egaattgeat atgattgeea gtgaeggeaea egggaeaegga gaaettteee 720 eaggteetgge tttatatgaa eaageeaage agttteggea agaaatgtta tetegteate 780 aagggggaaae tatteetat gttggaeata atggtattaa eeggeeteg attagtaegg 840 eetttgggtat teeteeeag gtetateeeg gaetaeaaea gtetaattge gegattageeg 900 ttttaaattt tgegggtggt ttggggata eggtteeget agatteaatg aateagaege 960 aaeaattegga agataeetta eecaettge gaeeaaatea teaaggattt agattattat 1020 tagtaegtea tggggaaaea gaatggaate gteeaaggtaa gteteaagge eaaattgaeg 1080 tteeetetgaa tgataatgge agagegeeag eaggaaaaae tggggagttt eteeaagagg 1140 tggegeettga tttgeettt agtageeata tggegegtee aaaagaaaea geggaaatta 1200 tteeteeaga geatgeetga ataaagttgg aattaetaga tggtttaegg gaaateagte 1260 aeggeegttg ggaaggeaag tttgagteag aaatagaaea agagtteee ggagtetgg 1320							540	
aacgtcccca cgaattgcat atgattgtca gtgacgcaca cgggacacga gaacttttcc 720 cagttctggc tttatatgaa caagccaagc agttttggca agaaatgtta tctcgtcatc 780 aaggggaaac tattctcatt gttggacata atggtattaa ccgcgctctg attagtacgg 840 ctttgggtat tcctcccagt gtttatcacg gactacaaca gtctaattgc gcgattagcg 900 ttttaaattt tgcgggtggt ttgggtgata cggttcagct agattcaatg aatcagacgc 960 aacatttgga agatacttta cccactttgc gaccaaatca tcaaggattt agattattat 1020 tagtacgtca tggggaaaca gaatggaatc gtcaaggtaa gtttcaaggc caaattgacg 1080 ttcctctgaa tgataatggc agaggcgaag caggaaaaac tggggagttt ctccaagagg 1140 tggcgcttga ttttgctttt agtagcacta tggcgcgtcc aaaagaaaca gcggaaatta 1200 ttcttcagaa gcatgctgat ataaagttgg aattactaga tggtttacgg gaaatcagtc 1260 acggccagttg ggaaggcaag tttgagtcag aaatagaaca agagtttccc ggagtgttgg 1320							600	
aacgtcccca cgaattgcat atgattgtca gtgacgcaca cgggacacga gaacttttcc 720 cagttctggc tttatatgaa caagccaagc agttttggca agaaatgtta tctcgtcatc 780 aaggggaaac tattctcatt gttggacata atggtattaa ccgcgctctg attagtacgg 840 ctttgggtat tcctcccagt gtttatcacg gactacaaca gtctaattgc gcgattagcg 900 ttttaaattt tgcgggtggt ttgggtgata cggttcagct agattcaatg aatcagacgc 960 aacatttgga agatacttta cccactttgc gaccaaatca tcaaggattt agattattat 1020 tagtacgtca tggggaaaca gaatggaatc gtcaaggtaa gtttcaaggc caaattgacg 1080 ttcctctgaa tgataatggc agagcgcaag caggaaaaac tggggagttt ctccaagagg 1140 tggcgcttga ttttgctttt agtagcacta tggcgcgtcc aaaagaaaca gcggaaatta 1200 ttcttcagaa gcatgctgat ataaagttgg aattactaga tggtttacgg gaaatcagtc 1260 acggccagttg ggaaggcaag tttgagtcag aaatagaaca agagtttccc ggagtgttgg 1320							660	
cagttetgge tttatatgaa eaageeaage agttttggea agaaatgtta tetegteate 780 aaggggaaae tatteteatt gttggacata atggtattaa eegegetetg attagtaegg 840 etttgggtat teeteecag gtttateaeg gaetaeaaea gtetaattge gegattageeg 900 ttttaaattt tgegggtggt ttgggtgata eggtteaget agatteaatg aateagaege 960 aaeatttgga agataettta eecaetttge gaeeaaatea teaaggattt agattattat 1020 tagtaegtea tggggaaaea gaatggaate gteaaggtaa gttteeagge eaaattgaeg 1080 tteeetetgaa tgataatgge agagegeaag eaggaaaaae tggggagttt eteeeaagagg 1140 tggegettga ttttgetttt agtageaeta tggegegtee aaaagaaaea geggaaatta 1200 tteeteeagaa geatgetgat ataaagttgg aattaetaga tggtttaegg gaaateagte 1260							720	
ctttgggtat teeteerag gettateaeg gaetaeaaea gtetaattge gegattageg 900 ttttaaattt tgegggtggt ttgggtgata eggtteaget agatteaatg aateagaege 960 aaeatttgga agataettta eecaetttge gaeeaaatea teaaggattt agattattat 1020 tagtaegtea tggggaaaea gaatggaate gteaaggtaa gttteaagge eaaattgaeg 1080 tteetetgaa tgataatgge agagegeaag eaggaaaaae tggggagttt eteeaagagg 1140 tggegettga ttttgetttt agtageeta tggegegtee aaaagaaaea geggaaatta 1200 tteeteegaa geatgetgat ataaagttgg aattaetaga tggtttaegg gaaateagte 1260 aeggeegttg ggaaggeaag tttgagteag aaatagaaea agagttteee ggagtgttgg 1320							780	
ttttaaattt tgcgggtggt ttgggtgata cggttcagct agattcaatg aatcagacgc 960 aacatttgga agatacttta cccactttgc gaccaaatca tcaaggattt agattattat 1020 tagtacgtca tgggggaaaca gaatggaatc gtcaaggtaa gtttcaaggc caaattgacg 1080 ttcctctgaa tgataatggc agagcgcaag caggaaaaac tgggggagtt ctccaagagg 1140 tggcgcttga ttttgctttt agtagcacta tggcgcgtcc aaaagaaaca gcggaaatta 1200 ttcttcagaa gcatgctgat ataaagttgg aattactaga tggtttacgg gaaatcagtc 1260 acggcagttg ggaaggcaag tttgagtcag aaatagaaca agagtttccc ggagtgttgg 1320	aaggggaaac	tattctcatt	gttggacata	atggtattaa	ccgcgctctg	attagtacgg	840	
aacatttgga agatacttta cocactttgo gaccaaatca tooaggatt agattattat 1020 tagtaogtoa tggggaaaca gaatggaato gtoaaggtaa gtttoaaggo caaattgaog 1080 ttoototgaa tgataatggo agagogcaag caggaaaaac tgggggagtt otocaagagg 1140 tggogottga ttttgotttt agtagcacta tggogogtoo aaaagaaaca goggaaatta 1200 ttottoagaa goatgotgat ataaagttgg aattactaga tggtttaogg gaaatcagto 1260 acggoogttg ggaaggcaag tttgagtoag aaatagaaca agagtttooo ggagtgttgg 1320	ctttgggtat	tcctcccagt	gtttatcacg	gactacaaca	gtctaattgc	gcgattagcg	900	
tagtacgtca tggggaaaca gaatggaatc gtcaaggtaa gtttcaaggc caaattgacg 1080 ttcctctgaa tgataatggc agagcgcaag caggaaaaac tgggggagtt ctccaagagg 1140 tggcgcttga ttttgctttt agtagcacta tggcgcgtcc aaaagaaaca gcggaaatta 1200 ttcttcagaa gcatgctgat ataaagttgg aattactaga tggtttacgg gaaatcagtc 1260 acggcagttg ggaaggcaag tttgagtcag aaatagaaca agagtttccc ggagtgttgg 1320	ttttaaattt	tgcgggtggt	ttgggtgata	cggttcagct	agattcaatg	aatcagacgc	960	
tteettegaa tgataatgge agagegeaag eaggaaaaae tggggagttt eteeaagagg 1140 tggegettga ttttgetttt agtageaeta tggegegtee aaaagaaaea geggaaatta 1200 tteetteagaa geatgetgat ataaagttgg aattaetaga tggtttaegg gaaateagte 1260 aeggeagttg ggaaggeaag tttgagteag aaatagaaea agagttteee ggagtgttgg 1320	aacatttgga	agatacttta	cccactttgc	gaccaaatca	tcaaggattt	agattattat	1020	
tggcgcttga ttttgctttt agtagcacta tggcgcgtcc aaaagaaaca gcggaaatta 1200 ttcttcagaa gcatgctgat ataaagttgg aattactaga tggtttacgg gaaatcagtc 1260 acggcagttg ggaaggcaag tttgagtcag aaatagaaca agagtttccc ggagtgttgg 1320	tagtacgtca	tggggaaaca	gaatggaatc	gtcaaggtaa	gtttcaaggc	caaattgacg	1080	
ttetteagaa geatgetgat ataaagttgg aattaetaga tggtttaegg gaaateagte 1260 aeggeagttg ggaaggeaag tttgagteag aaatagaaca agagttteee ggagtgttgg 1320	ttcctctgaa	tgataatggc	agagcgcaag	caggaaaaac	tggggagttt	ctccaagagg	1140	
acggcagttg ggaaggcaag tttgagtcag aaatagaaca agagtttccc ggagtgttgg 1320	tggcgcttga	ttttgctttt	agtagcacta	tggcgcgtcc	aaaagaaaca	gcggaaatta	1200	
	ttcttcagaa	gcatgctgat	ataaagttgg	aattactaga	tggtttacgg	gaaatcagtc	1260	
aacgctggcg tactgtacct gctgaagtac aaatgccgca aggggaaaat ttacaacagc 1380	acggcagttg	ggaaggcaag	tttgagtcag	aaatagaaca	agagtttccc	ggagtgttgg	1320	
	aacgctggcg	tactgtacct	gctgaagtac	aaatgccgca	aggggaaaat	ttacaacagc	1380	

-continued

tatgggaacg tagtgtggct gcttggcagt caatattaca atcggctgag gtaaatcaat	1440
ggcaaattgg gttggtagtg gctcacgatg ctactaataa aactttactc tgcaatatct	1500
tgggtttatc tccagaaaat ttctggaatt tccgtcaagg taatggggca gttagtgtta	1560
ttgactaccc tttaggcgct agtggtttac cagtactgca agcgatgaac attactagtc	1620
atttgagtgg tggtgtatta gataaaacgg cagcaggagc attgtagtaa atggaggcgc	1680
tcgttgatct gagccttgcc ccctgacgaa cggcggtgga tggaagatac tgctctcaag	1740
tgctgaagcg gtagcttagc tccccgtttc gtgctgatca gtctttttca acacgtaaaa	1800
agcggaggag ttttgcaatt ttgttggttg taacgateet eegttgattt tggeetettt	1860
ctccatgggc gggctgggcg tatttgaagc ggttctctct tctgccgtta	1910
<210> SEQ ID NO 130 <211> LENGTH: 1856 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 130, Exa 130: designer Nial-promoter-controlled chloroplast-targeted Enolase DNA construct (1856 bp)	ample
<400> SEQUENCE: 130	
agaaaatetg geaceacace atggtagggt gegagtgace eegegegaet tggaagggtt	60
caaacgaccc cgccgtacga acttttgtcg ggggggggctc ccggatggta gggtgcgagt	120
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc	180
geteeeggat ggeegeegte attgeeaagt eeteegtete egeggeegtg getegeeegg	240
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaagget gcccccgtgg	300
ctgccccggc tcaggccaac cagatgctta ggtcctaaac caacagtacc agcataaaca	360
gegegatege ctaatteate tteaattetg agtaaaegat tgtattttge taeeegttea	420
ctacgacaaa gagaaccagt tttaatttga cctgcacgag tggctacagc caaatcagca	480
atagttgtat cctcagtttc accagaacga tggctaatga ctgagcggaa accgttgcga	540
gtagctaaat caatagtttc caaagtttca gtcagtgaac caatttgatt caacttaatc	600
aaaatcgagt tacctgcttt ttgctcaatc cctttttgta accgagtagc gttagtaaca	660
aataaatcat cacccaccaa ctgtactcgt gaacccaact tctgagtcag taattgccaa	720
ctttcccaat cttcctcatg taaaccatct tcaatggaaa caatcggata ttggtcaacc	780
aactggccta aataatcaat aaactcaact gggctatggg gtttaccatc ataaacatac	840
tgcccatttt tgtaaaactc actcgctgcc acatccaagg ctaaagcaac ttcttcccca	900
ggcttgtaac cagcttgttt aatagcagct agcaataatt ctaaagctac ttggttagag	960
tccaggttag gtgcaaaacc accttcatca ccaacaccag tcagcaaacc cttatcatcc	1020
aaaaccttgc tgagagttgc aaaaacttcc gcaccccaac gcaaagcttc ctggaaggaa	1080
ggcgcactga cgggtacaat cataaactcc tgaaaatcga cattattggc tgcgtgcgct	1140
ccaccattga tcacattcat caaaggtaca ggtagcaaat ttgctaaagg cccacccaca	1200
tagcgataca aaggaattcc caaagactca gcagcagctt tagcagctgc tagtgaaacc	1260
gacaaaattg catttgcgcc caaattagct ttattgggtg aaccatccaa agagatcatg	1320
attttatcta atgattettg gtetagggea teeaageeta acaattgggg tgetaataee	1380

-cont	- 1	nn	മെ

-continued	
tettteaeat tetgeaetge ettgagtaet eetttgeeae eataaegget tttateaeea	1440
tctcgcagtt catgagcctc aaaagtacct gtggaagcac cgctaggaac ttgcgctagt	1500
cctactgtac cattagecaa atgtactgea geeteaacag teggtettee eegtgaatea	1560
agaatttege gggegataat agetteaata geggtateea gaaattttgt cattaaatgg	1620
aggegetegt tgatetgage ettgeeceet gaegaaegge ggtggatgga agataetget	1680
ctcaagtgct gaageggtag cttageteec egtttegtge tgateagtet tttteaacae	1740
gtaaaaagcg gaggagtttt gcaattttgt tggttgtaac gatcctccgt tgattttggc	1800
ctctttctcc atgggcggggc tggggcgtatt tgaagcggtt ctctcttctg ccgtta	1856
<210> SEQ ID NO 131 <211> LENGTH: 1985 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 131, Exam 131: designer Nial-promoter-controlled chloroplast-targeted Pyruvate-Kinase DNA construct (1985 bp)	mple
<400> SEQUENCE: 131	
agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt	60
caaacgaccc cgccgtacga acttttgtcg gggggggcgctc ccggatggta gggtgcgagt	120
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc	180
geteeeggat ggeegeegte attgeeaagt eeteegtete egeggeegtg getegeeegg	240
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg	300
ctgccccggc tcaggccaac cagatgaaac ccttaaattt tcggactaaa attgttgcta	360
ctateggtee tgegagtaat acteeegaag tattaegtea aatgetetta geeggagtea	420
atgttgcgcg gttgaatttt tcccacggta gctacgaaga tcacgctcag atggttaaac	480
tettaegtte tttgteegaa gaattagaet taeeeetgae eattttaeaa gaeetteaag	540
gtccaaaaat tcgggtaggc aaattacccc cagacggact taacctcatc gaaggacaat	600
ctctaacctt ggttcccctt gctgcttgga aaaatcaagc caataccgtt ggcattgatt	660
atccctacgt cgctgaagaa gcgcaacccg gtactcaagt gctgcttgat gacggtttat	720
tggagttaac cgttgaacaa gtcaagggaa atgaggtcat ctgtcaagtg gttgaaggag	780
gcatteteaa aagcaataag ggggttaatt tgecaaceet caatetaege ttgeetteea	840
tgaccgaaaa agataagaaa gatctcgaat ttggactatc ccaaggcgtt gacatcattt	900
ccctaagctt tgtccgcaaa cccgaagata ttcaagaact caaggaattt attgcccaaa	960
gateggeaaa agtteeegtt ttagegaaaa ttgaaaagee eeaageegtt gacaatattg	1020
aagccattat cgatgaatgc gatgctatta tggttgcgcg gggagactta ggggtagaaa	1080
tgcgccccga aaaggttcca ggtatccaaa aacgcatcat taagctgtgt aaccaaaaag	1140
gcateceegt tattacegee acceagatge tegatageat gattegtaac eccegteeea	1200
cccgtgctga agccagtgac gtagccaatg ctatcattga tggaaccgat gcggttatgt	1260
tatcaggaga atcagcgatc ggagattatc ccgtgcaagc ggtgcaaatg ctggctaata	1320
ttgccaaaga tattgaacca ggactgaatt ttgccaatta tcctcctcga cggcagaata	1380
aageeeacge catageegaa geteteaata eeategacaa gattettgat ttacaatgta	1440
ttgtcacctt tacggaaacc gggtattctg ctaaattagc tgctgctgaa cggccacggg	1500

-continued

ttcccatagt	ggctttaaca	cctgatcacc	aagtttatca	tcgccttaat	ttagtttggg	1560
gagtccgacc	cattttattt	gactacgatg	agtcttccct	agacgacttg	atggttaaag	1620
tagaagatat	gttaaaaacc	cgaaactacg	cgacatcagg	ggataaagtg	ttgattatgg	1680
gtggtttacc	cctcagaaaa	gccagtacca	cgagttttct	cgatattcat	acgattactt	1740
aataaatgga	ggcgctcgtt	gatctgagcc	ttgccccctg	acgaacggcg	gtggatggaa	1800
gatactgctc	tcaagtgctg	aagcggtagc	ttagctcccc	gtttcgtgct	gatcagtctt	1860
tttcaacacg	taaaaagcgg	aggagttttg	caattttgtt	ggttgtaacg	atcctccgtt	1920
gattttggcc	tctttctcca	tgggcgggct	gggcgtattt	gaagcggttc	tctcttctgc	1980
cgtta						1985

<210> SEQ ID NO 132 <211> LENGTH: 1568 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 132, Example 132: designer Nial-promoter-controlled NADPH-dependent chloroplast-targeted NADPH-dependent Glyceraldehyde-3-phosphate dehydrogenase DNA construct (1568 bp) dehydrogenase DNA construct (1568 bp)

<400> SEQUENCE: 132

agaaaatctg	gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60
caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcgggggggc	180
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300
ctgccccggc	tcaggccaac	cagatgtcaa	cgaatattgc	aattaatgga	atgggtagaa	360
ttggaagaat	ggtgctaaga	atagcactaa	agaatgaagc	attgaatgta	gttgccatca	420
atgctagcta	tcctcctgaa	acaattgcac	atttaattaa	ttatgacaca	acacatggga	480
gatacgataa	aagagtagaa	cctattgaaa	gtggaattcg	agtggaaggc	catgatatta	540
aattagtgtc	tgatagaaac	ccagaaaatt	taccctggaa	agatttagaa	atagatatcg	600
tcattgaagc	gaccggtaaa	tttaaccatg	gtgataaagc	taaggcacat	attcaagcag	660
gagctaaaaa	agtgttattg	acaggaccat	caaaaggcgg	aaaagtacag	atggtggtta	720
aaggtgttaa	cgatcaagac	ttagatacag	atacatatga	catatttagt	aatgcgtcgt	780
gtactacgaa	ttgtatcgga	ccagttgcaa	aagttttaaa	tgatagtttt	ggcattgaaa	840
atggcttaat	gacaacggta	catgcaatta	caaatgatca	aaataatata	gataatccgc	900
ataaagattt	gagaagagcg	cgttcttgtg	gggaaagtat	tataccaaca	tcaacaggtg	960
ctgctaaagc	attaaaagaa	gttatgccag	aattgaatgg	caaactacat	ggcatagcac	1020
ttcgtgtgcc	aactcaaaat	gtatcattag	ttgatttagt	cattgattta	aaacaaaaag	1080
tgacagtaga	tgaagttaat	catgcattta	gagatgcaaa	cttacaagga	attattgatg	1140
ttgaagaggc	ccctctagtt	tctaaggact	ataatacaaa	tcctcattca	gcagttatag	1200
atgctaaaaa	tacaatggtc	atgggagata	ataaggttaa	agttatagcc	tggtatgata	1260
acgaatgggg	atattctaat	agagtagttg	aggtagcaaa	tcaacttgga	gaactaatta	1320
aataataaat	ggaggcgctc	gttgatctga	gccttgcccc	ctgacgaacg	gcggtggatg	1380

-continued

gaagatactg ctctcaagtg ctgaagcggt agcttagctc cccgtttcgt gctgatcagt 1440 ctttttcaac acgtaaaaag cggaggagtt ttgcaatttt gttggttgta acgatcctcc 1500 gttgattttg gcctctttct ccatgggcgg gctgggcgta tttgaagcgg ttctctcttc 1560 tgccgtta 1568 <210> SEQ ID NO 133 <211> LENGTH: 1571 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 133, Example 133: designer Nial-promoter-controlled chloroplast-targeted NAD-dependent Glyceraldehyde-3-Phosphate Dehydrogenase DNA construct (1571 bp) <400> SEOUENCE: 133 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60 caaacgaccc cgccgtacga acttttgtcg ggggggggcgctc ccggatggta gggtgcgagt 120 gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc 180 geteeeggat ggeegeegte attgeeaagt eeteegtete egeggeegtg getegeeegg 240 cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg 300 ctgccccggc tcaggccaac cagatgtaaa ctggctgaat gtacaagcat atccgcaagt 360 ttgttggagt aacccatttc gttatcgtac catgaaacta ctttcacgaa atttggagat 420 aacataattc ccgcatcctt gtcgaatacc gaagttctct tctcgcccac gaaatcctga 480 gaaaccacag cgtcttcagt ataccctaaa attcctttaa gttcaccttc cgatgccgct 540 ttcattgctg cacagatttc ttcgtatgaa gtagatttct ctaatctgac cgttaaatcc 600 actacagaaa catctgcagt tgggactctg aatgacatac cggttaattt accgttaagg 660 gcaggaatta cttttcctac tgcttttgca gctccggtag aagatgggat gatgttgttc 720 aatgcagaac gcccgcctct ccagtctttc atagaaggcc cgtcaacagt tttctgggtt 780 gcagtagttg cgtgcacggt cgtcattaaa ccttcgatga ttccgaaatt atcgtgaagt 840 acttttgcta atggagcaag acagttagtc gtacagctcg cgttagaaaa aatagtaacg 900 tcatctqtaa qatccttqtq qttaacaccc attacqaaca tcqqcqtatc qtcttttqaa 960 1020 ggagcagaaa ggattgcttt ttttgcaccc gcgttgatat gtgcctgtgc cgcctccttg gtaaggaata aaccoggttga ttecacgatg tattetgege ctacttegtt ceattteagg 1080 ttqttaqqat ctttttcqqc qqttacacqa atctttttqc cattcacqat aaqqtcqttt 1140 cettetacag aaacttegee egeaaatgtg eegtgtaceg agteataett aageatgtae 1200 gccatatatt tggcatcgat aagatcgtta attcccacca cttcgatgtt ttctctctcg 1260 gccatcgctc tgaaaaccaa gcgtccaatc ctaccgaatc cgttgattcc tactttaatt 1320 gttgacatta aatggaggeg ctegttgate tgageettge ceeetgaega aeggeggtgg 1380 atggaagata ctgctctcaa gtgctgaagc ggtagcttag ctccccgttt cgtgctgatc 1440 agtctttttc aacacgtaaa aagcggagga gttttgcaat tttgttggtt gtaacgatcc 1500 tccgttgatt ttggcctctt tctccatggg cgggctgggc gtatttgaag cggttctctc 1560 ttctgccgtt a 1571

```
-continued
```

<210> SEQ ID NO 134 <211> LENGTH: 2150 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 134, Example 134: designer Nial-promoter-controlled chloroplast-targeted Citramalate Synthase DNA construct (2150 bp) <400> SEQUENCE: 134 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60 120 caaacgaccc cgccgtacga acttttgtcg ggggggggctc ccggatggta gggtgcgagt 180 gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc getceceqgat ggecgecgte attgecaagt cetceqtete egeggecgtg getegeeegg 240 cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg 300 $\verb|ctgccccggc|| tcaggccaac|| cagatggagc|| aggtttttat|| ctacgacacc|| accttgaggg||$ 360 atggctcgca ggcagaaggt ataaactttt ccgtagagga taagatgcgc atacttcaaa 420 aactggacga atttggagtg cattacatag agtgcggatg gcccggtgcg aacccaaaag 480 acactattct ctttgaaagg ctgagaaaga taaaaactca aaatgccaaa atagtagcct 540 ttggtgcaac aagaaaagct ggaaagaagg cgcacgaaga taagcaggtg gaaaaccttt 600 tgaaatcggg tgccaaggtg ataaccgtat ttggcaagag ctgggacttt catgtaacgc 660 atgccatagg gaccacctta gaggaaaacc tggacatggt ttacgagacg gtaagctatc 720 ttaaaaagca tgtggaggag gttatctttg acgcagagca cttctttgac ggatacaggc 780 acaacgaaag ctatgctttt aaggtattgg aggcagcttt tcaggcaggt gcggactgga 840 tagtcctctg cgataccaac ggtggcaccc ttcccaatga ggtttatgag ataaccaaaa 900 aggttgtaca aaagtttcca caggcacgcg taggcataca cgctcacaac gattcagata 960 ctgctgtggc taactctctt atggcggtgc ttgcaggtgc aaggcaggtt cacggcacta 1020 taaacggctt gggggaaaga acgggcaatg ctaatctgtg ttccataata cctaaccttc 1080 ageteaaget gggetttagt gtagtgeett eecaaaacet caaaaagete acegagettg 1140 ctcactttgt ctccgaaatc tccaacacgc cactgcccaa aaacatgcct tatgtagggg 1200 agagtgettt tacccacaaa geaggegtae aegeetetge agttatgaaa aggteagaaa 1260 catacgaaca catagaccct tctttggtag gaaacagaag gaaggtgaca gtgtctgacc 1320 tttctggaag gagtaatata ctttacaagc tcagggaaat ggggcttgag gtggatgata 1380 agteccetga gettateaaa eteettgaaa agataaagga aettgagaag gaaggetace 1440 actttqaaqc aqctqaaqct tcttttqaqc ttctttqcaa qaqqcatttt qqqcttqtta 1500 aaaactattt tgaccttgat gcttacaggg tgctaatagc cagaaggagt acagacctat 1560 ctcctgtttc ggaagccacc gtaagactct atgtggaaga cataaaggag catacagcag 1620 ctcttggtaa cggaccagtg agcgcccttg acagagccct cagaaaagcc ttggaagagt 1680 tttatccaag ccttaaagat gttcagctca tagactacaa ggtgagaata gttaacgaat 1740 cggagggtac atctgccaaa gtgagggtgc ttatagaatc taccgatggt agaagaaagt 1800 ggggaacggt gggagtttcg gaaaacataa tagaagcctc ttggatagcc ttaactgata 1860 gcctcgtata taaactctta aaagacgaag aagagggtat aatgtgataa atggaggcgc 1920 tcgttgatct gagccttgcc ccctgacgaa cggcggtgga tggaagatac tgctctcaag 1980

continued

-continued						
- tgctgaagcg gtagettage teecegttte gtgetgatea gtetttttea acaegtaaaa	2040					
ageggaggag ttttgeaatt ttgttggttg taaegateet eegttgattt tggeetettt	2100					
ctccatgggc gggctgggcg tatttgaagc ggttctctct tctgccgtta	2150					
<pre><210> SEQ ID NO 135 <211> LENGTH: 3125 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 135, Exam 135: designer Nial-promoter-controlled chloroplast-targeted 3-Isopropylmalate/(R)-2-Methylmalate Dehydratase large/small subunits DNA construct (3125 bp)</pre>	ple					
<400> SEQUENCE: 135						
agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt	60					
caaacgaccc cgccgtacga acttttgtcg ggggggggctc ccggatggta gggtgcgagt	120					
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc	180					
gctcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg	240					
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg	300					
ctgccccggc tcaggccaac cagatgtacc atgtctgctg ttgctatctc gcccttgatt	360					
gctgatgctg taacagtagc cgctgaagca agatatacaa aagaatcttt atgtcctgca	420					
cgtcccttga agtttcgtgt acctgtactg ataagagtct caccctcacc gataacaccc	480					
tgacagette eccageatae agageagtta ggatteataa eaattgeace tgegteeatg	540					
aatatatcaa ggagteeete ttteatagee tgaagatata eegaaegget tgeaggaaet	600					
acaaggaatc ttaccttagg agcaaccttt ttccctttga tgatcgctgc gccaactctt	660					
aaateetega ttegteeatt gttacatgaa eeaagaaatg etteateaat etttacaeea	720					
agtgatteet tageeggaae taeattgtea acaaaatgtg getttgeaae aattggetgt	780					
attgttgaaa ggtcaatatc ataaacctgc tcaaatactg catcatcatc tgatgtaaag	840					
catgeetttg getetetgee atgeteetta agataateea ttgeaacate ateaacttee	900					
atgagtgcag tettageace tgeetetaca caaaggttae agattgatat tetgtetgee	960					
attgaaagge tgtgtaagee tteteetgea aatteeattg etttatagtt ageaeegtta	1020					
gcgccaatct ttccaataat agagagtatt aaatctcttg catatactcc atcgttaagc	1080					
tttcccttaa ggttgaatct taatgttccc ggaaccatta cccatgatgt tcctgtaacc	1140					
attgcataca aataatctgt acaaccaaca cctgtaccaa atgcacctaa cgcaccatat	1200					
gcacaagtat ggctgtctgc tccaaatata agctcacccg gcactacatg attttccatc	1260					
ataacctgat gacacacacc ctcgccctcg tagaacttaa tatcattagc cttagcaaag	1320					
teteteatet tettetgtga ggetgetgte ttaggaetgt etgatggaat attgtggtet	1380					
acaatccata caagcttatc cttgtcagca atatgaggat tctttaactt ctcatacata	1440					
ccaatagtaa gatgtgttgt tccatcatta ctcataagtc tgtcaagagt aacagttgca	1500					
atatcaccag cettaaeetg tgaaagaeet getgeeettg egataatett etetgeaata	1560					
gtcatgccat gctttgcctc atctgcaggt acggctgtac tctcagactc ttctttctca	1620					
ccatcaagtg atgcaataag accaccctga ttaagaatag cctgcatctt ggctggaagc	1680					
ttagtacatg tataagtett teeattaaca gttataatte eatettetaa tgaaagetea	1740					

-cont	inued
-conc	Innea

				-contir	nued	
cattcatccc	ccgcattaac	ttcgtcatgg	agttetttae	atacaataac	aggaagtcct	1800
atattaatag	cattacgata	gaatattett	gcaaatgatt	tggcaatcac	tgccttgaca	1860
cctaatgcct	taagtacgct	tggtgcctgc	tctcttgatg	aaccacatcc	aaagttgtca	1920
tctgcaacaa	cgaaatctcc	cggctttacg	gcagaagcaa	aatcagagtc	taatgattca	1980
aatgtatgac	tcttcatctc	atcaattgtc	ggaaacaaaa	gatactgcga	tgcaataatc	2040
tgatctgtat	caacatcttt	atcaaactta	aatatcctac	ccatatggta	gggtgcgagt	2100
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcggggggc	2160
gctcccggat	ggtagggtgc	gagtgacccc	gcgcgacttg	gaagggttca	aacgaccccg	2220
ccgtacgaac	ttttgtcggg	gggcgctccc	ggatggccgc	cgtcattgcc	aagtcctccg	2280
tctccgcggc	cgtggctcgc	ccggcccgct	ccagcgtgcg	ccccatggcc	gcgctgaagc	2340
ccgccgtcaa	ggctgccccc	gtggctgccc	cggctcaggc	caaccagatg	gtcaagaccg	2400
ttaagctttc	tcattgcctt	aacaagtccg	cctgcattaa	gtatatccac	aagattatca	2460
ggaagtgaag	caataggata	tgcttttcca	ttgtgtgtaa	tctttgcatt	tacttcaaca	2520
tcaatagtat	cgccttccgt	aacttcgtcg	tgaaggtctg	cattctctat	aaggagaagt	2580
ccgttattaa	tagaatttct	gaagaatatt	cttgcatatg	atttggcaat	aacacattta	2640
atacctaatg	ccttaataac	ctcaggtgcc	tgctctcttg	atgaaccaca	accaaagttc	2700
tttcctgcaa	caatgatgtc	gcctggctta	atctgacctg	caagttctgg	tcttaatggc	2760
gaaaatgcat	atggtttcat	atcttctact	gtctttaatg	caaggtactc	tgtagggata	2820
atgatatctg	tatcaatgtc	atcaccaagt	acccatactt	taccgctaaa	tttctcgttc	2880
attaaatgga	ggcgctcgtt	gatctgagcc	ttgccccctg	acgaacggcg	gtggatggaa	2940
gatactgctc	tcaagtgctg	aagcggtagc	ttagctcccc	gtttcgtgct	gatcagtctt	3000
tttcaacacg	taaaaagcgg	aggagttttg	caattttgtt	ggttgtaacg	atcctccgtt	3060
gattttggcc	tctttctcca	tgggcgggct	gggcgtattt	gaagcggttc	tctcttctgc	3120
cgtta						3125
<220> FEATU <223> OTHER 136:	TH: 2879 : DNA NISM: Artif: JRE: R INFORMATIC designer N: ppropylmalat	ial-promote:	ic Construct r-controlled	d chloroplas	No. 136, Exa st-targeted s DNA constr	
<400> SEQUE	ENCE: 136					
agaaaatctg	gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60
caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcggggggc	180
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300
ctgccccggc	tcaggccaac	cagatgaatg	aactgcctta	catcagaaac	ttttccatta	360
accgccgccg	ccactaccat	cgctggactc	atcaataaag	tgcgaccggt	tgatgacccc	420
tgacggcctt	taaaattacg	gttagaagaa	gaagcactaa	tttgatcgcc	aactaactta	480

cont	inued

				-contir	nued		
tcagggttca	tggctaaaca	catggaacag	ccggcttctc	gccattcaaa	cccggcttgg	540	
gtaaaaattt	tatcgagtcc	ttcggcttct	gcttgttgtt	taaccctttc	cgatccggga	600	
acgacaaatg	ctttaacccc	tgatgctacc	tgtcttcctt	gggcaaattt	ageegettet	660	
cgtagatcgc	tgatgcgtcc	attggtacaa	ctaccaataa	aacagacatc	gacaggagtc	720	
cccataatag	gcgatccggg	tttgagttgc	atatattcat	aagcttcttg	agcaataaag	780	
cgatcgcctt	ctggtaaact	ttcaggagta	ggaaccactt	cagtcacgcc	tattccttga	840	
ccgggggtaa	taccccaagt	aacagtcggt	tcgatctcac	cggcatcaaa	caccacgaca	900	
tcatcatatt	gggcattcgc	atcactgcgg	atactcttcc	accattcgac	ggccttatcc	960	
cagtcttggc	ctttgggaga	aaagtctctg	cctttgaggt	attcaaaagt	cacctcatca	1020	
gggttaatat	agccgcatct	agegeegeet	tcgatggcca	tattacaaac	ggtcattcgt	1080	
tcttccatcg	acatggcctc	aaaggtagtg	ccggcatatt	cataagcgta	acctacgccg	1140	
ccttttaccc	ctaatttgcg	gatgatgtgc	aggacgacat	ctttggcata	gactccgggg	1200	
ggtaaggttc	cgttaacttc	aattttacgg	actttgagtt	tagagagggc	tagggtttgg	1260	
gtagcgagga	catctcgcac	ttgggaggtt	cctatgccaa	aagcgatggc	cccaaaagcg	1320	
ccatgagtgg	aggtatgaga	gtcaccgcaa	gcaatggtca	ttccgggttg	agttagtcct	1380	
tgttcggggg	cgatcacatg	aacaataccc	tgatttcctg	agccgatatt	ataaaaaggg	1440	
atattattat	ctttagcatt	agtttcaata	gcccgcatca	tttcttcagc	gaggtcgtct	1500	
acaaagggac	ggtgttggtt	ctcggtgggt	acaatatgat	ccactgtggc	gacggtgcga	1560	
tcggggaata	ataccttcag	ttttctgtcc	cgtagcatag	caaaagcttg	tggactggta	1620	
acttcatgaa	tgaggtgaag	tcctataaat	agttgggttt	gtcccgatgg	taagatgcgg	1680	
acggtatgta	agtcccaaac	tttgtcaaac	agtgttcctg	tactcatatg	gtagggtgcg	1740	
agtgaccccg	cgcgacttgg	aagggttcaa	acgaccccgc	cgtacgaact	tttgtcgggg	1800	
ggcgctcccg	gatggtaggg	tgcgagtgac	cccgcgcgac	ttggaagggt	tcaaacgacc	1860	
ccgccgtacg	aacttttgtc	gggggggcgct	cccggatggc	cgccgtcatt	gccaagtcct	1920	
ccgtctccgc	ggccgtggct	cgcccggccc	gctccagcgt	gcgccccatg	gccgcgctga	1980	
agcccgccgt	caaggetgee	cccgtggctg	ccccggctca	ggccaaccag	ttatacctct	2040	
acggcatttt	tccaatttaa	ataaggtaat	tttttagcag	tttcttgaat	ttcagaaagg	2100	
ttttgaatga	gttgtccgca	gctatcccaa	gagcetteaa	ttaacatttg	tctagaccct	2160	
tctcccatgc	taacatcagc	aacaaattcg	ccacattgca	ctttcatagc	ggctaaatct	2220	
aaactgaggg	acaaggcagg	attttcttgc	aggagagatt	gtatttttc	tacggtttca	2280	
ggagaagetg	tcacacaggg	aaccccgtta	gcaatacaat	tgccaaagaa	aatttcagca	2340	
aaactttcac	cgataattgc	tttaattccc	caacgaataa	tggcttgtgg	ggcgtgttct	2400	
cttgaagatc	cacagccaaa	attagcgtta	actaccaaga	gattagctcc	ctgatattgc	2460	
		tccttgcatc				2520	
cctaagcctt	caaaggtgac	gcaacgtaga	aaccgcgcag	gaataatacg	atcagtatcg	2580	
atatcatcgc	ccactaaagg	gatacctcgt	cctgaaattt	gggtgacttg	actcattaaa	2640	
tggaggcgct	cgttgatctg	agcettgeee	cctgacgaac	ggcggtggat	ggaagatact	2700	
gctctcaagt	gctgaagcgg	tagettaget	ccccgtttcg	tgctgatcag	tcttttcaa	2760	
cacgtaaaaa	gcggaggagt	tttgcaattt	tgttggttgt	aacgatcctc	cgttgatttt	2820	

		-
-cont	inue	d

ggcetettte tecatgggeg ggetgggegt atttgaageg gttetetett etgeegtta	2879
<210> SEQ ID NO 137 <211> LENGTH: 1661 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 137, Exa 137: designer Nial-promoter-controlled chloroplast-targeted 3-Isopropylmalate Dehydrogenase DNA construct (1661 bp)	mple
<400> SEQUENCE: 137	
agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt	60
caaacgacce cgccgtacga acttttgtcg ggggggggctc ccggatggta gggtgcgagt	120
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc	180
geteeeggat ggeegeegte attgeeaagt eeteegtete egeggeegtg getegeeegg	240
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg	300
ctgccccggc tcaggccaac cagatgactc ggcaacaccg cataacccta cttcctggcg	360
atggtatcgg acctgaaatt ttagccgtaa ccgtagatgt cctaaaggtg ataggcaaac	420
aattcgacct aaattttgag tttacagaag ccctcatcgg cggtgctgcc attgatgcaa	480
ccggaaaccc cttacccgaa gaaaccttaa agatttgtcg caacagtgat gcagtgcttt	540
tagccgccat cgggggttat aagtgggata atttgccccg tcatcaacgc ccagaaacgg	600
gattattagg catcagagee ggettaggat tatttgetaa ettaegteeg geeaceattt	660
taccgcagtt aatcgacgct tccaccctca aacgagaagt cgtcgaaggc gtggacatta	720
tggtggtgcg agaactcacc ggcggcattt attttggtca accgaaggga atttttgaga	780
cagaaagcgg cgaaaaacgg ggcgtgaata ccatggccta tacagaatca gaaatagacc	840
gcattgetea aateggettt gaaacageee aaaaaegteg aggaaagete tgttetgtgg	900
ataaagccaa tgtcttagat gtctcccaat tatggcgcga tcgcgtaact ttaatggccg	960
aaaaataccc agatgtagaa ctgtctcatc tctatgttga caatgcggct atgcagctag	1020
tgcgtaaccc aaaacaattt gataccatcg tcaccggcaa tttatttggc gatatcctct	1080
cggatgcagc cgctatgtta accggtagta ttgggatgtt accctctgct agtttaggtt	1140
cagatggacc cggactattt gaaccggtac atggttcagc ccccgatatt gcaggacttg	1200
ataaagctaa cccgcttgct caggtactca gtgccgccat gatgttgaaa tatggcttaa	1260
atgagccaga agccgccgat caaatcgaac aagcggtttt agccgtatta gaaaaaggct	1320
atcgtacagg agacatcatg tcagaaggaa tgacgttagt gggatgtaag ggcatgggag	1380
aagttttgat taatgtetta gaatetttae aagggtgata aatggaggeg etegttgate	1440
tgagcettge eccetgaega aeggeggtgg atggaagata etgeteteaa gtgetgaage	1500
ggtagcttag ctccccgttt cgtgctgatc agtctttttc aacacgtaaa aagcggagga	1560
gttttgcaat tttgttggtt gtaacgatee teegttgatt ttggeetett tetecatggg	1620
cgggctgggc gtatttgaag cggttctctc ttctgccgtt a	1661

<210> SEQ ID NO 138 <211> LENGTH: 2174 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

-con			
	<u> </u>	 тu	eu

2-Isopropylmalate Synthase DNA construct (2174 bp) <400> SEQUENCE: 138 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60 120 caaacqaccc cqccqtacqa acttttqtcq qqqqqcqctc ccqqatqqta qqqtqcqaqt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc 180 geteeeggat ggeegeegte attgeeaagt ceteegtete egeggeegtg getegeeegg 240 cccqctccaq cqtqcqcccc atqqccqcqc tqaaqcccqc cqtcaaqqct qcccccqtqq 300 ctgccccggc tcaggccaac cagatgtgat gctgtaacag ccgcttgttc tttttgggtt 360 ttttcttgtt ctagggcaac ataaagacgg ttaagagcgc taatataagc ccgtgccgaa 420 gcaacgataa tatcagtatt agcggcatga cccgagaaag ttcggttttc gtatttcaga 480 cqaatqqtqa cttctcccat tqcatcaatq ccttctqtqa ctqacttaac cqaaaattca 540 atcaactggt taggaacatt aaccactcgg ttaatcgctt tataaaccgc atctacgggt 600 ccggttccaa tagccgcatc cattaattct tcgccgttgg gaccttttaa gatcacggtt 660 gctgttggac gggcctgatc gccacatgac acttgtacta attcgagacg gaagatttct 720 ggggcaacat gaatttcatc attgacgatg gcttctaagt cccagtcagt aatttctttg 780 cgcttgtctg ccacttcttt aaagcgtaca aaggctttat ttagctcagt ttccgtcaat 840 tcaaagccta attcttttag acgagtgccg aaagcattac gccctgagag tttccccgagg 900 acaatttgat tattggttaa cccgatagac tcagcgtcca taatttcgta ggttaattta 960 ttttttagca cgccatcctg atgaataccg gattcatgag cgaaagcatt agcgccgaca 1020 attgeettat teggttgtae egecateeeg gtgagaetgg aaactaaaeg ggatgttttg 1080 tagatttett tggtattgat attggttagg ggtteagtgg agtetgetgg tegteetaag 1140 aaaggattgt aataggageg gegtaeatga agegeeatea etaattette taaggeggeg 1200 ttgccggctc gttctcctat gccgttaata gtacattcta actgtctggc tccatttta 1260 acggetteaa ggaagttage cacegetaae eetaaateat tatgteeatg aacegagata 1320 atagcattgt ctatgttagg aacattttct ttgatgccgc gaatcaattg accaaattca 1380 gagggagtta aatagcctac ggtatcggga atattaacgg tagttgctcc ggctgctatg 1440 1500 gctctttcta atacttgata caaaaattct gggtcactac ggcctgcatc ttctggggaa aattetacat catetacaaa aqaetteqea taaqecaeca tttetqqqae qattetaqq 1560 acttettgae gagtettttt gagtttatag gecaagtgaa tateggaggt agecaaaaag 1620 gtatgaatgc ggggtttagc ggcgggtttg agggcttctg cggctttagt gatatcttgt 1680 cgagtggctc ttgccaagcc gcaaattgtg gggcctcctt ggactcctac tactttagcg 1740 attttttgta cagetteaaa ateteeggga ettgegtaag gaaaaeeege ttetatgaea 1800 tctactccca gtcgtgccag tgcgcgagca acggttagct tctcatcaac attcagggtt 1860 gctcccgggg actgttcccc atctcggaga gtggtatcga agatgataac gcgatcgggt 1920 tgtttactca ttaaatggag gcgctcgttg atctgagcct tgccccctga cgaacggcgg 1980 tggatggaag atactgctct caagtgctga agcggtagct tagctccccg tttcgtgctg 2040 atcagtcttt ttcaacacgt aaaaagcgga ggagttttgc aattttgttg gttgtaacga 2100 tcctccgttg attttggcct ctttctccat gggcgggctg ggcgtatttg aagcggttct 2160

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 138, Example 138: designer Nial-promoter-controlled chloroplast-targeted

ctcttctgcc	gtta					2174						
<pre><210> SEQ ID NO 139 <211> LENGTH: 2882 <212> TYPE: DNA <211> ORGANISM: Artificial Sequence <220> FEATURE: <220> OTHER INFORMATION: Synthetic Construct- Sequence No. 139, Example 139: designer Nial-promoter-controlled chloroplast-targeted Isopropylmalate Isomerase large/small subunits DNA construct (2882 bp)</pre>												
<400> SEQUENCE: 139												
agaaaatctg	gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60						
caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120						
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcggggggc	180						
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240						
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300						
ctgccccggc	tcaggccaac	cagatgcaac	aactcccgca	catccgcaac	ttcaccctga	360						
atcgccgcag	tagcgaccat	cgccggactc	attaacaaag	tgcgaccgga	agctgatcct	420						
tgtcgtcctt	taaagttgcg	gttggaggag	gaagcactaa	tttgtctacc	ttccagcttg	480						
tcggggttca	tggctagaca	catagaacat	ccaggttcgc	gccattcaaa	gcctgctgct	540						
tcaaagattt	tatctaaacc	ttcagcttcg	gcagcttttt	tcactcgttc	ggaaccggga	600						
accacaaaag	ccttgactcc	ttccgctacg	tggcgacctt	tggcaatttt	cgcggcttct	660						
tgcaggtcac	taagtctacc	gttagtgcag	ctaccgataa	agcaaacgtc	aattttcgtt	720						
cccttaatcg	gttgaccagg	atataaatcc	atgtaacggt	aagcttcttc	agctacaaag	780						
cggtcttctt	ctaggagttc	ttctggctgg	ggaatcaact	gattcacacc	aataccttga	840						
ccgggggtaa	ttccccaggt	aacagtgggg	ggaatatccg	cagcgttgaa	tactattaca	900						
tcatcgtatt	cagcatcagc	atcactcttg	attgattccc	accaagccac	ggetttttee	960						
caatcagcgc	cttggggggc	aaagtctcta	ccttggagat	aatcataggt	aacttgatca	1020						
ggattgacat	aaccgcatct	agcgccaccc	tcaatggcca	tgttgcagac	agtcatccgt	1080						
tcttccatat	tcatttgctc	aaaagtcgta	cccgcgtatt	cgtaggcgta	acctacacca	1140						
cctttcactc	ccagggtacg	gatgatatgc	aggatgacat	ctttggcata	aaccccaggg	1200						
ttgagtgtgc	cgttaacttc	aattttacgg	actttgagtt	tggataggga	taaggtttgg	1260						
gaggcgagaa	cgtcccgcac	ttggctagta	ccaataccaa	aagcgatcgc	cccaaacgcc	1320						
ccatgacttg	aagtgtggct	atcaccacag	gcgatcgtca	ttcccggctg	tgtcagtccc	1380						
agttctggcg	caatcacatg	aactatacct	tgattgccgg	aaccaatgtt	ataaaaagta	1440						
atgttattt	cttgacaatt	ctgctctagg	gcttggatca	tttcctcagc	caagcgatcg	1500						
acaaaaggac	gcgcctgatt	ctctgtaggc	acgatgtgat	ccacagtagc	cacagtccgc	1560						
tcaggaaata	gtacctttaa	acctcgttcc	cgtaacatag	caaaggcttg	tggactagta	1620						
acttcatgga	ctaggtgcag	gccaataaat	agctgtgtta	gccctgaagg	aagtgtacca	1680						
acagtgtgta	agtcccaaac	tttatcaaac	agggtgcctt	tgctcatatg	gtagggtgcg	1740						
agtgaccccg	cgcgacttgg	aagggttcaa	acgaccccgc	cgtacgaact	tttgtcgggg	1800						
ggcgctcccg	gatggtaggg	tgcgagtgac	cccgcgcgac	ttggaagggt	tcaaacgacc	1860						

-continued

60

120

180

240 300

360

420

480

540

600

660

720

780

840

ccgccgtacg	aacttttgtc	gggggggcgct	cccggatggc	cgccgtcatt	gccaagtcct	1920
ccgtctccgc	ggccgtggct	cgcccggccc	gctccagcgt	gcgccccatg	gccgcgctga	1980
agcccgccgt	caaggctgcc	cccgtggctg	ccccggctca	ggccaaccag	atgaccagca	2040
gccagtttac	cccaactcac	ataaggtaac	ttagcagatg	ttacccgcac	ttgctcggtg	2100
ttcgctacca	actgaccgca	agcatcccaa	gccccagtaa	taaaggtgct	tctggttcct	2160
tcaccaatgg	agattggcgc	ggtgaaatca	ccaacttgta	cttgcagagt	ttctaagttg	2220
atgctgacat	tagcttgagg	attagcggct	actaactctt	gcaattgttt	aacgatcgcc	2280
tcatcagcag	tgacacaagg	tacaccgatg	gctacgcaat	taccgaagaa	aatttctgca	2340
aaactttcac	caatcacgga	ttgaatcccc	catttagaaa	gggettgggg	tgcgtgttcc	2400
cgtgaagaac	cacagccaaa	gttgcggtta	actatgagga	tatttgcgcc	ttgatactgc	2460
ggttggtcaa	aaggatgctc	cccttttagg	gctgtgcggt	catcaataaa	cgcgccttca	2520
cgtaacccat	caaaggtaat	ggctttgaga	taacgagcag	gaataatgcg	atcggtatca	2580
atatcattac	ccactaaggg	tatgccacgc	cctgtaactt	ctttaacttc	actgaccatt	2640
aaatggaggc	gctcgttgat	ctgagccttg	ccccctgacg	aacggcggtg	gatggaagat	2700
actgctctca	agtgctgaag	cggtagctta	gctccccgtt	tcgtgctgat	cagtcttttt	2760
caacacgtaa	aaagcggagg	agttttgcaa	ttttgttggt	tgtaacgatc	ctccgttgat	2820
tttggcctct	ttctccatgg	gcgggctggg	cgtatttgaa	geggttetet	cttctgccgt	2880
ta						2882

<210> SEQ ID NO 140 <211> LENGTH: 2210 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 140, Example 140: designer Nial-promoter-controlled chloroplast-targeted 2-Keto Acid Decarboxylase DNA construct (2210 bp) <400> SEQUENCE: 140 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt caaacgaccc cgccgtacga acttttgtcg ggggggggcgctc ccggatggta gggtgcgagt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc gctcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg ctgccccggc tcaggccaac cagatgtata cagtaggaga ttacctgtta gaccgattac acgagttggg aattgaagaa atttttggag ttcctggtga ctataactta caatttttag atcaaattat ttcacgcgaa gatatgaaat ggattggaaa tgctaatgaa ttaaatgctt cttatatggc tgatggttat gctcgtacta aaaaagctgc cgcatttctc accacatttg gagtcggcga attgagtgcg atcaatggac tggcaggaag ttatgccgaa aatttaccag tagtagaaat tgttggttca ccaacttcaa aagtacaaaa tgacggaaaa tttgtccatc atacactagc agatggtgat tttaaacact ttatgaagat gcatgaacct gttacagcag $% \left({\left({{{\left({{{\left({{{\left({{{\left({{{\left({{{c}}}} \right)}} \right.} \right.} \right.} \right.} \right.} \right)} \right)} \right)} \right)} = 0}$

cgcggacttt actgacagca gaaaatgcca catatgaaat tgaccgagta ctttctcaat

tactaaaaga aagaaaacca gtctatatta acttaccagt cgatgttgct gcagcaaaag

-continued									
_ cagagaagcc tgcattatct ttagaaaaag aaagctctac aacaaataca actgaacaag	900								
tgattttgag taagattgaa gaaagtttga aaaatgccca aaaaccagta gtgattgcag	960								
gacacgaagt aattagtttt ggtttagaaa aaacggtaac tcagtttgtt tcagaaacaa	1020								
aactaccgat tacgacacta aattttggta aaagtgctgt tgatgaatct ttgccctcat	1080								
ttttaggaat atataacggg aaactttcag aaatcagtct taaaaatttt gtggagtccg	1140								
cagactttat cctaatgctt ggagtgaagc ttacggactc ctcaacaggt gcattcacac	1200								
atcatttaga tgaaaataaa atgatttcac taaacataga tgaaggaata attttcaata	1260								
aagtggtaga agattttgat tttagagcag tggtttcttc tttatcagaa ttaaaaggaa	1320								
tagaatatga aggacaatat attgataagc aatatgaaga atttattcca tcaagtgctc	1380								
ccttatcaca agaccgtcta tggcaggcag ttgaaagttt gactcaaagc aatgaaacaa	1440								
tcgttgctga acaaggaacc tcatttttg gagcttcaac aattttctta aaatcaaata	1500								
gtcgttttat tggacaacct ttatggggtt ctattggata tacttttcca gcggctttag	1560								
gaagccaaat tgcggataaa gagagcagac accttttatt tattggtgat ggttcacttc	1620								
aacttaccgt acaagaatta ggactatcaa tcagagaaaa actcaatcca atttgtttta	1680								
tcataaataa tgatggttat acagttgaaa gagaaatcca cggacctact caaagttata	1740								
acgacattcc aatgtggaat tactcgaaat taccagaaac atttggagca acagaagatc	1800								
gtgtagtatc aaaaattgtt agaacagaga atgaatttgt gtctgtcatg aaagaagccc	1860								
aagcagatgt caatagaatg tattggatag aactagtttt ggaaaaagaa gatgcgccaa	1920								
aattactgaa aaaaatgggt aaattatttg ctgagcaaaa taaatagtaa atggaggcgc	1980								
tegttgatet gageettgee eeetgaegaa eggeggtgga tggaagatae tgeteteaag	2040								
tgetgaageg gtagettage teecegttte gtgetgatea gtetttttea acaegtaaaa	2100								
ageggaggag ttttgeaatt ttgttggttg taaegateet eegttgattt tggeetettt	2160								
ctccatgggc gggctgggcg tatttgaagc ggttctctct tctgccgtta	2210								
<210> SEQ ID NO 141 <211> LENGTH: 1724 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 141, Example 141: designer Nial-promoter-controlled chloroplast-targeted NADH-dependent Alcohol Dehydrogenase DNA construct (1724 bp)									
<400> SEQUENCE: 141	<u>()</u>								
agaaaatotg goaccacaco atggtagggt gogagtgaco cogogogact tggaagggtt	60 120								
caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccggatggta gggtgcgagt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc	120								
getecceggat ggeogecgte attgecaagt cetecgtete egeggeogtg getegecegg	240								
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg	300								
ctgccccggc tcaggccaac cagatgggcg gcggcttcga gtatctgacg gctgacgtca	360								
agggtaatat cgccgttttc acccagatgg gtcatgccgt ggtcctccaa ctgctgcacc	420								
aggtcggtaa tgccttgcgc accgatgtca taggcggaca ggcgggtcgg cacaccaagg	480								
ttttcaaaga attcctccgt cttgcggata accgcattga tccgctcatc ttccgttcca	540								
teggteaggt tecataceeg taetgeatae tgaageagtt tggeaegett tteetegega	600								
55 - 55	-								

-continued

cgcaccttca	gcagggcagg	aaataccatg	gccagcgtcc	gggcgtggtc	aatgtggtat	660
tttgccgtga	tttcgtggcc	gatcatatgc	gtgctccagt	catgtggcac	ccctgcgccg	720
atcaggccat	taagcgccaa	tgtcgccacc	cacatgaggt	tggagcgcag	gtcataatca	780
tcgggtgccg	ccatgatacg	tggcccgatt	tccacaaggc	tggagagcag	cccttcggaa	840
aagcgatcct	gcgccattcc	gtccacagga	taggtcatgt	actgttccat	cacatggacg	900
aaggagtcca	caacaccgtt	gataacctgc	ttcatcggca	ggctcatggt	gcgtgtcggg	960
tcaagcacgg	aaaagcgtgg	atagaccagg	ggattggaaa	acaggagctt	atccccagtg	1020
gactgccgtg	aaatcacgct	catgcagttc	atttcagacc	ccgtggcagg	cagggtgacc	1080
accgtgccca	gtggcagggc	cttggtcgcg	gctgtgcctt	tgctggtcag	gatgtcccat	1140
gcctcacctt	catatgggac	agcggcagcg	acgaacttgg	tcccatccat	gacagagccc	1200
ccacccacgg	caagcaggaa	gtcgagccct	tcttcacgca	ccatggttac	ggccttcatc	1260
agggtttcat	aggtgggatt	ggcctcgatg	ccaccgaatt	cccgaaaggt	ccggctaccg	1320
agggcggcgc	gtacctcggc	aagcgtcccg	ctgcgctcgg	cgcttgaacc	gccatacagg	1380
acgaggacac	gggcctgggg	tgacaactga	tcatctagac	ggccaatcat	gcctttgccg	1440
aacaggacac	gtgttgggtt	atagaattcg	aaattctgca	ttaaatggag	gcgctcgttg	1500
atctgagcct	tgccccctga	cgaacggcgg	tggatggaag	atactgctct	caagtgctga	1560
agcggtagct	tagctccccg	tttcgtgctg	atcagtcttt	ttcaacacgt	aaaaagcgga	1620
ggagttttgc	aattttgttg	gttgtaacga	tcctccgttg	attttggcct	ctttctccat	1680
gggcgggctg	ggcgtatttg	aagcggttct	ctcttctgcc	gtta		1724

<210> SEQ ID NO 142

<210> SEQ 1D No 142
<211> LENGTH: 1676
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 142, Example 142: designer Nial-promoter-controlled chloroplast-targeted NADPH-dependent Alcohol Dehydrogenase DNA construct (1676 bp)

<400> SEQUENCE: 142

agaaaatctg	gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60
caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcggggggc	180
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	getegeeegg	240
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300
ctgccccggc	tcaggccaac	cagatgccta	tatacttttt	caaataattt	ctttaaatct	360
tttaaattta	cttctctgac	atttccacta	gtacaaatat	cttcaagagc	agatttagac	420
ataatattta	tttcattaaa	atatttttct	tcatctattg	ctaaatcttt	tacacaacta	480
ggaagtccta	agtttttatt	taaaacttcc	actgccacag	ctaaactttc	tgctccttct	540
tctgtattat	ttgcaggaaa	acctaaatct	tttgaaattt	cataatatct	ttgagcagta	600
gttttatttt	ctgaattgaa	tctaattatg	tagggtaata	tagttccatt	tatttttcca	660
tgagctatat	gaaactttcc	accaatagcg	tgggctatac	tatgatttat	tcctaaacca	720
gatttttcaa	aagcaaaacc	tgctatacaa	gatgcctttg	ccatttcaat	cctagcttcc	780

-con	+	n.	n	110	0

-continued	
ccatctttta tatctctata cattctcaaa agatttttaa aaataagtct tatagctgaa	840
agagcatata tttgagtata aaaatttgct tctttgcaag tgtatgactc aatagcatga	900
yttagagcat ctatacctga atcagctaca actgattttg gtagtgtttt tgtaagttca	960
ggatctagta ttgcatattc aggtatcatc tcattatctt ttaatggaat ttttacatta	1020
tettttat etgtaagaae tgeataggaa ettaettetg aacetgttee aettgtagtt	1080
ggtaaggcta ttaaagggat agataatcca gattttttta caaaatattt aattgactta	1140
gcagtatcaa gagaagaacc tcctcctatt gctaccatca catctggaag aaaatcaata	1200
accttatcta aggetttact aactatttea aatgetggat eaaetteaae tteattaaaa	1260
atootataat otatattttt ttgottaaat atattttoaa attttttagt cattootatt	1320
ttgacataa ctgaatcagt tactataaag gcttttttag ctttaatttt attaataact	1380
ccatcaaatt tgtctcctac ataaacattt gtatttactt caaaaatttt cattaaatgg	1440
aggegetegt tgatetgage ettgeeeet gaegaaegge ggtggatgga agataetget	1500
rtcaagtget gaageggtag ettageteee egtttegtge tgateagtet tttteaacae	1560
gtaaaaageg gaggagtttt geaattttgt tggttgtaae gateeteegt tgattttgge	1620
ctetttetee atgggeggge tgggegtatt tgaageggtt etetettetg eegtta	1676
<pre><211> LENGTH: 3629 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence </pre>	
<pre>x212> TYPE: DNA x213> ORGANISM: Artificial Sequence x220> FEATURE: x223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp)</pre>	
<pre>x212> TYPE: DNA x213> ORGANISM: Artificial Sequence x220> FEATURE: x223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) x400> SEQUENCE: 143</pre>	
<pre>2212> TYPE: DNA 2213> ORGANISM: Artificial Sequence 2200> FEATURE: 2223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 2400> SEQUENCE: 143 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt</pre>	60
<pre>2212> TYPE: DNA 2213> ORGANISM: Artificial Sequence 220> FEATURE: 2223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 2400> SEQUENCE: 143 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccggatggta gggtgcgagt</pre>	60 120
<pre>212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 400> SEQUENCE: 143 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccggatggta gggtgcgagt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcgggggggcg accccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcgggggggcg accccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggg</pre>	60 120 180
<pre>2212> TYPE: DNA 2213> ORGANISM: Artificial Sequence 220> FEATURE: 2223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 400> SEQUENCE: 143 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccggatggta gggtgcgagt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc gctcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg</pre>	60 120 180 240
<pre>212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 400> SEQUENCE: 143 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccggatggta gggtgcgagt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcgggggggcg accccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcgggggggcg accccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggg</pre>	60 120 180 240 300
<pre>212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 2223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 400> SEQUENCE: 143 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccggatggta gggtgcgagt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggg gctcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg gccccccgcg cgtgcgccc atggccgcg tgaagcccgc cgtcaaggct gcccccgtgg</pre>	60 120 180 240 300 360
<pre>2212> TYPE: DNA 2213> ORGANISM: Artificial Sequence 220> FEATURE: 2223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 2400> SEQUENCE: 143 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccggatggta gggtgcgagt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc getccccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg cccgctccag cgtgcgcccc atggccgcg tgaagcccgc cgtcaaggct gcccccgtgg cccgctccag cgtgcgccac cagatgaccg gtatttctca ttcctgccgc aattccatta</pre>	60 120 180 240 300 360
<pre>212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 400> SEQUENCE: 143 agaaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt gaaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaacttt gtcggggggc gctcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgccgg gcccccgcgc tcaggccacc atggtagccg tgaagcccgc cgtcaaggct gcccccgtgg cccgctccag cgtgcgccac atggccgcg tgaagcccgc cgtcaaggct gcccccgtgg ctgccccggc tcaggccaac cagatgaccg gtatttctca ttcctgccgc aattccatta atggttaata gcgctcctct gagcaactct tccttagaat aacggaaatt aatgactcca</pre>	60 120 180 240 300 360 420
<pre>2212> TYPE: DNA 2213> ORGANISM: Artificial Sequence 220> FEATURE: 2223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 2400> SEQUENCE: 143 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt caaacgaccc cgccgtacga acttttgtcg gggggcgctc ccggatggta gggtgcgagt gaccccggcg gacttggaag ggttcaaacg accccgccgt acgaacttt gtcggggggc getcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg cccgctccag cgtgcgccac cagatgaccg tgaagccgc cgtcaaggct gcccccgtgg ctgccccggc tcaggccaac cagatgaccg gtatttctca ttcctgccgc aattccatta atggttaata gcgctcctct gagcaactct tccttagaat aacggaaatt aatgactcca gactcagctt gtgcgttgta ctgacgtagg cgtttgatga gagatacttg caaaaatcct</pre>	60 120 180 240 300 360 420 480 540
<pre>212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 2223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 2400> SEQUENCE: 143 agaaaatetg geaccacaece atggtagggt gegagtgace cegegegaet tggaagggt gaeeeegege gaettggaag ggtteaaaeg acceegeegt acgaaettt gtegggggge geteeeggat ggeegeegte attgeeagt ecteegtete egeggeegtg getegeegg eeegeteeag egtgegeeee atggeegee tgaageeege egteaagget geeeegtg etgeeeegge teaggeeaae eagatgaeeg gtatteetea tteetgeege aatteeatta atggttaata gegeteett gageaaetet teettagaat aaeggaaatt aatgaeteea gaeeeagett gtgegttgta etgaegtagg egtttgatga gagataettg caaaaateet agaggaacaa ttgtteeatt gegtaaetga acaagaeget gtaaggtegg ategeeatet agaggaacaa ttgtteeatt gegtaaetga acaagaege aagtgegatg ategeeatet agaggaeegtt tatteteggt aatteetaag acaagaege aagtgegatg atattettgg</pre>	60 120 180 240 300 360 420 480 540
<pre>212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 2400> SEQUENCE: 143 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt caaacgaccc cgccgtacga actttgtcg ggggggcgctc ccggatggta gggtgcgagt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggg gctcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg cccgctccag cgtgcgccac cagatgaccg gtatttctca ttcctgccgc aattccatta atggttaata gcgctcctct gagcaactct tccttagaat aacggaaatt aatgactcca gactcagctt gtgcgttgta ctgacgtagg cgtttgatga gagatacttg caaaaatcct agaggaacaa ttgttccatt gcgtaactga acagaacgc gtaaggtgga atcgccatct aggagccgtt tattctcggt aattcctaag accaggcg aagtgcgatg atattcttgg gctatttgct caaacagccg ctcaaagcgt tcctatctt ccggttgaga caattccttt aggaggcgtt tattctcggt attccaagcgt tcctatctt ccggttgaga caattcctttgg gctatttgct caaacagccg ctcaaagcgt tcctatctt ccggttgaga caattccttt</pre>	60 120 180 240 300 360 420 480 540 600
<pre>212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 2223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 400> SEQUENCE: 143 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaacttt gtcggggggc getecccggat ggccgccgte attgccaagt ectecgtete cgcggccgtg getegeccgg cccgetecag egtgegecee atggccgcg tgaagecege egteaagget geeceetgg etgecccgge tcaggecaac cagatgaceg gtattetea tteetgecge aattecatta atggttaata gegetectet gagcaactet teettagaat aacggaaatt aatgacteca gactcagett gtgcgttgta etgacgtagg egtttgatga gagataettg caaaaateet agaggaacaa ttgttecatt gegtaactga actaageege aagtgegatg ategecate agaggacegtt tatteteggt aatteetaag actaageege aagtgegatg atattettgg getatttget caaacageeg etcaaageeg teettattete ccggttgaag caatteettt acaaaatgat aggcaatttg caaatetace ttagataagg teattteete teeggttgaag caatteettt acaaaatgat aggcaatttg caaatetace ttagataagg teatteetet actaatgat aggcaattg caaatetace ttagataagg teattteetetete actaatgat aggcaattg caaatetace ttagataagg teattteetete attggataata gegeatttg caaatetace ttagataagg teattteetetetete actaatgat aggcaatttg caaatetace ttagataagg teattteetetetetetee actaatgat aggcaatttg caaatetace ttagataagg teattteetetetetetetetetee actaatgat aggcaatttg caaatetace ttagataagg teattteetetetetetetee actaatgat aggcaatttg caaatetace ttagataagg teattteeteteteteteteteetee actaatgat aggcaatttg caaatetace ttagataagg teattteeteteteteteteeteeteeteeteeteeteet</pre>	60 120 180 240 300 360 420 480 540 600
<pre>2212> TYPE: DNA 2213> ORGANISM: Artificial Sequence 2220> FEATURE: 2223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 2400> SEQUENCE: 143 agaaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt gaacccggcg gacttggaag ggttcaaacg accccgccgt acgaacttt gtcggggggg gctcccgggt ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg gctcccggc tcaggccaac cagatgaccg gtattctca ttcctgccgc aattccatta atggttaata gcgctcctct gagcaactct tccttagaat aacggaaatt aatgactcca gacccagctt gtgcgttgta ctgacgtagg cgtttgatga gagtacttg caaaatcct aaagggaacaa ttgttccatt gcgtaactga acagaacgc gtaaggtggg atcgccatct</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780
<pre>212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 2400> SEQUENCE: 143 agaaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt gaacccggcg gacttggaag ggttcaaacg accccgccgt acgaacttt gtcggggggg getcccgggt ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgccgg getcccggc tcaggccacc cagatgaccg gtattctca ttcctgccgc aattccatta atggttaata gcgctcctct gagcaactct tccttagaat aacggaaatt aatgactcca gactcaagett gtgcgttgta ctgacgtagg cgtttgatga gagatacttg caaaaatcct agaggaacaa ttgttccatt gcgtaactga actaagecgc aagtgcgag attactctg gctattgct caaacagccg ctcaaagcg ttcctatctt ccggttgaga caattccttt acaaaaggac gt tattctcagt attccaaga actaagecgc aagtgcgag attacttgg gctatttgct caaacagccg ctcaaagcgt tctctatctt ccggttgaga caattccttt acaaaatgat aggcaatttg caaatctacc ttagataagg tcatttccac ttttggagatg gctatttgct caaacagccg ctcaaagcgt tctctatctt ccggttgaga caattccttt acaaaatgat aggcaatttg caaatctacc ttagataagg tcatttccac ttttggagatg accattttaa agaagggcca tttgagataa aaatagcgca acagttccaa atgttctca</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780 840
<pre>212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 2400> SEQUENCE: 143 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaacttt gtcggggggg getceccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg getceccggc tcaggccacc cagatgaccg gtatttctca ttcctgccgc aattccatta atggttaata gcgctcctt gagcaactct tccttagaat aacggaaatt aatgactcca gactcagctt gtgcgttgta ctgacgtagg cgtttgatga gagtacctg caaaaatcct agaggaacaa ttgttccatt gcgtaactga acaagacgc agtggggg atcgccatt gactcagctt attgccaag cgttagagg cgtttgatga gagatacttg caaaaatcct agaggaacaa ttgttccatt gcgtaactga acaagacgc agtgcgatg atattcttg gctatttgct caaacagccg ctcaaagcgt tctctatctt ccggttgaga caattccttt acaaaatgat aggcaatttg caaatctacc ttagataagg tcatttcca ttttgagatg accatttaa agaagggcca tttgagataa aaatagcgca acagttccaa atgttctca acaatatgat aggcaattg caaatctacc ttagataagg tcatttcca ttttgagatg accattttaa agaagggcca tttgagataa aaatagcga acagttcaa atgttctca ggttcggtgc taataaactg ttctaaagc gttctaccc cataccaagc gggtaacaga</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900
<pre>212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 2223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 400> SEQUENCE: 143 agaaaatetg geaceacaec atggtagggt gegagtgace ceggaggtg gggggggg gaeeeegge gaettggaag ggtteaaaeg acceegeegt acgaaettt gtegggggge geteeegge gaettggaag ggtteaaaeg acceegeegt acgaaettt gtegggggge geteeegge teaggeegee atggeegee tgaageeege egteaagget geeeeegg etgeeeegge teaggeeae cagatgaeeg gtatttetea tteetgeege aatteeatta atggttaata gegeteett gageaaetet teettagaat aaeggaaatt aatgaeteea gaeteaggtt gtgegttgta etgaegtagg egtttgatga gagataettg caaaaateet agaggaacaa ttgtteett gegtaaetga actaageege aagtgeggat gaeteeett agagggaeaa ttgtteett gegtaaetga acagaeget gtaaggeega atteett agagggaeegt tatteeggt aatteetaag actaageege aagtgegat atteettg getatttget caaacageeg etcaaageet teeteatett eeggttgaga caatteettt acaaatgat aggeaatttg caaatetaee ttagataagg teatteeea tttegagag getatttget caaacageeg etcaaageeg teeteatett eeggttgaga caatteettt accataatgat aggeaatttg caaatetaee ttagataagg teatteea tttegagatg accattttaa agaagggeea tttgagataa aaatagegea acagttteaa atgttettea gggteggtge taataaaetg ttetaaageeg gtteetacee cataccaage gggtaacaga aacagggttt gagteeaaet aagaaceaa ggaattgeeg gaggtaee gaggteetttea accattttaa agaagggeea tttgagataa aaatageege acagttteaa atgttettea gggteggtge taataaaetg ttetaaageeg gtteetacee cataccaage gggtaacaga aaacgggttt gagteeaaet aagaeceaa ggaattgeeg gtagggtaet gaggtetttt</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900
<pre>212> TYPE: DNA 213> ORGANISM: Artificial Sequence 220> FEATURE: 223> OTHER INFORMATION: Synthetic Coonstruct- Sequence No. 143, 143: designer Nial-promoter-controlled chloroplast-targeted Phosphoenolpyruvate Carboxylase DNA construct (3629 bp) 400> SEQUENCE: 143 gaaaatetg geaccacace atggtagggt gegagtgace eegegegaet tggaagggtt acceeding geacege actttgteg gggggegete eegegeggt getggeggg teceeding ggeegeegte attgeeaagt ecteegtete egeggeegt getegeeegg teceeding ggeegeegte attgeeaagt ecteegtete egeggeegt getegeeegg tegeeeegge teaggeeaae eagatgaeeg gtatteea tteetgeege aatteeatta tgggtaata gegeteete gageaaetet teetagaat aatgeetee teeteeggat ggeegeegte attgeeagg egttgatgat acceeding ecceeding tegeeeegge teaggeeaae eagatgaeeg gtatteea tteetgeege aatteeatta tgggtaata gegeteete gageaaetet teetagaat aacggaaatt aatgeeteea tegaggaacaa ttgtteeatt gegtaaetga acagaaeget gtaaggtegg ategeeate gagggeegt tatteeggt aatteeaag ecteagee aggeggag atatteett tegagageegt tatteeegt actgeegge teeaageege aagteega atteettt teeataatgat aggeaatttg eaaatetaee ttagataagg teatteeae tttegagatg teeatttget eaaacageeg eteaaagegt teetatett eeggttgaga caatteettt teeataatgat aggeaatttg eaaatetaee ttagataagg teatteeae atteete teataatgat aggeaatttg eaaatetaee ttagataagg teatteeae atteete teeatattaa agaagggeea tttgagataa aaatagegea acagtteeaa atgtteetea teeatattaa agaagggeea tttgagataa aaatagegea acagtteeaa atgtteetea teeatattaa agaagggeea tttgagataa aaatagegea acagtteeaa atgtteetea teeatattaa agaagggeea ttegagataa gaatteege gaggataee gaggtaeeaga aacgggttt gagteeaaet aaagaeceaa ggaattgee gtagggtaee gaggteettt teeeaett taegtetage egggegagaa etaattega gttgaetaat teetgaatga</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

-continued

aagccgcagc ctaacaaact cgattgaata acggcagtaa caatggtttc taggttataa 1140 agggctaatt cagggagaga atatttagaa gcgaggactt ctccctgttc agtaatttta 1200 attetgeeat taacegtege tgteggttga gegagaatag eggeataage gggteeaceg 1260 cctcgtccta ctgaaccccc gcgtccgtga aacaggcgta aatctaagcc atatcttta 1320 gegaettttt gtaaagettt ttgggettta tgaateteee aattaetget taaaaaeeea 1380 qaatctttqt tactqtcqqa ataaccqacc ataatttctt qtaqqttaqt qqqttctaaq 1440 agggggggtt taagttegee cacattttee ceetgtaaag aggetaaatg ateatateet 1500 cctgccaaag tggcgcggta aagagtcaat tcaaatagcg cccgcatgat ttcgggtgcc 1560 cgtttaaggt cttctacggt ttcaaatagg ggtacaatgc ggatcgtgct ggaacaagtg 1620 1680 gccqqqtcat aqaqtccqqc ttcttqtqcc aaqaqaaqaa cctctaaqac atcqctqacc tcattagtca tactgataat gtaggtatga cagatctcta aaccaaattc ttgttgtagc 1740 tgccgcaaca tcctcaaggt ttctatcact tcgcaggttt tctcagaaaa cggcatttcc 1800 tggggaatga gaggacgacg agtttttaat tcttcgatta accaggcggt tctttcggct 1860 tcagtcagtt ggttgtaggg tttaggcaga atttgtaaat attctgctat ttcgttgatc 1920 gcatctgagt ggttactcga ctcttggcgg aaatctagtt gcgtgaggtt aaacccataa 1980 acttetacet gacaaattaa getatetaat tettgacaae ttaageeagt getttetagg 2040 ttacgccgca ttaatttgag ttcttctata aactcttctt tattttggta attgttggcg 2100 ttggttgtct tgaacactaa aaggcgttct tctgggttag ctaggcggct attgcggtcg 2160 cgggtatttt ccaggcgttt tttaatataa gctaacttaa gacgataggg ttcttgacgg 2220 taacgaatgg ctaactgatt ataaacttgt gggatttgta cgcggtcttt ttctagggag 2280 tctaacaaat ccggcaggac gttacaccaa tggagggaag gactaaggat attcgataac 2340 tcatctaccc tttcgatata tttttcgata acgacattgc gttgataaca ggccgtggcc 2400 caagtcactt ctggtgtaac aaaggggttc ccatctcgat cgcctcccac ccaagagcca 2460 aaataacaga aattattett eggtgggegt agtetgggga aggeaetttt tagagttegt 2520 ttgagacgaa gggctaattg aggaattgcc tcaaagagga cttcattaaa atagtgtagg 2580 gagtagtcca cttcatctaa cacggtgggt ttaaactggt gtaactcatc ggtacgccac 2640 caqaqqcqaa tttcttcttt aaqctqttct ttaqcttctt ctqcttccca qqaqttqqtt 2700 agecceatte etetaaaggt ttettetgee tggtetaaet tttgtaaaat atgagegata 2760 cgccgttgtt tgcgtcgaat ggtgtggcga acaatttcgg tgggatgggc tgtaaaaacc 2820 aggcgcacat ctagttgttc gagtaggcgt tgaatttgtt gaggtggaac atttaattgt 2880 tttaaatagg gaaatagcca gtgaaaagtt cctatttttt gatcattttg tttttcatcg 2940 ttcaaacttc tttctaacca atttgctcca aatgccgagg agaatatact ggtttgctcg 3000 ccgttaatgc catttttggc actggactct ccttcattgt aggtggcccg tcgtgagagt 3060 tgttggtctc gttgttcgta gtgttgttca acaatattaa tgagttggaa atagagagca 3120 aaagcgcgag acgttcttac tgcttcattg aggtcgagtt tttcaatcaa ttgggtaatg 3180 gagtetteta acgetttttg ggettgteet tgtteagaae aaattgeaeg eagttttatg 3240 agcagateea ecaaatettg ecegeattet geetttagea eggetteeea taaatetteg 3300 actaatttta gtctagcttg taaaaataag tctgatgtgg agaagaattg taatggggtt 3360

continued

		-continued		
gtggggactt gaactagcg	a actcattaaa tggaggcgct	cgttgatctg aged	ttgccc 3420)
cctgacgaac ggcggtgga	t ggaagatact gctctcaagt	gctgaagcgg tage	ttagct 3480)
ccccgtttcg tgctgatca	g tctttttcaa cacgtaaaaa	ı geggaggagt tttg	caattt 3540)
tgttggttgt aacgatcct	c cgttgatttt ggcctctttc	tccatgggcg ggct	gggcgt 3600)
atttgaagcg gttctctct	t ctgccgtta		3629	1
144: designer 1	ficial Sequence ION: Synthetic Construc Nial-promoter-controlle otransferase DNA constr	ed chloroplast-ta		
<400> SEQUENCE: 144				
agaaaatctg gcaccacac	c atggtagggt gcgagtgacc	e cegegegaet tgga	agggtt 60)
caaacgaccc cgccgtacg	a acttttgtcg ggggggcgctc	e ceggatggta gggt	gcgagt 120)
gaccccgcgc gacttggaa	g ggttcaaacg accccgccgt	acgaactttt gtcg	gggggc 180)
geteeeggat ggeegeegt	c attgccaagt ceteegtete	e egeggeegtg gete	gcccgg 240)
cccgctccag cgtgcgccc	c atggccgcgc tgaagcccgc	: cgtcaaggct gccc	ccgtgg 300)
ctgccccggc tcaggccaa	c cagatgaacc gagacaccaa	ı gcaggctgtt ttgg	aagagc 360)
tgtaaccgtt ccagaccct	t ttcaatcgtt tggcagtcag	ı tggcgtagga gagc	cggatg 420)
ctgcgatcgt cgccaaagg	c aatgeeggga atggetgeaa	ı cttgatgttg atco	aacagt 480)
tgacggcaat aggtcatcg	a gtcgagacct gttttgctga	ı tgtccacgaa gacg	tagaac 540)
gccccttccg gtattggac	a ggagagcccc gcgatttgat	tcagtccgtt caag	atcaac 600)
tgacgccgct ccgtaaagg	c agccagcatt tctgccacac	aatcctgtgg acct	tgcaga 660)
gctgcgatcg cgccgtact	g ggcaaaggtg cagacgtttg	aggtgctgtg gctt	tgcagc 720)
gatgcagcag cagcaatta	g ctcgctcgga cccgcgaggt	agccaacccg ccat	cctgtc 780)
atcgagtagg ctttggcga	a geogttgetg atcagegtte	: gttcaaaaca ggcg	gggctc 840)
aagctgccaa tgctgtggt	g atcggctccg tcgtaaagga	a tottttogta aatt	tcatca 900)
gaaacgaccc aaaagtcat	g ggcttcaatg atcggcgcga	a tegetteeag ttet	tgeegg 960)
ctatagacca tccccgtgg	g attggagggg gaattcagca	a ctagcagccg tgtc	cgaggc 1020)
gtaatcgccc ctgccaatt	g ctgcggctgg agtttaaagc	: cgtcgctggc gaaa	gtttca 1080)
acgatgacgg gcacaccgc	c cgccaacttg accatttcgg	gatageteaa eeag	taaggt 1140)
gcggggataa tcacctcat	c gcccggatcg agcagcacct	gcatcaggtt gtag	agtgac 1200)
tgettaeege cattggtga	c gagaatgttg gcggcttggt	aatcgagtcc gttg	tcggcg 1260)
cgcaattttt gggcgatcg	c ttcgcgcaga tcaggttcac	e cggctgcagg accg	tagcga 1320)
gttttgccct ctgctagcg	c ttgagctgct gcattgcgaa	u tgtgcaaagg tgtt	tcaaag 1380)
tegggeteee eggegetga	a gctgcagaca tccaagccct	cagctttcat cgct	ttggct 1440)
tgggcagcga tcgcgagag	t caacgatggt gacactcgcc	ccacacgctc ggat	agtttc 1500)
attaaatgga ggcgctcgt	t gatctgagcc ttgccccctg	acgaacggcg gtgg	atggaa 1560)
gatactgctc tcaagtgct	g aageggtage ttageteeed	gtttegtget gate	agtett 1620)
tttcaacacg taaaaagcg	g aggagttttg caattttgtt	ggttgtaacg atco	teegtt 1680)
_ 00			-	

_	C	\cap	n	Τ.	٦.	n	11	ρ	d

gattttggcc tctttctcca tgggcgggct gggcgtattt gaagcggttc tctcttctgc	1740
cgtta	1745
<210> SEQ ID NO 145 <211> LENGTH: 2366 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 145, Ex 145: designer Nial-promoter-controlled chloroplast-targeted Aspartokinase DNA construct (2366 bp)	ample
<400> SEQUENCE: 145	
agaaaatetg geaceacace atggtagggt gegagtgace eegegegaet tggaagggtt	60
caaacgaccc cgccgtacga acttttgtcg ggggggggctc ccggatggta gggtgcgagt	120
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc	180
gctcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg	240
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg	300
ctgccccggc tcaggccaac cagatggcgt taattgtcca aaaatacggt ggaacctctg	360
toggttoagt agaacgoatt caaacagttg cocaacggat toaaaaaaca goocaaaatg	420
gcaatcaagt cgtggttgtt gtttcggcca tgggaaaaac caccgatact ttagtcaatt	480
tagccaaaga gattacccca aatccctgtc gtcgggaaat ggatatgtta ttgtccacgg	540
gagaacaagt atcgatcgcc ttgatgagta tggccttaca gaaattagga caagcggcca	600
teteettaae tggggeacaa gtggggateg teacegaage agaacacagt egageeegea	660
teettteeat taaaceeeat egeatteaae geeatetega tegeggtgaa gttgtegtgg	720
tcgccgggtt tcaaggcatt actaacgcag atgacttaga aattaccacc ctagggcgag	780
ggggetcaga taceteegee gtegecattg eggeageett aaaageeagt tgetgegaaa	840
totatacaga tgtccccggc attotcacca ccgatccccg catcgtcccc gatgcccaat	900
taatggggga aattacctgc gatgagatgc tagagttggc cagtttaggg gctaaggttc	960
ttcatccgag ggcggtggaa attgcgcgta attatggcat tcctttagtg gtgcgatcga	1020
gttggagtga tgcccccgga acccgcgtga cttctcccat tcctaaaccg cgatcgctag	1080
aaggottaga actgacaaaa googttgatg gggtgcaatt tgaccoogat caagocaaaa	1140
tcgccttgtt acgagtcccc gatcgccccg gagtcgctgc ccgcctattt ggggaaattg	1200
cccaccagca ggtggatgta gacttaatta ttcaatcgat ccacgaaggg aatagtaacg	1260
atatcgcctt tacggtggtt aaaaatgtac tcactaaggc cgaagccgtc gctgaagcga	1320
tcgccccggc tttacggagt cattcagcga atagcgatga agcagaggta ttagtcgaga	1380
cgggagtggc gaaaattgcc atttcagggg caggaatgat cggacggcca ggtattgccg	1440
cgaaaatgtt caaaattete geecaagagg ggattaatat egaaatgate teeacetegg	1500
aagtgaaggt cagttgtgtg attcgtcaag aagaggggga tcgcgccatt aaagccctat	1560
gccaagggtt tgaggtggaa ttgtccccga cggggattcc tgagtcagta gtagcggtgt	1620
tacctccagt tcgaggagtc gctttagatg aaaaacaagc acaaatcgcc ctaattcatg	1680
ttcaagatcg gccggggatg gctgctagta tctttggagt cttagcggat cataacatca	1740
gtattgatac gattattcaa tcccaacgct gtcgaattgt tgagggaata cccacccgtg	1800

-	\sim	\cap	n	t	Т	n	11	ρ	a	

-continued		
atategeett taeegttgee caaattgatg tagaagetge teaaaatgeg ttaaaaaeee	1860	
tagccagtgc gtttagtgaa atgatcgtcg atagcgatgt tgctaaagtc agtattgtag	1920	
gggegggaat ggegggacaa eeeggggtag eggeeaagtt ttttgatget ttagetagae	1980	
atcaaattaa tattaaaatg attgcaactt cagaaataaa aattagttgt gttgttagca	2040	
aagatcaagg aattaaagct ttaaaagcag ttcatgaagc ctttcaatta gccggagaag	2100	
aacgggtaga agttccagct taataaatgg aggcgctcgt tgatctgagc cttgccccct	2160	
gacgaacggc ggtggatgga agatactgct ctcaagtgct gaagcggtag cttagctccc	2220	
cgtttcgtgc tgatcagtct ttttcaacac gtaaaaagcg gaggagtttt gcaattttgt	2280	
tggttgtaac gateeteegt tgattttgge etettetee atgggeggge tgggegtatt	2340	
tgaageggtt etetettetg eegtta	2366	
<pre><210> SEQ ID NO 146 <211> LENGTH: 1604 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 146, Exa 146: designer Nial-promoter-controlled chloroplast-targeted Aspartate-Semialdehyde Dehydrogenase DNA construct (1604 bp) <400> SEQUENCE: 146</pre>	mple	
agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt	60	
caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccggatggta gggtgcgagt	120	
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc	180	
geteeeggat ggeegeegte attgeeaagt eeteegtete egeggeegtg getegeeegg	240	
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg	300	
ctgccccggc tcaggccaac cagatgtcag attcatacag agtagcaata ttaggagcaa	360	
ctggtgcagt aggtacggaa ttactagaat tactggaaac tcggaacttt ccagtaggag	420	
aattaaaact cttagcttca gaattttcag cgggtaagac cttaaaattt aaggaacaaa	480	
gtttacaagt agaagctgta acaaatgatt catttaataa agtagattta gtgctagcat	540	
cagcaggtgc atctgtatca aaagtatggg caaagaaagc agtagaggct ggagctgtag	600	
ttattgacaa ttotagtgot tttogtatgg actocoaagt acotottgta gtocoagaag	660	
ttaacccaga agcagcggct ttacataaag gtatagttgc taaccctaac tgcacaacaa	720	
tattaatgag tgtagcagtg tggccattgc acaaaatcca gccagtccaa aggttagtag	780	
tggccactta tcaatcagca agtggggccg ggtcaagggc tatggcagaa atgaaaattc	840	
aggeecaaga aatettagat ggaaaaaete caacaacaga tattttteee taeceattag	900	
catttaattt gttccctcat aattctcaac tcaatgagca gggatattgt caagaagaaa	960	
tgaaaatgct tgatgaaacc agaaaaatat ttggctctaa ggaactgaga attacagcaa	1020	
cttgtattcg agtaccagta ttaagagctc attcagaagc aattaatttg gaatttgctg	1080	
aaccatttag tgtagttaaa gcacgggaag tattaagtca agcaccagga gtgacactgg	1140	
tagaaaattg gcaagaaaat tattttccta tgcctatggt tgcaagtggt aaagatgatg	1200	
tattggtggg gagaattcgt caggatattt ctcaagctga ggggttagaa ttatggttaa	1260	
gtggagacca ggtaagaaaa ggagctgcct tgaatgcagt acaaatagct gaattattgg	1320	
tggcaaaaaa ttggctgaga ataccagtag gaacatttta ataaatggag gcgctcgttg	1380	

-continued

atetgageet tgeeeeetga egaaeggegg tggatggaag ataetgetet eaagtgetga 1440	
ageggtaget tageteeeeg tttegtgetg ateagtettt tteaaeaegt aaaaagegga 1500	
ggagttttgc aattttgttg gttgtaacga teeteegttg attttggeet ettteteeat 1560	
gggegggetg ggegtatttg aageggttet etettetgee gtta 1604	
<210> SEQ ID NO 147 <211> LENGTH: 1868 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 147, Example 147: designer Nial-promoter-controlled chloroplast-targeted Homoserine Dehydrogenase DNA construct (1868 bp)	
<400> SEQUENCE: 147	
agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60	
caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccggatggta gggtgcgagt 120	
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc 180	
gctcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg 240	
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg 300	
ctgccccggc tcaggccaac cagatgaagc actcgcagga cgctaggaat gctattaatc 360	
gettgagatt getcaattte agetaagget tgeegaaaat tgeetteteg taeateatga 420	
gtgaccacga cgatttctgc taactgtccc tgaaatccaa tttgaacgac ggattctaga 480	
ctaacatggt gctgaccaaa acaagtteet aaatgeecaa teaceecagg gacatettea 540	
cagagaaagc gggcataaaa gcgagttttt aaatcttcaa ttggggtcag actacaataa 600	
tgttgatggg tgacgttcaa taaaggatct aaagattgtg cttgtcctcc actgctttgc 660	
agaatgeega egatatteat aatatetgaa aegaetgeae tggeggttgg aeetgeeeee 720	
gcaccgggtc caaaaaacat cacttgtcct aacggttctc ccttgaccaa aatggcgtta 780	
taaaccccat taatactggc tagtggatga tctttggcta ttaaagtggg atgtactcgc 840	
acttgtaagg tttctgaatc atctccttta gaaccttggg caatggctaa taatttaatc 900	
acaaatccga gtttatcagc ataagtaata tcggcggcac tgacttgacg aatgccctca 960	
caataaatct cttcgcgttt tacccgtccg gcaaaaccga tggaggccaa aatagcaatt 1020	
ttatcggctg catctaatcc gtctacatct gccgtcggat cggcttcagc atagcctaat 1080	
ttttgggett etgetaatae etegeeaaaa teggeteeet eagaggteat ttggetgagg 1140	
atataattgg tcgttccgtt aataatgcca ataatattac taatccgatt ggcccctaat 1200	
gattgtttga ggggtttaat cactggaatt ccccccccca cagccgcttc taataacaca 1260	
taaacgccgg ctgcattggc cgcttcataa atttcatccc cataacgagc gatcactgcc 1320	
ttattggccg tgacaatgtg ctttttatgg gcaatggcct tcatgatgag tgacttggct 1380	
ggttctagtc ctccgagcag ttctacgaca atatcaatct ctggatcaat gacaatactt 1440	
tctagatctg ttgtaatcac ggcgggaggg agttgaactt gacggggttt gtcaagagag 1500	
cgcactcctg cccgtttaat ctcgatatct tttaagatag gattacgtcc ccagggatcg 1560	
agtagaattt gtgctgtccc cgttcccaca gttcccaagc ctaataaacc tattttaaat 1620	
gccactaaat ggaggcgctc gttgatctga gccttgcccc ctgacgaacg gcggtggatg 1680	

-continued

-continued
gaagatactg ctctcaagtg ctgaagcggt agcttagctc cccgtttcgt gctgatcagt 1740
ctttttcaac acgtaaaaag cggaggagtt ttgcaatttt gttggttgta acgateetee 1800
gttgattttg gcctctttct ccatgggcgg gctgggcgta tttgaagcgg ttctctcttc 1860
tgccgtta 1868
<210> SEQ ID NO 148 <211> LENGTH: 1472 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 148, Example 148: designer Nial-promoter-controlled chloroplast-targeted Homoserine Kinase DNA construct (1472 bp)
<400> SEQUENCE: 148
agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60
caaacgaccc cgccgtacga acttttgtcg gggggcgctc ccggatggta gggtgcgagt 120
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcgggggggc 180
geteeeggat ggeegeegte attgeeaagt eeteegtete egeggeegtg getegeeegg 240
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaagget gcccccgtgg 300
ctgccccggc tcaggccaac cagatgatta acaattttgg ccccttccat atctaaagag 360
agtgettgea ettgegeege tacceettea tttteecaeg ceaceeteat egetteagte 420
accctateeg etteaceetg agaaettaaa gegagtaaag tgggaeetge eecaetgatt 480
accataccat aageeeegge tgegatagee getegtttea eegettegta acetttaatt 540
aaacettgae gatagggttg atgeagetta teeteeateg eeatagetaa eeagteteet 600
cgcccctgtt cgagtccttg taacaataac cctaaacgtg caatattaaa aatagcatca 660
gcgcggctat actgagtggg taaaacgcct ctcgcttctt gagtagataa ttcaaaatcc 720
ggaatagcca caatgggaat cagtttgtca taccagggaa tctcgcaaat ttgccaattc 780
cccatttccc ccacacataa gcgactgctt cccaataaag cgggaaccac attatcggga 840
tgtccttcta aagatatggc taattccatc acttcagatt gagttaaagg gttaccggct 900
agataatttg ceeecactaa acceeetaca atggetgtgg etgaacttee taaceetetg 960
gctaaaggaa cccctaattt gatctcaatt tctacagcag gaaccggttg attgagatgt 1020
tgatagaaaa gcgcaaaaga ttgataaagt aaattagttt tatctcgact aacccgttct 1080
gcttctgcgc cgcttacgag aattttctct tcggtttctg aagtgagagt aaacttaaat 1140
tgattataaa gggttaaagc ggctcctaga caatcaaagc ctggaccaag attagcggta 1200
gtagcaggaa cggttagggt aacggtcatt aaatggaggc gctcgttgat ctgagccttg 1260
ccccctgacg aacggcggtg gatggaagat actgctctca agtgctgaag cggtagctta 1320
gctccccgtt tcgtgctgat cagtcttttt caacacgtaa aaagcggagg agttttgcaa 1380
ttttgttggt tgtaacgatc ctccgttgat tttggcctct ttctccatgg gcgggctggg 1440
cgtatttgaa gcggttetet ettetgeegt ta 1472
<210> SEQ ID NO 149 <211> LENGTH: 1655 <212> TYPE: DNA

<211> DEARGIN: 1005
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 149, Example

2	1	7	

				-
-con	ιt-	1 m	116	D C

-continued	
149: designer Nial-promoter-controlled chloroplast-targeted Threonine Synthase DNA construct (1655 bp)	
<400> SEQUENCE: 149	
agaaaatotg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt	60
caaacgaccc cgccgtacga acttttgtcg ggggggggctc ccggatggta gggtgcgagt	120
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc	180
geteeeggat ggeegeegte attgeeaagt eeteegtete egeggeegtg getegeeegg	240
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg	300
ctgccccggc tcaggccaac caggtgaccc taacttggcc tatttctaaa tctgcgtcct	360
ggtcaggtct gatcaacgcc taccgttcct atttacctgt cacggaagcc actccgattg	420
tcaccctgca tgaagggaac acgcccctga ttccggtgcc cagcattgcc gctgaaattg	480
geeggeaagt teaggtetat gteaagtaeg aeggtttgaa eeecaeggge agetttaaag	540
atcggggtat gaccatggcg atctccaagg ctaaggaagc cggagccaag gcggtgatct	600
gtgccagtac cggcaatacc tctgcggcgg cagcggccta tggacggcgg ggcggcatgc	660
gggtctttgt cctcatcccc gatggttatg tcgctctggg aaaattagcc caagccctgg	720
tetatggege agaggtgetg gecatteagg geaactttga teaggeattg accetggtge	780
agcaattagc cgaaacccag cccgtcaccc tggtgaattc cgtcaacccc taccggctgg	840
aaggtcagaa aactgctgcc tttgaagtgg tggatgccct gggtaatgcc cccgactggc	900
tetgtattee egtgggeaat ggeggeaata teacegetta etggatggga ttetgteagt	960
atcgggaaca ggatcgttgc gatcgtctac cccggatgat gggttttcaa gcagccggct	1020
ctgctcccct tgtccatggc caggtggtga cccatcctga aactgtagcg accgccattc	1080
ggattggtaa cccggccaac tggcagcggg cgatggccgt gcgggatgcc agccagggag	1140
aattcaatgc tgtcagcgat gccgaaattc tcgctgccta ccgtctgctg gccagtcagg	1200
aagggatett ttgtgaacee geeagtgeeg egteegtege eggtetatta aaggtgaaag	1260
atcaggttcc gacggggggca acggtggtct gtgtcctgac ggggaatgga ttgaaagatc	1320
ctgatagogo aattaagoag caaagtaaco agttocatoa gggoatocoa gotoagotog	1380
aageegtgge ageegtgatg ggetteegtt agtaaatgga ggegetegtt gatetgagee	1440
ttgccccctg acgaacggcg gtggatggaa gatactgctc tcaagtgctg aagcggtagc	1500
ttageteece gtttegtget gateagtett ttteaacaeg taaaaagegg aggagttttg	1560
caattttgtt ggttgtaacg atcctccgtt gattttggcc tctttctcca tgggcgggct	1620
gggegtattt gaageggtte tetettetge egtta	1655
<210> SEQ ID NO 150 <211> LENGTH: 2078 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 150, Exa 150: designer Nial-promoter-controlled chloroplast-targeted Threonine Ammonia-Lyase DNA construct (2078 bp) <400> SEQUENCE: 150	ample
agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt	60
caaacgaccc cgccgtacga acttttgtcg gggggcgctc ccggatggta gggtgcgagt	120

-cont	inued	

				-contin	nued		
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcgggggggc	180	
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240	
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300	
ctgccccggc	tcaggccaac	cagatgtaag	aagagtcgat	aggctggatt	gtcactttcg	360	
ttccagtacc	gatagcccag	ggttttgaga	aatgattccc	actgagccat	ctcttgtgga	420	
gggacttgca	tcccgacgac	gattctgccg	tagtctgcgc	cgtgattgcg	gtagtggaat	480	
aggctgatgt	tccaatctgg	gctcattttc	gtgacaaagt	tagctaatgc	gcccggtcgc	540	
tcaggaaatt	caaaccgata	gagcagttcg	ttttgagcta	gcggtgactt	gccgcctacc	600	
atgtgccgca	aatgcatctt	ggctagctca	tcatcagtta	gatctagcgt	cttaaatcca	660	
ttgtctctaa	acttgtgggc	gatcgcctgc	gcatcggctc	tattttctat	ctgaatgccc	720	
acaaaaatat	gagcttgatc	ggcatctgca	atccgatagt	tgaattcgct	aaggctgtgg	780	
ctaccgagga	tatcgcaaaa	tttgctgaga	ctgcctgccc	gctctggaat	cgtaacggca	840	
aagacggctt	ctcttccttc	tcctagctcg	gctcgctcgg	ctacaaagcg	cagacgatca	900	
aagttcatat	tggccccaca	agcgatcgcc	accaacgttt	ctccctgaat	ttettetege	960	
tctacatagg	ctttgatacc	tgcgatcgcg	agcgccccag	cgggttccaa	aattgagcga	1020	
gtatcttcaa	atacgtcctt	gatcgcggcg	caggtatcat	ctgtagttac	cagcaacaca	1080	
tcatcgacat	actgttggca	cagacgaaac	gtttcctccc	cgacctggcg	caccgctacg	1140	
ccatctgcaa	acaggcctac	ttgatccaac	ttgacacgat	tcccttttgc	taatgattga	1200	
cgcatggcat	cagcatccac	cggctccaca	ccaatgatct	taacttcagg	acgtaagcgt	1260	
ttgatataag	cggcaatgcc	cgaaattaaa	ccaccccccc	caatcgcaac	aaaaatggca	1320	
tgaatcggct	tctgatgctg	tcgcaagatc	tccatgccga	tcgttccctg	cccggcaatg	1380	
acgtctggat	cgtcaaacgg	atgcacaaag	gtaagtcctt	tttccacttc	tagctggcgt	1440	
gcgtgtgcat	aggcatcgtc	gtaggtgtca	ccgtgtaaga	caacgagtcc	gcctctggcc	1500	
ttcaccgcat	caatcttgac	ttgcggcgtc	gtgatcggca	taacaattac	cgctgacgta	1560	
cccaattctc	tagcgcctag	cgccaccccc	tgtgcgtggt	tgcccgcaga	agctgcaatc	1620	
accccacgct	gcaacagttc	tgaaggtagc	tgcgccattt	tgttataggc	accgcgtagt	1680	
ttgaaggaga	aaacagactg	tacatcttcc	cgttttagca	gcacctgatt	acctagccgc	1740	
tccgatagcc	tcggcgcgat	atctaaaggc	gtttcttgcg	ccacgtcata	aacgcgggcc	1800	
ttcaaaatgc	gttctaaata	gtcagaataa	accactaaat	ggaggcgctc	gttgatctga	1860	
gccttgcccc	ctgacgaacg	gcggtggatg	gaagatactg	ctctcaagtg	ctgaagcggt	1920	
agcttagctc	cccgtttcgt	gctgatcagt	ctttttcaac	acgtaaaaag	cggaggagtt	1980	
ttgcaatttt	gttggttgta	acgatcctcc	gttgattttg	gcctctttct	ccatgggcgg	2040	
gctgggcgta	tttgaagcgg	ttctctcttc	tgccgtta			2078	

<210> SEQ ID NO 151 <211> LENGTH: 2282 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 151, Example 151: designer Nial-promoter-controlled chloroplast-targeted Acetolactate Synthase DNA construct (2282 bp)

<400> SEQUENCE: 151

-continued

agaaaatctg	gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60
caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcgggggggc	180
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300
ctgccccggc	tcaggccaac	cagatgttga	caaaagcaac	aaaagaacaa	aaatcccttg	360
tgaaaaacag	agggggcggag	cttgttgttg	attgcttagt	ggagcaaggt	gtcacacatg	420
tatttggcat	tccaggtgca	aaaattgatg	cggtatttga	cgctttacaa	gataaaggac	480
ctgaaattat	cgttgcccgg	cacgaacaaa	acgcagcatt	catggcccaa	gcagtcggcc	540
gtttaactgg	aaaaccggga	gtcgtgttag	tcacatcagg	accgggtgcc	tctaacttgg	600
caacaggcct	gctgacagcg	aacactgaag	gagaccctgt	cgttgcgctt	gctggaaacg	660
tgatccgtgc	agatcgttta	aaacggacac	atcaatcttt	ggataatgcg	gcgctattcc	720
agccgattac	aaaatacagt	gtagaagttc	aagatgtaaa	aaatataccg	gaagctgtta	780
caaatgcatt	taggatagcg	tcagcagggc	aggctggggc	cgcttttgtg	agctttccgc	840
aagatgttgt	gaatgaagtc	acaaatacga	aaaacgtgcg	tgctgttgca	gcgccaaaac	900
tcggtcctgc	agcagatgat	gcaatcagtg	cggccatagc	aaaaatccaa	acagcaaaac	960
ttcctgtcgt	tttggtcggc	atgaaaggcg	gaagaccgga	agcaattaaa	gcggttcgca	1020
agcttttgaa	aaaggttcag	cttccatttg	ttgaaacata	tcaagctgcc	ggtacccttt	1080
ctagagattt	agaggatcaa	tattttggcc	gtatcggttt	gttccgcaac	cagcctggcg	1140
atttactgct	agagcaggca	gatgttgttc	tgacgatcgg	ctatgacccg	attgaatatg	1200
atccgaaatt	ctggaatatc	aatggagacc	ggacaattat	ccatttagac	gagattatcg	1260
ctgacattga	tcatgcttac	cagcctgatc	ttgaattgat	cggtgacatt	ccgtccacga	1320
tcaatcatat	cgaacacgat	gctgtgaaag	tggaatttgc	agagcgtgag	cagaaaatcc	1380
tttctgattt	aaaacaatat	atgcatgaag	gtgagcaggt	gcctgcagat	tggaaatcag	1440
acagagcgca	ccctcttgaa	atcgttaaag	agttgcgtaa	tgcagtcgat	gatcatgtta	1500
cagtaacttg	cgatatcggt	tcgcacgcca	tttggatgtc	acgttatttc	cgcagctacg	1560
agccgttaac	attaatgatc	agtaacggta	tgcaaacact	cggcgttgcg	cttccttggg	1620
caatcggcgc	ttcattggtg	aaaccgggag	aaaaagtggt	ttetgtetet	ggtgacggcg	1680
gtttcttatt	ctcagcaatg	gaattagaga	cagcagttcg	actaaaagca	ccaattgtac	1740
acattgtatg	gaacgacagc	acatatgaca	tggttgcatt	ccagcaattg	aaaaaatata	1800
accgtacatc	tgcggtcgat	ttcggaaata	tcgatatcgt	gaaatatgcg	gaaagcttcg	1860
gagcaactgg	cttgcgcgta	gaatcaccag	accagctggc	agatgttctg	cgtcaaggca	1920
tgaacgctga	aggtcctgtc	atcatcgatg	tcccggttga	ctacagtgat	aacattaatt	1980
tagcaagtga	caagetteeg	aaagaattcg	gggaactcat	gaaaacgaaa	gctctctagt	2040
aaatggaggc	gctcgttgat	ctgagccttg	ccccctgacg	aacggcggtg	gatggaagat	2100
actgctctca	agtgctgaag	cggtagctta	gctccccgtt	tcgtgctgat	cagtctttt	2160
caacacgtaa	aaagcggagg	agttttgcaa	ttttgttggt	tgtaacgatc	ctccgttgat	2220
tttggcctct	ttctccatgg	gcgggctggg	cgtatttgaa	gcggttctct	cttctgccgt	2280

ta

2282

<210> SEQ ID NO 152 <211> LENGTH: 1562 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 152, Examp 152: designer Nial-promoter-controlled chloroplast-targeted Ket Acid Reductoisomerase DNA construct (1562 bp)	
<400> SEQUENCE: 152	
agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt	60
caaacgaccc cgccgtacga acttttgtcg ggggggggctc ccggatggta gggtgcgagt	120
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc	180
gctcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg	240
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg	300
ctgccccggc tcaggccaac cagatgagcc ttttttagcc aactaaacat agctcgtaaa	360
tetttaeega ettetteaat aggatgttea gettettgae gaegeatgge gataaateeg	420
ggttttcctg actggttttc taagacaaat tcccgagcaa attgaccgga ttgaatttct	480
ttaaggattt teegeattte ttgeegggtt tgateegtaa caataegagg acetetagta	540
tagteteeat attetgeegt attggaaatg etategegea tettagetaa teegeettet	600
accaccagat caacgattag tttaacttcg tggagacatt caaaataagc caattcaggc	660
tgatateegg ettegaetaa ggttteaaat eeggetttaa ttaaageaet tagaeegeea	720
cagaggacta cttgttcacc aaataaatca gtttctgttt cttctcggaa agtcgtttct	780
aaaacaccgg cacgagttcc tccaatccct ttagcataag ccatagcgcg atcgcgggct	840
tgtcctgaag catcttgaaa gactgcaaat aaacagggga ctccttcgcc ttgggtgtag	900
gtacgtetga egagatgtee tggaeetttt ggtgeeacea taaceaeate taeegtagaa	960
ggaggaatta cttgtccaaa atgaatatta aatccatgag caaacaaaag aactttgcct 1	020
tettttaaat ggggtteaat tteatttta tagaegettt tttgtaeete atetggeage 1	080
aaaatcataa tccagtcggc ggcggcggcg gcatcggcta cacttttaac cgttaagccg 1	140
getteagtgg etttttggge tgaettaete eeaggataea geeceaeaat aacattaaet 1	200
ccgctatctt taagattaag ggcatgggca tggccttgag aaccatagcc gataatggca 1	260
accgttttat tagcaagtaa gtctaaattg gcatcttcat cgtaatacat tcgagccatt 1	320
aaatggaggc gctcgttgat ctgagccttg ccccctgacg aacggcggtg gatggaagat 1	380
actgetetea agtgetgaag eggtagetta geteeeegtt tegtgetgat eagtetttt 1	440
caacacgtaa aaagoggagg agttttgcaa ttttgttggt tgtaacgatc ctccgttgat 1	500
tttggeetet tteteeatgg gegggetggg egtatttgaa geggttetet ettetgeegt 1	560
ta 1	562

<210> SEQ ID NO 153 <211> LENGTH: 2252 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 153, Example 153: designer Nial-promoter-controlled chloroplast-targeted Dihydroxy-Acid Dehydratase DNA construct (2252 bp)

-continued

<400> SEQUEN	CE: 153					
agaaaatctg g	caccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60
caaacgaccc c	gccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120
gaccccgcgc ga	acttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcgggggggc	180
gctcccggat g	gccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240
cccgctccag c	gtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300
ctgccccggc to	caggccaac	cagatgtcag	ataattacag	aagtcgcatc	attacacaag	360
gcagtcaacg ta	acaccaaac	cgggccatgc	ttcgggcggt	aggttttgga	gataatgact	420
ttactaagcc ca	attgtggga	gtggctaacg	gatacagcac	cattacccct	tgtaatatgg	480
gcatcaatga to	ctcgcgctg	cgggccgaag	ccggactcaa	gcaagcggga	gccatgccgc	540
aaattttcgg ca	accattacc	gtgagtgacg	gaatttctat	gggaacagaa	ggaatgaaat	600
actccctcgt c	tcgcgcgat	gtgatcgctg	actctatcga	aaccgcttgt	aacggtcaaa	660
gtatggatgg t	gtgcttgcc	attggcggct	gtgataaaaa	tatgcccggg	gccatgatcg	720
ccatcgctcg ta	atgaatatc	cctgctatct	tcgtctatgg	cggtaccatt	aaacccggaa	780
aatacaacgg a	caagattta	accgttgtca	gtgcctttga	agccgtagga	caacatagtg	840
ccggtaaaat ag	gatgatgct	caattattag	gaatagaacg	gaatgcttgc	cccgggggcgg	900
gtteetgtgg g	ggaatgttt	accgctaaca	ccatgtcctc	cgcttttgaa	gtaatgggga	960
tgagettace t	tattcttcc	actatggcag	cagaagatgc	agaaaaagcc	gacagtaccg	1020
aaaaatccgc t	tttgtgctg	gtagatgcca	tcagaaagca	aattttgccc	agtcagattt	1080
taacccgtaa ag	gcctttgag	aatgcgattt	ccgtgattat	ggccgttggg	ggatcgacca	1140
acgcggtttt a	catttatta	gcgatcgctc	ataccatagg	ggtagaactg	agcatcgatg	1200
actttgaage ca	attagagct	agagttcccg	tactttgtga	cctcaaaccg	agtggacgct	1260
atgtcatcgt t	gatttacat	caggcgggggg	gcattcccca	agtgatgaaa	atgetteteg	1320
tccatgactt a	ttacacggg	gatgctttaa	ccatcaccgg	tcaaacggtt	gcagaagttt	1380
taaaagacgt a	cccgatgaa	ccccctcaag	gacaagatgt	cattcgtcct	tggaataacc	1440
cagtgtataa ag	gaaggacac	ctagcgatct	taaaaggaaa	tttagccacc	gagggagcag	1500
tcgctaaaat ta	agcgggggtc	aaaaatccta	aaattaccgg	tccggcgcga	gtatttgaat	1560
ccgaggaaag c	tgtctagag	gcgattcttg	caggtaaaat	tcaagctggc	gatgtgatta	1620
ttgttcgtta t	gaagggccc	aaaggtggcc	ccggtatgag	agaaatgtta	gccccgactt	1680
cagccattat t	ggggcagga	ttgggagatt	ccgtaggatt	aattactgat	gggcgttttt	1740
ctggggggaac t	tacgggcta	gtcgtcggtc	atgttgcccc	agaagcagca	gtaggcggaa	1800
atattgccct c	gtacaagag	ggagatagca	ttaccattga	tgcgaaagag	cgattattac	1860
agettaatgt ag	gctgaagat	gaattaatcc	gtcgtcgcgc	taactggcaa	ccgcccatcc	1920
ctcgttatac ca	aaaggtgta	ttagcgaaat	atgccaaatt	agtctcttct	agtagtatag	1980
gageggttae e	gacaaagat	ttattctaat	aaatggaggc	gctcgttgat	ctgagccttg	2040
ccccctgacg a	acggcggtg	gatggaagat	actgctctca	agtgctgaag	cggtagctta	2100
gctccccgtt to	cgtgctgat	cagtctttt	caacacgtaa	aaagcggagg	agttttgcaa	2160
ttttgttggt t	gtaacgatc	ctccgttgat	tttggcctct	ttctccatgg	gcgggctggg	2220

-continued

				-contir	nued	
cgtatttgaa	gcggttctct	cttctgccgt	ta			2252
154:	H: 1496 DNA ISM: Artifi RE: INFORMATIC designer Ni	DN: Synthet: Lal-promote:		d chloropla:		ample
<400> SEQUE	NCE: 154					
agaaaatctg	gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60
caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcggggggc	180
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300
ctgccccggc	tcaggccaac	cagatggcag	ttccatccaa	ttctactaaa	actttcaagc	360
tgaacaacgg	cctgtccatt	ccagcagtcg	gtctcggaac	atggcaatcc	accgatgaag	420
aggettacaa	tgccgttatt	gctgcattga	aagctggata	cagacacatc	gacacagctt	480
actgttacgg	aaatgaagag	ccaattggca	aagctattaa	ggactctgga	gttgcaagaa	540
aggacatttt	tattactacc	aaactttggg	gaactgacca	caccagaact	gaggaaggtt	600
ggataggtc	tctgaaattg	ttgggtttgg	actatgttga	tctgttcttg	atgcattggc	660
cagttccaat	gaaccctaat	ggaaaccacg	acaaatttcc	tacattacca	gacggtaaac	720
gtgacattct	gtttgactgg	aacttcgttg	atacatacag	agagatgcaa	aaattagttg	780
cctctggaaa	gaccaaggca	atcggtgtgt	ccaatttttc	tatcactaac	ttgaagaaat	840
tgettgeaga	cccagaaatc	accatcaagc	cagttgtcaa	ccaagttgaa	attcacgggt	900
atctgccgca	gcagagactt	ttggagtatg	cgaaggaaaa	tgatattgtt	ttggaggcat	960
attcaccgtt	gggatccact	ggtgccccat	tgctgaaaga	tgagctggtg	caggacctag	1020
ccaagaagaa	tggtatttct	gaatctactc	tcttaatttc	ctgggcagtg	tggagaggta	1080
cgtcgtttt	accaaaatct	gtaacgcctt	ccagaattgc	tgataatctt	aagatcattg	1140
agttgtgtga	ggaggatgga	aaaaaactta	atgaattggc	ctcgattaga	ggagaaaaac	1200
gattagttag	ccctccttgg	gatcctattg	tcgtcttcaa	cgatgaagac	taataaatgg	1260
aggcgctcgt	tgatctgagc	cttgccccct	gacgaacggc	ggtggatgga	agatactgct	1320
ctcaagtgct	gaagcggtag	cttagctccc	cgtttcgtgc	tgatcagtct	ttttcaacac	1380
gtaaaaagcg	gaggagtttt	gcaattttgt	tggttgtaac	gatcctccgt	tgattttggc	1440
ctctttctcc	atgggcgggc	tgggcgtatt	tgaagcggtt	ctctcttctg	ccgtta	1496
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN <220> FEATU	H: 1595 DNA ISM: Artifi	icial Sequer	nce			

<213> ORGATURE: <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 155, Example 155: designer Nial-promoter-controlled chloroplast-targeted 3-Methylbutanal Reductase DNA construct (1595 bp)

<400> SEQUENCE: 155

agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60

-continued

caaacgaccc	cgccgtacga	acttttgtcg	gggggcgctc	ccggatggta	gggtgcgagt	120
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcggggggc	180
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300
ctgccccggc	tcaggccaac	cagatgtcag	ttttcgtttc	aggtgctaac	gggttcattg	360
cccaacacat	tgtcgatctc	ctgttgaagg	aagactataa	ggtcatcggt	tctgccagaa	420
gtcaagaaaa	ggccgagaat	ttaacggagg	cctttggtaa	caacccaaaa	ttctccatgg	480
aagttgtccc	agacatatct	aagctggacg	catttgacca	tgttttccaa	aagcacggca	540
aggatatcaa	gatagttcta	catacggcct	ctccattctg	ctttgatatc	actgacagtg	600
aacgcgattt	attaattcct	gctgtgaacg	gtgttaaggg	aattctccac	tcaattaaaa	660
aatacgccgc	tgattctgta	gaacgtgtag	ttctcacctc	ttcttatgca	gctgtgttcg	720
atatggcaaa	agaaaacgat	aagtetttaa	catttaacga	agaatcctgg	aacccagcta	780
cctgggagag	ttgccaaagt	gacccagtta	acgcctactg	tggttctaag	aagtttgctg	840
aaaaagcagc	ttgggaattt	ctagaggaga	atagagactc	tgtaaaattc	gaattaactg	900
ccgttaaccc	agtttacgtt	tttggtccgc	aaatgtttga	caaagatgtg	aaaaaacact	960
tgaacacatc	ttgcgaactc	gtcaacagct	tgatgcattt	atcaccagag	gacaagatac	1020
cggaactatt	tggtggatac	attgatgttc	gtgatgttgc	aaaggctcat	ttagttgcct	1080
tccaaaagag	ggaaacaatt	ggtcaaagac	taatcgtatc	ggaggccaga	tttactatgc	1140
aggatgttct	cgatatcctt	aacgaagact	tecctgttet	aaaaggcaat	attccagtgg	1200
ggaaaccagg	ttctggtgct	acccataaca	cccttggtgc	tactcttgat	aataaaaaga	1260
gtaagaaatt	gttaggtttc	aagttcagga	acttgaaaga	gaccattgac	gacactgcct	1320
cccaaatttt	aaaatttgag	ggcagaatat	aataaatgga	ggcgctcgtt	gatctgagcc	1380
ttgccccctg	acgaacggcg	gtggatggaa	gatactgctc	tcaagtgctg	aagcggtagc	1440
ttagctcccc	gtttcgtgct	gatcagtctt	tttcaacacg	taaaaagcgg	aggagttttg	1500
caattttgtt	ggttgtaacg	atcctccgtt	gattttggcc	tctttctcca	tgggcgggct	1560
gggcgtattt	gaagcggttc	tctcttctgc	cgtta			1595
<220> FEATU <223> OTHEN 156:	IH: 1739 : DNA NISM: Artif: URE: R INFORMATI(- DN: Synthet: ial-promote:	ic Construct r-controlled	d chloroplas	No. 156, Ex st-targeted 739 bp)	
<400> SEQUI	ENCE: 156					
agaaaatctg	gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60
caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcgggggggc	180
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300
ctgccccggc	tcaggccaac	cagatgaata	attttacttt	ttataatcct	actaaaatta	360

-continue	d
0011011100	~

-	continued
actttggtag aggagttgaa teetetgttg gagaagagat taa	aagctta ggagctagta 420
aagtgetttt teattatggt ggaggaagta ttagaaaaaa tgg	gttatat gatagaattt 480
tagattettt aaataaagea ggattaeatg taatagaaet tgg	aggagtt aagcctaatc 540
ctagattaag cttagttaaa aagggaatag aactttgtaa aaa	agtaaa gttgatttta 600
tacttgcagt tggaggagga agtgttattg actcagctaa ago	cataget ettggtgtte 660
cttatgatgg agatgtatgg gatttettta etaaaaatat taa	aatagaa aaagctttac 720
cattaggtac agtattaaca ataccagcgg caggaagtga atc	aagctca ggaactgtta 780
taactaatga agatggatgg tataagagat caacaggatc acc	actteta tateetaaat 840
tttcaatgtt aaatccagaa ctatgcttta ctttaccaga ata	ccaaata gcatcaggaa 900
gtgcagatat tttagcacat ttaatggaaa gatatttcac aaa	cacaaag aatgttgaac 960
ttatagatag attaattgag ggaacaatga aaacagtaat aaa	caatgtt cctaaggtat 1020
taaaaaataa ggaagactat gatagctttg cagaggttat gtg	ggctgga acaatagcac 1080
ataataatct tttaagcaca ggaagagaaa cagattgggc atc	acataat atagaacatg 1140
aattaagtgg aatatatgat gttactcatg gtgcaggatt agc	gttata ttcccagctt 1200
ggatgaagtt tgtttataag catgatttag atagattcaa cca	atttgct actagagtat 1260
ttgatgttca agttgaagat aaaactaagg aagaggttgc ctta	agaagga attaagaaac 1320
ttgaagaatt cttcaaatca ataaatcttc cagtaacttt aaa	agagtta gaaataggtg 1380
aagatagatt agaagaaatg gctaaaaaat gcacagataa tga	gagcat acagtaggtc 1440
attttgtaga attaaacaca gaggacatcc ttgaaatata caa	attagct ttatagtaaa 1500
tggaggeget egttgatetg ageettgeee eetgaegaae gge	ggtggat ggaagatact 1560
geteteaagt getgaagegg tagettaget eeeegttteg tge	:gatcag tctttttcaa 1620
cacgtaaaaa gcggaggagt tttgcaattt tgttggttgt aac	gateete egttgatttt 1680
ggeetettte teeatgggeg ggetgggegt atttgaageg gtte	etetett etgeogtta 1739
<pre><210> SEQ ID NO 157 <211> LENGTH: 1733 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Set 157: designer Nial-promoter-controlled NAJ chloroplast-targeted NADPH-dependent Butan construct (1733 bp)</pre>	DPH-dependent
<400> SEQUENCE: 157	
	cgcgact tggaagggtt 60
agaaaatotg gcaccacaco atggtagggt gogagtgaco oog caaacgacoo ogoogtaoga acttttgtog gggggogoto oog	gatggta gggtgcgagt 120
agaaaatotg goaccacaco atggtagggt gogagtgaco oog caaaogacoo ogoogtaoga acttttgtog gggggogoto oog gacooogogo gacttggaag ggttoaaaog accoogoogt acg	yatggta gggtgcgagt 120 aactttt gtcgggggggc 180
agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccg	gatggta gggtgcgagt 120 aactttt gtcgggggggc 180 gggccgtg gctcgcccgg 240
agaaaatotg goaccacaco atggtagggt gogagtgaco oog caaacgacoo ogoogtacga acttttgtog ggggggogoto oog gaccoogogo gacttggaag ggttcaaacg accoogoogt acg gotocoggat ggoogcogto attgocaagt cotcogtoto ogo	yatggta gggtgcgagt 120 aactttt gtcgggggggc 180 yggccgtg gctcgcccgg 240 saagget gcccccgtgg 300
agaaaatetg geaceaeaee atggtagggt gegagtgaee eeg caaaegaeee egeegtaega aettttgteg gggggegete eeg gaeeeegege gaettggaag ggtteaaaeg aeeeegeegt aeg geteeeggat ggeegeegte attgeeaagt eeteegtete ege eeegeteeag egtgegeeee atggeegege tgaageeege egt	yatggta gggtgcgagt 120 aactttt gtcgggggggc 180 ggccgtg gctcgcccgg 240 caaggct gcccccgtgg 300 aagagat atttattatg 360
agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccg caaacgaccc cgccgtacga acttttgtcg ggggggcgctc ccg gaccccgcgc gacttggaag ggttcaaacg accccgccgt acg gctcccggat ggccgccgtc attgccaagt cctccgtctc cgc cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgt ctgccccggc tcaggccaac cagatgatga gatttacatt acc	yatggta gggtgcgagt 120 aactttt gtcgggggggc 180 gggcggtg gctcgcccgg 240 caagggt gcccccgtgg 300 aagagat atttattatg 360 gggcaatg ctagtacttg 420

cont	in	11ed

				-contir	nued		<u></u>
tcaagggcgc	tgagttaatg	agacaatttg	aaccagattg	gattataget	atgggtggtg	600	
gatcaccaat	tgatgctgca	aaagcaatgt	ggattttta	tgaacaccca	gaaaaaactt	660	
ttgatgacat	taaagatccg	tttacagtac	cagaattaag	aaataaggct	aagttcctag	720	
cgattccatc	aacaagtggt	acagcaacag	aagtaacagc	attttctgta	attacagatt	780	
ataagactga	aataaaatat	cctttagctg	attttaatat	aactccagat	gtagctgtag	840	
tagattcaga	attagctgaa	acaatgccac	ctaagttaac	tgcccataca	ggaatggatg	900	
cattaactca	tgcaattgaa	gcttatgtag	caacattaca	ttcaccattt	actgatccac	960	
tagctatgca	agcgattgaa	atgattaatg	aacatttatt	taaatcatat	gaaggcgata	1020	
aagaagctag	agaacaaatg	cattatgctc	aatgtttagc	tggaatggct	ttctctaatg	1080	
cactattagg	aatatgtcat	agtatggcgc	ataaaacagg	ggctgtattc	catatccctc	1140	
atggatgtgc	gaatgcaatc	tatttaccat	atgtaattaa	gtttaattca	aaaacttcat	1200	
tagaaagata	tgctaaaata	gcaaaacaaa	tttcattagc	aggaaataca	aatgaggaat	1260	
tagttgattc	attaataaac	ttagttaaag	aattaaataa	gaagatgcaa	ataccaacaa	1320	
cattaaaaga	atatggtatt	catgaacaag	aatttaagaa	taaggttgat	ttgatttcag	1380	
aaagagctat	tggagatgct	tgtactggat	caaatccaag	acaattaaat	aaagatgaaa	1440	
tgaaaaagat	ttttgaatgc	gtatattatg	gtacagaagt	tgatttttaa	taaatggagg	1500	
cgctcgttga	tctgagcctt	gccccctgac	gaacggcggt	ggatggaaga	tactgctctc	1560	
aagtgctgaa	gcggtagctt	ageteeegt	ttcgtgctga	tcagtctttt	tcaacacgta	1620	
aaaagcggag	gagttttgca	attttgttgg	ttgtaacgat	cctccgttga	ttttggcctc	1680	
tttctccatg	ggcgggctgg	gcgtatttga	agcggttctc	tcttctgccg	tta	1733	
<220> FEAT <223> OTHE 158:	TH: 1745 : DNA NISM: Artif. URE:	ON: Synthet: ial-promote:	ic Construct r-controlled	d chloropla:	No. 158, Ex st-targeted	ample	
<400> SEQU	ENCE: 158						
agaaaatctg	gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60	
caaacgaccc	cgccgtacga	acttttgtcg	ggggggggttc	ccggatggta	gggtgcgagt	120	
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcggggggc	180	
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240	
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300	
ctgccccggc	tcaggccaac	cagatgaccg	acatcgtcat	cgtcgccgca	gcccgcaccg	360	
ccgtgggcaa	gttcggcggc	tcgctggcca	agatecegge	gcctgagctg	ggcgctgccg	420	
tgatcaaggc	cctgctggaa	aaaaccggcg	tgggcgccga	ccagatcggt	gaagtcatca	480	
tgggccaggt	getggeegee	ggcgcggggcc	agaacccggc	tcgccaggcc	atgatgaagg	540	
cgggcatcgc	caaggaaacg	ccggcgctga	ccatcaacgc	cgtgtgcggc	tccggcctga	600	
aggccgtgat	gctggcggcc	caagccatcg	cctggggcga	cagcgagatc	gtcatcgccg	660	
gcggccagga	aaacatgtcc	gccagcccgc	acgtgctgca	aggcagccgc	gacggccagc	720	
gcatgggcga	ctggaagatg	gtcgacacca	tgatcaacga	cggcctgtgg	gacgtgtaca	780	

ont		

acaagtacca catgggc	atc acggccgaga	acgtcgccaa	ggcgcacgac	atcacccgtg	840	
agcagcagga cgccctg	Igee etggeeagee	agcaaaaggc	caccgccgcc	caggaagccg	900	
gcaagttcaa ggacgag	atc gttcccgtcg	ccattccgca	gcgcaagggc	gatccggtga	960	
tgttcgacac cgacgag	ıttc atcaacaaga	agaccaacgc	cgaagcgctg	gccggcctgc	1020	
gtccggcctt cgacaag	ıgcc ggctcggtga	ccgcgggcaa	cgcctccggc	atcaacgacg	1080	
gegeegeege egtgate	gtc atgtcggccg	ccaaggccga	gcaactgggc	ctgaagccgc	1140	
tggcgcgcat cgccago	ttc ggcaccagcg	gcctggaccc	cgccaccatg	ggcatgggcc	1200	
cggtgccggc cacgcgc	aag gegetggage	gcgccggctg	gcaagtcggc	gacgtggacc	1260	
tgttcgagct gaacgaa	gee ttegeegeee	aagcctgcgc	ggtgaacaag	gagetgggeg	1320	
tggacccggc caaggto	aac gtcaacggtg	gcgccatcgc	catcggccac	cccatcggcg	1380	
ceteeggetg eegegtg	ctg gtgacgctgc	tgcacgaaat	gcagcgccgc	gacgccaaga	1440	
agggegtgge egegetg	ıtgc atcggtggcg	gcatgggcgt	gtcgctggcc	gtcgagcgct	1500	
gataaatgga ggcgcto	gtt gatctgagcc	ttgccccctg	acgaacggcg	gtggatggaa	1560	
gatactgctc tcaagto	ctg aagcggtagc	ttagctcccc	gtttcgtgct	gatcagtctt	1620	
tttcaacacg taaaaag	ıcgg aggagttttg	caattttgtt	ggttgtaacg	atcctccgtt	1680	
gattttggcc tctttct	.cca tgggcgggct	gggcgtattt	gaagcggttc	tctcttctgc	1740	
cgtta					1745	
<210> SEQ ID NO 159 <211> LENGTH: 1439 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:						

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 159, Example 159: designer Nial-promoter-controlled chloroplast-targeted 3-Hydroxyacyl-CoA dehydrogenase DNA construct (1439 bp)

<400> SEQUENCE: 159

agaaaatctg	gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60
caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcggggggc	180
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300
ctgccccggc	tcaggccaac	cagatggaga	ttcggaagat	cggcgtgatc	ggcgcagggc	360
agatggggtc	gggcatcgcc	caggtggcgg	cccagtcggg	ttacgaggtc	gtgctaatgg	420
acgtcgagga	gctgagcctc	aagaagggggc	tcgaggccat	ccgaaggtcg	ctcgaccgct	480
tcctgcgcaa	ggagaagatc	acccaggagg	aggccgaaaa	ggccctggcc	cgcatcaaga	540
cgacgctcaa	ccccgccgac	ttcgcggact	gcgacctggt	cgtcgaggcc	atcgtggaga	600
acgagtcggt	caagggtaag	ctcttccaga	cgctcgacaa	ggtggtgaag	cctgaggccg	660
tettegette	caacacctcc	tcgattccca	tcaccaagct	ggccagctac	acctcccgcc	720
ccgagcgttt	catcggcatg	cacttcatga	acccggtgcc	gctgatgaag	ctcgtcgagg	780
tcatccgcgg	ctacaagacc	tcggacgagg	tcacccgggt	ggtcatggcg	acggccgaga	840
agatgggcaa	ggtgccggtc	gaggtcaacg	actaccccgg	cttcgtctcc	aaccgcgtgc	900

-continued

				CONCIN	lucu		
tcatccccat	gctcaacgag	gccatccaag	cggtcatgga	gggcgtggcc	acccccgagg	960	
ccatcgacac	cgtgatgaag	ctgggcatga	accaccccat	gggcccgctg	acgetegeeg	1020	
acttcatcgg	cctcgacacc	gtgctggcca	tcatggaggt	gctgcacgag	ggetttggeg	1080	
acagcaagta	ccgcccctcg	ccgctgctca	agaagatggt	ccaggcgggt	ctgctgggcc	1140	
gcaagagcgg	gcaggggttc	tacaagtacg	acgagaaggg	gaacaagatc	ggctagtaaa	1200	
tggaggcgct	cgttgatctg	agccttgccc	cctgacgaac	ggcggtggat	ggaagatact	1260	
gctctcaagt	gctgaagcgg	tagcttagct	ccccgtttcg	tgctgatcag	tctttttcaa	1320	
cacgtaaaaa	gcggaggagt	tttgcaattt	tgttggttgt	aacgatcctc	cgttgatttt	1380	
ggcctctttc	tccatgggcg	ggetgggegt	atttgaagcg	gttetetett	ctgccgtta	1439	
<220> FEATU <223> OTHEF 160:	TH: 1337 DNA NISM: Artif: JRE: NINFORMATIC designer N: Dehydratase	ial-promote:	ic Construct	d chloroplas	No. 160, Ex st-targeted	-	
-			_			6.0	
	-		gcgagtgacc			60	
_			ggggggggtte			120	
			accccgccgt			180	
			cctccgtctc			240 300	
			tgaagcccgc			360	
			ttcgactgga atgcgctcag			420	
			ccgatgcgcg			420	
			acattcccga			540	
			aggcggtgtt			600	
			atgccttcgg			660	
			gcgcccgcat			720	
			agcgtctgcc			780	
			cgatagacgg			840	
			cgcccctgga			900	
			tgtatttgc			960	
			gcatcgagcg			1020	
			gcgcttttgt			1080	
			ttgatctgag			1140	
			tgaagcggta			1200	
ctgatcagtc	tttttcaaca	cgtaaaaagc	ggaggagttt	tgcaattttg	ttggttgtaa	1260	
cgatcctccg	ttgattttgg	cctctttctc	catgggcggg	ctgggcgtat	ttgaagcggt	1320	
tctctcttct	gccgtta					1337	

```
-continued
```

<210> SEQ ID NO 161 <211> LENGTH: 1736 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 161, Example 161: designer Nial-promoter-controlled chloroplast-targeted 2-Encyl-CoA Reductase DNA construct (1736 bp) <400> SEQUENCE: 161 agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60 120 caaacgaccc cgccgtacga acttttgtcg ggggggggctc ccggatggta gggtgcgagt gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc 180 getceceqgat ggecgecgte attgecaagt cetceqtete egeggecgtg getegeeegg 240 cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg 300 ctgccccggc tcaggccaac cagatggccg gcgcgcagca ggatcttgcc gctgcgtccg 360 ggettgtege tggeegegge ggeettggeg geategtgea ggtegaacae egetteeace 420 ggcagcgcca ggctgccatc gagcgcggcg gtgagcagtt cgccgatcat gcggcgcttg 480 teeteggeet tggtggeetg cateacettg etgeeceaga ageeaegeae ggtggeetge 540 ttgaagatca catcgccgct ggatatctgc agcggctcgc cggtcatcga gccaaaggaa 600 atcagetege egecttegge cageaaggee atcageteae eegetgeatt geeggeeace 660 gaatcgatgg cgcgcacgat gggcgcatcg ccggccagcg cgcgcacctt gtcctgccag 720 cctgcttgcg cagtggagat tgcgttgccg atgcccagcg ctttcagctc gtccacgccg 780 840 gcgtcgcggc gcaccaggtt gatcacgttg atgccgcgtg cggcggcgag catcgccacc gtcttgccga ccgcaccgtt ggcggtgttc tgcacgatcc agtcgccctg tttcacctgc 900 aggaattega teageateag egegeteage ggeatggega teaaetggea aceaegeteg 960 tcgtccaggc catccggcaa cggcaccacg ccggaggcgt cggcaaggaa gtactcggcc 1020 caggeeteat geacacegge ggegaceaeg egetggeeaa eetgeaagee etegacaeee 1080 tcacccageg categatgae accegeeget tegetgeege egatggetgg eagtteegge 1140 ttgtageegt aattgeegeg caeggteeac aggteatggt tatggategg egegeege 1200 ategeaacge geacetggee ettgeetgge tgeggegtgg ggegetegee cagttegage 1260 1320 accttqqccq qatcqccqaa ttqqqtatqq atqqctqcqc qcatqqaqqt ctcctqccqq gcacgetett getgegaege geeegategt tgtgaaaggt ggegegatge tateggeagg 1380 gctgcaaqga agggatgaag cgaacqgaac tgctgtgtga agttgttggc gtgcgcgcgt 1440 agtgacgatg ctctgctgca gcgccggagg actgcgtgca ggccgaccct cattaaatgg 1500 aggegetegt tgatetgage ettgeceeet gaegaaegge ggtggatgga agataetget 1560 ctcaagtgct gaagcggtag cttagctccc cgtttcgtgc tgatcagtct ttttcaacac 1620 gtaaaaagcg gaggagtttt gcaattttgt tggttgtaac gatcctccgt tgattttggc 1680 ctctttctcc atgggcgggc tgggcgtatt tgaagcggtt ctctcttctg ccgtta 1736

<210> SEQ ID NO 162

<211> LENGTH: 2036

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct- Sequence No. 162, Example 162: designer Nial-promoter-controlled chloroplast-targeted Acyl<400> SEQUENCE: 162

CoA Reductase DNA construct (2036 bp)

229

-continued

60

agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt caaacgaccc cgccgtacga acttttgtcg ggggggggcgctc ccggatggta gggtgcgagt 120 gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc 180 gctcccggat ggccgccgtc attgccaagt cctccgtctc cgcggccgtg gctcgcccgg 240 cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg 300 ctgccccggc tcaggccaac cagatggatg acgataatgt tgtaaaaccc atttactatg 360 420 qtaaaataqa qqttcaaaat aatqqcacqq qaqtatqqqa qcctaccqtt qaqtqqttqa atgagttttt aaaccggagt atggaactat cacagagtct tttacaacta ggctttagta 480 gaagggttag agtgttgagc gagatgggga agatttggag ggagaagctt tcgttagtcg 540 aqqaqaaact aqctcctaat atttctaaqa atacaqqcta caqcqtqqaq aatqtqaaaa 600 tggacttaag actggttgaa gaagtgttta atgagaccaa tattgttgag ctcttcgata 660 aaggettaat egggggatgg egtagtettg acaageeegt tgaaateatt gatggggagt 72.0 tcgtgtggaa tagaccgcta ggcgtatccc ttataatatc ctccggaaac accgtcatac 780 cagctattct cccagcagtg gtttctttag catcggggaa cgtaactata ctaaggccgt 840 ctttcagcaa ctaccaagca gtagtcgaaa tttttaaaac acttttcgat ctagcagaca 900 gctccgtaga aggtgctaga gaaatggctt cggctcttct ggtcgcatac tttaaacatg 960 agagcaaggt atttgaacac ctattagcat cagcacctct cggcatcgtc aattactggg 1020 gcgggggggcc aggtagaagc gtgatcgcta gtagggtttt gaagaatccg tttcatccta 1080 agttaatcgt caatggacct ctaacggggt tagcgataat agatgaagag tcagcgtcgg 1140 1200 aaaaagtagc ctacggatta gcgagggatg tggtactgta tgatcaacag ttatgtagct ctcccactta cgccatattc ataggttcga aagatagcgc gttgaagttt gcacagagac 1260 taggggaagc cctgaataat gtggggagaa ggttcccccg tgatttgaag gaaggagaac 1320 tgtacaattt aatactgctt aggaaaaacc ttgagatcca aggtgtgaga gttttctact 1380 cggaaaaccc cggaaatgct tggacgattg cggtgaaaac actagagtca gtcactaatt 1440 1500 ttgcatatag tttaaaatat ccacatacaa tccctaggag acggttcatt gaaataatag 1560 tgttgaaaga cgccaaagaa ctcaaggaga cgatcttaca cctaattgaa gacttgagga gaaacggggt tgataagttc cagacagcat cgataaaggt ttctgaaaga aaccttaacc 1620 acttattgaa ggttctctat attcttggga tttacagggt tgtcccaata ggggaatcct 1680 tttttagaac geegttagaa eegtaegatg gtgaattett aeetaaatae tteaettaea 1740 cgatgtatct tagatttatc gagaagtcgg atgcgctaaa acaccctgaa tgataaatgg 1800 aggegetegt tgatetgage ettgececet gaegaaegge ggtggatgga agataetget 1860 ctcaagtgct gaagcggtag cttagctccc cgtttcgtgc tgatcagtct ttttcaacac 1920 1980 ctctttctcc atgggcgggc tgggcgtatt tgaagcggtt ctctcttctg ccgtta 2036 <210> SEQ ID NO 163

<211> LENGTH: 1625 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

on	ontir	ontinue

<220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 163, Example 163: designer Nial-promoter-controlled chloroplast-targeted Hexanol Dehydronase DNA construct (1625 bp)							
<400> SEQUENCE: 163							
agaaaatotg gcaccacacc atggtagggt gcgagtgacc cogogogact tggaagggtt	60						
caaacgaccc cgccgtacga acttttgtcg ggggggggctc ccggatggta gggtgcgagt	120						
gaccccgcgc gacttggaag ggttcaaacg accccgccgt acgaactttt gtcggggggc	180						
geteeeggat ggeegeegte attgeeaagt eeteegtete egeggeegtg getegeeegg	240						
cccgctccag cgtgcgcccc atggccgcgc tgaagcccgc cgtcaaggct gcccccgtgg	300						
ctgccccggc tcaggccaac cagatggaac tcgacctcga cggtcccggg gttggtgaag	360						
tgetgateaa gtacacegee geggggttgt gecattegga eetgeaettg acegaegggg	420						
acctaccgcc gcgctatcca atcgtcgggg ggcacgaggg gtcaggcatc atcgaggacg	480						
tcggacctgg ggtcaccaag gtcaaaccag gcgatcacgt tgtttgcagc ttcatcccga	540						
actgeggaac etgteggtae tgegeeaceg gaegeteeaa eetetgegat atgggegeea	600						
ccatcctcga agggtgcatg cccgacggca gttaccggtt ccacagtaac ggcctggatt	660						
toggtgogat gtgoatgoto ggoacattot oogaaogogo aactatotoo cagoattogg	720						
tggtcaagat cgacgactgg ctgccgctcg agaccgcggt ggtcgtcggc tgcggcgtgc	780						
cgactggctg gggcacctcc gtctatgccg gcggggttcg ttgcggtgac accaccgtca	840						
tctatggcgt cggcggcctg ggagtcaacg ccgtccaagg cgcggtgagt gcgggcgcga	900						
agtacategt ggtegtegat eeggttgegt teaaaegega caeegegete aagtteggeg	960						
ccacccacgc gttcgccgac gccgccaccg ccgcggccaa ggtcgacgaa ctgacctggg	1020						
gacagggtgc cgatcaggcg ctgatcctgg tcggcaccgt cgacgaggac gtggtctcgg	1080						
cggcgactgc ggtgatcggt aagggaggca ccgtcgtgat caccggactg gcggacccag	1140						
caaagctcac ggtgcacgtt tcgggaacgg acctgacgct taacgagaag acaatcaagg	1200						
gcacgttgtt cggctcgtcc aatccgcaat acgacatcgt acggctgctc cgtctctacg	1260						
acgccggcca gctaaaactc gacgatctga tcaccacccg atacacgctc gaccaggtca	1320						
accagggcta ccaggatctg cgagacggca agaacatccg cggcgtgatc atccacgcct	1380						
gataaatgga ggcgctcgtt gatctgagcc ttgccccctg acgaacggcg gtggatggaa	1440						
gatactgctc tcaagtgctg aagcggtagc ttagctcccc gtttcgtgct gatcagtctt	1500						
tttcaacacg taaaaagcgg aggagttttg caattttgtt ggttgtaacg atcctccgtt	1560						
gattttggcc tettteteca tgggeggget gggegtattt gaageggtte tetettetge	1620						
cgtta	1625						
<pre></pre> <pre></pre> <pre><210> SEQ ID NO 164 <211> LENGTH: 1249 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 164, Example 164: designer Nial-promoter-controlled chloroplast-targeted Octanol Dehydrogenase DNA construct (1249 bp) <400> SEQUENCE: 164</pre>							

agaaaatctg gcaccacacc atggtagggt gcgagtgacc ccgcgcgact tggaagggtt 60

- cont	inued	
- COIIC	THUER	

-continued								
caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120		
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcgggggggc	180		
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240		
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300		
ctgccccggc	tcaggccaac	cagatgttgg	gaggccaaga	ageegetggt	gattgaggac	360		
attgaggtgg	cgccacctca	ggcttggcag	gttcgcatca	agattacagc	cactggcgtt	420		
tgccacacgg	attctttttc	gttgagegge	tctgatcctg	agggtetett	tcccgtggtc	480		
cttggccatg	agggcgccgg	catcgtggag	agcgttggcg	agggcgtaac	caactttaag	540		
gccggcgatc	atgtcattgc	cctctacata	ccccagtgca	atgagtgcaa	attctgcaag	600		
agcggcaaga	caaatctctg	ccagaagatt	cgcctcaccc	agggcgctgg	tgtcatgccc	660		
aatggatcct	cccgcttgtc	gtgcaagggt	cagcagctgt	tccatttcat	gggcacctca	720		
actttcgccg	agtacgcggt	ggtggccgac	atatcggtga	ccaaaatcaa	cgagtcggct	780		
ccattggaga	aggtgtgcct	tetgggetgt	ggcatttcca	cgggctatgg	tgccgccttg	840		
aacaccttta	ggtggaacct	ggcagcactt	gcgccgtctg	gggtctgggt	gctgttggac	900		
tggcagtggg	tctgggctgc	aagaaggctg	gcgccgccaa	ggtctacggc	atcgacatca	960		
atccctccaa	attcgagctg	gccaggaagt	tcggcttcac	cgactttaaa	tggaggcgct	1020		
cgttgatctg	agccttgccc	cctgacgaac	ggcggtggat	ggaagatact	gctctcaagt	1080		
gctgaagcgg	tagcttagct	ccccgtttcg	tgctgatcag	tctttttcaa	cacgtaaaaa	1140		
gcggaggagt	tttgcaattt	tgttggttgt	aacgatcctc	cgttgatttt	ggcctctttc	1200		
tccatgggcg	ggctgggcgt	atttgaagcg	gttetetett	ctgccgtta		1249		
<pre><210> SEQ ID NO 165 <211> LENGTH: 1769 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- Sequence No. 165, Example 165: designer Nial-promoter-controlled chloroplast-targeted Short Chain Alcohol Dehydrogenase DNA construct (1769 bp)</pre>								
<400> SEQU	ENCE: 165							
agaaaatctg	gcaccacacc	atggtagggt	gcgagtgacc	ccgcgcgact	tggaagggtt	60		
caaacgaccc	cgccgtacga	acttttgtcg	ggggggcgctc	ccggatggta	gggtgcgagt	120		
gaccccgcgc	gacttggaag	ggttcaaacg	accccgccgt	acgaactttt	gtcggggggc	180		
gctcccggat	ggccgccgtc	attgccaagt	cctccgtctc	cgcggccgtg	gctcgcccgg	240		
cccgctccag	cgtgcgcccc	atggccgcgc	tgaagcccgc	cgtcaaggct	gcccccgtgg	300		
ctgccccggc	tcaggccaac	cagatgatca	tcaaaccgcg	cgtgcgtggc	ttcatctgcg	360		
tgaccactca	tccggtcggc	tgcgaggcca	acgtcaagga	acagatcgac	tacgtgactt	420		
cgcacggccc	gatcgccaac	ggcccgaaga	aggtgctcgt	gatcggcgcg	tcgaccggct	480		
acggcctcgc	ggcccggatc	tcggccgcct	tcggctcggg	cgcggacacg	cttggcgtgt	540		
tcttcgagcg	cgccggcagc	gacaccaagc	cgggcaccgc	cggctggtac	aacagcgccg	600		
cgttcgagaa	attcgccgcc	gaaaaggggc	tctatgcgcg	cagcatcaac	ggcgacgcgt	660		
tctccgacaa				aabaabaata	agaaagatag	720		
J	ggtcaagcag	atcacgatcg	acacgatcaa	gcaggacere	ggcaaggreg	720		
	ggtcaagcag ctacagcctg					780		

-continued

tcagctcgac	gctgaagccg	gtcggcaagt	cggtgacgtt	ccgcggcctc	gacaccgaca	840
aggaaacgat	ccgcgaggtg	acgctcgagc	cggcgacgca	ggaagagatc	gacggcaccg	900
tcgccgtgat	gggcggcgag	gactggcaga	tgtggatcga	cgcgctcgcc	gacgccggcg	960
tgctggccga	cggcgcgaag	accaccgcgt	tcacgtatct	cggcgagcag	atcacgcacg	1020
acatctactg	gaacggctcg	atcggtgagg	cgaagaagga	tctcgacaag	aaggtcgtgt	1080
cgatccgcga	gaagetegee	gtgcatggcg	gcgacgcgcg	cgtgtcggtg	ctgaaggccg	1140
tcgtcacgca	ggcgagctcg	gcgatcccga	tgatgccgct	gtacctgtcg	ctgctgttca	1200
aggtgatgaa	ggaaaagggc	acgcacgaag	gctgcatcga	gcaggtgtac	gggctgctga	1260
aggacagcat	gtacggcgcg	acgccgcaca	tcgacgaaga	aggccggctg	cgcgcggact	1320
acaaggaact	cgatccgcag	gtgcaggcgc	aggtcgtcgc	gatgtgggac	aaggtcacga	1380
acgacaacct	gtacgagatg	accgacttcg	ccggttacaa	gaccgagttc	ctgcgtctgt	1440
tcggcttcga	gatcgccggc	gtcgactacg	acgcggacgt	gaacccggac	gtgaagatcc	1500
ccggcatcat	cgacacgacg	gcctgataaa	tggaggcgct	cgttgatctg	agccttgccc	1560
cctgacgaac	ggcggtggat	ggaagatact	gctctcaagt	gctgaagcgg	tagcttagct	1620
ccccgtttcg	tgctgatcag	tctttttcaa	cacgtaaaaa	gcggaggagt	tttgcaattt	1680
tgttggttgt	aacgatcctc	cgttgatttt	ggcctctttc	tccatgggcg	ggetgggegt	1740
atttgaagcg	gttctctctt	ctgccgtta				1769

- <210> SEQ ID NO 166 <211> LENGTH: 6110 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic C
- <220> DTHER INFORMATION: Synthetic Construct- SEQ ID NO: 166, example 166: a designer hox-promoter-controlled Formylmethanofuran dehydrogenase (Fmd) DNA construct (6110 bp)

<400> SEQUENCE: 166

agaaaatctg	gcaccacacc	gcagaaatat	aggggctagg	agttgagggt	actctggttc	60
gtcaagcatt	tgggatgatt	tcccctcaca	agttcctcaa	attattctcc	tataaacaat	120
agatataagg	tcaaaacttg	agttatgagt	gctgagtaaa	aaattactct	ccacgcctca	180
gaggtagata	tgatgagcgt	ctataaaaat	gtgacatgtc	ccgtctgcgg	agggtcttgt	240
gatgacatag	aggttctcta	tgatgggaaa	acaataaaaa	caaggaatgc	ttgcaggatg	300
gggaatgcaa	agtttcagga	gatggtcagc	tcccacagaa	tacttagacc	ccagattaaa	360
actgaaagtg	gtttcagatc	cgcagaatgg	gatgaagccc	ttgacgctgc	agcagagata	420
cttacagagt	caaaaagacc	aaccctattc	atgggtagtg	agatgtcaac	tgaagccatg	480
gctgcaggtc	ttgaacttgg	tgagtatcta	aatgccatgg	tggattcaaa	tgcaaccata	540
tgtcatggcc	ccacattaat	gggaatccag	gaagctggac	agagcgctgc	tacggcaggt	600
gagataaaga	atagagctga	cgtcatcatt	tattggggta	caaatgttat	ggactccatg	660
cctcgccaca	tgtcacgtta	cagcatattc	atgcgcggat	ttttcagaga	acgtggtaaa	720
aaagatagaa	ctgtcatctc	cgtggatccc	cgtgaaacag	caacaactaa	agcctccgat	780
atccatctgc	agctgaaacc	aaactcagat	tatgaacttt	tttcagcact	gcttacagtt	840
ataaggggca	atgaaccgca	caggagtatt	gagagtataa	cagggatatc	agttgaaacc	900

cont	ın	nned

				-contir	nued	
ataaaggaag	tcgcagacat	aatgctgaat	gcgcagtttg	gagccatcta	tggaggtctt	960
ggacttgcat	catcagaagg	taagcataga	aacgttgaga	tggttctcaa	actggtagct	1020
gcacttaatg	aacacaccaa	atttacaata	ggagccataa	gaggtcattg	taatgttgca	1080
ggatttaatc	aggtggcttc	atgggagtat	ggtttcccct	ttggtgttga	ttttacaagg	1140
ggttatccac	gctacaaccc	cggagaaaca	actatagtcg	atcttctcca	gagaaaagaa	1200
tccgatgcgg	tcctcgttat	atgttcagat	cttggagctc	acctccccaa	agaatgcgtt	1260
gagtatatga	aagagattcc	tgtaatatgc	atagatattg	ccccatgtcc	aacaacactt	1320
gtatctgatg	ttgtgatccc	tggagttatt	gatgctatgg	agtccagcgg	caccttctac	1380
cgctttgaca	atgttcccat	ccaccataag	gcattcacaa	catcaccatt	ccctgaaaca	1440
gagagcaacg	aacatactct	tagacagatc	cttgagaggg	ttaaatcaat	taaaggcgaa	1500
taaatgggat	ttgtgttggt	accaaaatca	gatttccaga	tacctctgga	agcagatacc	1560
ataagacccg	atctgtttga	agggctggat	cttgatgaaa	ttcgttccct	tcaagtatac	1620
gaagggaaca	tcaaaagacc	cctaggcgaa	tttttgaga	tagcagagac	atcccatgaa	1680
gatcagttaa	tacggatcga	tggggatgtc	agcagggtga	agtatatcgg	ttcagggatg	1740
aaatccggaa	aaatcatcat	aaacggcgat	gtcggactcc	agcttggctg	tgaaatgaaa	1800
ggcggtgaaa	tagaggtaaa	tggaaatgtt	tcttcatgga	tcggcatgga	aatgcatggt	1860
ggcaccataa	aaattaatgg	aaacgcgggg	gattatgttg	gctgcgcata	taggggagag	1920
tggcgtggca	tgaaaggagg	taaaatcatt	atacagggta	atgcagggaa	caatattggg	1980
ggtggtatga	tggccggaga	aatttatata	ggtggagatg	caggtaattt	ctgcggcatc	2040
cgaatgaatg	ggggtgaaat	aacagtacgc	ggggatgctg	gaagggcccc	cggagcagag	2100
atggtatcag	gtatcatcaa	aattcatgga	cggatctcct	ctctcctccc	gggattcaag	2160
gagateteaa	cattcaaaga	agatggatcc	cttatgatcc	tattcaaagg	agatctatcc	2220
gaaaaaaatc	cggagggtaa	tctatacatc	aattataata	agaaccttca	cattctagag	2280
aatgagaccg	atgaagggag	agtcatcaca	aaaaagggaa	ttaaagtaat	ctacaacagt	2340
ggaagtacga	tccgtgaagg	gcagataata	aagggaggca	ataaactcac	agatgattat	2400
atagatgaat	gtgcacgctg	ctgtattagt	cctgaagact	ataagctcct	aggtgaaccc	2460
gaaaatgttg	tcgtatcatc	acatggaaat	gaagttgttc	tgagagctgt	tgaggaccct	2520
ggaatccaga	tgggaacaat	attcataccc	agaggtatat	gggccaatgt	gctaacgcca	2580
ccgtataccg	agtcaaccgg	ttccccaatg	tataaaggag	tgccggttta	tcttagaaag	2640
gcttcacaag	gtgaaaggat	cctgagtgcc	gaggaacttg	tagaggaata	cggggtggga	2700
aaatgagtgg	ggcaggtcag	agaatacctt	gatttaataa	aaaatttcag	tgggttcgca	2760
agcccgggca	gtgtcatagg	agctcatatg	ttactaatag	ccaggaaggt	ccttgatttt	2820
gaagtcgatg	aagaaattta	tgttacatgt	gaaacgacaa	actgtttacc	cgacgcattc	2880
caggccatat	gcaaatcaac	aataggaaat	gggagactga	atatcctgga	cactggaaaa	2940
atggctgtca	tcatcaacag	aaagggtatg	cctggagaaa	cagtccaggc	tcttagaata	3000
atactggatc	ctgaaaagac	cgtcaattac	ccgatcatac	atgaatggta	catgaacacc	3060
cgcaaggtat	ccgcagaaga	agtgaatcca	gaactcataa	gagccggtga	aaatctatat	3120
tcctggtatt	ttgttgatgt	gatcgttcca	gaaaaagaaa	agaagataat	tgaaatctgt	3180
aatctttgca	acgaaccttt	cataaaaaga	aatgagctgg	atctctgtcc	agcttgtctg	3240

aaaagataaa	tggaatatat	tttaaaaaat	ggtattgtat	ttgatccagc	aaataatatt	3300
gatggagaaa	aaaaggacat	actaataaaa	gatggataca	tagttagtga	agtatcaaag	3360
gatgcaaaga	ttatagatgt	tacaaataaa	ttagtaatgc	ctggaggagt	agatttacac	3420
tcacacatag	caggaccaaa	actatcagtg	ggaagattat	atcgtccaga	agatacaaga	3480
cgtggaataa	aacctgcacc	atgtggtgct	attgagggat	ttgaagcagg	attttccata	3540
ccaacatgtc	caacaactgg	gtacaggtat	actcgtatgg	gatatacaac	agtaacagaa	3600
gcagcagtac	cacccttaga	ggcaaaacat	gcacatgaag	aaataaacag	tattccaaac	3660
cttgatatac	caacattaac	actctttggt	aataactggt	tcatgcttaa	atatgttaag	3720
gaaaataact	tagaaaaact	agctttattc	atatcaaaat	ggttgaaact	agcaaagggt	3780
tatggaatta	aaatagtaaa	tccatgtgga	agtgaagcat	ggggttgggg	aaaaaatgta	3840
gatggacttg	atgatccaga	accacactgg	ggtgtaacag	gacgtcaagt	aatacaggct	3900
ctaactaaag	taaatgaaaa	attaggttta	ccccattctg	tgcatgttca	tacaaatgac	3960
cttggacatc	ctggaaacta	tgaaacaaca	cttgaaacat	ttgattgtgt	aaaggatatt	4020
aagaaaaata	agaatgtaac	aagagatcaa	gtgttacatg	caacacacgt	acagttccat	4080
gcatataagg	gaacatcatg	gagggatgtt	acatcaggtg	caccagaatt	gattgattat	4140
ataaataagt	caaaacatat	gacttgtgat	attggacaga	taaccttcga	tgaaacaaca	4200
acaatgactg	cagatgcacc	aatggagtat	gatttataca	gactaacagg	acttaaatgg	4260
gcaaataagg	atatagaggt	tgaaacttca	tctggactta	ttccatcaat	atattctaaa	4320
cgagcaccag	taagtgtact	tcaatgggct	attgggcttg	aattetteet	tggaataaaa	4380
gatccatgga	aattggcatt	aacaactgat	tcaccaaatg	gtggtccatt	tatcagatat	4440
ccacgtgtaa	tttcatggat	aatgagtaat	gaaaaactaa	atgatatgct	tgataatcaa	4500
gtacatagtt	gggcaacaag	aagaacatca	cttggaagtt	atgataggga	atattcctgg	4560
aatgaaatag	caacaattac	aagggcaagt	ccagcaaaaa	tacttggatt	aacagataga	4620
ggacatcttg	gtgtaggtgc	aaaggctgat	gtttcagtat	atgatataga	tgtctatgac	4680
tttgatacaa	cacttcttaa	aaattcacaa	acacttgaaa	acaagttatt	aaacagttta	4740
tacactataa	aagatggtat	gatcatggtt	gatcatggaa	aaattgttaa	attagtagat	4800
agtaaacata	tatggactaa	tgtttgtggc	ttagaaaaag	aagaggctaa	tcttgtagat	4860
gaaataacac	cagaatttaa	taagtattat	actataaaat	atgaaaatta	tggtgttcca	4920
gatcattata	taaaacctga	tacttgtgta	gatatagaat	atgaggatta	gatggatgaa	4980
atggatatta	tcataaatac	aggtacgagt	attatccaag	cattttatga	aaagaaaggt	5040
tctacattaa	aggatgaata	cagacaatct	acagctgtag	cttttatgga	tccaagggat	5100
atgaaaaaat	tatctctaaa	accacgtgat	aaaataaatg	taacatctaa	atggggaagt	5160
gtaacaatat	atgcagataa	atcccatgat	gcaccacatg	aaggtatgat	attcatacca	5220
aggggaccat	gggccaatat	agtaataagt	ccagaaacat	attgctgtaa	tattccaaca	5280
tataagggag	taaaagcagt	aattaaaaaa	acagacgatg	aagtattact	cgtagcaaat	5340
ctaatgcata	aaacatacaa	taaatataaa	tataacacaa	aaactcttgg	acaaaagcca	5400
gtatataaaa	aaatagggga	gtaaatgtta	tgtgttaatc	aagatcattg	tttagggtgt	5460
ggagcatgtg	ttatagtatg	tcctgttaat	caagaaatct	atccagaggt	tattggaggt	5520

-continued

			-contin	ued		
aatgggccag atacaacag	a tgtggtaatg t	tagttgaaa	atggagtaat	aaaactattc	5580	
catccagaaa aatgtgtaa	c atgtatgaaa t	gtaatgata	catgtccaac	aaaggcaata	5640	
tatcataagg gagactaat	g aagtaagtag g	aagcaggga	gcaggggaaa	gaaaattgac	5700	
aactgtacaa gattaatcg	c gtctctgagc a	atgaccaaa	tacatctacc	tccacggttt	5760	
tettecagee cectatetg	c gaaagcacaa g	atattagca	agcgtttcgc	ccaaattcac	5820	
atacagctaa caatccctg	a tctcaatgct g	gtgaatttt	ctcagttaac	aatcacgcgc	5880	
caaattcaac aagttgccg	c aattttccct g	ataattctg	aaccaataac	gctgataggt	5940	
tctagtttag gcggtttaa	c tgctgcttat c	taggacagc	gatatttaca	agtacaacgc	6000	
ttagttttat tagcgccag	t ttggtttttt a	tcccattgg	ttgcccaaaa	tgggtgaaga	6060	
agctgtcaca agttggcaa	c aaacgatata g	gttetetet	tctgccgtta		6110	
<pre><210> SEQ ID NO 167 <211> LENGTH: 1538 <212> TYPE: DNA <213> ORGANISM: Arti <220> FEATURE: <223> OTHER INFORMAT</pre>	- ION: Synthetic r hox-promoter	Construct				
		agaattaa	attaggat	actotostta	60	
agaaaatctg gcaccacac gtcaagcatt tgggatgat					120	
					180	
agatataagg tcaaaactt gaggtagata tgttagaag					240	
gtagttccct gcacttatc					300	
cttcattgcc tcccttaca					360	
gttgacgttt tcaggtatc					420	
ctcattggtt gaggcgttg					480	
caccacacca ccggggaat					540	
agcetgggee geaaggagg				-	600	
tgcaaccccg teettatt					660	
gattgagtgg attttcctt					720	
cttgagtttg aatcccaca		-			780	
ggttgttggt gctgtaagt					840	
cttctttgat gggttgcag					900	
tggtggaacg tagcagtct					960	
acctgttgcc tcggttgca					1020	
ccttgaaacc ttgataccg					1080	
ctccattgaa gtaagtagg					1140	
ttaatcgcgt ctctgagca			-		1200	
ctatctgcga aagcacaag					1260	
atccctgatc tcaatgctg					1320	
gttgccgcaa ttttccctg					1380	
			5 550	5 55 -	-	

-continued	
ggtttaactg ctgcttatct aggacagcga tatttacaag tacaacgctt agttttatta	1440
gcgccagttt ggttttttat cccattggtt gcccaaaatg ggtgaagaag ctgtcacaag	1500
ttggcaacaa acgatatagg ttctctcttc tgccgtta	1538
<pre><210> SEQ ID NO 168 <211> LENGTH: 1631 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 168, exam</pre>	
<400> SEQUENCE: 168	
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc	60
gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat	120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca	180
gaggtagata tgatgagtga aagtatgaac atagcagcaa agaaaattgc tgataaaatg	240
gttcaagatg cagaaaaatt aaaagtaatt ccatcaacat tatccaatgg aacatctatt	300
atagattgtg gtgttaatgc taagggaagt attaaaggtg gggaattatt tacaaaagta	360
tgtcttggtg gaatttgtga tgttggaatt tcaatacctg gtgacttaag tgatataatg	420
gctatgcctg ctgttaaggt taaaactgat tttccagcat taaccactct tggttctcag	480
aaagcaggat ggaaaataga tgttaatgga tattatgcta taggttctgg acctgctcag	540
acacataaat ttaaagataa taacatttat aaaataacta actatattga agattcagat	600
attgcagtta ttactcttga agcagataaa ttacctgatg aagatattgc taattatatt	660
gcagatgagt gtggtgtaaa accagaaaat ttaaccatac ttgttgcacc tacatcttct	720
cttgttggat ctattcaaat atctggtaga gctcttgaaa ctggaatata caaaatgtat	780
gaaataatga acttcgatgt tactaaaatt acatatgctg caggtattac ccctattaca	840
ccagttgatc ctgatagtct taaagctatg ggtaaaacta atgatgctat catgtttggt	900
ggaagagcat attattatat tgaacctgat gaaggtgaag atttagaaga attagctgct	960
aatttaccat catctgcttc tgataattat ggtcaaagct ttattgaatt atttaaagaa	1020
gcaaatcagg atttctataa aatgcctaag gatatttttg caccagcaca agttattgtt	1080
aatgatatga taactggtca aatgttccac acaggattta tagatcttaa acgtctaaaa	1140
aaatcttttg aagttaaaga aataatttat gaaaaataat gaagtaagt	1200
agcaggggaa agaaaattga caactgtaca agattaatcg cgtctctgag caatgaccaa	1260
atacatetae etceaeggtt ttetteeage eccetatetg egaaageaea agatattage	1320
aagcgtttcg cccaaattca catacagcta acaatccctg atctcaatgc tggtgaattt	1380
totoagttaa caatoacgog coaaattoaa caagttgoog caattttooc tgataattot	1440
gaaccaataa cgctgatagg ttctagttta ggcggtttaa ctgctgctta tctaggacag	1500
cgatatttac aagtacaacg cttagtttta ttagcgccag tttggttttt tatcccattg	1560
gttgcccaaa atgggtgaag aagctgtcac aagttggcaa caaacgatat aggttctctc	1620
ttctgccgtt a	1631

```
-continued
```

<210> SEQ ID NO 169 <211> LENGTH: 1475 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 169, example 169, a designer hox-promoter-controlled 5,10-Methylene-H4methanopterin dehydrogenase DNA construct (1475 bp) <400> SEQUENCE: 169 aqaaaatctq qcaccacacc qcaqaaatat aqqqqctaqq aqttqaqqqt actctqqttc 60 120 gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca 180 qaqqtaqata tqatqqttqt aaaaattqqt ataataaaat qtqqtaacat cqqqacctca 240 cctgtgctgg acctgttact tgatgagagg gcagacaggc caaacataga tgtctgtgtc 300 gtgggttcag gtgcaaaaat gaaccccgat gaaatcgaaa gggcagtacc aaccatgctt 360 gaaatggaga gggactttgt tatattcata agcccaaacc ccggtgcacc tggccctgca 420 aaggcaaggg ageteettte ageggetgat gtteeageea tgateatagg tgaegeacea 480 ggcctcaggg tcaaggatga aatcgaggag cagggacttg gatacataat agtaaaggcc 540 gacccgatga taggggcaag aagggagttc ctggacccaa cagagatggc atccttcaac 600 teegaegtta taaaggteet tgeatteaca ggegeataca gggttgtgea gaacacaate 660 gatgcaatga ttgcagatgt tgaagccgga aaggcacctg aacttcctca ggtggtaata 720 gacacagata aggcggttga ggcagcaggc tacaccaacc catatgcaaa ggccaaggcc 780 840 atggctgcat atgagatagc aaccaaggtg gctgacatag acgtcagggg ctgcttcatg gtacaggacc ctgaccagta cataccaatc gttgcctcag cacacgaaat gctatctgca 900 gctgccaaac ttgcaattga agcaagggaa atcgaaaagg ccaacgacac cgtgctgaga 960 acaccacacg gtaaggaagg caaaacactt agcaagaagg atcttctggc caagccagaa 1020 tagtgaagta agtaggaagc agggagcagg ggaaagaaaa ttgacaactg tacaagatta 1080 atcgcgtctc tgagcaatga ccaaatacat ctacctccac ggttttcttc cagcccccta 1140 totgogaaag cacaagatat tagcaagogt ttogoccaaa ttoacataca gotaacaato 1200 cctgatetea atgetggtga atttteteag ttaacaatea egegeeaaat teaacaagtt 1260 qccqcaattt tccctqataa ttctqaacca ataacqctqa taqqttctaq tttaqqcqqt 1320 ttaactgctg cttatctagg acagegatat ttacaagtac aacgcttagt tttattagcg 1380 ccaqtttqqt tttttatccc attqqttqcc caaaatqqqt gaagaaqctg tcacaaqttq 1440 1475 gcaacaaacg atataggttc tctcttctgc cgtta <210> SEO ID NO 170 <211> LENGTH: 2594 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 170, example 170: a designer hox-promoter-controlled methylenetetrahydrofolate reductase and/or methylene-H4-methanopterin reductase DNA construct (2594 bp) <400> SEQUENCE: 170 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60 gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat 120

agatataagg	tcaaaacttg	agttatgagt	gctgagtaaa	aaattactct	ccacgcctca	180
gaggtagata	tgctactcta	ccttgggacg	gggatacagg	ccggcttcct	tgacgatggt	240
ggggatgata	tcttcccaca	tgacggccat	gatatggacg	ccggctacac	cctcgatgga	300
ctgcaggtgt	ttaatctgtt	ccacacagat	ggccacccct	tcggccttgg	ggtcggaggc	360
tttttccatg	cggttgacga	tttcgtcggg	gacaatcatc	ccggccaccg	attgttgcat	420
atatttggcg	gcccgggcgg	atttcagggg	catgacgccg	gcaataattt	tggctctttt	480
atgcaggccg	cgctcccgga	ccagggccat	aaagcgttca	aaacgctcca	tatcaaaaat	540
gcactgggtt	tgaataaagt	cggcgccggc	attgatcttc	ttctccaggc	gcatgacccg	600
gaactcaaag	gggtcggcaa	aggggttggc	ggcggcgccg	atgaagaagc	ggggttcctg	660
gcccttaatc	tcttcaccgc	aggcgaattt	tttctcatcc	cggaggtcct	tcacgatccg	720
gatcagctgg	agggaatcca	cgtcatggac	gtttttcgcc	gtcggatggt	taccaaaaga	780
ttgatggtcg	ccggacaggc	agaggacgtt	ccgcatcccc	aggctgtagg	cacccaggag	840
atcactctgg	agggcgatac	ggttgcggtc	ccgaaccgtc	atctggataa	tgggttcgcc	900
cccggcctgg	aggacgtgga	ccccagcggc	gatactcgac	aggcggacga	tggccgtctg	960
gttgtccgtc	aggttcatgg	catcaacgta	gtccttgagg	agagcggcgt	gcttcttgat	1020
ctctgtagga	tcggcgtgct	tcggcggtcc	aatctcaccg	ctgaccagaa	attgcccctg	1080
ggagaggatt	ttcgccatct	tgctttcaac	catatgacca	ttaaaaaagt	tgcaatcttg	1140
ggagcaggat	gttacagaac	acatgctgca	acaggaatca	ccaactttgc	aagagcatgc	1200
gaagttgcgg	aaaaagttgg	caaaccggag	atagcgatga	cgcactccac	aattgccatg	1260
gctgcagagt	tgaaatacct	ggctggaata	gacgatatcg	tcatctcgga	tccgtcattt	1320
gccggtgaat	tcactgttgt	gaaggacttc	gattacaatg	aagtcatcaa	agcccacaaa	1380
gacaatcccg	aaacgattat	gccgaagatc	agggagaagg	ttaacgaact	cgccaagaca	1440
gttccaaaac	ccccgaaggg	cgccatacac	tttgttcatc	ccgaagacct	aggcctgaag	1500
gtaacgactg	acgacaggga	agcagtacgt	gatgcagacc	tgataatcac	ctggctgcca	1560
aaaggcgaca	tgcagaaagg	cattatagaa	aaattcgcag	gagatatcaa	agagggagca	1620
ataatcaccc	acgcctgtac	gattccgaca	acccttttct	ataagatatt	cgaggaactc	1680
ggtatcgcag	ataaggtgga	agttacatcc	tatcaccccg	gctcagttcc	tgagaacaag	1740
ggccaggtct	acatcgcgga	aggatatgcc	tcagaagaag	ctatcaatac	aatatacgaa	1800
cttggaaaga	aagcccgcgg	acatgccttc	aaacttcctg	cagaacttat	cgggccggta	1860
tgcgacatgt	gtgcagcact	taccgctata	acctacgccg	gactgcttgt	ataccgtgat	1920
gccgttatga	atattctcgg	tgcacctgcc	ggattcagcc	agatgatggc	gacggaatca	1980
ctggaacaga	tcaccgccta	tatgaagaag	gtaggcataa	agaaccttga	agagaacctt	2040
gacccgggtg	tattccttgg	aactgcagac	tcaatgaact	tcggacctat	cgccgagatc	2100
cttcccacag	ttcttaaatc	acttgagaaa	agggcaaaat	aatgaagtaa	gtaggaagca	2160
gggagcaggg	gaaagaaaat	tgacaactgt	acaagattaa	tcgcgtctct	gagcaatgac	2220
caaatacatc	tacctccacg	gttttcttcc	agccccctat	ctgcgaaagc	acaagatatt	2280
agcaagcgtt	tcgcccaaat	tcacatacag	ctaacaatcc	ctgatctcaa	tgctggtgaa	2340
ttttctcagt	taacaatcac	gcgccaaatt	caacaagttg	ccgcaatttt	ccctgataat	2400

-continued

-continued	
totgaaccaa taacgotgat aggttotagt ttaggoggtt taactgotgo ttat	ctagga 2460
cagegatatt tacaagtaca aegettagtt ttattagege cagtttggtt tttta	atccca 2520
ttggttgccc aaaatgggtg aagaagctgt cacaagttgg caacaaacga tata	ggttct 2580
ctcttctgcc gtta	2594
<210> SEQ ID NO 171 <211> LENGTH: 2819 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 17: 171: a designer hox-promoter-controlled Methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase DNA construct (2819 bp)	1, example
<400> SEQUENCE: 171	
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actc	aggtte 60
gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tata	aacaat 120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccac	geetea 180
gaggtagata tgtcaggcct taatcttccc ggcccgggcg gcagatatat actc	caggca 240
gtattcatcc tggccgtaca gggcggtggc ggcccgcaac aggcccatta atgg	catate 300
caggggatca aggataaagg aatccatacc tttagtgagg cacataacca taaag	ggeeeg 360
gttcagcagt cgcctttccg gcaggccata ggaaacgttg gaaaggccgc agat	ggtgtg 420
aaccccgggg tatttttgcc gcagggcggc aaccgattcc agagcctcca cgcc	gtactg 480
getgttaaet eecaggggtt taateagggg ateaaggtag atategtett eegg	Latgee 540
ggcetetace agecegggta ceagettace ageaaegega aggeggteet etac	cgaatc 600
cggcatgccg ccgtcatcca tgcaaagggc gataacctta gccttatatt tctg	cactaa 660
aggcaaaact teeteecage getgettete ggeggtgatg gagtttaeea ttge	etggee 720
cttatgggct gccaggccgg cagccagggc ctcggcgctg gggctatcaa taca	cagggg 780
aacatcaacg actteetgga egatatteae gageeaggte attaeettat ttte	stegee 840
gatgettgte eegcagttaa categataat ateggeteeg geeteggeet gette	cetgge 900
cagtteetgg atataateet tateeeggtt ageaatagee tgggeaatgg ettt	gegget 960
ggagttaatt aacteteega caaegageat ttgeaggtaa etgeeatgga tgta	Laccga 1020
ttacttccaa aaacaaactg tggtaaatgt gacgagtcat catgcatggc cttc	gccaca 1080
aaactcatag aaaaggaact cacactggat gactgcccgc agctcagtgg ggat	gaaaga 1140
cagaageteg aggaeeteet tgegeegget gtgagggaaa teacettegg eeeag	Jaaaag 1200
aaccaggtgg tggttggggg tgatgaggtc ctctacaggt ttgaactcac atac	Lataac 1260
cccacagece tegtggttga tettecagat gacetaceat cagaggagat cagg	aagagg 1320
gccagtgata tcatgaatct taaattcgag cgtaccggtg aggaactgac cctg	gatgee 1380
atagcgctca ggaacaaatc aggaagccct gaaaaatttg cagaggcagc aggg	accctg 1440
getgaaetta aetteeetgt tgttetatge acattegate eagaggeaat gagg	getgee 1500
ctcgaggtcc tggggggatca gaggcccctc atgtatgcgg ctacaaagga caac	ctccag 1560
gagatggetg atettteeat tteataegge tgeeeetgg tgetettete aeeg	ggggac 1620
cttgaggaga tgaagaacct cacaagaaga ctgcgggcaa tgggccttac tgaa	attatc 1680

con	t-	Ť.	n	11	ρ	d	

-continued	
ctggaccccg gaacattcac aggtgaggga ataggcgaca ccatagacaa ctttgtcatg	1740
ataaggcgcc ttgcagttga ggaaagggat gaggacttcc gcttccccat catgggcata	1800
ccagcactct caaggctttc aggagggggat ccagttgagg ataacataaa ggaggccact	1860
gttgcagcca cactcatgaa ccgctacgcc gacattetta tactcggagg aacagatate	1920
tgggaactta tgeecatact cacceteaga cagggeetet acaetgatee aaggaageea	1980
cagactgttg atccgggaat atatgagttt ggagacgttg atgagaactc ccctgtgata	2040
ctcacaacca acttctcact cacatactac acagtggagg gtgacctcaa ggcaggtgat	2100
gttacggcat atctccttgt gcttgacaca gagggaaggg ctgtggacgt ttcactggct	2160
ggaggacagc tcacgggaac cgcagtggct gaccttataa aggatagtgg tatagaggat	2220
agggtaaagg atagggttet cateatteet ggaettgegg caeetgetag tggtgaaata	2280
gaagatgata ctggatggaa ggtgcttgtg gggccaaggg attcctcagg gatacctgac	2340
taccttgaaa aactggcatc ggagtagtga agtaagtagg aagcagggag caggggaaag	2400
aaaattgaca actgtacaag attaatcgcg tctctgagca atgaccaaat acatctacct	2460
ccacggtttt cttccagccc cctatctgcg aaagcacaag atattagcaa gcgtttcgcc	2520
caaattcaca tacagctaac aatccctgat ctcaatgctg gtgaattttc tcagttaaca	2580
atcacgcgcc aaattcaaca agttgccgca attttccctg ataattctga accaataacg	2640
ctgataggtt ctagtttagg cggtttaact gctgcttatc taggacagcg atatttacaa	2700
gtacaacgct tagttttatt agcgccagtt tggtttttta tcccattggt tgcccaaaat	2760
gggtgaagaa gctgtcacaa gttggcaaca aacgatatag gttctctctt ctgccgtta	2819
<pre><210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp)</pre>	
<210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur	
<210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp)	
<210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172	
<210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc	60
<pre><210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat</pre>	60 120
<pre><210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca</pre>	60 120 180
<pre><210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca gaggtagata tgatggccgt ccagatttta cgtgatcgta gccgagctgc cgtccagaaa</pre>	60 120 180 240
<pre><210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca gaggtagata tgatggccgt ccagattta cgtgatcgta gccgagctgc cgtccagaaa gttgtcctgg gcgccaccaa agaccagggg ggtacccgca gccataccat cgtcgtcggt</pre>	60 120 180 240 300
<pre><210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca gaggtagata tgatggccgt ccagatttta cgtgatcgta gccgagctgc cgtccagaaa gttgtcctgg gcgccaccaa agaccagggg ggtacccgca gccataccat cgtcgtcggt ggcgatgctg ccctgccttt ccaccatttc gaaggagaga ttgtcaacag gccggtaatc</pre>	60 120 180 240 300 360
<pre><210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca gaggtagata tgatggccgt ccagattta cgtgatcgta gccgagctgc cgtccagaaa gttgtcctgg gcgccaccaa agaccagggg ggtacccgca gccataccat cgtcgtcggt ggcgatgctg ccctgccttt ccaccattc gaaggagaga ttgtcaacag gccggtaatc ggtatggaag tgcaggatat cgtacccgac tggcccgacg ttctcaaaga tcccttcacc</pre>	60 120 180 240 300 360 420
<pre><210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca gaggtagata tgatggccgt ccagatttta cgtgatcgta gccgagctgc cgtccagaaa gttgtcctgg gcgccaccaa agaccagggg ggtacccgca gccataccat cgtcgtcggt ggcgatgctg ccctgccttt ccaccatttc gaaggagaga ttgtcaacag gccggtaatc ggtatggaag tgcaggatat cgtacccgac tggcccgacg ttctcaaaga tcccttcacc gatgttatta atgaaccagg gcgctgggcc caaaagtgcg tagccgagta tggtgctgac</pre>	60 120 180 240 300 360 420 480
<pre><210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca gaggtagata tgatggccgt ccagattta cgtgatcgta gccgagctgc cgtccagaaa gttgtcctgg gcgccaccaa agaccagggg ggtacccgca gccataccat cgtcgtcggt ggcgatgctg ccctgccttt ccaccattc gaaggagaga ttgtcaacag gccggtaatc gatgttatta atgaaccagg gcgctgggcc caaaagtgcg tagccgagta tggtgctgac cttatctacc tgaaacttga cggggccgac cccgaaggcg ccaaccattc tgtggaccag</pre>	60 120 180 240 300 360 420 480 540
<pre><210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca gaggtagata tgatggccgt ccagattta cgtgatcgta gccgagctgc cgtccagaaa gttgtcctgg gcgccaccaa agaccagggg ggtacccgca gccataccat cgtcgtggt ggcgatgctg ccctgccttt ccaccattc gaaggagaa ttgtcaacag gccggtaatc gatatta atgaaccagg gcgctgggcc caaaagtgcg tagccgagta tggtgctgac cttatctacc tgaaacttga cggggccgac cccgaaggcg ccaaccattc tgtggaccag tgcgtagcta ctgttaaaga ggtcctgcag gccgtgggg tacccctggt agtggtaggt gcgtagcta ctgttaaaga ggtcctgcag gccgtgggg tacccctggt agtggtaggt tgcgtagcta ctgttaaaga ggtcctgcag gccgtgggg tacccctggt agtggtaggt gcgtagcta ctgttaaaga ggtcctgcag gccgtgggg tacccctggt agtggtaggt tgcgtagcta ctgttaaaga ggtcctgcag gccgtgggg tacccctggt agtggtaggt gcgtagcta ctgttaaaga ggtcctgcag gccgtggggg tacccctggt agtggtaggt tgcgtagcta ctgttaaaga ggtcctgcag gccgtggggg tacccctggt agtggtaggt</pre>	60 120 180 240 300 360 420 480 540
<pre><210> SEQ ID NO 172 <211> LENGTH: 2771 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 172, examp 172: a designer hox-promoter-controlled Corrinoid iron-sulfur protein DNA construct (2771 bp) <400> SEQUENCE: 172 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca gaggtagata tgatggccgt ccagatttta cgtgatcgta gccgagctgc cgtccagaaa gttgtcctgg gcgccaccaa agaccagggg ggtacccgca gccataccat cgtcgtcggt ggcgatgctg ccctgccttt ccaccattc gaaggagaga ttgtcaacag gccggtaatc gatgttatta atgaaccagg gcgctgggcc caaaagtgcg tagccgagta tggtgctgac cttatctacc tgaaacttga cggggccgac cccgaaggcg tacccctgt agtggtag tgcgtagcta ctgttaaag ggtcctgcag gccgtggggg tacccctgt agtggtaggt tgcgtagcta ctgttaaag ggtcctgcag gccgtggggg tacccctgt agtggtaggt tgcgtagcta ctgttaaaga ggtcctgcag gccgtggggg tacccctgt agtggtaggt tgcgtagcta ctgttaaaga ggtcctgcag gccgtggggg tacccctgt agtggtaggt tgcgtagcta ctgttaaaga ggtcctgcag gccgtggggg tacccctgt agtggtaggt tgcggcatg tggaaaagga ccatgaggtc ctggaagcag tagccgagc tgctgccggc</pre>	60 120 180 240 300 360 420 480 540 600

-continued

atcggcggcc	tgggttatgg	tattgaatac	tccttctcga	ttatggaacg	catccgtctg	900
ggggccctgc	agggagataa	gatgctctcc	atgccggtca	tctgcaccgt	aggctatgag	960
gcctggcgcg	ccaaggaagc	ctcggcaccg	gtgagcgaat	acccgggctg	gggtaaggaa	1020
accgagcgtg	gcatcctctg	ggaagccgtt	accgccactg	ccctgctcca	ggccggcgcc	1080
cacatcctcc	tcatgcgcca	tccggaagcc	gtagccaggg	tgaaggagaa	tatcgaccag	1140
ttaatggtga	gcaacgccta	ttaaatggat	aaattaacgg	aacttctgaa	attacttcag	1200
aacacggaat	ccatcgaaat	aaatgagttc	aggattgatg	ttgacgaact	tgaactctac	1260
ctgatgcctg	tggttcagca	ggccatccag	aaaacagttg	aggttaggga	ggcagttgag	1320
gcactccctg	aggaggaatt	tgaaccaccg	gtaaagacat	accctggtga	ggttgcccag	1380
gtgaaactgg	gtgagggtac	aaggaaacct	gtttaccttg	gcggtcagaa	ggccctctac	1440
agatttgagg	aaccccagcc	aaacccaccg	gtggttacat	tcgacgtctt	tgacataccc	1500
atgccgggtc	tcccaaggcc	gataagggag	cacttcagcg	acgtcatgga	ggaccctggc	1560
gactgggcca	ggaaggcggt	aaaggagtat	ggtgccaaca	tggtcacaat	acacctcatc	1620
ggaacaggac	ccaaggtaat	ggacaagtca	ccgagggagg	ctgcaaatga	cattgaggag	1680
gtcctccagg	ccgttgatgt	ccccctggta	atcggggggct	caggggaccc	tgaaaaggat	1740
ccactggttc	ttgaaaaggc	tgccgaggcc	gccgagggcg	aaaggtgtct	cctggcatca	1800
gcaaacctgg	accttgacta	cagaaaggtt	gcaagggcag	cccttgacca	caaccacgcg	1860
gtcctatcat	gggccataac	agacgtcaac	atgcagaaaa	ccctcaaccg	ttacctcatg	1920
aaggagggcc	ttagtagaga	ggacatagtg	atggacccaa	caacctgtgc	actgggttac	1980
ggtatagaat	tttcaataga	cgtcatcaca	aggacaaggc	tcgcggccct	caagggtgat	2040
gcagaccttc	agatgccaat	gtcctctgga	acaaccaacg	cgtggggttc	aagggaggcc	2100
tggatgaaga	aggatgaatg	gggacccaca	gactacaggg	gccctctatg	ggagatagta	2160
accggactta	caatgatgct	ctcaggtgtg	gatatattca	tgatgctcca	cccaacatct	2220
gtgaggcttc	tgcgggagat	aggggaaacc	ttcacaaggg	aatacatgac	gaccgaaaca	2280
cctgatctcc	gggaatggat	aactgaactt	gaatattgat	gaagtaagta	ggaagcaggg	2340
agcaggggaa	agaaaattga	caactgtaca	agattaatcg	cgtctctgag	caatgaccaa	2400
atacatctac	ctccacggtt	ttcttccagc	cccctatctg	cgaaagcaca	agatattagc	2460
aagcgtttcg	cccaaattca	catacagcta	acaatccctg	atctcaatgc	tggtgaattt	2520
tctcagttaa	caatcacgcg	ccaaattcaa	caagttgccg	caattttccc	tgataattct	2580
gaaccaataa	cgctgatagg	ttctagttta	ggcggtttaa	ctgctgctta	tctaggacag	2640
cgatatttac	aagtacaacg	cttagtttta	ttagcgccag	tttggttttt	tatcccattg	2700
gttgcccaaa	atgggtgaag	aagctgtcac	aagttggcaa	caaacgatat	aggttctctc	2760
ttctgccgtt	a					2771

<210> SEQ ID NO 173
<211> LENGTH: 7061
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 173, example
173: a designer hox-promoter-controlled CO dehydrogenase /acetylCoA synthese DNA construct (7061 bp) CoA synthase DNA construct (7061 bp)

<400> SEQUENCE: 173					
agaaaatctg gcaccacacc	gcagaaatat	aggggctagg	agttgagggt	actctggttc	60
gtcaagcatt tgggatgatt	tcccctcaca	agttcctcaa	attattctcc	tataaacaat	120
agatataagg tcaaaacttg	agttatgagt	gctgagtaaa	aaattactct	ccacgcctca	180
gaggtagata tgtcacataa	tgggatccat	ggtcaaggcc	gggtgtccct	tttcctccaa	240
gtagggcaag atttcatcca	cggtggtacc	gatggtctca	tcagctattt	tatcgataaa	300
gtcctctccc aggccctcct	caacactacg	acgtacaaag	tcgtcgtgga	ggaaatcctt	360
cagagatttg ggcatccaga	cgatccgggc	gataccacca	tcggcggaaa	taaacttttt	420
gctgacgata taggtgcggc	cgatgcccat	aaagcccggg	gtctgggtgc	caccgccgat	480
catcccggcc agggtagaga	aggtcatccc	cgaaggagtc	atgccggcgt	gatecetggt	540
ggtaatcatg atgccgttgc	actccggcag	gatggccata	atggcctcaa	agcaaccgca	600
ggaggtcatg ggattctcca	taagggtgta	caggcagacc	tgttccaggt	tacggttgga	660
agctgtatag agatagtcat	ttacactctt	ccagataccc	ttaatgggat	caatttcccc	720
ttctttaggg atgggctggt	taggaccggc	atggttgatt	tcataggacg	ccttggcgtc	780
cagccagett acggetecac	acaggcccac	ccgttccggg	gtgacaatac	acacatggtt	840
gggggcaaag gactggcaga	ggacgcagga	gtaaaaggta	tccactgttt	catcggtaag	900
gccgcgcatg cggtcgtcac	gttccttgta	tttctcccgg	gcgacctcca	tatattcttt	960
gaccttggct tcatcggtaa	aaatggttac	ctggacccgg	tccacaatgg	cggggaattc	1020
ttctttcatt ttggctacca	ggatttcacc	gtagttcttg	aaacggaaac	ccttggctac	1080
ggcatctttg ctgacccgca	accagttgat	gttacgctgg	ccggtgtgcc	agagaccttc	1140
accgtagttg atgaagtcgt	ggatgcgccg	ttcgaggact	ccttcaaaat	cggcctgcat	1200
tttacggcca tagatgtcca	ccagaatgcc	caggggcagt	ttgctccctt	ccggtatctg	1260
gtcaatatca ggacctatga	cttcaatctt	accatcagtg	atctcggatt	ccgaaacggt	1320
gcgtaccagc tcaaaggccg	gcgtccggtt	gccgcccatt	tctacgtaca	tatcgccctt	1380
acggatactc tcgccctcaa	aggcagggcc	aaagttaatg	ggcagatcca	acttgatctt	1440
ggtgagcttg atcccacggg	tctccatggc	tatctggact	attttatcat	agtcctcaac	1500
gctgaagaac caatccggga	tctgtttgtc	ctccggtagg	ggctggtcgg	tgattaccgg	1560
aaagccggta aagatggccc	cgaaggcggc	agccgtcttg	accatgtcat	gctcgccgag	1620
ataaaggaca aaggcgcgga	tacggcggcg	ctggtaatcg	cgctgttctt	cacgggcacc	1680
cggggtaacg ccaccgaaca	tcataccagc	ccgcagggca	tagttggcgg	catgaacaat	1740
ctgggtgaag ttccccaggg	gataggcgat	atagtcaatc	cccagtttga	cgttttcttc	1800
cagcagctgt tctaccgctt	catcacagat	gaagagcata	aagcccatac	ccatgagttc	1860
cttgacgatt ttggccaggg	ccttcgagtc	tttggctcga	cccaggataa	tagetteace	1920
cggaatggtc cagtcgacca	tcttgatacc	gaaacggcgg	acaaccgggt	cgccgatgaa	1980
acccgtccag ggtgggggca	ggaggggttc	atcaggctta	tatttaaggt	aacgcagggc	2040
ttcaatgatc tcggccgcat	accaggtggc	ttccccggcc	aggcgggcat	tctcgaaatt	2100
caggacaggg cttacctgcg	ctcgcttgcg	gtttaaaata	ggtggtaaat	cccccagttt	2160
tttgacctct tccccgctga	aacagcgaat	aaccggcagg	taataggctg	tatcaggata	2220
accgacggga tggtcgggac	cataggtccg	gatggcctgg	tttaaaagga	tttccgcgta	2280

actggtagct	gtaatggcgc	cgtggtaaac	ctcccggaac	agggctaccg	gctctttacc	2340
ttctggaata	gcaccctcga	agattttatc	aaaatcagtc	atgtggcacc	cgaatcaaaa	2400
aaagccaaga	accttaaagg	ggatttctgg	gaccttaaaa	atatccagat	atccatagga	2460
gaaattataa	ctgaggaaaa	acctcaggag	gaagaggcta	ggggtccaaa	accccgcccc	2520
catgttaccg	acctcaggtc	atgggacatg	aagctccttg	aaagatacga	accattctat	2580
gcacctttct	gtgacatgtg	ctgcctctgc	acctacggta	aatgcgacct	cctcggtaag	2640
aagggagcat	gtggtataga	cgcagccacc	cagcaggcac	gcatagtact	tctcgcatgt	2700
ctcataggga	ccgccgccca	tgcgggacac	gcaaggcacc	ttgtggacca	cctcatagag	2760
aaactgggag	aggactatga	aatagacttg	ggcatgaatg	tggatataga	ggcacccata	2820
acaaggaccg	ttatgggaag	gaggccgcgg	accctgggcg	acctcatgga	ggttatggac	2880
tacgccgagg	aacagatgtc	acacctcctc	tcggcatgcc	acacgggaca	ggagggcgac	2940
agcagggact	ttgaatcgaa	ggcattccat	gctggactca	tggatgacct	cacgagggag	3000
gttgcggata	tcgcccagat	agttgccctg	gatctcccta	agggtgatga	ggacgcaccc	3060
ctcgttgaac	tgggattcgg	tacaatagac	aacaccaaac	ccgtgatact	ctgcataggc	3120
cacaacgtcc	tccctggagc	ggatatagtg	gactacgtca	ccgagaggga	actcgaagac	3180
gaagttgagg	tatgcggcat	atgctgtgca	gcaatagatg	ttacaaggta	cagcgaggct	3240
gccaaggtcg	tcgggcccct	ctcaaagcag	ctcagattca	taagaagtgg	cgtggccgat	3300
gtgatagtgg	tggacgagca	gtgcgtgagg	acagacgtgc	tggaggaggc	cctcaaaaac	3360
aggtcagcgg	tgattgcaac	aaccgataag	atgtgcctgg	gactacctga	tgtgacagat	3420
gaggaccccg	acaaaatcgt	gaatgacctc	ataaacggta	acatagaggg	ggcactaatc	3480
cttgaccccc	ataaggttgg	tgaggtggca	gttaaaactg	caataaaact	ggcaccaatc	3540
aggaaatccc	tcaaaaaatt	gccagaggtt	gatgagataa	tccggatggc	atcagagtgc	3600
acagattgcg	gctggtgcca	gagggtctgc	cccaacagcc	tccctgtcat	ggatgcagtt	3660
aagagcgcgg	ccgagggtga	tctgagcaaa	cttgaggaga	tggcacttga	ggagctctgc	3720
tacacctgtg	gacgctgcga	acaggagtgt	gaaagggaca	tacctatagt	atccatggtg	3780
acaaaggcag	gtgaaaggcg	cgtaaaggac	gaaaaataca	agataagggc	tggccgtggc	3840
cctgcccagg	atgtggagat	aaggagggtc	ggcgcaccca	tacccctcgg	ggacataccc	3900
ggtgtcatag	cctttgtggg	ttgctcaaac	taccctgagg	gtggaaagga	tgttgccctc	3960
atggcaaagg	agttccttga	gagaaactac	atcgtggtca	caacgggatg	cggtgcaatg	4020
tccatcgggg	aatacaggga	cgaggatgga	aagacactct	atgaaaaata	cggtggacag	4080
ttcgatgcaa	agggacttgt	taacatgggc	tcctgcgtat	caaacgccca	tatatcaggt	4140
gccgccataa	agatagccaa	catattcgca	cagaaaccac	tcgaggggaa	ctttgaggag	4200
atagcggatt	acatacttaa	ccgtgtaggg	gcatgtggtg	tcgcatgggg	tgcctactcc	4260
cagaaggcgg	cggccatagc	aaccggtgtg	aaccggtggg	gaatacccgt	cgtcctggga	4320
ccccacggat	cgaagtaccg	cagactgttc	cttggaaggg	cagatgaccc	agagaagtgg	4380
aaactgaacg	acctcagaac	aggtgaggtc	atcgatgggg	agccagctcc	agaacacctt	4440
ctctatgcag	cggagaaccg	ggaggaagca	acggtgatgg	tggccaaact	ctgcataagg	4500
ccaacagaca	cacccaaggg	tcgccagatg	aaactcagca	actacataga	cctccacaaa	4560

-cont	inued
-conc	Innea

				-conti	nued	
aaatactttg	gcacaattcc	agatgacatc	gacaggttca	taaggacaga	gaaggacatc	4620
cccatagtct	acaagaggga	tatcctgaag	atactggagg	agaagaactg	gaagccaagg	4680
aagcttccaa	aggaaccctc	actccttgag	aggtgaatgt	ttgaagacat	acccgttgat	4740
gtaagtccca	tgcacgaggg	ggagcggata	agatcagcaa	acatgttcgt	tgaacttgcc	4800
gggcccaaat	ccatcggagc	cgaactggtc	caggttaagg	atagcgttga	ggatggaaag	4860
gtggaggtca	tagggcccga	gataagtgag	atggaacagg	gccagatcta	tccattcgcc	4920
ataaacgtgg	agatagcagg	aagcgaactc	gaggaggaac	ttgaaagcgt	tatagagcgg	4980
agactccatg	aactctgcaa	ctacgtccag	ggtttcatgc	acctcaacca	gagggaccag	5040
atatggtgcc	gtgtaagcac	agaggcaagg	gacgcaggat	tcatgcttga	acaccttgga	5100
aaggcactat	cagtcctctt	cagggaggag	ttcccaataa	tcgaatcaat	atcagtgaca	5160
atcatgaccg	atgaggacgc	tgttaaagaa	ttccttgaaa	cagccaggga	aaagtatgag	5220
ataagggatt	caagggcaag	ggaactctca	gacgaggacg	ttgacgtatt	ctacgggtgc	5280
ctcatgtgcc	agtcattcgc	cccaacacat	gtatgcatcg	tcacaccaga	ccggacagcc	5340
ctatgtggtg	ccataaactg	gttcgactgc	cgcgcagcct	ataagatgga	ccccgacggt	5400
ccaatattcg	aaattcaaaa	gggagatgta	attgacccgg	agaagggaga	atatgagaat	5460
gttaacgctg	cggtggcaga	gaactcacag	ggtacaacag	agagggttta	cctccacagc	5520
gtgttcgggt	atccacacac	atcatgtggc	tgcttcgagg	cagtggcatt	ctacatacca	5580
gaactggatg	gcataggcat	cgtgaacagg	gacttcaggg	gcgaaacacc	ccttggaata	5640
ccattctctg	caatggcagg	gcagtgctca	ggcggaaaac	aggttgaagg	gttttcaggt	5700
ctcagccttg	agtacatgag	gtcacccaag	ttcctgcagg	cagatggtgg	gtactcaagg	5760
ataatctgga	tgccaaagga	tctgaaggaa	tctgtcattg	acttcatccc	tgaagacctg	5820
agggataaga	tagccacaga	ggtggatgca	acatcaataa	aggaactcag	aaggtteett	5880
agggagaagg	agcaccctgt	ccttgaaagg	gcaccagcag	aagttgagga	agctgaagtc	5940
gttgaggaag	aggaaaccca	tgctgaggag	gcccccgtca	ctgagggaat	acctgtaatg	6000
gcgtccccag	agatcagcct	tccagcagct	ggcggattca	ggataattct	caagaacgca	6060
aagatctacg	ctgagaaggt	aataataaag	cgtaaataac	tactgctcca	gggcatctat	6120
gagttcatcg	agccatctga	gccattctgt	gtacttcatg	ctggggtatg	agatgtctgc	6180
atttggatgc	atgtacctgc	agagggtcac	tgttttaagg	tgtggtgcaa	aggcettgag	6240
ggttgaaagg	ccctgtgaac	ctatgtaata	tgggacacct	atgaagcata	caaggtcata	6300
gttgccattt	ccatcgaagc	cctcccagtc	aggatttttg	aggttgttta	caagttcgat	6360
tacccctatt	atgttttttc	tttccagttt	agttaacctg	agacctgatc	ctccggttag	6420
ggcaacctcc	attttccctt	tttttattat	tttaactatc	ctatccacta	tatcttgtgg	6480
aaggtcattt	aacagcgacc	ctaccaccat	gagtggtctt	tcagactttt	ttatggccga	6540
tgcaaccatt	tcaggggggca	tgacggttgc	attccttatt	gatgttagag	ctgggttcca	6600
tgcggtcatt	gaagtaagta	ggaagcaggg	agcaggggaa	agaaaattga	caactgtaca	6660
agattaatcg	cgtctctgag	caatgaccaa	atacatctac	ctccacggtt	ttcttccagc	6720
cccctatctg	cgaaagcaca	agatattagc	aagcgtttcg	cccaaattca	catacagcta	6780
acaatccctg	atctcaatgc	tggtgaattt	tctcagttaa	caatcacgcg	ccaaattcaa	6840
caagttgccg	caattttccc	tgataattct	gaaccaataa	cgctgatagg	ttctagttta	6900

-continued

-concinued
ggcggtttaa ctgctgctta tctaggacag cgatatttac aagtacaacg cttagtttta 6960
ttagegeeag tttggttttt tateceattg gttgeeeaaa atgggtgaag aagetgteae 7020
aagttggcaa caaacgatat aggttetete ttetgeegtt a 7061
<210> SEQ ID NO 174 <211> LENGTH: 1847 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 174, example 174 of a designer hox-promoter-controlled Thiolase (07) DNA construct (1847 bp)
<400> SEQUENCE: 174
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60
gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat 120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca 180
gaggtagata tgatgggcaa agaaagtagt tttagctgtg catgtcgtac agccatcgga 240
acaatgggtg gatctcttag cacaattcct gcagtagatt taggtgctat cgttatcaaa 300
gaggetetta acegegeagg tgttaaaeet gaagatgttg ateaegtata eatgggatge 360
gttattcagg caggacaggg acagaacgtt gctcgtcagg cttctatcaa ggctggtctt 420
cctgtagaag tacctgcagt tacaactaac gttgtatgtg gttcaggtct taactgtgtt 480
aaccaggcag ctcagatgat catggctgga gatgctgata tcgttgttgc cggtggtatg 540
gaaaacatgt cacttgcacc atttgcactt cctaatggcc gttacggata tcgtatgatg 600
tggccaagcc agagccaggg tggtcttgta gacactatgg ttaaggatgc tctttgggat 660
gettteaatg attateatat gateeagaca geagaeaaca tetgeaeaga gtggggtett 720
acacgtgaag agetegatga gtttgeaget aagageeaga acaaggettg tgeageaate 780
gaagctggcg cattcaagga tgagatcgtt cctgtagaga tcaagaagaa gaaagagaca 840
gttatetteg atacagatga aggeecaaga eagggtgtta eaeetgaate tettteaaag 900
cttcgtccta tcaacaagga tggattcgtt acagctggta acgcttcagg tatcaacgac 960
ggtgctgcag cactcgtagt tatgtctgaa gagaaggcta aggagctcgg cgttaagcct 1020
atggetaeat tegtagetgg ageaettget ggtgttegte etgaagttat gggtateggt 1080
cctgtagcag ctactcagaa ggctatgaag aaggctggta tcgagaacgt atctgagttc 1140
gatatcatcg aggctaacga agcattcgca gctcagtctg tagcagttgg taaggatctt 1200
ggaatcgacg tccacaagca gctcaatcct aacggtggtg ctatcgctct tggacaccca 1260
gttggagett caggtgeteg tateettgtt acaettette acgagatgea gaagaaagae 1320
gctaagaagg gtcttgctac actttgcatc ggtggcggta tgggatgcgc tactatcgtt 1380
gagaagtacg aataatgaag taagtaggaa gcagggagca ggggaaagaa aattgacaac 1440
tgtacaagat taatcgcgtc tctgagcaat gaccaaatac atctacctcc acggttttct 1500
tccagccccc tatctgcgaa agcacaagat attagcaagc gtttcgccca aattcacata 1560
cagctaacaa teeetgatet caatgetggt gaatttete agttaacaat caegegeeaa 1620
attcaacaag ttgccgcaat tttccctgat aattctgaac caataacgct gataggttct 1680
agtttaggeg gtttaaetge tgettateta ggaeagegat atttaeaagt aeaaegetta 1740

-continued

			-contir	nued	
gttttattag cgccagtttg	gtttttatc	ccattggttg	cccaaaatgg	gtgaagaagc	1800
tgtcacaagt tggcaacaaa	cgatataggt	tctctcttct	gccgtta		1847
<pre><210> SEQ ID NO 175 <211> LENGTH: 1514 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI 175: a designer dehydrogenase D</pre>	ON: Synthet hox-promote	ic Construct er-controll			ple
<400> SEQUENCE: 175					
agaaaatctg gcaccacacc	gcagaaatat	aggggctagg	agttgagggt	actctggttc	60
gtcaagcatt tgggatgatt	tcccctcaca	agttcctcaa	attattctcc	tataaacaat	120
agatataagg tcaaaacttg	agttatgagt	gctgagtaaa	aaattactct	ccacgcctca	180
gaggtagata tgatgcaaaa	gatttgtgta	ataggtgctg	gaacaatggg	ctcaggcatc	240
gctcaagtat ttgcacaaaa	tggctttgaa	gtaattttac	gcgatattga	tatgaagttc	300
gtagaaaaag gatttggcac	aattgaaaaa	atttacaaag	aaatgttgac	aaagggaaaa	360
ttacagcaga tgagaaaacg	aattttaagc	agaatcagag	gtacaacaaa	tttggaagac	420
gcaaaagaag cagattttgt	agttgaagcg	gctatagaaa	atatggatct	caagaaacaa	480
atattcaaag agctagatga	aatatgcaaa	atggaaacaa	tccttgcgtc	aaatacatca	540
tcactatcca taacagaaat	agcaagtgcg	acaaaaagac	ctgagaaagt	cataggaatg	600
catttcttca acccagttcc	agtaatgaaa	cttgttgaag	tcataaaagg	attaaagaca	660
tcagagcaaa catttaatgt	cgtcagagaa	ttggctttaa	aagtagacaa	aacacctata	720
gaggtcaaag aagcacctgg	atttgttgta	aataggattt	taatcccaat	gattaatgaa	780
gcaattggaa tacttgcagt	ggtgttggca	actgacaaga	gcatagatga	agctatgaaa	840
cttggtgcaa atcatccaat	aggacctttg	gcattgtcta	gtttgatagg	caatgacgtc	900
gttcttgcta taatgaatgt	gctttatgaa	gagtacggcg	attcgaaata	cagaccacat	960
ccacttctaa aaaaagtggt	aagaggcgga	ttgctgggta	gaaaaactgg	caaaggtttc	1020
tttgaataca aaattaatct	tttaaggagg	agaatatcat	gatgaagtaa	gtaggaagca	1080
gggagcaggg gaaagaaaat	tgacaactgt	acaagattaa	tcgcgtctct	gagcaatgac	1140
caaatacatc tacctccacg	gttttcttcc	agccccctat	ctgcgaaagc	acaagatatt	1200
agcaagcgtt tcgcccaaat	tcacatacag	ctaacaatcc	ctgatctcaa	tgctggtgaa	1260
ttttctcagt taacaatcac	gcgccaaatt	caacaagttg	ccgcaatttt	ccctgataat	1320
tctgaaccaa taacgctgat	aggttctagt	ttaggcggtt	taactgctgc	ttatctagga	1380
cagcgatatt tacaagtaca	acgcttagtt	ttattagcgc	cagtttggtt	ttttatccca	1440
ttggttgccc aaaatgggtg	aagaagctgt	cacaagttgg	caacaaacga	tataggttct	1500
ctcttctgcc gtta					1514
<210> SEQ ID NO 176					

<210> SEQ ID NO 176 <211> LENGTH: 1430 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 176, example 176: a designer hox-promoter-controlled Crotonase DNA construct (1430 bp)

-continued

<400> SEQUENCE: 176								
agaaaatctg gcaccacacc gca	agaaatat agggggctagg	agttgagggt	actctggttc	60				
gtcaagcatt tgggatgatt tco	ccctcaca agttcctcaa	attattctcc	tataaacaat	120				
agatataagg tcaaaacttg ag	ttatgagt gctgagtaaa	aaattactct	ccacgcctca	180				
gaggtagata tgatggaatt aaa	aaaatgtt attcttgaaa	aagaagggca	tttagctatt	240				
gttacaatca atagaccaaa ggo	cattaaat gcattgaatt	cagaaacact	aaaagattta	300				
aatgttgttt tagatgattt aga	aagcagac aacaatgtgt	atgcagttat	agttactggt	360				
gctggtgaga aatcttttgt tgo	ctggagca gatatttcag	aaatgaaaga	tcttaatgaa	420				
gaacaaggta aagaatttgg ta	ttttagga aataatgtct	tcagaagatt	agaaaaattg	480				
gataagccag ttatcgcagc ta	tatcagga tttgctcttg	gtggtggatg	tgaacttgct	540				
atgtcatgtg acataagaat ago	cttcagtt aaagctaaat	ttggtcaacc	agaagcagga	600				
cttggaataa ctccaggatt tg	gtggaact caaagattag	caagaatagt	tggaccagga	660				
aaagctaaag aattaattta ta	cttgtgac cttataaatg	cagaagaagc	ttatagaata	720				
ggettagtta ataaagtagt tga	aattagaa aaattgatgg	aagaagcaaa	agcaatggct	780				
aacaagattg cagctaatgc tco	caaaagca gttgcatatt	gtaaagatgc	tatagacaga	840				
ggaatgcaag ttgatataga tgo	cagctata ttaatagaag	cagaagactt	tgggaagtgc	900				
tttgcaacag aagatcaaac aga	aaggaatg actgcgttct	tagaaagaag	agcagaaaag	960				
aattttcaaa ataaataatg aaq	gtaagtag gaagcaggga	gcaggggaaa	gaaaattgac	1020				
aactgtacaa gattaatcgc gto	ctctgagc aatgaccaaa	tacatctacc	tccacggttt	1080				
tettecagee cectatetge gaa	aagcacaa gatattagca	agcgtttcgc	ccaaattcac	1140				
atacagctaa caatccctga tci	tcaatgct ggtgaatttt	ctcagttaac	aatcacgcgc	1200				
caaattcaac aagttgccgc aat	ttttccct gataattctg	aaccaataac	gctgataggt	1260				
tctagtttag gcggtttaac tgo	ctgcttat ctaggacago	gatatttaca	agtacaacgc	1320				
ttagttttat tagcgccagt ttg	ggtttttt atcccattgg	ttgcccaaaa	tgggtgaaga	1380				
agctgtcaca agttggcaac aaa	acgatata ggttctctct	tctgccgtta		1430				
<210> SEQ ID NO 177 <211> LENGTH: 1784 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 177, example 177: designer hox-promoter-controlled Butyryl-CoA dehydrogenase DNA construct (1784 bp)								

<400> SEQUENCE: 177

agaaaatctg	gcaccacacc	gcagaaatat	aggggctagg	agttgagggt	actctggttc	60
gtcaagcatt	tgggatgatt	tcccctcaca	agttcctcaa	attattctcc	tataaacaat	120
agatataagg	tcaaaacttg	agttatgagt	gctgagtaaa	aaattactct	ccacgcctca	180
gaggtagata	tgatgaattt	ccaattaact	agagaacaac	aattagtaca	acaaatggtt	240
agagaattcg	cagtaaatga	agttaagcca	atagctgctg	aaatcgacga	aacagaaaga	300
ttccctatgg	aaaacgttga	aaaaatggct	aagcttaaaa	tgatgggtat	cccattttct	360
aaagaatttg	gtggagcagg	cggagatgtt	ctttcatata	taatagctgt	ggaagaatta	420

-cont	inued
-cont	Inuea

				-contir	nued		
tcaaaagttt	gtggtactac	aggagttatt	ctttcagcgc	atacatcatt	atgtgcatca	480	
gtaattaatg	aaaatggaac	taacgaacaa	agagcaaaat	atttacctga	tctttgcagc	540	
ggtaaaaaga	tcggtgcttt	cggattaact	gaaccaggtg	ctggtacaga	tgctgcagga	600	
caacaaacaa	ctgctgtatt	agaaggggat	cattatgtat	taaatggttc	aaaaatcttc	660	
ataacaaatg	gtggagttgc	tgaaactttc	ataatatttg	ctatgacaga	taagagtcaa	720	
ggaacaaaag	gaatttctgc	attcatagta	gaaaagtcat	tcccaggatt	ctcaatagga	780	
aaattagaaa	ataagatggg	gatcagagca	tcttcaacta	ctgagttagt	tatggaaaac	840	
tgcatagtac	caaaagaaaa	cctacttagc	aaagaaggta	agggatttgg	tatagcaatg	900	
aaaactcttg	atggaggaag	aattggtata	gctgctcaag	ctttaggtat	tgcagaagga	960	
gcttttgaag	aagctgttaa	ctatatgaaa	gaaagaaaac	aatttggtaa	accattatca	1020	
gcattccaag	gattacaatg	gtatatagct	gaaatggatg	ttaaaatcca	agctgctaaa	1080	
tacttagtat	acctagctgc	aacaaagaag	caagctggtg	agccttactc	agtagatgct	1140	
gcaagagcta	aattatttgc	tgcagatgtt	gcaatggaag	ttacaactaa	agcagttcaa	1200	
atctttggtg	gatatggtta	cactaaagaa	tacccagtag	aaagaatgat	gagagatgct	1260	
aaaatatgcg	aaatctacga	aggaacttca	gaagttcaaa	agatggttat	cgcaggaagc	1320	
attttaagat	agtgaagtaa	gtaggaagca	gggagcaggg	gaaagaaaat	tgacaactgt	1380	
acaagattaa	tcgcgtctct	gagcaatgac	caaatacatc	tacctccacg	gttttcttcc	1440	
agccccctat	ctgcgaaagc	acaagatatt	agcaagcgtt	tcgcccaaat	tcacatacag	1500	
ctaacaatcc	ctgatctcaa	tgctggtgaa	ttttctcagt	taacaatcac	gcgccaaatt	1560	
caacaagttg	ccgcaatttt	ccctgataat	tctgaaccaa	taacgctgat	aggttctagt	1620	
ttaggcggtt	taactgctgc	ttatctagga	cagcgatatt	tacaagtaca	acgcttagtt	1680	
ttattagcgc	cagtttggtt	ttttatccca	ttggttgccc	aaaatgggtg	aagaagctgt	1740	
cacaagttgg	caacaaacga	tataggttct	ctcttctgcc	gtta		1784	
<220> FEATU <223> OTHEN 178,	IH: 2051 : DNA NISM: Artif. JRE: R INFORMATIC a designer	icial Sequer ON: Synthet hox-promoto NA construc'	ic Construct er-controlle): 178, exam ehyde	ple	
<400> SEQUI	ENCE: 178						
agaaaatctg	gcaccacacc	gcagaaatat	aggggctagg	agttgagggt	actctggttc	60	
gtcaagcatt	tgggatgatt	tcccctcaca	agtteeteaa	attattctcc	tataaacaat	120	
agatataagg	tcaaaacttg	agttatgagt	gctgagtaaa	aaattactct	ccacgcetea	180	
gaggtagata	tgatgattaa	agacacgcta	gtttctataa	caaaagattt	aaaattaaaa	240	
acaaatgttg	aaaatgccaa	tctaaagaac	tacaaggatg	attcttcatg	tttcggagtt	300	
ttcgaaaatg	ttgaaaatgc	tataagcaat	gccgtacacg	cacaaaagat	attatccctt	360	
cattatacaa	aagaacaaag	agaaaaaatc	ataactgaga	taagaaaggc	cgcattagaa	420	
aataaagaga	ttctagctac	aatgattett	gaagaaacac	atatgggaag	atatgaagat	480	
aaaatattaa	agcatgaatt	agtagctaaa	tacactcctg	ggacagaaga	tttaactact	540	
actgcttggt	caggagataa	cgggcttaca	gttgtagaaa	tgtctccata	tggcgttata	600	

ggtgcaataa ctccttctac gaatccaact gaaactgtaa tatgtaatag tataggcatg	660									
atagetgetg gaaataetgt ggtatttaae ggacateeag gegetaaaaa atgtgttget	720									
tttgctgtcg aaatgataaa taaagctatt atttcatgtg gtggtcctga gaatttagta	780									
acaactataa aaaatccaac tatggactct ctagatgcaa ttattaagca cccttcaata	840									
aaactacttt geggaactgg agggeeagga atggtaaaaa eeetttaaa ttetggtaag	900									
aaagctatag gtgctggtgc tggaaatcca ccagttattg tagatgatac tgctgatata	960									
gaaaaggctg gtaagagtat cattgaaggc tgttcttttg ataataattt accttgtatt	1020									
gcagaaaaag aagtatttgt ttttgagaac gttgcagatg atttaatatc taacatgcta	1080									
aaaaataatg ctgtaattat aaatgaagat caagtatcaa agttaataga tttagtatta	1140									
caaaaaaata atgaaactca agaatactct ataaataaga aatgggtcgg aaaagatgca	1200									
aaattattet tagatgaaat agatgttgag teteetteaa gtgttaaatg cataatetge	1260									
gaagtaagtg caaggcatcc atttgttatg acagaactca tgatgccaat attaccaatt	1320									
gtaagagtta aagatataga tgaagctatt gaatatgcaa aaatagcaga acaaaataga	1380									
aaacatagtg cctatattta ttcaaaaaat atagacaacc taaataggtt tgaaagagaa	1440									
atcgatacta ctatctttgt aaagaatgct aaatcttttg ccggtgttgg ttatgaagca	1500									
gaaggettta caaettteae tattgetgga teeaetggtg aaggaataae ttetgeaaga	1560									
aattttacaa gacaaagaag atgtgtactc gccggttaat gaagtaagta ggaagcaggg	1620									
agcaggggaa agaaaattga caactgtaca agattaatcg cgtctctgag caatgaccaa	1680									
atacatctac ctccacggtt ttcttccagc cccctatctg cgaaagcaca agatattagc	1740									
aagcgtttcg cccaaattca catacagcta acaatccctg atctcaatgc tggtgaattt	1800									
tctcagttaa caatcacgcg ccaaattcaa caagttgccg caattttccc tgataattct	1860									
gaaccaataa cgctgatagg ttctagttta ggcggtttaa ctgctgctta tctaggacag	1920									
cgatatttac aagtacaacg cttagtttta ttagcgccag tttggttttt tatcccattg	1980									
gttgcccaaa atgggtgaag aagctgtcac aagttggcaa caaacgatat aggttctctc	2040									
ttctgccgtt a	2051									
<210> SEQ ID NO 179 <211> LENGTH: 1808 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 179, example 179: a designer hox-promoter-controlled NADH-dependent Butanol dehydrogenase DNA construct (1808 bp)										
<400> SEQUENCE: 179										
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc	60									
gtcaagcatt tgggatgatt teeecteaca agtteeteaa attattetee tataaacaat	120									
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca	180									
gaggtagata tgttacaggg aagcgcgcaa aatggcgagc acatcatcgc ggttcaatgt	240									
tttgaaacgg ccgaactcgc caaacgccat cgctttatcg gccatcagct ccaagttttc	300									
ctcgccgatg ccatagtccg caagccgcga cggcgccccg aggctcgacc agaactcgcg	360									
cageegeteg atgeetteaa gegeeacate eegeteegat ttgeeegeeg gategacate	420									

				-contir	nued		
aaagacgo	cgc accgcgagct	gggcgaaacg	gctgacattt	tcatcgagca	catgcttcat	480	
ccagttco	ggg aacaaaatcg	ccaatccccc	ggcgtgcggg	atgtcataca	cggcggaaac	540	
ggcatgct	ca atattgtgcg	tcgcccagtc	gccgcggacg	cccatttgca	agaagccgtt	600	
taaggcga	atc gtgcccgagt	acatgatcgt	ctcgcgcagc	tcgtagtttt	ccaaatcgtt	660	
gatcagt	tg ggcgccgttt	cgatcacggt	tttcaacacc	gcttcacaca	tccggtcttg	720	
caatggco	gtg ttcggcgtat	ggtggaaata	ttgctcaaac	acatgcgaca	tcatatcgac	780	
aatgccgt	aa accgtatggt	ctttcggaac	ggtcatcgta	tacgtcggat	ccaaaatcga	840	
aaattgco	ggg aacgtaaacg	ggctgcccca	gccgtattt	tetttegtet	cccagtttgt	900	
gatcacco	gaa ccagaattca	tctccgaccc	ggtcgccgcc	agcgtcaaga	cgacgccaaa	960	
cggcagg	geg eeggtgaegg	gcgcttttt	cgtgataaac	tcccacggat	cgccatcgaa	1020	
tttcgccd	ccg gcggcgatcg	ctttcgtgca	gtcgatgacg	ctgccgccgc	caaccgccag	1080	
caaaaatt	cg acgcettece	gcttgcaaat	gtccacccct	tttcttacgg	tcgagacgcg	1140	
cgggttc	ggt tegaegeetg	gcagttcgat	gacctcggcg	ccaatattcc	ccaatatctt	1200	
catgact	cc tcatacaatc	cgtttcgttt	gatgctgccg	ccgccataca	cgagcagcac	1260	
tttcttg	ccg tagcgcggca	cttcttcttt	gagacgttcg	agctgccctt	ttccgaaaat	1320	
cagtttc	gtc gggttgcgga	aaataaactc	ttgcattgaa	gtaagtagga	agcagggagc	1380	
aggggaaa	aga aaattgacaa	ctgtacaaga	ttaatcgcgt	ctctgagcaa	tgaccaaata	1440	
catctaco	ctc cacggttttc	ttccagcccc	ctatctgcga	aagcacaaga	tattagcaag	1500	
cgtttcgd	ccc aaattcacat	acagctaaca	atccctgatc	tcaatgctgg	tgaattttct	1560	
cagttaad	caa tcacgcgcca	aattcaacaa	gttgccgcaa	ttttccctga	taattctgaa	1620	
ccaataad	ege tgataggtte	tagtttaggc	ggtttaactg	ctgcttatct	aggacagcga	1680	
tatttaca	aag tacaacgctt	agttttatta	gcgccagttt	ggtttttat	cccattggtt	1740	
gcccaaaa	atg ggtgaagaag	ctgtcacaag	ttggcaacaa	acgatatagg	ttetetette	1800	
tgccgtta	a					1808	
<211> LI <212> TY <213> OI <220> FI <223> OY 18 he	EQ ID NO 180 SNGTH: 10538 (PE: DNA GGANISM: Artif EATURE: FHER INFORMATI 30: a designer eydrogenase (E EQUENCE: 180	ON: Synthet hox-promote	ic Construct er-controll	ed Energy co		ple	
	tg gcaccacacc	gcagaaatat	aggggdtagg	agttgagggt	actotoste	60	
	att tgggatgatt					120	
	agg tcaaaacttg					180	
	ata tgttattcta					240	
	:ga ggtgttaaag					300	
	gta ccaggtgtta					360	
	.ca ggtttaatct					420	
	.ca agtattgctt					480	
	att ctagttaaaa					540	
52454666					<u></u>		

tattgttcct	acaggactta	atataagtat	tgcaaatgct	atgtctctac	agaaatctat	600
tccagtaagt	gaagatacca	ttgttaaaac	aattgcaagt	gcaattgtga	aacctgctac	660
cccagctaaa	gctgaaccaa	ttgttcttct	tgctgcaatt	tttacatttg	ctagcatgta	720
aacaattaga	cataacatga	ggaacaattc	agatattgtt	aaaaaatcca	tttattgctc	780
cccctgttct	ccacggaagt	gtccacttgc	tattgcatga	gttgcaaatg	gtgctaatat	840
aaagtatgtc	attectaaag	ctggttctcc	aagaagtatt	aatattaaca	cgccaagcat	900
atctacaata	cctaacattt	ctaatcttcc	aaatacgaca	tatttaacat	cgtcatcggt	960
attacataat	agtccttttg	ctgtaattaa	aacgaatata	ccgcagatta	taaatattaa	1020
ccctataatt	aatccaacag	gatctacatt	taaagtaagt	tctaatgctg	cttcagtcat	1080
ttaggaatca	ccttcctctt	ttgatacagg	ttgttctctt	gttttaagaa	ttgtaagagc	1140
tactaatgtt	ggtacaatag	ctgctcccac	tacagettgt	gttaatgcta	catcgggtgc	1200
taataaaact	tgataaattg	ctgctaaaat	aaaaccagta	atactagtta	atacagccat	1260
tttaattaaa	tctttttgaa	ttaaacaaac	aaatgcacct	aatattgcaa	ataaatataa	1320
aatccaaggt	actgcatttt	gtattattaa	atttatatct	gccatctatt	cattattatc	1380
ctctccaaat	cttttatcat	ttaaaagaac	ggatgcactt	aaagtaccat	gtcttttata	1440
taatactact	gtcattgcta	acattacagc	aagtgtactt	gctccaatta	caatactagt	1500
aagtactaat	gcaaatggta	atggatatga	tgcttgacct	aagaagttat	ttacttccat	1560
attttgtaaa	aagatatatg	taattccgtt	aactttgtaa	cctaatgaaa	ttaataataa	1620
atttacacca	tcacctataa	atgcagcccc	aataattttc	ttaacaacat	tatctagata	1680
aactaatgct	actgtaccca	taatcattaa	aagtgctgct	gtaattaaag	ctcctaattg	1740
tactgataac	atttacatta	ttaaagcgga	aaaagccatg	actccaagtc	tatttactac	1800
taaatcagga	cataaaccta	taattaaaca	aataattaag	aagaatacca	ttattgccat	1860
agttgtttta	ggaacttttg	cagaagatac	ttctaaatca	tctggttttg	gtctaaggaa	1920
cattgcatat	gtgatttta	agaatgctaa	gaaagttaca	atacttaata	taatcataat	1980
tattgcaagt	tctggtattc	ctgcacttaa	tgcagcttga	cataacatgt	atttactttg	2040
gaatacattg	aatggaggta	ctccagccat	tataaatcct	gcaagtacaa	ttaataatgc	2100
tgctacaggc	atatgttcta	ataatccacc	aagtttactg	attttacttg	ttcttgtttt	2160
gtataatact	aaaccaaatc	ctacaaacaa	gaatgaagtt	actactaatt	catttactgc	2220
ttggaataat	cctgctgtta	tactgtatgg	agttcctaat	cctagtccta	caccaatata	2280
acctaattca	ccaacagcta	agtatgcgat	gatacgtttg	taatcatctt	gcaccatagc	2340
catacttata	cctaaaatca	ttgcaagtac	agatactgca	agtattgcca	tttgtactga	2400
tggtaaatat	ccaaatattc	taattaatac	taaacctatg	gatatacaac	ctattacaga	2460
gaatgattgt	aataatactg	atccactagg	taaaccttta	ctgtaaattt	ctgatttaat	2520
tgcattgaat	ggtggtaatc	ctgttgcata	taaccaacca	taaattaaca	tacctgctgc	2580
aaataataat	actgggtttg	ttggatctac	tgctccattg	tgtatcatca	ttacaatatc	2640
agttatgttt	acgttacctg	ttaatccaag	taataaagca	atacccaata	acatgaagga	2700
accgcctatt	tctccaagta	acatgtattt	taaaccagtt	acataatttc	ctcttactct	2760
tgatacgagt	attaaaccta	cttgaacaag	agctgctatt	tcaaagaata	catataagtg	2820

-continued	
COncinuca	

				-contir	nued	
gaatatatca tc	tgttaata	caaatgccat	taatgctgct	gagagcatga	ataataaata	2880
taagtatact cc	agatgttt	tcttagtttc	tgcaatggat	atgaatactg	cacacattgc	2940
aactatacct aa	tataaatg	caactacttg	ttgtccaggt	ccaaatgcat	atgtaattgc	3000
tgggtggaat aa	ttctagaa	ctgatccaga	aattattgct	ttagataatg	caggtaattg	3060
aactgctaat cc	accagctg	ctagaggttt	atatcctcca	aagaaatggt	ttccatatgt	3120
tgctactaat gg	tactattg	gtaaacaaat	agcagtaata	actgccaata	cttttgttat	3180
tttttcagaa cc	atgtaata	ggttaactaa	tatagcacaa	attattggta	taataaccat	3240
taatggtaaa aa	gatagttc	catccatcta	tattcccccc	cagtagaata	ctattgatat	3300
tattgctaat gt	taaaacag	cataaaacat	catattattt	atatcatcgt	tgtgttcttt	3360
gtacaattta gg	catgattg	gtgttgcata	cataaagatt	atgattaagg	caacttctac	3420
aattaccatc aa	tgcaggac	ttactaatct	aatagtcaaa	gcagccacta	ataaagatgc	3480
tattaagact aa	ttcagcag	acatgactga	tgatgttaca	gatccattaa	ctaatgtttt	3540
cttaggatca tc	cccaaatg	tactttttaa	agtttcgaca	agtttatcgt	acatattcat	3600
tcactcatcg tc	gtcgcctc	caaggtttac	ttttcctcta	ccaaatacga	gcatagttgt	3660
tactacagca ct	aactaaga	ttaatgcttc	acctaaagta	tcgaatcctc	tgaaatcaaa	3720
tactatgttt gt	taccaagt	taggtgctac	agatactcct	aatccttgat	agatatagtt	3780
gataccaggg aa	tattaagg	aactgaagtt	atacattgaa	cttaaaaata	ctgctgagaa	3840
tgctagaaaa ga	tacagcta	atgctatttt	tctaatagaa	gatttcatct	attctatttc	3900
ctcatcatca ac	gtagtctt	ctttgtattt	agttacacta	tagaaaagaa	ctactaatgt	3960
tgttaatcct at	aaatactt	ttaatcctac	cactatgttt	aaatatggaa	ttattccagc	4020
atgtaatgca tc	tgggaagt	taaatatagc	ttctacacca	gatggtacta	atccatatat	4080
gtttgttcct aa	gttataaa	ggaatgaacc	acctgtaaat	aatccacata	aaccaaggaa	4140
tacataacct aa	agctccaa	agctttctat	tatggacatt	ctttcgtgtg	aaaaattaaa	4200
tggattttct tt	taaaccat	atgcaagaat	acagagaata	gctcctgaag	ccataatagc	4260
tcctccctgg aa	acctcctc	caggtgtaat	gtgtccacca	agaatagtca	tagcaccata	4320
acctattaat at	aaaggata	atgggtatga	tattaattta	agaagatcac	tcatttaagc	4380
ctcactttta gt	tcctaata	atcctcttcc	gactattgca	ccaataatag	caactacaaa	4440
tcctggtcct aa	tggtaaac	tttcatagta	tgggaaagtt	ccaaaccagt	atgctatgat	4500
gatteetgea at	tattatag	caatccatga	ggaagtattg	agttttatac	cttttgttgg	4560
tgttttatgc at	aataactc	ctgctaggaa	acctataata	aaaccaacta	ttgttggtcc	4620
agtatataag ac	tccaaaaa	ggttaggagc	cattgattgt	aaaaacggta	ctgtactttc	4680
tataaccatt ca	tattgtag	ccccaaagtc	tctttgtatt	tttattgctc	tagcaggaca	4740
tgctgtctta ca	agctccac	aataaataca	tctgttgtta	tcaattttta	agttaccttc	4800
ttcatcagga gc	aattgctt	tgaaaacaca	tgcatctata	catactccac	aacctacaca	4860
taagttattg tt	gatcatgg	aatatccact	ttgtattttc	attttaagtg	gtgatgtttt	4920
aggtatagca tt	tactggac	agtaaattcc	acatttttca	caaagaacac	atttatcaaa	4980
gttaagtttt ac	ttctttat	cttcaatagt	taatgcatct	tttggacaaa	cttctacaca	5040
aataccacat tt	aatacatt	gtgccccaat	ttctccattc	catgaagtat	ttccaaattt	5100
acgtgcacca ta	tttacatt	caggaataca	tcctccacaa	cctacacata	taccttcaag	5160

-continued

tgtaattttt gaatctggaa caaattctaa tacaccttgt ggacaagctg ttacacatgg 5220 agcatgttca tagtctgctg cacaatgttc ttcattatta acattattac ataatgaaca 5280 taaatctgca ctgaatctaa cttttttatt gataatttgt aaaccatttg ttggacatgc 5340 atctgcacat actttacaat caatacatcc aatcattttt gtatcgtttt caacatcata 5400 ttctqqttqt tqaatttcaa qttcaaaqtc tttttcaatq attqcatcqt ttqqacattc 5460 aattaaacat ttqtaacata atqcacattt tttcatqtca acttqatatq ctccaccttc 5520 ttcaataggt ccaattgcat ttcttggaca aacatcaata caagtatcac attttgtaca 5580 aactcctggt tctatgtatg agaacttaat tgagtttgtt ggacagaaat atgcacatct 5640 tccacattca atacaatcat catgatttqt tcctacattq attctqttqa ccatttcttt 5700 5760 ttccatttqa actqqtcttt ttqqtqqtqc cattctaqca ttatttqqac atqcaqqtac acatacacca caattagaac ataatcccat gatttttcca tctttaactg tgataacact 5820 tacaggacat acattcatac acattccaca taagttacat tttgttctgt ctactacata 5880 tccaccaaat ttgtttttaa agatagettt gtttggacag actttttcac acttaccaca 5940 ggttatacaa ctaactgctt tcccattaac tactttaata gcatcagtag ggcaagcatc 6000 tacacaattt cctgagccat tacaattacc tgttgtcata aacatctaat tctcatttcc 6060 agetgettet tgagetgeta etttteett taatteteta tttttetgaa taattgaate 6120 atcagttaaa tattgagcta tgtattggat tttcttctca gatacttcac ttggatctaa 6180 taacatactg tttacatcct tatcacattt gtttccaatg tcattaggat gaattgttgc 6240 tgctactcca aataatgcat atactggaca gaaatcgtga cattgataac aatgtacaca 6300 gttaatttca tcaatctcag gaattgctgt tttaactatg ccatcagcta tttctacagg 6360 ttctactgga accataataa tagcttttgt aggacataca ttagaacatc ctccacaacc 6420 aatacattet acttetgeaa etttaggtga tggttteaca ttaceattta atacatette 6480 acgtaattgt aaatctgttc tacattcact accaaaaatt attcttttaa ggttgttgta 6540 gatteegttg ataaaaactt tteetaaact eatttattta tettettte caagtagtat 6600 tggtattact gatactactc cagctacaac atcttctggc cttactgcac atccaggtat 6660 tttagcatct actggtataa cattatctac aggtccttca atttcttcag aaggaatttc 6720 tecatqaata tttttqtata etecaecaqt taaaqeacat qetectaetq caacaactaa 6780 tttaggttta ggtattgett egtaaatttt aagaagtgge tetttagtee agtaagttae 6840 aggaccagat actactaaaa catcagette eettggatte catgttaaat acacattgta 6900 ttqttctata tcqaatttaq qaqacaatac tqtqttaact atttctatat cqcaaccqtt 6960 acatecacea gtataaaeta acataaqqtq tattqcettt ttacqqqett qtqattttaa 7020 tcccatctat aatttaatta tttgtatagc tctatcagta caagtgaaac atggatcaca 7080 tgatacaata gcaagttgtg catcctgaat tgggtgtcca atacaagatt cttgcattgc 7140 accaatgtta gacattgatg gagttettat aataetatgt ettaetttte cateetetaa 7200 accatatgaa tgataacata ctccacgagg tacttctata taacttttat aaactggtga 7260 gtctactaaa tcccaatctc ttgttacaat aggaccttta ggtaagtttt taataacttg 7320 tctaatgatc tttgttgatt caaagatttc agttgctctc ataagaatat tagcccttac 7380 atotocacca tottgagtga taatatoaaa ttoaaaaggt toatattoaa acatttoagt 7440

cont	٦.	nı	10	

					-contir	nued	
tctaaa	aatca	tattcatatc	ctgttgctct	taaagatggg	ccagttacat	gtaaatcaag	7500
tgette	gtttc	tgtgataatt	caccagtacc	agtaatacgg	tgcattacca	ttggatcagc	7560
tatgaa	atctt	tcagcaaaat	ctgctacttt	ttcatcgata	taatccattg	tgtcaagtac	7620
tcttt	gttgt	tctttaagat	ttaagtcagc	tctaggtctt	actccaccaa	gaactgatat	7680
tccata	attga	actctgtttc	cacccatcat	atataaaaga	tccattacag	attctcttat	7740
ataaaa	atatt	ctcatagcaa	aggtttcatg	acataatacc	tcagatccat	gacctaagta	7800
taacat	tatga	ctatgtaatc	tttctaattc	ttctgcaaga	acacgtaaat	atactgctct	7860
ttctgg	gaatt	tctataccta	aagctccttc	tcctacacga	caggaattgt	atatatgtcc	7920
gttaga	aacaa	ataccacata	cttttctgt	taaagcattt	gctttttcta	caggtagtcc	7980
ttccat	taatt	ctttcaattc	ctctatggtt	taaacctaca	gtaatttcag	catcttttac	8040
tattto	catct	tctacaaata	gtctaactct	gtaaggttct	aaagctgccg	gatgtactgt	8100
acccat	tattg	atttctgttt	caaaaacttg	tetttetgtt	ttgtcacaag	ttgttgctcc	8160
atctat	tttt	gtaaccattt	ataatacagc	aattaaaact	gctactacag	caacagcact	8220
tgttgd	ctata	actgtaggga	aaaactcacg	gttagtgaat	aatggtgaga	atgcacttac	8280
tacago	ctgca	gctattgtta	ttattataga	acatattatt	ggtacaatta	ttgagatacc	8340
aaatao	ctggt	ggcataccta	agaataatgt	tgaatataca	caagctccaa	caaatattaa	8400
gaatgo	catgt	gccattacat	atactgctct	gtattttgac	atgtattcaa	gtaaaggacc	8460
ttgaat	taca	tctgaatgac	cttccatgaa	tgcaaatgga	ttagagttaa	gtacaattaa	8520
gaatco	ctaca	aagaacacaa	ttgttcctat	gatacctgga	agtgtgaata	atattggacc	8580
tgtaat	taat	tgatatctta	caatgtctat	taaattcaaa	cttttagcca	ttattgcagg	8640
aataaa	ataaa	gctatataaa	atggtaaact	accataagat	atgagtttta	atgatctttt	8700
tgcact	taat	tgttctataa	atgattgttt	tgcaccaata	tgttttccac	cttttgcttg	8760
atcage	ggaaa	ggcatggttt	ttgataaaag	tgattgtgag	aatgaactca	taaataagta	8820
taaaad	cttct	tccactttta	ataaaccaac	taatgctact	aaactagcaa	aagatcccca	8880
agctad	ccatt	acttgtggta	tgagtatgag	gaatattgct	gctactataa	tcaaagttat	8940
taaago	gtaat	atattatata	ctctaggcaa	tattgcagat	ggttctaata	cttgtttaaa	9000
gaagaa	atttt	aatgttgcat	agaaaccagg	acttgaaagt	tgaggaccaa	gtctttgttg	9060
tactct	tgcc	tctgctttct	tttcaatacc	cggtaaccat	aaacatacaa	tacttgcaat	9120
tataaa	aagca	cctataacat	agcctattga	tgttactata	tccatttaat	tactttctat	9180
agcttt	tctt	tcttcatcta	atttatgttt	agccatttga	tacattacta	aaaagtcatc	9240
atcato	catta	actggaatta	cttccaatcc	taatgcttca	tgttcttcaa	tccattcatc	9300
attaaç	gaaca	ggaacttcta	gtttaattgg	ttcatcttca	tgattaacta	caattaaatt	9360
tctgaa	aagat	gttcttactt	ctacaatata	acctgctaaa	cctattatat	gatgtggtct	9420
taatao	ctatt	ttcatctaga	gtacttcatc	aactctatca	atatcaaatt	tagcagtttt	9480
tgctat	tgac	attacagcca	taacacctgc	ttgaactgga	tctgttacaa	ctaaatcagc	9540
atggto	ctctt	acagaaccaa	ccatattaag	acttattact	ttaactccat	atttattttt	9600
tattto	catca	atagcatcca	caatagatcc	acccattaat	gatccagcaa	gtactaaaca	9660
acccad	ctcta	ggtaaacatc	caacggcacg	tacagettea	gttaattttt	tttctccagc	9720
cagtgo	gtaat	gtatcaacac	ttatacgttc	accacgaata	ttatgacgat	ctgcttcggt	9780

-continued aattgcacct aatgctactt gagatacttg tgctccacca ccaactatga tgattctttt 9840 accccatact ttatccatag aaggagatag ttttacttct ttgacttctg gaaattccat 9900 tatttcagaa agtacttctt caatattatc cacatgatct aattctatat atgtagaagc 9960 atgatcatca gattccatat ataaatgggt atagacaata ttaattccat tttttgcaag 10020 ataatcagtt acttttctta aaactcctgg tttatctatt gtcctcatat ttattgcatc 10080 tatcattgaa gtaagtagga agcagggagc aggggaaaga aaattgacaa ctgtacaaga 10140 ttaatcgcgt ctctgagcaa tgaccaaata catctacctc cacggttttc ttccagcccc 10200 ctatctgcga aagcacaaga tattagcaag cgtttcgccc aaattcacat acagctaaca 10260 atccctqatc tcaatqctqq tqaattttct caqttaacaa tcacqcqcca aattcaacaa 10320 gttgccgcaa ttttccctga taattctgaa ccaataacgc tgataggttc tagtttaggc 10380 ggtttaactg ctgcttatct aggacagcga tatttacaag tacaacgctt agttttatta 10440 gcgccagttt ggttttttat cccattggtt gcccaaaatg ggtgaagaag ctgtcacaag 10500 ttggcaacaa acgatatagg ttctctcttc tgccgtta 10538 <210> SEQ ID NO 181 <211> LENGTH: 3416 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 181, example 181: a designer hox-promoter-controlled [NiFe]-hydrogenase MvhADG DNA construct (3416 bp) <400> SEOUENCE: 181

> agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60 gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat 120 agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca 180 gaggtagata tgttagatcc tttttacaag gtcgccttca ctgtcgtata cttccaaggt 240 ggcaagtete atetgaetgt caatggtgtg tgttgegeag gagagaeatg ggtegtatge 300 cottatgacc atotocatga ggttgaatat ottatcatoc acttoaacac caggtttgat 360 gtagteetgg geaacettet ggataceeat etceatggea gggttgttet ggattgttge 420 aaccacgatg tttgccttgg ttatgaggcc gttctcatca caggtgtagt ggtgtgtgag 480 tgttcccctt ggtgcctcaa ctatacccac accgtcgcct gcctgccttt caagtgaatc 540 600 agggaatttt teteeggata ggteteette aagtgeateg getgeacatt eggeacatge gaggacttct atgagccttg cccagtggta caggagtgtc tgctgtgcgt atccaaattt 660 gtcctggaac tccttgaagt aatcctgtgc ctttggagct gcatcaggca tcttatctgc 720 gacgttgagc cttgagagtg gtgagacacg gtagacacca tcagggtatc caaggtcctt 780 tatgtatggg aatttgagcc aggagtatgg tttaacatgt tcagcgatgg tgtcagcgta 840 gtctgctggt ttgaactccc tgaacaggtt tccttccttg tcctttatcc tcactatacc 900 atcgtagacg tcccatacgc cgtttttaac aagacctgtg tggtatgtct cgatgttgcc 960 cagtgagttc acgaggtcaa tgttctcctc gaatattgga actgcaagtt ccagggtggc 1020 ctctgccagt tcaacgttcc tctgggcctt ctgaaggagg tccttctgtg tttcatcgtc 1080 cagttetgtt gatatacete etggtgttga ggaggttggg tgaattggee tteegeetgt 1140

-cont	inued
-conc	THUEU

				-contir	nued	
ggccctgacg	atttccagag	catttttacg	taactctatg	gcctgaagag	caacatcagg	1200
ggcgtccttt	attatctgga	agacgttcct	tgtctttctg	tccttacctg	ctatgaagtc	1260
aggggctgca	aggaagtaga	agtgcagacc	atgggagtgc	atgtatgagc	cccagttcat	1320
gatctccctc	atcttgtagg	ctgcaggaag	gacatcgtca	ggttcgaatc	caaagcaggc	1380
gtcaacagcc	tttgcggctg	ccaggtggtg	ctgcacgtca	cagataccgc	agatccttgg	1440
aactatcctt	ggggcttcct	ctatgggtct	tccctggagg	aacttttcga	atccacggaa	1500
ttccataaca	tggagccttg	tgtcctcaac	attacctgca	tcatcaaggt	gtacggtaat	1560
cttggcgtga	ccttcaatac	gggtcacagg	ttccattgtg	agtttaacca	tttatgcttc	1620
agctagctgt	tttttgattg	gtgatggacc	aagggccctt	atcctgtcaa	ccatcatctt	1680
gacggtttcg	gcgaatttt	caccttctga	tgcggatatc	cagtcgtggt	ggatcctttc	1740
cctgccaatt	ccaagttcat	ctgccagttt	gtagatcagt	ctcattctcc	tgtcgagctt	1800
gtagtttcct	gcgtcgtagt	ggcagtcacc	gtggtggcat	cctgttacga	gaacaccgtc	1860
agcgccttcc	ctgaatgcct	tgaaaacaaa	ctgtggctct	atccttcctg	agcacatcac	1920
acggataacc	ctaatgtttg	tagggtactg	catccttgct	gttcccgcag	tgtccgctcc	1980
accgtaggaa	caccagttac	aacagaacat	cacaattttt	atgtcatctt	cagccatcta	2040
tttaccctcc	ttctttattt	tcattggtat	gagtgctgct	ggaagtgtga	atgtgtagaa	2100
tgttccaaca	atgtcatcca	gctgttcagc	cacttcctca	gggtcgacgg	ttttgtcctc	2160
ttcgaccttg	tagtcagagg	ctatggcact	tatcattttg	gcaccctggt	cctcgacacg	2220
tgctgttgga	ccatagcagc	cacggcatgg	tatggctatg	cttgggcact	ctgcaccgca	2280
gattgataca	gttgctgggc	ccatgcagat	gagtccctgt	ggtatgagac	agaggtcatc	2340
ctctggttta	ccaacctcga	actgcctctt	tatgaagtcc	attgcaaggc	cttctggtgg	2400
tttttccctt	gggcagactt	cacagaggtt	tgtgcttggc	agttctattt	cttcaccttt	2460
gaggagtgcc	ataacgacct	cagcagcaac	atctgacctt	ggtgggcatc	ctggaacttc	2520
aaagtcaacg	tctatgactt	cacccagtgg	tttgaccctt	ccctcaaggt	gtggtacgtc	2580
ttcagatggt	atgacgccct	cttcgtttgg	tgttgttatg	gagttgatgt	aggetteete	2640
tatgacctca	tccttgtccc	agaggttcct	gagacctggt	atgccgccgt	atacagcaca	2700
tgtaccgtaa	cttatgacaa	atttggcctt	ttcccttagt	tcctctgcga	attccctgtt	2760
ttcatcgttt	acgattcctc	cctcaatgac	cacaacatcg	agttcaggga	tttcatcgta	2820
ttttgtgtcc	attaaaacag	ggctgaactc	gaagtcagcg	tgttccatga	catcaaggag	2880
cttttcatgg	aagtctgcaa	tggacaggtg	acagccggag	catcctccaa	gccacattgt	2940
tccgatcttt	attttttcag	ccattgaagt	aagtaggaag	cagggagcag	gggaaagaaa	3000
attgacaact	gtacaagatt	aatcgcgtct	ctgagcaatg	accaaataca	tctacctcca	3060
cggttttctt	ccagccccct	atctgcgaaa	gcacaagata	ttagcaagcg	tttcgcccaa	3120
attcacatac	agctaacaat	ccctgatctc	aatgctggtg	aattttctca	gttaacaatc	3180
acgcgccaaa	ttcaacaagt	tgccgcaatt	ttccctgata	attctgaacc	aataacgctg	3240
ataggttcta	gtttaggegg	tttaactgct	gcttatctag	gacagcgata	tttacaagta	3300
caacgcttag	ttttattagc	gccagtttgg	tttttatcc	cattggttgc	ccaaaatggg	3360
tgaagaagct	gtcacaagtt	ggcaacaaac	gatataggtt	ctctcttctg	ccgtta	3416

```
-continued
```

<210> SEQ ID NO 182 <211> LENGTH: 6695 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 182, example 182: a designer hox-promoter-controlled Heterodisulfide reductases (HdrABC, HdrDE) DNA construct (6695 bp) <400> SEQUENCE: 182 aqaaaatctq qcaccacacc qcaqaaatat aqqqqctaqq aqttqaqqqt actctqqttc 60 120 gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca 180 gaggtagata tgtcaggaac cgcctcctac aggcttcggg agcctgagag cagcgagctc 240 tgatcccgcc ggccccatct ccttcagctc gctgacgaac ttcctgacct cttttgccag 300 gatetegeee teactggegg egeaceagat gatettgace eteeeggggt tgateceeae 360 cttctccagg acccccctga ggacctggac ccgctggtag gcctggtagt tccccttgtt 420 gtagtggcac tcgccgaggc ggcagccgga tatgagaacg ccgtcggcac cccccttcag 480 ggcctcgagg acgaaggctg ggtcgaccct cccggcgcac atcacccgga tcgccctcat 540 gttcgtcgga tactggatcc gggaggtgcc ggccagatcc gctccggcgt agctgcacca 600 gttgcagagg aacccgacga tgaaggggta ctgccccttg accgccgtcg ccgcccggac 660 ctgggccatg atctgctcgt cggagaagag ggtcatatcg atggcgtcga cggggcaggc 720 ggcggcgcag gtcccgcacc ccttgcaggc cgcctcgtcg acgagggcgg tcccgttgac 780 840 ggagatcgcc ttccccggac aggtatcgac gcagagcttg cagcctatgc acttctcctg gtccaccacg gcgacgacgg ggtcgagggc gagctctcct ctaacaagaa gcctcatcgc 900 cttcgccgcc gccgcctccc cctgggcgat ggagacctgg atctcctttg gtcccgaggc 960 gcagccggcg atgaagaccc cctcgatgtg ggcctccacc ggcctcatct tggggtgggc 1020 gatetegaag aageegtegg ggegetttge gaggeegagg aggttgeega egaegtegge 1080 atcottatto ggotogagoo cogoogagag gaogaogagg togtagggot togaaoggaa 1140 geogeocagg agggtgteet egtagttgae gegaaggete eegteeacet eeteeacete 1200 1260 ggagacccgg ccccggatga agttgatccc gagccgctgg gcccgcatgt agaactcctc gtacccctcg cccccgccc ggaggtcgat gtagtggatc gagacctccg tctcgggata 1320 ctteteettg atcagetggg egttettgag ggegtaeatg eageagaeee gggageagta 1380 ggegttteeg accgtetegt ecegggagee gaegeactgg aggaaggega eggaettege 1440 gaceteecee gtegatggee geaceacete geegeeggte ggeeetgegg egttgaggag 1500 cctctcgacc tggagggggg atatgacgtc tctatacctg ccgtagccgt actcctcctt 1560 tctggcgggg tcgaaggact gccagccggt ggcgacgatg atggcgccga cgtcgaacct 1620 gaacteetee tgeetetggt egtaettgae ggegtegaeg gggeaggeet eggegeagag 1680 gccgcagccg atgcaggccg agggatcgat gcaggcgacg agggggaccg cctggggtat 1740 cggcatgtag atcgcctttc ttttgccgag gccgaactcg tagtcgtcgg ggacctccac 1800 gggacagacc ccggcgcact cgttgaggca gcccttgcag agcttctcgt cgacgaaccg 1860 cgccttcctg accccggaga cggtgaacct tccgacagac ccctcgatgt tgaggatctc 1920 ggcgtaggtg acgaggtcga tgagggggtg gttgtagacg tcggtcatct tcggcgcgag 1980

-cont	inued
COILC	LIIUCU

				-contir	nued	
gacgcagatg	gagcagtcgt	tcgtcggaaa	gacgtcggtg	aggagggcca	tgtaaccccc	2040
gatcgtcggc	ctcctctcga	cgaggtggac	ggagaggccg	cagtcggcca	gatcgagaga	2100
agcctggatc	ccggctacgc	ctccaccgat	gaccagcacc	tcccggctga	cgggcatcgt	2160
ctccccctgg	agggggttta	ggagggccgc	cttcgccacc	gccatccgga	tcaggtettt	2220
tgetttetee	tgggcctggg	ggggctcgtc	catgtggacc	cacgagcact	gctcccggat	2280
gttcgccatc	tccagcatga	aggggttgat	ccccgcctcg	gagatcaccc	gccggaaggt	2340
cggctcgtgg	agccgaggcg	agcaggcggc	gacgacgatg	ctctccagct	tatgetetge	2400
gatgtcctcc	ttgatcatat	cctggcccgt	atcagagcag	gtgaactgga	ggtcccgggc	2460
gacctcgacc	ccagggaggg	ttttggcgaa	ctcggcgagg	gcggagggct	ccagaacccc	2520
tgcaatgttc	aggccacagt	gacagatgta	aactccaatt	cgcattcagc	agaceteege	2580
cccctcctcc	tcagctttct	tcccctcgat	cttctccagc	ttctccagca	ccggcctcgt	2640
cgatacggag	ttcatcgata	ggcccagctc	ttctgggcct	aggccgaggg	cgagccccgc	2700
catctgggtg	acgtataata	cgggggaggct	gatctcttcg	ccgaacttct	tctccaggag	2760
cggctggttg	gcgtccagca	tcaggtggca	tagcgggcat	agcgcgacta	cgaagtcggc	2820
gccggaggcc	ctggcgttcc	ggaggatccg	gatgagggtc	tcggcggccg	cctcttcctc	2880
gggcatgaag	atggggccgc	agcagcactt	catctttaat	ctgaagtccg	taggeteege	2940
tcccagggtc	cggatcaggt	cttcgaggat	cgaggggttc	tcggggctgt	cgatcccccc	3000
gccgggcctc	gtcaggaggc	agccgtagta	gggggggggc	ttcaggccgg	cgaggggccg	3060
gacgaccagg	tcttctgggt	cctcagcctc	ggcgagggct	ttcgtgatca	tctcgatgac	3120
gtggaggacc	teetttett	cctcgtactt	cttctccagg	gcctcgttca	cccgctccct	3180
cagttttcgg	tccttcaggc	ggatcatcgc	cgcccggagc	ctgctgtagc	agatggagca	3240
ggaggccatc	actggaagct	ccgtcctcac	caggtttcgc	gccgccaggg	ccgtcgagac	3300
gacctcgttc	gagacgtggg	tggcgccgca	gcagttccag	tcgtcgatct	ccgatagete	3360
tatgccgagg	gctcgggaga	ccgccagggt	cgatatctcg	tactccctcc	ccgtcgaccg	3420
ggcgacgcat	ccggggtagt	aggcgagctt	cattcatttt	teteceteet	ctttttctcc	3480
ggccttctca	gactttcctt	ctttcctccc	gtcgtcgccg	agaagctcga	agatccgcct	3540
catctcctcc	gtcccctcga	tcctctcccc	cctcgccgcc	tcaaagccga	gctcgatctt	3600
ccccttgggg	acgagctctg	cgccgaaggc	catgatctgc	gccgccgagc	tggggctacg	3660
gatcatgtac	tccgccgaca	gcaggaactc	cgatatcctc	ccatagtcgc	ggatctggcg	3720
ggcgaagatc	ccctcgaaga	ccgagtcctt	gcacttcaag	ccctcctcct	cgtagatcgt	3780
cttgagggcg	gcgacgaccg	ccatcggcct	gatcttcctc	gggcagcgga	cggtgcagag	3840
gaggcaggag	gtgcagagcc	atatcgacct	gctcgccatg	gcagcagcct	tetecette	3900
gaggaccagc	tttacgagct	ttcgtatggg	cacgtccatc	agggaggcgg	tggggcagct	3960
cgcggagcag	gtcccgcact	ggatgcaggt	tttcacctcg	gccccggcga	gggcgaggac	4020
cctctcccga	aacttctccc	cctcggccgt	catgatcgcc	gtcgtcttca	tcgtcgtcac	4080
cgcctccgca	atgctagaag	cctcctttgt	catatggcag	aagcaggaaa	agagaagaag	4140
cccctcgtat	caggatteet	catgtccacc	cagctgatgg	agctggacgg	atgcacccga	4200
tgccaggagt	gcatgaagtg	gtgtccgacc	ttcgacgtga	ggcaggaccg	ccccgagatc	4260
acccccatgt	acaagatcgc	caagttcagg	gaactcctgg	gaagccagca	cggcctccgg	4320

gcgaagctct	tcggccccaa	gcccctcaac	gaggatgaga	tcaacaggtt	cacggaagat	4380
acctactact	gcaccacctg	tggggtctgc	ggcaccgtct	gcgagtccgg	gatcaacacc	4440
gtcgagctct	gggaggcgat	gaggccaaac	ctcgtagctc	gggggaacgg	cccctacggg	4500
aagcagtcct	tetteeeegg	cctcctcgga	aaggacagga	accccttcca	ggcaaagcag	4560
gaggagcggc	tctgctgggt	tcccagtgat	gccaccgttc	tggagtcgtc	ggagatcgcc	4620
tacttcgccg	gctgcaccgc	tgcctatagg	cagcaggccc	tegeegtege	ctccgtccgg	4680
ctgatgaacg	ccctggagat	accettetge	atgctcggaa	aggacgagtg	gtgctgctct	4740
tcggctctgg	tgaggacggg	ccagcggaac	atcatgaaag	aacatgcagt	ccacaacgtc	4800
gatgctctaa	aggatcgcgg	ggtaaggacg	gtcctatacg	cttgtgcggg	ttgtcagaga	4860
accgccacca	tcgactggcc	taggtggtac	gagggctaca	tcccctacaa	gaacatcccc	4920
ctctccgttt	acctgaggga	gaagatcagg	agcggcgagg	tggagtggaa	geggeeeete	4980
aacttcaagg	tcacctacca	cgacccctgc	cacaacggta	ggcacctgat	gcacgtcaat	5040
gggagggacg	tggcctttga	ggcccccagg	gacatcctga	agtccatccc	cggggttcag	5100
ttcgaggaca	tggcccgttc	cagggagttc	cagaggtgct	gtggcgctgg	cggcggcgtc	5160
aaggccggga	tccccgatct	cgccctcgac	tgcgccaagg	cgaggatggg	cgacgcccag	5220
ctgatagcag	cggacgtgat	caccagcacc	tgtcccttct	gcaggcggaa	catcatggac	5280
gggagagcag	cgatggaagg	atgcgacgtc	aaggtettgg	acgtagtcga	gatgatgact	5340
gcagccatgg	gcttggacat	cacgatcccc	gacaatccct	acatgaagtt	ccaggagcag	5400
gacgttctgg	tatgcgatga	ggacgtctgc	aaggtcgaga	cgatcgagag	gaaggctgaa	5460
gggaaggacc	tagtaggaga	ggcccactga	atggcgtttt	acacccttgg	tctcaccttc	5520
gggatcgtga	tagcccttac	cgtagcaacc	ttggcaatct	ggatctacgg	cctctacttc	5580
aacttcaaaa	agtgggggat	ggggtcgacc	ggttatcagg	acgagcttcg	aaacagcttc	5640
tggctattta	ttgcaacatg	gattcatcag	gccttcaaag	acggcgtctg	ggtatttgtc	5700
aaaaccctca	tcctcgacgt	cctccttctc	aggcggaccc	tgaggaggag	ccccatcaga	5760
tgggtgatgc	acatgaccat	attctacggt	tttgtcgccc	tcgccgccat	gtctggcttc	5820
gccctcttta	tggacataat	tgagcacttc	aacctcttgg	ggctcgccca	cgaggctgag	5880
atggtgaagg	aaatgatggc	tctccccttc	gacatcttcg	gctacctcct	cctcttcggg	5940
gcgacgatag	gggtcgcgag	gaggatcttc	ctccgagagg	tgcggtccag	gacctcggcc	6000
tacgacgtgg	tcctcctagg	cggagtattt	ctgatcacca	tcacaggctt	ctatgcccaa	6060
tggatgcggg	gcaactcctt	cctcgtcgga	gacgtcttcg	cgtacccgat	atacgctccc	6120
cacttcgccc	tagtccatac	gatcctggcc	ttggccctct	tcgtagtgat	ccttccctgg	6180
agcaagtaca	tgcacataat	agctgcaccg	atgacgattc	tagcaaacag	aggaggcgag	6240
taatgaagta	agtaggaagc	agggagcagg	ggaaagaaaa	ttgacaactg	tacaagatta	6300
atcgcgtctc	tgagcaatga	ccaaatacat	ctacctccac	ggttttcttc	cagcccccta	6360
tctgcgaaag	cacaagatat	tagcaagcgt	ttcgcccaaa	ttcacataca	gctaacaatc	6420
cctgatctca	atgctggtga	attttctcag	ttaacaatca	cgcgccaaat	tcaacaagtt	6480
gccgcaattt	tccctgataa	ttctgaacca	ataacgctga	taggttctag	tttaggcggt	6540
ttaactgctg	cttatctagg	acagcgatat	ttacaagtac	aacgcttagt	tttattagcg	6600

				-contir	nued	
ccagtttggt t	ttttatccc	attggttgcc	caaaatgggt	gaagaagctg	tcacaagttg	6660
gcaacaaacg a	tataggttc	tctcttctgc	cgtta			6695
	: 3407 DNA SM: Artifi E: INFORMATIC designer	- N: Syntheti hox-promote	ic Construct	ed Coenzyme	D: 183, exam F420-reduci	
<400> SEQUEN	CE: 183					
agaaaatctg g	caccacacc	gcagaaatat	aggggctagg	agttgagggt	actctggttc	60
gtcaagcatt t	gggatgatt	tcccctcaca	agttcctcaa	attattctcc	tataaacaat	120
agatataagg t	caaaacttg	agttatgagt	gctgagtaaa	aaattactct	ccacgcctca	180
gaggtagata t	gatgttaaa	caatgcgatc	gcaacgccgg	ccctccagcc	attccaggaa	240
ctcgagcaga g	cgtctggaa	gaaggagatg	tgcgccggat	gccgggggctg	tatcaccgta	300
tgcccggcca a	cacgttagc	ctatgacctg	aagctggcca	ggccgtacca	gatcactccc	360
tgtgtcgatt g	taaggcctg	cctggacgcc	tgtcccagga	ctccagctaa	catggataag	420
ctgtccctgg a	cattcttgg	gccgcatctt	gacgtttata	atgtgaaggc	tactgcgggc	480
aataagcgct a	ccagaacgg	cggcgccgtt	actgcgttgc	tgaagaccgc	gctggacgaa	540
ggccttgtgg a	ccgtgtgat	cgtcatgggc	gcggaccgct	gggcacagaa	ggcatacgcc	600
cgggtcgtct c	cgactcatc	gagcctggac	agggctgcgg	gcagtattta	catgaacaac	660
gatgccctgg a	gacaatgaa	ggacatcatg	aaggacgact	cgatcaggaa	cgtggcgatc	720
gtgggaacgc c	ctgcgcgat	acagtcgata	ggcctgctcc	ggaagteete	gaacgagtac	780
tccgtaaagc t	gacccagaa	gatcaggttc	gccatcggct	tattctgctt	tgagtcattc	840
gatgatcggc t	catccccga	agttaccaaa	cgactcggcg	tgccgtcgtg	gcgtatcgcg	900
aagatgaacg c	cggcgaggg	caggctgacc	gtcacgctga	ggagtggcga	ggtaaagacg	960
ctgcccctgt c	gagcctggc	cgagttcgtc	aagcccggat	gccgcaagtg	caacgacttc	1020
acttcaaagc t	cgccgatat	ttccgttgga	agcgtgggca	gtgctgccgg	gtccagcgtc	1080
gttattacca g	gacgcccga	gggtgccggg	ctactcgaga	tcgcccgcga	ggtgggcgct	1140
attgatgtgg c	cggcggagt	cgatgtcgct	gcgatcgaga	aggtcggcaa	gctgaagctt	1200
aagaaaaatg g	cttttaaat	gtcattcgga	acttacaagg	aagtcatggc	cctcaaggcc	1260
aaggacggaa a	gatcggcgg	cgtcgcccag	gatggcggcg	tcgtgaccac	gctgctctgc	1320
tacgcgctcg a	gaagggcgt	catcgacggc	gccctcgtcg	ccggcaagag	cgagaccccc	1380
tggatgccta a	gcccaccat	cgcgacgacc	aaggaagaga	tcatcgcggc	ggcaggcacc	1440
aagtacacca t	cagcccggt	cgtgtccacc	atcaaggacg	cagcccgcga	gtacggcctc	1500
gagaagatcg c	ggtcgtcgg	caccccgtgc	cagatctacg	cggtccagaa	gatgaggctg	1560
tacggcgtcg g	cgcgagaca	catccccgac	aaggtagcca	tgaccgtagg	catcttctgt	1620
acggagaact t	ctcttatgc	cggcctcagg	accgttatcg	aggaccactg	caaagtgccc	1680
atcgaatcgg t	caccaagat	ggagatcggc	aagggcaagt	tctgggtcaa	gggagccaag	1740
gacgtgtcca t	tcccatcaa	ggagacccac	aagtacgagc	aggacggctg	ccacgtttgc	1800
tccgacctga c	cgccgagtt	cgcggacatc	tccacgggct	ctatcggcac	tcccgacggc	1860

tggtccacca	ccttcgcccg	ctcgaccagg	ggtaaggacc	tcctgagcaa	ggccatcgca	1920			
gacggcctgt	tcgagaagaa	gtccatggac	gagttcaagt	ccgctccgga	cgccaagatc	1980			
aagagcggcc	tcgacctcct	gggcaacctg	gaaaagggca	agaaggacaa	ggcaaagaag	2040			
catttcgacg	agcgcaaggc	tctcggcctc	ttcgtaaccc	cggaaatcct	gtactaaatg	2100			
gcataccagg	gtttcgggaa	atataaggaa	gtcttgagcg	cccggtctgc	ggacgaggag	2160			
atccgtaaca	tcgcccagga	cgggggggacc	acgacggcac	tgttgtgttt	tgccctcgag	2220			
accggcttca	tcgacggggc	ggtgctgacg	aaaaaatcga	gcagggagtg	ggtgcccgcc	2280			
cagtacgtgg	cgacgacccg	ggacgagatc	ctccagtcgg	cgaagagcgt	ctacgcgctg	2340			
tcccccagcc	tgtaccggct	gaaggaggcg	acgagggaaa	gggccctgag	taaggtgggc	2400			
tatgtggggc	tgccctgcca	gatcgaggcg	gtccgcaaga	tgcagctgta	cccgttcggg	2460			
gcacgggata	tcgtggagag	cctggccctc	gtcatcggca	tcttttgttt	cgagaacttt	2520			
tatcccgaga	gcctgaaagc	cattgtagaa	ggcctgggcg	aggagcccct	ggaggatgtg	2580			
gtgcgcatgc	ggtgtgcctc	cgggaagttc	aggacggagg	gggagaaggg	cattatcgtg	2640			
ccgctaaagc	aggcgtcccg	gtacattcag	gacggcgacc	gcatctgccc	ggacctcgtg	2700			
tcggagtggg	cggatatctc	ggcgggctcc	gtgggctcgg	accccggatg	gaatactgtc	2760			
ttcctcagga	cgaagaaggg	ccacgacttt	ttccagcagg	ccaccggggc	tggcgccata	2820			
gagacgaagg	agatcagcga	ggaagggctt	aaggcactcg	aaaagctggc	cgtagcgaag	2880			
aaggaccggg	cgaaaaaaca	tatcgcaaag	cgcgaggagc	tcgggcttta	cgtgacccgg	2940			
gacatctact	attgatgaag	taagtaggaa	gcagggagca	ggggaaagaa	aattgacaac	3000			
tgtacaagat	taatcgcgtc	tctgagcaat	gaccaaatac	atctacctcc	acggttttct	3060			
tccagccccc	tatctgcgaa	agcacaagat	attagcaagc	gtttcgccca	aattcacata	3120			
cagctaacaa	tccctgatct	caatgctggt	gaattttctc	agttaacaat	cacgcgccaa	3180			
attcaacaag	ttgccgcaat	tttccctgat	aattctgaac	caataacgct	gataggttct	3240			
agtttaggcg	gtttaactgc	tgcttatcta	ggacagcgat	atttacaagt	acaacgctta	3300			
gttttattag	cgccagtttg	gttttttatc	ccattggttg	cccaaaatgg	gtgaagaagc	3360			
tgtcacaagt	tggcaacaaa	cgatataggt	tctctcttct	gccgtta		3407			
<210> SEQ ID NO 184 <211> LENGTH: 5417 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 184, example 184: a designer hox-promoter-controlled Methyl-H4MPT: coenzyme M methyltransferase (MtrA-H) DNA construct (5417 bp)									
<400> SEQUI	ENCE: 184								
agaaaatctg	gcaccacacc	gcagaaatat	aggggctagg	agttgagggt	actctggttc	60			
gtcaagcatt	tgggatgatt	tcccctcaca	agttcctcaa	attattctcc	tataaacaat	120			
agatataagg	tcaaaacttg	agttatgagt	gctgagtaaa	aaattactct	ccacgcctca	180			
gaggtagata	tgatggcaga	taaaaaagaa	gttattcaaa	attggccctt	agaaactgga	240			
gattatgcag	tgggaaatgt	tgaaagtcca	gtagcagtag	tctctctagg	ttctaatatg	300			
aatgatgaat	tggtagctgc	aggggctgca	atttcaggac	cattacacac	agaaaacttg	360			

-continued	
COncinuca	

				-contir	nued		
ggaatagaaa	aggttgttgc	aaatataata	tcaaattcaa	acatacgtta	tgttcttata	420	
tgtggatctg	aggttcaagg	acatattact	ggtaaaacag	ttgaagcttt	atatgaaaat	480	
ggtattgatg	aagagaaaaa	atcaattatt	ggttctcctg	gagctattcc	attcgttgaa	540	
aacttaccag	tagaagctgt	tgaaagattc	caaaaacaag	tttctattgt	tagtatgata	600	
aataatgagg	atgttagtga	aatatcatct	aaaatagatg	aatgtattag	taatgatcct	660	
ggagcatatg	atgaagatgc	aatgattgtt	gaatttaatg	aaacacctga	agaggagttt	720	
gaagttgatg	aagtcacatt	ttctgatgat	tcagcagttg	atttagcatc	aatagttcta	780	
cttgaggttg	aaaatcgtat	aagtatgatg	aataatgaaa	taaaacaaat	tgcttcttta	840	
gaaaaaatat	cttcaggata	ttatgctgga	aaaatagaag	gtatagttat	tggatttatt	900	
ttaacattgg	tttttcttat	aattattatt	caaggtttgt	gattggtaga	tacaacagca	960	
gttataattg	atgatgattt	agttttagat	gttaataatg	gtataatagg	aacaaaagat	1020	
aataatcaaa	aacaacatct	tccatttgat	gatctggtag	aaaaaataga	tactctggaa	1080	
gtggcaatta	ataatctaga	atcatcatta	gatcctagaa	caacatctaa	tctatcacaa	1140	
cctggaagag	aaggaatata	tgaaaaagca	ggattaatta	caaacattgt	aattggtgtg	1200	
attatagcat	tagttttcat	acttttatta	gtataaatgg	ctgatgattt	aataccttct	1260	
cagataataa	ttttaagttc	tattgttggc	ggattaattt	gtatagcact	aagtagtata	1320	
cctgtggttg	gtggtattt	ttcaattatt	gcaacaatat	taggtgttat	ttgtggaaca	1380	
aatacactta	gacacatagg	aaaatatagt	ttaggtactg	gagttccatc	aatagtttat	1440	
atgttaacag	cagcaggact	tgttagtatg	atatgtggtg	taatgatatc	aagaataatt	1500	
aatcaaaatt	tattatatcc	aatatttagt	atgataatag	caatgataat	tgcttttgta	1560	
atttcactca	tgtgtacaca	tatcttcaaa	atacaagttg	aaatattaag	aaaatcattc	1620	
ataacattaa	caattgcaac	agtaatatca	attattggaa	tgtctacatt	gatagtttca	1680	
tcctctgata	ttatgttaat	ctattcaaat	gtaattaaaa	atggacttat	aattatatta	1740	
atgatattat	cagtcatggc	aatacaaaat	ccatataatt	cttgtatggg	accaaatgaa	1800	
gatcagtata	gaacattatc	attatcctta	tccaatgcat	ttttaatgct	tataataatt	1860	
tcaattatta	gtattttaaa	tagttcatac	tggtatattt	acattataat	atcaattatt	1920	
ggatggttag	tttcatttaa	attatatatt	aaatatacaa	aacagcaagc	tgcactaata	1980	
aaatggtctg	gactatggcc	taataatgat	gaagggggaa	tataaatgat	atttgaatta	2040	
ttaattagta	taataatagg	atctacatta	ataggatttg	gagttcattt	tatacctgta	2100	
ggtggagcac	cagcagcatt	atctacaact	gctggagtac	ctacaggagc	acctatgata	2160	
actattggta	tgggaattac	aggaatactt	tcagctcttt	caatgacggg	tcagtcagaa	2220	
atagtaataa	ttctatcagg	agcaataggt	tcaatgctta	tgatggctgt	aacaatgttt	2280	
ttttcaaata	tgatacatgt	ttatggggta	ggtgttccat	tggcatcttc	aaactttgaa	2340	
agggatccaa	ttacaggttt	taaacaggaa	gaatatgtaa	gtcctggaac	aacaggtcat	2400	
ggaataccaa	cagtttcatt	tataagtggg	gttattggag	cattatttgg	aggaattggt	2460	
ggaagtttgg	cattttgggc	aatttataat	tatatattgg	gaaattgtca	tctttcatca	2520	
atctacacaa	attctatttc	agcaatactt	gcagtaatgt	tatttttat	tattgcagta	2580	
gtagcatcat	acaatattgg	tggtacaata	caaggatttt	atgataagaa	atttaggaaa	2640	
aaaatagttt	caggtacatt	ttcatgtttt	ttaatatcaa	tattcttggc	tattatttat	2700	

atgataatat	tgggtggaat	ttaaatggtt	agcatggggc	tcctagcagc	tatgggcgcc	2760
cttgcgacag	tagccggtgc	aagcgaggac	ttagagtccg	atgtgggttc	tcagagcaac	2820
cccaactcac	aggtccagtt	ggctgcccag	gtgggtcaca	cccacaggat	atacaacaaa	2880
gccatctctg	gagageeeee	atcgaacgct	ctttacgccg	cccttgccgc	agttacagct	2940
agtgtcttga	tgtccgggta	tggcatgaac	gcgttctttg	cgatcgccat	cggctcggtt	3000
atggccgcga	tcttcaacgg	catcttttct	gtcaccgcct	acatgggcag	gaacacgagc	3060
caggcgcggt	tcaaccagta	cgtctacctg	gacgttctgc	ggactcacac	caccgccatc	3120
atggcacatg	cgtacatcac	tgeettetge	gtagtcacca	tctcctacat	catgacagcc	3180
ccgtggcttc	cgattcagca	cccgttcccg	ttecccctcg	tcgccatgat	atggggggtc	3240
gccatcggag	ccataggatc	gtctacggga	gacgtccact	atggaggaga	gagggagttt	3300
cagaactaca	tettegggge	ggggctcaac	gccgccaact	ccggtgacat	cgtcaccagg	3360
gccgaggctg	gcctgaggag	ctccatcgac	aacgtctggt	tctgcgcccg	attcggaggc	3420
cccgtcaccg	ggatggcctt	cgggctgacg	gtetteetgg	acaactggcg	gaccaccatc	3480
ttcgatcccg	ccacccaggg	atggtatgcg	gtcctgaccg	ggatagtgat	cgtcattctg	3540
ttcatcgtct	acaacagaat	cctggagatc	agagcgagaa	agaggtacgg	gccctatccc	3600
gaatacaagg	gggacattga	ggcatgatta	gatcgccccc	agcagcagtg	ccggaatcac	3660
aatcagaagc	acggctacga	tgagcccaat	cgcgaatccg	aggatcccca	tgcccatgat	3720
gcccgactca	agtttggtcg	tgcgggcaag	gatctgtgcc	ttgtaccgga	tggagtccat	3780
cattctgttg	atcgaggtca	tccggatggg	gcctgcctgt	gtaacttctt	ctgccatgtg	3840
ggaaatgatt	caaaaaagga	tattgaagat	attaataata	gattagatag	tctagagcaa	3900
aaattagagg	aatctcatgg	tgaattttct	caaaattatg	gaaaaagtat	aggacgagat	3960
attggaatat	tatatggtgt	ggtcttagca	ttattagtag	ttattattt	aatgaaattt	4020
catataattt	agatgtttaa	atttgaaaaa	aaacaagaag	tattcgatat	ttatggtgta	4080
aaggtaggtg	gacaacctgg	tgaatatcca	acagtacttg	ctggaactat	cttttatgct	4140
ggacataata	ttattagtga	tgagaaaaaa	ggaatttttg	ataaggaaaa	agcagagact	4200
ttattaaata	ctatggatga	aatgactgat	aaaacaggaa	atcctaatat	tgttcaaata	4260
tttggtgcaa	ctagtgatgc	aataataaaa	tatattgact	ttgtaacatc	tattagtgaa	4320
tctccatttt	taatagattc	aacatctgca	caggcacgta	tagcaggttc	aaaatatgta	4380
acagaatctg	gtcttgcaga	aagaacaatc	tacaattcaa	ttaatatgtc	aattgataat	4440
gaagaaattg	atacattaat	aaattctgat	ataacctctt	caataattct	tggatttaat	4500
ccaacacaac	ctggtgttga	tgggaaaata	aaactatggg	atgatggtgc	tggagtttta	4560
gataagggtt	tacttgaaat	tgcagatgac	tgtggaataa	ttaaaccatt	gatggatgtt	4620
gctgttacac	ctctaggtca	aggtggaggt	tctgcagtaa	aaacaacatt	taaggaaaaa	4680
agtatatggg	gttatcctgc	tggtagtgga	attcataatg	ttccatcagc	atgggaatgg	4740
ataaaacaat	ataaaaagga	atatccagaa	gtatggcctg	tatgtgatat	tggtgcaaat	4800
atagttcagc	aaatggttgg	tggggacttt	gtattatttg	gacctattga	aaatacaaga	4860
aaagcattta	ctgcatgtgc	aatgactgat	atgtttattg	cagaggctaa	tgaagctatt	4920
ggaataaatg	ctgtagattc	tcatccatat	aaaaatttat	tatgatgaag	taagtaggaa	4980

con	t.	Т	n	11	ρ	a	

-continued	
_ gcagggagca ggggaaagaa aattgacaac tgtacaagat taatcgcgtc tctgagcaat	5040
gaccaaatac atctacctcc acggttttct tccagccccc tatctgcgaa agcacaagat	5100
attagcaagc gtttcgccca aattcacata cagctaacaa tccctgatct caatgctggt	5160
gaattttctc agttaacaat cacgcgccaa attcaacaag ttgccgcaat tttccctgat	5220
aattetgaae caataaeget gataggttet agtttaggeg gtttaaetge tgettateta	5280
ggacagcgat atttacaagt acaacgctta gttttattag cgccagtttg gtttttatc	5340
ccattggttg cccaaaatgg gtgaagaagc tgtcacaagt tggcaacaaa cgatataggt	5400
tetetetet geogtta	5417
<210> SEQ ID NO 185 <211> LENGTH: 5042 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 185, examp 185: a designer hox-promoter-controlled Methyl-coenzyme M reductase (Mcr) DNA construct (5042 bp)	le
<400> SEQUENCE: 185	
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc	60
gtcaagcatt tgggatgatt teeecteaca agtteeteaa attattetee tataaacaat	120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca	180
gaggtagata tgatggataa tgagaaaaaa ttattcttaa aggctttaaa agaaaaattc	240
gatgaagacc ctgaagaaga aaacactaaa ttgcactgct atggtggatg ggaacaatcc	300
gcaagaaaaa gagaatttgc tgaagaagct gaaaaagctg tagaagcacg tggaggatta	360
ccattctaca acccagatat aggtgtacct cttggacaaa gaaaattaat ggcataccaa	420
gtatetggaa cagacacata tgtagaagga gacgacette aettetgtaa caaetetgea	480
attcaacaat tagtagacga tattaaaaga actgtaattg taggtatgga tacagctcac	540
ggtgtacttg aacaaagatt aggtgtagaa gttactcctg aaacaatcaa cgaatacctt	600
gaaacaatca accacgcact ccctggagga gcagttgtac aagaacacat ggtagaagtt	660
gaccctggat tagtaactga ttcctacgca aaaatattca ctggtgacga cgacttatta	720
gatcaattag atcaaagatt tgtaatcgac atcaacaaag agtteeetga agaacaaget	780
gaaatgctca aaaaatacat aggtcagaag acctaccaag taagtagagt acctacatta	840
gtagtacgtg cttgtgatgg aggtacaacc tccagatggt ctgctatgca aattggtatg	900
agtttcattt ctgcatacaa attatgtgca ggagaagcag ctattgctga tttctcatac	960
gcagcaaaac acgcagatgt aatttccatg gctagtgcaa tgccatcaag aagagcaaga	1020
ggtccaaacg aacctggagg tgtaaccttc ggtgcattct ctgatttggt acaaacaagc	1080
agagtaacag atgacccagc tgaagtaact ttagaagtta ttggtggagc agcaccatta	1140
tacgaccaag tatggttagg ttcatacatg tctggtggtg taggattcac acaatatgct	1200
acagcagcat acacagatga aatattagat gacttcattt actatggtaa agactacgta	1260
gaaggtaaat atggtggatt atgtcaagct gaagcaactt ccgaagttgt aaaagacatt	1320
gcaagtgaag taaccttata cggattagaa caatacgaaa teeetgeage attagaagae	1380
cactttggtg gatcacaaag agcagcagtt cttgcagcag gtgcaggttg ttcagtagca	1440
ttcgcaactg ctaactctaa cgcaggtgta aatggatggt acttaagtca attattacat	1500

aaagaaggtc	acagtagatt	aggattctat	ggttacgact	tacaagatca	atgtggatca	1560
tccaactcac	tctctgtaag	aagtgatgaa	ggacttattc	acgaattaag	aggtcctaac	1620
taccctaact	acgcaatgaa	cgtaggtcac	caacctgaat	atgcaggtat	tgctcaagca	1680
ccacacgcag	caagaggaga	cgcatttgca	cttaacccat	taataaaagt	agcatttgct	1740
gataaaaact	tatccttcga	ttgggctcac	ccaagagaat	gtattgcaaa	aggtgctgtt	1800
agagaattta	tgcctagcgg	tgaacgtgac	ttaatcatcc	cagetttata	aatgccaaca	1860
tatgaagaca	aaatagattt	gtatggggta	gatggaaaac	ttttagaaga	acaagtacct	1920
ctagaagcaa	ttagtccagt	aataaaccct	acaattaaaa	atattataca	agagattaag	1980
cgttctgttg	ctataaactt	agcaggtatt	gaaaaatcat	tagcaaacgg	agcatacggt	2040
ggaaaagcta	attttattcc	tggaagagaa	ttggaattag	atattgttga	caatgcagat	2100
gcaattgctg	acaaaattga	aaaaatgtta	aaaattagtg	atgatgatga	tttcaattta	2160
aacttattaa	atggaggaaa	acaaatatta	gttcaagttc	cttcagaaag	attaagtatt	2220
gcaggtgact	actctgtagc	accattagca	acaggatcag	cattaattca	agctattctc	2280
gatacttttg	acatcaacaa	atatcaagct	tctgaaatta	aaacagcagc	tatgggtgga	2340
tacccacaca	acgtaaaatt	aggcggagca	ttaactacct	tattaggtca	aacaactcac	2400
cttgaaggat	taggttacag	tctaagaaac	attggagcaa	accacgtagt	agctattaca	2460
aagaaaaata	ctcttaacgc	agtagcttta	tcctctattt	tagaacaaac	tgcaacattc	2520
gaaatgggtg	acacagtagg	tgcattcgaa	agaagccacc	ttttaggatt	agcataccaa	2580
ggattaaacg	caaacaacat	agtttatgac	ttagtaaaag	aaaatggtaa	agcaacactc	2640
ggtgatgtaa	ttatttcatt	attatctaga	gctttagatg	atggagtaat	cagagtaaaa	2700
gaaacattac	cttccggatt	caaattatac	gaaccagttg	actgggcatt	atggaatgca	2760
tatgcagcag	caggtcttat	tgcagctaca	attgttaacg	taggtgcagc	aagagcagct	2820
caaggtgtag	catcatctat	attatacttt	aacgatatct	tggaatacga	agcaggttta	2880
cctggtgtat	actttggtag	agtaatgggt	acaggtgtag	gtatgagttt	cttctcacac	2940
ggtatttacg	gtggtggagg	acctggtgtt	ttcaacggta	accacgtagt	aacaagacac	3000
agtaaaggat	atgctatccc	atgtaacgca	gcagctatgg	ctttagatgc	aggtacacag	3060
atgttetetg	tagaatctac	atcaggttta	gttggagaag	tatatggtag	cgtagacaat	3120
ttaagagaac	cagtaaaata	tgttgctgaa	ggagctagtc	aagtaaaaga	taaactctaa	3180
atgatagaaa	tgattggaaa	aaatacacat	atagttgact	gtagggaaac	acgcggaata	3240
ggtgaaggtg	gtggaattgc	tcagcgtgga	acatatgcac	aatgtgggga	tgaattactt	3300
gctgttgcaa	tgtctccagg	acgtagacat	attacaaaac	cagtttgtga	aataacattt	3360
gctctaagag	aatcaaatat	tcaaacaagt	accttggttc	ttaatgcagg	ttctggagta	3420
ccaaaagaca	cgcctagtgg	tggaggacaa	ggtttatttg	gtgtaactcc	taaggaaatt	3480
tcccagatga	gtagacataa	tattgtattg	ttccattttg	gaggagtaaa	aaatcatata	3540
atatacaagg	caaaacatgc	tcttaaacat	attaataaac	ctgttattat	tatagcacaa	3600
tatccattgg	attttgaaga	ttttgcaaaa	ataggagtaa	atactgttgc	agtaaaacct	3660
gaaaaatctg	aaacacaggg	tactattgtt	gaactcataa	ctgatgttat	tcgtggagaa	3720
tcatgtactc	aagagaaatt	agatgaaata	ataaataaag	tggaaacatc	cattgtaaaa	3780

-cont	inued
-conc	Innea

caggaggtgc	aggtccagag	ggtcgtggac	ctggtgggta	aaggcagcgc	cgcccgggtg	720
ggggcgacga	aggccggagc	ggaagtaagc	ctggaagaag	ggggctgcgt	cttttgcggt	780
aactgtgtcc	aggtctgccc	ggtgggagct	ctgacggaga	aggeeggeet	gggccagggc	840
cgcgagtggg	agttcaaaaa	agtccgcagt	atttgttctt	actgcggcgt	gggttgtaat	900
ctcacccttt	atgtaaaaga	tggtaaggtg	gtaaaagtta	ggggttacga	aaaccctgag	960
gtaaacaacg	gctggctgtg	cgtaaaaggc	cgctttggtt	ttgactatat	tcacaatcct	1020
gacaggataa	ccaggccgtt	gatccgggag	ggagataggg	aaaaaggcta	tttccgggag	1080
gcttcctggg	aagaagcttt	agcccttgta	tcccagaaat	taactcagat	taaaggcagc	1140
tacggctctg	aagctctggg	ctttctttgt	tcagctaaat	gtaccaatga	agagaattat	1200
ctcttacaaa	agctggcccg	gggggtactg	ggcaccaata	atgttgatca	ctgtgctcgc	1260
ctctgacact	cttctacagt	tgccggtctg	gcaacaacct	ttggcagcgg	tgcaatgacc	1320
aattctatcg	ctgacatcgc	cagcgcagat	tgtatctttg	tcattggcag	caatacaacc	1380
gagaaccatc	ctgttattgc	ccttaaagta	aaagaagctg	tccgtcgtgg	agccaggctc	1440
attgttgctg	atccccggcg	tattgaactg	gtgaacttca	gttacttgtg	gttaagacaa	1500
aaacccggaa	cagatettge	tctgctgaat	ggactgcttc	atgtaatcat	caaggaagag	1560
ctttatgaca	aagaatttat	tgcccagagg	acggaaggtt	ttgaggctct	aaaacttgcc	1620
gtagaggagt	atacaccagc	aaaggtgtca	gaagttacag	gtgttccggc	aggcgatatt	1680
atcgaggcag	caaggactta	tgcccggggt	ccgagctcta	ctattttgta	cgcaatggga	1740
ataacccagc	atataactgg	tacggccaac	gtgatggccc	tggccaacct	ggccatggcc	1800
tgtggtcagg	tcggtaaaga	aggtaacggc	gtaaatcccc	tgcgggggca	gagcaatgtc	1860
cagggtgcct	gcgatatggg	tggattaccc	aatgtattac	cgggatacca	accagtaaca	1920
gatccggggg	ttcgccataa	atttagcgaa	acctgggggg	taccggactt	acccggagaa	1980
cctggcctga	cattaatgga	gatgatggcg	gcagcccaag	aaggcaaatt	gaaagggatg	2040
tatatttag	gagaaaaccc	tgtcttgact	gatccagatg	tctcccatgt	aaaagaggcg	2100
ttaaagaacc	tggagtttct	ggtggtacag	gatattttt	tgacggagac	agccaggatg	2160
gcggatgttg	ttttacctgg	agetteettt	gcggaaaagg	aaggtacctt	taccagtacg	2220
gagcgccggg	tgcagctttt	gcataaagcc	attgaacctc	ccggtgaagc	acggccggat	2280
tggcttattt	taaacgattt	gttgctgtta	atgggatatc	cgcggaaata	ttcgtcgcct	2340
ggggagataa	tgcaggagat	agcagggtta	actcccagct	atgcgggtat	aacttatgag	2400
cgcctggaag	ataaagggtt	acagtggccg	gtgctttccc	tcgaacatcc	gggtacaccc	2460
gttctccatc	gggaaaaatt	tagcagaggt	tatgggcagt	tccaggtagt	gcattaccgg	2520
ccgccggccg	aagaacctga	tgaagagtac	ccgttcttat	ttaccactgg	caggaatttg	2580
tatcactatc	atactgttat	ttcccgtaag	tccaggggggc	tggaagagat	gtgtcctgct	2640
cctgtggtgg	agattaatga	taacgatgca	gcccgtttgg	gtatacggga	aggagaaatg	2700
attgagattg	tttcccgacg	tggtaaagta	agggttaaag	cattggttac	ggatcgcata	2760
ccccggggcc	aggtatttat	gaatttccat	ttccatgaag	cagcagccaa	cctgcttaca	2820
attgctgccc	tggatccggt	tgctaaaata	ccgattataa	aacctgtgct	gtagttggga	2880
gaggtggtat	ttagcacctg	gggaggaaaa	gttgtcgatc	accgggggcgg	tccgtcgggg	2940

				-contir	nued	
ggaggaccgt	cctgggccgg	ggaatttggc	ggtcggcagt	taaaggcctt	tattggctgg	3000
gatggtctcg	tagtcaccga	cccggccgta	gacctgctgg	ctgctttaca	ggcttactac	3060
caggccgtcc	agggggaatc	ctgcggccgc	tgcgtaccct	gccgggtagg	gaccagggtt	3120
atttacaatg	tcctggtacg	catcgccggg	ggcgaaggcc	ttccctccga	tttagacctt	3180
ctccgacggg	tggcctggat	tgtacgggat	ggttctctgt	gcgagctcgg	ccaggctggg	3240
gccaaagctg	ttcttgattt	tttagattat	tatagcgagg	ccttgcgacc	tttcctggag	3300
gatagcggca	gggtcgccgg	gggtcaacgg	agaccagggc	ctggaggccg	ggtgcaggtt	3360
ctggcttccg	gacgggtcct	ggtggggaac	gaccgcggaa	agggagcggc	cgccgcttcc	3420
ccggcagccg	gtttaaccta	taaacctttt	gttactgcgc	cctgcctcaa	gcggtgcccg	3480
gcccacctgg	acatecegge	ttatattgac	gccattaagg	atggccgcta	tgaggaatcc	3540
ctggccatca	tccgccagcg	gaccgccctg	gccggtgtcc	tgggacgggt	ctgcgtccac	3600
ccgtgtgaag	aaaactgccg	ccgcggcaat	gttgacgaac	ccctggccat	ccgggggcctg	3660
aagcgcttcg	tagccgatta	tgaggtgaaa	cgcggccgcc	ggccggtcgc	cgtctgcggg	3720
ggtaatctct	ttacgggacc	ctggcggccg	gcaggacagg	ccggtgggga	agaaacaacg	3780
gccgtcactt	caggcaagaa	ggtagccatc	atcggtgccg	gaccggcggg	tctcagegee	3840
gcctaccagc	tcgccggtcg	gggctataaa	gtgactattt	tcgaggcctt	gccggtggcc	3900
ggcggtatgc	tggcggtggg	tattcccagc	taccggttgc	cacgggatat	cctggctgga	3960
gagatcgagg	ccatcaaggc	tctgggcgta	accatcaacc	tcaacacccg	ggtcggcgtc	4020
gacgtgacca	tggaccaatt	acagcgcgat	tacgacgccg	tctttattgc	taccggcctc	4080
catgccagct	cccgcatggg	agtagccggc	gaggatgaag	gctatggagg	atttatcccc	4140
ggggtcaagt	tcctgcgaga	tttgaacctg	gaccggtgtc	cttccctgga	gggcaaggtg	4200
gtggccgtcg	tcggcggcgg	caatgtagcg	atggattgcg	cccgttccgc	cctgcgccgg	4260
ggggcccggg	aggtgcacct	tatttaccgg	cgttcccggg	cggaaatgcc	ggcccatgcg	4320
accgaggtca	gggatgccga	ggccgagggg	gttatttatc	acttcctggt	taatcccacc	4380
gccctggtag	cggaaaaagg	caatatcaag	ggtatgcagt	gcgtccggat	gaaacttggc	4440
gagccggacg	attctggccg	gcgccggccc	gtacccgtgc	cgggaacgga	gtttttcctg	4500
ccctgcgata	ttgtggtgcc	ggctatcggc	caggcggccg	acctgtcttt	cctggacggc	4560
cggatcgagg	tgggcaaacg	tggtaccatc	agtgttgacc	cggtgaccct	ggctaccagt	4620
gtccccggcg	tcttcgccgg	cggcgatatc	gtcctggggg	ccaggacggt	agttgaggcc	4680
gtggcccagg	gcaaccgggc	ggcagtttcc	attgaccagt	acctgcgcca	ggggaccacc	4740
agtcccacgg	tagaggacga	gctggacgcg	tggctggaaa	aggtcggcgt	ctatgacccg	4800
gaagaggatg	taggaatcta	cggcggccgg	ccgcggcagg	cagaaagggt	ggcgccgttg	4860
gccgagcggg	taaaggactt	ccgggaagtt	gaaggcggct	tcgatttcta	cgcaggcagg	4920
gccgaagccg	aacgctgcct	gcgctgttac	cgggtcggga	tgatggtcct	ggccggagag	4980
ggggagagta	atggttaatg	aagtaagtag	gaagcaggga	gcaggggaaa	gaaaattgac	5040
aactgtacaa	gattaatcgc	gtctctgagc	aatgaccaaa	tacatctacc	tccacggttt	5100
tcttccagcc	ccctatctgc	gaaagcacaa	gatattagca	agcgtttcgc	ccaaattcac	5160
atacagctaa	caatccctga	tctcaatgct	ggtgaatttt	ctcagttaac	aatcacgcgc	5220
caaattcaac	aagttgccgc	aattttccct	gataattctg	aaccaataac	gctgataggt	5280

			-contin	nued	
tctagtttag gcggtttaa	c tgctgcttat	ctaggacagc	gatatttaca	agtacaacgc	5340
ttagttttat tagcgccag	t ttggttttt	atcccattgg	ttgcccaaaa	tgggtgaaga	5400
agctgtcaca agttggcaa	c aaacgatata	ggttetetet	tctgccgtta		5450
<pre><210> SEQ ID NO 187 <211> LENGTH: 2324 <212> TYPE: DNA <213> ORGANISM: Arti: <220> FEATURE: <223> OTHER INFORMAT:</pre>	ION: Synthet r hox-promot	ic Construct er-controll			nple
agaaaatctg gcaccacac	c gcagaaatat	aggggctagg	agttgagggt	actctggttc	60
gtcaagcatt tgggatgat	t tecceteaca	agttcctcaa	attattctcc	tataaacaat	120
agatataagg tcaaaactt	g agttatgagt	gctgagtaaa	aaattactct	ccacgcctca	180
gaggtagata tgttgtcca	a ggtacccagt	gatattgaga	ttgcccaggc	agccaaaatg	240
aaaccggtca tggaactgg	c ccgggggactg	ggcatccaag	aggacgaggt	cgagctttat	300
ggtaagtaca aggccaaga	t ctccctcgat	gtctatcgtc	gcctcaaaga	caagcctgac	360
gggaaactaa tcctggtaa	c cgccattacc	cctactccgg	ccggcgaagg	gaaaactact	420
accagtgtcg gtctcaccga	a tgccctggct	cgcctgggga	aaagggtgat	ggtctgcctg	480
cgggagccct ccctgggac	c cagctttggt	atcaaaggcg	gtgccgccgg	cggtggttat	540
gcccaggtag tacccatgg	a agatatcaac	ctgcacttca	ccggcgatat	ccacgccgtc	600
acctatgece acaacetge	t ggcggccatg	gtggataacc	acctgcagca	gggtaacgtc	660
ctgaatattg atccccgta	c catcacctgg	cgccgggtca	tcgaccttaa	tgaccgggct	720
ctgaggaaca tagtcatcg	g cctgggtggc	aaagccaacg	gcgtaccgcg	ggagacaggg	780
tttgacatct ccgttgcct	c ggaggttatg	gcctgcctgt	gcctggccag	cgacctcatg	840
gateteaagg aacgttteag	g ccgcattgtt	gtcggctaca	cctatgacgg	caaaccggtc	900
accgccggcg atctggagg	c ccagggttcc	atggctcttc	tcatgaagga	cgccattaaa	960
cccaacctgg tccaaaccc	t ggagaatacg	ccggccttta	tccacggtgg	tcccttcgcc	1020
aatatcgccc acggttgca	a cagcattatc	gcaaccaaga	cggccctgaa	actggcggat	1080
tatgtcgtga cggaagccgg	g tttcggtgcc	gacctgggtg	ccgagaagtt	ctatgacgtt	1140
aaatgccgtt atgccggct	t taaacccgat	gccacagtca	tcgtggctac	cgtccgcgcc	1200
ctcaagatgc acggcggcg	t acccaaatca	gacctggcca	ctgaaaacct	ggaagccctg	1260
cgggaagget ttgecaace	t ggagaaacac	atcgaaaata	tcggcaagtt	cggcgtaccg	1320
gcagtcgtgg ccatcaatge	c cttccccacc	gataccgagg	ccgagctaaa	tctcctctac	1380
gagttgtgcg ccaaagctg	g ggccgaagtt	gccctctcgg	aagtetggge	taagggcggc	1440
gaaggcggtc tggaacttg	c ccggaaggtg	ttgcagaccc	tggagagcag	gccatccaac	1500
ttccatgtcc tctacaacc	t ggacctgagt	attaaagaca	aaattgccaa	aatcgccacc	1560
gagatctacg gggccgacg	g cgtcaactat	acggccgaag	ccgacaaagc	tatccagcgt	1620
tatgaateee tgggetaeg	g caacctgccg	gtggtcatgg	ccaagaccca	atactccttt	1680
tccgatgaca tgaccaagc	t cgggcggccg	cggaacttta	ccatcaccgt	gcgcgaggtg	1740

-continued
- cgcctctcgg ccggagcagg ctttatcgtc cccatcaccg gcgccataat gaccatgccc 1800
gggetgeeca aacgeeegge ggeetgeaae ategaeateg atgeegaegg egteattaee 1860
ggtetttet agtgaagtaa gtaggaagea gggageaggg gaaagaaaat tgaeaaetgt 1920
acaagattaa tcgcgtctct gagcaatgac caaatacatc tacctccacg gttttcttcc 1980
agccccctat ctgcgaaagc acaagatatt agcaagcgtt tcgcccaaat tcacatacag 2040
ctaacaatcc ctgatctcaa tgctggtgaa ttttctcagt taacaatcac gcgccaaatt 2100
caacaagttg ccgcaatttt ccctgataat tctgaaccaa taacgctgat aggttctagt 2160
ttaggeggtt taactgetge ttatetagga cagegatatt taeaagtaea aegettagtt 2220
ttattagcgc cagtttggtt ttttatccca ttggttgccc aaaatgggtg aagaagctgt 2280
cacaagttgg caacaaacga tataggttct ctcttctgcc gtta 2324
<pre><210> SEQ ID NO 188 <211> LENGTH: 1487 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 188, example</pre>
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60
gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat 120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca 180
gaggtagata tgctagcgcc gggccgcctc gactgtattc ttcaagagca tggcaatggt 240
catgggacct accccgccgg gtacgggagt gatccaaccg gccttctggg ccgcactctc 300
gaagtggacg tegeceacea gettttete geegaeeegg ttgataeeta egtegataae 360
taccgcgccc tctttaatca tatccccggt aatcaactcc ggcttcccta cggccgcaat 420
gagaatgtcg gcctgccggc attcggctgc caggtccctg gtgcgggagt gacagatggt 480
caccgtggcg tggcgggcca ggagcatcat tgctactggc ttgccgacga tattgctccg 540
gccgacgacc actgcctttt tacccttggg atcaataccg gctttttcca gcaaaaccat 600
acagccgtgg ggtgtgcatg gatagaagca tttatcgccg ataaccaggt tgccgacgtt 660
ggccgggctg aacccgtcaa catccttttc cagggcgatg gcatcgatga ctttcttctc 720
atcaatatga tcaggcaacg gcaactggac caggatgccg tgaatcttgg gatctttatt 780
gagetggteg ateagettta agagttegge etggetggte geegeeggea ggeggtgaae 840
ctcggagtag ataccgacct cctcacaggc gcggtgcttg ttacggacgt acacctggga 900
agcogggtot togoccacca ggactaoggo caggootggg ttaataoott oogootttaa 960
ccgggatacc teeteetta etteageeet taetteggea geaatetttt teeegtegag 1020
gatetggget ggeattgaag taagtaggaa geagggagea ggggaaagaa aattgaeaae 1080
tgtacaagat taatcgcgtc tctgagcaat gaccaaatac atctacctcc acggttttct 1140
tccagccccc tatctgcgaa agcacaagat attagcaagc gtttcgccca aattcacata 1200
cagctaacaa teeetgatet caatgetggt gaattttete agttaacaat caegegeeaa 1260
attcaacaag ttgccgcaat tttccctgat aattctgaac caataacgct gataggttct 1320
agtttaggcg gtttaactgc tgcttatcta ggacagcgat atttacaagt acaacgctta 1380

-cont	inue	a

-continued	
gttttattag cgccagtttg gtttttatc ccattggttg cccaaaatgg gtgaagaagc	: 1440
tgtcacaagt tggcaacaaa cgatataggt tetetettet geegtta	1487
<210> SEQ ID NO 189 <211> LENGTH: 1487 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 189, exam 189: a designer hox-promoter-controlled 10-Methylene-H4 fold dehydrogenase DNA construct (1487 bp)	
<400> SEQUENCE: 189	
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc	60
gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat	120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca	180
gaggtagata tgctagegee gggeegeete gaetgtatte tteaagagea tggeaatggt	240
catgggacct accccgccgg gtacgggagt gatccaaccg gccttctggg ccgcactctc	300
gaagtggacg tegeceacea gettttete geegaeeegg ttgataeeta egtegataae	360
taccgcgccc tetttaatca tatccccggt aatcaactec ggetteeeta eggeegeaat	420
gagaatgtcg gcctgccggc attcggctgc caggtccctg gtgcgggagt gacagatggt	480
caccgtggcg tggcgggcca ggagcatcat tgctactggc ttgccgacga tattgctccg	540
geogaegaee actgeetttt taeeettggg ateaataeeg gettttteea geaaaaeeat	600
acagccgtgg ggtgtgcatg gatagaagca tttatcgccg ataaccaggt tgccgacgtt	660
ggccgggctg aacccgtcaa catccttttc cagggcgatg gcatcgatga ctttcttctc	: 720
atcaatatga tcaggcaacg gcaactggac caggatgccg tgaatcttgg gatcttatt	780
gagetggteg ateagettta agagttegge etggetggte geegeeggea ggeggtgaae	: 840
ctcggagtag ataccgacct cctcacaggc gcggtgcttg ttacggacgt acacctggga	900
ageegggtet tegeecaeca ggaetaegge caggeetggg ttaataeett eegeetttaa	960
ccgggatacc tecteettta etteageeet taetteggea geaatetttt teeegtegag	1020
gatetggget ggeattgaag taagtaggaa geagggagea ggggaaagaa aattgaeaae	1080
tgtacaagat taatcgcgtc tctgagcaat gaccaaatac atctacctcc acggttttct	1140
tccagccccc tatctgcgaa agcacaagat attagcaagc gtttcgccca aattcacata	1200
cagctaacaa teeetgatet caatgetggt gaattttete agttaacaat caegegeeaa	1260
attcaacaag ttgccgcaat tttccctgat aattctgaac caataacgct gataggttct	1320
agtttaggog gtttaactgo tgottatota ggacagogat atttacaagt acaaogotta	1380
gttttattag cgccagtttg gttttttatc ccattggttg cccaaaatgg gtgaagaagc	2 1440
tgtcacaagt tggcaacaaa cgatataggt tetetettet geegtta	1487
<210> SEQ ID NO 190	

<210> SEQ ID NO 190
<211> LENGTH: 1565
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 190, example
190: a designer hox-promoter-controlled 10-Methylene-H4 folate
reductage DNA construct (1565 bp) reductase DNA construct (1565 bp)

<400> SEQUENCE: 190	
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc	60
gtcaagcatt tgggatgatt teeecteaca agtteeteaa attattetee tataaacaat	120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca	180
gaggtagata tgctactcta ccttgggacg gggatacagg ccggcttcct tgacgatggt	240
ggggatgata tetteceaca tgaeggeeat gatatggaeg eeggetaeae eetegatgga	300
ctgcaggtgt ttaatctgtt ccacacagat ggccacccct tcggccttgg ggtcggaggc	360
tttttccatg cggttgacga tttcgtcggg gacaatcatc ccggccaccg attgttgcat	420
atatttggcg gcccgggcgg atttcagggg catgacgccg gcaataattt tggctctttt	480
atgeaggeeg egeteeegga eeagggeeat aaagegttea aaacgeteea tateaaaaat	540
gcactgggtt tgaataaagt cggcgccggc attgatcttc ttctccaggc gcatgacccg	600
gaactcaaag gggtcggcaa aggggttggc ggcggcgccg atgaagaagc ggggttcctg	660
gcccttaatc tcttcaccgc aggcgaattt tttctcatcc cggaggtcct tcacgatccg	720
gatcagctgg agggaatcca cgtcatggac gtttttcgcc gtcggatggt taccaaaaga	780
ttgatggtcg ccggacaggc agaggacgtt ccgcatcccc aggctgtagg cacccaggag	840
atcactctgg agggggatac ggttgcggtc ccgaaccgtc atctggataa tgggttcgcc	900
cccggcctgg aggacgtgga ccccagcggc gatactcgac aggcggacga tggccgtctg	960
gttgtccgtc aggttcatgg catcaacgta gtccttgagg agagcggcgt gcttcttgat	1020
ctctgtagga tcggcgtgct tcggcggtcc aatctcaccg ctgaccagaa attgcccctg	1080
ggagaggatt ttcgccatct tgctttcaac cattgaagta agtaggaagc agggagcagg	1140
ggaaagaaaa ttgacaactg tacaagatta atcgcgtctc tgagcaatga ccaaatacat	1200
ctacctccac ggttttcttc cagcccccta tctgcgaaag cacaagatat tagcaagcgt	1260
ttcgcccaaa ttcacataca gctaacaatc cctgatctca atgctggtga attttctcag	1320
ttaacaatca cgogocaaat toaacaagtt googoaattt toootgataa ttotgaacca	1380
ataacgctga taggttctag tttaggcggt ttaactgctg cttatctagg acagcgatat	1440
ttacaagtac aacgettagt tttattageg eeagtttggt tttttateee attggttgee	1500
caaaatgggt gaagaagctg tcacaagttg gcaacaaacg atataggttc tctcttctgc	1560
cgtta	1565
<210> SEQ ID NO 191 <211> LENGTH: 1442 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 191, examp 191: a designer hox-promoter-controlled Methyl-H4 folate:	ple
corrinoid iron-sulfur protein Methyltransferase DNA construct (1442 bp) <400> SEQUENCE: 191	t
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc	60
gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat	120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca	180
gaggtagata tgttaatccg ctaacaaatc tttacgatat gcctttaaaa agttcttgcc	240
yuyyuuyuuu iyitaatooy ttaataaato tttacyatat yuutttaaaa dyttüttyöö	240

		-
cont	Ť.	nued

300
360
420
480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1442
mple ur
ur
ur 60
ur 60 120
ur 60 120 180
ur 60 120 180 240
ur 60 120 180 240 300
ur 60 120 180 240 300 360
ur 60 120 180 240 300 360 420
ur 60 120 180 240 300 360 420 480
ur 60 120 180 240 300 360 420 480 540

gatgaaaatc	cattagttta	tggagctaat	aaagataatt	ttaaagaaat	ggttgaactt	780
gtaaaaggag	ataaattagc	tttaggtgta	aaggcagacg	gattggaagc	tctttatggt	840
ttagtagaag	aaatacaaaa	attaggatat	aagaacttag	tacttgatcc	aggtggaaaa	900
tccattaaag	aagcttttga	aaatacagtt	caaattagaa	gaataaatat	tgaaggtcag	960
gatagaactt	ttggatatcc	ttctataata	ttcctagatg	aacttactaa	agctgataaa	1020
tttatggaag	tagetttate	tacattattt	actttgaaat	atggttcatt	acttgtttta	1080
agtgatatgg	attattcaag	agcacttcct	ctttatagta	taagacagaa	tgtatttaca	1140
gatccacaaa	aaccaatgac	agttgatttg	ggtatacatg	gaattaacaa	cccagatgaa	1200
aactcaccag	tattatgtac	tgttgacttt	gctcttactt	acttectagt	ttcaggagaa	1260
gttgagagat	ctaaagttcc	agtatggatg	gttataccag	atgcaggcgg	atattctgtt	1320
cttacatctt	gggctgcagg	taaatttact	ggtgctgcaa	tagctgatga	aataaagaaa	1380
tgtggaatag	cagagaagac	taagaacaga	actcttttaa	tcccaggaaa	ggttgcagtt	1440
ttgaaaggtg	aattagagga	acttcttcca	gactggaata	tagtaattag	tagtacagaa	1500
gctatgttta	ttcctaagtt	attaaaagag	ttaactgcta	agtaaatgtt	caaaaaacca	1560
acacaaaaat	tttcaggcaa	aattggtgaa	gttgaaattg	gaacaggaga	aaaagcatta	1620
aaattaggag	gagaatcagt	attaccattt	tatacttttg	atggagatac	aggaaatacc	1680
ccaaaagtag	gtatggaaat	tttagatgta	tatccagaag	actggataga	tcctttaaag	1740
gacatataca	aggatgttgc	aaaagaccct	gttaaatggg	cacaatttgt	agaagaaaaa	1800
tatagtccag	attttatatg	cctaagactt	ataagtgctg	atccaaacgg	tacagatgct	1860
gcaccagaag	attgtgctaa	aacagctaaa	gcagtagttg	aagctataaa	aactccatta	1920
gtagttgcag	gtacaggaaa	tcatgaaaaa	gatgcaaaat	tatttgaaaa	agttgctcag	1980
gaaactgaag	gacacaatat	acttttaatg	tcagcagtag	aagataacta	taagtcagta	2040
ggagctgcag	gtgtaatggc	ttataatgac	aaagttgtag	ctgaatcttc	agttgatata	2100
aaccttgcaa	aacaaataaa	tattttaatg	aatcaacttg	gaatagacaa	tacaaagttt	2160
gttgacaacg	taggatgtgc	agcaggtgga	tatggttatg	aatatgttat	atcaacttta	2220
gacagagtaa	agcttgcagc	acttggtcaa	gatgataaaa	ctcttcaagt	tcctataata	2280
agccctgttt	ctttcgaagc	ttgcaaagta	aaagaagcaa	tggattcaga	agaagattca	2340
ccacaatggg	gaagtcagga	agacagaaca	gtttccatgg	aagttgcaac	agcatccgga	2400
gtattagcat	caggaacaga	tgctgtaata	ttacgtcatc	caaaatctgt	agaagtaatt	2460
agaaacttta	ttaaggaatt	attaggttaa	tgaagtaagt	aggaagcagg	gagcagggga	2520
aagaaaattg	acaactgtac	aagattaatc	gcgtctctga	gcaatgacca	aatacatcta	2580
cctccacggt	tttcttccag	ccccctatct	gcgaaagcac	aagatattag	caagcgtttc	2640
gcccaaattc	acatacagct	aacaatccct	gatctcaatg	ctggtgaatt	ttctcagtta	2700
acaatcacgc	gccaaattca	acaagttgcc	gcaattttcc	ctgataattc	tgaaccaata	2760
acgctgatag	gttctagttt	aggcggttta	actgctgctt	atctaggaca	gcgatattta	2820
caagtacaac	gcttagtttt	attagcgcca	gtttggtttt	ttatcccatt	ggttgcccaa	2880
aatgggtgaa	gaagctgtca	caagttggca	acaaacgata	taggttctct	cttctgccgt	2940
ta						2942

```
-continued
```

<210> SEQ ID NO 193 <211> LENGTH: 4859 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 193, example 193: a designer hox-promoter-controlled CO dehydrogenase/acetyl-CoA synthase DNA construct (4859 bp) <400> SEQUENCE: 193 agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60 120 qtcaaqcatt tqqqatqatt tcccctcaca aqttcctcaa attattctcc tataaacaat agatataaqq tcaaaacttq aqttatqaqt qctqaqtaaa aaattactct ccacqcctca 180 gaggtagata tgatgactga ttttgataaa atcttcgagg gtgctattcc agaaggtaaa 240 gageeggtag ceetgtteeg ggaggtttae caeggegeea ttacagetae cagttaegeg 300 gaaatcottt taaaccagge catceggace tatggteeeg accatecegt eggttateet 360 gatacageet attacetgee ggttattege tgttteageg gggaagaggt caaaaaaetg 420 ggggatttac cacctatttt aaaccgcaag cgagcgcagg taagccctgt cctgaatttc 480 gagaatgccc gcctggccgg ggaagccacc tggtatgcgg ccgagatcat tgaagccctg 540 cgttacctta aatataagcc tgatgaaccc ctcctgcccc caccctggac gggtttcatc 600 ggcgacccgg ttgtccgccg tttcggtatc aagatggtcg actggaccat tccgggtgaa 660 gctattatcc tgggtcgagc caaagactcg aaggccctgg ccaaaatcgt caaggaactc 720 atgggtatgg gctttatgct cttcatctgt gatgaagcgg tagaacagct gctggaagaa 780 aacgtcaaac tggggattga ctatatcgcc tatcccctgg ggaacttcac ccagattgtt 840 catgeogeca actatgecet gegggetggt atgatgtteg gtggegttae eeegggtgee 900 cgtgaagaac agcgcgatta ccagcgccgc cgtatccgcg cctttgtcct ttatctcggc 960 gagcatgaca tggtcaagac ggctgccgcc ttcggggcca tctttaccgg ctttccggta 1020 atcaccgacc agcccctacc ggaggacaaa cagatcccgg attggttctt cagcgttgag 1080 gactatgata aaatagtcca gatagccatg gagacccgtg ggatcaagct caccaagatc 1140 aagttggatc tgcccattaa ctttggccct gcctttgagg gcgagagtat ccgtaagggc 1200 gatatgtacg tagaaatggg cggcaaccgg acgccggcct ttgagctggt acgcaccgtt 1260 1320 tcggaatccg agatcactga tggtaagatt gaagtcatag gtcctgatat tgaccagata ccqqaaqqqa qcaaactqcc cctqqqcatt ctqqtqqaca tctatqqccq taaaatqcaq 1380 1440 gccgattttg aaggagtcct cgaacggcgc atccacgact tcatcaacta cggtgaaggt ctctggcaca ccggccagcg taacatcaac tggttgcggg tcagcaaaga tgccgtagcc 1500 aagggtttcc gtttcaagaa ctacggtgaa atcctggtag ccaaaatgaa agaagaattc 1560 cccgccattg tggaccgggt ccaggtaacc atttttaccg atgaagccaa ggtcaaagaa 1620 tatatggagg tegeeeggga gaaatacaag gaacgtgaeg acegeatgeg eggeettaee 1680 gatgaaacag tggatacett ttacteetge gteetetgee agteetttge eeceaaceat 1740 gtgtgtattg tcaccccgga acgggtgggc ctgtgtggag ccgtaagctg gctggacgcc 1800 aaggegteet atgaaateaa ceatgeeggt eetaaceage eeateetaa agaaggggaa 1860 attgatccca ttaagggtat ctggaagagt gtaaatgact atctctatac agcttccaac 1920 cgtaacctgg aacaggtetg eetgtacace ettatggaga ateceatgae eteetgeggt 1980

-	cont	21	nυ	led

tgctttgagg co	cattatggc	catcctgccg	gagtgcaacg	gcatcatgat	taccaccagg	2040
gatcacgccg go	atgactcc	ttcggggatg	accttctcta	ccctggccgg	gatgatcggc	2100
ggtggcaccc ag	Jaccccggg	ctttatgggc	atcggccgca	cctatatcgt	cagcaaaaag	2160
tttatttccg co	gatggtgg	tatcgcccgg	atcgtctgga	tgcccaaatc	tctgaaggat	2220
tteetecacg ac	gagtttgt	acgtcgtagt	gttgaggagg	gcctgggaga	ggactttatc	2280
gataaaatag ct	gatgagac	catcggtacc	accgtggatg	aaatcttgcc	ctacttggag	2340
gaaaagggac ac	ccggcctt	gaccatggat	cccattatgt	gaatgcccag	gttccgcgat	2400
ctctcccata at	tgtaggcc	ctcagaggca	ccacgggtca	tggaacccaa	aaacagggac	2460
cgcaccgtag at	ccggcggt	cctggaaatg	ctggttaaaa	gtaaggatga	caaagtcatc	2520
accgcttttg ac	cgcttcgt	cgcccagcaa	ccccagtgta	aaatcgggta	tgaaggtatt	2580
tgetgeegtt to	ctgcatggc	cggtccctgc	cgtatcaagg	caaccgatgg	ccctggcagc	2640
cgtggtattt go	ggcgcttc	tgcctggacc	attgtcgccc	gtaatgtagg	tttaatgatc	2700
cttaccggtg co	gccgccca	ctgcgaacac	ggcaaccata	tagcccatgc	cctggtagaa	2760
atggccgaag gt	aaagctcc	tgattatagc	gtcaaggacg	aggccaagct	caaagaagtc	2820
tgccgacggg tg	ggtattga	ggtagaaggc	aaaagcgttt	tggaactggc	ccaggaggta	2880
ggcgagaagg co	ctggaaga	cttccgccgc	ttgaagggtg	aaggtgaagc	cacctggctg	2940
atgaccacta tt	aatgaggg	ccggaaagaa	aagttccgta	cccacaatgt	tgttcccttt	3000
ggtattcatg co	tctatttc	cgagctggtc	aatcaggccc	atatgggtat	ggataacgac	3060
cctgttaacc to	gtcttcag	cgccatcagg	gtagccctgg	ctgactatac	gggtgaacat	3120
atagctactg at	ttctccga	cattetette	ggtactcccc	aaccggtggt	cagegaagee	3180
aacatggggg to	ctggatcc	ggatcaagtc	aacttcgtcc	tccatggcca	taatcccttg	3240
ttgagtgaga tt	attgtcca	ggcggcgcgg	gagatggaag	gagaggccaa	ggeegeeggt	3300
gccaaaggca to	aacctggt	gggtatctgc	tgcaccggta	acgaagtcct	gatgcgccag	3360
ggtateceet to	gttacttc	cttcgcctcc	caggaactgg	ccatctgcac	cggagctatt	3420
gacgccatgt go	gtcgacgt	ccagtgtatt	atgccttcca	tcagcgccgt	agccgagtgt	3480
tatcataccc go	gatcatcac	tactgccgat	aacgccaaga	ttcccggtgc	ctaccatatc	3540
gactatcaaa co	gctacggc	tatcgaaagc	gcgaaaaccg	ccatccgcat	ggccatcgag	3600
gcattcaagg aa	agaaaaga	aagtaaccgt	ccggtttaca	tcccccagat	taagaaccgg	3660
gtagtegeeg ge	tggagcct	tgaagccctg	accaaactcc	tggctaccca	gaatgctcaa	3720
aatcccatcc go	ygtactcaa	ccaggccatc	ctggacggtg	aactggctgg	cgtagcetta	3780
atctgcgggt gt	aacaacct	caaagggttc	caggataact	cccacctgac	ggtaatgaaa	3840
gaactgctga aa	aataatgt	ctttgtggtg	gctacgggtt	gctccgccca	ggccgccgga	3900
aagettggee to	ctggatcc	ggccaatgtg	gaaacctact	gcggcgatgg	tctcaagggc	3960
ttcctgaaac go	ctgggtga	aggcgccaac	atcgaaatcg	gcctgccgcc	tgtgttccac	4020
atgggttcct gt	gtggataa	ctcccgggcc	gtcgacctct	tgatggccat	ggccaacgat	4080
ctgggcgtag at	accccgaa	ggtgcccttc	gtagcctcgg	ccccggaagc	catgagcggt	4140
aaggetgeeg ee	catcggcac	ctggtgggta	tccctcggcg	taccgaccca	tgtcggcacc	4200
atgcccccgg ta	agaaggtag	cgacctcatt	tatagtattc	taacccagat	agccagcgac	4260

-continued
gtttatggtg gttacttcat cttcgaaatg gatccccagg tagctgcccg gaagatcctt 4320
gacgccctgg aataccgcac ctggaagctg ggcgtacaca aagaggtagc tgaacgttat 4380
gaaaccaaac tctgccaggg ttactagtga agtaagtagg aagcaggggag caggggaaag 4440
aaaattgaca actgtacaag attaatcgcg tctctgagca atgaccaaat acatctacct 4500
ccacggtttt cttccagccc cctatctgcg aaagcacaag atattagcaa gcgtttcgcc 4560
caaattcaca tacagctaac aatccctgat ctcaatgctg gtgaattttc tcagttaaca 4620
atcacgcgcc aaattcaaca agttgccgca attttccctg ataattctga accaataacg 4680
ctgataggtt ctagtttagg cggtttaact gctgcttatc taggacagcg atatttacaa 4740
gtacaacget tagttttatt agegeeagtt tggtttttta teeeattggt tgeeeaaat 4800
gggtgaagaa gctgtcacaa gttggcaaca aacgatatag gttctctctt ctgccgtta 4859
<pre><210> SEQ ID NO 194 <211> LENGTH: 6428 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 194, example</pre>
agaaaattg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60
gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat 120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca 180 gaggtagata tgatgaaagt attgattgat ggagaggatt ttgacagcgg cgaccattat 240
gaagtaaaaa acccatatga tggtgagctt gtagatactg ttccaatttg ttttaggcaa 300
gatgtagata gggccataga tgcagcaaat agggctaaaa aggaattgca ggatatgtct 360
gcaaaggaag tgtccaataa tctttattct gcttatgaag agctcgaatc aagaagcgaa 420
gaattggcaa agettatagt ettggagget ggaaagecaa ttaageagge tattggagag 480
cttaacaggt cttgtgagac attgaagttt gcagcagagg aagccaaaag aatctatgga 540
gaatetgtee etatagatge tacaggttet gtagatgage gttttttgge atttacaaag 600
aaagtacctt taggtgtcgt tggagcaata actccattca attatccggt taatcttgca 660
ttgcataaga tagctccagc cattgcagca aagaatgctg ttgtggtaaa gccttccact 720
gaageteeat tagetgeaet taaattggtt gaaattattg ataateattt eecaaatggg 780
gtgataaact ctgtaactgg ctatggaagt gaagttggag atgcattggt tgtttcagag 840
ggcattgata agatatcatt tactggaagc attgccactg gattgtttat ctcttctcga 900
gcaggaatga agaaattgac tttggagctt ggtggaaacg atccattggt cgttcttgaa 960
gatgcagata ttgaaaaggc agttagtgct gcggtgtccg gcgcatttct attctccgga 1020
caggtttgca taggtgttaa aagaataata ttggataata agattgcaga tgagttcatt 1080
gacttatttg ttaaagaggc aagtaaattg aagatgggca atcctatgga tgagtctaca 1140
gatateggte egettataaa tgaaaatget teaateaatg ttgaaactge agtaaacaat 1200
gctataaaag atggggcaga acttattttg ggtggaaacc gtaaggactg cttctatgag 1260
ccaacaatat tggatggtgt caatatgtct atggaccttg ttgcaaatga aacattcgga 1320
ccagttgcac ctatcataag ggtagataga atagatgagg caataaaagt ggcaaatgac 1380

o ago goto ag	atattassaa		oataooota	ttastsataa	ottoogotgt	1440
	gtcttcaagc					
	tagatgcagg					1500
	ttgggggatt					1560
	tgtgcaagtt	_	-			1620
	ctgtttcaag					1680
ccgtcagaac	gggagggggt	gctcagggcc	atgctgatgg	atgtttcaga	ggccctcagg	1740
agacacgttg	accgtgtgct	ggtgatcagt	gcagatgcag	atgtccttga	atacgcctac	1800
agccttggag	tcgatatact	tgaggagagg	ggtagaaagg	acctcaacgg	tgccctggaa	1860
caggctgctg	agttctgcat	acccgaattt	gagagggtca	tgataacacc	ctcagacata	1920
cccctcatag	ggaaaaccga	tatcactgaa	ctcctccaca	gggcatccca	ctttgatgtt	1980
gtgatagccc	ctgccaaggg	tggcgggacc	aacaccctga	tattcaggcc	agggtccatg	2040
aggetgaggt	ttggtgactg	cagcttcttt	gagcatgtga	gtgaagctga	gagtaggggt	2100
ctcagcgtct	cagtgtatga	ctcattctac	ctttcactgg	acgttaacac	agcagaggac	2160
ctcggggaga	taatactcca	tggagaaggg	acccatgcaa	gggagtacct	cagaaagctc	2220
agtttcatcg	tgaggccctc	aaggggttct	gacaggettg	aggtttcaag	atcattctag	2280
atgaagataa	ctattctttc	aggcggaact	ggaaccccaa	aattaataca	gggttttaaa	2340
gaaattcttc	caaacgaaga	tatttcggtt	attgtaaaca	ctggtgaaga	tacttatatt	2400
ggcgacattt	acctgtcccc	tgatattgat	actgttttgt	acacgttttc	taatctgata	2460
aatgacgaaa	cctggtatgg	gctaaaaggg	gatacattct	tctgccatga	acagcttaaa	2520
aattttggat	ttgacgaagt	tttgaggatt	ggagataaag	atcgggcatt	aaaaatgcat	2580
aaaacatctc	ttttgaaaaa	aggagtacct	atgtctgaaa	tcgtagatat	cgagagaaaa	2640
tcattatcaa	taaactcaaa	aatttatcca	atgtccgatg	aaaaaattga	atccaaagtt	2700
ttaatcgaag	aaaacaatga	aaaaatcctt	ttaaagtttc	acgatttttg	ggtgtcaaga	2760
cgcggaaatg	caaaagtttt	agatatattc	tacgaaaact	caaattatgc	aaaagcagca	2820
gacggagttt	taaaagcaat	tgaggaaagc	gattttgtga	ttattggtcc	atcaaacccg	2880
ataacctcaa	ttggacctat	tttaagcatt	tctgaaataa	aagatgcatt	aaaagaaaag	2940
ctggtttttg	cagtttcgcc	aatagttggt	gaaaatcctg	taagtggacc	tgctggaacg	3000
ctgatgcatg	caaaaggcta	ccctgtgaat	gcagttggag	tttatgaata	ttataaagat	3060
attgtagatg	ttttagtttt	agacaatagt	gatattaaca	aaaagaaaga	aatgaattgt	3120
gaagttttat	atgctaatac	gataatgaag	actattgatg	ataaaataac	tctcgcaaga	3180
aatattctcg	actattataa	atccagataa	atgtcagttc	aggtaacggg	aatttccgga	3240
atcccgctca	ttcagaaagg	cgatgatctc	ccggcaataa	tctgcagaaa	taccacgttc	3300
gaagacgagg	atatcctttg	tatagcatca	acgatcgttt	cgaaagcaaa	agggtatacc	3360
cgcgctctcg	cagatatcac	cccttcgccg	gatgccctgc	ggateteegg	cctcaccaaa	3420
gaagaccccc	ggttcatcca	ggcgatcctt	gattcatcca	ccgagatcat	ccaggagtat	3480
ccgtttatcc	tctccgaagt	cccctgcggc	cacgtaggtg	tgcgcgccgg	tgtggacaat	3540
agtaatatag	aaggcgaaaa	tatcatcatc	cttccaaaag	acccctcggc	cgagtgcaga	3600
gaaatacgtg	actcaataaa	aaagatcacg	ggaaagaatg	tcggcgtcat	cgtgaccgac	3660

-cont	inued
- COIIC	Innea

				-contin	nued	
acctgcggca	gggcatttcg	ccgcggtcag	tgcggaaacg	ctatcggctg	ggcaggcatg	3720
accgcgatcc	gtgactttag	aggcgaccac	gatctgttcg	gtctggaact	cgaaatcacg	3780
gaagaagcgg	tcgtcgatga	gatcgccgcc	ttctccaact	tcattatggg	ggagagcaac	3840
aacgggatcc	cggccgtgaa	attttccggc	tgcggtacct	ggaaaggcca	cgactcgctc	3900
tacttcacca	aagaagaaga	cctgatcaga	aaggctatga	aacgataatt	aaacacaata	3960
cccctctccg	tcagcgtgtt	tcctgatgat	gggctccagc	ctttccgggt	accagcccat	4020
tatcacgtac	ttcgggtaca	gcgggagccg	ctcccgcagc	ttcaggccca	tggcttcgag	4080
ctcgtccagc	gtgggccacc	tgcactccgg	gttgatgtag	tcctcggtga	ccggcgagat	4140
gccgccgatg	tcgcccgcgc	cagcctccag	gaattcgagc	aggtgagacg	tcaggttagg	4200
cggcgcctgg	agctcgatat	cgcccggtag	tatctcgcgg	gccatcctta	aaacacttat	4260
catgtcatca	acggtgggcg	gttccacgct	gcccatccgc	gtctcgggct	tgggcacgaa	4320
gttctggacg	atgacctcct	ggatatggcc	gtactttta	tgtatatccc	ggatggcctc	4380
aagggactgg	cggcggtcgt	cccaggtete	ccctatgccg	accaggatgc	cggtagtgaa	4440
cggtatgcgg	agetteeceg	cgctctcgat	gaacccgagg	cggagcgagg	gctttttcat	4500
ggggctcagc	ctgtgggcag	gcaggtccgc	cgtcgtctcc	agcatgaggc	ccatgctggc	4560
attgacgtcc	tttagtcgtt	ccagctcccc	gtatggcagc	acgccgccgt	tcgtgtgggg	4620
tagtatgcca	agctcgatgg	cgtcgaggca	gaggtcgtag	acataatcgg	tgagcgtctc	4680
atacccgtac	ctgttcagct	ccttaaagaa	aagggggatcc	gacggcgagt	ccccgtatgt	4740
gaaaagcgcc	tccaggcagc	ccaggcctgc	ggccttcttg	agcatggcgt	gggcgatctc	4800
gggccggatg	acgaaggcct	cacgcgatcc	gacgtcccgc	cggaacccgc	agtagccgca	4860
gttgttcctg	cacatgttcg	tgaccgggac	gaacacgttc	cgtgaatagg	tgatgaattc	4920
tttagacatt	cagatatgct	cgtaaagcgt	attcctctcc	acgggcaccc	ggtcgatggc	4980
ccgaataagc	tggatgaact	cttcctttga	gaggtactcg	ccgtgctcgg	agccgccggc	5040
tatggagatc	ttgtcctcga	tcatggtgcc	gccgaagtcg	ttggccccgg	cgcagagggc	5100
ggcctgcgat	agtttgacgc	ccatcttgat	ccaggagacc	tggatgttgg	ggatgtcctg	5160
tccgaagatg	acccgggcca	gcgcgtgcag	gcgcaggtcg	tccatgccgc	tcacgccttt	5220
agactggccg	ctgagccggt	tgttctcgtg	catgaaggtg	agaggtatga	actcggtgaa	5280
gccgtgagtc	tcgcgctgga	tgtcccttag	aaggaacatg	tggtcgatgc	ggtcctccca	5340
ggtctccagg	gtgccataca	tgatggtgga	cgtggtcctt	atgcccagac	ggtgggcgtc	5400
cttgatgatg	tcgacccact	ctcgcgttga	cacctttctg	ggacagatct	tttcccggac	5460
cgagtcgacc	aggatctcgg	ccgaggcccc	ggtgatcgtg	ttcagccccg	ccttcttgaa	5520
ggcggccatg	gcctctgccg	gagtgacgcc	cgacactttc	gccgcatagt	ggacctccat	5580
cggggacagg	gcgtggatca	tgatatcgta	cttcgacttg	atggcttcga	agaggtcgca	5640
gtagtactcc	acggtcatgt	agggcatgac	acctgagatg	aggcacagct	cggtggcgcc	5700
gatatccttt	gcctcgccga	ccctctgcag	gacatcatcg	gtgctgagct	taaagccgat	5760
gttgttcctg	aaggagcaga	agtcgcaccc	gatcatgcac	cggtcggtga	tctcgacgag	5820
ccggttcacg	acgtaggtga	tctcatcgcc	ggcgatcgtc	tttcgcagct	cgttcgccgt	5880
gtcgaagagc	tcgaatgggt	tggctttcac	gagctcaagc	gcgtccttct	tcgtgatatc	5940
ccctgcgagc	gagcgctcat	agatgtcctt	tagcattgaa	gtaagtagga	agcagggagc	6000

-continued

aggggaaaga aaattgacaa ctgtacaaga ttaatcgcgt ctctgagcaa tgaccaaata 6060 catctacctc cacggttttc ttccagcccc ctatctgcga aagcacaaga tattagcaag 6120 cgtttcgccc aaattcacat acagctaaca atccctgatc tcaatgctgg tgaattttct 6180 cagttaacaa tcacgcgcca aattcaacaa gttgccgcaa ttttccctga taattctgaa 6240 ccaataacgc tgataggttc tagtttaggc ggtttaactg ctgcttatct aggacagcga 6300 tatttacaaq tacaacqctt aqttttatta qcqccaqttt qqttttttat cccattqqtt 6360 6420 gcccaaaatg ggtgaagaag ctgtcacaag ttggcaacaa acgatatagg ttctctcttc 6428 tgccgtta

<210> SEQ ID NO 195 <211> LENGTH: 1778 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 195, example

195: a designer hox-promoter-controlled Pyridoxal phosphatedependent L-tyrosine decarboxylase(mfnA for methanofuran synthesis) DNA construct (1778 bp)

<400> SEQUENCE: 195

agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc 60 gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat 120 agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca 180 gaggtagata tgttgaggga gcatggggtc gacgaagata cgataatacg ggagctaaag 240 ggcgcctgtg cgaggaacgt cccgtacgag cgcgtgctca gctccatgtg cacgaccccg 300 cateceateg ceattaaage ceataaagag tteategtet etaacetggg egaceceagg 360 ctttttccgg gtacggcctc gctcgagcat gcctgtatcg gcatgctggg cgagcttttg 420 catttgccat ccgccgtggg ctatatcact accggggggca ccgagagcaa tattcaggcc 480 cttcgtacgg cccgtcagtt aaaacacgtc gacccgggca aggccaacat cgtgctgccc 540 qaqtccqcac attattcqtt tqataaqqcq qcccaqatqc tqqqcqtatc cctccqqcqc 600 660 acaccoctto acqacqaaat qaaaqccoac atoqacqcca toqccooct cotcoataaa 720 aacaccateg ceetegtgge egtegeegge accaeggagt tegggeaggt egaceceata ccggccatca gtaagctggc gctcgatgag aacatctttt tacacgtcga cgccgccttc 780 qqcqqcttcq tcataccqtt catqaaaqac ccqtcqaaqt acaqqttcqa cttcqaqctc 840 cccqqcqtca tqtccatcqc catcqacccc cacaaqatqq qcatqaqcac qataccctcc 900 ggagggctgc tttaccggga cgagcgccac atgaagtcgc ttgagatcag cgcccagtac 960 cttacttccc aggtccagtc gtcccttgcc ggcacccgca ccggcgcctc cgctgcggcg 1020 acctatgegg teatgegeea cetggggatg gaeggetace geegggtegt gteagagtge 1080 atggataaca ccatgttcct ccgggacagc ctggtcgaca tggacattga gctggccctc 1140 gageceatta tgaacatagt gaeggegaag etgeeegatg egeagtegae eegeaagaag 1200 ctctgcgaca tgggctggtt cgtctccacg acgtcgaggc ccgaagcgct ccgcatggtc 1260 gtcatgcccc acgtcaccag ggacgtcatc gaggcgttca tggccgacct caaaaaaata 1320 tcgtagtgaa gtaagtagga agcagggagc aggggaaaga aaattgacaa ctgtacaaga 1380 ttaatcgcgt ctctgagcaa tgaccaaata catctacctc cacggttttc ttccagcccc 1440

ctatctgcga	aagcacaaga	tattagcaag	cgtttcgccc	aaattcacat	acagctaaca	1500
atccctgatc	tcaatgctgg	tgaattttct	cagttaacaa	tcacgcgcca	aattcaacaa	1560
gttgccgcaa	ttttccctga	taattctgaa	ccaataacgc	tgataggttc	tagtttaggc	1620
ggtttaactg	ctgcttatct	aggacagcga	tatttacaag	tacaacgctt	agttttatta	1680
gcgccagttt	ggtttttat	cccattggtt	gcccaaaatg	ggtgaagaag	ctgtcacaag	1740
ttggcaacaa	acgatatagg	ttctctcttc	tgccgtta			1778
<220> FEATU <223> OTHEN 196:	TH: 3215 : DNA NISM: Artif: JRE: R INFORMATIC a designer		ic Construct er-controlle		D: 196, exam Lerin synthe	
<400> SEQUE	ENCE: 196					
agaaaatctg	gcaccacacc	gcagaaatat	aggggctagg	agttgagggt	actctggttc	60
gtcaagcatt	tgggatgatt	tcccctcaca	agttcctcaa	attattctcc	tataaacaat	120
agatataagg	tcaaaacttg	agttatgagt	gctgagtaaa	aaattactct	ccacgcctca	180
gaggtagata	tgatgacagt	ttcagaattt	ccagatactc	aggataaaca	accatccatt	240
ccaatatcac	taacaagagt	tggagtaaca	ggtgtaaaga	aattaataaa	aataaaaaga	300
gaagataaac	gtcctattat	tctaatacca	acatttgatg	cttttgtaga	tttacctagt	360
actcagaaag	gagtacacat	gtctagaaat	ccagaagcta	tatctgaaat	tgttgatgag	420
gctgcaaatc	aatcggaaat	tcatcttgaa	aatatatgtg	caaatcttgt	aaaaagatta	480
cttgaaaaac	atgaatatgc	attacatgca	gaaacagagg	caagggggaga	atatattata	540
aataaattat	ctccagtatc	taaaagaaaa	acacaggaaa	caacacatat	catagcaaga	600
gcaattgcta	tgaaagatga	tgagggtaat	atttctgtta	gaaaaatgat	tggtgcagaa	660
gttattggaa	tgactgtatg	tccatgtgca	caagaatctg	ttgaaaagga	ttctaaagat	720
aaattactgg	aatttttaga	tgaagaaact	acacaaaaag	tgttggatgt	agtaacattt	780
gcttctcata	atcaaagggg	tgttgggaca	atacttcttg	aagtaccaga	aaaacaagat	840
gttaatgtgg	atgatttaat	aaaaataata	caggatgcta	tgagttctcc	tgtttgtgaa	900
atattaaaac	gtccagatga	aaatagaatt	gtaacaaatg	cacatcaaaa	tccagtattt	960
gttgaggatt	gtgtaagaaa	catggtaata	ggattacttg	aaaaatatcc	taatttacct	1020
gatgattctg	tagttacaat	taaacaagta	aatcaagaaa	gtattcatca	acataatgct	1080
tatgctgaaa	aagttgcatc	ttttggtaaa	ttacgagaag	aaaataagga	gtagatgaat	1140
gatctgatcg	ctcttgcaga	ggatattaag	aacgaaaaat	taaaaaaaaa	ggttgtcgaa	1200
tttataaacg	atccgattcc	aaaacatcct	gaaattgaaa	gtactggcat	aacacttgaa	1260
acctcccccg	caagcgttaa	aagacatcac	aaatactccg	gaggattaat	cgaacatacg	1320
atcgcagtta	caaaaatggc	tgtaaaaatg	gctgaagcct	tggaagaaac	atatggaatt	1380
gaattaaata	gagatttgct	aatttccgga	ggaatactcc	acgatcttat	gaaaccacaa	1440
aattatcagt	taaaagacgg	aaaattcgac	catctttcaa	attttcacct	cgaccatttg	1500
acacttggaa	ttgcagaact	gtacagaagg	gactttccac	ttgaagttat	aaaagttgta	1560

				-	
cont	Ť.	n	11	PD	

-continued	
	1620
catcattcag acaatgtaga cgctgcaatt aatgatatag gaattagaat atgtcaggcg	1680
agagctagag aatttggaat tgatgattca caaatatata aaatcgtcaa tccattaaaa	1740
ttatatgaaa tgcgtaaaaa attgggaaaa gataaagtga aagaattttt aaaggaaaaa	1800
ttggaaataa aggatgaata attgttaagg atacgaacac cttcccgcct ccacatgacg	1860
ctcatcgaca tgaacggaga gatcggcagg atcgacggcg ggatcggaat aacgctcgac	1920
aageettata tegagateae ggegaaaaag agegataegg teaeggttaa gggagaeeet	1980
gacetgegeg agegeatgeg caaggeatge gaggeatteg geeegggata tggegtggag	2040
atcgacatta aaaagtcgta ctggaaccat atcggcctcg gatcgggtac ccaggccgct	2100
ctggccgcgg gcaccgccgt agcaaaattg tatggcctgg atatgtcgtc cgccgaggtt	2160
gcccttaaag tcggccgcgg cggcctgtcg ggcgtgggca tcggcgcctt cgataaaggc	2220
ggtttcatcc tcgacggggg acataagacg agcgttaaga aggccttcct tcccgattca	2280
ttcgccgacg gagtccctcc cgccccgctg atcatgagct gccccttccc tgactgggac	2340
atcgtgctcg ccacgctgcc gatgaaaggc gcccacgacc tttacgaaaa ggacgtcttc	2400
gcccgaacgt gtcccttacc attaagggag atcgagaggc tcagccacat cattctcatg	2460
cagatgetge cetegategt agaaaaggae etggaageet ttggeaegge getgaaegeg	2520
atccagggcg tagggttcaa gaagagggaa gtcgaccttc agccgggcgc ctgcgagata	2580
ttgcgtgtca tgacggaagc cggggcgccg ggagcgggca tgagctcgtt cggcccgacc	2640
gtgttcgctg tcactgacag gtccggcccg atcatgtccg aggtcaagag taactgccct	2700
gattgtatgg tcatgaagac aagggcccgt aattcggggg cagatatcga atgcctcccg	2760
tagtgaagta agtaggaagc agggagcagg ggaaagaaaa ttgacaactg tacaagatta	2820
atcgcgtctc tgagcaatga ccaaatacat ctacctccac ggttttcttc cagcccccta	2880
tctgcgaaag cacaagatat tagcaagcgt ttcgcccaaa ttcacataca gctaacaatc	2940
cctgatctca atgctggtga attttctcag ttaacaatca cgcgccaaat tcaacaagtt	3000
gccgcaattt tccctgataa ttctgaacca ataacgctga taggttctag tttaggcggt	3060
ttaactgctg cttatctagg acagcgatat ttacaagtac aacgcttagt tttattagcg	3120
ccagtttggt tttttatccc attggttgcc caaaatgggt gaagaagctg tcacaagttg	3180
gcaacaaacg atataggttc tctcttctgc cgtta	3215
<210> SEQ ID NO 197 <211> LENGTH: 4226 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 197, examp 197: a designer hox-promoter-controlled Coenzyme M synthesis enzymes DNA construct (4226 bp)	ple
<400> SEQUENCE: 197	
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc	60
gtcaagcatt tgggatgatt tecceteaca agtteeteaa attattetee tataaacaat	120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca	180
gaggtagata tgttaaagat tcacctttcc gagagtatct cccctcaagc ctcttcttat	240
ggtttcaagg gctgttatct cttcggggggg tatgtttcca aggttaacgt ctggtcctat	300

tttcagtatg	aagtaaacct	gctggttttt	ctggggggcc	tcccatatta	tcctatcctg	360
cgggagttca	ttgaggaggt	ggttgaattc	ttcctccttt	acgtttccat	tctcatcgta	420
tatacctata	ttatggccgc	tctcccgggc	ctccatgagc	accatgcagg	ctccagcttt	480
gaggteggee	ctgacaagtt	caaccctatc	ctccgggctg	agaagtctgt	cccttaccgg	540
gtccttttta	ccaacctctg	atatgatctg	gaacccctcg	ttgaccgctt	tctctataag	600
ttcacatttt	tcatcggttt	caatctcaac	ggttccattt	gatatttcca	gtgtttcaaa	660
accaaggctt	cttgcctcgt	caaagtactc	ctgaatttta	tcgttgagat	aggcgatctc	720
aaatagggtg	cccccaggat	aggcctccac	atcgaatgaa	cggtacatct	caattttttc	780
catgacagcg	tcacgtctgt	ggagggggag	ggttccccat	ccaaacttta	tgaaatcaac	840
gtaatctgat	gaaatctcca	tgaggtcacg	ggctgttta	atgcccattc	ccttatcgag	900
aaccatggtt	attccatttt	ttctgggttt	cccacgcctt	ggaggtgtga	gaaagtcaaa	960
ggcgttcata	tgagggtaag	tctcagcttt	gaaaaaccgg	agggcagtgg	actctgcata	1020
atggtggacc	ttctgagggc	aagtgcaacc	ataacctctg	ccctggacag	tttcagggag	1080
gtcatccctg	ttggggacgt	tgaggaggca	acggaatact	ccaggatggg	ctatgtggtg	1140
gcaggggagc	gtggtggtga	gaccctgcca	ggattcctgg	ccaactcccc	actggaggtg	1200
agggaacatt	caggtgatgc	ccttgtgcta	accaccagta	acggtacaag	gatccttgag	1260
tcagttgaat	cacaggccct	cgtgggctgc	ctcaacaatc	tggatgcagt	ggcctcagct	1320
gcaaggaatc	tttcggatga	agttgaggtg	gtcatggccg	gtgttaatgg	ccgctttgca	1380
atagaggatt	tcctctgcgc	cggtgaaata	atacgtgcca	ttggtggtga	gtttgaagag	1440
tacgctgagg	cctcagtact	tgcagttcag	gacaggtcca	tggttgatga	tgccataaga	1500
aaatccaggt	cagccaggag	gctcagggaa	cttggttttg	ccggtgatat	tgaatactgc	1560
ctcagaagga	atataacaga	aaacgtaccc	gtatacaggg	acggcaggat	atcgctgatc	1620
taaatgagga	taagtgctga	agaggaagtt	agaatcataa	aggaaatact	caccgccatg	1680
gaggttccag	aggaggtttc	agagatagtg	gctgatgtta	ccctggacgc	ggacctgaag	1740
ggtttcagtt	cacatggaat	cggtcgtttc	ccccagtacg	ttgagggggt	gcgatgtggg	1800
acaataaagc	cccatggtga	cataaccatt	gaaagggaaa	ccccctcaac	ggccctcata	1860
aacggtaacc	acatgttcgg	acactttgtt	gcctgcaggg	caatggaact	tgcaattgaa	1920
aaggccaggg	ataccggcgt	cgggcttgtt	ggtgtccatg	actcaaacca	ctttggtgtt	1980
gccggatact	actcggacat	ggcggtcatg	aacgacatga	taggggttgt	gatagcaaat	2040
acagagcctg	ctgtggcacc	cataggtggc	aaaacaccca	tcctgggaac	aaaccccgtg	2100
gccataggga	tcccatcaaa	caggcactat	gtctcggttg	acatggcaac	ctcagcatcc	2160
gccaggggca	aactcctgga	ggccgccagg	aagggtgaga	gtatacccga	aaacatagca	2220
atggacgccg	atggaaaccc	cacaaccgac	cctgaacttg	cccttaaggg	gtccatactc	2280
cccttcggtg	ggcataaggg	ttatgcgctt	tcattcatga	tagagatcct	agcaggtccc	2340
cttgtggggg	ctgcctttgg	ggctgcggtg	aagggaaccg	cgaacccccg	ggagatgtgc	2400
accaagggcg	acctcatgat	ggccatagac	ccctcaaaga	tggtcgacct	ccaggaattc	2460
aaatccagcg	tggatgaatt	catcgaggag	gttaaatcat	ccgggggacgt	cctcataccc	2520
ggtgacattg	aggccatgaa	cataaagagg	gggcgtgaag	agggaataga	ggtggatgaa	2580

con	+	n.	nı	10	0

-continued	
	2640
gggttatgaa tggcaaacgt tgagcaagaa gtcatagaca tcatgaagtc ctccggcatc	2700
gacacagtgc tgacgctgcc gtgcgataaa ataaagaatt tactggcgat ggtcccctcg	2760
aactttaagg agateeeet gaccagggag gagaaeggea teggtatege ggeegggett	2820
tccatggccg gcaaaaggcc ggccctcatt atccagagca cgggaatagg caactcgctg	2880
aacgtgetet categetgaa caggaettat gagataeeee tgeecateet ggeeagetgg	2940
aggggctact ataaggaagc catctatgcc cagacggcct tcggcaagtg cctgcccgcc	3000
atacttgaag cctctgacat acagcacatc gagatcggcg ccatgggcga gctcgacctg	3060
atcaagaagg ccatcatcgc ctcgttcaag tcgaacttgc cgaccgtgat actcttatcg	3120
cccaggctgt gggagatete gaeggagagg caetggaaee eggaetteae geeeegggaa	3180
aggcgttttg atatggagtg ccacaccgtt gtcccgaagg ccacgcatac ccgctacgac	3240
atgatcaagg gcatcacttc ataccttagc ggcaaagtcg tggtctccaa catcggcatc	3300
ccgagcaagg agctctatgc cgcccacgac caggacacga acttctacat gacgggcagc	3360
ctgggccttg tttccgctat cggccagggc ctggccatgg gcctgagccg ggaggtcatc	3420
acgctggacg gcgacggcag tattttaatg aacccgaacg tgctggcgag cgtcgcccag	3480
gaaaagcccg agaacctcac catcatttgc ttcgataaca gcgcccacgg ctccactggc	3540
aaccagaaga cctattcgga gagcatggac ctcgagcttc tggcgaaggc gttcggcatc	3600
gagaacacgg cgaaggcatc tacacccgga gagctgcttg aggcgctgga gaaaaggggg	3660
aaagggcccc ggttcatcca cgcgatcatc gaggcgaaga acgccgacgt gccgaatatt	3720
cctttgacac cggtagagat caaggagcgg tttatggggg cggtcacgcg ctgatgaagt	3780
aagtaggaag cagggagcag gggaaagaaa attgacaact gtacaagatt aatcgcgtct	3840
ctgagcaatg accaaataca tctacctcca cggttttctt ccagccccct atctgcgaaa	3900
gcacaagata ttagcaagcg tttcgcccaa attcacatac agctaacaat ccctgatctc	3960
aatgetggtg aattttetea gttaacaate aegegeeaaa tteaacaagt tgeegeaatt	4020
ttccctgata attctgaacc aataacgctg ataggttcta gtttaggcgg tttaactgct	4080
gcttatctag gacagcgata tttacaagta caacgcttag ttttattagc gccagtttgg	4140
ttttttatcc cattggttgc ccaaaatggg tgaagaagct gtcacaagtt ggcaacaaac	4200
gatataggtt ctctcttctg ccgtta	4226
<210> SEQ ID NO 198 <211> LENGTH: 5198 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct- SEQ ID NO: 198, examp 198: a designer hox-promoter-controlled Coenzyme B synthesis enzymes DNA construct (5198 bp)	ple
<400> SEQUENCE: 198	
agaaaatctg gcaccacacc gcagaaatat aggggctagg agttgagggt actctggttc	60
gtcaagcatt tgggatgatt tcccctcaca agttcctcaa attattctcc tataaacaat	120
agatataagg tcaaaacttg agttatgagt gctgagtaaa aaattactct ccacgcctca	180
gaggtagata tgttgcccga tcgggtacgg atcttcgaca cgacgctaag agacggtgag	240
cagacaccgg gcgtcagcct cacggtggag gaaaaggtcg agatcgcgag gaagttggac	300

gagtteggeg	tggataccat	cgaagcgggc	ttccccgtag	ccagtgaggg	tgagttcgag	360
gcagtgaggg	cgatagcagg	cgaggaactg	gacgcggaga	tatgcgggtt	ggccaggtgc	420
gtgaaggggg	acatagacgc	ggcgatcgac	gccgacgtgg	actgcgtgca	cgtgttcata	480
gccacgtcgg	acatccacct	cagatacaag	ttggagatgt	cccgggaaga	ggcattggag	540
cgtgccatag	agggcgtgga	gtatgccagt	gaccacggag	tcaccgtgga	gttctccgcg	600
gaggacgcca	cacggacgga	ccgggactac	ctactcgagg	tctataaagc	taccgtggaa	660
gccggcgcgg	atcgtgtcaa	cgtcccggat	actgtgggag	ttatgacccc	tcccgagatg	720
tatcgactga	cggcggaagt	tgtcgacgcc	gtagacgtgc	cggtcagcgt	gcactgccac	780
aacgacttcg	gcatggccgt	ggccaactca	ttggccgccg	tcgaagccgg	ggctgaacag	840
gttcatgtga	ccgtgaacgg	gatcggcgag	cgtgccggta	acgcctcgct	ggaacaggtc	900
gtaatggccc	tcaaagcgct	gtacgatatc	gagttggacg	tgaggaccga	gatgetegte	960
gageteteae	ggctcgtgga	gcgactgacg	ggcgtcgtag	taccgccgaa	caccccgata	1020
gtcggcgaga	acgccttcgc	ccacgagtcg	gggattcact	cccacggcgt	gatcaagaag	1080
gcggagacgt	acgaacctat	acggcccgag	gacgtcggtc	atagacggcg	tatagtacta	1140
ggtaagcacg	ccggtcggca	cgcgatcaag	aagaagctcg	aggagatggg	gatcgaggtc	1200
acggaggaac	aactcgacga	gatcgttcgg	cgcgtcaagg	agctcgggga	taagggcaag	1260
cgcgtcaccg	aagacgatct	tgaagccata	gcccgagacg	tcgtcggcga	ggtacccgag	1320
tccgaagctg	cggtcaagct	ggaagagatc	gccgtgatga	ccgggaacaa	attcacgccg	1380
acggcgtcgg	tccgtgtgta	cctggacggt	gaagagcacg	aagcggcatc	gaccggtgtg	1440
ggctccgttg	acgcggcgat	acgggcactg	cgcgaagcga	tcgaggagct	cggtatggac	1500
gtggagctga	aggagtaccg	cctagaggcc	atcaccgggg	gcaccgacgc	cctcgccgag	1560
gtcacggtga	ggttggagga	cgaggacggg	aacgtcacca	cggcccgcgg	tgccgccgag	1620
gatatcgtga	tggccagcgt	gaaggcgttc	gttcggggcg	tgaatcggct	ggcacgtcga	1680
cgtagggact	aagtgaacgc	gtcgccgacc	gtcgtggtaa	tccccgggga	cgggatcggg	1740
ccggaagtca	tcgacgcggc	cctgaaggtc	gtgcgggcgg	ttctgggtga	cgaactcgag	1800
atcgtggagg	aacaggccgg	gtactcgctg	tggaagaaga	ggggagtcac	gatcgaggac	1860
gagacgatcg	agcgctgccg	cgaggcggac	gccatgctct	tcggcgcgtg	cacgactccg	1920
gaggacccgg	aggccaagag	tcccatcgtg	acgctgcgga	aagagctcgg	actctacgcc	1980
aacgtccgtc	ccgctcgctc	ctggcccgta	ccgcgacctg	tcgacaccga	gttcgacctg	2040
gtgatcgtcc	gggagaacac	cgagggtctc	tacaccggat	gcgagtgcga	gatccacgac	2100
ggtgttaccg	tcgccctgcg	taagatctcc	gaggagggta	cgcgcagggt	cgctgaggtc	2160
gcctgcgatc	tcgccgagga	gcgctccggt	cgcgtgacga	tagtgcacaa	ggccaacgtg	2220
ctgaagctca	cgtgcggaac	gttcaagcgc	gtcgcggcgg	aaaccgtgga	gcgtcgcggt	2280
ctggagtggg	acgacgagta	cgtggacgcg	gcggcgtaca	agctggtgcg	tgagccggac	2340
agcttcgacg	tgatcctcac	ctccaacctg	ttcggggaca	tactctcgga	cctggcggcg	2400
ggtctgatgg	ggagcctcgg	gctcgcaccc	agcgcgaacc	tgggggacga	cgccgcccta	2460
ttcgagcctg	tacacgggtc	ggcacccgac	atcgcgggta	aggggatcgc	gaacccggtg	2520
gcggcgatcc	tctcggccgc	catgatgctg	gatcacctcg	ggtacgggga	ggaggctcgg	2580

E

-continued	
atcatcgagc gtgccgtcga ggaggtgctg cgcgagggcg tgaggactcc cgacctcggc	2640
ggtteegega eeaeggagga ggtggeegag gegategegg agegtgtgge taeegggtga	2700
ctatacetee etcacategg tgatttegee egecaaegea geegeagegg ceateagegg	2760
actcatcaga tgagtccgac cacccttgcc ctgcctgcct tcaaagttcc tgttagaagt	2820
ggaggcacag cgctcgccag ggttaagccg atcatcattc ataccgaggc acattgagca	2880
tecegeegee egecaetega aaccageatt tegaaaaate atateeagae etteeegete	2940
tgcctgcagg cgaacctggc cagaccctgg aacaatcaga gcctgtttca ccgaccggtg	3000
cactttetgt eeetgeacea gattagegae ggeteteaag teeteeatge gggeattggt	3060
gcaagaacca atgaaaacct tgtcgattga caaccccttc aggggggggcgcc cgggctcaag	3120
ccccatgtag tccagagccc gcctggccga ttcccgcttc tccggcgcca gctgagaaag	3180
atccggggtt ttgccatcaa taccggtgac catctctggg gatgtgcccc aggttacctg	3240
cggcaccagg gettecageg gaaaatgete etegegatea aaatetgeet eegeateega	3300
aaccaacgtg cgccaatact cacgageetg etecaggege tegecaactg gegeetgggg	3360
tetgecetee acgtattgtt cegteaceeg gteataagea aceatgeetg eeegggeace	3420
ggetteaatg eteatgttge agatggteat gegeeeetee atggacaggt taegaatgge	3480
tgcaccggcg tattcaatgg catatccgtt gccgccagcg gtccctatac gcccaatcag	3540
cgccagaatc aggtottttg gggtoaccoc gaaacctggo tgacottoga acaccactog	3600
catgtttttc tgtttctggg tccgcagggt ctgggtggcc agcacatgct ccacctcgct	3660
ggtaccgatt cccatggcga gcgtcgcgaa agcgccgtga gtggaggtat gagagtcgcc	3720
gcaaacgatg gtcatgcccg gcaaggtcag gccctgctcc ggacccacca cgtgtacgat	3780
cccttgccgg gcatcttcca gttcaatcaa cggaataccg aattcctcgc aattacgcga	3840
cagggtttee acetgtttte gegeaacaeg gteggeaata eetgegaege egagtteeeg	3900
tttccgggtt ggtacggcat gatcgggcac cgctacattg gccggaattc gccagggctt	3960
tegaceagee gagegeagae eggaaaaage etggggegtg gteaettegt geageaaatg	4020
acggtcgatg tagagcaacg cggaaccgtc aggcagttca tccaccaggt ggcgctgcca	4080
gagtttgtcg tagagcgtac gcgcagccat ctactcaaaa agccagggtt ccagggttct	4140
teggttegee tegtaggeet gaatggagee tgaaaaagte agggtaegae etateteate	4200
cagacegetg aggaggttet ecegeegaee egaeteaaee aegaaaegee aggtettett	4260
cggactgcga atctcgcatt gctccaaatc caccgtcagt tccagaccgt ccgtgtcact	4320
ggccaaattg aacaattcgt caatggttga ctcgtcgagt attaccggaa gcaggccatt	4380
gttaaagcag ttgttaaaga aaatatcccc aaaactgctg gcaataaccg ctcgaacgcc	4440
aaagteette agggeeeaga eegegtgtte eegggatgae eeacageeaa agtttgeeet	4500
ggccagcagg atggaagcac ggtcgtaggg cgcccggttc agaatgaagt cgggatccgg	4560
tetgegetee gacaegggga tgteeacate aceggggtee agatateget cateateaaa	4620
gaggaagtet geaaaceegg tttteteeag eattttaaga taetgettgg geagaattge	4680
gtcggtgtcc acattcgacc ggtcgaaagg aacgaccaga ccggtgtgtg ttttgaatgc	4740
ctccattgaa gtaagtagga agcagggagc aggggaaaga aaattgacaa ctgtacaaga	4800
ttaatcgcgt ctctgagcaa tgaccaaata catctacctc cacggttttc ttccagcccc	4860
ctatctgcga aagcacaaga tattagcaag cgtttcgccc aaattcacat acagctaaca	4920

-cont	inued
COILC	TITUCU

atccctgatc	tcaatgctgg	tgaattttct	cagttaacaa	tcacgcgcca	aattcaacaa	4980
gttgccgcaa	ttttccctga	taattctgaa	ccaataacgc	tgataggttc	tagtttaggc	5040
ggtttaactg	ctgcttatct	aggacagcga	tatttacaag	tacaacgctt	agttttatta	5100
gcgccagttt	ggttttttat	cccattggtt	gcccaaaatg	ggtgaagaag	ctgtcacaag	5160
ttggcaacaa	acgatatagg	ttetetette	tgccgtta			5198

1. A method for autotrophic production of butanol and related higher alcohols comprising:

- introducing a transgenic autotrophic organism into a reactor system, the transgenic autotrophic organism comprising transgenes coding for a set of enzymes configured to confer a hydrogenotrophic pathway for production of a higher alcohol comprising at least four carbon atoms;
- using reducing power such as NADPH, reduced ferredoxin, and energy ATP associated with the transgenic autotrophic organism acquired from hydrogenotrophic process in the biological reactor to synthesize the higher alcohol from carbon dioxide and water; and
- using a product separation process to harvest the synthesized alcohol from the photobioreactor.
- 2. The method of claim 1, wherein:
- said designer transgenic autotrophic organism comprises at least one of designer Calvin-cycle-channeled pathways and designer hydrogenotrophic pathways for producing at least one of the higher alcohols selected from the group consisting of: 1-butanol, 2-methyl-1-butanol, isobutanol, 3-methyl-1-butanol, 1-hexanol, 1-octanol, 1-pentanol, 1-heptanol, 3-methyl-1-pentanol, 4-methyl-1-hexanol, 5-methyl-1-heptanol, 4-methyl-1-pentanol, 5-methyl-1-hexanol, 6-methyl-1-heptanol and combinations thereof.

3. The method of claim 1, wherein the transgenic autotrophic organism comprises at least one of a transgenic designer plant or transgenic designer plant cell, or bacterial cell selected from the group consisting of blue-green algae (oxyphotobacteria including cyanobacteria and oxychlorobacteria), hydrogenotrophic bacteria, methanogens, aquatic plants, plant cells, green algae, red algae, brown algae, diatoms, marine algae, freshwater algae, salt-tolerant algal strains, cold-tolerant algal strains, heat-tolerant algal strains, antenna-pigment-deficient mutants, butanol-tolerant algal strains, higher-alcohols-tolerant algal strains, butanol-tolerant and methanogens, higher-alcohols-tolerant oxyphotobacteria and methanogens, higher-alcohols-tolerant oxyphotobacteria and hydrogenotrophic bacteria or methanogens.

4. The method of claim 1, wherein said transgenic autotrophic organism comprises a set of designer genes that express a designer anaerobic hydrogenotrophic butanol-production-pathway system comprising: energy converting hydrogenase (Ech), [NiFe]-hydrogenase (Mvh), Coenzyme F_{420} -reducing hydrogenase (Frh), native (or heterologous) soluble hydrogenase (SH), heterodissulfide reductase (Hdr), formylmethanofuran dehydroganse, formyl transferase, 10-methenyl-tetrahydromethanopterin cyclohydrolase, 10-methylene- H_4 -methanopterin dehydrogenase, 10-methyl-ene- H_4 -methanopterin reductase, methyl- H_4 -methanopterin: corrinoid iron-sulfur protein methyltransferase, corrinoid

iron-sulfur protein, CO dehydrogenase/acetyl-CoA synthase, thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyaldehyde dehydrogenase, and butanol dehydrogenase.

5. The method of claim 1, wherein the transgenic autotrophic organism comprises bacteria selected from the group consisting of Thermosynechococcus elongatus BP-1, Nostoc sp. PCC 7120, Synechococcus elongatus PCC 6301, Syncechococcus sp. strain PCC 7942, Syncechococcus sp. strain PCC 7002, Svncechocvstis sp. strain PCC 6803, Prochlorococcus marinus MED4, Prochlorococcus marinus MIT 9313, Prochlorococcus marinus NATL1A, Prochlorococcus SS120, Spirulina platensis (Arthrospira platensis), Spirulina pacifica, Lyngbya majuscule, Anabaena sp., Synechocystis sp., Synechococcus elongates, Synechococcus (MC-A), Trichodesmium sp., Richelia intracellularis, Synechococcus WH7803, Synechococcus WH8102, Nostoc punctiforme, Syncechococcus sp. strain PCC 7943, Synechocyitis PCC 6714 phycocyanin-deficient mutant PD-1, Cyanothece strain 51142, Cyanothece sp. CCY0110, Oscillatoria limosa, Lyngbya majuscula, Symploca muscorum, Gloeobacter violaceus, Prochloron didemni, Prochlorothrix hollandica, Synechococcus (MC-A), Trichodesmium sp., Richelia intracellularis, Prochlorococcus marinus, Prochlorococcus SS120, Synechococcus WH8102, Lyngbya majuscula, Symploca muscorum, Synechococcus bigranulatus, cryophilic Oscillatoria sp., Phormidium sp., Nostoc sp.-1, Calothrix parietina, thermophilic Synechococcus bigranulatus, Synechococcus lividus, thermophilic Mastigocladus laminosus, Chlorogloeopsis fritschii PCC 6912, Synechococcus vulcanus, Synechococcus sp. strain MA4, Synechococcus sp. strain MA19, Methanocella paludicola SANAE, Acinetobacter baumannii ABNIH3, Acinetobacter baumannii ABNIH4, Acinetobacter sp. DR1, Agrobacterium sp. H13-3; Agrobacterium vitis S4, Alcaligenes sp., Allochromatium vinosum DSM 180, Amycolatopsis mediterranei S699, Anoxybacillus flavithermus WK1, Aquifex aeolicus VF5, Archaeoglobus fulgidus DSM 4304, Archaeoglobus veneficus SNP6, Azospirillum sp. B510, Burkholderia cenocepacia HI2424, Caldicellulosiruptor bescii DSM 6725, Carboxydothermus hydrogenoformans, Centipeda periodontii DSM 2778, Clostridium autoethanogenum, Clostridium ragsdalei, Clostridium sticklandii DSM 519, Clostridium sticklandii, Corynebacterium glutamicum, Cupriavidus metallidurans CH34, Cupriavidus necator N-1, Desulfobacca acetoxidans DSM 11109, Exiguobacterium sp. AT1b, Ferrimonas balearica DSM 9799, Ferroglobus placidus DSM 10642, Geobacillus kaustophilus HTA426, Helicobacter bilis ATCC 43879, Herbaspirillum seropedicae SmR1, Hydrogenobacter thermophilus TK-6, Hydrogenovibrio marinus, Klebsiella variicola At-22, Methanobacterium sp. SWAN-1, Methanobrevibacter ruminantium M1, Methanocaldococcus

fervens AG86, Methanocaldococcus infernus ME, Methanocaldococcus jannaschii, Methanocaldococcus sp. FS406-22, Methanocaldococcus vulcanius M7, Methanococcus aeolicus Nankai-3, Methanococcus maripaludis C6, Methanococcus maripaludis S2, Methanococcus voltae A3, Methanocorpusculum labreanum Z, Methanoculleus marisnigri JR1, Methanohalophilus mahii DSM 5219, Methanolinea tarda NOBI-1, Methanoplanus petrolearius DSM 11571, Methanoplanus petrolearius, Methanopyrus kandleri AV19, Methanoregula boonei 6A8, Methanosaeta harundinacea 6Ac, Methanosalsum zhilinae DSM 4017, Methanosarcina acetivorans C2A, Methanosarcina barkeri str. Fusaro, Methanosarcina mazei Go1, Methanosphaera stadtmanae, Methanospirillum hungatei JF-1, Methanothermobacter marburgensis str. Marburg, Methanothermobacter marburgensis, Methanothermobacter thermautotrophicus, Methanothermococcus okinawensis IH1. Methanothermus fervidus DSM 2088, Methylobacillus flagellates, Methylobacterium organophilum, Methylococcus capsulatus, Methylomicrobium kenyense, Methylomonas methanica MC09, Methylomonas sp. LW13, Methylosinus sp. LW2, Methylosinus trichosporium OB3b, Methylotenera mobilis JLW8, Methylotenera versatilis 301, Methylovorus glucosetrophus SIP3-4, Moorella thermoacetica ATCC 39073, Moorella thermoacetica, Oligotropha carboxidovorans OM5, Paenibacillus terse HPL-003, Pelotomaculum thermopropionicum SI, Planctomyces brasiliensis DSM 5305, Pyrococcus furiosus DSM 3638, Pyrococcus horikoshii OT3, Pyrococcus yayanosii CH1, Ralstonia eutropha H16, Rubrivivax sp., Selenomonas noxia ATCC 43541, Shewanella baltica BA175, Stenotrophomonas sp. SKA14, Synechococcus sp. JA-2-3B' a(2-13), Synechococcus sp. JA-3-3Ab, Thermococcus gammatolerans EJ3, Thermococcus kodakarensis KOD1, Thermococcus onnurineus NA1, Thermococcus sp. 4557, Thermodesulfatator indicus DSM 15286, Thermofilum pendens Hrk 5, Thermotoga lettingae TMO, Thermotoga petrophila RKU-1, Thiocapsa roseopersicina, Thiomonas intermedia K12, Xanthobacter autotrophicus, Yersinia pestis Antigua, and Thermosynechococcus elongatus.

6. The method of claim 1, wherein the transgenic autotrophic organism comprises a biosafety-guarded feature selected from the group consisting of a designer proton-channel gene inducible under pre-determined inducing conditions, a designer cell-division-cycle iRNA gene inducible under pre-determined inducing conditions, a high-CO2-requiring mutant as a host organism for transformation with designer biofuel-production-pathway genes in creating designer cell-division-controllable autotrophic organisms, and combinations thereof; and wherein said transgenic autotrophic organism comprises a set of designer genes exemplified with exemplary designer DNA constructs of SEQ ID NOS. 1-198 shown in the sequence listings for expressing at least one of the enzymes selected from the group consisting of oxygen-tolerant soluble hydrogenase (SH), oxygen-tolerant membrane bound hydrogenase (MBH), energy converting hydrogenase (Ech), methyl-H4MPT: coenzyme-M methyltransferase (Mtr), methyl-coenzyme M reductase (Mcr), heterodissulfide reductase (Hdr), [NiFe]-hydrogenase (Mvh), Coenzyme F₄₂₀-reducing hydrogenase (Frh), A1A2-ATP synthase, formate dehydroganse, 10-formyl-H₄ folate synthetase, methenyltetrahydrofolate cyclohydrolase, 10-methylene-H₄ folate dehydrogenase, 10-methylene-H₄ folate reductase, methyl-H₄ folate: corrinoid iron-sulfur protein methyltransferase, corrinoid ironsulfur protein, CO dehydrogenase/acetyl-CoA synthase, formylmethanofuran dehydroganse, formyl transferase, 10-methenyl-tetrahydromethanopterin cyclohydrolase, 10-methylene-H₄-methanopterin dehydrogenase, 10-methyl-ene-H₄-methanopterin reductase, methyl-H₄-methanopterin: corrinoid iron-sulfur protein methyltransferase, corrinoid iron-sulfur protein, CO dehydrogenase/acetyl-CoA synthase, thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, 2-keto acid decarboxylase, alcohol dehydrogenase, 2-methylbutyraldehyde reductase, 3-meth-ylbutanal reductase, hexanol dehydrogenase.

7. The method of claim 1, wherein the set of enzymes comprises at least one of the enzymes selected from the group consisting of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, eno-lase, pyruvate kinase, citramalate synthase, 2-methylmalate dehydratase, 3-isopropylmalate dehydratase, 3-isopropylmalate isomerase, 2-keto acid decarboxylase, alcohol dehydrogenase, NADPH-dependent alcohol dehydrogenase, and butanol dehydrogenase.

8. The method of claim 1, wherein the set of enzymes comprises at least one of the enzymes conferring a designer anaerobic hydrogenotrophic system and butanol-production pathway selected from the group consisting of energy converting hydrogenase (Ech), [NiFe]-hydrogenase Mvh, Coenzyme F_{420} -reducing hydrogenase (Frh), soluble hydrogenase (SH), reduced ferredoxin (Fd_{red}^{2-}) , and heterodissulfide reductase (Hdr), NADPH-dependent glyceraldehyde-3phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, enophosphoenolpyruvate carboxylase, lase aspartate aminotransferase, aspartokinase, aspartate-semialdehyde dehydrogenase, homoserine dehydrogenase, homoserine kinase, threonine synthase, threonine ammonia-lyase, 2-isopropylmalate synthase, isopropylmalate isomerase, 3-isopropylmalate dehydrogenase, 2-keto acid decarboxylase, and NAD-dependent alcohol dehydrogenase, NADPH-dependent alcohol dehydrogenase, butanol dehydrogenase and combinations thereof.

9. The method of claim 1, wherein the set of enzymes comprises at least one of the enzymes conferring a designer hydrogenotrophic methanogenic 2-methylbutanol-production pathway selected from the group consisting of methyl-H4MPT: coenzyme-M methyltransferase Mtr, A₁A₂-ATP synthase, methyl-coenzyme M reductase Mcr, energy converting hydrogenase (Ech), [NiFe]-hydrogenase (Mvh), Coenzyme F420-reducing hydrogenase (Frh), soluble hydrogenase (SH), heterodissulfide reductase (Hdr), NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NADdependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, enolase, pyruvate kinase, citramalate synthase, 2-methylmalate dehydratase, 3-isopropylmalate dehydratase, 3-isopropylmalate dehydrogenase, acetolactate synthase, ketol-acid reductoisomerase, dihydroxy-acid dehydratase, 2-keto acid decarboxylase, NADdependent alcohol dehydrogenase, NADPH-dependent alcohol dehydrogenase, and 2-methylbutyraldehyde reductase.

10. The method of claim **1**, wherein the set of enzymes comprises at least one of the enzymes selected from the group consisting of membrane bound hydrogenase (MBH), soluble

hydrogenase (SH), NADPH-dependent glyceraldehyde-3phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, enolase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, aspartokinase, aspartate-semialdehyde dehydrogenase, homoserine dehydrogenase, homoserine kinase, threonine synthase, threonine ammonia-lyase, acetolactate synthase, ketol-acid reductoisomerase, dihydroxyacid dehydratase, 2-keto acid decarboxylase, and NAD dependent alcohol dehydrogenase, NADPH dependent alcohol dehydrogenase, and 2-methylbutyraldehyde reductase.

11. The method of claim 1, wherein the set of enzymes comprises at least one of the enzymes selected from the group consisting of methyl-H4MPT: coenzyme-M methyltransferase Mtr, A_1A_o -ATP synthase, energy converting hydrogenase (Ech), [NiFe]-hydrogenase Mvh, Coenzyme F_{420} -reducing hydrogenase (Frh), native (or heterologous) soluble hydrogenase (SH), reduced ferredoxin (Fd_{red}^{-2-}), methyl-coenzyme M reductase Mcr, heterodissulfide reductase (Hdr), NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, acetolactate synthase, ketol-acid reductoisomerase, dihydroxy-acid dehydratase, 2-keto acid decarboxylase, and NAD-dependent alcohol dehydrogenase.

12. The method of claim 1, wherein the set of enzymes comprises at least one of the enzymes selected from the group consisting of membrane bound hydrogenase (MBH), soluble hydrogenase (SH), NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, eno-lase, pyruvate kinase, acetolactate synthase, ketol-acid reductoisomerase, dihydroxy-acid dehydratase, 2-isopropyl-malate synthase, 3-isopropylmalate dehydrogenase, and NAD-dependent alcohol dehydrogenase, NADPH-dependent alcohol dehydrogenase, NADPH-dependent alcohol dehydrogenase, NADPH-dependent alcohol dehydrogenase, acetolactate synthase, acetolactate synthase, 3-isopropylmalate dehydrogenase, and NAD-dependent alcohol dehydrogenase, and 3-methylbutanal reductase.

13. The method of claim 1, wherein the set of enzymes comprises at least one of the enzymes conferring a designer anaerobic reductive-acetyl-CoA butanol-production pathway selected from the group consisting of: formate dehydroganse, 10-formyl-H₄ folate synthetase, methenyltetrahydrofolate cyclohydrolase, 10-methylene-H₄ folate dehydrogenase, 10-methylene-H₄ folate reductase, methyl-H₄ folate: corrinoid iron-sulfur protein methyltransferase, corrinoid iron-sulfur protein, CO dehydrogenase/acetyl-CoA synthase, thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyaldehyde dehydrogenase, butanol dehydrogenase, and alcohol dehydrogenase.

14. The method of claim 1, wherein the set of enzymes comprises at least one of the enzymes selected from the group consisting of membrane bound hydrogenase (MBH), soluble hydrogenase (SH), NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, eno-lase, pyruvate kinase, citramalate synthase, 2-methylmalate dehydratase, 3-isopropylmalate dehydratase, 3-isopropylmalate dehydrogenase, isopropylmalate synthase, isopropylmalate isomerase, 3-isopropylmalate dehydrogenase, designer isopropylmalate synthase, designer isopropylmalate synthase, designer 2-keto acid decarboxylase, short-chain alcohol dehydrogenase, hexanol dehydrogenase, designer isopropyl-

Imalate synthase, designer isopropylmalate isomerase, designer 3-isopropylmalate dehydrogenase, designer 2-keto acid decarboxylase, and designer short-chain alcohol dehydrogenase.

15. The method of claim 1, wherein the set of enzymes comprises at least one of the enzymes selected from the group consisting of membrane bound hydrogenase (MBH), soluble hydrogenase (SH), NADPH-dependent glyceraldehyde-3phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, enolase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, aspartokinase, aspartate-semialdehyde dehydrogenase, homoserine dehydrogenase, homoserine kinase, threonine synthase, threonine ammonia-lyase, 2-isopropylmalate synthase, isopropylmalate isomerase, 3-isopropylmalate dehydrogenase, designer isopropylmalate synthase, designer isopropylmalate isomerase, designer 3-isopropylmalate dehydrogenase, designer 2-keto acid decarboxylase, short-chain alcohol dehydrogenase, hexanol dehydrogenase, designer isopropylmalate synthase, designer isopropylmalate isomerase, designer 3-isopropylmalate dehydrogenase, designer 2-keto acid decarboxylase, and designer short-chain alcohol dehydrogenase.

16. The method of claim 1, wherein the set of enzymes comprises at least one of the enzymes conferring a designer hydrogenotrophic Calvin-cycle-channeled pathway selected from the group consisting of membrane bound hydrogenase (MBH), soluble hydrogenase (SH), NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, enolase, pyruvate kinase, citramalate synthase, 2-methylmalate dehydratase, 3-isopropylmalate dehydratase, 3-isopropylmalate dehydrogenase, acetolactate synthase, ketol-acid reductoisomerase, dihydroxy-acid dehydratase, designer isopropylmalate synthase, designer isopropylmalate isomerase, designer 3-isopropylmalate dehydrogenase, designer 2-keto acid decarboxylase, shortchain alcohol dehydrogenase, designer isopropylmalate synthase, designer isopropylmalate isomerase, designer 3-isopropylmalate dehydrogenase, designer 2-keto acid decarboxylase, and designer short-chain alcohol dehydrogenase.

17. The method of claim 1, wherein the set of enzymes comprises at least one of the enzymes conferring a designer hydrogenotrophic Calvin-cycle-channeled pathway selected from the group consisting of membrane bound hydrogenase (MBH), soluble hydrogenase (SH), NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, enolase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, aspartokinase, aspartate-semialdehyde dehydrogenase, homoserine dehydrogenase, homoserine kinase, threonine synthase, threonine ammonialyase, acetolactate synthase, ketol-acid reductoisomerase, dihydroxy-acid dehydratase, designer isopropylmalate synthase, designer isopropylmalate isomerase, designer 3-isopropylmalate dehydrogenase, designer 2-keto acid decarboxylase, short-chain alcohol dehydrogenase, designer isopropylmalate synthase, designer isopropylmalate isomerase, designer 3-isopropylmalate dehydrogenase, designer 2-keto acid decarboxylase, and designer short-chain alcohol dehydrogenase.

18. The method of claim **1**, wherein the set of enzymes comprises at least one of the enzymes conferring a designer

hydrogenotrophic Calvin-cycle-channeled pathway selected from the group consisting of membrane bound hydrogenase (MBH), soluble hydrogenase (SH), NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, enolase, pyruvate kinase, acetolactate synthase, ketol-acid reductoisomerase, dihydroxy-acid dehydratase, isopropylmalate synthase, dehydratase, 3-isopropylmalate dehydrogenase, designer isopropylmalate synthase, designer isopropylmalate isomerase, designer 3-isopropylmalate dehydrogenase, designer 2-keto acid decarboxylase, shortchain alcohol dehydrogenase, designer isopropylmalate synthase, designer isopropylmalate isomerase, designer 3-isopropylmalate dehydrogenase, designer 2-keto acid decarboxylase, and designer short-chain alcohol dehydrogenase.

19. The method of claim **1**, wherein the set of enzymes comprises at least one of the enzymes conferring a designer methanogenic hydrogenotrophic butanol-production-pathway selected from the group consisting of: methyl-H4MPT: coenzyme-M methyltransferase Mtr, A1Ao-ATP synthase, methyl-coenzyme M reductase Mcr, energy converting hydrogenase (Ech), [NiFe]-hydrogenase (Mvh), Coenzyme F₄₂₀-reducing hydrogenase (Frh), soluble hydrogenase (SH), heterodissulfide reductase (Hdr), formate dehydroganse, 10-formyl-H₄ folate synthetase, methenyltetrahydrofolate cyclohydrolase, 10-methylene-H₄ folate dehydrogenase, 10-methylene-H₄ folate reductase, methyl-H₄ folate: corrinoid iron-sulfur protein methyltransferase, corrinoid ironsulfur protein, CO dehydrogenase/acetyl-CoA synthase, thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyaldehyde dehydrogenase, butanol dehydrogenase, and alcohol dehydrogenase.

20. The method of claim **1**, wherein the designer transgenic organism a designer autotrophic organism comprises a set of

designer genes that express a designer methanogenic hydrogenotrophic butanol-production-pathway system comprising: methyl-H4MPT: coenzyme-M methyltransferase Mtr, A₁A₂-ATP synthase, methyl-coenzyme M reductase Mcr, energy converting hydrogenase (Ech), [NiFe]-hydrogenase (Mvh), Coenzyme F420-reducing hydrogenase (Frh), soluble hydrogenase (SH), heterodissulfide reductase (Hdr), formate dehydroganse, 10-formyl-H₄ folate synthetase, methenyltetrahydrofolate cyclohydrolase, 10-methylene-H₄ folate dehydrogenase, 10-methylene-H₄ folate reductase, methyl-H₄ folate: corrinoid iron-sulfur protein methyltransferase, corrinoid iron-sulfur protein, CO dehydrogenase/acetyl-CoA synthase, thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyaldehyde dehydrogenase, and butanol dehydrogenase; and wherein said autotrophic organism comprise a set of designer genes that express a designer methanogenic hydrogenotrophic butanolproduction-pathway system comprising: methyl-H4MPT: coenzyme-M methyltransferase Mtr, native (or heterologous) A₁A_o-ATP synthase, methyl-coenzyme M reductase Mcr, energy converting hydrogenase (Ech), [NiFe]-hydrogenase (Mvh), Coenzyme F_{420} -reducing hydrogenase (Frh), native (or heterologous) soluble hydrogenase (SH), heterodissulfide reductase (Hdr), formylmethanofuran dehydroganse, formyl transferase, 10-methenyl-tetrahydromethanopterin cyclohydrolase, 10-methylene-H₄ methanopterin dehydrogenase, 10-methylene-H₄-methanopterin reductase, methyl-H₄methanopterin: corrinoid iron-sulfur protein methyltransferase, corrinoid iron-sulfur protein, CO dehydrogenase/ acetyl-CoA synthase, thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyaldehyde dehydrogenase, and butanol dehydrogenase.

* * * * *