0 02/10186 A1l

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

7 February 2002 (07.02.2002) PCT WO 02/10186 Al
(51) International Patent Classification’: CO07H 21/04, 91103 (US). TIRRELL, David, A. [US/US]; 714 Arden
C12Q 1/68 Road, Pasadena, CA 91106 (US).
(21) International Application Number: PCT/US01/24021 (74) Agent: HAILE, Lisa, A.; Gary Cary Ware & Freidenrich
LLP, Suite 1600, 4365 Executive Drive, San Diego, CA
(22) International Filing Date: 27 July 2001 (27.07.2001) 92121 (US).
. ) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
(25) Filing Language: English AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
(26) Publication Language: English GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(30) Priority Data: MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
60/221,479 27 July 2000 (27.07.2000)  US ;]%TJ’ T™, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
(63) lzelli‘,ted by ?“ti““a:_i““ (CON) or continuation-in-part g4y pegignated States (regional): ARIPO patent (GH, GM,
%s ) to earlier application: 60221479 (CON KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
o 1ot 07(2000) patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
iled on uly 2000 (27.07.2000) patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
(71) Applicant (for all designated States except US): CALI- CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
FORNIA INSTITUTE OF TECHNOLOGY [US/US]; TG).
1200 East California Boulevard, Mail Code 201-85,
Pasadena, CA 91125 (US). Published:

(72)
(73)

Inventors; and

Inventors/Applicants (for US only): WOLD, Barbara,
J. [—/US]; Pasadena, CA (US). MURPHY, John, Frank
[US/US]; 1033 E. Cordova Street, #17, Pasadena, CA
91106 (US). KIRSHENBAUM, Kent [US/US]; 628 E.
California Boulevard, Pasadena, CA 91106 (US). DAVIS,
Mark, E. [US/US]; 575 Laguna Road, Pasadena, CA

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A RAPID, QUANTITATIVE METHOD FOR THE MASS SPECTROMETRIC ANALY SIS OF NUCLEIC ACIDS FOR

GENE EXPRESSION AND GENOTYPING

(57) Abstract: The invention provides methods of identifying one or more nucleic acids in a sample. The nucleic acids, for ex-
ample, expressed genes in a cell, can be identified by contacting the nucleic acids with oligonucleotides having detector tags, and
selector tags to form tagged oligonucleotides. Each nucleic acid can be uniquely identified by mass-spectrophotometric analysis of

the detector tag.



WO 02/10186 PCT/US01/24021

10

15

20

25

A RAPID, QUANTITATIVE METHOD FOR THE MASS SPECTROMETRIC
ANALYSIS OF NUCLEIC ACIDS FOR GENE EXPRESSION AND
GENOTYPING

RELATED APPLICATIONS 4
This application claims the benefit of priority under 35 U.S.C. § 119(¢) to
United States Provisional Application 60/221,479, filed July 27, 2000, the entire

contents of which is incorporated herein by reference.

FIELD OF THE INVENTION
The invention relates generally to methods for detecting and measuring the
level of nucleic acids, and specifically to detection and measurement methods using

mass spectrometry.

BACKGROUND

Although a variety of methods to detect and measure nucleic acids have been
developed, no method provides a highly accurate means of detecting many genes in a
biological sample. The simplest method in common practice for detection of mRNA
transcripts is the northern blot. Northern blot analysis can be used to detect a small
number of transcripts of interest, however quantitation of the level of a specific
transcript using northern blot analysis is difficult and often inaccurate. RT-PCR can
be used on its own or in an intermediate-scale method known as the rapid analysis of
gene expression (RAGE). RT-PCR and RAGE suffer from biases resulting from the
PCR priming and amplification process and are further limited by the use of
measurement of band intensity on gels to quantify gene levels. In addition, the
methods are not well-suited to a high level multiplexing, i.e., measuring many genes

at once in a single sample.

In order to address the poor quantitation of previous methods, newer methods
based on sequencing have been suggested. One such method, serial analysis of gene
expression (SAGE), allows the quantitative and simultaneous analysis of a large
number of transcripts. In SAGE, the cDNA library constructed from all the
transcripts in a cell, i.e., the transcriptome, is concatenated into large chunks and then
sequenced. The sequencing data is computationally cor}verted into quantitative levels

of gene expression via the frequency of occurrence of sequences representing a given
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gene transcript. This method can also be used for gene discovery, but it cannot be
targeted to specific subsets of genes of interest (e.g., all known oncogenes or all

known tumor suppressors or all known G-coupled membrane receptors). SAGE is
accurate, but it is slow and relatively expensive since it requires a large amount of

sequencing for each sample to be studied.

One new method, called massively parallel signature sequencing (MPSS), is a
high throughput method making use of specially litigated adapters and signature
sequencing. It is sequencing-based and suffers many of the same disadvantages as

SAGE, but it is more efficient because separation of cDNA fragments is not required.

The most common methods in practice for large-scale analysis of the
transcriptome employ DNA microarrays, either robotically spotted or microfabricated.
Such arrays permit biologists to monitor 5-10,000 genes per experiment in most
implementations, for example, by using a DNA chip, provided that the experiment .
begins with large amounts of starting sample. Thus, RNA extraction must be from
sizable amounts of tissue, cell or embryo cultures, or that the initial RNA sample must
be amplified via various PCR-based strategies. It would be highly desirable to
eliminate amplification steps and to instead make measurements of RNA presence

and levels directly.

Methods using microarrays suffer various limitations. First, microarrays rely
on hybridization to cDNAs or oligonucleotides that are bound to the surface of a solid
support. The kinetics and physics of such interactions are poorly understood and
difficult to optimize in comparison to hybridization interactions in liquid phase. For
example, inconsistencies can be introduced during the creation of DNA samples that
are deposited or synthesized on the solid matrix. Furthermore, diffusion parameters
and the limited accessibility of DNA fixed onto the chip to test samples all conspire to
make quantitation and reproducibility difficult. Second, microarrays require a
relatively large amount of input RNA to achieve high sensitivity, particularly when
rare genes are assessed. Third, microarrays have a limited dynamic range. Cells
express RNA significantly over four or five orders of magnitude, and microarrays are

only capable of working within one or two orders of magnitude. These issues of input
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material severely constrain their applications in biology where the investigator wants
to assay the transcriptome in small groups of cells or individual cells. This arises
often in developmental biology, neurobiology and increasingly in other biological
fields. Arrays typically require material from 10° cells or more per 10,000 genes
measured. Fourth, microarrays are technically difficult to fabricate, and have a high
per-experiment cost. Finally, quantitatively accuracy is limited since microarrays |
meant to deliver identical results differ by greater than 200%, which is greater than
biologically significant differences in gene expression. Sensitive computer algorithms
used to evaluate microarray data do not rectify this problem since they perform poorly

with high or variable noise levels in the data.

There is thus a need for a highly sensitive method for detecting nucleic acids

in biological samples. The present invention meets that need and more.

SUMMARY OF THE INVENTION

In one embodiment, the invention provides a method of detecting a specific
nucleic acid in a sample. The method includes contacting the nucleic acid with a first
oligonucleotide linked to a selector tag and a second oligonucleotide linked to a
detector tag, in a reaction mixture under conditions that allow the first and second
oligonucleotides to specifically hybridize with the nucleic acid. The first and second
oligonucleotides hybridized in such a way that the first oligonucleotide is located
immediately adjacent to the second oligonucleotide to form adjacently hybridized first
and second oligonucleotides. Next, the adjacently hybridized first and second
oligonucleotides are ligated to form a ligated oligonucleotide, and the detector tag

associated with the ligated oligonucleotide is identified.

Another embodiment of the invention provides a method of detecting a
plurality of specific nucleic acids in a sample. The method includes contacting each
specific nucleic acid with an oligonucleotide pair in a reaction mixture under
conditions that allow the oligonucleotide pair to specifically hybridize to the nucleic
acid such that the oligonucleotide pair members are located immediately adjacent to
each other thereby forming an adjacently hybridized oligonucleotide pair. Each

oligonucleotide pair comprises a first oligonucleotide linked to a selector tag and a
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second oligonucleotide linked to a detector tag. Each adjacently hybridized
oligonucleotide pair is ligated to form one or more ligated oligonucleotides; and the

one or more detector tags associated with the one or more ligated oligonucleotides is
identified.

Still another embodiment of the invention provides a method of detecting a
nucleic acid in a sample. The method includes amplifying the nucleic acid with a
primer pair to form a dual-tagged amplification product in a reaction mixture. The
primer pair is a first oligonucleotide linked to a selector tag and a second
oligonucleotide linked to a detector tag. Following amplification, the detector tag

associated with the dual-tagged amplification product is identified.

Yet another embodiment of the invention provides a method of detecting a
nucleic acid in a sample. The method includes contacting the nucleic acid with an
oligonucleotide linked to a detector tag under conditions that allow the
oligonucleotide to specifically hybridize to the nucleic acid to form a mixture of
hybridized oligonucleotide and unhybridized oligonucleotide. A next step includes
separating the hybridized oligonucleotide from the unhybridized oligonucleotide; and
identifying the detector tag, thereby detecting the nucleic acid.

Another embodiment of the invention provides a kit containing an
oligonucleotide primer pair and an agent that binds to the selector tag. The primer
pair includes a first selector oligonucleotide linked to a selector tag and a second

selector oligonucleotide linked to a detector tag.

Still another embodiment of the invention provides a kit containing a first
selector oligonucleotide linked to a selector tag, a second selector oligonucleotide

linked to a detector tag, and a DNA ligase.

Another embodiment of the invention provides libraries of oligonucleotides.

The oligonucleotides can be linked to detector tags and selector tags.
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BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows the design of three different detector oligonucleotides (SEQ
ID NO:1, SEQ ID NO:3, and SEQ ID NO:5) shown annealed with two corresponding
target RNAs (SEQ ID NO:2 and SEQ ID NO:4). In use, the linker (CL) joining the
oligonucleotide to the detector tag would be cleaved after those oligonucleotides that
have hybridized with target RNA (or DNA) are separated from detector
oligonucleotides that have not annealed (e.g., tag 3). The liberated tags (1 and 2)
would then be mixed with isotopic internal standards and detected by MS. The
squares and triangles, in the peptoid implementation, represent peptoid monomers of

different molecular weights, combined in a library having a known distribution.

Figure 2 shows the schematic for use of mass tagged detector
oligonucleotides. Detector oligonucleotides are as shown in Fig. 1. An alternative
separation scheme would first remove all single stranded DNA, thus removing

unhybridized material before the poly A or other enrichment for hybridized material.

Figure 3 shows the use of selector oligonucleotides and ligation to increase
specificity of mass tagged expression detection and to improve signal to noise ratios.

Example uses standard oligonucleotide ligation and biotin/avidin separation.

Figure 4 shows peptoids or N-substituted glycines and their relationship to
peptides. Oligomers of length two to approximately forty residues can be formed.
The four structures at the bottom of the figure are exemplary peptoid residues.

Figure 5§ shows peptoid synthesis via the method of Figliozzi et al. (1996).
Variable R or R' represent the variable side chains chosen from among the over one
thousand commercially available amines. The first step is an acylation, followed by
the second step, a nucleophilic substitution. These steps are alternated until the
desired chain is obtained, at which point any groups that require it are deprotected and

the oligomer is cleaved from the resin.

Figure 6 shows the scheme for synthesizing a rational library of peptoids for
use as detector mass tags. An interactive computer program can perform these tasks

and assist in designing the most useful libraries.
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Figure 7 shows the number of possible peptoids of unique mass, L, barring
coincidences of different structure yet identical mass. M = length of polypeptoid and

N = number of monomers of unique mass.

Figure 8 A and B shows cumulative combinations of peptoids. The variables
are the same as in Figure 7, but for a given M, all peptoids that are shorter than M are

also included.

Figure 9 shows a variety of strategies for linking the oligomeric mass tag to
the oligomeric deoxyribonucleic acid. Both are grown on solid supports using a
variety of possible growth chemistries. Some of these have the advantage of being
“one-pot,” others allow pre-purification, and others prevent certain undesirable

chemical incompatibilities.

Figure 10 shows three molecules synthesized on a commercial
oligonucleotide synthesizer. N1 is simply dT-10, and then it is modified with a
disulfide-containing chain and an amide 5' terminus, both available from Glen
Research. MALDI-TOF spectra of these samples are in Figures 11a-c. The terminal

amine may be used as a site to initiate peptoid synthesis.

Figure 11A shows an orthonitrobenzene moiety that can be photcleaved at the

location indicated by the arrow by long wave UV light.

Figure 11B shows a phosphoramidite for automated synthesis of DNA,
available from Glen Research Corp., it that makes use of the orthonitrobenzene

moiety to provide a photocleavable link..

Figure 11C shows that using 3-Maleimidopropionic acid, a peptoid can be
modified to have a terminal maleimido group, which is specifically reactive with thiol

groups

Figure 11D shows the final steps of conjugation where the peptoid and
oligonucleotide are reacted at pH 7.2 in phosphate buffer for 20 hours to form

conjugates.
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Figure 11E shows another conjugation scheme that involves making a
N-bromoacetyl peptoid, then reacting it with a disulfide oligonucleotide in the

presence of TCEP (tris (2-carboxyethyl)phosphine.

Figure 12 shows the method of peptoid-oligonucleotide conjugate synthesis
using the branched phosphoramidite. This method protects the ODN and the linker
from peptoid synthesis chemistry.

Figure 13 shows N-Succinimidyl 3-(2-pyridyldithio) proprionate (SPDP)
hetero-bifunctional crosslinker (Pierce Chemical) for condensing solution phase
oligonucleotides and peptoids with a cleavable, disulfide bond. Literature reports low
amounts of undesired cross-products. This scheme could be effected with either the

peptoid or oligonucleotide still on support, for ease of separation.

Figure 14 shows Sarcosine-Proline-Sarcosine-Proline, made on a commercial
peptide synthesizer using commercially available FMOC-Sarcosine. In actual

implementation, an amide cap was added to the C-terminus.

Figure 15 shows the scheme for creation of thio-ether coupled photocleavable
peptoid-ODN conjugate. There are a large number of suitable, commercially

available maleimido reagents that could be substituted for EMCS.

Figure 16 shows that by mixing a pre-quantitated, cousin library of mass-
shifted isotopic peptoids, duplex peaks appear on the spectrograph. The relative
height of each peak in a duplex reflects the relative abundance of the two species.
This overcomes the problem of deconvoluting complex mixture spectra. Five-fold
deuteration of an aniline base is shown. C'> bromoacetic acid is another viable

strategy.

Figure 17 shows a strategy in which the B-type tags were used as detectors for
a second library of mRNA. Thus the relative abundance of each would express the

relative differences in gene expression between those two cell types.

Figure 18 shows incorporating chromatography with the isotopic scheme for

MS detection. This allows fewer duplexes to be read at a time, enhancing the signal-
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to-noise ratio. Perfect chromatographic separation is not necessary as long as the

masses of the tags are unique.

Figure 19 shows an example of the use of peptoid mass tags on a very large

scale with applications for the microfabricated scheme.
Figure 20 shows the method for use of MAGE on a microfabricated basis.

Figure 21 shows four isotopically shifted peptoids that are chemically
identical and each differ by two Daltons. D,-bromoacetic acid was used for one

acetylation in oligomer B, two in oligomer C and three in oligomer D.

Figure 22 shows that by using two complete sets of peptoid conjugates, one
isotopically shifted from the other, two samples can be interrogated simultaneously,

producing comparative data like microarrays.

Figure 23 shows a MALDI TOF spectrum of an n-bromoacetyl peptoid with
doublet peaks because bromine is found in nature in two isotopes 2 AMU apart in
nearly equal quantity. Thus, not only is the correct mass evidence of the species, but
so are the doublet peaks. This is a pentamer of methoxyethylamine with a

bromoacety] tail.

DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a method to detect and quantitate one or more
specific nucleic acids in a sample. One major use is for the assay of the transcriptome
(the set of RNAs expressed in a given sample of cells, tissue, or organisms) or portion
thereof. The invention can be used to assay specific DNA sequences in chromosomal
DNA or in DNA samples cloned and amplified by PCR or by other methods. The
nucleic acids detected can be quantified using mass spectrometry in combination with

isotopically labeled standards.

Invention methods address many of the drawbacks in currently available
methods for assessing gene expression. Invention methods, for example Mass-
Spectrometric Analysis of Gene Expression (MAGE) allow a parallel, unambiguous

quantification of differentially expressed genes, and would be particularly suited to
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quantifying those genes that expressed in low abundance. The method has a dynamic
range at least as large as that of the transcriptome itself, MAGE can be performed on
a minimum amount of material, as little as a single cell, resulting in reliable
quantification. MAGE also provides a method for simultaneously measuring nucleic
acid abundance more easily than two at a time (i.e., greater-than-two-color assay).
Furthermore, invention methods can be practiced with starting material from total

RNA or merely cell lysate, instead of purified mRNA.

MAGE would provide data with great robustness and well understood error
sources, so that the data would have the maximum amount of utility in the variety of
data mining techniques that are being developed. This tool would also eliminate the
need for reliance on housekeeping genes as standards, and it would be capable of
providing transcript counts like SAGE, but without the expense or difficulty of
sequencing. The assay should be simple to operate, based on well-understood

physics, and be as rapid and low-cost as possible.

The invention provides a method of detecting a specific nucleic acid in a
sample. Specific nucleic acids are typically messenger RNA (mRNA) or cDNA and
therefore code for a gene of interest. In addition specific nucleic acids of other types,
i.e., hnRNA, rRNA, tRNA, snRNAs, and the like are also detectable by invention
methods. RNA can be obtained from any organism and collected from a single cell,
group of cells, tissues or organs. The transcriptome contains a wide variety of mRNA
species. The majority of genes in the genome are expressed in very small quantities
(Table 1). Furthermore, most of the very tightly regulated genes, which are of great
interest , are in this scarce category. The total number of mRNA molecules in each
class can be estimated by multiplying the estimated copies per cell of each mRNA ‘
sequence by the number of different mRNA sequences each class. Each specific

nucleic acid contains at least one known sequence that serves as a target sequence.
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For each target sequence that one wants to detect, one or more
oligonucleotides are designed that specifically hybridizes with the target sequence.
Oligonucleotides have a tag linked to it, with such tag being removable under
appropriate conditions. Two classes of tags are used in the invention: detector tags

and selector tags.

As used herein, a detector tag is a chemical moiety that can be detected by
mass spectrometry which also provides a means of quantification. Each nucleic acid
target sequence is associated with a tag having a specific mass. Peptoids are useful
tags because they are compatible with nucleic acid hybridization of the

oligonucleotide to which they are attached.

Peptoids, as used herein, are oligomers of N-substituted glycines (or
“oligopeptoids,” (see Fig. 4, and Figliozzi et al., 1996, Methods Enzymol. 267:437-47,
incorporated by reference herein). Peptoids are well suited for generation of tags and
also for creating combinatorial libraries of such tags (see e.g., Linusson et al. (1999)
Molecular Diversity 4:103-114). They have a single repeated linking chemistry
scheme, a wide variety of monomer substitutions can be chosen, and they are
thermally, chemically, and biologically stable. The behavior of peptoids in high-
performance liquid chromatograph (HPLC) and capillary electrophoresis has been
well studied (see e.g., Robinson et al., J. Chromatography B (1998) 707:247-255;
Robinson et al., Journal of Chromatography B, (1998) 705:341-350; Barron.
Vreeland, Polymer Preprints (2000) 41:1018-1019; Heerma et al., J. Mass
Spectrometry, (1997). 32:697-704; and Wagner et al., Combinatorial Chemistry and
High Throughput Screening, (1998) 1:143-154) Creation and manipulation of the
libraries of peptoid tags via a robotic protocol are relatively easy because the peptoids

are synthesized on solid phase supports and have a high yield at each step. Isotopic
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tags, by used of *C-bromoacetic acid or isotopic amine residues, can easily be
incorporated into peptoids. Peptoids do not naturally occur and thus “look” distinctly

different from peptides and other naturally occurring components of cell lysates and

other biological samples.

Synthesis of peptoids is accomplished by a two-step submonomer reaction
cyle using methods known to those of skill in the art (see Figure 5). An initial
acylation step is followed by nucleophilic substitution. These two steps are repeated
until a peptoid chain of the desired length is reached. Substitutent groups are then
deprotected (if protection from synthesis conditions was needed) and the peptoid is

cleaved from the resin.

There are over one thousand candidate amines that can be purchased
commercially for use in peptoids, but perhaps as few as twenty or thirty highly
suitable ones can be used in invention methods. Exemplary amines that can be used
in invention methods include benzylamine, methoxyethylamine, propylamine,
phenethylamine, glycine, serine, aniline, butylamine, pentylamine, hexylamine,
cyclohexylamine, methylcyclohexylamine, bromoaniline, choloroaniline,
ethanolamine, furfurylamine, methylamine, ethylamine, 2,2-diphenethylamine,
tyramine, ethylcyclohexylamine, methoxypropylamine, butylene diamine (for creating
peptoid dendrimers), and the like. Essentially it is desirable that incorporation of one
or more amines results in peptoids that are water soluble and do not bind
nonspecifically to nucleic acids, e.g, DNA, or other peptoids. The amines should
substitute, i.e., be incorporated into the peptoid, with high yield, and the amine-
containing products should be bromoacetylated in high yield. It is desirable that the
amines included in the peptide have a range of masses and general hydrophobicity so
that the resulting peptoids can be separated using a variety of convenient
chromatographic methods. The amines should not contain any unprotected
functionalities that will interfere with any other chemistry involved in invéntion

methods.

Peptoids can be produced in small numbers using solid phase synthesis vessel

methods, or in large numbers in parallel using robotic protocols much like those for
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peptides and oligonucleotides. They are grown on the same solid supports used for
peptides. They can be extended to longer than thirty bases if necessary, in high yield,
and are cleaved from the support in a fashion that depends on the support chosen, but

often acid or base labile linkers are chosen since they are easily available.

Peptoids can serve as detector tags because they are chemically compatible
with the other chemistries required and they are relatively easy to make. Furthermore,
the N-substitution, independently chosen on each repeating peptoid unit, allows the
construction of a library of peptoids having a rationally determined distribution of one
or several properties, such as mass, charge, size, shape, fluorescence, polarity, etc.
The peptoids can range in mass from about 300 Da to about 5000 Da. For example, a
peptoid constructed using five successive methoxyethylamine submonomer

substitutions weighs 592 Da and is quite suitable.

When more than one peptoid detector tag is in a reaction mixture, i.e., when
more than one nucleic acid in a sample is detector or when a peptoid library is used,
the peptoids should be separated by at least as much mass as each peptoid is separated
from its isotopic control, e.g., if peptoid and peptoid isotopic control are separated by
5 Da, then the next peptoid (for the next gene) should be another 5 or so Da heavier.
Alternatively, the peptoids could be staggered to fit between each other, assuming that
one can compensate for natural isotope abundances. With respect to charge, a
negative or neutral charge is desirable. One or more negative charges per amine
submonomer can be used. Total charge per peptoid can range from zero to a number
depending on the length of the peptoid and choice of amines. When ten amines with a
free carboxylic acid each (e.g., glycine) are used, a -10 charge is obtained. This can
be determined using a zeta potential machine. A negative charge would not attract
DNA, while a positive charge would bind DNA non-specifically, interfering with the
recognition event of hybridization. With respect to size of peptoids, bulky amines
like diphenethylamine could restrict folding/bunching of the peptoid while small
amines such as ethylamine or propylamine will reduce the peptoid's overall size and
might allow more bunching. The relative bulkiness of the molecule would affect its

properties in separation techniques that use size such as size exclusion
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chromatography. Certain particle sizes can be large enough to visualize with scanning
electron microscopy. Peptoid oligomers are a variety of three-dimension shapes.
They are known to form various structures, some as elaborate as alpha-helices. The
degree of hydrophobicity of a peptoid is a critical property. The peptoid will need to
be almost completely water soluble. Methoxyethylamine, ethanolamine, glycine, and
the like, for example, are more water soluble than benzylamine, proylamine, and the
like, and peptoids formed from those amines have similar characteristics. A peptoid
trimer of benzylamine submonomers is not water soluble. A peptoid pentamer of two
methoxyethylamines, two benzylamines, and a glycine, is water soluble.
Additionally, to aid in tracking the peptoids during the method, peptoids can be
tagged with a moiety that absorbs or fluoresces, e.g., fluorescein, rhodamine,
bodipy™ differently from the sample, e.g., a cell lysate, and other elements involved
in invention methods. An example of this rational design is depicted in Figure 6.

Numerical examples follow in Figures 7 and 8.

A large number of peptoids of unique masses can be generated using only a
small number of primary amines of different masses (Table 2). L oligomers of unique
mass (combinations of monomers, not permutations of monomers) are possible given
a maximum oligomer length of M and N primary amines of different mass to use as

submonomers. The analytical expression that generates the data in Table 2 is a

. . . i+ N-1
cumulative combination expression: L = Z N .

i=1

A large number of peptoids of unique masses can be generated using only a
small number of primary amines of different masses (Table 2). L oligomers of unique
mass (combinations of monomers, not permutations of monomers) are possible given
a maximum oligomer length of M and N primary amines of different mass to use as

submonomers. The analytical expression that generates the data in Table 2 is a

. o : <(i+N-1
cumulative combination expression: L = Z T .

i=1
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The generative function for the examples shown does not account for species
with identical masses but different structures—these species can be eliminated if the
library is created combinatorially, or not created in the first place if the library is
created piece-wise. The entire human genome could be encoded with nine-mers
formed from only nine different primary amines. Significant clusters of genes could
be studied with tetramers formed from four different primary amines. It is probably
beneficial to use shorter peptoids to increase mass resolution in the detection phase

and increase the oligomer-to-oligomer differences for chromatography.

Table 2
=1 2 3 4 5 6 7 .8 9

N=1 | L= 2 3 4 5 6 7 8 9

2 2 5 9 14 20 27 35 44 54

3 3 9 19 34 55 83 119 164 219

4 4 14 34 69 125 209 329 494 714

5 5 20 55 125 | 251 461 791 1286 | 2001

6 6 27 83 209 | 461 923 1715 3002 5004

7 7 35 119 | 329 | 791 | 1715 3431 6434 | 11439

8 8 44 164 | 494 | 1286 | 3002 | 6434 | 12869 | 24309

9 9 54 | 219 | 714 | 2001 | 5004 | 11439 | 24309 | 48619

A library of peptoids with unique, masses distributed over a wide range, and
having properties that are compatible with hybridization conditions, cleavage
conditions, and enzymatic steps, e.g., ligation, can be designed. The library can be
catalogued so that each unique mass is associated with the oligonucleotide that it tags.
Optionally, amines can be incorporated into certain peptoids that give the peptoids a
strong and unique signature that can be readily observed with a detection device, to
allow easy quantitation of single species, and for the purposes of generating stock
solutions. For example, amines that provide peptoids with a strong signal using
UV/Visible detection can be used. Peptoids are also very stable to storage on resin or

as a lyophilized powder.

The manner in which the peptoid detector tag is linked to the oligonucleotide
is crucial for the success of invention methods. The linker must be relatively easy to

form and the chemistry used to form it must not damage the tag or the
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oligonucleotide. The reaction should be highly specific and allow complete
purification of the products which reduces the contribution to noise during the
quantitation step. Very importantly, the linker must resist breakage during any further
oligonucleotide preparation steps, the hybridization step, and any separation steps.
When the linker is cleaved, it must cleave in high yield, preferably quantitatively, in a
consistent manner. The chemistry used to cleave the linker must not damage the

detector tag, for example, a peptoid.

Several general strategies can be to generate an oligonucleotide to a detector
tag (see Figure 9 and Examples 1 to 4). Most start with a solid support such as a
resin. Using chemistry known in the art, DNA residues can be attached in a
sequential manner followed by attachment of a linker, followed by sequential
attachment of peptoid residues. Alternatively, peptide residues can be attached in a
sequential manner to the resin, followed by the linker, followed by sequential
attachment of DNA residues. In another strategy, a pre-formed peptoid having one or
more residues is attached to the resin, followed by attachment of DNA residues
connected together, i.e., an oligomer, which has a linker attached. The converse
strategy, i.e., attachment of a pre-formed oligomer followed by attachment of a
preformed peptoid having a linker attached. When a solid resin support is not used, a
pre-formed peptoid containing a linker can be attached to a pre-formed DNA residue.
The strategy chosen depends on whether pre-purification of the reaction product is

desired, and whether undesirable chemical incompatibilities can be avoided.

Detector oligonucleotides (when the detector tag is a peptoid) can be
constructed with a variety of schemes. Since both oligonucleotides and peptoids are
synthesized on solid-phase supports, one could synthesize them subsequently (or “on-
line”). This requires that either the peptoid be exposed to oligonucleotide synthesis
conditions, or that the oligonucleotide be exposed to peptoid synthesis conditions.
This has been done successfully with peptide-oligonucleotide conjugates, but a
considerable amount of adjustment has to be made to standard synthesis procedures,
which is not convenient with a shared facility synthesizer (Truffert et al., Tetrahedron
Letters, (1994) 35:2353-2356 and de la Torre ef al., Tetrahedron Letters, (1994)
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35:2733-2736. A further difﬁcuity is adapting peptoid chemistry, which is based on a
submonomer scheme that makes use of harsher reagents than that of peptide
chemistry, to the on-line synthesis scheme. The most straightforward method for on-
line synthesis is to produce the oligonucleotide of interest, add one of several
phosphoramidites that contain a cleavable linker, and then terminate the nucleic acid
portion of the conjugate with a 5 amine modification. This primary amine could be
used to initiate a peptoid synthesis. This process has a low yield and the purine
nucleic acids may not successfully withstand the direct acetylations used in peptoid
synthesis. Any one-pot scheme that is attempted requires significant modification of
either the peptoid synthesis conditions or the oligonucleotide synthesis conditions,

and considerable optimization. It also leads to a complex final purification step.

In a two-pot scheme, the oligonucleotides and peptoids are produced via
standard protocols, purified and kept for future uses. Oligonucleotide or peptoid, or
both, is modified either during their solid-phase syntheses, or afterwards, and they are
coupled. The final product mixture is simpler to purify than the result of the one-pot
scheme because there is only one representative of each species of oligomer, instead

of the normal mixture of partial products produced during solid-phase synthesis.

There are two major options for the linkage chemistry. Either the cleavable
moiety is added prior to the conjugation, which is done via a permanent linkage, or
the conjugation leads to the formation of a cleavable linker directly. In the latter
method, the typical choice would be to form a disulfide linker between the oligomers
under oxidizing conditions, which can later be reduced. The disulfide bond is not
exiremely stable across a variety of conditions, and the most worrisome trait of a
cleavable linker would be premature cleavage, because that would result in lost signal.
One method for performing a post-synthetic conjugation (Figure 13) that leads to a
disulfide bond is to make use of the heterobifunctional crosslinker SPDP (N-
Succinimidyl 3-(2-pyridyldithio)proprionate).

Alternatively, the cleavable rhoiety could be added prior to conjugation, either

to the peptoid or to the oligonucleotide. A commercially available phosphoramidite,
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the building block for automated DNA synthesis, contains a alkyl chain broken by a
disulfide bond. Normally, this is reduced post-synthesis so it can be used as a
terminal thiol group. If it were left on, a further phosphoramidite could be added 5° to
the disulfide bridge that contains a free amine. The amine could be used for a
permanent conjugation to a peptoid. One slightly modified version of this scheme
makes use of a commercially available branched phosphoramidite (Juby e al.,
Tetrahedron Letters (1991) 32:879-882) that has the Fmoc protecting group used for
peptide synthesis and the DMTO protecting group used for oligonucleotide synthesis
(Figure 12).

Another method for generating a cleavable linker is to make use of recently
developed bio-compatible photolabile moieties based on ortho-nitrobenzene (Figure
11A). No mechanism has been indicated yet, but if a polymer chain either passes
through the phenyl ring, or is adjacent to the phenyl ring, and the orthonitro group is
neighbor to another bond such as an amide or phosophodiester, then long-wave
ultraviolet light can cause the neighboring bond to cleave. The extent of cleavage and

the products depend on the configuration of the neighboring groups. Linkers based

‘on ortho-nitrobenzene are used often for solid-phase supports, when the chemistry to

be done on the solid phase involves both acidic and basic conditions, so a linker is

required that is stable to both acid and base.

The most efficiently cleaving implementation of the ortho-nitrobenzene
moiety was developed recently for use in DNA oligonucleotides (Olejnik et al.,
(1996) Nucleic Acids Research 24:361-366). Optimization of neighboring groups and
structures yielded a cleavable linker that is stable to acid and base, and cleaves
quantitatively in five minutes upon exposure to long-wave ultraviolet light Olejnik es
al., (1999) Nucleic Acids Research 27:4626-4631). This linker has been incorporated
into phosphoramidites and is now available commercially. One disadvantage of this
linker is that oligonucleotides containing it are difficult to characterize. MALDI is
often used for mass spectrometry of oligonucleotides, and since most MALDI systems
ionize the sample with an ultraviolet laser, the sample is partially cleaved in the

process. This property is used for solid-phase assays involving this linker (Hahner et
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al., (1999) Biomolecular Engineering 16:127-133). The most appropriate version of
this phosphoramidite is commercially available in a photocleavable-spacer version
(Figure 11B); A phosphoramidite for automated synthesis of DNA, available from
Glen Research Corp., it that makes use of the orthonitrobenzene moiety to provide a

photocleavable link.

Once the cleavable linker is incorporated into the oligonucleotide during the
automated synthesis, it is followed by a 5’ modifier that will allow the oligonucleotide
to be bound to the peptoid. One possibility is to use a 5’ amino modifier and continue
the synthesis of the peptoid on the same resin. This suffers from the disadvantages of
on-line synthesis as discussed herein. Another method would be to use the branched
phosphoramidite scheme (Fig. 12) with the photocleavable-spacer instead of the
disulfide bridge. This would allow the peptoid to be bound 3’ to the oligonucleotide
instead of 5°. A common method for post-synthetic conjugation yielding a peptoid 5’
to the oligonucleotide is to condense solution phase oligomers to form a thioether
bond. The oligonucleotide is synthesized with the cleavable linker, and then
terminated with a 5° thiol modification. The peptoid is synthesized separately, and
after the final primary amine is substituted, an extra acetylation step is performed
using 3-maleimidopropionic acid (Figure 11C). In the final steps, the peptoid and
oligonucleotide are reacted at pH 7.2 in phosphate buffer for 20 hours to form
conjugates (Figure 11D). Another conjugation scheme involves making a
N-bromoacetyl peptoid, then reacting it with a disulfide oligonucleotide in the

presence of TCEP (tris (2-carboxyethyl)phosphine (Figure 11E).

Removing the detector tag is performed by subjecting the a moiety having a
linked detector tag, for example, a ligated oligonucleotide according to invention
methods, to a de-linking agent. A de-linking agent, as used herein, refers to the agent
used to cleave the linker that attaches a detector tag to a nucleic acid. The mechanism
of the agent, for example, the chemical conditions, must be orthogonal to the other
chemical reactions used in the assay. De-linking agents include an acid condition, an
alkaline condition, visible light radiation, UV radiation, heat, a reducing condition and

an oxidizing condition.
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Invention methods include the step of contacting the nucleic acid of interest
with at least one oligonucleotide. An oligonucleotide is linked to a selector tag or to a
detector tag. Contacting is performed under conditions that allow the
oligonucleotides to specifically hybridize with the nucleic acid. Typically,
hybridization of mass-tagged detector oligonucleotides with the target nucleic acid
population is done under conditions of molar excess of oligonucleotide detectors to
target so that little or no desired target remains unhybridized, and under kinetic
conditions such that the hybridization is stopped near or beyond kinetic termination.
The reaction conditions are also chosen with attention to hybridization stringency so
as to favor stable interaction of detector oligonucleotides with their intended target
sequences, while at the same time being as unfavorable as is possible for interactions

of the detector with non-target RNAs.

As used herein, “specific hybridization” refers to hybridization under low
stringency, moderately stringent or highly stringent conditions which distinguishes
related from unrelated nucleotide sequences. (See, for example, the techniques
described in Maniatis et al., 1989 Molecular Cloning A Laboratory Manual, Cold
Spring Harbor Laboratory, N.Y., incorporated herein by reference),

In nucleic acid hybridization reactions, the conditions used to achieve a
particular level of stringency will vary, depending on the nature of the nucleic acids
being hybridized. For example, the length, degree of complementarity, nucleotide
sequence composition (e.g., GC v. AT content), and nucleic acid type (e.g., RNA v.
DNA) of the hybridizing regions of the nucleic acids can be considered in selecting
hybridization conditions. An additional consideration is whether target nucleic acids

are contacted in solution or rather than immobilized, for example, on a filter.

An example of progressively higher stringency conditions is as follows: 2 x
SSC/0.1% SDS at about room temperature (hybridization conditions); 0.2 x
SSC/0.1% SDS at about room temperature (low stringency conditions); 0.2 x
SSC/0.1% SDS at about 42°C (moderate stringency conditions); and 0.1 x SSC at
about 68°C (high stringency conditions). Washing can be carried out using only one

of these conditions, e.g., high stringency conditions, or each of the conditions can be
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used, e.g., for 10-15 minutes each, in the order listed above, repeating any or all of the

steps listed. However, as mentioned above, optimal conditions will vary, depending

on the

Following a hybridization between one or more detector oligonucleotides and
a preparation containing potential target nucleic acids, those mass-tagged primers that
have hybridized will be separated from the primers that have not hybridized with
target nucleic acids. Un-hybridized oligonucleotides can be present because all
legitimate targets, that is the nucleic acids of interest, are already hybridized, or
because there were no target nucleic acids, i.e., RNAs, complementary to a detector
oligonucleotide species. In certain embodiments of the invention, separation is not
necessary. In other embodiments, separation can be accomplished by several possible

means.

Physical separation of the hybridized detector oligonucleotides from non-
hybridized ones (and from other molecules in the reaction mixture) may be
accomplished by any of several strategies. These strategies can be designed to be
more or less rigorous for eliminating non-hybriciized material depending on the signal
to noise ratio required during identification of the detector tag. For small input
samples, more rigorous separation strategies are usually employed, with a reduction
for samples where larger input material is readily available. Contamination with other
non-tag material is a second consideration in separation strategies. In a simple form,
if the peptoid library is rationally designed, non-expected masses can be discarded.
The peptoids that serve as detector tags can also be modified to contain a variety of
useful chemical “hooks” or “probes” that would further facilitate easy separation,

such as fluorescence, charge, biotin, and the like.

To select hybridized over non-hybridized detector oligonucleotides when the
detector oligonucleotide is hybridized to mRNA, one separation method uses the fact
that virtually all mRNAs have a poly A tail at their 3’ end. Methods for purification
on the basis of the presence of poly A are well established. Oligonucleotides having
peptoid detector tags are well-suited to this type of separation because the peptoids do

not interfere with the separation. Similarly, the presence of 5° cap structures on the
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RNA can be employed. Using the poly A separation scheme, all mRNAs and detector
oligonucleotides that are stably associated with mRNA, would be separated from
unhybridized oligonucleotide. The power of the separation can be enhanced (with a
resulting increase in purification and downstream increase in signal to noise ratios) by
either combining this with another selection method or by performing multiple

iterations of this selection.

High-performance liquid chromatography or capillary electrophoresis are both
capable of purifying the probe-target duplexes. The addition of other selector
moieties can aid in selecting desired hybridization or amplification products, For
example, a distribution of fluorine atoms could be incorporated on the peptoids’
amine submonomers, and a fluorous HPLC column could be used to retain the peptoid

tags while unmodified nucleic acids pass through.

Another separation strategy takes advantage of the selector tag linked to
oligonucleotides, i.e., selector oligonucleotides. Various selector oligonucleotides
and separation (purification) methods associated with the various selector
oligonucleotides can be used in invention methods. Conjugation of a selector

oligonucleotide with a physical or molecular tag that can be used to separate the

- oligonucleotide allows the separation of unhybridized oligonucleotides linked to

selector tag and hybridized oligonucleotide linked to selector tag, for example selector
oligonucleotide hybridized to target nucleic acids. The selector tag can be used to
separate the selector oligonucleotide from a reaction mixture using an agent that binds
to the selector tag. For example, a biotinylated selector oligonucleotide can be
separated using avidin/strepavidin binding methods. A selector oligonucleotide
tagged with digoxygenin can be separated using anti-digoxygenin affinity reagents.
An oligonucleotide linked to a magnetic selector tag, for example, paramagnetic
beads, can be separated using a magnetic field. Selector tags can be enzymes with
selection by enzyme activity (or the converse). The selector tag can be a fluorescent
dye or dye impregnated bead that would allow the use of optical sorting, or would
serve as a detection device during or following chromatographic separation. The

selector tag can have a very prominent chromatographic feature such as charge or size
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that would allow simple purification using an ion-exchange column or other column.
Exemplary selector tags include tags: a fluorescent compound, a luminescent
compound, a chemiluminescent compound, a radionuclide, a paramagnetic

compound, and biotin.

In some embodiments of the invention, selector tags are the same for all
selection primers when a plurality of selector oligonucleotides is used, rather than
specific for each target as the detector tags are. In another embodiment, more than
one family of selector primer might be used in the same hybridization mix. This
would act as an internal standard within each experiment or to generate more than one
family of products for later detector tag analysis, i.e., multiplexing. For example, in a
simple form, two selector tags can be used with each selector tag used in combination
with the same group of detector tags to detect the same group of targets. The
hybridized target nucleic acids would be separated from the reaction mixture and into
two groups based on the selector tag, and processed independently (removal of the
detector tags). Since the selector tag does not interfere with hybridization, each
selector tag-selected nucleic acid group should be the same. The two-fold redundancy

provides and internal control for method reliability.

In an alternative embodiment, a primer family can be used to increase the
multiplexing capacity of the method. For example, when identification by mass
spectrophotometric analysis is limited to simultaneously detecting about 20 t030
peptoids, a family of selector tags, from about 5 to about 10, about 15, or about 20,
can be used in combination with a set of detector probes. In other words, the same
detector tag can be associated with more than one oligonucleotide probe or primer and
each detector tagged oligonucleotide that hybridizes with a unique target polypeptide
target sequence will be “binned” with one selector tag from a family of selector tags.
This strategy can increase the total multiplexing capability in a reaction mixture by

one to two orders of magnitude.

Any affinity scheme that would allow physical isolation of selector
oligonucleotides from non-hybridized detector primers as classes of molecules could

be used, but the enhancement of specificity is retained only if they are ultimately co-
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purified due to the fact that a selector primer has become attached to a detector primer
because both have annealed to the same RNA or DNA target. The type of selector tag
employed depends on cost, yield, ease of manipulation, efficiency and ability to
obtain good separations on varied sample quantities. In some applications of

invention methods, very small amounts of sample are contemplated.

For both selector and detector classes of oligonucleotide, the particular
nucleotide sequences used and the length of those sequences can be optimized for
each invention method and for each particular method use. A typical length for
oligonucleotides (RNA or cDNA) linked to detectors or selectors ranges from about
five to forty nucleotides, but some considerations might make either shorter or longer
ones appropriate. In any case, sets of detectors and selectors matched for similar Tm
(a measure of melting temperature) when they are to be reacted together in the same
mixture (multiplexed) is desirable. Short oligonucleotide sequences are likely to
anneal to multiple genes. Short oligonucleotides (e.g., 5 to10 mers) can be used in
order to detect the total quantity of the complementary sequence(s) in the sample, for
example, to identify a specific nucleotide motif. A motif may identify a gene family,
or one gene function, but may not necessarily identify the gene itself. Long
oligonucleotides (about 50 to 70-mers or as long as 100 mers) can be used to ensure
as much specificity as possible. This would be helpful when the sample contains a
very complex mixture of nucleic acids or when detecting a sequence in a sample that
has two or more homologous sequences. When invention methods are used to
identify gene expression in a sample, the oligonucleotide length chosen for the primer

or probe is as short as necessary to specifically identify each gene

Testing of sequence sets to exclude undesirable cross hybridization with each
other (both informatic tests and bench tests) can be used to optimize multiplex
determinations. It is envisioned that a set of detector oligonucleotides and selector
oligonucleotides would eventually be designed to be compatible with each other and
to include all genes for a given organism or all gene products. Subsets could then be
used at will, as the experimental or clinical case demands. Modified oligonucleotides

with alterations in bases, sugar, base modifications or backbone modifications might
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become desirable to enhance stability or to facilitate later separation from the tags or

to improve their shelf-lives.

Following separation using selector tag, the detector tag is removed from the
hybridization product. The hybridization product refers to the nucleic acid of interest
to which is hybridized an oligonucleotide linked to the detector tag, and, optionally, in
certain embodiments, an oligonucleotide linked to a selector tag. Strategies for
removal of the detector tag are identified herein. Following its removal from the
hybridization product, the detector tag is identified, allowing detection, and

optionally, quantification of the nucleic acid of interest.

Invention methods exploit the advantages of mass spectrometry for nucleic
acid detection and the measurement of nucleic acid abundance. This is not as
straightforward as merely submitting an unknown mixture of nucleic acids to mass
spectrometric analysis, because the mass of a transcript alone does not determine its
sequence uniquely. Furthermore, the signal strength of an individual component in a
mixture does not correspond to its abundance in the mixture since different
compounds ionize to different extents in ESI (electrospray ionization) or MALDI
(matrix-assisted laser desorption ionization) spectrometry. Mass spectrometry
methods can be used to identify oligonucleotides in a mixture (Pomerantz et al., J.
Am. Chem. Soc., 119:3861-3867) but for the reasons described above, mass
spectrometry can not be directly used to measure the oligonucleotides. An assay that
makes use of mass spectrometry for quantification is desirable, however, because
mass spectrometer sensitivity has reached the zeptomole region (about 6000
molecules) and below, and dynamic ranges in excess of six orders of magnitude. This
level of sensitivity exceeds any available method for reliable single-transcript
quantification, much less any multiplexed method, and is invaluable when assessing
of scarce transcripts. Thus, an indirect method of quantification using mass

spectrometric analysis is used in invention methods.

The method of isotopic internal standards will be used to quantify the tags. A
scheme based on isotopic labeling can ameliorate complications of quantification due

to variations in ionization and other effects (see Figures 16 and 17). Each peptoid
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mass tag will have a chemically identical “cousin” that has been isotopically labeled
to be a fixed amount heavier. For example, three carbons of the backbone might be
1C, or the aromatic ring of a benzylamine side chain could be five-fold deuterated.

The particular amount of the shift will depend on the type of mass-spectroscopy and

the presence of interfering natural isotopes.

Mass Spectrometric analysis provides high sensitivity and dynamic range
(Poulsen et al.,. Rapid Communications in Mass Spectrometry (2000) 14:44-48; Walk
et al., ESI Fourier Transfer Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-
ICR-MS): A Rapid High-Resolution Analytical Method for Combinatorial Compound
Libraries. Angew. Chem. Int. Ed., 1999. 38: 1763-1765). The application of mass
spectrometry, especially ESI-FTICR (Fourier Transform Ion Cyclotron Resonance) to
deconvolution of combinatorial mixtures is a rapidly growing field (Fang et al.,
Combinatorial Chemistry and High Throughput Screening, (1998) 1:23-33; and
Nawrocki et al., Rapid Communications in Mass Spectrometry, (1996) 10:1860-1864;
Tutko et al., Rapid Communications in Mass Spectrometry (1998) 12:335-338). ESI
is a particularly convenient ionization method, since it is used with chromatographs
and is high throughput when compared to MALDI (see Wu and Odom, Analytical
Chemistry, (1998): p. 456A-461A). If MALDI is necessary to resolve the peptoids, it
will make data interpretation easier if the peptoid masses are not too crowded on the

spectra.

With the right equipment, zeptomole detection is possible, and the dynamic
range is beyond six orders-of-magnitude and tunable. For genes that are known to
express in very small amounts, small amounts of isotopic standard can be added, so
the peaks will be comparable. Similarly, for highly expressed genes, large amounts of
standard can be added. Using the cousin peptoids as internal standards could produce
exact inventory data on unknown nucleic acid concentrations, much like the SAGE
method. However, to eliminate the potential need for carefully standardizing a library
of cousins, the entire MAGE assay could be run on two samples (Figure 22). In the
case of gene expression, cells in two different states could be used. One sample

would be exposed to the regular peptoid library, the other, to the modified peptoid
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library. After the peptoid tags are purified, the two resulting mixtures are
cotransduced in the mass spectrometer. The relative peak sizes then are a measure of
the relative gene expression in the two samples, producing data much like that of

DNA microarrays.

Oligonucleotide or nucleic acid sequence refers to a polymeric form of
nucleotides. The terms include, for example, a recombinant DNA or which exists as a
separate molecule (e.g., a cDNA) independent of other sequences. The nucleotides of
the invention can be ribonucleotides, deoxyribonucleotides, or modified forms of
either nucleotide. The term polynucleotide(s) generally refers to any
polyribonucleotide or polydeoxyribonucleotide, which may be unmodified RNA or
DNA or modified RNA or DNA. Thus, for instance, oligonucleotides, as used herein,
refers to, among others, single-and double-stranded DNA, DNA that is a mixture of
single- and double-stranded regions, single- and double-stranded RNA, and RNA that
is mixture of single- and double-stranded regions, hybrid molecules comprising DNA
and RNA that may be single-stranded or, more typically, double-stranded or a mixture

of single- and double-stranded regions.

In addition, the oligonucleotides or nucleic acid sequences may contain one or
more modified bases. Thus, DNAs or RNAs with backbones modified for stability or
for other reasons are “oligonucleotides™ as that term is intended herein. Moreover,
DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as
tritylated bases, to name just two examples, are polynucleotides as the term is used

herein.

In embodiments of the invention, when a library of peptoids is used as
detectors, a second, shifted library is constructed in a known concentration. This
library is mixed with the hybridized and purified tags, and serves as an internal
standard. With no chromatographic separation, the resulting spectrum will have a
large number of peaks, each with a cousin a fixed distance away. The key matter,
then, is that because both tags are chemically similar, they will ionize to the same
extent. Thus, relative to the internal standard, the amount of the unknown tag can be

assayed by comparing the peaks.



WO 02/10186 PCT/US01/24021

10

15

20

25

27

Additionally, a chromatographic step, such as LC-MS or CE-MS, can be
added. This will produce the data one or several peaks at a time, and should increase
the signal to noise ratio. Again, because the cousin tags are chemically identical, they

will always elute at the same time, and show up on the spectrum as a duplex (Fig. 21).

Another method that might be used is to have a method of cleaving detector
from selector tags, and add an isotopic standard selector tag. This could be used for

assaying the total amount of mRNA hybridized as a control.

One key area that the use of MS addresses is sensitivity and dynamic range.
With the right equipment, single-molecule detection is possible. And the dynamic
range is also very great, and tunable. For genes that are known to express in very
small amounts, small amounts of isotopic standard are added, so the peaks will be

comparable. Similarly, for highly expressed genes, large amounts of standard are
added.

The detached tags are analyzed by mass spectrometry, using an internal
standards method described later. At the end of this process, the user will deduce
whether a particular RNA sequence was present in the original sample (cell lysate,
RNA preparation, or other biological sample containing RNA or a nucleotide
representation of the RNA such as cDNA) by the presence of the corresponding mass
signal from the detector primer (or group of detector primers) that were specific for
that mass signal from the detector primer (or group of detector primers) that were
specific for that RNA. The presence and absolute or relative amount of a given mass
tag will reflect the amount of the target complementary RNA present in the original
sample. One can also detect or quantitate sequences corresponding to different parts
of a single RNA or cDNA polynucleotide. In general, multiple different
oligonucleotides directed at different parts of the same gene will be used as
informative internal controls, and (if the same mass tag is used for multiple
oligonucleotides directed at the same target) this can also be used to raise sensitivity
for a rare target RNA. Other variations on these latter manipulations might also be

used in special biological instances to measure the relative concentrations of intron
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versus exon sequence for a single gene in the sample of the level of 5 end versus

more 3’ sequences for a particular gene’s transcript population.

In another embodiment of the invention, a method is provided for detecting a
specific nucleic acid in a sample. The method includes contacting the nucleic acid
with a first oligonucleotide linked to a selector tag and a second oligonucleotide
linked to a detector tag under conditions that allow the first and second
oligonucleotides to specifically hybridize with the nucleic acid such that the first
oligonucleotide is located immediately adjacent to the second oligonucleotide, thereby

forming adjacently hybridized first and second oligonucleotides.

In this method, the target is cDNA made from the RNA in the sample and the
detector primers are DNA or any variation on DNA that can be used by DNA ligase
as a substrate. Following hybridization to target cDNA with detector primers and
with selector primers, a reaction is performed on the mixture using DNA ligase as the
catalyst. Such ligation reactions result in formation of a covalent phosphodiester link
between the 3’-most residue of one oligonucleotide and the 5°-most residue of the
adjacent annealed oligonucleotide or polynucleotide. The absolute and highly precise
requirement for the placement of detector and selector oligonucleotides on the same
target cDNA is extremely powerful for improving specificity. For example, ifin a
single hybridization method, the specificity = X, using this method should improve
specificity to a value greater than X squared. Thus the selector and detector
oligonucleotides must be precisely adjacent relative to each other and the nucleotides
that are joined by ligase must be correctly base paired with the target cDNA. Other
embodiments of the invention employ other oligonucleotide species, e.g., RNA,

various synthetic analogs, and corresponding ligases, e.g., RNA ligase.

The contacting is carried out in a reaction mixture. Following hybridization,
in the reaction mixture, there are the adjacently hybridized first and second
oligonucleotides, that is a nucleic acid with the first oligonucleotide specifically
hybridized to it and the second oligonucleotide specifically hybridized to it so that the
first and second oligonucleotides are immediately adjacently hybridized. Also

following hybridization, there are unhybridized first oligonucleotide linked to selector
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tag, unhybridized second oligonucleotide linked to detector tag, first oligonucleotide
hybridized to a nucleic acid without hybridization of second oligonucleotide, and

second oligonucleotide hybridized to a nucleic acid without hybridization of first

oligonucleotide.

As used herein, “immediately adjacently hybridized” refers to two nucleotides
that are complementary to neighboring sites on a nucleic acid so that following
hybridization, the 5°-P and the 3°~OH termini of the oligonucleotides can be ligated
by the formation of a 5°-3’ phosphodiester bond. Ligases such as DNA ligase, for
example T4 DNA ligase, and RNA ligase, catalyze the formation of the
phosphodiester bond.

Ligation of first and second oligonucleotides forms a ligated oligonucleotide.
The ligated oligonucleotide is annealed to the nucleic acid of interest. Such a ligated
oligonucleotide bears two tags: one selector tag which was linked to the first
oligonucleotide, and one detector tag which was linked to the second oligonucieotide.
It is understood that hybridization of the oligonucleotides and ligation of the

oligonucleotides does not interfere with the identification of the oligonucleotide.

Identifying the detector tag associated with the ligated oligonucleotide detects
the specific nucleic acid in the sample. Identifying the detector tag comprises
separating, using the separator tag, the ligated oligonucleotide from the reaction
mixture. It is recognized that the selector tag, used as a means to separate the ligated
oligonucleotide from the reaction mixture, will also separate from the reaction
mixture, un-hybridized oligonucleotide linked to selector tag and non-adjacently
hybridized oligonucleotide linked to selector tag. Un hybridized oligonucleotide
linked to detector tag and non-adjacently hybridized oligonucleotide linked to detector

tag (and remaining components of sample) remain in the reaction mixture.

Using the selector tag to separate the ligated oligonucleotide from the reaction
mixture can be accomplished as described herein. Briefly, the selector tag can be
contacted with an agent that specifically binds to the selector tag. Identifying the

detector tag can be accomplished as described herein.
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In another embodiment of the invention there is provided a method for
detecting a plurality of specific nucleic acids in a sample. The method comprises
contact each specific nucleic acid with an oligonucleotide pair under conditions that
allow the oligonucleotide pair to specifically hybridize to the nucleic acid so that the
pair members are located immediately adjacent to each other. Each oligonucleotide
pair contains an oligonucleotide linked to a selector tag and an oligonucleotide linked
to a detector tag. The method includes ligating each adjacently hybridized
oligonucleotide to form one more ligated oligonucleotides and identifying the one or

more detector tags associated with the ligated oligonucleotides.

A plurality of oligonucleotide pairs is used for detecting a plurality of nucleic
acids in a sample. Each oligonucleotide pair contains a first oligonucleotide linked to
a selector tag and a second oligonucleotide linked to a detector tag. Libraries of
oligonucleotides are provided by invention methods. One such library contains a
plurality of first oligonucleotides linked to selector tag. Each oligonucleotide is
complementary to a specific nucleic acid or specific nucleic acid target sequence.
Such a library can be used to identify a variety of genes, for example to assess gene
expression in a sample. The selector tag on each oligonucleotide is not different for
each nucleic acid target. The selector tag is chosen because it provides a facile handle
for retrieving and physically separating properly hybridized detector oligos through
their physical linkage to a companion selector primer. Another library contains a
plurality of second oligonucleotides linked to detector tags. Each oligonucleotide is
complementary to a specific nucleic acid or specific nucleic acid target sequence. The
detector tag on each oligonucleotide is different for each nucleic acid target. A
unique detector tag on each detector oligonucleotide allows the identification of the
target nucleic acid in a sample. Each library described, i.e., the library of selector
oligonucleotides and the library of detector oligonucleotides can be combined to form
a library of oligonucleotides in which a selector oligonucleotide can adjacently

hybridized to a detector oligonucleotide.

Gains in specificity and in sensitivity come from joining detector and selector

oligonucleotides via the polymerase chain reaction. In this embodiment, both detector
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and selector oligonucleotides act as primers for DNA synthesis, with the product
being a DNA duplex containing selector tag on one strand and detector tag on the
other, i.e., a “dual-tagged oligonucleotide duplex. The gain in specificity is well
understood in the current state of the art to come from the necessity of two
simultaneous, high-specificity annealing events that require the sequence content of

the target RNA or DNA and its deduced complementary strand.

Accordingly, in another embodiment of the invention, there is provided a
method of detecting a nucleic acid in a sample comprising amplifying the nucleic acid
with a primer pair to form a dual-tagged amplification product in a reaction mixture,
and identifying the detector tag associated with the dual-tagged amplification product.
The primer pair is a first oligonucleotide linked to a selector tag and a second

oligonucleotide linked to a detector tag.

This embodiment of the invention can significantly increase the sensitivity of
the assay by increasing the number of detector tags identified with a single target
sequence. Detector and selector tags are both made sufficiently stable to cycling
conditions such as thermocycling. Such cycling permits specific amplification of the
number of detector tags that will eventually be measured to correspond to a given
target sequence. For very small samples or for rare RNA targets, this improves the

certainty of detection and can favorably shift the threshold of detection limits.

The invention also contemplates a microfabricated “Lab-on-a-Chip” method.
Ideally, gene expression assays would be very fast, and suited for large numbers of
samples, as well as accurate. High throughput gene expression assays could be used
to study cells in rapid flux, so that better time-dependent maps of gene expression can
be constructed. They would also be convenient for diagnostic purposes, allowing
medical staff to run these assays without complicated, expensive lab procedures. For
instance, gene expression assays are currently being used to diagnose disease, in
particular cancer. A rapid diagnostic tool would give physicians the ability to treat

conditions with maximal effectiveness.
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Because they involve either sequencing, or hybridization to solid surfaces and
subsequent scanning, current methods are not amenable to high-throughput use. In
contrast, liquid-chromatography mass-spectrometry (LC-MS) is rapidly becoming an
important analytical technique for high throughput combinatorial chemistry, and
would be well suited for the analytical portion of mass analysis of gene expression
(MAGE). In one manifestation of MAGE, no solid-affinity methods are used, and the
entire method could be micronized onto the surface of a chip (see Figure 20). Wells,
pumps, mixing chambers, heating ovens, photo-chambers, CE, and electrospray MS
have all been implemented on a chip basis in separate technologies and are known in
the art. Designing the peptoid library to allow us to accomplish our separations
effectively using CE would eliminate solid-affinity steps. The internal standards are
mixed on the chip, and the photo-cleavage is accomplished by shining a laser of the
required wavelength onto the chip. The chip would then output the material to the
electrospray apparatus of a mass spectrometer. In this example, a complete gene
expression assay could be accomplished from isolated mRNA, or more ideally from a
cell lysate, in a very short period of time, and the same device could be reused any
number of times. The wells that store the mass tags could be programmed to release
in a serial fashion, thus allowing the system to multiplex at high speed. In this way,
the number of genes that can be assayed could range from one to any number, even as

many as the entire human genome contains.

Invention methods can also be used for rapid, large-scale genotyping by
constructing a probe conjugate complementary to one version of each single-
nucleotide polymorphism (SNP) being studied. The isotopic cousin peptoid would be
conjugated to the probe complementary to the other version of each SNP. The ESTs
or even genomic DNA (if PNA probes are used) targets are exposed to the probes, and
using the protocols described herein, the relative abundance of the polymorphism can
be determined. A sample from a single organism should have only one of the two
peaks in the doublet, if hybridization'conditions are stringent enough, but the doublet
that is much larger than the other is likely to be the version of the SNP that is actually
present in the sample DNA.
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Without further elaboration, it is believed that one skilled in the art can, using
the preceding description, utilize the present invention to its fullest extent. The
following examples are to be considered illustrative and thus are not limiting of the

remainder of the disclosure in any way whatsoever.

EXAMPLE 1

Exemplary oligonucleotides linked to detectors are provided. In a first
example, the oligonucleétide is grown on a solid support in a conventional
synthesizing robot. Then, the 5> end of the oligonucleotide is modified with two
commercially available reagents, which add a disulfide and a free amine. A free
amine is the usual starting place for synthesizing a peptoid on an amide resin, so from
this point, the resin is transferred to a solid phase synthesis vessel and the peptoid
chemistry is executed. Some success was achieved in low yield for a single peptoid
base. The result of this kind of linkage is a disulfide, which is easily reduced with
DTT. One potential problem is that disulfide bonds may or may not survive the

peptoid synthesis and further steps.

In a second example, the peptoid is synthesized first. This avoids exposure of
the oligonucleotide to the chemistry of peptoid synthesis. The scheme is depicted in
Figure 10, and it relies on a commercially available phosphoramidite that has a moiety
for growing an oligonucleotide as well as an FMOC group for protecting a site for
initiating growth of the peptoid. This branched unit could also be combined with the
photolabile phosphoramidite.

In a third example, a complete oligonucleotide and peptoid are first prepared.
The peptoid is then reacted with a commercially available protein cross-linking
reagent such as SPDP. This scheme is depicted in Figure 13. An example of a
peptoid that could be used for the condensation reaction is “SarProSarPro,” depicted
in Figures 14. The end result of this process is the direct condensation of a disulfide.
The difficulty of this method is that all of the incomplete products must be purified,
using RP-HPLC, or possibly ion-exchange.
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In this fourth, preferred example, a phosphoramidite with a photocleavable
moiety built in gives a linking function with no additional chemistry. It could be
combined with any number of non-cleavable linking schemes between
oligonucleotide and peptoid. Many precedents have been established for successfully
conjugating peptides to oligonucleotides. One preferred example is to terminate the
oligonucleotide in a free thiol, and conjugate the peptoid with a maleimido group.

The resulting reaction is extremely efficient and results in a stable thio-ether bond.

EXAMPLE 2
Maleimido-modified Peptoid Synthesis

Peptoid trimers, tetramers and pentamers have been synthesized in high yields
manually, using the method of Figliozzi et al, (supra, see also, Table 3). The
synthesis described here uses 100 mg of resin, but up to 250 mg have been
successfully used in the same size synthesis vessel by scaling up all other reagents
linearly. 100 mg of rink amide MBHA resin (Novabiochem, La Jolla, CA) is loaded
into a 10 mL peptide synthesis vessel that has been modified to improve agitation by
adding a small pocket on the wall of the reaction chamber. The resin is first washed
several times with N,N-dimethylformamide (DMF, Aldrich Chemical Co.,
Milwaukee, WI). All solvents are purchased anhydrous and kept as dry as possible by
careful handling and storage with molecular sieves (3A, EM Industries, Gibbstown,
NJ). The resin is agitated by an upward directed flow of Argon. A wash step refers to
adding 1-2 mL of solvent, agitating for 30 seconds, then draining the vessel under

aspirator vacuum,

After the initial washing to swell the resin, the DMF is drained and the Fmoc
group protecting the resin’s free amine is removed by adding 2 mL of 20% piperidine
in DMF, agitating for one minute, draining, and adding another 2 mL of 20%
piperidine. The second solution is agitated for 15 minutes and then drained. The

resin is washed with DMF six times before peptoid synthesis.

At this point, repeated rounds of a single linking chemistry are used. First, the
free amine is acetylated by adding 850 pL of 0.6M bromoacetic acid (BAA, Aldrich
Chemical Co., Milwaukee, WI) and 200 pL of 3.2M diisopropylcarbodiimide (DIC,
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Aldrich Chemical Co., Milwaukee, WI). The slurry is agitated for 30 minutes,
drained, and an identical solution is added for a further 30 minutes of agitation.
Following this, the mixture is drained, washed twice with DMF, and once with N-
methylpyrrolidone (NMP, Aldrich Chemical Co., Milwaukee, WT).

The nucleophilic substitution of a primary amine is the second half of a round
of synthesis. The primary amine of choice is dissolved at around 1.5 M in NMP and
1 mL of this solution is added to the vessel. The mixture is agitated for two hours,
drained, and the resin is subsequently washed twice with NMP and once with DMF.
The cycle can be repeated up to 75 times depending on the choice of primary amines.
The main source of poor yield is incomplete acetylation due to excess water in the
DMF mixtures.

TABLE 3
Step Reagent Reaction | Volume [Repetitions
Time (uL)
1 BAA 0.6M bromoacetic acid in - 850 -
Addition DMF
2 Activation 3.2M - 200 -
diisopropylcarbodiimide
in DMF
3 Acetylation 30 min 2
4 Wash DMF 30s 2000 2
NMP 30s 2000 1
5 | Displaceme | 1.5M primary amine in 2h 1000 1
nt NMP
6 Wash NMP 30s 2000 2
DMF 30s 2000 1

Benzylamine is the most reliable primary amine, and a tetramer synthesized
using only benzylamine submonomers had few incomplete products: benzylamine-
only containing tetrameric peptoid. Peptoids consisting of benzylamine submonomers
only are not water soluble to any appreciable degree, but if methoxyethylamine
submonomers are used, water solubility is afforded without a drop in yield. More
limited substitution is possible with aniline and forms of substituted aniline like

parabromoaniline, parachloroaniline, and orthonitroaniline.
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Following the synthesis of an exclusively methoxyethylamine substituted
tetramer peptoid, a portion of the resin was removed from the synthesis vessel and the
peptoid was cleaved and submitted for analysis. The resulting peptoid was largely
free from impurity and was found at the expected molecular weight. The remaining
portion of the resin was reserved in the synthesis vessel and subsequently acetylated

to attach a pendant maleimido group.

To prepare a maleimido-modified peptoid, approximately 200 mg of rink
amide MBHA resin (Novabiochem, La Jolla, CA) bearing the desired peptoid, 1600
pL of a 1.2M 3-maleimidopropionic acid (97%, Aldrich Chemical Co., Milwaukee,
WI), 1.2M N-hydroxybenzotriazole (HOBt, Novabiochem, La Jolla, CA) solution in
N,N-dimethylformamide (DMF) is added along with an additional 400 pL of 50% v/v
1,3-diisopropylcarbodiimide (DIC, Aldrich Chemical Co., Milwaukee, WI) in DMF.
This slurry is agitated with a stream of Argon for thirty minutes, drained, and a fresh
charge of the same mixture is added and agitated for 30 minutes. The resulting
peptoid is worked up in the same way as amine-terminated peptoids. The product is
not free from contaminants, and purification using HPLC with a linear gradient
acetonitrile in water with .1% trifluoroacetic acid over a C4 or C18 column can be

used to isolate the desired product.

EXAMPLE 3
Photocleavable Spacer-Modified Oligonucleotides

In order to test the feasibility of PC-Spacer incorporation (Glen Research,
Sterling, VA), several oligonucleotides were produced by the Caltech biopolymer
synthesis facility (Beckman Institute, Caltech, Pasadena, CA). Both DNA
oligonucleotides contain a stretch of 25 nucleic acids complementary to a gene in
Arabadopsis thaliana called APETALA2, and are terminated on their 5’ ends by a C6
Thiol modifier (Glen Research, Sterling, VA). One of the oligonucleotides contains
the PC spacer between the coding sequence and the C6 thiol, the other does not. Mass
spectrometry agrees with the calculated molecular weights. Both of these are
produced in identical yield as determined by measuring the ODa4 of the product

oligonucleotides in DNAse-free water (Gibco, Gaithersburg, MD). Molecular
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weights and molar extinction coefficients are listed in Table 4; X is the 5° thiol cap,
and Y is the photocleavable spacer. Deconvoluted ESI spectrum of
S’XCTGTTTCCGGCGGCTGAGAACCACC3’, FW=8057.5, where X is the 5’ thiol
modifier, is different from the deconvoluted ESI spectrum of
S’XYCTGTTTCCGGCGGCTGAGAACCACC3’, FW=8400.8, where X is the 5’
thiol modifier and Y is the PC-spacer.

TABLE 4
Species Molecular | Molar Extinction
Weight Coefficient
{/mM/cm)
5’ XCTGTTTCCGGCGGCTGAGAACCACC3’ 8057.5 254.3
5’ XYCTGTTTCCGGCGGCTGAGAACCACC?’ 8400.8 250.3

Hydrogenation of 2-(1-cyclohexenyl)ethylamine In order to produce two
chemically identical peptoid libraries that are isotopically shifted, the primary amine
2-(1-cyclohexenyl)ethylamine is to be both hydrogenated and deuterated to produce a
tool for shifting the molecular weight of two otherwise identical peptoids by two
Daltons; Saturation of 2-(1-cyclohexenyl)ethylamine with either hydrogen or
deuterium provides isotopically labeled primary amines for peptoid synthesis).
Furthermore, multiple substitutions of the saturated product can be used to generate
shifts of two, four, six, etc., for “multicolor” applications. Although the olefin
primary amine is available commercially (Aldrich Chemical Co., Milwaukee, WI), the

saturated products are not.

Approximately 300 mg of 2-(1-cyclohexenyl)ethylamine is dissolved in 10
mL of dichloromethane (EM Industries, Gibbstown, NJ) along with an additional 300
mg of Palladium on activated carbon (10% by weight, Aldrich Chemical Co.,
Milwaukee, WI). This mixture is stirred and occasionally sparged by hydrogen gas
under atmospheric pressure. After three hours, an aliquot of the mixture is filtered
over Celite (EM Industries, Gibbstown, NJ). The solvent is removed under vacuum
and replaced with deuterated benzene (Cambridge Isotopes, Andover, MA) and taken

for solution-phase nuclear magnetic resonance (NMR). Results suggest that this mild
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treatment is able to eliminate the signature of vinyl hydrogens, and that pressurized

hydrogenation or more elaborate catalysts will not be necessary.

EXAMPLE 5
On-line Disulfide-based Synthesis
The first method undertaken to join a peptoid to a DNA oligonucleotide was
an on-line, DNA first method. First, DNA oligonucleotides were synthesized. These
consisted only of thymine residues, because they do not require protecting groups and
are likely to be more robust to a straightforward peptoid synthesis. Poly-dT;o was
produced by the Caltech synthesis facility, and delivered directly without work-up.
The 5’ end of the oligomer was successively modified with a disulfide containing
phosphoramidite and a 5° amine terminator. The polymer beads were removed from
the robotic synthesis cartridge and loaded into the peptoid synthesis vessel. A
standard round of peptoid synthesis was run to attach a single benzylamine residue to
a bromoacetylated DNA oligonucleotide. This led to a very low yield of the desired
product and a large quantity of difficult to identify side products as indicated by
MALDI-TOF mass spectrometry (results not shown).

EXAMPLE 6
Photocleavable Peptoid_Before attempting to make use of the PC-spacer
phosphoramidite, the same orthonitrobenzene moiety was incorporated into a peptoid
to determine if it is capable of cleaving the neighboring amide bond when
photoactivated. Incorporation of the orthonitroaniline submonomer was poor, and

the resulting product did not seem to degrade extensively when exposed to longwave
UV light.

Conjugate Synthesis As soon as the methyoxyethylamine substituted peptoid
tetramers with the maleimido modification have been purified, they can be conjugated
to the DNA oligonucleotides with 5° thiol modifications according to the method of
Barton and Vreeland ((2000) Polymer Preprints 41:1018-1019. The oligonucleotides
are delivered from the synthesis facility with a trityl group blocking the thiol. In order

to provide the reducing conditions that will discourage DNA dimerization and remove
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the trityl group, 12.8 nmol of oligonucleotide is dissolved in 30 pL of 1X
triethylammonium acetate buffer (Calbiochem, La Jolla, CA) and 4.33 pL of 1M
silver nitrate (Calbiochem, La Jolla, CA) and incubated for 30 minutes. To this, 5.78
mL of 1M dithiothreitol (DTT, or Cleland’s Reagent, Calbiochem, La Jolla, CA) is
added, and the liquid phase is aspirated and retained. The precipitate Ag-DTT is
washed several times, and the supernatant liquids are combined and filtered using
Centri-Spin 20 columns (Princeton Separations, Princeton, NJ) to remove buffer sals.
This eluent is then frozen and lyophilized immediately to prevent dimerization. The
maleimido-modified peptoid is prepared at a concentration of 12.8 mM in 0.1M
sodium phosphate and 0.15 M NaCl buffer at pH=7.2. Ten mL of the peptoid solution
is then added to the lyophilized DNA prepared previously, and incubated for 20 h at
room temperature. The product of this reaction will be anélyzed by both ESI and
MALDI mass spectrometry to determine its efficiency. A fraction of the resulting
probe will then be exposed to long-wave ultraviolet light for five minutes, and the
analysis repeated to estimate the efficiency of cleavage. In order to produce larger
numbers of these tags, the assistance of a research group at Northwestern University

led by Annelise Barron that has developed a robotic synthesizer for peptoids may be
sought.

Isotopic Tag Production After the hydrogenation of 2-(1-
cyclohexenyl)ethylamine is repeated on a larger scale to produce several grams of the
hydrogenated product, cyclohexylethylamine, the efficiency of its incorporation into
peptoids can be tested. This is expected to be high, since primary amines of similar
structure such as cyclohexylamine are reportedly substituted efficiently. At the same
time, the saturation reaction will be repeated but with deuterium gas instead of
hydrogen gas. There is no reason to expect that this reaction would work as well as it
does with hydrogen. Once the tags have been produced in sufficient quantity, they
can be incorporated into two chemically identical peptoids with different molecular
weights. These peptoids will be made into stock solutions of known concentration,
and serial dilutions will be performed of mixtures of the two solutions to test the
dynamic range, sensitivity, accuracy, and reproducibility of the isotopic tag method
using shared facility EST, MALDI, and available LC-MS devices.
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EXAMPLE 6
Hybridization Efficacy

In order to show method efficacy, control oligonucleotides or cloned plasmids
of known concentration can be assayed for in the presence of distractor, control
nucleic acids. The method for MAGE will be followed and a single nucleic acid
target will be the target. The purpose of this experiment will be to determine the level
of background noise, and estimate the accuracy of the assay when it is assembled as a
whole. The separation method used to eliminate unhybridized probes will most likely
be a poly-T resin. Following this, probes will be cleaved and the mixture will be
immediately submitted for mass spectrometric analysis without further separation.
The peptoid tags will be considerably smaller than the nucleic acids, and its mass is
known, so the rest of the spectra can be ignored. The isotopically shifted version of
the peptoid tag being used will be added as an internal standard to determine the
abundance of the peptoid mass tag, and thus the target nucleic acid. Once this first
experiment is complete, the version of MAGE that makes use of the selector tags will

be implemented to try to boost the signal-to-noise ratio of the data generated.

EXAMPLE 7
Sensitivity Serial dilutions of either a control nucleic acid in a mixture or
purified mRNA from cell culture will be subjected to the MAGE assay. By doing
this, the lower limit of the MAGE assay, at least with the mass spectrometers we have
easily available, will be determined. More importantly, the reliability of the data as a

function of sample size can be determined.

Direct Probing of Cell Lysate Three identical MAGE experiments will be
run, on two aliquots from the same cell culture. All will seek to measure the
abundance of a particular gene transcript, but one will make use of purified mRNA,
one total RNA, and the final, cell lysate. The signal quality and reproducibility will
be compared to determine if MAGE can accept unprocessed cell lysate as starting

material for measuring gene expression.

Three or More Simultaneous Conditions Chemically identical peptoid tags

will be produced at three or more molecular weights using multiple substitutions of
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the isotopically labeled cyclohexylethylamine. The abundance of a single gene will
be measured in as many samples as there are peptoid tags of different mass but
identical structure. This would, for instance, greatly reduce the work that goes into
measuring a timecourse of gene expression using standard methods like RNase
protection assays or real-time PCR. The results could be validated with these
methods, and also by running the experiment on standardized solutions of known

plasmids instead of unknown RNA from cell culture.

High Frequency Gene Expression Monitoring If MAGE has low material
requirements and is fairly high throughput as is expected, the frequency of measuring
gene expression during an experiment can be increased significantly without
prohibitively expensive reagent use. The abundance of a particular transcript could be
measured every minute for an hour after some stimulus, using an easily grown model
organism like E. coli. This would demonstrate the potential for MAGE to generate
high frequency, high fidelity data invaluable to gene regulation modelers.

Multiplexing All of the above experiments can be conducted on a single or a
small group of transcripts, the probes for which could be produced manually if
necessary. However, it will be important to consider the extent to which MAGE can
be multiplexed. If a robotic method for peptoid synthesis can be harnessed, either
combinatorially or rationally, 50 to 100 probe tags using only high suitable primary
amine submonomers could be produced and made into stock solutions for later
conjugation with DNA oligonucleotides. This is enough probes to study interesting
gene clusters in systems of interest, and experiments at this level of multiplexing
would demonstrate that MAGE is capable of generating data in amounts useful to

biological modelers.

‘While the invention has been described in detail with reference to certain
preferred embodiments thereof, it will be understood that modifications and variations

are within the spirit and scope of that which is described and claimed.
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What is claimed is

A method of detecting a specific nucleic acid in a sample comprising:

(a) contacting the nucleic acid with a first oligonucleotide linked to a
selector tag and a second oligonucleotide linked to a detector tag, in a
reaction mixture under conditions that allow the first and second
oligonucleotides to specifically hybridize with the nucleic acid such
that the first oligonucleotide is located immediately adjacent to the
second oligonucleotide, thereby forming adjacently hybridized first

and second oligonucleotides;

(b)  ligating the adjacently hybridized first and second oligonucleotides to

form a ligated oligonucleotide; and
(c) identifying the detector tag associated with the ligated oligonucleotide.

thereby detecting a specific nucleic acid in a sample.

The method of claim 1, wherein identifying the detector tag associated with
the ligated oligonucleotide comprises separating, using the selector tag, the

ligated oligonucleotide from the reaction mixture removing the detector tag
from the ligated oligonucleotide; and identifying the detector tag associated
with the ligated oligonucleotide.

The method of claim 2, wherein using the selector tag comprises contacting

the selector tag with an agent that specifically binds to the selector tag.

The method of claim 2, wherein removing the detector tag is performed by
subjecting the ligated oligonucleotide to a de-linking agent selected from the
group consisting of an acid condition, an alkaline condition, a visible light
radiation, a UV radiation, heat, a reducing condition and an oxidizing

condition.



WO 02/10186 PCT/US01/24021

10

15

20

25

10.

43

The method of claim 1, wherein identifying the detector tag associated with a

ligated oligonucleotide comprises using mass spectrometry.
The method of claim 5, further comprising using chromatography.

The method of claim 1, wherein the selector tag is selected from a fluorescent

moiety, an antibody and biotin.
The method of claim 1, wherein the detector tag is a peptoid.

A method of detecting a plurality of specific nucleic acids in a sample

comprising:

€)) contacting each specific nucleic acid with an oligonucleotide pair in a
reaction mixture under conditions that allow the oligonucleotide pair to
specifically hybridize to the nucleic acid such that the oligonucleotide
pair members are located immediately adjacent to each other thereby
forming an adjacently hybridized oligonucleotides pair, wherein each
oligonucleotide pair comprises a first oligonucleotide linked to a

selector tag and a second oligonucleotide linked to a detector tag;

(b)  ligating each adjacently hybridized oligonucleotide pair to form one or

more ligated oligonucleotides; and

(c) identifying the one or more detector tags associated with the one or

more ligated oligonucleotides.

thereby detecting a plurality of specific nucleic acids in a sample.

The method of claim 9, wherein identifying the detector tag associated with
the ligated oligonucleotide comprises separating, using the selector tag, the

ligated oligonucleotide from the reaction mixulré, removing the detector tag
from the ligated oligonucleotide; and identifying the detector tag associated

with the ligated oligonucleotide.
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The method of claim 10 wherein using the selector tag comprises contacting

the selector tag with an agent that specifically binds to the selector tag.

The method of claim 10 wherein removing the detector tag is performed by
subjecting the ligated oligonucleotide to a de-linking agent selected from the
group consisting of an acid condition, an alkaline condition, a visible light
radiation, a UV radiation, heat, a reducing condition and an oxidizing

condition.

The method of claim 9, wherein identifying the detector tag associated with a
ligated oligonucleotide comprises using mass spectrometry.

The method of claim 13 further comprising using chromatography.

The method of claim 9, wherein the selector tag is selected from a fluorescent

moiety, an antibody and biotin.
The method of claim 9, wherein the detector tag is a peptoid.

The method of claim 9, wherein each first oligonucleotide linked to selector

tag has an identical selector tag.

The method of claim 9, wherein each first oligonucleotide linked to selector

tag has a different tag.

The method of claim 9, wherein each second oligonucleotide linked to

detector tag has a different tag,
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A method of detecting a nucleic acid in a sample comprising:

6)) amplifying the nucleic acid with a primer pair to form a dual-tagged
amplification product in a reaction mixture, wherein the primer pair is
a first oligonucleotide linked to a selector tag and a second

oligonucleotide linked to a detector tag; and

(b)  identifying the detector tag associated with the dual-tagged

amplification product,

thereby detecting the nucleic acid in a sample.

The method of claim 20, wherein identifying the detector tag comprises
separating, using the selector tag, the amplification product from the reaction

mixture prior to identifying the detector tag associated with the amplification

product.

The method of claim 21, wherein using the selector tag comprises contacting

the selector tag with an agent that specifically binds to the selector tag

The method of claim 20, further comprising removing the detector tag from

the amplification product prior to step (b).

The method of claim 23, wherein removing the detector tag is performed by
subjecting the ligated oligonucleotide to a de-linking agent selected from the
group consisting of an acid condition, an alkaline condition, a visible light
radiation, a UV radiation, heat, a reducing condition and an oxidizing

condition.

The method of claim 20, wherein the selector tag is selected from a fluorescent

moiety, an antibody and biotin.
The method of claim 20, wherein the detector tag is a peptoid.

The method of claim 20, wherein identifying the detector tag comprises using

mass spectrometry.
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A method of detecting a nucleic acid in a sample comprising:

(@

(b)

(@

contacting the nucleic acid with an oligonucleotide linked to a detector
tag under conditions that allow the oligonucleotide to specifically
hybridize to the nucleic acid to form a mixture of hybridized
oligonucleotide and unhybridized oligonucleotide;

separating the hybridized oligonucieotide from the unhybridized
oligonucleotide; and

identifying the detector tag, thereby detecting the nucleic acid.

The method of claim 28, wherein separating comprises contacting the mixture

with an agent that binds to a polyA tail.

The method of claim 28, wherein separating comprises contacting the mixture

with an agent that binds to a 5’-capped nucleic acid.

A method of generating a doubled-tagged oligonucleotide duplex comprising:

(@

(b)

contacting a single-stranded nucleic acid with a first oligonucleotide
linked to a selector tag and a second oligonucleotide linked to a
detector tag, under conditions that allow the first and second
oligonucleotides to specifically hybridize with the nucleic acid such
that the first oligonucleotide is located immediately adjacent to the
second oligonucleotide thereby forming an adjacently hybridized

oligonucleotide;

ligating the first and second oligonucleotides

thereby forming a duplex having detector and selector tags.

The method of claim 31, wherein the selector tag and the detector tag are

selected from a fluorescent moiety, an antibody, biotin and a peptoid, wherein

the selector tag and detector tag are different.
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A kit comprising:
(a) an oligonucleotide primer pair comprising
1) a first selector oligonucleotide linked to a selector tag;
(i)  asecond selector oligonucleotide linked to a detector tag; and

(b) an agent that binds to the selector tag.

A kit comprising

(a) a first selector oligonucleotide linked to a selector tag;

(b) a second selector oligonucleotide linked to a detector tag; and
() a DNA ligase.

A library of detector oligonucleotides, comprising a plurality of
oligonucleotide linked to detector tag, wherein each oligonucleotide

specifically hybridizes with a nucleic acid sequence.
The library of claim 35, wherein the detector tag is removable.
The library of claim 35, wherein the detector tag is a peptoid.

The library of claim 35, wherein the detector tag is identifiable by mass

spectroscopy.
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Mol. Wt.: 179.15

=3487
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Br
>—N:C:N—< in DMF
Cleave and Purify Peptoid

Photocleavable + 5' Thiol
Phosphoramidite Modifier
» ‘:\.rV\A.MNV\mmunnSS-Py
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T N(i-Pr),

- P\
o O(CH2),CN
DMTO

Clontech "Uni-Link AminoModifier" Branched Phosphoramidite

Method

1. Obtain Oligonucleotide Resin with dT base

2. Add Branched Phosphoramidite

3. Transfer to Peptoid Synthesizer

4. Deprotect FMOC

5. Add Peptoid

DMTO

6. Protect Terminus

7. Return to ODN Synthesizer
8. Deprotect DMTO

9. Add cleavable units (Disulfide or Photocleavable)

10. Synthesize ODN

11. Deprotect and Cleave Completed Unit
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O
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1) Synthesize and purify 1000 different peptoid oligomer mass tags, of mass 6,000 to
11,000 Daltons.

0L S - (o),

M=6,000 M=6,005 M=11,000
"pM6000" "pM6005" "pM11000"

This will be performed by a robotic synthesizer on solid phase, with oligomer
lengths of up to 40 residues. Molecular weights per residue will be 150-300 Daltons.

2) Synthesize and purify 16,000 different DNA oligos, complementary to the mRNA specie
to be detected. Create 16 libraries of 1,000 oligos each.

AA(NNNNNNNN); , AA(NNNNNNNNN), , .... , AANNNNNNNN) 1 900
AC(NNNNNNNN); , AC(NNNNNNNN), , .... , AC(NNNNNNNN); g0

TT(NNNNNNNN);, TT(NNNNNNNN); , ..., TTNNNNNNNN); 000

3) Specifically conjugate oligos in each library to a corresponding peptoid mass tag.
AA(NNNNNNNN)4/pMB000, AA(NNNNNNNN),/pM600S, ..., AA(NNNNNNNN); go0pM11000

AC(NNNNNNNN)/pM6000, AC(NNNNNNNN),/pMBO05, .... , AC(NNNNNNNN); go¢/pM11000

TT(NNNNNNNN)4/pM6000, TT(NNNNNNNN)o/pM600S, ... , TT(INNNNNNNN)4 504/pM11000

4) Purify DNA/peptoid mass tag products and combine library elements into 16 pools.

FIGURE 19
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Mass-tagging on a chip:
How to measure levels of 16,000 mRNA species in solution

Reaction Chip

DOOOOEO®
HE®®E®®

sample:
pool of
mRNA
species

sequential Above are the tag pools, each with 1000 peptoid mass tags
oy 6 to 11 kD specifically conjugated to individual DNA oligos.
with an aliquot Total of 16,000 distinct components.
of mRNA
sample .
Y
e hybridized
hybridization chamber: selection chamber: Heagents
formation of Ly affinity for MRNA/DNA ———— WASTE
mRNA/DNA-peptoid hybrids
mass tag hybrids
elution of hybrids
scission of DNA-peptoid
sl conjugates by photolysis
or disulfide bond reduction
Seperation qfoligonucleotides
Feapiiay clecyophorels. Oligonucleotides
This can be effected by detection to waste

of fluorescent moiety on peptoid.

Sequential delivery of 16 discrete pools
of selected mass tags to micro-wells

J

Perform mass spectrometry experiment (CEC-MS, FTICR-MS, etc.) to quantitate
levels of mass tags corresponding to 16 x 1000 different mRNA species.

FIGURE 20
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