(12) (19) (CA) Dem ande-Application

O P I C SN {s\&\«,‘\\ LAY C I P O
AR R 20 Y0 T O
OFFICE DE LA PROPRIETE B 2 T SN CANADIAN INTELLECTUAL
INTELLECTUELLE DU CANADA } PrROPERTY OFFICE 2 280 698
\ (21) (Al) 4w ’

86) 1998/12/10

87) 1999/06/24
(72) YELLIN, FRANK, US

(72) LONG, DEAN R. E.. US
(72) TUCK, RICHARD D., US
(71) SUN MICROSYSTEMS, INC., US

51) Int.C1.° GO6F 9/445
30) 1997/12/12 (08/989,848) US

54y APPAREIL ET PROCEDE DE COMPILATION CROISEE D’UN
CODE SOURCE

54) APPARATUS AND METHOD FOR CROSS-COMPILING
SOURCE CODE

Generating Language inheriting Language

2
o

inhatiting Language
Program

Locate Generating
Program Constanis
and Flelds

62

Extract Constants
and Field Retferentss

66 64

Urente Gensrating Remove Duplicats

Program with Linas to Craate

]
l
|
|
I
!
|
I
I
I
L
)
Styllzed Headar and Constants and Fleids '
Footer File !
!

!

|

|

;

|

{

|

|

!

!

I

88
Compile Program
{or Targel Machine
70 Substitute Compiled
Identity Compilec Constams and Figld
Constants and Field Parameters into
Parameters in Cross Qriginal inheriting

Compiisd Code

Language Program

Finat Inheriting
Language
Program

I*I Industrie Canada Industry Canada

OFFICE DE LA PROPRIETE SNSRI ENY

INTELLECTUELLE DU CANADA

CIPO

. LA
I' N -
-
4‘ . » - 3 --
wnty e “; '»"n v Ny -l‘
- - - - - LMW - -
et N \ . »S 4
. L] EAC I | - [] L]
'o ‘b‘ " 4‘0'0‘\ a.\‘\.q_‘ a‘l.. .
‘c. "‘\ v.(..\ -‘-_ \‘0 a e ‘t. -
L . L3 Ay | n, » -
\. .l‘. q. Re s by N N
[] A .. l' 0. ‘\‘ ‘.“‘.‘ = _‘ - d
N N . » U S
R . L WY L DO AL W S WY F)

;.] ', LY c‘ ‘a: N ' . \‘
- 'a' "y :o 0:0:0:'0. he g\\\\\?‘b:‘i\\i\

PROPERTY OFFICE

(57) Limvention concerne un procede permettant la
compilation crois¢e de programmes nformatiques
consistant a extraire des constantes et des reférences (62)
de champ d’un programme informatique (44B) récepteur
¢crit dans un premier langage informatique. Les
constantes et les reférences de champ extraites ont trait a
un programme 1mnformatique (60) géne€rateur €crit dans
un second langage informatique. Un nouveau
programme generateur (66) €crit dans le second langage
informatique est ensuite cré€ a 1’aide des constantes et
des références de champ. Le nouveau programme est
ensuite compile pour un ordinateur cible (68) de maniere
a obtenir des valeurs (70) de constantes compilees. Ces
valeurs de constantes compilees sont ensuite substituees
a 1'intérieur du programme 1nformatique récepteur afin
de produire un programme mformatique (47) récepteur
final.

I*I Industrie Canada Industry Canada

(CANADIAN INTELLECTUAL

21 (A1) 2,280,698
(86) 1998/12/10
87) 1999/06/24

(57) A method of cross-compiling computer programs
includes the step of extracting constants and field
references (62) from an iheriting computer program
(44B) written 1n a first computer language. The extracted
constant and field references refer to a generating
computer program (60) written 1n a second computer
language. A new generating program (66) 1n the second
computer language 1s then created using the constants
and field references. The new program 1s then compiled
for a target computer (68) to ascertain compiled constant
values (70). The compiled constant values are then
substituted mto the mheriting computer program to
produce a final inheriting computer program (47).

CA 02280698 1999-08-11

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/31583
6F 9/445 Al
GO / (43) International Publication Date: 24 June 1999 (24.06.99)
(21) International Application Number: PCT/US98/26285 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
(22) International Filing Date: 10 December 1998 (10.12.98) GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, I

KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,

(30) Priority Data: S, SK, SL, T, T™™, TR, TT, UA, UG, UZ, VN, YU, ZW,
08/989,848 12 December 1997 (12.12.97) US ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
Antonio Road, Palo Alto, CA 94303 (US). BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
TD, TGQG).

(72) Inventors: YELLIN, Frank; 510 Beresford Avenue, Redwood
City, CA 94061 (US). LONG, Dean, R., E.; P.O. Box 268,
Boulder Creek, CO 95006 (US). TUCK, Richard, D.; 343 | Published
Hill Street, San Francisco, CA 94114 (US). With international search report.

(74) Agents: MISROCK, S., Leslie et al.; Pennie & Edmonds LLP,
1155 Avenue of the Americas, New York, NY 10036-2711 '

(US).

(54) Title: APPARATUS AND METHOD FOR CROSS—COMPILING SOURCE CODE

(57) Abstract Generating Language Inheriting LanguagoB |
A4
A method of cross—compiling computer programs includes the
step of extracting constants and field references (62) from an inheriting
computer program (44B) written in a first computer language. The
extracted constant and field references refer to a generating computer U ! -
program (60) written in a second computer language. A new generating 48 €0
program (66) in the second computer language is then created using the Locate Generating
| constants and field references. The new program is then compiled for :n'?g:‘mgm’*‘"‘s
a target computer (68) to ascertain compiled constant values (70). The
compiled constant values are then substituted into the inheriting computer -
program to produce a final inheriting computer program (47).
Extract Constants |
and Field References

66 84

AN NI AL H 1M v E M AT i A LTIV A LA AL | AL VB A e LA A M 4 i 1 T4 1 et it e s esed

M A L VA Skl XA ChA Nl §r depris foal 8 4 e VT L vtk w1 PRI TR TR N Ly 4 A ae s

Compied Code

T L I L B N AR U

Original inheriting
Language Program

47

Finat inheriting
Language
Program

Ureate Generating Remove Duplicate
Program with Lines 1o Create
Stylized Header and Constants and Fleids
68
Compile Program
for Target Machine
72 -
70 Substitute Compiled
Identity Compiled Constants and Field
Constants and Field Parameters into
Parameters in Cross

1
|
|
l
;
\
|
|
|
|
1
1
l

Footer File ! i
\
|
a
|
t
1
{
l
t
!
!
n

N

S

10

15

20

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

APPARATUS AND METHOD FOR CROSS-COMPILING SOURCE CODE

Brief Description of the Inventior
This invention relates generally to software system management tools. More

particularly, this invention relates to a software system management tool that is used to

combine different source code programs written in multiple computer languages into a

single program.

Background of the Invention

Software system management tools define software modules, their
interdependencies, and the rules that are required to combine the software modules
into a final software program. Software system management tools are necessary in
view of the fact that a large software program typically includes a large number of
individual software modules in the form of source code programs that are compiled
and then linked into a single executable final software program. The large number of
individual software modules and their individual processing requirements result in the
need for sophisticated software system management tools. For example, each source
code program may require a distinct compiler. Thus, a mechanism must be developed
to coordinate a source code program with the appropriate compiler. There are' many
commercially available software system management tools.

Software system management tools often combine computer code written in
one language with computer code written in a second language. It is often necessary
for the code written 1n one language (referred to herein as the inheriting language) to
make use of constants and data structures defined by code written in a second language

(referred to herein as the generating language). In addition, the values of these

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285
constants and the exact layout of these data structures often depend on the target
machine for which the code is being compiled. The layout of the data structures and
the value of the constants may be different between the machine doing the compiling
(the host computer), and the machines for which the code is being compiled (the target

5 computer). In some cases, the code may need to be compiled for multiple target
machines that have different values and layouts.

The layout of these data structures and the value of the constants may change
during the development process. It is important that it be easy to recompile the code
written in the inheriting language. However, the specific constants and data structures

10 referenced by the inhenting code are liable to change as the inheriting code is
developed. In addition, new constants can be accessed and new fields in data
structures might be accessed.

It would be highly desirable to provide a software system management tool
that allows an inheriting language to make use of information from a generating

15 language, regardless of the host computer or of the target computer. That is, the
software system management tool should provide an automatic technique for
determining the constants and fields needed by the inheriting code. Further, the
software system management tool should make it easy to recompile the inheriting code
automatically. Such a software system management tool would simplify the

20 development of source code written in different languages.

Summary of the Invention
A method of cross-compiling computer programs includes the step of
extracting constants from an inheriting computer program written in a first (inheriting)
25 computer language. The extracted constants refer to a generating computer program
written in a second (generating) computer language. A new program in the second
computer language is then created using the constants. The new program is then
compiled for a target computer to ascertain compiled constant values. The compiled

constant values are then substituted into the inheriting computer program to produce a

30 final inheriting computer program.

The invention provides a software system management tool

A iyt 08 W lard A el Tt S e Bdl f N ettt e o

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

10

15

20

23

30

that allows an inhenting computer program to make use of information from a
generating computer program, regardless of the computer on which the compilation
will take place or of the target computer. That is, the cross-compiler of the invention
provides an automatic technique for determining the constants and fields needed by the
inheriting computer program. Further, the cross-compiler facilitates automatic

recompilation of the inheriting computer program. The technique of the invention

efficiently compiles source code written in different languages.
Brief Description of the Drawing

For a better understanding of the nature and objects of the invention, reference
should be made to the following detailed description taken in conjunction with the
accompanying drawings, in which:

FIG. 1 1llustrates a software system management apparatus in accordance with
an embodiment of the invention.

FIG. 2 1llustrates processing operations associated with the software system

management apparatus of Fig. 1.

FIG. 3 1s a more detailed depiction of the operation of the cross compiler of
Fig. 2.

FIG. 4 1llustrates processing steps associated with an embodiment of a cross
compiler constructed in accordance with the invention.

FIG. 5 1llustrates a software system management apparatus in accordance with

another embodiment of the invention.

Like reference numerals refer to corresponding parts throughout the several
views of the drawings.
Detalled Description of the Inventior

Fig. 1 1llustrates a software system management apparatus 20. The apparatus
20 1includes processor 22 which communicates with a memory module 24 and a set of
Input/output devices (e.g., keyboard, mouse, monitor, printer, etc.) 26 through a bus
28. Anindividual working at the input/output devices 26 inputs a software system
description, which is down-loaded into a memory module 24. The software system
description 30 1s an integrated description of software modules, their
interdependencies, and the rules that are used to construct an executable program.

The memory module 24 stores a number of executable programs including a

software user interface 32 (such as a graphical user interface) and a rule execution

*ten 1 GAN ol GG WY NOHHNI TR g Sk DRI AN E b

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

10

15

20

25

30

engine 34, which produces system construction commands 36. The executable

programs stored in the memory module 24 also include a tool controller 38, compilers

40, linkers 42, and a cross compiler 46. The tool controller 38 receives the system
construction commands 36 and existing program files 44. The tool controllier 38
operates 1n conjunction with the compilers 40, linkers 42, and cross compiler 46 to
execute the system construction commands 36 on the existing program files 44 to yield
an executable program 48.

The processing associated with this software system management apparatus 20
is more fully appreciated with reference to Fig. 2. The input data to the apparatus is a
software system description specifying a set of software source code modules, their
interdependencies, and the rules that are required to combine the software modules
into a final software program. The software user interface 32 receives this information
and passes it to a rule execution engine 34, which produces a set of system
construction commands 36. For instance, if the rule-based software configuration
description 30 specifies that files A, B, and C are to be combined to form file D, then
the system construction commands 36 would constitute a set of commands that could
be executed by the tool controller 38 to compile and link existing files A, B, and C to
form file D.

Thus, the tool controller 38 executes the system construction commands 36 by
interacting with the compilers 40, linkers 42, existing program files 44, and a cross
compiler 46. After the tool controller 38 has executed the system construction
commands 36, an executable program 48 is produced.

The present invention 1s directed toward the operation of the cross compiler 46.
The other tools with which it operates (e.g., the other elements of Fig. 2) are generally
known in the art.

The cross compiler 46 interacts with the tool controller 38 to execute system
construction commands 36. More particularly, the cross compiler 46 interprets the
system construction commands 36 to identify when two existing program files written
in different languages are to be compiled into a single program. That is, the cross
compiler 46 identifies when an existing program file written in a generating language
1s to be combined with an existing program file written in an inheriting language. The
cross compiler 46 allows the inheriting language to make use of information from the

generating language. That is, the cross compiler 46 provides an automatic technique

L TREE P . .
2 ML deARK uumammmmwmmmmtmm i, hard sunds

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285
for determining the constants and fields needed by the inheriting code, regardiess of
the target machine on which the program will be compiled. The cross compiler 46
does this 1n such a manner that it is still easy to automatically recompile the inheriting
code. In sum, the cross compiler 46 facilitates the compilation of source code written

5 1in different languages. As a result, the other software system management tools of
Fig. 2 operate more efficiently to produce an executable program 48.

This operation is more fully appreciated with reference to Fig. 3. The cross
compiler 46 processes commands from the tool controller 38 by accessing a generating
language program 44A and an inheriting language program 44B of the existing

10 program files 44. In particular, a constants and fields locator software module 50
identifies in the inheriting language program 44B references to the generating
language program 44A. A constants and fields processor module 52 then extracts the

constants and fields and preferably removes duplicate references, thereby producing a
constants and fields file. A generating language program constructor module 54 then
15 uses the constants and fields file to create a new and stylized generating language
program. A constants and fields value identifier module 56 1dentifies compiled
constant and field values 1n cross compiled code corresponding to the new generating
language program. An inhenting language program modifier module 58 is then used
to substitute the compiled constants and field parameters into the inheriting language
20 program. This results in a final inheriting language program 47, which uses the
constants and fields from the generating language program 44A. The tool controller
38 may then use the final inheriting language program 47 in connection with the
compilers 40 and linkers 42 to produce an executable program 48.
The particular steps executed by an embodiment of the cross compiler 46 of the
25 1invention are 1llustrated in Fig. 4. Fig. 4 illustrates the cross compiler 46 of the
invention receiving an inheriting language program 44B and generating a final
inheriting language program 47, consistent with the description of Fig. 3.
The first processing step for the cross compiler 46 of Fig. 4 is to modify the
inheriting language program to identify references to the generating language program
30 (step 60). This operation may be performed by the constants and fields locator module

50. The references to the generating language program are in the form of constants

and fields. Modifications to the constants and fields, discussed below, makes them

implementation independent.

] e

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

10

15

20

25

30

The next processing step executed by the cross compiler 46 is to extract the

1dentified constants and fields (step 62). Thereafter, duplicate lines containing the

identified constants and fields are preferably removed to create a constants and fields
file (step 64). These operations may be performed with the constants and fields
processor module 52.

As shown 1n Fig. 4, all of the processing up to this point has been directed
toward the inhenting language. The next processing step is to create, from the
constants and fields file written 1n the inheriting language, a corresponding generating
language program with a stylized header and footer (step 66). This operation entails

converting each line from the constants and fields file of step 64 into a macro, as

~discussed below. This operation may be performed by the generating language

program constructor 54.

The program 1s then compiled for a target machine or machines (step 68). This
aspect of the invention provides cross compiled code for multiple target machines.
Observe that the cross compiled code only relates to the constants and fields of the
original inhenting language program 44B. Thus, when changes are made to the
original inheriting language program 44B, it is relatively efficient to recompile the
code 1n accordance with the invention. That 1s, the entire inheriting language program
44B need not be recompiled, rather only the constants and fields file needs to be
recompiled.

The next processing step is to identify compiled constants and field parameters

1n the code (step 70). This operation may be performed with the constants and fields

value 1dentifier 56. The 1dentified compiled constants and field parameters are then
combined with the original inheriting language program (step 72) to yield the final
Inheriting language program 47. This step may be performed with the inheriting
language program modifier module 58.

While prior art techniques exist for automatically generating ‘“constants files”
for specific constants and field offsets, those skilled in the art will recognize that the
present invention expands beyond such rudimentary implementations because it
operates 1n an environment where compilation is for machines other than the machine
on which the compilation is being performed. In accordance with the invention, the

inheriting language code is automatically rewritten with correct constants and field

offsets for the target machine.

A G B AR LV ol L A v - AT L S S e G e, il A e b e

Wk Sl el I e ML S PR A AT BT AINAD » e Lbis w 24w ©

£ 1 %ad PG M iy DAL Ve SR L - ;

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

10

15

20

25

30

The features and benefits of the invention are more fully appreciated with
reference to a more specific example. The invention is disclosed through an example
wherein the generating language 1s “C” and the inheriting language is SPARC
Assembler. However, those skilled 1n the art will appreciate that the techniques of the
invention can be used for any inhenting and generating languages.

In accordance with an embodiment of the invention, the software system

description 30 includes a MAKE file with the following lines.

(1) $(OBJDIR)/make_struct_offsets.s: extract offsets.nawk opcodes.wide opcodes.h
(2) $(OBJDIR)/make_struct offsets.s: executeJava sparc.m4.s
(3) $(M4)-DJAVAOS -DEXTRACT OFFSETS $<| sort -u | nawk -f

extract _offsets.nawk > $(OBJDIR)/make struct offsets.c

(4) $(CC) $(CFLAGS) $(INCLUDES) -S $(OBJDIR)/make_struct offsets.c -o
@

The foregoing and following computer code of this patent document contains
material which is subject to copyright protection. The copyright owner has no
objection to the facsimile reproduction of the computer code, as it appears in the
Patent and Trademark Office files or records, but otherwise reserves all rights
established under applicable copyright laws.

Lines (1) and (2) of the code indicate that if any of the four files (1)
“extract_offsets.nawk”, (2) “opcodes.wide”, (3) “opcodes.h”, or (4)
“executeJava_sparc.m4.s” change, then line (3) should be executed. In other words,
the software system description 30 will result in system construction commands 36
that are processed by the tool controller 38. If the tool controller 38 identifies that any
of the four files have changed, it will invoke the cross compiler 46.

The file “extract_offsets.nawk” contains portions of the cross compiler 46 of
the invention. In particular, it contains instructions to implement steps 62 and 66 of

Fig. 4. If this file changes, then the result should be re-computed. If the files

“opcodes.wide” or “opcodes.h” have changed, then it's possible that some of

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

10

15

20

25

30

the constants have changed value. Any change to the file “executeJava sparc.m4.s”
means that there may be new constants or field offsets of interest or that some

previously interesting constants or field offsets are no longer important.

If one of the four enumerated files has changed, the following code is executed:

m4 -DJAVAOS -DEXTRACT_OFFSETS executeJava sparc.m4.s |
sort -u | .
nawk -f extract_offsets.nawk > $(OBJDIR)/make struct offsets.c
cc <various flags> -S $(OBJDIR)/make_struct_offsets.c -o $@

This code corresponds to the operations performed by the cross compiler 46.
The code causes “executeJava_sparc.m4.s” to run through processor m4 with the two
flags JAVAQOS and EXTRACT OFFSETS set to 1. This causes the processor m4 to
modify the inheriting language program to identify generating program references
(step 60). Thus, the processor m4 can be thought of as the constants and fields locator
module 50. For example, all references to constants are written as
“DEFINED_CONSTANT (<constant>)”. Further, all references and updates to fields
are written 1n such a way that it is unnecessary to know the size, signedness, or offset
of the particular field in the record. For example, each “GET FIELD (<reg>,
<structure>, <field>, <result>)” term is converted into a line of the form
LOAD_STORE <structure> <field>.

These operations are implemented as follows. The file executeJava sparc.m4.s
1s written 1n a highly stylized format, suitable for m4. The first line of the file is
“ifdef(EXTRACT_OFFSETS', "divert(-1)')”, which says that if the flag
EXTRACT_OFFSETS is defined, then throw out all input unless otherwise instructed.
Later 1n the file, there are m4 directives such that if EXTRACT OFFSETS is defined,

the enttre contents of the file are ignored except for occurrences of
DEFINED CONSTANT(<baz>),

EXTRACT OFFSET (<mystruct>,<myfield>),
GET_FIELD(<base>,<mystruct>,<myfield>,<reg>), and

Ll T L i bl STt T L s et L mwmw

CA 02280698 1999-08-11

WO 99/313583 PCT/US98/26285

10

15

20

25

30

SET FIELD(<value><base><mystruct>,<myfield>), where each of the
lower-case strings is, in fact, a text string.

Each occurrence of DEFINED CONSTANT(<baz>) is output as “CONST
<baz>". Each occurrence of EXTRACT OFFSET(<mystruct>,<myfield>) is output
as “FIELD <mystruct>,<myfield>". Each occurrence of GET FIELD(<base>,
<mystruct>,<myfield>,<reg>) and SET_FIELD(<value>,<base>,<mystruct>,
<myfield>) is output as “LDST <mystruct>,<myfield>".

The code in the file 1s written such that it makes use of these macros. For
example, If regl contains a pointer to a methodblock structure, and its ClassClass field
is required, GET_FIELD(regl, methodblock, ClassClass, reg2) is written. If reg3 is to
be compared to the constant “opc_wide”, “cmp reg3, DEFINED CONSTANT
(opc_wide)” 1s written. In particular, all references to constants are wrapped inside
DEFINED_CONSTANTY(..). To extract the field from a pointer, the GET FIELD
instruction is used. To set the field of a pointer, the SET FIELD instruction is used.
To get a pointer to the field of a pointer, “STRUCTURE OFFSET(..)” is added to the
pointer.

The foregoing processing associated with steps 60 and 62 results in a line for
each reference to a constant and a line for each reference to a field. If there are
multiple references to a field, each of those references will generate a separate line. It
1S easier, although not necessary, to process each defined constant and each field only
once. Thus, preferably, duplicate lines are deleted to create a constants and fields file
(step 64). This may be accomplished by passing the result through “sort -u”, a
standard utility, which sorts lines and deletes duplicate lines. The sorting of lines is an

artifact of the “sort” utility and therefore is unimportant.

A new generating language program with a stylized header and footer is then
created (step 66). Each line is associated with a macro call, which is defined in the
header. For example, the line LOAD STORE <structure> <field> becomes
LOAD_ STORE (<structure>, <field>). The specific header and trailer information
and the exact code generated for each line is dependent on the generating language.

This operation 1s more fully appreciated with the following example. The
constants and fields file created by step 64 is processed by a text processor called

“nawk”. The program that the text processor runs is contained in the file

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

“extract_offsets.nawk”. The “nawk” program generates a C program (a generating

language program) that has three parts. The first part is a stylized header, for example:

#include "oobj.h"

5 #include "interpreter.h"
#include "opcodes.h"
#include "tree.h"

#include "typecodes.h"
#include "stddef.h"

10 #define SHOWME(structure, name) \
{ struct structure *temp; \
asm("SET_STRUCTURE INFO('" #structure "','" #name
" %0, %1, %2")" \
:: "'n" (sizeof(temp -> name)), \
15 "n" (offsetof(struct structure, name)), \
"n" ((typeof(temp -> name))(~0) < 0)); \
}
#define FIELDOFF(structure, name) \
asm("SET_FIELD OFFSET('" #structure "', #name "',"%0"')" \
20 .. "n" (offsetof(struct structure, name)))
#define CONSTANT(name) asm("SET VALUE("#name", %0')" :: "n"
((int)name))
main(int argc, char ** argv){
asm("! File automatically generated by m4 and nawk");

25 asm("! Do not bother editing this! Find the source!");

The processing of this header information is discussed below. After this

stylized header is created, the following transformations are made for the constants

and fields: “CONST <baz>” is assigned to “CONSTANT(<baz>)”, “LDST

30 <struct><myftield>" is assigned to “SHOWME(<mystruct>,<myfield>)", and “FIELD
<mystruct><myfield>" is assigned to “FIELDOFF(<mystruct>,<myfield>)". A final
closing “}” is then appended as a footer. The result is a program

“make_struct_offsets.c”, which can be compiled by a C compiler. In other words, at

10

ot A i e e MR, e (4D R o

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

10

15

20

this point, step 66 of Fig. 4 is completed. The next processing step is to compile the
program for the target machine (step 68).

In accordance with the invention, the compiler is given specific switches to tell
It to generate assembly language for the target machine, rather than to generate a
binary file. In particular, the stylized generating language file from step 66 is
specifically designed so that it generates highly stylized assembly-language code. The
code may be stylized to the point that it cannot be actually assembled into machine
code. All that 1s necessary is that the resulting assembly language code be machine-
parseable so that one can determine (1) the value that the compiler gave to each
constant and (2) the size (number of bytes), offset, and signedness of each of the fields.

The result of this step will always be assembly language, regardless of the
inheriting language. It 1s coincidental that in the present example, that the original
inheriting language 1s also assembly language.

At this point, the .s file has the following form for each of the SHOWME,
CONSTANT, and FIELDOFF items, respectively:
SET_STRUCTURE_INFO (<structure>, <field>, <size>, <offset>,<signedness>)
SET VALUE (<name>, <value>)
SET_FIELD_ OFFSET(<structure>,<field>,<offset>).

The process by which this transformation takes place is as follows. Because of
the #define, each line of the form CONSTANT (<baz>) gets turned into:

C‘asm ("SET“VALUE(‘ " "baZ" l""%Ol)" : : "n" ((int) baz))”.

11

- it O WOMLILAL wlhrn M A R R % ATl i 4 i M

At AP - Ll W4 6 3 - LS IR NV DA o ST, £23 2 0 L A s 1

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285
Simularly, each line of the form FIELDOFF (mystruct,myfield) gets turned into:

“asm ("SET_FIELD_OFFSET(" "mystruct" ™,'" "myfield" "',"%0')" : : "n" (
offsetof (struct mystruct , myfield)))”

5
Each line of the form SHOWME(mystruct,myfield) gets turned into:
“{ struct mystruct * temp ; asm ("SET_STRUCTURE_INFO('" "mystruct"
10 "myfield" "',"%0'," %1',"%2")" : : "n" (sizeof (temp -> myfield)),
"n" (offsetof (struct mystruct , myfield)) , "n" ((typeof (temp -> myfield
))(~0)<0));}”

These instructions make use of the Gnu C-compiler (or other similar C compiler)
15 facility for generating specific assembly language. However, since the compilation to
assembly code is solely for the purpose of defining constants and field offsets, the

inline assembly code that is generated does not have to be executable. In particular,

the 1inline assembly code:
20 “asm ("SET_VALUE(‘" "bazll tn,‘%OO)H + v lin" ((lnt) baz))”
generates, 1n assembly language:

“SET_VALUE(baz','23')”
25

where 23, 1n this case happens to be the value of baz.

The 1nline assembly code :

“asm ("SET_FIELD_OFFSET(" "mystruct” ","" "myfield" ™,"%0")" : : "n" (
30 offsetof (struct mystruct , myfield)”

12

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285
generates:

“SET_FIELD_OFFSET(mystruct’, myfield',"16')”

> where 16, for example, 1s the offset of “myfield” in the “mystruct” structure.

The inline assembly code:

“{ struct mystruct * temp ; asm ("SET_STRUCTURE_INFO('" "mystruct”

e ¥ n

10 "myfield" ","%0',"%1","%2")" : : "n" (sizeof (temp -> myfield)),
"n" (otfsetof (struct mystruct , myfield)), "n" ((typeof (temp -> myfield
))(~0)<0));}”
turns 1nto:
15 “SET_STRUCTURE_INFO('mystruct, myfield, 2','16',"1')”.

In this case, the 16 1s again the offset of the field. The “2” indicates that this is a

2-byte quantity. The “1” indicates that this is a signed value (an unsigned value would
assign a “0” to this field).

20 Observe that the .s file generated will have additional information. It

will specifically have the lines:

“! File automatically generated by m4 and nawk”

“! Do not bother editing this! Find the source!”
25
These lines are created by the asm declarations at the start of the main routine defined
in step 66. The code will also include function prologues and other information.
If one intends to cross compile for a different platform, then the .c file is
compiled into assembly for the target platform. The macros are written in such a way
30 that all the constant values, field offsets, etc., are generated for the target machine.

The .s file is processed by extracting lines that contain the word SET. For

example, one can create the file “executeJava_sparc.include” by extracting lines

13

AN 2 AP AT My, S o DO VT My v MR Ay A dm s .«

. it AT ORI P G a e s e d VAT alealis mawa v Cad i 10844 e iy A ay W Inah .

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

10

15

20

25

30

containing the word SET. This can be done using the UNIX command “grep”, e.g.,
“grep SET extractoffsets.s executeJava sparc.include”.

The next processing step is to combine the compiled constants and field

parameters with the original inheriting language program. That is, for each occurrence
of DEFINED CONSTANT(<name>), replace it with the exact value of the constant.
For each occurrence of GET_FIELD(<reg>,<structure>, <field>, <result>) convert it
into specific inhenting language instructions necessary to access the value. Thus, the

final inheriting language program 47 is a combination of the original program text

with the result of the processing of the cross compiler 46.

These operations can be performed as follows. Run “executeJava sparc.m4”
through the processor m4 a second time. However, this time the EXTRACT OFFSET
flag 1s not turned-on. This causes m4 macros called SET FIELD OFFSET,
SET_STRUCTURE_INFO, and SET _VALUE to be defined. In addition, the
previously created file “ExecuteJavaStructOffsets.include” is read in. Each line of the
file 1s interpreted using the macro definitions defined in step 60. The remainder of the

file “executeJava_sparc.m4”is handled normally by the processor m4. In particular,

the four macros

DEFINED CONSTANT(baz)
EXTRACT_OFFSET(mystruct,myfield)
GET_FIELD(base,mystruct,myfield,reg)
SET_FIELD(value,base,mystruct,myfield)

have completely different meanings than they did in step 60.
For constants, SET_VALUE(‘name’,’value’) is turned into
define(‘name,value’) and DEFINED CONSTANT(name) is turned into “name”.

Hence, if one has SET_VALUE('baz',"23") from the include file, and the occurrence of
DEFINED_CONSTANT(baz) somewhere in the text, the macro pre-processor will
turn DEFINED CONSTANT(baz) into baz and then that into 23.

For field offsets, SET_FIELD_ OFFSET(struct,field,offset) is turned into the
assembler directive: “struct.field = offset”. Similarly, “STRUCT OFFSET

(struct,field)” is turned into “struct.field”. The next effect is that every occurrence of

“STRUCT_OFFSET(struct,field)” becomes “struct.offset”’, which the assembler can

14

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

then replace with the correct value. For field accessors and setters,
“SET_STRUCTURE _INFO('mystruct,' myfield, 4',"16',"1')” defines two macros:

“GET_FIELD.mystruct.myfield(base, result)” and “SET_FIELD.mystruct.
myfield(base, value)”. The definition of:
5 - -

“GET_FIELD.mystruct.myfield(base, result)” is “l1d.2.1 [base+16], value”
“SET_FIELD.mystruct.myfield(base, value)” is “st.2.1 value,[base+16],

where the “4”, “16”, and “1” are extracted from the fields. Separately, the opcodes
10 st.1.0,st.1.1, st.2.0, st.2.1, st.4.0, st.4.1, 1d.1.0, 1d.1.1, 1d.2.0, 1d.2.1, 1d.4.0, 1d.4.1, are
defined to be the appropriate opcodes for storing and loading the appropriately sized

field of the appropnate sign. For example, on SPARC, “ld.2.1" is defined to be “Idsh”
(load a signed half-word). Similarly,

15 GET_FIELD(base,mystruct,myfield, reg)
SET_FIELD(value,base,mystruct,myfield)

would be defined to be

20 GET_FIELD.mystruct.myfield(base,reg)
SET_FIELD.mystruct.myfield(base,value)

respectively. Hence

25 GET_FIELD(base,mystruct,myfield,reg)

turns 1into

GET_FIELD.myfield. mystruct(base,reg)

15

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

10

15

20

25

30

which turns 1nto
1d.2.1 [base+16],reg

which turns into

Idsh [base+16], reg,

which 1s the desired result of an inheriting language program instruction that has
utilized information from a generating language program.

Fig. 5 1llustrates an alternate apparatus for practicing the invention. Fig. S
corresponds to Fig. 1, but includes a storage device 80, a communications interface 82,
a network link 84, and a network 86. The programs stored in the memory 24 may be
downloaded from a computer-readable medium associated with the storage device 80,
or alternately, may be executed from the computer-readable medium associated with
the storage device 80. The term “computer-readable medium” refers to any medium
that participates in providing instructions to the processor 22 for execution. Such a
medium may take many forms, including but not limited to, non-volatile media,
volatile media, and transmission media. Non-volatile media includes, for example,
optical or magnetic disks, associated with the storage device 110. Volatile media
includes dynamic memory. Transmission media includes coaxial cables, copper wire
and fiber optics, including the wires that comprise bus 28. Transmission media can
also take the form of acoustic or light waves, such as those generated during radio-
wave and infra-red data communications.

Common forms of computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-
ROM, any other optical medium, punchcards, papertape, any other physical medium
with patterns of holes, a RAM, a PROM, EPROM, a FLASH-EPROM, any other
memory chip or cartridge, a carrier wave as described below, or any other medium
from which a computer can read.

Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 22 for execution. For

example, the instructions may initially be carried on a magnetic disk of a remote

16

~-wmn-wmumm .
W Il""‘"““m.lmwmwmmw“mmm”*m .
IR M 63 AN AR IO 714 1

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

10

15

20

25

30

t e el Saovie S il gt MOV LN W ot O I | LU S G 4 1M Ty mﬂ“ﬂ“‘m% '' mem "

computer. The remote computer can load the instructions into its dynamic memory
and send the instructions over a telephone line using a modem. A modem local to the
computer system 20 can receive the data on the telephone line and use an infra-red
transmitter to convert the data to an infra-red signal. An infra-red detector coupled to
the bus 28 can receive the data carried in the infra-red signal and place the data on bus
28. The bus 28 then carries the data to the memory 24, from which the processor 22
retrieves and executes the instructions. The instructions received by the memory 24
may optionally be stored on the storage device 80 either before or after execution by
the processor 22.

The computer system 20 also includes a communication interface 82 coupled
to the bus 28. The communication interface 82 provides a two-way data
communication coupled to a network link 84 that is connected to a network 86. For
example, the communication interface 82 may be an integrated services digital
network (ISDN) card or a modem to provide a data communication connection to a
corresponding type of telephone line. As another example, the communication
Interface 82 may be a local area network (LAN) card to provide a data communication
connection to a compatible LAN. Wireless links may also be implemented. In any
such 1mplementation, the communication interface 82 sends and receives electrical,
electromagnetic or optical signals that carry digital data streams representing various
types of information.

The network link 84 typically provides data communication through one or
more networks, represented by the network 86. For example, the network link 84 may
provide a connection to a network 88 that includes a host computer operated as an
Internet Service Provider (ISP). The ISP in turn provides data communication services
through the world wide packet data communication network now commonly referred
to as the “Internet”. The network 86 uses electrical, electromagnetic or optical signals
that carry digital data streams. The signals through the various networks and the
signals on the network link 84 and through the communication interface 82, which
carry the digital data to and from the computer system 20, are exemplary forms of
carrier waves transporting the information.

The computer system 20 can send messages and receive data, including
program code, through the network 86, the network link 84, and the communication

interface 82. In the Internet example, a server on the network 86 may transmit a

17

ORI AR LIS v NN 8 D VAR LA ATy 4 it s e -7

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

10

15

20

requested code for an application program through the network 86, the network link

84, and the communication interface 82. The received code may be executed by the
processor 22 as 1t is received and/or stored in the storage device 80, or other non-
volatile storage for subsequent execution. In this manner, the computer system 20
may obtain application code in the form of a carrier wave.

The foregoing description, for purposes of explanation, used specific
nomenclature to provide a thorough understanding of the invention. However, it will
be apparent to one skilled in the art that the specific details are not required in order to
practice the invention. In other instances, well known circuits and devices are shown
in block diagram form in order to avoid unnecessary distraction from the underlying
invention. Thus, the foregoing descriptions of specific embodiments of the present
Invention are presented for purposes of illustration and description. They are not
intended to be exhaustive or to limit the invention to the precise forms disclosed,
obviously many modifications and variations are possible in view of the above
teachings. The embodiments were chosen and described in order to best explain the
principles of the invention and its practical applications, to thereby enable others
skilled in the art to best utilize the invention and various embodiments with various
modifications as are suited to the particular use contemplated. It is intended that the

scope of the invention be defined by the following Claims and their equivalents.

18

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285
IN THE CIAIMS:
1. A method of cross-compiling computer programs, said method comprising the
steps of:

10

15

20

25

30

..... So3d e AR N AT LR AT I MG ST 4] L5 i L1 | R S50 AR TIPS T =T OUTNAN L - vt Pl T SOl o A Dedha crdd - M 1 LN 3 0000

P A T LV SERSTLAACIEIE AT T VRN WA AT At A L min s - MARL NP o hit v AT TMATTAN oS DML AN NI A ST MMMt e . 4t 7 T o 4 S 4 4 o o S5 TR 4 4NN MDY Ay © 7.2 0 A A i 0. bl b il

_extracting constants from an inheriting computer program written 1n a first
computer language that refer to a generating computer program written in a second
computer language;

creating a new program in said second computer language using said constants;
compiling said new program for a target computer to ascertain compiled
constant values; and

substituting said compiled constant values into said inheriting computer

program to produce a final inheriting computer program.

2. The method of claim 1 wherein said extracting step includes the step of

extracting fields from said inheriting computer program.

3. The method of claim 2 further comprising the step of removing duplicate fields
and constants.
4, The method of claim 2 wherein said creating step includes the step of creating

a new program that is machine-parseable to determine the value of each of said
constants and the attributes of each of said fields without assembling said new

program into machine code.

5. The method of claim 1 wherein said compiling step includes the step of

compiling said new program for a plurality of target computers.

6. A computer readable medium to direct a computer to function in a specified
manner, comprising:
a first set of instructions to extract constants from an inhernting computer

program written in a first computer language that refer to a generating computer

program written in a second computer language;

19

TP NIRRT A LAY % N I NI ARV 8 Ak LA (2 = AR 1C = T T o e | D] M vl = A T g v e e

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26285

10

15

20

25

a second set of instructions to create a new program in said second computer

language using said constants;

a third set of instructions to compile said new program for a target computer to
ascertain compiled constant values; and

a fourth set of instructions to substitute said compiled constant values into said

inheriting computer program to produce a final inheriting computer program.

7. The apparatus of claim 6 wherein said first set of instructions include

instructions to extract fields from said inheriting computer program.

8. The apparatus of claim 7 wherein said first set of instructions include

instructions to remove duplicate fields and constants.

9. The apparatus of claim 7 wherein said second set of instructions mclude
instructions to create a new program that is machine-parseable to determine the value

of each of said constants and the attributes of each of said fields without assembling

said new program into machine code.

10. The apparatus of claim 6 wherein said third set of instructions include

instructions to compile said new program for a plurality of target computers.

11. A computer readable medium to direct a computer to function in a specified
manner, comprising:

a constants and fields locator module to identify 1n an inheriting computer
program references to constants and fields associated with a generating computer
program; '

a generating language program constructor module to create a new generating
language program incorporating said constants and fields;

a constants and fields value identifier module to identify compiled constants

30 and fields in compiled code corresponding to said new generating language program,;

H 17 S 2 e A HIGEE 094 S NI] ¢ T O LI I T At £ 1 ot D a4 gl s v S Semp vl —an 3 it w2 2 by of gl ddina

and

20

T L LA e £ e, b v A KRN S Sl S Uy e A0 0 SR T A A AT A O A M (VUM M | ¢] A Criniie MBIy A2 4oy

1O TN T TR A NSRRI F v § O S A A ST e AV Tl L S b L A

CA 02280698 1999-08-11

WO 99/31583 PCT/US98/26283
an inheriting language program modifier module to substitute said compiled

constants and fields into said inheriting language program to produce a final inheriting

language program.

5 12. The apparatus of claim 11 wherein said constants and fields locator module

removes duplicate fields and constants.

13. The apparatus of claim 11 wherein said generating language program
constructor module creates a new program that is machine-parseable to determine the

10 value of each of said constants and the attributes of each of said fields without

assembling said new program into machine code.

14. The apparatus of claim 11 further comprising a tool controller, a compiler, and
a linker.

15

15. The apparatus of claim 11 wherein said computer readable medium 1s a

memory connected to a system bus of a general purpose computer.

21

ST 1 TS o L LAY o FUndo S e e A il O TV e e e - O MGl 4 UM IR 4 13 e

WO 99/31583

20

N

CPU

24

h

CA 02280698 1999-08-11

22

28

Software System Description
Sofware User

Software System

Description

PCT/US98/26285

26

| Input/Output
Devices

Interface

Rule Execution Engine

System Construction
Commands

Tool Controlier

Existing Program Files

Cross Compiler

Executable Program

40 3 AL LA RO MR 1

Fig. 1

Pl v U4

30

32
34
36

38
40

42
44
46

48

K17 S LA Sy v Mot A 10 e L A E 1od A M Pl ¢ .

02280698 1999-08-11

CA

PCT/US98/26285

WO 99/31583

/S

2

welbo.ld ajqeinoex3

8

A%

¢ ‘b4

SNV S18)1dwo N

)%
8t

18}|011U0D) |00 |

ot

SPUBWILWON
UOIIONIISUO D) WBISAQ

14

mc_ocm._
uoIiNdax3 a|ny

a0RUB)U|
189S 81eMY0Sg

o

19)1Idwo) sS0IN

So|l4
weiboiyq buisix3

4%

O€

uoidiiosaq
WajSAg arem)jog

PR AN 6 A0 S AN A0 L LML i B 1 S ol ihn s S Pas o iy mhu ey e g 4 el d

R TR S

CA 02280698 1999-08-11

WO 99/31583
3 /5

Generating
Language
Program

Inheriting
Language
Program

46

1Cross Compiler
C&F Locator 50
C&F Processor 5r
GLP Constructor y
C&F Valve ldentifier o

ILP Modifier
58

47

Final Inheriting
Language

PCT/US98/26285

38

Tool
Controller

gt o unm#mwatmmmwmmwmmw e SRR 0 B 4 Al R ARIR 7 v PR AP M et s St Lyl 4. M £ b o3t ek

TN T M e el RO 0N 130 S A 14 - LS el -

e el oo L DL SUE ERRE WL PEY B RPN . . . "

CA 02280698 1999-08-11

WO 99/31583

4 / 5
Generating Language

66

Create Generating
Program with

Stylized Header and
Footer

Compile Program
tor Target Machine

70

Ildentity Compiled
Constants and Field
Parameters in Cross
Compiled Code

—-——--—-—-—-‘-_

Fi1g. 4

1 LAY A e e s ~-~M«wrmammtmmmm' L7 gua Mo - Rlirpd '

PCT/US98/26285

Inheriting Language
448

Inheriting Language
Program

Locate Generating

Program Constants
and Fields

Extract Constants
and Field References

64

Remove Duplicate
Lines to Create

Constants and Fields
File

72

Substitute Compiled
Constants and Field
Parameters into
Original Inheriting
Language Program

Final Inheriting
Language
Program

e AL Ny e, CR O T £ 3 TEIRERE Sy SO it Cald o T 4 by Pov At Pl "I S g Se'e & »

CA 02280698 1999-08-11

8/2628S
WO 99/31583 PCT/US9

5/ 5
Network
86
B4
20 Software System ll\.l.etwork
4 Nk
\ Description

22 26 30 Q5
CPU Input/Outputf | Storage Commun
Devices Device- Interface

28

24

R}

Software System Description 30
Sofware User Interface 30
Rule Execution Engine 34
System Construction 36
Commands
Tool roller
>
»
bnkes
EXxisting Program Files a4
Cross Compiler
6
le P
Executable Program P
Fig. 5

) e —) y , PPN KA ELM T VAL 4l AT AT AT GHRTT A g (A1 B 1 - b ke
’ TS T AN A A Mo 1428 T L I S adaa RIS S TN s Ltt AL tdeegigd e dndee Ll P 901w el Lol] " WL AW 3 T ec il 4 i W0 bl Ay Ty [FPmp P - - Sttt A 3] pih-

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings

