The present invention relates to certain polyamine thiols of the formula (1) or (2) (See formula (I) or (II) wherein n is an integer from 0 to 3, m is an integer from 4 to 9, Z is a C₂-C₆ alkylene group, A is H, -SH, -SPO₃H₂, -(CH₂)₉SH, -N(CH₂)₉-SH, -N(CH₂)₉-SPO₃H₂, wherein q is an integer 2 to 4, and B₁ and B₂ are each independently H, -(CH₂)₉SH, or -(CH₂)₉-SPO₃H₂ with the proviso that at least one of A, B₁ and B₂ is other than H, which are useful as radioprotective agents.
The present invention relates to certain polyamine thiols of the formula (1) or (2)

\[
A - \text{-(CH}_2\text{)}_n\text{-N-Z-N-(CH}_2\text{)}_m\text{-N-Z-N-(CH}_2\text{)}_n\text{-A} \\
| \quad B_1 \quad | \quad B_2 \quad | \quad B_2 \quad | \quad B_1
\]

\[
A - \text{-(CH}_2\text{)}_n\text{-N-Z-N-Z-N-(CH}_2\text{)}_n\text{-A} \\
| \quad B_1 \quad | \quad B_2 \quad | \quad B_1
\]

wherein

- \(n\) is an integer from 0 to 3,
- \(m\) is an integer from 4 to 9,
- \(Z\) is a \(C_2-C_6\) alkylene group,
- \(A\) is \(H\), \(-SH\), \(-SPO_3H_2\), \(-N(CH_2)_q-SH\), \(-N(CH_2)_q-SPO_3H_2\), wherein \(q\) is an integer 2 to 4, and
- \(B_1\) and \(B_2\) are each independently \(H\), \(-(CH_2)_q-SH\), or \(-(CH_2)_q-SPO_3H_2\),

with the proviso that at least one of \(A\), \(B_1\) and \(B_2\) is other than \(H\), which are useful as radioprotective agents.
POLYAMINE THIOLS AS RADIOPROTECTIVE AGENTS

BACKGROUND OF THE INVENTION

Radioprotective agents, also known as radioprotectors, are defined as agents which protect cells or organisms from deleterious cellular effects of exposure to ionizing radiation. These deleterious cellular effects include damage to cellular DNA, such as DNA strand break, disruption in cellular function, cell death, tumor induction and the like. The mechanism of this protective effect may at least partially be due to radical scavenging properties of the radioprotective agents.

The potential utility of these agents in protecting against exposure to environmental radiation, as well as in cancer radiation therapy, has long been recognized. These agents, administered prior to or during exposure, would eliminate or reduce the severity of deleterious cellular effects caused by exposure to environmental ionizing radiation such as resulting from a nuclear explosion, a spill of radioactive material, close proximity to radioactive material and the like.
In addition, these agents are believed to provide a selective protection of normal cells, and not of cancer cells, during cancer radiation therapy. For example, these agents, administered to the cancer patient prior to or during radiation therapy, will be absorbed by normal, non-cancer cells to provide a protective effect. However, the radioprotective agents will not be absorbed to the same extent by tumor cells due to the poor vascularity associated with the tumor. Therefore, the radioprotective agents would provide a selective protective effect on the normal cells as compared to tumor cells and would eliminate or reduce the severity of deleterious cellular effects of radiation therapy on normal cells. Furthermore, some radioprotective agents may act as prodrugs and require activation by cellular enzymatic processes which are not fully operative in the cancer cell. These agents, even if absorbed in a similar concentration in normal and cancer cells, will only be activated in cells with normal enzymatic processes and not in cancer cells. These prodrug radioprotective agents would be activated to provide a selective protective effect only in normal cells and would thus eliminate or reduce the severity of deleterious cellular effects of radiation therapy on normal cells.

Furthermore, certain radioprotective agents provide a selective protection against deleterious cellular effects in normal cells caused by certain DNA-reactive agents such as cisplatin, cyclophosphamide, diethylnitrosoamine, benzo(a)pyrene, carboplatin, doxorubicin, mitomycin-C and the like. Many of these DNA-reactive agents are chemotherapeutic agents useful in cancer therapy. Radioprotective agents are useful in eliminating or reducing the severity of deleterious effects in normal cells caused by exposure to these DNA-reactive agents, such as during cancer therapy with DNA-reactive chemotherapeutic agents.
In addition, certain radioprotective agents provide a selective protection against therapy-induced secondary tumor induction [See Grdina et al., *Pharmac.Ther.* 39, 21 (1988)]. Radiation and chemotherapy provide effective treatments for a variety of neoplastic disease states. Unfortunately, these treatments themselves are oftentimes mutagenic and/or carcinogenic and result in therapy-induced secondary tumor induction. For example, patients treated for Hodgkin's disease appear to exhibit a relatively high risk for therapy-induced acute myelogenous leukemia and non-Hodgkin's lymphoma. Radioprotective agents provide selective protection against deleterious cellular effects, such as tumor induction, caused by radiation therapy or chemotherapy with a DNA-reactive chemotherapeutic agent. Radioprotective agents are thus useful in eliminating or reducing the risk of secondary tumor induction brought about by radiotherapy or chemotherapy.

Radioprotective agents thus are useful in eliminating or reducing the severity of deleterious cellular effects in normal cells caused by environmental exposure to ionizing radiation, cancer radiation therapy and treatment with DNA-reactive chemotherapeutic agents. See generally, Weiss and Simic, *Pharmac.Ther.* 39, 1 (1988).

The prototypical radioprotective agent, developed by the Antiradiation Drug Development Program at the Walter Reed Army Institute of Research, is WR-2721, or S-2(3-aminopropylamino)ethylphosphorothioic acid, which has the structure

\[
H_2N-(CH_2)_3-NH-(CH_2)_2-S-PO_3H_2 \quad \text{WR-2721.}
\]

Other known radioprotective agents are WR-1065, thought to be a metabolite of WR-2721, which has the structure

\[
H_2N-(CH_2)_3-NH-(CH_2)_2-SH \quad \text{WR-1065,}
\]
and WR-151,327, which has the structure
\[\text{CH}_3\text{NH}-(\text{CH}_2)_3\text{NH}-(\text{CH}_2)_3\text{SPO}_3\text{H}_2 \]
WR-151,327.

SUMMARY OF THE INVENTION

The present invention provides novel radioprotective agents of the formula (1)

![Chemical structure diagram](image)

(1)

wherein
- \(n \) is an integer from 0 to 3,
- \(m \) is an integer from 4 to 9,
- \(Z \) is a \(C_2-C_6 \) alkylene group,
- \(A \) is \(\text{H}, \text{-SH}, \text{-SPO}_3\text{H}_2, \text{-N(CH}_2)_q\text{-SH}, \text{-N(CH}_2)_q\text{-SPO}_3\text{H}_2 \),
- wherein \(q \) is an integer 2 to 4, and
- \(B_1 \) and \(B_2 \) are each independently \(\text{H}, \text{-SCH}_2\text{SH}, \text{or} \text{-SCH}_2\text{SH} \),
- with the proviso that at least one of \(A, B_1 \) and \(B_2 \) is other than \(\text{H} \).

The present invention further provides novel radioprotective agents of the formula (2)
wherein
n is an integer from 0 to 3,
Z is a C₂-C₆ alkylene group,
A is H, -SH, -SPO₃H₂, -N(CH₂)ₚ-SH, -N(CH₂)ₚ-SPO₃H₂,
wherein p is an integer 2 to 4, and
B₁ and B₂ are each independently H, -(CH₂)ₚ-SH, or
-(CH₂)ₚ-SPO₃H₂,
with the proviso that at least one of A, B₁ and B₂ is other
than H.

In addition, the present invention provides a method of
protecting mammalian cells from deleterious cellular effects
cased by exposure to ionizing radiation or to a DNA-
reactive agent comprising contacting said cells with a
protective amount of a compound of formula (1) or (2).

The present invention also provides a method of
protecting non-cancer cells of a human from deleterious
cellular effects caused by exposure to ionizing radiation or
by exposure to a DNA-reactive agent comprising administering
to said human a protective amount of a compound of formula
(1) or (2).

The present invention further provides a method of
treating a patient in need of radiation therapy, or in need
of chemotherapy with a DNA-reactive chemotherapeutic agent,
comprising administering to said patient a protective amount
of a compound of formula (1) or (2).
DETAILED DESCRIPTION OF THE INVENTION

As used herein, the following terms have the meanings as indicated below:

1) The term "C₂-C₆ alkylene" refers to a saturated hydrocarbylene radical of from 2 to 6 carbon atoms of straight chain configuration. Specifically included within the scope of the term are the radicals -CH₂CH₂-, -CH₂CH₂CH₂-, CH₂(CH₂)₂CH₂-, CH₂(CH₂)₃CH₂-, -CH₂(CH₂)₄CH₂-;

2) The term "halo" or the term "Hal" refers to a chlorine, bromine or iodine atom;

3) The term "Pg" refers to a thiol protecting group such as S-methyl;

4) The term "Ms" refers to a mesylate functionality of the formula:

\[
\begin{align*}
\text{O} & \quad \text{S-CH₃} \\
\text{O} & \quad \text{S-CH₃} \\
\end{align*}
\]
5) The term "Ts" refers to a tosy late functionality of the formula:

\[
\text{O} \quad \text{SO}-, \quad \text{CH}_3
\]

6) The term "Bz" refers to a benzoyl functionality of the formula:

\[
\text{O} \quad \text{C}-, \quad \text{O}
\]

7) The term "BOC" refers to a t-butyloxycarbonyl functionality of the formula:

\[
\text{O} \quad \text{C}-, \quad \text{O}
\]

The compounds of formula (1) and (2) can be prepared according to standard procedures and techniques which are well known and appreciated in the art.

The compounds of formula (1) wherein B\textsubscript{1} is hydrogen and B\textsubscript{2} is \(-(\text{CH}_2)_q\text{-}\text{SH}\) or \(-(\text{CH}_2)_q\text{-}S\text{PO}_3\text{H}_2\), A is hydrogen and \(n = 1, 2\) or 3 can be prepared according to the general synthetic scheme set forth in Scheme A wherein all substituents, unless otherwise indicated, are previously defined.
Scheme A

\[
\text{HO-(CH}_2\text{)}_q\text{-NH}_2 \quad \text{step a} \quad \text{HO-(CH}_2\text{)}_q\text{-NH-Z'}\text{-CN}
\]

\[
\text{step b} \quad \text{NC-Z'}\text{-N-C-(CH}_2\text{)}_{m-2}\text{-C-N-Z'}\text{-CN} \quad \text{step c} \quad \text{HO-(CH}_2\text{)}_q\text{C-OH}
\]

\[
\text{H}_2\text{N-Z-N-(CH}_2\text{)}_q\text{N-Z-NH}_2 \quad \text{step d} \quad \text{A'-OH-(CH}_2\text{)}_{n+1}\text{-CHO}
\]

\[
\text{A'-O-(CH}_2\text{)}_{n+1}\text{-HN-Z-N-(CH}_2\text{)}_q\text{N-Z-NH-(CH}_2\text{)}_q\text{A'} \quad \text{step e}
\]
Scheme A Cont.

\[A' - (CH_2)_n' \cdot HN-Z-N-(CH_2)_m'N-Z-NH-(CH_2)_n- \rightarrow (CH_2)_q \quad (8) \]

\[A' - (CH_2)_n' \cdot HN-Z-N-(CH_2)_m'N-Z-NH-(CH_2)_n- \rightarrow (CH_2)_q \quad (9) \]

\[Z' = Z \text{ minus } CH_2 \quad A' = H \quad n' = 1, 2 \text{ or } 3 \]

In step a, the nitrogen functionality of an appropriate alkanolamine of structure (1') is alkylated to give the appropriate (hydroxyalkylamino)-alkynitrile of structure (2'). Appropriate alkylating agents would be those which contain a nitrile functionality. For example, if the desired compound of formula (1) is one in which Z is represented by a \(C_3 \) alkylene group, an appropriate alkylating agent would be acrylonitrile. If the desired compound of formula (1) is one in which Z is represented by a \(C_2 \) or a \(C_4-C_6 \) alkylene group, appropriate alkylating agents would be the corresponding haloalkynitriles.

For example, an appropriate alkanolamine of structure (1') is contacted with a molar equivalent of an appropriate alkylating agent. The reactants are typically contacted in a suitable protic organic solvent, such as ethanol. The
reactants are typically stirred together for a period of time ranging from 5-24 hours and at a temperature range of from room temperature to reflux. The (hydroxyalkylamino)-alkynitrile of structure (2') is recovered from the reaction zone by evaporation of the solvent. It can be purified by distillation or silica gel chromatography.

In step b, the nitrogen functionality of the appropriate (hydroxyalkylamino)-alkynitrile of structure (2') is amidated with an appropriate xdicarboxylic acid of structure (3) to give the appropriate N,N-bis(hydroxyalkyl)-N,N-bis(cyanoalkyl)dicarboxylic amide of structure (4).

For example, the appropriate (hydroxyalkylamino)-alkynitrile of structure (2') is contacted with one-half of a molar equivalent of the appropriate dicarboxylic acid of structure (3) and a molar equivalent of an amidating agent such as N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). The reactants are typically contacted in a suitable organic solvent such as tetrahydrofuran. The reactants are typically stirred together for a period of time ranging from 2-24 hours and at a temperature range of from room temperature to reflux. The N,N-bis(hydroxyalkyl)-N,N-bis(cyanoalkyl)dicarboxylic amide of structure (4) is recovered from the reaction zone by evaporation of the solvent. It can be purified by silica gel chromatography.

In step c, both the nitrile and amide functionalities of the appropriate N,N-bis(hydroxyalkyl)-N,N-bis(cyanoalkyl)dicarboxylic amide of structure (4) are reduced to give the corresponding bis(hydroxyalkyl)-tetraazaalkane of structure (5).

For example, the appropriate N,N-bis(hydroxyalkyl)-N,N-bis(cyanoalkyl)dicarboxylic amide of structure (4) is contacted with a molar excess of a reducing agent, such as
lithium aluminum hydride. The reactants are typically contacted in a suitable organic solvent, such as ethyl ether. The reactants are typically stirred together at room temperature for a period of time ranging from 2-24 hours. The bis(hydroxyalkyl)-tetraazaalkane of structure (5) is recovered from the reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography.

In step d, the terminal amino functionalities of the appropriate bis(hydroxyalkyl)-tetraazaalkane of structure (5) are reductively alkylated with the appropriate phenylalkylaldehyde of structure (6) to give the appropriate bis[(phenyl)alkyl]-bis(hydroxyalkyl)-tetraazaalkane of structure (7).

For example, the appropriate bis(hydroxyalkyl)-tetraazaalkane of structure (5) is contacted with 2 molar equivalents of an appropriate phenylalkylaldehyde of structure (6), a molar excess of sodium cyanoborohydride and a catalytic amount of an acid-base indicator, such as bromoresol green. The reactants are typically contacted in a suitable protic organic solvent, such as ethanol. The reactants are typically stirred together while a suitable acid, such as hydrochloric acid, is added in order to maintain a slightly acidic medium as indicated by a yellow color. The reactants are typically stirred together at room temperature for a period of time necessary for the color to remain yellow. The bis[(phenyl)alkyl]-bis(hydroxyalkyl)-tetraazaalkane of structure (7) is recovered from the reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography.

In step e, hydroxy functionalities of the appropriate bis[(phenyl)alkyl]-bis(hydroxyalkyl)-tetraazaalkane of structure (7) are converted to the corresponding thiol
functionalities to give the appropriate bis[(phenyl)alkyl]-bis(alkylthiol)-tetraazaalkane of structure (8).

For example, the appropriate bis[(phenyl)alkyl]-bis(hydroxyalkyl)-tetraazaalkane of structure (7) is contacted with a molar deficiency of phosphorus pentasulfide. The reactants are typically contacted in a suitable organic base, such as pyridine. The reactants are typically stirred together for a period of time ranging from 2-24 hours and at a temperature range of from room temperature to reflux. The bis[(phenyl)alkyl]-bis(alkylthiol)-tetraazaalkane of structure (8) is recovered from the reaction zone by evaporation of the solvent. It can be purified by silica gel chromatography.

In optional step f, the thiol functionalities of the appropriate compound of formula (1) wherein A and B₁ are both hydrogen and B₂ is represented by -(CH₂)₉-SH (structure 8) may be converted to the corresponding phosphorothioates to give those compounds of formula (1) wherein A and B₁ are both hydrogen and B₂ is represented by -(CH₂)₉SPO₃H₂ (structure 9).

For example, the appropriate compound of formula (1) wherein A and B₁ are both hydrogen and B₂ is represented by -(CH₂)₉-SH (structure 8) is first contacted with 4 molar equivalents of triethyl phosphite and 2 molar equivalents of bromotrichloromethane. The reactants are typically stirred together for a period of time ranging from 1-3 hours and at a temperature range of from room temperature to reflux. The corresponding intermediate bis(diethylphosphorothioate) is recovered from the reaction zone by evaporation of the volatiles. It can be purified by silica gel chromatography.

The bis(diethylphosphonate) functionality of the intermediate bis(diethylphosphorothioate) is then cleaved to
give the corresponding compound of formula (1) wherein A and B₁ are both hydrogen and B₂ is represented by \(-(\text{CH}_2)_q\text{SP}_{3}\text{H}_2\) (structure 9).

For example, the appropriate intermediate bis(diethylphosphorothioate) is contacted with a molar excess of trimethylsilyl bromide. The reactants are typically contacted in a suitable organic solvent such as methylene chloride. The reactants are typically stirred together for a period of time ranging from 2-24 hours and at a temperature range of from room temperature to reflux. The compound of formula (1) wherein A and B₁ are both hydrogen and B₂ is represented by \(-(\text{CH}_2)_q\text{SP}_{3}\text{H}_2\) (structure 9) can be recovered from the reaction zone by evaporation of the solvent. It can be purified by silica gel chromatography.

Starting materials for use in the general synthetic procedures outlined in Scheme A are readily available to one of ordinary skill in the art.

The following example presents a typical synthesis as described in Scheme A. This example is understood to be illustrative only and is not intended to limit the scope of the present invention in any way. As used herein, the following terms have the indicated meanings: "g" refers to grams; "mmol" refers to millimoles; "mL" refers to milliliters; "bp" refers to boiling point; "°C" refers to degrees Celsius; "mm Hg" refers to millimeters of mercury; "μL" refers to microliters; "μg" refers to micrograms; and "μM" refers to micromolar.

Example 1

1,19-Bis((phenyl)methyl)-6,14-bis(ethanethiol)-1,6,14,19-tetraazanonadecane

Step a: 4N-(2-Hydroxyethylamino)butyronitrile
Dissolve ethanolamine (11.3g, 0.185mol) and 4-bromobutyronitrile (32.6g, 0.22mol) in ethanol (700mL) and heat at reflux for 18 hours. Evaporate the solvent in vacuo and purify by distillation to give the title compound.

Step b: N,N-Bis(2-hydroxyethyl)-N,N-bis(3-cyanopropyl)-pimelamide
Dissolve 4N-(2-hydroxyethylamino)butyronitrile (384mg, 3mmol) and pimelic acid (240mg, 1.5mmol) in tetrahydrofuran (25mL). Add N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) (791mg, 3.2mmol) and stir at room temperature for several hours. Evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.

Step c: 6,14-Bis(2-hydroxyethyl)-1,6,14,19-tetraazaazonadecane
Suspend lithium aluminum hydride (2.1g, 0.054mol) in ether (250mL). Add, by dropwise addition, a solution of aluminum chloride (7.3g, 0.054mol) in ether (250mL). Stir for 20 minutes and add a solution of N,N-bis(2-hydroxyethyl)-N,N-bis(3-cyanopropyl)pimelamide (5.13g, 0.0135mol) in ether (25mL). Stir at ambient temperature for 18 hours. Decompose the reducing agent by carefully adding water (20mL) and 30% aqueous potassium hydroxide (100mL). Filter and evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.

Step d: 1,19-Bis((phenyl)methyl)-1,19-bis(hydroxyethyl)-1,6,14,19-tetraazaazonadecane
Dissolve 6,14-bis(2-hydroxyethyl)-1,6,14,19-tetraazaazonadecane (1.8g, 0.005mol) in methanol (distilled from Mg) (50mL) and add benzaldehyde (1.06g, 0.01mol), sodium cyanoborohydride (0.62g, 0.010mol) and 1 drop of 1% bromoresol green in ethanol. Maintain the pH of the reaction with 1N hydrochloric acid in methanol until the indicator no longer changes. Evaporate the solvent in vacuo
and partition the residue between 1N sodium hydroxide (50mL) and ethyl acetate (100mL). Separate the organic phase, dry (MgSO₄) and evaporate the solvent *in vacuo* and purify by silica gel chromatography to give the title compound.

Step e: 1,19-Bis[(phenyl)methyl]-1,19-bis(ethanethiol)-1,6,14,19-tetraazanonadecane

Dissolve 1,19-bis[(phenyl)methyl]-1,19-bis(hydroxyethyl)-1,6,14,19-tetraazanonadecane (1.10g, 2.02mmol) and phosphorus pentasulfide (1g, 4.5mmol) in pyridine (30mL). Reflux for several hours and pour into hot water (50mL). Cool and extract into ethyl acetate. Dry (MgSO₄) and evaporate the solvent *in vacuo*. Purify by silica gel chromatography to give the title compound.

The following compounds can be prepared analogously to that described in Example 1:

1,19-Bis[(phenyl)methyl]-6,14-bis(ethanethiol)-1,6,14,19-tetraazanonadecane;

1,19-Bis[(phenyl)propyl]-6,14-bis(ethanethiol)-1,6,14,19-tetraazanonadecane;

1,19-Bis[(phenyl)methyl]-5,13-bis(ethanethiol)-1,5,13,17-tetraazanonadecane;

1,19-Bis[(phenyl)methyl]-6,14-bis(ethylphosphorothioate)-1,6,14,19-tetraazanonadecane.

The compounds of formula (1) wherein B₁ is –(CH₂)ₙ–SH or –(CH₂)ₚ–SPO₃H₂, B₂ is hydrogen, A is hydrogen and n = 1, 2 or 3 can be prepared according to the general synthetic scheme set forth in Scheme B wherein all substituents, unless otherwise indicated, are previously defined.
Scheme B

(10) Ts-NH-BOC $\xrightarrow{\text{HO-Z-Hal}}$ step a (11) Ts-N-Z-Hal

(12) $\xrightarrow{\text{BOC}}$ Bz-NH-(CH$_2$)$_m$-NH-Bz (13) step b

(14) Bz $\xrightarrow{\text{Bz}}$ Ts-N-Z-N-(CH$_2$)$_m$-N-Z-N-Ts

(15) $\xrightarrow{\text{BOC}}$ Bz $\xrightarrow{\text{BOC}}$ Ts-NH-Z-N-(CH$_2$)$_m$-N-Z-NH-Ts

(16) A' $\xrightarrow{\text{(CH$_2$)$_n$-Hal}}$ step d

(17) A' $\xrightarrow{\text{(CH$_2$)$_n$-N-Z-N-(CH$_2$)$_m$-N-Z-N-(CH$_2$)$_n$-Ts}}$

(18) A' $\xrightarrow{\text{H}}$ step e

M01587 -16-
Scheme B Cont.

\[\text{(19)} \]

\[\xrightarrow{\text{step f}} \]

\[\xrightarrow{\text{step g}} \]

\[\xrightarrow{\text{Optional step h}} \]

\[\text{(21)} \]

\[\text{(22)} \]

\[\text{A' = H} \]

\[\text{n' = 1, 2 or 3} \]

In step a, N-(t-butyloxycarbonyl)-N-[(4-methylphenyl)sulfonamide] (10) is alkylated with an appropriate haloalkanol of structure (11) to give the appropriate N-(t-butyloxycarbonyl)-N-[(4-methylphenyl)sulfonyl]-haloalkylamine of structure (12).
For example, N-(t-butyloxy carbonyl)-N-[(4-methylphenyl)sulfonamide] (10) is contacted with a molar equivalent of triphenylphosphine, a molar equivalent of the appropriate haloalkanol of structure (11) and a molar equivalent of diethyl azodicarboxylate. The reactants are typically contacted in a suitable organic solvent such as tetrahydrofuran. The reactants are typically stirred together at room temperature for a period of time ranging from 2-24 hours. The N-(t-butyloxy carbonyl)-N-[(4-methylphenyl)sulfonyl]-haloalkylamine of structure (12) is recovered from the reaction zone by evaporation of the solvent. It can be purified by silica gel chromatography.

In step b, the alkyl halide functionality of the appropriate N-(t-butyloxy carbonyl)-N-[(4-methylphenyl)sulfonyl]-haloalkylamine of structure (12) is aminated with the appropriate bis(phenyl)-diazaalkane of structure (13) to give the appropriate bis(t-butyloxy carbonyl)-bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-tetraazaalkane of structure (14).

For example, the appropriate bis(phenyl)-diazaalkane of structure (13) is contacted with 2 molar equivalents of a non-nucleophilic base such as sodium hydride. The reactants are typically contacted in a suitable organic solvent such as dimethylformamide. The reactants are typically stirred together until evolution of hydrogen ceases at a temperature range of from 0°C to room temperature. The appropriate N-(t-butyloxy carbonyl)-N-[(4-methylphenyl)sulfonyl]-haloalkylamine of structure (12) is then added to the reaction mixture. The reactants are typically stirred together for a period of time ranging from 2-24 hours and at a temperature range of from 0°C to 50°C. The bis(t-butyloxy carbonyl)-bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-tetraazaalkane of structure (14) is recovered
from the reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography.

In step c, the t-butyloxycarbonyl functionalities of the appropriate bis(t-butyloxycarbonyl)-bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-tetraazaalkane of structure (14) are hydrolyzed to give the appropriate bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-tetraazaalkane of structure (15).

For example, the appropriate bis(t-butyloxycarbonyl)-bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-tetraazaalkane of structure (14) is contacted with a molar excess of an anhydrous acid, such as hydrochloric acid. The reactants are typically contacted in a suitable aprotic organic solvent, such as ethyl ether. The reactants are typically stirred together for a period of time ranging from 2-24 hours and at a temperature range of from 0°C to room temperature. The bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-tetraazaalkane of structure (15) is recovered from the reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography.

In step d, the bis[(4-methylphenyl)sulfonyl] functionalities of the appropriate bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-tetraazaalkane of structure (15) are alkylated with the appropriate phenylalkyl halide of structure (16) to give the bis[(phenyl)alkyl]-bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-tetraazaalkane of structure (17).

For example, the appropriate bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-tetraazaalkane of structure (15) is first contacted with 2 molar equivalents of an appropriate non-nucleophilic base such as sodium hydride. The reactants are typically contacted in a
suitable organic solvent such as dimethylformamide. The reactants are typically stirred together at a temperature range of from 0°C to room temperature until evolution of hydrogen ceases. An appropriate phenylalkyl halide of structure (16) is then added to the reaction mixture. The reactants are typically stirred together for a period of time ranging from 2-24 hours and at a temperature range of from room temperature to reflux. The bis[(phenyl)alkyl]-bis[(4-methylphenyl)sulfonyl]-bis(benzoyl)-tetraazaalkane of structure (17) is recovered from the reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography.

In step e, the sulfonamide functionalities of the appropriate bis[(phenyl)alkyl]-bis[(4-methylphenyl)sulfonyl]-bis(benzoyl)-tetraazaalkane of structure (17) are cleaved to give the appropriate bis[(phenyl)alkyl]-bis(benzoyl)-tetraazaalkane of structure (18).

For example, the appropriate bis[(phenyl)alkyl]-bis[(4-methylphenyl)sulfonyl]-bis(benzoyl)-tetraazaalkane of structure (17) is contacted with a molar excess of sodium in liquid ammonia. The reactants are typically stirred together at a temperature range of from -60°C to -20°C for a period of time ranging from 1-10 hours. The bis[(phenyl)alkyl]-bis(benzoyl)-tetraazaalkane of structure (18) is recovered from the reaction zone by evaporation of the ammonia. It can be purified by silica gel chromatography.

In step f, the bis[(phenyl)alkyl]amine functionalities of the appropriate bis[(phenyl)alkyl]-bis(benzoyl)-tetraazaalkane of structure (18) are alkylated with an appropriate thioalkylating agent of structure (19) to give
the appropriate bis[(phenyl)alkyl]-bis(alkylthiol)-bis(benzoyl)-tetraazaalkane of structure \((20)\).

For example, the appropriate bis[(phenyl)alkyl]-bis(benzoyl)-tetraazaalkane of structure \((18)\) is contacted with a molar excess of an appropriate thioalkylating agent of structure \((19)\). The reactants are typically contacted in a suitable organic solvent, such as benzene. The reactants are typically stirred together for a period of time ranging from 2–10 hours and at a temperature range of from room temperature to reflux. The bis[(phenyl)alkyl]-bis(alkylthiol)-bis(benzoyl)-tetraazaalkane of structure \((20)\) is recovered from the reaction zone by evaporation on the solvent. It can be purified by silica gel chromatography.

In step g, the bis(benzoyl) functionalities of the appropriate bis[(phenyl)alkyl]-bis(alkylthiol)-bis(benzoyl)-tetraazaalkane of structure \((20)\) are hydrolyzed to give the corresponding bis[(phenyl)alkyl]-bis(alkylthiol)-tetraazaalkane of structure \((21)\).

For example, the appropriate bis[(phenyl)alkyl]-bis(alkylthiol)-bis(benzoyl)-tetraazaalkane of structure \((20)\) is contacted with a molar excess of an acid, such as hydrochloric acid. The reactants are typically stirred together for a period of time ranging from 2–24 hours at a temperature range of from room temperature to reflux. The bis[(phenyl)alkyl]-bis(alkylthiol)-tetraazaalkane of structure \((21)\) is recovered from the reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography.

In optional step h, the thiol functionalities of the appropriate compounds of formula \((1)\) wherein \(A\) and \(B_2\) are both hydrogen and \(B_1\) is represented by \(-(CH_2)_q-SH\) (structure
21) may be converted to the corresponding phosphorothioates to give those compounds of formula (1) wherein A and B₂ are both hydrogen and B₁ is represented by -(CH₂)₄SPO₃H₂ (structure 22) as described previously in Scheme A, optional step f.

Starting materials for use in Scheme B are readily available to one of ordinary skill in the art. For example, N-(tert-butyloxycarbonyl)-N-[(4-methylphenyl)sulfonamide] is described in *Tetrahedron Lett.*, 30, 5709-12 1989.

The following example presents a typical synthesis as described in Scheme B. This example is illustrative only and is not intended to limit the scope of the present invention in any way.

Example 2

1,19-Bis[(phenyl)methyl]-1,19-bis(ethanethiol)-1,6,14,19-tetraazanonadecane

Step a: N-(tert-Butyloxycarbonyl)-N-[(4-methylphenyl)sulfonyl]-4-chlorobutylamine

Dissolve N-(tert-butyloxycarbonyl)-N-[(4-methylphenyl)sulfonamide] (88mg, 0.322mmol) in anhydrous tetrahydrofuran (3mL) and add triphenylphosphine (168mg, 0.645mmol). Stir under a nitrogen atmosphere and add 4-chloro-1-butanol (23.3mg, 0.215mmol) followed by diethyl azodicarboxylate (0.083mL, 0.530mmol). Stir at room temperature for several hours and evaporate the solvent *in vacuo*. Purify by silica gel chromatography to give the title compound.

Step b: 1,19-Bis(tert-Butyloxycarbonyl)-1,19-bis[(4-methylphenyl)sulfonyl]-6,14-bis(benzoyl)-1,6,14,19-tetraazanonadecane
Dissolve 1,9-diazanonane (13g, 0.1mol) in pyridine (200mL) and cool to 0°C. Add, by dropwise addition, benzoyl chloride (31g, 0.22mol) and stir overnight. Extract into chloroform, wash with water, 5% hydrochloric acid, 5% sodium hydroxide, water and dry (MgSO₄). Evaporate the solvent in vacuo and purify by silica gel chromatography to give 1,9-bis(benzoyl)-1,9-diazanonane.

Suspend sodium hydride (4.8g, 0.2mol) in anhydrous dimethylformamide (100mL), cool to 0°C and place under a nitrogen atmosphere. Add, by dropwise addition, a solution 1,9-bis(benzoyl)-1,9-diazanonane (33.8g, 0.1mol) in dimethylformamide. Stir until evolution of hydrogen ceases. Add, by dropwise addition, a solution of N-(tert-butyloxy carbonyl)-N-[(4-methylphenyl)sulfonyl]-4-chlorobutylamine (72.4g, 0.2mol) in dimethylformamide (100mL). Stir overnight at room temperature then carefully quench with saturated ammonium chloride. Extract into ethyl acetate, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.

Step c: 1,19-Bis[(4-methylphenyl)sulfonyl]-6,14-bis(benzoyl)-1,6,14,19-tetraazanonadecane

Dissolve 1,19-Bis(tert-butyloxy carbonyl)-1,19-bis[(4-methylphenyl)sulfonyl]-6,14-bis(benzoyl)-1,6,14,19-tetraazanonadecane (9.76g, 10mmol) in saturated methanolic hydrochloric acid (100mL). Stir for several hours and evaporate the solvent in vacuo. Dissolve the residue in water and neutralize with saturated sodium hydrogen carbonate and extract with ethyl acetate. Dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.
Step d: **1,19-Bis((phenyl)methyl)-1,19-bis[(4-methylphenyl)sulfonyl]-6,14-bis(benzoyl)-1,6,14,19-tetraazanonadecane**
Suspend sodium hydride (48mg, 2mmol) in anhydrous dimethylformamide (2mL), cool to 0°C and place under a nitrogen atmosphere. Add, by dropwise addition, a solution 1,19-bis[(4-methylphenyl)sulfonyl]-6,14-bis(benzoyl)-1,6,14,19-tetraazanonadecane (78mg, 1mmol) in dimethylformamide (2mL). Stir until evolution of hydrogen ceases. Add, by dropwise addition, a solution of benzylbromide (34mg, 2mmol) in dimethylformamide (2mL). Stir overnight at room temperature then carefully quench with saturated ammonium chloride. Extract into ethyl acetate, dry (MgSO₄) and evaporate the solvent *in vacuo*. Purify by silica gel chromatography to give the title compound.

Step e: **1,19-Bis((phenyl)methyl)-6,14-bis(benzoyl)-1,6,14,19-tetraazanonadecane**
Mix 1,19-bis((phenyl)methyl)-1,19-bis[(4-methylphenyl)sulfonyl]-6,14-bis(benzoyl)-1,6,14,19-tetraazanonadecane (4g, 4mmol) in dry liquid ammonium (25mL) at -40°C. Add small pieces of sodium until a permanent blue color remains. Discharge the excess sodium with saturated ammonium chloride. Allow the ammonia to evaporate spontaneously and partition the residue between ethyl acetate and water. Separate the organic phase, dry (MgSO₄) and evaporate the solvent *in vacuo*. Purify by silica gel chromatography to give the title compound.

Step f: **1,19-Bis((phenyl)methyl)-1,19-bis(ethanethiol)-6,14-bis(benzoyl)-1,6,14,19-tetraazanonadecane**
Dissolve 1,19-bis((phenyl)methyl)-6,14-bis(benzoyl)-1,6,14,19-tetraazanonadecane (1.27g, 1.92mmol) in anhydrous benzene (20mL). Add, by dropwise addition, a solution of ethylene sulfide (242mg, 4mmol) in anhydrous benzene (10mL)
over several hours at reflux. Reflux for an additional 2 hours, filter through Celite and evaporate the solvent in vacuo. Purify the residue by silica gel chromatography.

Step g: 1,19-Bis[(phenyl)methyl]-1,19-bis(ethanethiol)-1,6,14,19-tetraazanonadecane
Dissolve 1,19-Bis[(phenyl)methyl]-1,19-bis(ethanethiol)-6,14-bis(benzoyl)-1,6,14,19-tetraazanonadecane (7.8g, 10mmol) in 6N hydrochloric acid and heat at reflux for several hours. Cool to room temperature and carefully neutralize with saturated sodium hydrogen carbonate. Extract into ethyl acetate and dry (MgSO₄). Evaporate the solvent in vacuo and purify the residue by silica gel chromatography to give the title compound.

The following compounds can be prepared analogously to that described in Example 2:

1,19-Bis[(phenyl)methyl]-1,19-bis(ethanethiol)-1,6,14,19-tetraazanonadecane;

1,19-Bis(phenyl)-1,19-bis(propanethiol)-1,6,14,19-tetraazanonadecane;

1,19-Bis[(phenyl)propyl]-1,19-bis(ethanethiol)-1,6,14,19-tetraazanonadecane;

1,19-Bis[(phenyl)methyl]-1,19-bis(propylphosphorothioate)-1,6,14,19-tetraazanonadecane.

The compounds of formula (1) wherein B₁ and B₂ are hydrogen, A is other than hydrogen and n = 1, 2 or 3 can be prepared according to the general synthetic scheme set forth in Scheme C wherein all substituents, unless otherwise indicated, are previously defined.
Scheme C

(12) Ts-N-Z-Hal
 BOC

(23) Ts-NH-(CH₂)ₘ-NH-Ts

step a

(24) Ts-N-Z-N-(CH₂)ₘ-N-Z-N-Ts
 BOC
 BOC

(25) Ts-N-Z-N-(CH₂)ₘ-N-Z-N-Ts
 H
 H

step b

(27) A''-(CH₂)ₙ-CHO

(26) H₂N-Z-NH-(CH₂)ₘ-NH-Z-NH₂

step c

(28) A''-(CH₂)ₙ'-HN-Z-N-(CH₂)ₘ'-N-Z-NH-(CH₂)ₙ''-A''
In step a, the alkyl halide functionality of the appropriate N-(t-butyloxycarbonyl)-N-[(4-methylphenyl)sulfonyl]-haloalkylamine of structure (12) is aminated with the appropriate bis[(4-methylphenyl)sulfonyl]-diazaalkane of structure (23) to give the appropriate bis(t-butyloxycarbonyl)-tetra[(4-methylphenyl)sulfonyl]-tetraazaalkane of structure (24). Reaction conditions are similar to those described previously in Scheme B, step b.
In step b, the t-butyloxycarbonyl functionalities of the appropriate bis(t-butyloxycarbonyl)-tetra[(4-methylphenyl)sulfonyl]-tetraazaalkane of structure (24) are hydrolyzed to give the appropriate tetra[(4-methylphenyl)sulfonyl]-tetraazaalkane of structure (25) as described previously in Scheme B, step c.

In step c, the sulfonamide functionalities of the appropriate tetra[(4-methylphenyl)sulfonyl]-tetraazaalkane of structure (25) are cleaved to give the appropriate tetraazaalkane of structure (26) as described previously in Scheme B, step e.

In step d, the terminal amino functionalities of the appropriate tetraazaalkane of structure (26) are reductively alkylated with the appropriate thiol-protected (phenylthiol)-alkylaldehyde of structure (27) to give the appropriate thiol-protected bis[(phenyl)alkyl]-tetraazaalkane of structure (28) as described previously in Scheme A, step d.

The thiol functionality of the (phenylthiol)-alkylaldehyde of structure (27) must be protected due to the conditions of the reductive alkylation. The selection and utilization of appropriate thiol protecting groups are well known to one of ordinary skill in the art and are described in "Protective Groups in Organic Synthesis", Theodora W. Greene, Wiley (1981).

In step e, the protecting groups on the thiol functionalities of the appropriate thiol-protected bis[(phenyl)alkyl]-tetraazaalkane of structure (28) are removed to give the corresponding bis[(phenyl)alkyl]-tetraazaalkane of structure (29) by techniques and procedures well known and appreciated by one of ordinary skill in the art.
The bis[(phenyl)alkyl]-tetraazaalkane of structure (29) is purified by first converting the free amino functionalities to their corresponding t-butyloxy carbonamides with 4 molar equivalents of di-t-butyldicarbonate. The reactants are typically contacted in a miscible organic solvent/aqueous base solvent mixture such as dioxane/sodium hydroxide. The reactants are typically stirred together at room temperature for a period of time ranging from 1-10 hours. The bis[(phenyl)alkyl]-bis(t-butyloxy carbonyl)-tetraazaalkane is recovered from the reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography. The t-butyloxy carbonamide functionalities of the purified bis[(phenyl)alkyl]-bis(t-butyloxy carbonyl)-tetraazaalkane are then hydrolyzed with methanolic hydrochloric acid to give the purified bis[(phenyl)alkyl]-tetraazaalkane of structure (29) as its tetrahydrochloride salt.

In optional step f, the thiol functionalities of the appropriate compounds of formula (1) wherein A is a group represented by -SH or -N-(CH$_2$)$_n$-SH, B$_1$ and B$_2$ are both hydrogen and n = 1, 2 or 3 (structure (29) may be converted to the corresponding phosphorothioates after deprotection to give those compounds of formula (1) wherein A is a group represented by -SPO$_3$H$_2$ or -N-(CH$_2$)$_n$-SPO$_3$H$_2$, B$_1$ and B$_2$ are both represented by hydrogen and n = 1, 2 or 3 (structure 30) as described previously in Scheme A, step f.

Starting materials for use in the general synthetic procedures outlined in Scheme C are readily available to one of ordinary skill in the art. For example, N-(tert-butyloxy carbonyl)-N-[(4-methylphenyl)sulfonamide] is described in *Tetrahedron Lett.*, 30, 5709-12 1989.
The following example presents a typical synthesis as described in Scheme C. This example is understood to be illustrative only and is not intended to limit the scope of the present invention in any way.

Example 3

1,19-Bis[(4-mercaptophenyl)methyl]-1,6,14,19-tetraazanonadecane, tetrahydrochloride

Step a: 1,19-Bis[t-Butyloxy carbonyl]-1,6,14,19-tetra[(4-methylphenyl)sulfonyl]-1,6,14,19-tetraazanonadecane

Dissolve 1,9-diazanonane (13g, 0.1mol) in pyridine (7.9g, 0.10mol) and cool to °C. Add, by dropwise addition, p-toluene sulfonyl chloride (41.9g, 0.22mol) and stir overnight. Extract into chloroform, wash with water, 5% hydrochloric acid, 5% sodium hydroxide, water and dry the organic phase (MgSO₄). Evaporate the solvent _in vacuo_ and purify by silica gel chromatography to give 1,9-bis[(4-methylphenyl)sulfonyl]-1,9-diazanonane.

Suspend sodium hydride (4.8g, 0.2mol) in anhydrous dimethylformamide (100mL), cool to 0°C and place under a nitrogen atmosphere. Add, by dropwise addition, a solution 1,9-bis[(4-methylphenyl)sulfonyl]-1,9-diazanonane (43.8g, 0.1mol) in dimethylformamide. Stir until evolution of hydrogen ceases. Add, by dropwise addition, a solution of N-(t-butyloxy carbonyl)-N-[(4-methylphenyl)sulfonyl]-4-chlorobutylamine (72.4g, 0.2mol) in dimethylformamide (100mL). Stir overnight at room temperature then carefully quench with saturated ammonium chloride. Extract into ethyl acetate, dry (MgSO₄) and evaporate the solvent _in vacuo_. Purify by silica gel chromatography to give the title compound.

Step b: 1,6,14,19-Tetra[(4-methylphenyl)sulfonyl]-1,6,14,19-tetraazanonadecane
Dissolve 1,19-bis(t-butyloxy carbonyl)-1,6,14,19-tetra[(4-methylphenyl)sulfonyl]-1,6,14,19-tetraazaazanonadecane (11.7g, 10mmol) in saturated methanolic hydrochloric acid (100mL). Stir for several hours and evaporate the solvent \textit{in vacuo}. Dissolve the residue in water and neutralize with saturated sodium hydrogen carbonate and extract with ethyl acetate. Dry (MgSO$_4$) and evaporate the solvent \textit{in vacuo}. Purify by silica gel chromatography to give the title compound.

Step c: 1,6,14,19-Tetraazaazanonadecane
Mix 1,6,14,19-tetra[(4-methylphenyl)sulfonyl]-1,6,14,19-tetraazaazanonadecane (3.9g, 4mmol) in dry liquid ammonia (25mL) at -40°C. Add small pieces of sodium until a permanent blue color remains. Discharge the excess sodium with saturated ammonium chloride. Allow the ammonia to evaporate spontaneously and partition the residue between ethyl acetate and water. Separate the organic phase, dry (MgSO$_4$) and evaporate the solvent \textit{in vacuo}. Purify by silica gel chromatography to give the title compound.

Step d: 1,19-Bis[(4-methylmercaptophenyl)methyl]-1,6,14,19-tetraazaazanonadecane
Dissolve 1,6,14,19-tetraazaazanonadecane (1.35g, 0.005mol) in methanol (distilled from Mg) (50mL) and add 4-(methylthio)benzaldehyde (1.52g, 0.01mol), sodium cyanoborohydride (0.62g, 0.010mol) and 1 drop of 1% bromocresol green in ethanol. Maintain the pH of the reaction with 1N hydrochloric acid in methanol until the indicator no longer changes. Evaporate the solvent \textit{in vacuo} and partition the residue between 1N sodium hydroxide (50mL) and ethyl acetate (100mL). Separate the organic phase, dry (MgSO$_4$) and evaporate the solvent \textit{in vacuo} to give the title compound.

Step e: 1,19-Bis[(4-mercaptophenyl)methyl]-1,6,14,19-tetraazaazanonadecane

M01587 -31-
Dissolve 1,19-bis[(4-methylmercaptophenyl)methyl]-1,6,14,19-tetraazanonadecane (2.94g, 5mmol) in chloroform (20mL) and treat with meta-chloroperbenzoic acid (863mg, 5mmol). Add calcium hydroxide (556mg, 7.5mmol) and stir for 15 minutes. Filter and evaporate the solvent in vacuo. Dissolve the residue in trifluoroacetic anhydride (10mL) and heat at reflux for 30 minutes. Evaporate the volatiles in vacuo and dissolve the residue in a mixture of methanol-triethylamine (1:1, 100mL) and evaporate the solvent in vacuo. Dissolve the residue in chloroform, wash with saturated ammonium chloride and dry (MgSO₄). Evaporate the solvent in vacuo to give the crude title compound.

Dissolve the crude 1,19-bis[(4-mercaptophenyl)methyl]-1,6,14,19-tetraazanonadecane (2.80g, 5mmol) in 50/50 dioxane/water (25mL) and buffer to pH 10 with 1N sodium hydroxide. Add, by dropwise addition, an ether solution of di-t-butyl dicarbonate (4.8g, 22mmol) at 10°C. Allow to warm to room temperature and buffer occasionally to retain pH 10. Acidify with a sodium citrate/citric acid buffer to pH 5, extract with ether (3X), dry (MgSO₄) and evaporate the solvent in vacuo. Purify the residue by silica gel chromatography to give 1,19-bis[(4-mercaptophenyl)methyl]-1,6,14,19-tetra(t-butyloxy carbonyl)-1,6,14,19-tetraazanonadecane.

Dissolve 1,19-bis[(4-mercaptophenyl)methyl]-1,6,14,19-tetra(t-butyloxy carbonyl)-1,6,14,19-tetraazanonadecane (9.60g, 10mmol) in saturated methanolic hydrochloric acid (100mL). Stir for several hours and evaporate the solvent in vacuo to give the title compound.

The following compound can be prepared analogously to that described in Example 3:
1,19-Bis[(4-(2-thioethylanilinyl)methyl]-1,6,14,19-
tetraazanonadecane;

1,12-Bis[(4-mercaptophenyl)methyl]-1,4,9,12-
tetraazaundecane;

1,19-Bis[(4-mercaptophenyl)propyl]-1,5,13,19-
tetraazanonadecane;

1,18-Bis[(4-mercaptophenyl)ethyl]-1,5,14,18-
tetraazaoctadecane.

The compounds of formula (1) wherein B_1 and B_2 are
hydrogen, A is other than hydrogen and $n = 0$ can be prepared
according to the general synthetic scheme set forth in
Scheme D wherein all substituents, unless otherwise
indicated, are previously defined.
Scheme D

\[\text{A}^n\text{NH}_2 \rightarrow \text{A}^n\text{NH-Z'-CN} \rightarrow \text{A}^n\text{NH-Z-NH}_2 \rightarrow \text{A}^n\text{N-Z-NH-BOC} \rightarrow \text{A}^n\text{N-Z-N-\((\text{CH}_2)_m\)-Z-N} \rightarrow \text{A}^n\text{N-Z-N-\((\text{CH}_2)_m\)-Z-N} \]

(31) \quad (32) \quad (33) \quad (34) \quad (35) \quad (36) \quad (37)
Scheme D Cont.

\[A'' = -\text{SPg}, \quad -\text{N(CH}_2\text{)}_q\text{-SPg} \]

\[A''' = -\text{SH}, \quad -\text{N-(CH}_2\text{)}_q\text{-SH} \]

\[A' = -\text{SPO}_3\text{H}_2, \quad -\text{N-(CH}_2\text{)}_q\text{-SPO}_3\text{H}_2 \]

\[Z' = Z \text{ minus CH}_2 \]

In step a, the nitrogen functionality of an appropriate thiol-protected (mercapto)aniline of structure (31) is alkylated to give the appropriate thiol-protected N-alkynitrile-(mercapto)aniline of structure (32) as described previously in Scheme A, step a.

In step b, the nitrile functionality of the appropriate thiol-protected N-alkynitrile-(mercapto)aniline of structure (32) is reduced to give the thiol-protected N-(mercaptophenyl)-diazaalkane of structure (33) as described previously in Scheme A, step c.

In step c, the amino functionalities of the appropriate thiol-protected N-(mercaptophenyl)-diazaalkane of structure (33) are protected as the t-butyloxycarbonyl derivatives to give the corresponding thiol-protected N-(mercaptophenyl)-bis(t-butyloxycarbonyl)-diazaalkane of structure (34).
For example, the appropriate thiol-protected \(N\)-(mercaptophenyl)-diazaalkane of structure (33) is contacted with 2 molar equivalents of an appropriate t-butyloxy carbonylating agent such as di-t-butyldicarbonate. The reactants are typically contacted in a miscible organic solvent/aqueous base mixture such as dioxane/sodium hydroxide. The reactants are typically stirred together at room temperature for a period of time ranging from 1-10 hours. The thiol-protected \(N\)-(mercaptophenyl)-bis(t-butyloxy carbonyl)-diazaalkane of structure (34) is recovered from the reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography.

In step d, the terminal t-butyloxy carbamide functionality of the appropriate thiol-protected \(N\)-(mercaptophenyl)-bis(t-butyloxy carbonyl)-diazaalkane of structure (34) is alkylated with an appropriate dihaloalkane of structure (35) to give the thiol-protected bis(mercaptophenyl)-tetra(t-butyloxy carbonyl)-tetraazaalkane of structure (36).

For example, the appropriate thiol-protected \(N\)-(mercaptophenyl)-bis(t-butyloxy carbonyl)-diazaalkane (34) is contacted with 2 molar equivalents of a non-nucleophilic base such as sodium hydride. The reactants are typically contacted in a suitable organic solvent such as dimethylformamide. The reactants are typically stirred together until evolution of hydrogen ceases at a temperature range of from 0°C to room temperature. The appropriate dihaloalkane of structure (35) is then added to the reaction mixture. The reactants are typically stirred together for a period of time ranging from 2-24 hours and at a temperature range of from 0°C to room temperature. The thiol-protected bis(mercaptophenyl)-tetra(t-butyloxy carbonyl)-tetraazaalkane of structure (36) is recovered from the reaction zone by
extractive methods as is known in the art. It can be purified by silica gel chromatography.

In step e, the t-butyloxy carbonamide functionalities of the appropriate thiol-protected bis(mercaptophenyl)-tetra(t-butyloxy carbonyl)-tetraazaalkane of structure (36) are hydrolyzed to give the corresponding thiol-protected bis(mercaptophenyl)-tetraazaalkane of structure (37) as described previously in Scheme B, step c.

In step f, the thiol-protecting groups of the appropriate thiol-protected bis(mercaptophenyl)-tetraazaalkane of structure (37) are removed to give the corresponding bis(mercaptophenyl)-tetraazaalkane of structure (38) using techniques and procedures well known and appreciated by one of ordinary skill in the art.

In optional step g, the thiol functionalities of the appropriate compounds of formula (1) wherein A is a group represented by -SH or -N-(CH₂)ₙ-SH, B₁ and B₂ are both hydrogen and n = 0 (structure 38) are both hydrogen may be converted to the corresponding phosphorothioates to give those compounds of formula (1) wherein A is a group represented by -SPO₃H₂ or -N-(CH₂)ₙ-SPO₃H₂, B₁ and B₂ are both represented by hydrogen and n = 0 (structure 39) as described previously in Scheme A, optional step f.

Starting materials for use in Scheme D are readily available to one of ordinary skill in the art.

The following example presents a typical synthesis as described in Scheme D. This example is illustrative only and is not intended to limit the scope of the present invention in any way.

Example 4
1,15-Bis(4-thiophenyl)-1,5,11,15-tetraazapentadecane
Step a: 3N-(4-methylthiophenyl)propionitrile
Dissolve 4-(methylmercapto)aniline (25.7g, 0.185mol) and
acrylonitrile (11.7g, 0.22mol) in ethanol (700mL) and heat
at reflux for 18 hours. Evaporate the solvent *in vacuo* and
purify by distillation to give the title compound.

Step b: 1-(4-methylthiophenyl)-1,5-diazapentane
Suspend lithium aluminum hydride (2.1g, 0.054mol) in ether
(250mL). Add, by dropwise addition, a solution of aluminum
chloride (7.3g, 0.054mol) in ether (250mL). Stir for 20
minutes and add a solution of 3N-(4-methylthiophenyl)‐
propionitrile (10.4g, 0.054mol) in ether (25mL). Stir at
ambient temperature for 18 hours. Decompose the reducing
agent by carefully adding water (20mL) and 30% aqueous
potassium hydroxide (100mL). Filter and evaporate the
solvent *in vacuo* and purify by silica gel chromatography to
give the title compound.

Step c: 1-(4-methylthiophenyl)-1,5-bis(t-butyloxy carbonyl)‐
1,5-diazapentane
Dissolve 1-(4-methylthiophenyl)-1,5-diazapentane (980mg,
5mmol) in 50/50 dioxane/water (25mL) and buffer to pH 10
with 1N sodium hydroxide. Add, by dropwise addition, an
ether solution of di-t-butyl dicarbonate (2.4g, 11mmol) at
10°C. Allow to warm to room temperature and buffer
occasionally to retain pH 10. Acidify with a sodium
citrate/citric acid buffer to pH 5, extract with ether (3X),
dry (MgSO₄) and evaporate the solvent *in vacuo*. Purify the
residue by silica gel chromatography to give the title
compound.

Step d: 1,15-Bis(4-methylthiophenyl)-1,5,11,15-tetra(t-
butyloxy carbonyl)-1,5,11,15-tetraazapentadecane
Suspend sodium hydride (48mg, 2mmol) in anhydrous
dimethylformamide (2mL), cool to 0°C and place under a
nitrogen atmosphere. Add, by dropwise addition, a solution of 1-(4-methylthiophenyl)-1,5-bis(t-butyloxy carbonyl)-1,5-
diazapentane (1.58g, 4mmol) in dimethylformamide (2mL).
Stir until evolution of hydrogen ceases. Add, by dropwise addition, a solution of 1,5-dibromopentane (460mg, 2mmol) in dimethylformamide (2mL). Stir overnight at room temperature then carefully quench with saturated ammonium chloride.
Extract into ethyl acetate, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.

**Step e: 1,15-Bis(4-methylthiophenyl)-1,5,11,15-
tetraazapentadecane**

Dissolve 1,15-bis(4-methylthiophenyl)-1,5,11,15-tetra(t-
butyloxy carbonyl)-1,5,11,15-tetraazapentadecanane (8.60g, 10mmol) in saturated methanolic hydrochloric acid (100mL).
Stir for several hours and evaporate the solvent in vacuo. Partition the residue between saturated sodium hydrogen carbonate and ethyl acetate. Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo to give the title compound.

**Step f: 1,15-Bis(4-thiophenyl)-1,5,11,15-
tetraazapentadecane**

Dissolve 1,15-bis(4-methylthiophenyl)-1,5,11,15-
tetraazapentadecane (2.3g, 5mmol) in chloroform (20mL) and treat with meta-chloroperbenzoic acid (863mg, 5mmol). Add calcium hydroxide (556mg, 7.5mmol) and stir for 15 minutes. Filter and evaporate the solvent in vacuo. Dissolve the residue in trifluoroacetic anhydride (10mL) and heat at reflux for 30 minutes. Evaporate the volatiles in vacuo and dissolve the residue in a mixture of methanol-triethylamine (1:1, 100mL) and evaporate the solvent in vacuo. Dissolve the residue in chloroform, wash with saturated ammonium chloride and dry (MgSO₄). Evaporate the solvent in vacuo to give the title compound.
The following compounds may be prepared analogously to that described in Example 4:

1,12-Bis(4-thiophenyl)-1,4,9,12-tetraazadodecane;

1,19-Bis(4-thiophenyl)-1,5,13,19-tetraazanonadecane;

1,18-Bis(4-thiophenyl)-1,5,14,18-tetraazaoctadecane.

The compounds of formula (1) wherein \(B_2 \) and \(A \) are both hydrogen, \(B_1 \) is a group represented by \(-(CH_2)_q-SH\) or \(-(CH_2)_q-SPO_3H_2\) and \(n = 0 \) can be prepared according to the general synthetic scheme set forth in Scheme E wherein all substituents, unless otherwise indicated, are previously defined.
Scheme E

A^-\text{NH}_2 \quad \text{(40)} \quad \text{step a} \quad \rightarrow \quad A^-\text{NH-Ts} \quad \text{(41)} \quad \text{step b}

A^-\text{N-Z'-CN} \quad \text{T s} \quad \text{(42)} \quad \text{step c} \quad \rightarrow \quad A^-\text{N-Z-NH}_2 \quad \text{T s} \quad \text{(43)} \quad \text{step d}

\text{A'^-\text{N-Z-NH-BOC} \quad \text{Ts} \quad \text{(44)} \quad \text{step e} \quad \overset{\text{Hal-(CH}_2\text{)_m-Hal (35)}}{\longrightarrow} \quad \text{Hal-(CH}_2\text{)_m-Hal (35)}}

\text{A'^-\text{N-Z-N-(CH}_2\text{)_m-N-Z-N}} \quad \text{BOC} \quad \text{Ts} \quad \text{BOC} \quad \text{(45)} \quad \text{step f}

\text{A'^-\text{N-Z-N-(CH}_2\text{)_m-N-Z-N}} \quad \text{BOC} \quad \text{Ts} \quad \text{BOC} \quad \text{(46)} \quad \overset{S_1}{\underset{(CH}_2\text{)_m}{\longrightarrow}} \quad \text{(19)} \quad \text{step g}
In step a, the appropriate aniline of structure (40) is converted to the corresponding N-[(4-methylphenyl)sulfonyl]aniline of structure (41).

For example, the appropriate aniline of structure (40) is contacted with a slight molar excess of p-toluenesulfonyl chloride. The reactants are typically contacted in an organic base such as anhydrous pyridine. The reactants are typically stirred together for a period of time ranging from
2-24 hours and at a temperature range of from 5°C to room temperature. The N-[(4-methylphenyl)sulfonyl]aniline of structure (41) is recovered from the reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography.

In step b, the nitrogen functionality of an appropriate N-[(4-methylphenyl)sulfonyl]aniline of structure (41) is alkylated to give the appropriate N-alkynitrile-N-[(4-methylphenyl)sulfonyl]aniline of structure (42) as described previously in Scheme A, step a.

In step c, the nitrile functionality of the appropriate N-alkynitrile-N-[(4-methylphenyl)sulfonyl]aniline of structure (42) is reduced to give the N-[(4-methylphenyl)sulfonyl]-N-phenyl-diazaalkane of structure (43) as described previously in Scheme A, step c.

In step d, the primary amino functionality of the appropriate N-[(4-methylphenyl)sulfonyl]-N-phenyl-diazaalkane of structure (43) is protected as the t-butyloxy carbonyl derivative to give the corresponding N-[(4-methylphenyl)sulfonyl]-N-phenyl-N'-(t-butyloxy carbonyl)-diazaalkane of structure (44) as described previously in Scheme D, step c.

In step e, the terminal t-butyloxy carbamamide functionality of the appropriate N-[(4-methylphenyl)sulfonyl]-N-phenyl-N'-(t-butyloxy carbonyl)diazaalkane of structure (44) is alkylated with an appropriate dihaloalkane of structure (35) to give the bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-bis(t-butyloxy carbonyl)-tetraazaalkane of structure (45) as described previously in Scheme D, step d.

In step f, the sulfonamide functionalities of the appropriate bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-bis(t-
butyloxy carbonyl)-tetraazaalkane of structure (45) are cleaved to give the appropriate bis(phenyl)-bis(t-butyloxy carbonyl)-tetraazaalkane of structure (46) as described previously in Scheme B, step e.

In step g, the terminal amine functionalities of the appropriate bis(phenyl)-bis(t-butyloxy carbonyl)-tetraazaalkane of structure (46) are alkylated with an appropriate thioalkylating agent of structure (19) to give the appropriate bis(phenyl)-bis(alkylthiol)-bis(t-butyloxy carbonyl)-tetraazaalkane of structure (47) as described previously in Scheme B, step f.

In step h, the t-butyloxy carbonamide functionalities of the appropriate bis(phenyl)-bis(alkylthiol)-bis(t-butyloxy carbonyl)-tetraazaalkane of structure (47) are hydrolyzed to give the corresponding N,N-bis(phenyl)-N,N-bis(alkylthiol)-tetraazaalkane of structure (48) as described previously in Scheme B, step c.

In optional step i, the thiol functionalities of the appropriate compounds of formula (1) wherein B₁ is a group represented by -(CH₂)ₙ-SH, A and B₂ are both hydrogen and n = 0 (structure 48) may be converted to the corresponding phosphoro thioclates to give those compounds of formula (1) wherein B₁ is a group represented by -(CH₂)ₙ-SPO₃H₂, A and B₂ are both represented by hydrogen and n = 0 (structure 49) as described previously in Scheme A, optional step f.

Starting materials for use in Scheme E are readily available to one of ordinary skill in the art.

The following example presents a typical synthesis as described in Scheme E. This example is illustrative only and is not intended to limit the scope of the present invention in any way.
Example 5

1,15-Bis[(phenyl)]-1,15-bis(ethanethiol)-1,5,11,15-tetraazapentadecane, tetrahydrochloride

Step a: N-[(4-Methylphenyl)sulfonyl]aniline
Dissolve aniline (930mg, 10mmol) in anhydrous pyridine (25mL) and cool to 5°C. Add, by dropwise addition, p-toluenesulfonyl chloride (2.1g, 11mmol) and stir overnight. Partition between water and ethyl acetate and separate the organic phase. Wash the organic phase with cold 1N hydrochloric acid, saturated sodium hydrogen carbonate and brine. Dry (MgSO₄) and evaporate the solvent in vacuo to give the title compound.

Step b: N-Phenyl-N-[(4-methylphenyl)sulfonyl]-3-aminopropionitrile
Dissolve N-[(4-methylphenyl)sulfonyl]aniline (45.7g, 0.185mol) and acrylonitrile (11.7g, 0.22mol) in ethanol (700mL) and heat at reflux for 18 hours. Evaporate the solvent in vacuo and purify by distillation to give the title compound.

Step c: 1-Phenyl-1-[(4-methylphenyl)sulfonyl]-1,5-diazapentane
Suspend lithium aluminum hydride (2.1g, 0.054mol) in ether (250mL). Add, by dropwise addition, a solution of aluminum chloride (7.3g, 0.054mol) in ether (250mL). Stir for 20 minutes and add a solution of N-phenyl-N-[(4-methylphenyl)sulfonyl]-3-aminopropionitrile (16.2g, 0.054mol) in ether (25mL). Stir at ambient temperature for 18 hours. Decompose the reducing agent by carefully adding water (20mL) and 30% aqueous potassium hydroxide (100mL). Filter and evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.
Step d: 1-Phenyl-1-[(4-methylphenyl)sulfonyl]-5-(t-butyloxycarbonyl)-1,5-diazapentane

Dissolve 1-phenyl-1-[(4-methylphenyl)sulfonyl]-1,5-diazapentane (1.52g, 5mmol) in 50/50 dioxane/water (25mL) and buffer to pH 10 with 1N sodium hydroxide. Add, by dropwise addition, an ether solution of di-t-butyl dicarbonate (2.4g, 11mmol) at 10°C. Allow to warm to room temperature and buffer occasionally to retain pH 10. Acidify with a sodium citrate/citric acid buffer to pH 5, extract with ether (3X), dry (MgSO₄) and evaporate the solvent *in vacuo*. Purify the residue by silica gel chromatography to give the title compound.

Step e: 1,15-Bis[phenyl]-1,15-bis[(4-methylphenyl)sulfonyl]-5,11-bis(t-butyloxycarbonyl)-1,5,11,15-tetraazapentadecane

Suspend sodium hydride (48mg, 2mmol) in anhydrous dimethylformamide (2mL), cool to 0°C and place under a nitrogen atmosphere. Add, by dropwise addition, a solution of 1-phenyl-1-[(4-methylphenyl)sulfonyl]-5-(t-butyloxycarbonyl)-1,5-diazapentadecane (1.61g, 4mmol) in dimethylformamide (2mL). Stir until evolution of hydrogen ceases. Add, by dropwise addition, a solution of 1,5-dibromopentane (460mg, 2mmol) in dimethylformamide (2mL). Stir overnight at room temperature then carefully quench with saturated ammonium chloride. Extract into ethyl acetate, dry (MgSO₄) and evaporate the solvent *in vacuo*. Purify by silica gel chromatography to give the title compound.

Step f: 1,15-Bis[phenyl]-5,11-bis(t-butyloxycarbonyl)-1,5,11,15-tetraazapentadecane

Mix 1,15-bis[phenyl]-1,15-bis[(4-methylphenyl)sulfonyl]-5,11-bis(t-butyloxycarbonyl)-1,5,11,15-tetraazapentadecane (874mg, 1mmol) in dry liquid ammonia (25mL) at -40°C. Add small pieces of sodium until a permanent blue color remains.

M01587

-46-
Discharge the excess sodium with saturated ammonium chloride. Allow the ammonia to evaporate spontaneously and partition the residue between ethyl acetate and water. Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.

Step g: 1,15-Bis[phenyl]-1,15-bis(ethanethiol)-5,11-bis(t-butyloxy carbonyl)-1,5,11,15-tetraazapentadecane

Dissolve 1,15-bis[phenyl]-1,15-bis(4-methylsulfonyl)-5,11-bis(t-butyloxy carbonyl)-1,5,11,15-tetraazapentadecane (1.09g, 1.92mmol) in anhydrous benzene (20mL). Add, by dropwise addition, a solution of ethylene sulfide (242mg, 4mmol) in anhydrous benzene (10mL) over several hours at reflux. Reflux for an additional 2 hours, filter through Celite and evaporate the solvent in vacuo. Purify the residue by silica gel chromatography.

Step h: 1,15-Bis[(phenyl)]-1,15-bis(ethanethiol)-1,5,11,15-tetraazapentadecane, tetrahydrochloride

Dissolve 1,15-bis[phenyl]-1,15-bis(ethanethiol)-5,11-bis(t-butyloxy carbonyl)-1,5,11,15-tetraazapentadecane (6.86g, 10mmol) in saturated methanolic hydrochloric acid (100mL). Stir for several hours and evaporate the solvent in vacuo to give the title compound.

The following compounds may be prepared analogously to that described in Example 5:

1,19-Bis[(phenyl)]-1,19-bis(ethanethiol)-1,6,14,19-tetraazanonadecane, tetrahydrochloride;

1,17-Bis[(phenyl)]-1,17-bis(ethylphosphorothioate)-1,5,13,17-tetraazaheptadecane, tetrahydrochloride.

The compounds of formula (1) wherein B₁ and A are both hydrogen, B₂ is a group represented by -(CH₂)₉-SH or
-(CH₂)ₙ-SPO₃H₂ and n = 0 can be prepared according to the
general synthetic scheme set forth in Scheme F wherein all
substituents, unless otherwise indicated, are previously
defined.
Scheme F

(45)

step a

(50)

step b

(51)

step c

(52)

Optional Step d

(53)

A' = H

M01587
In step a, the t-butyloxy-carbonamide functionalities of the appropriate bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-bis(t-butyloxy-carbonyl)-tetraazaalkane of structure (45) are hydrolyzed to give the corresponding bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-tetraazaalkane of structure (50) as described previously in Scheme B, step c.

In step b, the bis(phenyl)amine functionalities of the appropriate bis[(4-methylphenyl)sulfonyl]-bis(phenyl)-tetraazaalkane of structure (50) are alkylated with an appropriate thioalkylating agent of structure (19) to give the appropriate bis(alkythiol)-bis[(4-methylphenyl)sulfonyl]-tetraazaalkane of structure (51) as described previously in Scheme B, step f.

In step c, the sulfonamide functionalities of the appropriate bis(alkythiol)-bis[(4-methylphenyl)sulfonyl]-tetraazaalkane of structure (51) are cleaved to give the appropriate bis(phenyl)-bis(ethanethiol)-tetraazaalkane of structure (52) as described previously in Scheme B, step e.

In optional step d, the thiol functionalities of the appropriate compounds of formula (1) wherein B₂ is a group represented by \(-(CH₂)ₙ-SH\), A and B₁ are both hydrogen and n = 0 (structure 52) may be converted to the corresponding phosphorothioates to give those compounds of formula (1) wherein B₂ is a group represented by \(-(CH₂)ₙ-SPO₃H₂\), A and B₁ are both represented by hydrogen and n = 0 (structure 53) as described previously in Scheme A, optional step f.

Starting materials for use in Scheme F are readily available to one of ordinary skill in the art.

The following example presents a typical synthesis as described in Scheme F. This example is illustrative only.
and is not intended to limit the scope of the present invention in any way.

Example 6

1,15-Bis[(phenyl)]-5,11-bis(ethanethiol)-1,5,11,15-tetraazapentadecane, tetrahydrochloride

Step a: 1,15-Bis[(phenyl)]-1,15-bis[(4-methylphenyl)sulfonyl]-1,5,11,15-tetraazapentadecane
Dissolve 1,15-bis[phenyl]-1,15-bis[(4-methylphenyl)sulfonyl]-5,11-bis(t-butyloxy carbonyl)-1,5,11,15-tetraazapentadecane (8.74g, 10mmol) in saturated methanolic hydrochloric acid (100mL). Stir for several hours and evaporate the solvent in vacuo. Treat the residue carefully with saturated sodium hydrogen carbonate and extract into ethyl ether. Dry (MgSO₄) and evaporate the solvent in vacuo to give the title compound.

Step b: 1,15-Bis[phenyl]-5,11-bis(ethanethiol)-1,15-bis[(4-methylphenyl)sulfonyl]-1,5,11,15-tetraazapentadecane
Dissolve 1,15-bis[(phenyl)]-1,15-bis[(4-methylphenyl)sulfonyl]-1,5,11,15-tetraazapentadecane (1.29g, 1.92mmol) in anhydrous benzene (20mL). Add, by dropwise addition, a solution of ethylene sulfide (242mg, 4mmol) in anhydrous benzene (10mL) over several hours at reflux. Reflux for an additional 2 hours, filter through Celite and evaporate the solvent in vacuo. Purify the residue by silica gel chromatography.

Step c: 1,15-Bis[phenyl]-5,11-bis(ethanethiol)-1,5,11,15-tetraazapentadecane
Mix 1,15-bis[phenyl]-5,11-bis(ethanethiol)-1,15-bis[(4-methylphenyl)sulfonyl]-1,5,11,15-tetraazapentadecane (794mg, 1mmol) in dry liquid ammonium (25mL) at -40°C. Add small pieces of sodium until a permanent blue color remains. Discharge the excess sodium with saturated ammonium
chloride. Allow the ammonium to evaporate spontaneously and partition the residue between ethyl acetate and water. Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.

The following compounds may be prepared analogously to that described in Example 6:

1,19-Bis[(phenyl)]-6,14-bis(ethanethiol)-1,6,14,19-tetraazanonadecane, tetrahydrochloride;

1,17-Bis[(phenyl)]-5,13-bis(ethylphosphorothioate)-1,5,13,17-tetraazaheptadecane, tetrahydrochloride.

The compounds of formula (2) wherein B₁ and A are both hydrogen, B₂ is -(CH₂)ₙ-SH or -(CH₂)ₙ-SPO₃H₂ and n = 1, 2 or 3 can be prepared according to the general synthetic scheme set forth in Scheme G wherein all substituents, unless otherwise indicated, are previously defined.
Scheme G

HO-Z-N-Z-OH

(BOC)

(54)

→

step a

→

step b

→

step c

= (CH$_2$)$_a$

(19)

N-Z-N-Z-N

O

O

H

(57)

→

→

H$_2$N-Z-N-Z-NH$_2$

(59)

M01587

-53-
Scheme G Cont.

In step a, the appropriate bis(hydroxyalkyl)-t-butyloxycarbamide of structure (54) is reacted with phthalimide (55) under Mitsunobu conditions to give the corresponding bis[3-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-t-butyloxycarbamide of structure (56).

For example, the bis(hydroxyalkyl)-t-butyloxycarbamide of structure (54) is contacted with 2 molar equivalents of phthalimide (55), a molar equivalent of triphenylphosphine and a molar equivalent of diethyl azodicarboxylate. The reactants are typically contacted in a suitable organic
solvent, such as tetrahydrofuran. The reactants are typically stirred together for a period of time ranging from 10 minutes to 5 hours. The bis[(3-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-t-butyloxy carbamide of structure (56) is recovered from the reaction zone by evaporation of the solvent. It can be purified by silica gel chromatography.

In step b, the t-butyloxy carbonyl functionality of the appropriate bis[(3-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-t-butyloxy carbamide of structure (56) is hydrolyzed to give the corresponding bis[3-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]amine of structure (57) as described previously in Scheme B, step c.

In step c, the amine functionality of the appropriate bis[3-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]amine of structure (57) is alkylated with an appropriate thioalkylating agent of structure (19) to give the corresponding bis[3-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-alkanethiolamine of structure (58) as described previously in Scheme B, step f.

In step d, the phthalimide functionalities of the appropriate bis[3-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-alkanethiolamine of structure (58) are removed to give the corresponding alkanethio-triazaalkane of structure (59).

For example, the appropriate bis[3-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-alkanethiolamine of structure (58) is contacted with 2 molar equivalents of hydrazine. The reactants are typically contacted in a suitable protic organic solvent such as methanol. The reactants are typically stirred together at reflux temperature for a period of time ranging from 2-24 hours. The alkanethio-triazaalkane of structure (59) is recovered from the...
reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography.

In step e, the terminal amino functionalities of the appropriate alkanethio-triazaalkane of structure (59) are reductively aminated with the appropriate phenylalkylaldehyde of structure (6) to give the appropriate bis[(phenyl)alkyl]-alkanethiol-triazaalkane of structure (60) as described previously in Scheme A, step d.

In optional step f, the thiol functionalty of the appropriate compounds of formula (2) wherein A and B₁ are both hydrogen, B₂ is represented by \(-(\text{CH}_2)_n\text{S}-\text{SH}\) and \(n = 1, 2\) or 3 (structure 60) may be converted to the corresponding phosphorothioate to give those compounds of formula (2) wherein A and B₁ are both hydrogen, B₂ is represented by \(-\text{(CH}_2)_n\text{SPO}_3\text{H}_2\) and \(n = 1, 2\) or 3 (structure 61) as described previously in Scheme A, optional step f.

Starting materials for use in the general synthetic procedures outlined in Scheme G are readily available to one of ordinary skill in the art.

The following example presents a typical synthesis as described in Scheme G. This example is illustrative only and is not intended to limit the scope of the invention in any way.

Example 7

1,9-Bis[(phenyl)methyl]-5-ethanethiol-1,5,9-triazanonane

Step a: Bis[(1,3-dihydro-1,3-dioxo-2H-isindol-2-yl)]-t-butyloxy carbamide

Dissolve bis(3-hydroxypropyl)amine (1.33g, 10mmol) in 50/50 dioxane/water (25mL) and buffer to pH 10 with 1N sodium hydroxide. Add, by dropwise addition, an ether solution of
t-butyl azidoformate (1.58g, 11mmol) at 10°C. Allow to warm to room temperature and buffer occasionally to retain pH 10. Acidify with a sodium citrate/citric acid buffer to pH 5, extract with ether (3X), dry (MgSO₄) and evaporate the solvent *in vacuo*. Purify the residue by silica gel chromatography to give bis(3-hydroxypropyl)-t-butyloxycarbamide.

Dissolve bis(3-hydroxypropyl)-t-butyloxycarbamide (410mg, 1.76mmol) in anhydrous tetrahydrofuran (5mL). Add phthalimide (521mg, 3.52mmol), triphenylphosphine (929mg, 3.52mmol) and diethyl azodicarboxylate (613mg, 3.52mmol) at 0°C. Stir the mixture for 10 minutes at room temperature then evaporate the solvent *in vacuo*. Purify the residue by silica gel chromatography to give the title compound.

Step b: Bis[3-(1,3-dihydro-1,3-dioxo-2H-isooindol-2-yl)]amine
Mix bis[3-(1,3-dihydro-1,3-dioxo-2H-isooindol-2-yl)])-t-butyloxycarbamide (4.43g, 10mmol) and 1N hydrochloric acid (50mL) and stir under a nitrogen atmosphere at room temperature for 4 hours. Pour the reaction mixture into ethyl ether and separate the aqueous phase. Wash the aqueous phase with ethyl ether (2X), then neutralize with 5N sodium hydroxide. Extract into ethyl acetate, dry (MgSO₄) and evaporate the solvent *in vacuo*. Purify the residue by silica gel chromatography to give the title compound.

Step c: Bis[3-(1,3-dihydro-1,3-dioxo-2H-isooindol-2-yl)])-ethanethiolamine
Dissolve bis[3-(1,3-dihydro-1,3-dioxo-2H-isooindol-2-yl)])amine (659mg, 1.92mmol) in anhydrous benzene (20mL). Add, by dropwise addition, a solution of ethylene sulfide (116mg, 1.92mmol) in anhydrous benzene (10mL) over several hours at reflux. Reflux for an additional 2 hours, filter
through Celite and evaporate the solvent in vacuo. Purify
the residue by silica gel chromatography.

Step d: 5-Mercaptoethyl-1,5,9-triazanonane
Mix bis[3-(1,3-dihydro-1,3-dioxo-2H-isooindol-2-yl)])-
ethanethiolamine (1.36g, 3.38mmol), hydrazine monohydrate
(389mg, 7.7mmol) and methanol (38mL) under a nitrogen
atmosphere. Heat at reflux for 5 hours. Cool to ambient
temperature and filter to remove phthaloyl hydrazide.
Evaporate the filtrate in vacuo to a residue and slurry in
chloroform (60mL). Remove insoluble phthaloyl hydrazide by
filtration and wash with chloroform (4X20mL). Wash the
filtrate with water (4X50mL), dry (MgSO₄) and filter.
Evaporate the filtrate in vacuo and purify the residue by
silica gel chromatography to give the title compound.

Step e: 1,9-Bis[(phenyl)methyl]-5-ethanethiol-1,5,9-
triazanonane
Dissolve 5-mercaptoethyl-1,5,9-triazanonane (955mg,
0.005mol) in methanol (distilled from Mg) (50mL) and add
benzadehyde (1.06g, 0.01mol), sodium cyanoborohydride
(0.62g, 0.010mol) and 1 drop of 1% bromocresol green in
ethanol. Maintain the pH of the reaction with 1N
hydrochloric acid in methanol until the indicator no longer
changes. Evaporate the solvent in vacuo and partition the
residue between 1N sodium hydroxide (50mL) and ethyl acetate
(100mL). Separate the organic phase, dry (MgSO₄) and
evaporate the solvent in vacuo and purify by silica gel
chromatography to give the title compound.

The following compounds can be prepared analogously to
that described in Example 7:

1,9-Bis[(phenyl)methyl]-5-ethylphosphorothioate-1,5,9-
triazanonane;
1,11-Bis[(phenyl)ethyl]-6-ethanethiol-1,6,11-triazaundecane.

The compounds of formula (2) wherein B_1 is $-(CH_2)_q$-SH or $-(CH_2)_q$-SPO$_3$H$_2$, B_2 and A are both hydrogen and $n = 1, 2$ or 3 can be prepared according to the general synthetic scheme set forth in Scheme H wherein all substituents, unless otherwise indicated, are previously defined.
Scheme H

\[
\begin{align*}
\text{HO-Z-N-Z-OH} & \quad \text{BOC} \quad \text{step a} \quad \text{MsO-Z-N-Z-OMs} \quad \text{BOC} \quad \text{step b} \\
5 & \quad \text{(54)} & \quad \text{(62)} \\
10 & \quad \text{(64)} \\
15 & \quad \text{(65)} \\
20 & \quad \text{(66)} \\
25 & \\
\end{align*}
\]
Scheme H Cont.

In step a, the appropriate bis(hydroxyalkyl)-t-butyloxycarbamide of structure (54) is converted to the corresponding bis[3-(methanesulfonyl)alkyl]-t-butyloxycarbamide of structure (62).

For example, the appropriate bis(hydroxyalkyl)-t-butyloxycarbamide of structure (54) is contacted with 2 molar equivalents of methanesulfonyl chloride. The reactants are typically contacted in an organic base, such as pyridine. The reactants are typically stirred together for a period of time ranging from 2-24 hours and at a temperature range of from 0°C to room temperature. The bis[3-(methanesulfonyl)alkyl]-t-butyloxycarbamide of structure (62) is recovered from the reaction zone by extractive methods as is known in the art.
In step b, the bis[3-(methanesulfonylethyl)] functionalities of the appropriate bis[3-(methanesulfonylethyl)alkyl]-t-butyloxycarbamide of structure (62) are displaced with an appropriate (phenyl)alkyl-(4-methylphenyl)sulfonamide of structure (63) to give the corresponding bis[(phenyl)alkyl]-bis[(4-methylphenyl)sulfonyl]-(t-butyloxycarbonyl)-triazaalkane of structure (64) as described previously in Scheme B, step b.

In step c, the bis[(4-methylphenyl)sulfonyl] functionalities of the appropriate bis[(phenyl)alkyl]-bis[(4-methylphenyl)sulfonyl]-(t-butyloxycarbonyl)-triazaalkane of structure (64) are removed to give the corresponding bis[(phenyl)alkyl]-(t-butyloxycarbonyl)-triazaalkane of structure (65) as described previously in Scheme B, step e.

In step d, the bis[(phenyl)alkyl]amine functionalities of the appropriate bis[(phenyl)alkyl]-(t-butyloxycarbonyl)-triazaalkane of structure (65) are alkylated with an appropriate thioalkylating agent of structure (19) to give the appropriate bis[(phenyl)alkyl]-bis(alkylthiol)-(t-butyloxycarbonyl)-triazaalkane of structure (66) as described previously in Scheme B, step f.

In step e, the t-butyloxycarbonyl functionality of the appropriate bis[(phenyl)alkyl]-bis(alkylthiol)-(t-butyloxycarbonyl)-triazaalkane of structure (66) is removed to give the corresponding bis[(phenyl)alkyl]-bis(alkylthiol)-triazaalkane of structure (67) as described previously in Scheme B, step c.

In optional step f, the thiol functionality or functionalities of the appropriate compounds of formula (2) wherein A and B₂ are both hydrogen, B₁ is represented by -(CH₂)ₓ-SH and n = 1, 2 or 3 (structure 67) may be converted
to the corresponding phosphorothioates to give those compounds of formula (2) wherein A and B₂ are both hydrogen, B₁ is represented by -(CH₂)ₙSPO₃H₂ and n = 1, 2 or 3 (structure 68) as described previously in Scheme A, optional step f.

Starting materials for use in Scheme H are readily available to one of ordinary skill in the art. For example, (phenyl)methyl-(4-methylphenyl)sulfonamide is described in J. Am. Chem. Soc., 85, 1152 1964.

The following example presents a typical synthesis as described in Scheme H. This example is understood to be illustrative only and is not intended to limit the scope of the present invention in any way.

Example 8

1.9-Bis[(phenyl)methyl]-1,9-bis(ethanethiol)-1,5,9-triazanonane

Step a: Bis[3-(methanesulfonyl)propyl]-t-butyloxy carbamide

Dissolve bis(3-hydroxypropyl)-t-butyloxycarbamide (2.33g, 10mmol) in anhydrous pyridine (25mL) and cool to 5°C. Add, by dropwise addition, methanesulfonyl chloride (2.53g, 22mmol) and stir overnight. Partition between water and ethyl acetate and separate the organic phase. Wash the organic phase with cold 1N hydrochloric acid, saturated sodium hydrogen carbonate and brine. Dry (MgSO₄) and evaporate the solvent in vacuo to give the title compound.

Step b: 1,9-Bis[(phenyl)methyl]-1,9-bis[(4-methylphenyl)sulfonyl]-5-(t-butyloxycarbonyl)-1,5,9-triazanonane

Suspend sodium hydride (4.8g, 0.2mol) in anhydrous dimethylformamide (100mL), cool to 0°C and place under a
nitrogen atmosphere. Add, by dropwise addition, a solution of (phenyl)methyl-(4-methylphenyl)sulfonamide (26.1g, 0.1mol) in dimethylformamide. Stir until evolution of hydrogen ceases. Add, by dropwise addition, a solution of bis[3-(methanesulfonylethyl)propyl]-t-butyloxycarbamide (78g, 0.2mol) in dimethylformamide (200mL). Stir overnight at room temperature then carefully quench with saturated ammonium chloride. Extract into ethyl acetate, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.

Step c: 1,9-Bis[(phenyl)methyl]-5-(t-butyloxycarbonyl)-1,5,9-triazenonane
Mix 1,9-bis[(phenyl)methyl]-1,9-bis[(4-methylphenyl)sulfonyl]-5-(t-butyloxycarbonyl)-1,5,9-triazenonane (720mg, 1mmol) in dry liquid ammonia (25mL) at -40°C. Add small pieces of sodium until a permanent blue color remains. Discharge the excess sodium with saturated ammonium chloride. Allow the ammonia to evaporate spontaneously and partition the residue between ethyl acetate and water. Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.

Step d: 1,9-Bis[(phenyl)methyl]-1,9-bis(ethanethiol)-5-(t-butyloxycarbonyl)-1,5,9-triazenonane
Dissolve 1,9-bis[(phenyl)methyl]-5-(t-butyloxycarbonyl)-1,5,9-triazenonane (789mg, 1.92mmol) in anhydrous benzene (20mL). Add, by dropwise addition, a solution of ethylene sulfide (232mg, 3.84mmol) in anhydrous benzene (10mL) over several hours at reflux. Reflux for an additional 2 hours, filter through Celite and evaporate the solvent in vacuo. Purify the residue by silica gel chromatography.

Step e: 1,9-Bis[(phenyl)methyl]-1,9-bis(ethanethiol)-1,5,9-triazenonane
Dissolve 1,9-bis[(phenyl)methyl]-1,9-bis(ethanethiol)-5-(t-butyloxycarbonyl)-1,5,9-triazanonane (531mg, 1mmol) in saturated methanolic hydrochloric acid (mL). Stir for several hours and evaporate the solvent in vacuo. Dissolve the residue in water and neutralize with saturated sodium hydrogen carbonate and extract with ethyl acetate. Dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.

The following compounds can be prepared analogously to that described in Example 8:

5 1,9-Bis[(phenyl)methyl]-1,9-bis(propanethiol)-1,5,9-triazanonane;

1,11-Bis[(phenyl)ethyl]-1,11-bis(ethanethiol)-1,6,11-triazaundecane;

10 1,9-Bis[(phenyl)ethyl]-1,9-bis(ethanethiol)-1,5,9-triazanonane.

The compounds of formula (2) wherein B₁ and B₂ are hydrogen, A is other than hydrogen and n = 1, 2 or 3 can be prepared according to the general synthetic scheme set forth in Scheme I wherein all substituents, unless otherwise indicated, are previously defined.
Scheme I

(57) → H₂N-Z-NH-Z-NH₂

(69)

Step a

A" - (CH₂)ₙ⁺₁ - CHO

Step b

A" - (CH₂)ₙ⁺₁ - NH-Z-NH-Z-NH-(CH₂)ₙ⁺₁ - A"

(70)

Step c

A" - (CH₂)ₙ⁺₁ - NH-Z-NH-Z-NH-(CH₂)ₙ⁺₁ - A"

(71)

Optional Step d

A' - (CH₂)ₙ⁺₁ - NH-Z-NH-Z-NH-(CH₂)ₙ⁺₁ - A'

(72)

A" = -SPg, -N(CH₂)ₚ - SPg
A" = -SH, -N-(CH₂)ₚ - SH
A' = -SPO₃H₂, -N-(CH₂)ₚ - SPO₃H₂

n' = 1, 2 or 3

In step a, the phthalimide functionalities of the appropriate bis[3-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-
amine of structure (57) are removed to give the corresponding triazaalkane of structure (69) as described previously in Scheme G, step d.

In step b, the terminal amino functionalities of the appropriate triazaalkane of structure (69) are reductively aminated with the appropriate thiol-protected (phenylthiol)-alkylaldehyde of structure (27) to give the appropriate thiol-protected bis[(phenyl)alkyl]-triazaalkane of structure (70) as described previously in Scheme A, step d.

In step c, the protecting groups on the thiol functionalities of the appropriate thiol-protected bis[(phenyl)alkyl]-triazaalkane of structure (70) are removed to give the corresponding bis[(phenyl)alkyl]-triazaalkane of structure (71) by techniques and procedures well known and appreciated by one of ordinary skill in the art and as described previously in Scheme C, step e.

In optional step d, the thiol functionalities of the appropriate compounds of formula (2) wherein A is a group represented by -SH or -N-(CH₂)₉-SH, B₁ and B₂ are both hydrogen and n = 1, 2 or 3 (structure 71) may be converted to the corresponding phosphorothioates to give those compounds of formula (2) wherein A is a group represented by -SPO₃H₂ or -N-(CH₂)₉-SPO₃H₂, B₁ and B₂ are both represented by hydrogen and n = 1, 2 or 3 (structure 72) as described previously in Scheme A, optional step f.

Starting materials for use in Scheme I are readily available to one of ordinary skill in the art.

The following example presents a typical synthesis as described in Scheme I.

Example 9
1,9-Bis[(4-mercaptophenyl)methyl]-1,5,9-triazanonane, trihydrochloride

Step a: 1,5,9-triazanonane

Mix bis[3-(1,3-dihydro-1,3-dioxo-2H-isooindol-2-yl)]amine (1.24g, 3.38mmol), hydrazine monohydrate (389mg, 7.7mmol) and methanol (38mL) under a nitrogen atmosphere. Heat at reflux for 5 hours. Cool to ambient temperature and filter to remove phthaloyl hydrazide. Evaporate the filtrate in vacuo to a residue and slurry in chloroform (60mL). Remove insoluble phthaloyl hydrazide by filtration and wash with chloroform (4X20mL). Wash the filtrate with water (4X50mL), dry (MgSO₄) and filter. Evaporate the filtrate in vacuo and purify the residue by silica gel chromatography to give the title compound.

Step b: 1,9-Bis[(4-methylmercaptophenyl)methyl]-1,5,9-triazanonane

Dissolve 1,5,9-triazanonane (655mg, 0.005mol) in methanol (distilled from Mg) (50mL) and add 4-(methylthio)benzaldehyde (1.52g, 0.01mol), sodium cyanoborohydride (0.62g, 0.010mol) and 1 drop of 1% bromocresol green in ethanol. Maintain the pH of the reaction with 1N hydrochloric acid in methanol until the indicator no longer changes. Evaporate the solvent in vacuo and partition the residue between 1N sodium hydroxide (50mL) and ethyl acetate (100mL). Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.

Step c: 1,9-Bis[(4-mercaptophenyl)methyl]-1,5,9-triazanonane, trihydrochloride

Dissolve 1,9-bis[(4-methylmercaptophenyl)methyl]-1,5,9-triazanonane (2.02g, 5mmol) in chloroform (20mL) and treat with meta-chloroperbenzoic acid (863mg, 5mmol). Add calcium hydroxide...
(556mg, 7.5mmol) and stir for 15 minutes. Filter and evaporate the solvent in vacuo. Dissolve the residue in trifluoroacetic anhydride (10mL) and heat at reflux for 30 minutes. Evaporate the volatiles in vacuo and dissolve the residue in a mixture of methanol-triethylamine (1:1, 100mL) and evaporate the solvent in vacuo. Dissolve the residue in chloroform, wash with saturated ammonium chloride and dry (MgSO₄). Evaporate the solvent in vacuo to give the crude 1,9-bis[(4-mercaptophenyl)methyl]-1,5,9-triazanonane.

Dissolve the crude 1,9-bis[(4-mercaptophenyl)methyl]-1,5,9-triazanonane (1.88g, 5mmol) in 50/50 dioxane/water (25mL) and buffer to pH 10 with 1N sodium hydroxide. Add, by dropwise addition, an ether solution of di-t-butyl dicarbonate (4.8g, 22mmol) at 10°C. Allow to warm to room temperature and buffer occasionally to retain pH 10. Acidify with a sodium citrate/citric acid buffer to pH 5, extract with ether (3X), dry (MgSO₄) and evaporate the solvent in vacuo. Purify the residue by silica gel chromatography to give 1,9-bis[(4-mercaptophenyl)methyl]-1,5,9-tri(t-butyloxycarbonyl)-1,5,9-triazanonane.

Dissolve 1,9-bis[(4-mercaptophenyl)methyl]-1,5,9-tri(t-butyloxycarbonyl)-1,5,9-triazanonane (4.75g, 10mmol) in saturated methanolic hydrochloric acid (100mL). Stir for several hours and evaporate the solvent in vacuo to give the title compound.

The following compound can be prepared analogously to that described in Example 2:

1,11-Bis[(4-mercaptophenyl)ethyl]-1,6,11-triazaundecane, trihydrochloride;
1,9-Bis[(4-(2-thioethylanilinyl)methyl]-1,5,9-triazanonadecane, trihydrochloride;

1,9-Bis[(4-(2-ethylphosphorothioateanilinyl)methyl]-1,5,9-triazanonadecane, trihydrochloride

The compounds of formula (2) wherein A and B₁ are both hydrogen, B₂ is a group represented by \(-(\text{CH}_2)_n\text{SH}\) or \(-(\text{CH}_2)_n\text{SPO}_3\text{H}_2\) and \(n = 0\) can be prepared according to the general synthetic scheme set forth in Scheme J wherein all substituents, unless otherwise indicated, are previously defined.
Scheme J

\[
\begin{align*}
A' - &\text{NH-Ts} \\
(41) &\quad \xrightarrow{\text{step a}} \quad A' - &\text{N-Z-N-Z-N} \\
&\text{Ts} &\text{Ts} \\
&\text{BOC} &\text{BOC} \\
(73) &\quad \xrightarrow{\text{step b}} \quad A' - \text{N-Z-N-Z-N} \\
&\text{Ts} &\text{Ts} \\
&\text{H} &\text{A}' \\
(74) &\quad \xrightarrow{\text{step c}} \quad A' - \text{N-Z-N-Z-N} \\
&\text{Ts} &\text{Ts} \\
&\text{A}' &\text{A}' \\
(75) &\quad \xrightarrow{\text{step d}} \quad A' - \text{N-Z-N-Z-N} \\
&\text{Ts} &\text{Ts} \\
&\text{(CH)_2} &\text{(CH)_2} \\
&\text{SH} &\text{SH} \\
(76) &\quad \xrightarrow{\text{step e}} \quad A' - \text{N-Z-N-Z-N} \\
&\text{Ts} &\text{Ts} \\
&\text{(CH)_2} &\text{(CH)_2} \\
&\text{SH} &\text{SH} \\
(77) \\

A' = \text{H}
\end{align*}
\]
In step a, the appropriate N-[(4-methylphenyl)sulfonyl]-aniline of structure (41) is alkylated with an appropriate bis(hydroxyalkyl)-t-butyloxy carbamide of structure (54) to give the appropriate bis[phenyl]-bis[(4-methylphenyl)sulfonyl]-(t-butyloxy carbonyl)-triazaalkane of structure (73).

For example, the appropriate N-[(4-methylphenyl)sulfonyl]aniline of structure (41) is contacted with a molar excess of triphenylphosphine, a molar deficiency of the appropriate bis(hydroxyalkyl)-t-butyloxy carbamide of structure (54) and a molar excess of diethyl azodicarboxylate. The reactants are typically contacted in a suitable organic solvent such as tetrahydrofuran. The reactants are typically stirred together at room temperature for a period of time ranging from 2-24 hours. The bis[phenyl]-bis[(4-methylphenyl)sulfonyl]-(t-butyloxy carbonyl)-triazaalkane of structure (73) is recovered from the reaction zone by evaporation of the solvent. It can be purified by silica gel chromatography.

In step b, the tert-butyloxy carbonyl functionality of the appropriate bis[phenyl]-bis[(4-methylphenyl)sulfonyl]-(t-butyloxy carbonyl)-triazaalkane of structure (73) is hydrolyzed to give the appropriate bis[phenyl]-bis[(4-methylphenyl)sulfonyl]-triazaalkane of structure (74) as described previously in Scheme Scheme B, step c.

In step c, the amine functionality of the appropriate bis[phenyl]-bis[(4-methylphenyl)sulfonyl]-triazaalkane of structure (74) is alkylated with an appropriate thioalkylating agent of structure (19) to give the appropriate bis[phenyl]-bis(alkylthiol)-bis[(4-methylphenyl)sulfonyl]-triazaalkane of structure (75) as described previously in Scheme B, step f.
In step d, the sulfonamide functionalities of the appropriate bis[phenyl]-bis(alkylthiol)-bis[(4-methylphenyl)sulfonyl]-triazaalkane of structure (75) are cleaved to give the appropriate bis[phenyl]-(alkylthiol)-triazaalkane of structure (76) as described previously in Scheme B, step e.

In optional step e, the thiol functionality of the appropriate compounds of formula (2) wherein B₂ is a group represented by -(CH₂)ₚ-SH, A and B₁ are both hydrogen and n = 0 (structure 76) may be converted to the corresponding phosphorothioate to give those compounds of formula (2) wherein B₂ is a group represented by -(CH₂)ₚ-SPO₃H₂, A and B₁ are both represented by hydrogen and n = 0 (structure 77) as described previously in Scheme A, optional step f.

Starting materials for use in Scheme J are readily available to one of ordinary skill in the art.

The following example presents a typical synthesis as described in Scheme J. This example is illustrative only and is not intended to limit the scope of the present invention in any way.

Example 10

1,9-Bis[phenyl]-5-(ethanethiol)-1,5,9-triazanonane, trihydrochloride

Step a: 1,9-Bis[phenyl]-1,9-bis[(4-methylphenyl)sulfonyl]-5-(t-butyloxycarbonyl)-1,5,9-triazanonane

Dissolve bis(3-hydroxypropyl)amine (1.33g, 10mmol) in 50/50 dioxane/water (25mL) and buffer to pH 10 with 1N sodium hydroxide. Add, by dropwise addition, an ether solution of t-butyl azidoformate (1.58g, 11mmol) at 10°C. Allow to warm to room temperature and buffer occasionally to retain pH 10.
Acidify with a sodium citrate/citric acid buffer to pH 5, extract with ether (3X), dry (MgSO₄) and evaporate the solvent *in vacuo*. Purify the residue by silica gel chromatography to give bis(3-hydroxypropyl)-t-butyloxy carbamidine.

Dissolve N-[(4-methylphenyl)sulfonyl]aniline (106mg, 0.43mmol) in anhydrous tetrahydrofuran (3mL) and add triphenylphosphine (168mg, 0.645mmol). Stir under a nitrogen atmosphere and add bis(3-hydroxypropyl)-t-butyloxy carbamidine (83.6mg, 0.215mmol) followed by diethyl azodicarboxylate (0.083mL, 0.530mmol). Stir at room temperature for several hours and evaporate the solvent *in vacuo*. Purify by silica gel chromatography to give the title compound.

Step b: 1,9-Bis[phenyl]-1,9-bis[(4-methylphenyl)sulfonyl]-1,5,9-triazanonane

Dissolve 1,9-bis[(phenyl)]-1,9-bis[(4-methylphenyl)sulfonyl]-5-(t-butyloxy carbonyl)-1,5,9-triazanonane (691mg, 1mmol) in saturated methanolic hydrochloric acid (10mL). Stir for several hours and evaporate the solvent *in vacuo*. Dissolve the residue in water and neutralize with saturated sodium hydrogen carbonate and extract with ethyl acetate. Dry (MgSO₄) and evaporate the solvent *in vacuo*. Purify by silica gel chromatography to give the title compound.

Step c: 1,9-Bis[phenyl]-1,9-bis[(4-methylphenyl)sulfonyl]-5-(ethanethiol)-1,5,9-triazanonane

Dissolve 1,9-bis[phenyl]-1,9-bis[(4-methylphenyl)sulfonyl]-1,5,9-triazanonane (1.13g, 1.92mmol) in anhydrous benzene (20mL). Add, by dropwise addition, a solution of ethylene sulfide (242mg, 4mmol) in anhydrous benzene (10mL) over several hours at reflux. Reflux for an additional 2 hours,
filter through Celite and evaporate the solvent *in vacuo*. Purify the residue by silica gel chromatography.

Step f: 1,9-Bis[phenyl]-5-(ethanethiol)-1,5,9-triazanonane
Mix 1,9-bis[phenyl]-1,9-bis[(4-methylphenyl)sulfonyl]-5-(ethanethiol)-1,5,9-triazanonane (651mg, 1mmol) in dry liquid ammonium (25mL) at -40°C. Add small pieces of sodium until a permanent blue color remains. Discharge the excess sodium with saturated ammonium chloride. Allow the ammonium to evaporate spontaneously and partition the residue between ethyl acetate and water. Separate the organic phase, dry (MgSO₄) and evaporate the solvent *in vacuo*. Purify by silica gel chromatography to give the title compound.

The following compounds may be prepared analogously to that described in Example 10:

11 1,11-Bis[phenyl]-6-(propanethiol)-1,6,11-triazaundecane;

1,9-Bis[phenyl]-5-(ethylphosphorothioate)-1,5,9-triazanonadecane.

The compounds of formula (2) wherein A and B₂ are both hydrogen, B₁ is a group represented by -(CH₂)ₙSH or -(CH₂)ₙSPO₃H₂ and n = 0 can be prepared according to the general synthetic scheme set forth in Scheme K wherein all substituents, unless otherwise indicated, are previously defined.
Scheme K

(73) → step a → (78) → step b → (79) → step c → (80) → Optional step d → (81)

$A' = H$
In step a, the sulfonamide functionalities of the appropriate bis[phenyl]-bis[(4-methylphenyl)sulfonyl]-(t-butyloxy carbonyl)-triazaalkane of structure (73) are cleaved to give the appropriate bis[phenyl]-(t-butyloxy carbonyl)-triazaalkane of structure (78) as described previously in Scheme B, step e.

In step b, the amine functionalities of the appropriate bis[phenyl]-(t-butyloxy carbonyl)-triazaalkane of structure (78) are alkylated with an appropriate thioalkylating agent of structure (19) to give the appropriate bis[phenyl]-bis(alkylthiol)-(t-butyloxy carbonyl)-triazaalkane of structure (79) as described previously in Scheme B, step f.

In step c, the tert-butyloxy carbonyl functionality of the appropriate bis[phenyl]-bis(alkylthiol)-(t-butyloxy carbonyl)-triazaalkane of structure (79) is hydrolyzed to give the appropriate bis[phenyl]-bis(alkylthiol)-triazaalkane of structure (80) as described previously in Scheme B, step c.

In optional step d, the thiol functionalities of the appropriate compounds of formula (2) wherein B_1 is a group represented by $-(CH_2)_q-SH$, A and B_2 are both hydrogen and $n = 0$ (structure 80) may be converted to the corresponding phosphorothioates to give those compounds of formula (2) wherein B_1 is a group represented by $-(CH_2)_q-SPO_3H_2$, A and B_2 are both represented by hydrogen and $n = 0$ (structure 81) as described previously in Scheme A, optional step f.

Starting materials for use in Scheme K are readily available to one of ordinary skill in the art.

The following example presents a typical synthesis as described in Scheme K. This example is illustrative only.
and is not intended to limit the scope of the present invention in any way.

Example 11

1,9-Bis(phenyl)-1,9-bis(mercaptoethyl)-1,5,9-triazanonane, trihydrochloride

Step a: 1,9-Bis(phenyl)-5-(t-butyloxy carbonyl)-1,5,9-triazanonane
Mix 1,9-bis[(phenyl)]-1,9-bis[(4-methylphenyl)sulfonyl]-5-(t-butyloxy carbonyl)-1,5,9-triazanonane (691mg, 1mmol) in dry liquid ammonia (25mL) at -40°C. Add small pieces of sodium until a permanent blue color remains. Discharge the excess sodium with saturated ammonium chloride. Allow the ammonia to evaporate spontaneously and partition the residue between ethyl acetate and water. Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.

Step b: 1,9-Bis(phenyl)-1,9-bis(mercaptoethyl)-5-(t-butyloxy carbonyl)-1,5,9-triazanonane
Dissolve 1,9-bis(phenyl)-5-(t-butyloxy carbonyl)-1,5,9-triazanonane (735mg, 1.92mmol) in anhydrous benzene (20mL). Add, by dropwise addition, a solution of ethylene sulfide (242mg, 4mmol) in anhydrous benzene (10mL) over several hours at reflux. Reflux for an additional 2 hours, filter through Celite and evaporate the solvent in vacuo. Purify the residue by silica gel chromatography.

Step c: 1,9-Bis(phenyl)-1,9-bis(mercaptoethyl)-1,5,9-triazanonane, trihydrochloride
Dissolve 1,9-bis(phenyl)-1,9-bis(mercaptoethyl)-5-(t-butyloxy carbonyl)-1,5,9-triazanonane (711mg, 1mmol) in saturated methanolic hydrochloric acid (mL). Stir for several hours and evaporate the solvent in vacuo to give the title compound.
The following compounds may be prepared analogously to that described in Example 11:

1,11-Bis[phenyl]-1,11-bis(mercaptopropyl)-1,6,11-
 triazaundecane, trihydrochloride;

1,9-Bis[phenyl]-1,9-bis(ethylphosphorothioate)-1,5,9-
 triazanonadecane, trihydrochloride.

The compounds of formula (2) wherein B₁ and B₂ are both hydrogen, A is other than hydrogen and n = 0 can be prepared according to the general synthetic scheme set forth in Scheme L wherein all substituents, unless otherwise indicated, are previously defined.
Scheme L

\[\text{Step a} \]

\[\text{Step b} \]

\[\text{Step c} \]

\[\text{Step d} \]

\[\text{Optional Step e} \]

\[A'' = -\text{Sp}_g, \ -\text{N(CH}_2)_q\text{Sp}_g \]

\[A'' = -\text{SH}, \ -\text{N-(CH}_2)_q\text{SH} \]

\[A' = -\text{SPO}_3\text{H}_2, \ -\text{N-(CH}_2)_q\text{SPO}_3\text{H}_2 \]
In step a, the appropriate thiol-protected (mercapto)aniline of structure (31) is converted to the corresponding thiol-protected N-[(4-methylphenyl)sulfonyl]-(mercaptophenyl)amine of structure (82) as described previously in Scheme E, step a.

In step b, the thiol-protected N-[(4-methylphenyl)sulfonyl]-(mercaptophenyl)amine of structure (82) is alkylated with an appropriate bis(hydroxyalkyl)-t-butyloxycarbamide of structure (54) to give the appropriate thiol-protected bis[mercaptophenyl]-bis[(4-methylphenyl)sulfonyl]-(t-butyloxycarbonyl)-triazaalkane of structure (83) as described previously in Scheme J, step a.

In step c, the N-protecting groups of the appropriate thiol-protected bis[mercaptophenyl]-bis[(4-methylphenyl)sulfonyl]-(t-butyloxycarbonyl)-triazaalkane of structure (83) are hydrolyzed to give the corresponding thiol-protected bis[mercaptophenyl]-triazaalkane of structure (84).

For example, the appropriate thiol-protected bis[mercaptophenyl]-bis[(4-methylphenyl)sulfonyl]-(t-butyloxycarbonyl)-triazaalkane of structure (83) is contacted with a molar excess of an appropriate acid, such as hydrobromic acid. The reactants are typically contacted for a period of time ranging from 2–24 hours and at a temperature range of from room temperature to reflux. The thiol-protected bis[mercaptophenyl]-triazaalkane of structure (84) is recovered from the reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography.

In step d, the thiol-protecting groups of the appropriate thiol-protected bis[mercaptophenyl]-triazaalkane of structure (84) are removed to give the corresponding
bis[mercaptophenyl]-triazaalkane of structure (85) using techniques and procedures well known and appreciated by one of ordinary skill in the art.

In optional step e, the thiol functionalities of the appropriate compounds of formula (2) wherein A is a group represented by \(-\text{SH}\) or \(-\text{N-(CH}_2\text{)}_q\text{-SH}\), B1 and B2 are both hydrogen and \(n = 0\) (structure 85) may be converted to the corresponding phosphorothioates to give those compounds of formula (2) wherein A is a group represented by \(-\text{SPO}_3\text{H}_2\) or \(-\text{N-(CH}_2\text{)}_q\text{-SPO}_3\text{H}_2\), B1 and B2 are both represented by hydrogen and \(n = 0\) (structure 86) as described previously in Scheme A, optional step f.

Starting materials for use in Scheme L are readily available to one of ordinary skill in the art.

The following example presents a typical synthesis as described in Scheme L. This example is illustrative only and is not intended to limit the scope of the present invention in any way.

Example 12

Bis(4-mercaptophenyl)-1,5,9-triazanonane

Step a: N-[(4-Methylphenyl)sulfonyl]-4-(4-methylmercaptophenyl)amine

Dissolve 4-(methylmercapto)aniline (1.39g, 10mmol) in anhydrous pyridine (25mL) and cool to 5°C. Add, by dropwise addition, p-toluenesulfonyl chloride (2.1g, 11mmol) and stir overnight. Partition between water and ethyl acetate and separate the organic phase. Wash the organic phase with cold 1N hydrochloric acid, saturated sodium hydrogen carbonate and brine. Dry (MgSO₄) and evaporate the solvent *in vacuo* to give the title compound.
Step b: 1,9-Bis(4-methylmercaptophenyl)-1,9-bis[(4-methylphenyl)sulfonyl]-5-(t-butyloxy carbonyl)-1,5,9-triazanonane

Dissolve N-[(4-methylphenyl)sulfonyl]-(4-methylmercaptophenyl)amine (126mg, 0.43mmol) in anhydrous tetrahydrofuran (3mL) and add triphenylphosphine (168mg, 0.654mmol). Stir under a nitrogen atmosphere and add bis(3-hydroxypropyl)-t-butyloxy carbamid e (83.6mg, 0.215mmol) followed by diethylazodicarboxylate (0.083mL, 0.530mmol). Stir at room temperature for several hours and evaporate the solvent in vacuo. Purify be silica gel chromatography to give the title compound.

Step c: 1,9-Bis[4-methylmercaptophenyl]-1,5,9-triazanonane

Dissolve 1,9-bis(4-methylmercaptophenyl)-1,9-bis[(4-methylphenyl)sulfonyl]-5-(t-butyloxy carbonyl)-1,5,9-triazan nonane (783mg, 1mmol) in 48% hydrobromic acid (5mL). Stir for several hours and evaporate the solvent in vacuo. Dissolve the residue in water and neutralize with saturated sodium hydrogen carbonate and extract with ethyl acetate. Dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.

Step d: 1,9-Bis[4-mercaptophenyl]-1,5,9-triazanonane, trihydrochloride

Dissolve 1,9-bis[4-methylmercaptophenyl]-1,5,9-triazanonane (1.88g, 5mmol) in chloroform (20mL) and treat with meta-chloroperbenzoic acid (863mg, 5mmol). Add calcium hydroxide (556mg, 7.5mmol) and stir for 15 minutes. Filter and evaporate the solvent in vacuo. Dissolve the residue in trifluoroacetic anhydride (10mL) and heat at reflux for 30 minutes. Evaporate the volatiles in vacuo and dissolve the residue in a mixture of methanol-triethylamine (1:1, 100mL) and evaporate the solvent in vacuo. Dissolve the residue in chloroform, wash with saturated ammonium chloride and dry.
Evaporate the solvent in vacuo to give the crude 1,9-bis[(4-mercaptophenyl)]-1,5,9-triazanonane.

Dissolve the crude 1,9-bis[(4-mercaptophenyl)]-1,5,9-triazanonane (1.74g, 5mmol) in 50/50 dioxane/water (25mL) and buffer to pH 10 with 1N sodium hydroxide. Add, by dropwise addition, an ether solution of di-t-butyl dicarbonate (4.8g, 22mmol) at 10°C. Allow to warm to room temperature and buffer occasionally to retain pH 10. Acidify with a sodium citrate/citric acid buffer to pH 5, extract with ether (3X), dry (MgSO4) and evaporate the solvent in vacuo. Purify the residue by silica gel chromatography to give 1,9-bis[(4-mercaptophenyl)]-1,5,9-tri(t-butyloxycarbonyl)-1,5,9-triazanonane.

Dissolve 1,9-bis[(4-mercaptophenyl)]-1,5,9-tri(t-butyloxycarbonyl)-1,5,9-triazanonane (5.48g, 10mmol) in saturated methanolic hydrochloric acid (100mL). Stir for several hours and evaporate the solvent in vacuo to give the title compound.

The following compounds may be prepared analogously to that described in Example 12:

1,9-Bis[4-(2-thioethylanilinyl)]-1,5,9-triazanonane, trihydrochloride;

1,11-Bis[4-(2-ethylphosphorothioateanilinyl)]-1,6,11-triazauundecane, trihydrochloride

1,11-Bis[(4-mercaptophenyl)]-1,6,11-triazauundecane, trihydrochloride.

The present invention provides a method of protecting cells from deleterious cellular effects caused by exposure
to ionizing radiation or by exposure to a DNA-reactive agent.

Ionizing radiation is high energy radiation, such as an X-ray or a gamma ray, which interacts to produce ion pairs in matter. Exposure to ionizing radiation may occur as the result of environmental radiation, such as resulting from a nuclear explosion, a spill of radioactive material, close proximity to radioactive material and the like. More commonly, exposure to ionizing radiation may occur as the result of radiological medical procedures such as radiation therapy for various types of cancers.

DNA-reactive agents are those agents, such as alkylating agents, cross-linking agents, and DNA intercalating agents, which interact covalently or non-covalently with cellular DNA causing certain deleterious cellular effects. For example, DNA-reactive agents include cisplatin, cyclophosphamide, diethylnitrosoamine, benzo(a)pyrene, carboplatin, doxorubicin, mitomycin-C and the like. Many of these DNA-reactive agents, such as cisplatin, cyclophosphamide, doxorubicin and mitomycin-C are useful in cancer therapy as DNA-reactive chemotherapeutic agents.

Deleterious cellular effects caused by exposure to ionizing radiation or to a DNA-reactive agent include damage to cellular DNA, such as DNA strand break, disruption in cellular function, such as by disrupting DNA function, cell death, tumor induction, such as therapy-induced secondary tumor induction, and the like. These deleterious cellular effects can lead to secondary tumors, bone marrow suppression, kidney damage, peripheral nerve damage, gastrointestinal damage and the like. For example, in cancer radiation therapy, the exposure to radiation is intended to cause cell death in the cancer cells. Unfortunately, a large part of the adverse events associated with the therapy
is caused by these deleterious cellular effects of the radiation on normal cells as opposed to cancer cells.

The present invention provides a method by which cells are protected from deleterious cellular effects by preventing or eliminating these effects or by reducing their severity. According to the present invention, the cells to be protected are contacted with a compound of formula (1) or (2) prior to or during exposure of the cell to ionizing radiation or to DNA-reactive agents. The cells may be contacted directly, such as by applying a solution of a compound of the invention to the cell or by administering a compound of the invention to a mammal. The compounds of the present invention thus provide a protective effect in the cell which eliminates or reduces the severity of the deleterious cellular effects which would otherwise be caused by the exposure.

More particularly, the present invention provides a method of protecting non-cancer, or normal, cells of a mammal from deleterious cellular effects caused by exposure of the mammal to ionizing radiation or to a DNA-reactive agent. As used herein, the term "mammal" refers to warm-blooded animals such as mice, rats, dogs and humans. The compounds of the present invention provide a selective protection of normal cells, and not of cancer cells, during cancer radiation therapy and during chemotherapy with a DNA-reactive chemotherapeutic agent. According to the present invention the compound of the invention is administered to the mammal prior to or during exposure to ionizing radiation or to a DNA-reactive agent. The present invention provides a method whereby the deleterious cellular effects on non-cancer cells caused by exposure of the mammal to ionizing radiation or to a DNA-reactive agent are eliminated or reduced in severity or in extent.
In addition, the present invention provides a method of treating a patient in need of radiation therapy or in need of chemotherapy with a DNA-reactive chemotherapeutic agent. As used herein, the term "patient" refers to a mammal, including mice, rats, dogs and humans, which is afflicted with a neoplastic disease state or cancer such that it is in need of cancer radiation therapy or chemotherapy with a DNA-reactive chemotherapeutic agent. The term "neoplastic disease state" as used herein refers to an abnormal state or condition characterized by rapidly proliferating cell growth or neoplasm.

Neoplastic disease states for which treatment with a compound of formula (1) or (2) will be particularly useful in conjunction with radiation therapy or chemotherapy with a DNA-reactive chemotherapeutic agent include: Leukemias such as, but not limited to, acute lymphoblastic, acute myelogenous, chronic lymphocytic, acute myeloblastic and chronic myelocytic; Carcinomas, such as, but not limited to, those of the cervix, oesophagus, stomach, pancreas, breast, ovaries, small intestines, colon and lungs; Sarcomas, such as, but not limited to, osteosarcoma, lipoma, liposarcoma, hemangioma and hemangiosarcoma; Melanomas, including amelanotic and melanotic; and mixed types of neoplasias such as, but not limited to carcinosarcoma, lymphoid tissue type, follicular reticulum, cell sarcoma, Hodgkin's disease and non-Hodgkin's lymphoma. Neoplastic disease states for which treatment with a compound of formula (1) or (2) will be particularly preferred in conjunction with radiation therapy or chemotherapy include Hodgkin's disease, pancreatic carcinoma, advanced carcinoma, breast cancers, ovarian cancer, colon cancers and the like.

In addition, treatment with a compound of the present invention provides selective protection against deleterious cellular effects, such as therapy-induced secondary tumor
induction, caused by radiation therapy or chemotherapy with a DNA-reactive chemotherapeutic agent. Treatment with a compound of the present invention is thus useful in eliminating or reducing the risk of secondary tumor induction, such as therapy-induced acute myelogenous leukemia and non-Hodgkin's lymphoma, brought about by radiotherapy or chemotherapy for treatment of Hodgkin's disease.

According to the present invention, administration to a patient of a compound of formula (1) or (2) prior to or during radiation therapy or chemotherapy with a DNA-reactive chemotherapeutic agent will provide a selective protection of non-cancer cells of the patient but not of cancer cells. The deleterious cellular effects on non-cancer cells caused by treatment of the patient with ionizing radiation or with a DNA-reactive chemotherapeutic agent are thus eliminated or reduced in severity or in extent.

A protective amount of a compound of formula (1) or (2) refers to that amount which is effective, upon single or multiple dose administration to a mammal or patient, in eliminating or reducing in severity or in extent the deleterious cellular effects caused by exposure to or treatment with ionizing radiation or a DNA-reactive agent. A protective amount of a compound of formula (1) or (2) also refers to that amount which is effective, upon single or multiple dose administration to the cell, in eliminating or reducing in severity or in extent the deleterious cellular effects caused by exposure to ionizing radiation or a DNA-reactive agent.

A protective amount for administration to a mammal or a patient can be readily determined by the attending diagnostician, as one skilled in the art, by the use of known techniques and by observing results obtained under
analogous circumstances. In determining the protective amount or dose, a number of factors are considered by the attending diagnostician, including, but not limited to: the species of mammal; its size, age, and general health; the specific disease involved; the degree of or involvement or the severity of the disease; the response of the individual patient; the particular compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; the use of concomitant medication; and other relevant circumstances.

The compounds of formula (1) or (2) may be administered as single doses or as multiple doses and are ordinarily administered prior to and/or during exposure to ionizing radiation or to DNA-reactive agents. Generally, where a compound of the present invention is administered in conjunction with radiation therapy, the compound of the present invention will be administered in single or multiple doses prior to radiation therapy following a schedule calculated to provide the maximum selective protective effect during radiation therapy. Generally, where a compound of the present invention is administered in conjunction with a DNA-reactive chemotherapeutic agent, the compound of the present invention will be administered in single or multiple doses prior to and during chemotherapy following a schedule calculated to provide the maximum selective protective effect during chemotherapy.

The details of the dosing schedule for the compounds of the present invention necessary to provide the maximum selective protective effect upon exposure to ionizing radiation or to a DNA-reactive agent can be readily determined by an attending physician, as one skilled in the art, by the use of known techniques and by observing results obtained under analogous circumstances.
A protective amount of a compound of formula (1) or (2) for administration to a mammal or patient will vary from about 5 milligram per kilogram of body weight per day (mg/kg/day) to about 1000 mg/kg/day. Preferred amounts are expected to vary from about 50 to about 500 mg/kg/day.

A protective amount of a compound of formula (1) or (2) for contacting a cell will vary from about 100 micromolar to about 5 millimolar in concentration.

A compound of formula (1) or (2) can be administered to a mammal or a patient in any form or mode which makes the compound bioavailable in effective amounts, including oral and parenteral routes. For example, compounds of formula (1) and (2) can be administered orally, subcutaneously, intramuscularly, intravenously, transdermally, intranasally, rectally, and the like. Oral administration is generally preferred. One skilled in the art of preparing formulations can readily select the proper form and mode of administration depending upon the particular characteristics of the compound selected the disease state to be treated, the stage of the disease, and other relevant circumstances.

The compounds can be administered alone or in the form of a pharmaceutical composition in combination with pharmaceutically acceptable carriers or excipients, the proportion and nature of which are determined by the solubility and chemical properties of the compound selected, the chosen route of administration, and standard pharmaceutical practice. The compounds of the invention, while effective themselves, may be formulated and administered in the form of their pharmaceutically acceptable acid addition salts for purposes of stability, convenience of crystallization, increased solubility and the like.
In another embodiment, the present invention provides compositions comprising a compound of formula (1) or (2) in admixture or otherwise in association with one or more inert carriers. These compositions are useful, for example, as assay standards, as convenient means of making bulk shipments, or as pharmaceutical compositions. An assayable amount of a compound of formula (1) or (2) is an amount which is readily measurable by standard assay procedures and techniques as are well known and appreciated by those skilled in the art. Assayable amounts of a compound of formula (1) or (2) will generally vary from about 0.001% to about 75% of the composition by weight. Inert carriers can be any material which does not degrade or otherwise covalently react with a compound of formula (1) or (2). Examples of suitable inert carriers are water; aqueous buffers, such as those which are generally useful in High Performance Liquid Chromatography (HPLC) analysis; organic solvents, such as acetonitrile, ethyl acetate, hexane and the like; and pharmaceutically acceptable carriers or excipients.

More particularly, the present invention provides pharmaceutical compositions comprising a therapeutically effective amount of a compound of formula (1) or (2) in admixture or otherwise in association with one or more pharmaceutically acceptable carriers or excipients.

The pharmaceutical compositions are prepared in a manner well known in the pharmaceutical art. The carrier or excipient may be a solid, semi-solid, or liquid material which can serve as a vehicle or medium for the active ingredient. Suitable carriers or excipients are well known in the art. The pharmaceutical composition may be adapted for oral or parenteral use and may be administered to the
patient in the form of tablets, capsules, suppositories, solution, suspensions, or the like.

The compounds of the present invention may be administered orally, for example, with an inert diluent or with an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the compounds may be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, chewing gums and the like. These preparations should contain at least 4% of the compound of the invention, the active ingredient, but may be varied depending upon the particular form and may conveniently be between 4% to about 70% of the weight of the unit. The amount of the compound present in compositions is such that a suitable dosage will be obtained. Preferred compositions and preparations according to the present invention are prepared so that an oral dosage unit form contains between 5.0-300 milligrams of a compound of the invention.

The tablets, pills, capsules, troches and the like may also contain one or more of the following adjuvants: binders such as microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch or lactose, disintegrating agents such as alginic acid, Primogel™, corn starch and the like; lubricants such as magnesium stearate or Sterotex™; glidants such as colloidal silicon dioxide; and sweetening agents such as sucrose or saccharin may be added or a flavoring agent such as peppermint, methyl salicylate or orange flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or a fatty oil. Other dosage unit forms may contain other various materials which modify the physical form of the dosage unit, for example, as coatings. Thus, tablets
or pills may be coated with sugar, shellac, or other enteric coating agents. A syrup may contain, in addition to the present compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors. Materials used in preparing these various compositions should be pharmaceutically pure and non-toxic in the amounts used.

For the purpose of parenteral therapeutic administration, the compounds of the present invention may be incorporated into a solution or suspension. These preparations should contain at least 0.1% of a compound of the invention, but may be varied to be between 0.1 and about 50% of the weight thereof. The amount of the inventive compound present in such compositions is such that a suitable dosage will be obtained. Preferred compositions and preparations according to the present invention are prepared so that a parenteral dosage unit contains between 5.0 to 100 milligrams of the compound of the invention.

The solutions or suspensions may also include the one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylene diaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.

As with any group of structurally related compounds which possesses a particular generic utility, certain
groups and configurations are preferred for compounds of formula (1) or (2) in their end-use application.

Compounds of formula (1) wherein \(n \) is 1, \(m \) is 7 and \(Z \) is \(-\text{CH}_2\text{CH}_2\text{CH}_2-\) are generally preferred. Compounds of formula (1) wherein \(A \) is \(H \), \(-\text{SH} \), \(-\text{NCH}_2\text{CH}_2\text{SH} \), or \(-\text{NCH}_2\text{CH}_2\text{SPO}_3\text{H}_2 \) are generally preferred. Compounds of formula (1) wherein \(B_1 \) and \(B_2 \) are \(\text{CH}_2\text{CH}_2\text{SH} \) or \(-\text{CH}_2\text{CH}_2\text{SPO}_3\text{H}_2 \) are preferred when \(A \) is \(H \). Compounds of formula (1) wherein \(B_1 \) and \(B_2 \) are \(H \) are preferred when \(A \) is \(-\text{SH} \), \(-\text{NCH}_2\text{CH}_2\text{SH} \) or \(-\text{NCH}_2\text{CH}_2\text{SPO}_3\text{H}_2 \).

Compounds of formula (2) wherein \(n \) is 1 and \(Z \) is \(-\text{CH}_2\text{CH}_2\text{CH}_2-\) are generally preferred. Compounds of formula (2) wherein \(A \) is \(H \), \(-\text{SH} \), \(-\text{NCH}_2\text{CH}_2\text{SH} \) or \(-\text{NCH}_2\text{CH}_2\text{SPO}_3\text{H}_2 \) are generally preferred. Compounds of formula (2) wherein \(B_1 \) and \(B_2 \) are \(\text{CH}_2\text{CH}_2\text{SH} \) or \(-\text{CH}_2\text{CH}_2\text{SPO}_3\text{H}_2 \) are preferred when \(A \) is \(H \). Compounds of formula (2) wherein \(B_1 \) and \(B_2 \) are \(H \) are preferred when \(A \) is \(-\text{SH} \), \(-\text{NCH}_2\text{CH}_2\text{SH} \) or \(-\text{NCH}_2\text{CH}_2\text{SPO}_3\text{H}_2 \).

The utility of the compounds of the present invention may be demonstrated as radioprotective agents both \textit{in vitro} and \textit{in vivo}.

For example, the ability of cultured cells to form clones (colonies) may be evaluated as a function of exposure to X-ray dose or chemical dose. Cells are either not drug treated or are treated with a test agent 30 minutes prior to exposure. The degree of retention of ability to form clones after exposure, in comparison to untreated cells, is directly related to the protective effect of the drug. A typical experiment of this type may be carried out essentially as described by Snyder and Lachmann [\textit{Radiation Res.} \textbf{120}, 121 (1989)].
Alternatively, the production of DNA strand breaks upon exposure to X-ray dose or chemical dose may be evaluated. Cells are either not drug treated or are treated with a test agent about 30 minutes prior to exposure. The extent of DNA strand breakage after exposure, in comparison to that in untreated cells, is inversely related to the protective effect of the drug. A typical experiment of this type may be carried out essentially as described by Snyder [Int. J. Radiat. Biol. 55, 773 (1989)].

In addition, the survivability of mice exposed to whole body irradiation or to a DNA-reactive agent may be evaluated. Animals, either pre-treated with a test agent or untreated (Control Group), are exposed to whole body irradiation (1500 rads). Untreated Control animals are expected to survive about 12-15 days. The degree of survivability of the treated animals, in comparison to the untreated Controls, is directly related to the protective effect of the drug treatment. A typical experiment of this type may be carried out essentially as described by Carroll et al. [J. Med. Chem. 33, 2501 (1990)].

The production of DNA strand breaks in lymphocytes taken from treated animals exposed to whole body irradiation or to a DNA-reactive agent may be evaluated in comparison to untreated control. Alternatively, the viability and clonogenicity of bone marrow cells taken from treated animals exposed to whole body irradiation or to a DNA-reactive agent may be evaluated in comparison to untreated control as described by Pike and Robinson [J. Cell Physiol. 76, 77 (1970)].
WHAT IS CLAIMED IS:

1. A compound of the formula

\[
A - \begin{array}{c}
\text{O} \quad \text{O} \\
\text{B}_1 \quad \text{B}_2 \\
\end{array} - \begin{array}{c}
\text{N-Z-N-(CH}_2\text{)}_m\text{-N-Z-N-(CH}_2\text{)}_n \quad \text{O} \\
\text{B}_2 \quad \text{B}_1 \\
\end{array} - A
\]

(1)

wherein

- \(n\) is an integer from 0 to 3,
- \(m\) is an integer from 4 to 9,
- \(Z\) is a \(C_2-C_6\) alkylene group,
- \(A\) is H, -SH, -SPO\(_3\)H\(_2\), -N(CH\(_2\))\(_q\)-SH, -N(CH\(_2\))\(_q\)-SPO\(_3\)H\(_2\),
 wherein \(q\) is an integer 2 to 4, and
- \(B_1\) and \(B_2\) are each independently H, -(CH\(_2\))\(_q\)-SH, or -(CH\(_2\))\(_q\)-SPO\(_3\)H\(_2\),

with the proviso that at least one of \(A\), \(B_1\) and \(B_2\) is other than H.
2. A compound of the formula

\[
\begin{array}{c}
\text{A} - \text{-(CH}_2\text{)}_n\text{-N-Z-N-Z-N-(CH}_2\text{)}_n\text{-} \\
\text{B}_1 \text{ B}_2 \text{ B}_1
\end{array}
\]

wherein

- \(n \) is an integer from 0 to 3,
- \(Z \) is a \(\text{C}_2-\text{C}_6 \) alkylene group,
- \(A \) is \(\text{H}, \text{-SH}, \text{-SPO}_3\text{H}_2, \text{-N(CH}_2\text{)}_q\text{-SH}, \text{-N(CH}_2\text{)}_q\text{-SPO}_3\text{H}_2 \),
 wherein \(q \) is an integer 2 to 4, and
- \(\text{B}_1 \) and \(\text{B}_2 \) are each independently \(\text{H}, \text{-}(\text{CH}_2)_q\text{-SH}, \text{or} \)
 \(\text{-}(\text{CH}_2)_q\text{-SPO}_3\text{H}_2 \),
with the proviso that at least one of \(A, \text{B}_1 \) and \(\text{B}_2 \) is other than \(\text{H} \).

3. Use of a compound according to claim 1 or 2 for protecting mammalian cells from deleterious cellular effects caused by exposure to ionizing radiation.

4. Use of a compound according to claim 1 or 2 for protecting mammalian cells from deleterious cellular effects caused by exposure to a DNA-reactive agent.

5. Use of a compound according to claim 1 or 2 for protecting non-cancer cells of a human from deleterious cellular effects caused by exposure to ionizing radiation.
6. Use of a compound according to claim 1 or 2 for protecting non-cancer cells of a human from deleterious cellular effects caused by exposure to a DNA-reactive agent.

7. Use of a compound according to claim 1 or 2 for treating a patient in need of radiation therapy.

8. Use of a compound according to claim 1 or 2 for treating a patient in need of chemotherapy with a DNA-reactive chemotherapeutic agent.

9. A composition comprising a compound of Claim 1 or 2 in admixture or otherwise in association with an inert carrier.

10. A pharmaceutical composition comprising a protective amount of a compound of Claim 1 or 2 in admixture or otherwise in association with one or more pharmaceutically acceptable carriers or excipients.

11. A compound of Claim 1 wherein n is 1, m is 7 and Z is -CH₂CH₂CH₂⁻.

12. A compound of Claim 1 wherein A is H, -SH, -NCH₂CH₂SH or -NCH₂CH₂SPO₃H₂.

13. A compound of Claim 1 wherein B₁ and B₂ are each H, and A is -SH, -NCH₂CH₂SH or -NCH₂CH₂SPO₃H₂.

14. A compound of Claim 1 wherein B₁ and B₂ are each -CH₂CH₂SH or -CH₂CH₂SPO₃H₂, and A is H.

15. A compound of Claim 2 wherein n is 1 and Z is
16. A compound of Claim 2 wherein A is H, -SH, -NCH₂CH₂SH or -NCH₂CH₂SPO₃H₂.

17. A compound of Claim 2 wherein B₁ and B₂ are each H, and A is -SH, -NCH₂CH₂SH or -NCH₂CH₂SPO₃H₂.

18. A compound of Claim 2 wherein B₁ and B₂ are each -CH₂CH₂SH or -CH₂CH₂SPO₃H₂, and A is H.

19. A pharmaceutical composition comprising an effective amount of a compound, as defined in Claim 1, 2, 11, 12, 13, 14, 15, 16, 17 or 18, together with a pharmaceutically acceptable carrier therefor.

20. A pharmaceutical composition for use in protecting mammalian cells from deleterious cellular effects caused by exposure to ionizing radiation or caused by exposure to a DNA-reactive agent which comprises a protective amount of a compound, as defined in Claim 1, 2, 11, 12, 13, 14, 15, 16, 17 or 18, together with a pharmaceutically acceptable carrier therefor.

21. A pharmaceutical composition for use in protecting non-cancer cells in a patient from deleterious cellular effects caused by exposure to ionizing radiation or caused by exposure to a DNA-reactive agent which comprises a protective amount of a compound, as defined in Claim 1, 2, 11, 12, 13, 14, 15, 16, 17 or 18, together with a pharmaceutically acceptable carrier therefor.

22. A pharmaceutical composition for use in treating a patient in need of radiation therapy which comprises a protective amount of a compound, as defined in Claim 1, 2, 11, 12, 13, 14, 15, 16, 17 or 18, together with a pharmaceutically acceptable carrier therefor.

-99-
23. A pharmaceutical composition for use in treating a patient in need of chemotherapy with a DNA-reactive chemotherapeutic agent which comprises a protective amount of a compound, as defined in Claim 1, 2, 11, 12, 13, 14, 15, 16, 17 or 18, together with a pharmaceutically acceptable carrier therefor.

24. A process for preparing a compound of the formula

\[
\text{A} \quad -\quad \text{(CH}_2\text{)}_n \quad -\quad \text{N-} \quad \text{Z-} \quad \text{N-} \quad \text{(CH}_2\text{)}_m \quad -\quad \text{N-} \quad \text{Z-} \quad \text{N-} \quad \text{(CH}_2\text{)}_n \quad -\quad \text{A}
\]

\[\text{B}_1 \quad \text{B}_2 \quad \text{B}_2 \quad \text{B}_1\]

wherein
- \(n\) is an integer from 1 to 3,
- \(m\) is an integer from 4 to 9,
- \(Z\) is a \(C_2-C_6\) alkylene group,
- \(A\) and \(B_1\) are hydrogen, and
- \(B_2\) is \(-(\text{CH}_2)^q\text{-SH}\)

wherein \(q\) is an integer from 2 to 4,

comprising reacting a thiating agent with a compound of the formula

\[
\text{A} \quad -\quad \text{(CH}_2\text{)}_n \quad -\quad \text{N-} \quad \text{Z-} \quad \text{N-} \quad \text{(CH}_2\text{)}_m \quad -\quad \text{N-} \quad \text{Z-} \quad \text{N-} \quad \text{(CH}_2\text{)}_n \quad -\quad \text{A}
\]

\[\text{B}_1 \quad \text{B}_2 \quad \text{B}_2 \quad \text{B}_1\]

wherein \(B_2\) is \(-(\text{CH}_2)^q\text{-OH}\) and \(n, m, Z, q, A\) and \(B_1\) are defined as above.

25. A process for preparing a compound of the formula

\[
\text{A} \quad -\quad \text{(CH}_2\text{)}_n \quad -\quad \text{N-} \quad \text{Z-} \quad \text{N-} \quad \text{(CH}_2\text{)}_m \quad -\quad \text{N-} \quad \text{Z-} \quad \text{N-} \quad \text{(CH}_2\text{)}_n \quad -\quad \text{A}
\]

\[\text{B}_1 \quad \text{B}_2 \quad \text{B}_2 \quad \text{B}_1\]
wherein

n is an integer from 0 to 3,
m is an integer from 4 to 9,
Z is a C₂⁻C₆ alkylene group,
A is hydrogen, and
B₁ or B₂ is -(CH₂)ₜ-SPO₃H₂
 wherein q is an integer from 2 to 4,
comprising cleaving a compound of the formula

\[
A-\overset{(CH₂)ₙ}{\text{-N-Z-N-(CH₂)m-N-Z-N-(CH₂)n-}}-B₁-B₂-B₂-B₁-A
\]

wherein B₁ or B₂ are -(CH₂)ₜ-SPO₃R₂ wherein R is a C₁⁻C₄ alkyl and n, m, Z, q and A are defined as above.

26. A process for preparing a compound of the formula

\[
A-\overset{(CH₂)ₙ}{\text{-N-Z-N-(CH₂)m-N-Z-N-(CH₂)n-}}-B₁-B₂-B₂-B₁-A
\]

wherein

n is 0 to 3,
m is an integer from 4 to 9,
Z is a C₂⁻C₆ alkylene group,
A is hydrogen, and
B₁ or B₂ is -(CH₂)ₜ-SH
 wherein q is an integer from 2 to 4,
comprising deprotecting a compound of the formula

\[
A-\overset{(CH₂)ₙ}{\text{-N-Z-N-(CH₂)m-N-Z-N-(CH₂)n-}}-B₁-B₂-B₂-B₁-A
\]
wherein n, m, Z, q and A are defined as above and B_1 or B_2 is a p-toluenesulfonyl, benzyl or t-butyloxycarbonyl protecting group.

27. A process for preparing a compound of the formula

$$
\begin{array}{c}
A - \overset{(\mathrm{CH}_2)_n}{\mathrm{N}} - \overset{Z}{\mathrm{N}} - \overset{(\mathrm{CH}_2)_m}{\mathrm{N}} - \overset{Z}{\mathrm{N}} - \overset{(\mathrm{CH}_2)_n}{\mathrm{A}}
\end{array}
$$

wherein

n is an integer from 0 to 3,
m is an integer from 4 to 9,
Z is a C$_2$-C$_6$ alkylen group,
B_1 and B_2 are hydrogen, and
A is $-\mathrm{SH}$ or $-\mathrm{N}(\mathrm{CH}_2)_q\mathrm{SH}$

wherein q is an integer from 2 to 4,

comprising deprotecting a compound of the formula

$$
\begin{array}{c}
A - \overset{(\mathrm{CH}_2)_n}{\mathrm{N}} - \overset{Z}{\mathrm{N}} - \overset{(\mathrm{CH}_2)_m}{\mathrm{N}} - \overset{Z}{\mathrm{N}} - \overset{(\mathrm{CH}_2)_n}{\mathrm{A}}
\end{array}
$$

wherein A is $-\mathrm{SPg}$ or $-\mathrm{N}(\mathrm{CH}_2)_q\mathrm{SPg}$, Pg is a protecting group and n, m, Z, q, B_1 and B_2 are defined as above.

28. A process for preparing a compound of the formula

$$
\begin{array}{c}
A - \overset{(\mathrm{CH}_2)_n}{\mathrm{N}} - \overset{Z}{\mathrm{N}} - \overset{(\mathrm{CH}_2)_m}{\mathrm{N}} - \overset{Z}{\mathrm{N}} - \overset{(\mathrm{CH}_2)_n}{\mathrm{A}}
\end{array}
$$

wherein

n is an integer from 0 to 3,
m is an integer from 4 to 9,
Z is a C₂-C₆ alkylene group,
B₁ and B₂ are hydrogen, and
A is -SPO₃H₂ or -N-(CH₂)ₗ-SPO₃H₂
wherein l is an integer from 2 to 4,
comprising cleaving a compound of the formula

\[
\begin{align*}
A & \quad \bigcirc \quad \text{-(CH₂)ₙ-N-Z-N-(CH₂)ₘ-N-Z-N-(CH₂)ₙ} \\
& \quad \text{B₁ B₂ B₂ B₁}
\end{align*}
\]

wherein A is -SPO₃R₂ or -N-(CH₂)ₗ-SPO₃R₂ wherein R is a C₁-C₄ alkyl and n, m, Z, l, B₁ and B₂ are defined as above.

29. A process for preparing a compound of the formula

\[
\begin{align*}
A & \quad \bigcirc \quad \text{-(CH₂)ₙ-N-Z-N-Z-N-(CH₂)ₙ} \\
& \quad \text{B₁ B₂ B₁}
\end{align*}
\]

wherein
n is an integer from 1 to 3,
Z is a C₂-C₆ alkylene group,
A and B₁ are hydrogen, and
B₂ is -(CH₂)ₗ-SH
wherein l is an integer from 2 to 4,
comprising reductively aminating a compound of the formula

\[
\begin{align*}
\text{H₂-N-Z-N-Z-N-H₂} \\
& \quad \text{B₁ B₂ B₁}
\end{align*}
\]

with a phenylalkylaldehyde of the formula

\[
\begin{align*}
A & \quad \bigcirc \quad \text{-(CH₂)ₙ₁-CHO}
\end{align*}
\]
wherein A, B₁, B₂, Z and n are defined as above.

30. A process for preparing a compound of the formula

\[
\begin{array}{c}
\text{A} \\
\text{B₁} \\
\text{B₂} \\
\text{B₁} \\
\end{array}
\]

\[
\phi \text{-(CH₂)ₙ-N-Z-N-Z-N-(CH₂)ₙ-}
\]

\[
\text{A}
\]

wherein

- n is an integer from 0 to 3,
- Z is a C₂-C₆ alkylene group,
- A is hydrogen, and
- B₁ or B₂ is -(CH₂)ₚ-SH

wherein q is an integer from 2 to 4,

comprising deprotecting a compound of the formula

\[
\begin{array}{c}
\text{A} \\
\text{B₁} \\
\text{B₂} \\
\text{B₁} \\
\end{array}
\]

\[
\phi \text{-(CH₂)ₙ-N-Z-N-Z-N-(CH₂)ₙ-}
\]

\[
\text{A}
\]

wherein B₁ or B₂ is a p-toluenesulfonyl or t-butyloxycarbonyl protecting group and A, Z and n are defined as above.

31. A process for preparing a compound of the formula

\[
\begin{array}{c}
\text{A} \\
\text{B₁} \\
\text{B₂} \\
\text{B₁} \\
\end{array}
\]

\[
\phi \text{-(CH₂)ₙ-N-Z-N-Z-N-(CH₂)ₙ-}
\]

\[
\text{A}
\]

wherein

- n is an integer from 0 to 3,
- Z is a C₂-C₆ alkylene group,
- A is hydrogen, and
- B₁ or B₂ is -(CH₂)ₚ-SPO₃H₂

-104-
wherein \(q \) is an integer from 2 to 4, comprising cleaving a compound of the formula

\[
A - \overset{\text{(CH}_2)_n\text{-N-Z-N-Z-N-(CH}_2)_n}{\bigcirc} - A
\]

wherein \(B_1 \) or \(B_2 \) is \(-(\text{CH}_2)_q\text{-SPO}_3\text{R}_2\) wherein \(R \) is a \(C_1\text{-C}_4 \) alkyl and \(A, Z \) and \(n \) are defined as above.

32. A process for preparing a compound of the formula

\[
A - \overset{\text{(CH}_2)_n\text{-N-Z-N-Z-N-(CH}_2)_n}{\bigcirc} - A
\]

wherein

- \(n \) is an integer from 0 to 3,
- \(Z \) is a \(C_2\text{-C}_6 \) alkylene group,
- \(B_1 \) and \(B_2 \) are hydrogen, and
- \(A \) is \(-\text{SH} \) or \(-\text{N(\text{CH}_2)_q-SH} \)

wherein \(q \) is an integer from 2 to 4, comprising deprotecting a compound of the formula

\[
A - \overset{\text{(CH}_2)_n\text{-N-Z-N-Z-N-(CH}_2)_n}{\bigcirc} - A
\]

wherein \(A \) is \(-\text{N(\text{CH}_2)_q-SPg} \) or \(-\text{SPg} \), \(Pg \) is a protecting group and \(B_1, B_2, Z \) and \(n \) and \(q \) are defined as above.

33. A process for preparing a compound of the formula
wherein

n is an integer from 0 to 3,
Z is a C₂-C₆ alkylene group,
B₁ and B₂ are hydrogen, and
A is -SPO₃H₂ or -N(CH₂)ᵢ⁻SPO₃H₂

wherein i is an integer from 2 to 4,
comprising cleaving a compound of the formula

wherein A is -SPO₃R₂ or -N(CH₂)ᵢ⁻SPO₃R₂ wherein R is a
C₁-C₄ alkyl and B₁, B₂, Z, n and i are defined as above.

34. Use of a compound according to claim 1 or 2 for
the preparation of a medicament for protecting mammalian
cells from deleterious cellular effects caused by exposure
to ionizing radiation.

35. Use of a compound according to claim 1 or 2 for
the preparation of a medicament for protecting mammalian
cells from deleterious cellular effects caused by exposure
to a DNA-reactive agent.

36. Use of a compound according to claim 1 or 2 for
the preparation of a medicament for protecting non-cancer
cells of a human from deleterious cellular effects caused
by exposure to ionizing radiation.
37. Use of a compound according to claim 1 or 2 for the preparation of a medicament for protecting non-cancer cells of a human from deleterious cellular effects caused by exposure to a DNA-reactive agent.

38. Use of a compound according to claim 1 or 2 for the preparation of a medicament for treating a patient in need of radiation therapy.

39. Use of a compound according to claim 1 or 2 for the preparation of a medicament for treating a patient in need of chemotherapy with a DNA-reactive chemotherapeutic agent.