

(12) PATENT

(11) 346239

(13) B1

NORWAY

(19) NO

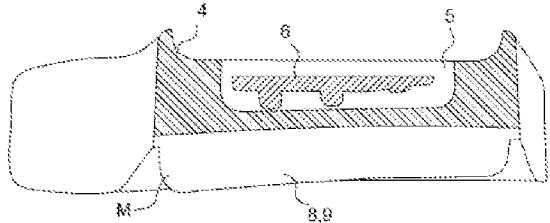
(51) Int Cl.

A43B 13/12 (2006.01)

Norwegian Industrial Property Office

(21)	Application nr.	20191442	(86)	International Filing Date and Application Number
(22)	Date of Filing	2019.12.06	(85)	Date of Entry into National Phase
(24)	Date of Effect	2019.12.06	(30)	Priority
(41)	Publicly Available	2021.06.07		
(45)	Granted	2022.05.02		
(73)	Proprietor	GAITLINE AS, Gjerdums vei 16, 0484 OSLO, Norge		
(72)	Inventor	Håvard Engell, Gjerdums vei 16, 0484 OSLO, Norge		
(74)	Agent or Attorney	PROTECTOR IP AS, Pilestredet 33, 0166 OSLO, Norge		
(54)	Title	Shoe with sole providing a dynamic foot arch support		
(56)	References			
	Cited:	US 2018199665 A, US 2006137228 A, US 2011185590 A		
(57)	Abstract			

The invention provides a shoe with a sole providing a dynamic foot arch support, the shoe comprising a rubber outsole and an upper. The shoe is distinguished in that the shoe further comprises a midsole, the midsole further comprising


a harder elastic material,
a softer elastic material,

wherein the harder elastic material has elastic hardness in a range 1,3 to 3 times higher than the softer elastic material,

wherein the harder elastic material is arranged in a band inside the periphery of the midsole, preferably the band extends in a range of 0,1 to 1 times the midsole thickness inwards from the periphery along the sides and heel of the midsole, preferably the band is wider on the medial side than the lateral side in the heel part of the midsole,

wherein the softer elastic material is arranged in the midsole inside the band of the harder elastic material, and the shoe further comprises

a support structure arranged below the softer elastic material in direction medial to lateral and positioned from vertically below to 4 cm in front of the os naviculare bone center of a typical user with feet fitting the shoe size, wherein the support structure has higher elastic hardness than the harder elastic material, with a larger vertical dimension medial compared to lateral as seen with the shoe standing on a horizontal surface, providing increased support under the medial side of the foot arch compared to the lateral side of the foot arch.

SHOE WITH SOLE PROVIDING A DYNAMIC FOOT ARCH SUPPORT

Technical Field

The present invention relates to shoes. More specifically, the invention provides
5 a shoe with a sole providing a dynamic and comfortable foot arch support.

Background Art

Shoes in many variations have been used for thousands of years. In the
modern world, where people mostly walk on hard flat surfaces, various
10 problems related to the foot are widespread. Good shoes can mitigate many of
the problems. A traditional walking shoe for healthy feet and healthy guiding of
force from the underlayer up into the bones, joints, muscles and connective
tissue will typically have a hard sole. Often more than 50% of the sole thickness
will be made by rigid, non-elastic material. A different shoe design, probably the
15 state-of-the-art design for mitigating general gait related biomechanical issues,
is described and illustrated in the European patent specification EP 2 747 592
B1.

In patent publication US 2018/0199665 A1 footwear including lightweight sole
20 structure providing functionality for enhanced comfort, flexibility and
performance features are described and illustrated.

In patent publication WO 2009/010078 A1, a molded sole with an anatomical
foot support bed is described and illustrated. The molded sole includes a
25 longitudinal arch support along a medial longitudinal section, more pronounced
than in the case of a conventional sole and brought forward under the navicular
bone (os naviculare), which brings about better anatomical support of the foot.

The navicular bone is a boat-shaped bone located in the top inner or medial
30 side of the longitudinal foot-arch, next to talus and the three cuneiforme bones,
medial located to the cuboid bone. The rounded boat-shape of the navicular
bone is towards the talus bone. The rounded shape of this joint gives the

navicular bone a freedom to rotate both inwards and downwards, related to the talus bone and the longitudinal axes of the foot. The navicular bone is considered to be the most critical bone in the longitudinal arch-construction of the human foot. Measured from the heel in the footprint or along a last of correct size for the footprint, the navicular bone is located on the medial side of the foot arch, extending over the footprint or last a range of about 30-50%, more specifically about 35-45%, with the center at about 38 %-40%, of the length.

Despite numerous shoe designs and insole designs, a demand still exists for alternative or improved shoe designs providing a dynamic and comfortable foot arch support.

Summary of invention

The invention provides a shoe with a sole providing a dynamic foot arch support, the shoe comprising a rubber outsole and an upper. The rubber outsole is alternatively termed undersole or outsole rubber. The shoe further comprises a midsole, the midsole comprising

- a harder elastic material,
- a softer elastic material,

wherein the harder elastic material has elastic hardness in a range 1,3 to 3 times higher, preferably 1,5 – 2,5 times higher, than the softer elastic material.

The shoe is distinguished in that the harder elastic material is arranged in a band inside the periphery of the midsole, preferably the band extends in a range of 0,1 to 1 times the midsole thickness inwards from the periphery along the sides and heel of the midsole, preferably the band is wider on the medial side than the lateral side in the heel part of the midsole, preferably the band is 1,5 to 4 or 1,5 to 3 or 2 to 3 or 2,5 to 3 times wider on the medial side compared to the lateral side in the heel part of the midsole,

wherein the softer elastic material is arranged in the midsole inside the band of the harder elastic material, and the shoe further comprises

- a support structure arranged below the softer elastic material in direction medial to lateral and positioned from vertically below to 4 cm, or 3 cm in front of the os naviculare bone center of a typical user with feet fitting the shoe size,

wherein the support structure has higher elastic hardness than the harder elastic material, and a larger vertical dimension on medial side compared to lateral side as seen with the shoe standing on a horizontal surface, providing increased support under the medial side of the foot arch compared to the lateral side of the foot arch .

5 The sole has harder elasticity under the foot arch and cuneiforme mediale and os naviculare of the user than standard walking shoe soles, but the initial compressive elasticity is soft, providing comfort, due to the softer elastic 10 material facing the foot under the foot arch.

Elastic hardness is measured according to ASTM D2240. For the harder and the softer elastic material, scale A is used, resulting in Shore A values for elastic hardness. For the support structure, Scale A or Scale D is 15 used, resulting in Shore A values or Shore D values for elastic hardness, respectively. The Shore hardness relates to Youngs's modulus of elasticity by relations assumed to be known for the skilled person. The relation is non-linear, and is easiest to find using diagrams, tables or formulas. Youngs's modulus of elasticity relates to resistance against bending, as known according to common 20 general knowledge.

The feature that the harder elastic material has elastic hardness is in a range 1,3 to 3 times higher than the softer elastic material, relates to Shore A values. For example, if the softer elastic material has hardness Shore A of 30, the 25 harder elastic material has Shore A hardness in a range from 39 to 90.

The support structure preferably has a Shore D hardness of 70-90, preferably Shore D of about 80, if the support structure is an inlay or shank, which inlay or shank preferably is integrated or moulded into the softer elastic material. The 30 support structure, if integrated in the rubber outsole or arranged between the rubber outsole and midsole, preferably in the form of an archroller integrated into the rubber outsole, preferably has a hardness Shore A \geq 70, such as about Shore A 75, or Shore D \geq 30, such as about Shore D 35.

The shoe preferably comprises an inlay sole, arranged on top of the midsole. However, the shoe can be without an inlay sole. The shoe can be a sandal.

5 The term midsole means the sole over the rubber outsole, with or without an inlay sole or insole on top.

Measuring from the heel of the shoe, midsole, sole or last, the support structure centerline is in medial-lateral direction, at a distance in a range of about 30-

10 50%, more specifically about 35-45%, such as about 38-40 %, of the length from the heel to the front.

The shoe of the invention in general comprises a sole or midsole with more than 50% relative soft elastic material through the thickness in the heel region, in the

15 form of the harder elastic material and the softer elastic material. In the part of the sole under cuneiforme mediale and os naviculare, the sole can however comprise about 50% or even less than 50% of said soft elastic material through the thickness. Thereby, the dynamic elastic stiffness becomes more expressed, increasing progressively under the medial foot arch whilst the heel and

20 preferably also the forefoot has softer elastic stiffness compared to the midfoot. The heel can sink further down, and the forefoot is lower and/or has softer elastic stiffness than under the medial foot arch.

A progressive yet comfortable os navigare and foot arch support is achieved by

25 combining lower elastic hardness material with higher elastic hardness material and more or less rigid material, with a lower elastic hardness material on top, as described and claimed.

Preferably, the support structure is arranged in the rubber outsole, as an

30 integrated part of the rubber outsole. In many preferable embodiments, a further support structure is arranged in the midsole, preferably within the softer elastic material, optionally also within the harder elastic material. Preferably, support structures are arranged in the midsole and the rubber outsole.

The support structure preferably is a conical structure arranged medial-lateral, as seen from the heel of the shoe, the shoe standing on a horizontal surface, with the largest vertical dimension on the medial side. The cross-section shape 5 can be circular, elliptical, half-circle, half-elliptic or polygonal, preferably in any embodiment with largest vertical dimensions on the medial side, to be a conical or conical-like structure. Said support structures can be arranged in the rubber outsole, the midsole or both. The support structure preferably is in substance a cylindrical structure having in substance parallel sides towards toe and heel, 10 respectively, combined with larger vertical cross section dimension on medial side compared to lateral side, with the shoe as standing on a horizontal surface.

Preferably, the support structure comprises an inlay covering the foot arch of the sole. Preferably, the inlay is trapezoid-like, with the longest side on the 15 medial side. Preferably, the medial side of said inlay is curved, with the convex side facing upwards. Preferably, the inlay is straight/flat in medial-lateral direction but turned clockwise for a right shoe as seen from behind. Thereby, the natural shape of the foot arch is supported. The inlay can be said to be a short version of a shank of the invention. Preferably, the inlay is twisted in 20 clockwise direction, and/or curved, so as seen for a right foot midsole as seen from behind, the top surface has an angle α_2 in a range 1 to 10°, more preferably 2°-10°, or 3°-7° from horizontal. Preferably, the inlay comprises longitudinal ribs along the underside, the ribs are higher on a medial side than on a lateral side, at maximum extension the ribs extend out from the inlay 25 underside at least a distance equal to the thickness of the inlay without said ribs. The inlay is preferably made of a polymer material, preferably polyamide, preferably PA 6 or PA66, preferably the inlay, exclusive any ribs, is 0.5-5, more preferably 1-4 or 2-3 mm thick. Other polymers, such as PE or PET can be used, or carbon fibre or carbon composites, or metal, however, dimensions 30 should be adapted to have similar bending stiffness as a 3 mm thick PA6 inlay in a size 39 shoe.

Preferably, a further support structure comprises a shank. Preferably, the shank is embedded, preferably in the softer elastic material, in the midsole from the

heel to the forefoot of the intermediate sole. Preferably, the shank is extending over 60-95% of a last length and extending 60-95% over the last width.

Preferably, the shank is twisted in clockwise direction for a right foot midsole as seen from behind, from the heel to an intermediate part to a position in front of the naviculare bone of a user. Preferably, the twisting is at an angle α_2 in a range 1° to 10° , more preferably 2° to 10° or 3° to 7° from horizontal. The shank preferably comprises longitudinal ribs along the shank underside, the ribs extending from the heel and intermediate part to a position in front of the naviculare bone of a user. Preferably, ribs, if present, are higher on a medial side of the shank than on a lateral side of the shank. At maximum extension the ribs preferably extend out from the shank underside at least a distance equal to the thickness of the shank without said ribs. The shank is preferably made of a polymer material, preferably polyamide, preferably PA 6 or PA66. Preferably the shank, exclusive any ribs, is 0.5-3 mm thick. Other polymers, preferably having similar bending stiffness as polyamide, such as PE or PET can be used, or carbon fibre or carbon composites, or metal. The shank preferably has a Shore D hardness of 70-90, preferably a Shore D of about 80. However, dimensions should be adapted to have similar bending stiffness as a 3 mm thick PA6 shank in a size 39 shoe, measured at a shank midpoint medial-lateral in the midfoot region. However, dimensions should preferably be adjusted proportionally, for example a shoe of dimension 2/3 of a size 39 shoe shall preferably have a 2 mm thick PA6 shank. Alternatively, or in addition, the elastic bending stiffness can be adjusted, alone or as combined with adjusting the thickness/dimensions/ribs or no ribs, and/or slots, to provide a shank having a bending stiffness as for a PA 6 or PA66 shank as described. The thickness of the softer elastic material in the midfoot, both above and below the shank, is at least one times the thickness of the shank, allowing perfect bending of the shank over the archroller. Such shank with carefully adapted bending stiffness, embedded in the softer elastic material, combined with an archroller giving support under the midfoot, with increased support under the medial side compared to the lateral side, is the best embodiment of a shoe of the invention.

The midsole preferably comprises polyurethane as the harder elastic material,

preferably polyurethane -PU- in a Shore A hardness range 40 – 80, more preferably Shore A about 60, and a polyurethane as the softer elastic material, preferably polyurethane -PU- in a Shore A hardness range 20 – 60, more preferably Shore A about 30.

5

Preferably, at least a part of the midsole top surface is inclined, wherein the midsole is higher on the medial side than on the lateral side in the heel and intermediate part to a position in front of the naviculare bone of a user.

10 Preferably, the inclination, in medial-lateral direction, is at an angle α_1 in a range 1° to 7 °, more preferably 3° to 5°, from horizontal. In the forefoot area, said top surface preferably is in substance horizontal.

With reference to the inlay or shank rotation α_2 , and the midsole top surface inclination α_1 , preferably $\alpha_2 \geq \alpha_1$, more preferably $\alpha_2 > \alpha_1$.

15

Preferably, the thickness of the softer elastic material over the support structure/shank in the midfoot area of the midsole is lower than the thickness of the softer elastic material over the support structure in the heel area of the midsole. This provides a soft elasticity at initial compression by the foot of the 20 user, but a progressively harder elastic support in the midfoot area of the shoe than in the heel area at further compression, with harder elasticity starting at less compression in the midfoot area compared to the heel area of the midsole, and more expressed on the medial side compared to lateral side.

25 The harder elastic material is preferably arranged not only around the softer elastic material, as a band laterally around the softer elastic material, but also in a layer below the softer elastic material. The harder elastic material thereby preferably is arranged as a sole shaped “cup”, into which cup the softer elastic material and preferably an inlay, preferably a shank, is arranged, for example by 30 molding.

The structure of the shoe provides a combination of comfort and dynamic

control of how the shoe can be constructed for specific purposes. How the shoe, and particularly the midsole thereof, shall be designed and built, and why, will be clear from the further description below.

- 5 The precision in how the shoe can be designed and built for specific effect while retaining comfort, is why the shoe is described as having a dynamic foot arch support. More specifically, the elasticity when compressing the sole initially is soft, guided by the elasticity of the softer elastic material. At further compression, the sole area under the cuneiforme mediale and os naviculare
- 10 becomes relative more rigid, like a progressive spring. The result is that the heel area and the forefoot area sink further down than the foot arch area below the cuneiforme mediale and os naviculare. The effect varies according to how much the sole already has been compressed, thereby the support is dynamic.

Brief description of drawings

- 15 Figure 1 is a medial-lateral cross section through the heel region of a midsole of a shoe of the invention.
- Figure 2 illustrates an insert of a midsole of a shoe of the invention, in the form of a shank,
- Figure 3 is a medial-lateral cross section through the midfoot region of a shoe of
- 20 the invention.
- Figure 4 is a medial-lateral cross section through the forefoot region of a shoe of the invention,
- Figure 5 illustrates a shoe of the invention,
- Figure 6 is a longitudinal section of a midsole of a shoe of the invention, on the
- 25 lateral side, and
- Figure 7 is a longitudinal section of a midsole of a shoe of the invention, on the medial side.

Detailed description of the invention

- 30 The obligatory support structure of the shoe of the invention preferably is an archroller. A further support structure preferably is a shank, embedded in the softer elastic material in the midsole, the shank at least extending from the heel

forwards to cover the full foot arch. The arch roller preferably is arranged as integrated into the rubber outsole. Alternatively, the archroller is arranged between the rubber outsole and the midsole, always with the shank above.

5 More specifically, the shoe 1 of the invention preferably comprises an archroller 8 and a shank 6, wherein the archroller is integrated in the rubber outsole or arranged between the rubber outsole and a shank. The archroller is positioned in direction medial to lateral, directly under or slightly in front of the os naviculare bone of a typical user with feet fitting the shoe size. Directly under or
 10 slightly in front of, in this context means from vertically below to 4 cm, or 0-3, 1-3 or about 2 cm in front of the os naviculare bone center as projected vertically down. An alternative description of the location and orientation of the archroller, is that the archroller is under the center of the cuneiforme mediale, extending in medial-lateral direction across the sole, which for a shoe of size 39, as
 15 projected vertically down, is about 2,3 cm in front of the center of os naviculare.

Reference is made to Figure 1, illustrating a cross section medial to lateral of the heel region of a midsole 2 with rubber outsole 9 of a shoe 1 of the invention, for a right shoe midsole as seen from behind. A band 3 of the harder elastic material 4 extends inwards around the periphery of the midsole. As clearly seen, the band is wider on the medial side 3,M than on the lateral side 3,L. The harder elastic material is also arranged on the lower part of the midsole, which lower part is attached to the rubber outsole. In the midsole, the softer elastic material 5 fills the midsole inside the band and over the lower part. Within the
 20 softer elastic material, a shank 6 can clearly be seen in cross section. It can be seen clearly, if the rubber outsole 9 is positioned on a horizontal surface, that the shank is turned clockwise, and that the top surface of the heel part of the midsole, the in substance even or flat parts thereof, excluding rims and edges, is inclined clockwise. The thickness of the softer elastic material
 25 over the medial side of the insert is 3 mm, while the thickness of the softer elastic material over the lateral side of the insert is about 5-6 mm, in the illustrated embodiment, at the chosen location for the cross-section. The cross-section location is vertically below a center of the cuboid of a typical user. Measured at a center or centerline of the shank, the thickness of the softer

elastic material over the shank is 4,5 mm. Compared to the horizontal, parallel with the underside of the midsole, it can be seen clearly that the shank is twisted clockwise more than the top surface of the midsole is inclined clockwise. The shank is thicker on the medial side than on the lateral side, about 3 mm

5 compared to 1,5 mm, respectively. On the underside of the shank, ribs 7 can be seen extending downwards. The shank is preferably located asymmetrical to the medial side in the softer elastic material with respect to a center of the softer elastic material, at least in the heel region of the midsole.

10 The specific dimensions, angles and locations are typical examples only, for a size 39 shoe. For other shoe sizes, the dimensions are adjusted linearly. For other embodiments, or for other foot problems, the twisting of the insert and the inclination of the top surface of the midsole and the dimensions and quantities of materials will be different, for example in opposite directions, or to a larger or

15 smaller extent.

Further reference is made to Figure 2, illustrating a shank 6, for embedding in a midsole in a shoe of the invention. The shank is twisted clockwise in the heel region and the midfoot region but is horizontal in the forefoot region of the shoe.

20 This is easier seen in cross sections on Figures 1, 3 and 4, respectively, along the dashed lines 1 – 1, 3 – 3 and 4 – 4, respectively, of Fig. 2. Ribs 7 are visible only on said cross-sections. A support structure, in the form of a shank, preferably comprises holes (not illustrated), as anchoring points for molding, and slots 11 in longitudinal direction in at least the forefoot area, for bending

25 stiffness reduction and anchoring.

Figure 3 illustrates a medial-lateral cross section through the midfoot region of a shoe of the invention. The shank, as well as the top surface of the midsole, are twisted clockwise, for a right shoe as seen from behind. The rubber outsole 9

30 has an archroller 8 integrated. On the medial side M, the archroller will touch the ground before the rest of the rubber outsole. The rubber outsole, and the integrated archroller, preferably has a hardness Shore A \geq 70, such as about 75, or Shore D \geq 30, such as about 35. The thickness of the softer elastic material 5 above the shank 6 is 0,6-2; 0,8-1,5; such as about 1 time the

thickness of the shank excluding any ribs. The thickness of the softer elastic material 5 below the shank 6 is 0,6-2; 0,8-1,8; such as about 1,3 times the thickness of the shank excluding any ribs. The medial part of the shank is vertically above the medial part of the archroller. The softer and the harder elastic materials, constitute about 30-60%, or about 50% of the sole thickness. Accordingly, the elastic stiffness of the midsole in the midfoot area, particularly on the medial side, is relative higher than in the heel and forefoot area of the sole, since more of the thickness is formed by the relative stiffer material rubber outsole/archroller and shank.

10

Figure 4 illustrates a medial-lateral cross section through the forefoot region of a shoe of the invention. The thickness of the softer elastic material 5 above the shank 6 is 0,6-2; 0,7-1; such as about 0,8 times the thickness of the shank excluding any ribs. The thickness of the softer elastic material 5 below the shank 6 is 0,2-1,5; 0,3-1,2; such as about 0,5 times the thickness of the shank excluding any ribs. The sole in the forefoot is thinner, softer and with lower top surface compared to the midfoot part of the sole.

20

Figure 5 illustrates an embodiment of a complete shoe 1 of the invention, with rubber outsole 9, upper 10 and (not visible) insole, seen from the lateral side. The archroller 8, with the shoe standing unloaded on a flat rigid underlayer, will not reach the underlayer on the lateral side as illustrated, but will on the medial side. By studying Fig. 3, the skilled person may recognize that this is illustrated on Fig. 3. Figures 6 and 7 illustrate this feature clearly.

25

The shoe 1 of the invention preferably comprises an archroller 8 and a shank 6, wherein the archroller preferably is integrated in the rubber outsole or arranged between the rubber outsole and the midsole or shank. The archroller is positioned in direction medial to lateral, directly under or slightly in front of the os naviculare bone of a typical user with feet fitting the shoe size. Directly under or slightly in front of, in this context means from vertically below to 4 cm in front of the os naviculare bone center. Measured along the sole, from heel to front, this corresponds to 30-50% or 35-45%, more precisely 38-40% of the length from heel to front.

The archroller 8 is a conical structure with respect to cross section dimension in vertical direction with the shoe as standing on a horizontal surface. The horizontal cross section dimension is in substance identical or decreasing along

5 the length medial to lateral of the archroller. Alternatively, the vertical and/or archroller cross-section dimension is changed stepwise.

The archroller can be of massive rubber, at least on the medial side. The medial side of a shank, if present, is arranged over the medial side of the archroller.

10

Preferably, the archroller is integrated into the rubber outsole. Seen from the below or from the sides, the archroller, as integrated in the rubber outsole, extends further down on the medial side compared to the lateral side, as seen in Fig. 3, which includes the archroller 8 in longitudinal section. A general

15 convex curve 12 in the longitudinal direction of the shoe rubber outsole surface, is crossed by 1-5 mm by the archroller 8 on the medial side, as indicated in Figure 7. A general convex curve 12 in the longitudinal direction of the shoe rubber outsole surface, is lacking 1-5 mm on the lateral side to reach said general curve 12, as indicated in Figure 6. Figures 6 and 7 are simplified, to
20 illustrate only the described feature, and are longitudinal sections somewhat inside the periphery, near the lateral and medial peripheries, respectively.

The cross dimension of the archroller in longitudinal direction of the shoe is in substance identical or is smaller on lateral side compared to medial side. The

25 archroller, combined with the shank, provides a dynamic and progressive support for the user, in that more pronation provides more support, in that the archroller "lifts" the shank, actually reduce the sinking down of the shank over the archroller, whilst the shank bends down around the archroller in a curve providing comfortable support for the full foot arch, the plantar aponeurosis. The
30 shank must have an appropriate bending stiffness, which is provided by choosing a shank and sole as described. Thereby, so called "naviculare drop" is reduced or prevented. Also, plantar fasciitis, heel spur and similar problems will be reduced or prevented for most users.

«Naviculare drop» is biomechanical terminology meaning that the foot arch is extended and pressed down by the weight of the body of the user. Excessive naviculare drop is reduced or prevented by the present invention. Os naviculare lift or -lifter is alternative terminology describing the effect, meaning os

5 naviculare lift as compared to the os naviculare drop of traditional walking shoes relative to the shoe of the invention.

On the medial side, the archroller reaches the floor, before the general convex undersole surface curve. The archroller 8 has larger vertical dimension, is

10 higher, on the medial side than the lateral side of the shoe, reaching a flat floor before the general convex curve of the undersole surface.

The sole of the shoe of the invention has a soft elasticity at initial compression by the foot of the user, softer than a traditional walking shoe and similar to the

15 initial softness of a sport shoe with extensive damping. At increasing compression, the elasticity becomes progressively harder, particularly on the medial side of heel and midfoot, and more expressed in the midfoot area than the heel area. The effect, when increasing the weight on the heelbone, is that the resistance to further compression is more expressed on the medial side

20 compared to the lateral side. As a consequence, there is a dynamic progressive resistance against too much inward rotation of the heel bone (biomechanically defined as a “heel bone valgus rotation”). The torque creates a clockwise rotation for the right foot seen from behind, effecting the vertical orientation of the heelbone as well as the vertical alignment of the achilles

25 tendon, compared to when using a traditional walking shoe or a sport shoe. Excessive heel bone valgus rotation is thereby reduced or prevented. Likewise, when progressing the step from heel impact to midfoot stance, the foot arch is supported by progressively harder elasticity in the midfoot area, under the foot arch and particularly under the medial side thereof, earlier (at less compression)

30 and harder elasticity, providing “os naviculare lift”. Preferably, the shoe comprises a combination of archroller and shank, whereby the archroller provides increasing force from the underlayer up on the shank at increasing compression, most on the medial side of the midfoot, whilst the shank bends and distribute the force along the foot arch. If the detailed design is as here

described, said bending of the shank in substance follows the shape of the foot arch.

Claims

1.

Shoe (1) with a sole providing a dynamic foot arch support, the shoe comprising a rubber outsole (9) and an upper (10), the shoe further comprises a midsole

5 (2), the midsole comprising

a harder elastic material (4),

a softer elastic material (5),

wherein the harder elastic material has elastic hardness in a range 1,3 to 3 times higher than the softer elastic material,

10 characterised in that the harder elastic material is arranged in a band (3) inside the periphery of the midsole, preferably the band extends in a range of 0,1 to 1 times the midsole thickness inwards from the periphery along the sides and heel of the midsole, preferably the band is wider on the medial side (M) than the lateral side (L) in the heel part of the midsole,

15 wherein the softer elastic material (5) is arranged in the midsole inside the band of the harder elastic material, and the shoe further comprises a support structure (8) arranged below the softer elastic material in direction medial to lateral and positioned from vertically below to 4 cm in front of the os naviculare bone center of a typical user with feet fitting the shoe size,

20 wherein the support structure has higher elastic hardness than the harder elastic material, with a larger vertical dimension medial compared to lateral as seen with the shoe standing on a horizontal surface, providing increased support under the medial side of the foot arch compared to the lateral side of the foot arch.

25

2.

Shoe according to claim 1, wherein the support structure (8) is arranged in the rubber outsole (9).

30 3.

Shoe according to claim 1, wherein the support structure is arranged (8) in the rubber outsole or between the rubber outsole and the midsole or in the midsole, and a further support structure is arranged in the midsole.

4.

Shoe according to any of claim 1-3, wherein a further support structure comprises a shank (6), the shank is embedded in the softer elastic material of the midsole from the heel to the forefoot.

5

5.

Shoe according to claim 4, wherein the shank (6) is extending over 60-95% of a last length and extending 60-95% over the last width, the shank is twisted in clockwise direction for a right foot midsole as seen from behind from the heel to 10 an intermediate part to a position in front of the naviculare bone of a user, the twisting is at an angle α_2 in a range 1° to 10° from horizontal, and the shank is preferably made of polyamide and preferably is, exclusive any ribs, 0.5-3 mm thick.

15 6.

Shoe according to any one of claim 1-5, comprising polyurethane -PU- in a Shore A hardness range 40 – 80, as the harder elastic material, and polyurethane -PU- in a Shore A hardness range 20 – 60, as the softer elastic material.

20

7.

Shoe according to any one of claim 1-6, wherein at least a part of the midsole top surface is inclined, wherein the midsole is higher on the medial side compared to the lateral side in the heel and intermediate part to a position in 25 front of the naviculare bone of a user, the inclination is at an angle α_1 in a range 1° to 7° from horizontal.

8.

Shoe according to claim 5 and 7, wherein $\alpha_2 \geq \alpha_1$.

30

9.

Shoe according to any one of claim 1-8, wherein the thickness of the softer elastic material over the support structure in the midfoot area of the midsole is

lower than the thickness of the softer elastic material over the support structure in the heel area of the midsole.

Patentkrav

1.

5 Sko (1) med en såle som gir dynamisk fotbuestøtte, idet skoen omfatter en
gummi yttersåle (9), en overdel (10) og en mellomsåle (2) omfattende et
hardere elastisk materiale (4) og et mykere elastisk materiale (5),
idet det hardere elastiske materiale (4) har elastisk hardhet i et område på 1,3 til
3 ganger høyere enn det mykere elastiske materiale (5),

10 k a r a k t e r i s e r t v e d at det hardere elastiske
materiale (4) er anordnet i et bånd (3) på innsiden av periferien langs sidene og
helen av mellomsålen, fortrinnsvis strekker båndet seg i et område fra 0,1 til 1
ganger mellomsåle tykkelsen innover fra periferien, fortrinnsvis er båndet
bredere i helpartiet på den mediale side (M) enn den laterale side (L) av
15 mellomsålen,

idet det mykere elastiske materiale (5) er anordnet i mellomsålen
innenfor båndet av det hardere elastiske materiale, og skoen omfatter videre
en støttestruktur (8) anordnet under det mykere elastiske materiale i
retning medial til lateral og posisjonert fra vertikalt undertil 4 cm foran båtbenets
20 senter for en typisk bruker med fot som passer skostørrelsen, idet
støttestrukturen har høyere elastisk hardhet enn det hardere elastiske materiale,
med en større vertikal dimensjon medialt sammenlignet med lateralt som sett
med skoen stående på en horisontal overflate, medførede økt støtte under den
mediale side av fotbuen sammenlignet med den laterale side av fotbuen.

25

2.

Sko ifølge krav 1, idet støttestrukturen (8) er anordnet i gummi yttersålen (9).

3.

30 Sko ifølge krav 1, idet støttestrukturen (8) er anordnet i gummi yttersålen eller
mellom gummi yttersålen og mellomsålen eller i mellomsålen, og en ytterligere
støttestruktur er anordnet i mellomsålen.

4.

Sko ifølge hvilke som helst av krav 1-3, idet den ytterligere støttestruktur omfatter en shank (6), idet shanken er innstøpt i det mykere elastiske materiale i mellomsålen fra hel til forfot.

5

5.

Sko ifølge krav 4, idet shanken strekker seg over 60-95% avlestlengden og strekker over 60-95% avlestbredden, shanken er vridd i klokkeretning for en høyre fot mellomsåle som sett bakfra, fra helen til en mellomfotposisjon foran båtbenet for en bruker, vridningen er i en vinkel α_2 i et område 1° til 10° fra horisontalen, shanken er fortrinnsvis fremstilt av polyamid og er fortrinnsvis, eksklusiv eventuelle ribber, 0,5 – 3 mm tykk.

6.

15 Sko ifølge et hvilket som helst av krav 1-5, omfattende polyuretan -PU- med en Shore A hardhet i området 40 – 80, som det hardere elastiske materiale, og polyuretan -PU- med en Shore A hardhet i området 20 – 60, som det mykerte elastiske materiale.

20 7.

Sko ifølge et hvilket som helst av krav 1-6, idet minst en del av mellomsålens øvre overflate er hellende, idet mellomsålen er høyere på medial side enn på lateral side i helen og mellomfotpartiet til en posisjon foran båtbenet for en bruker, idet helningen er i en vinkel α_1 i et område 1° til 7° fra horisontalen.

25

8.

Sko ifølge krav 5 og 7, idet $\alpha_2 \geq \alpha_1$.

9.

30 Sko ifølge et hvilket som helst av krav 1-8, idet tykkelsen av det mykere elastiske materiale over støttestrukturen i mellomfotområdet i mellomsålen er lavere enn tykkelsen av det mykere elastiske materiale over støttestrukturen i helområdet i mellomsålen.

1/7

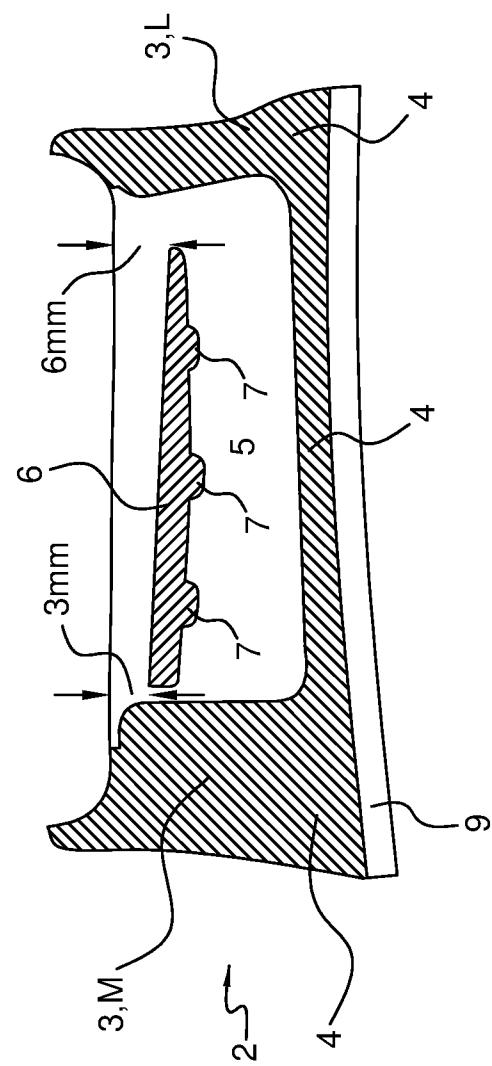


FIG. 1

2/7

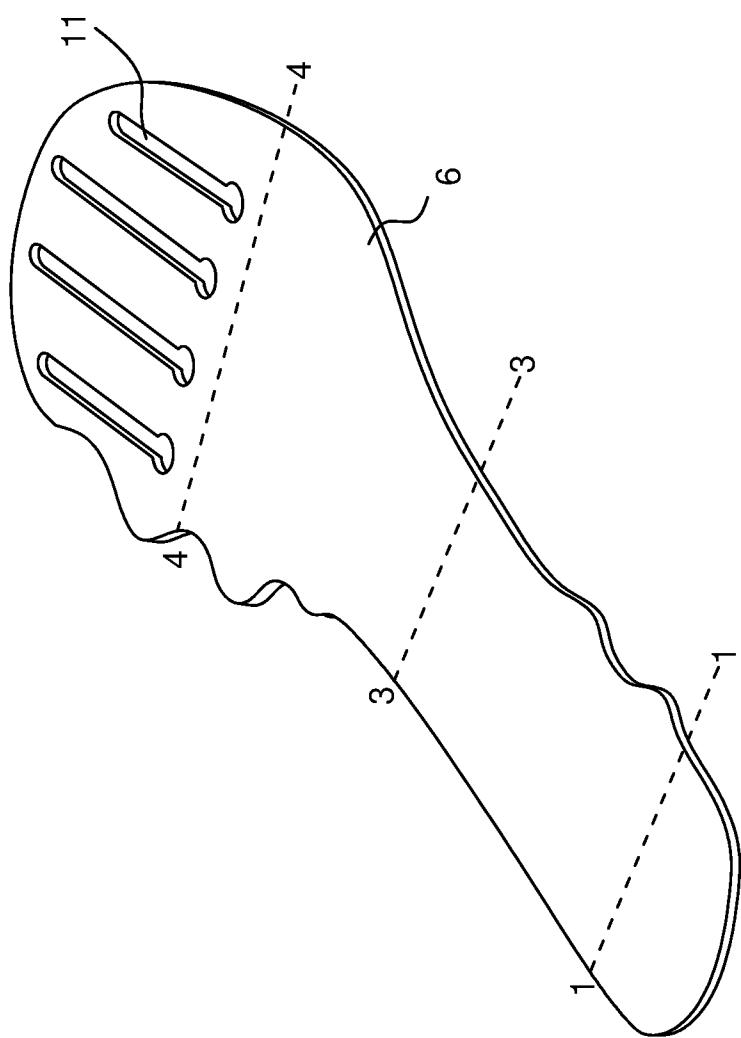


FIG. 2

3/7

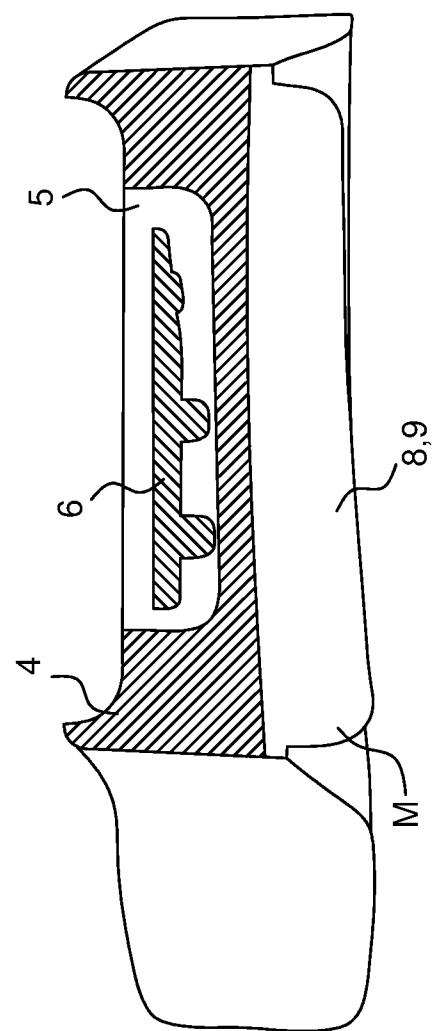


FIG. 3

4/7

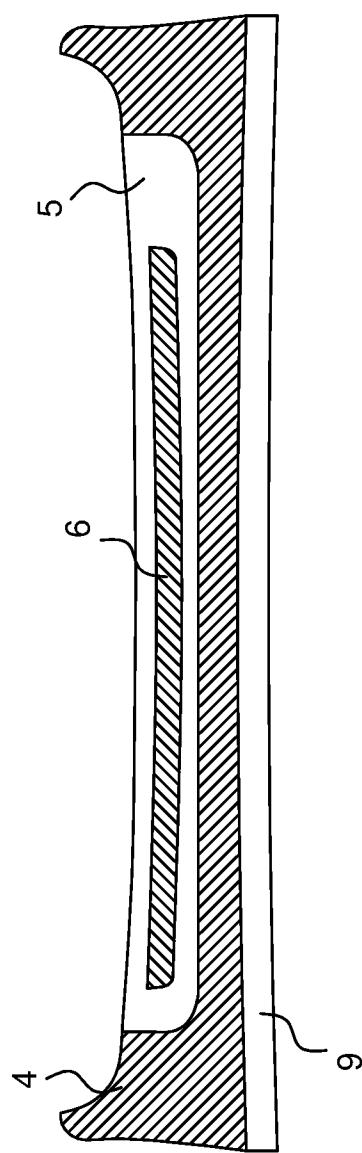


FIG. 4

5/7

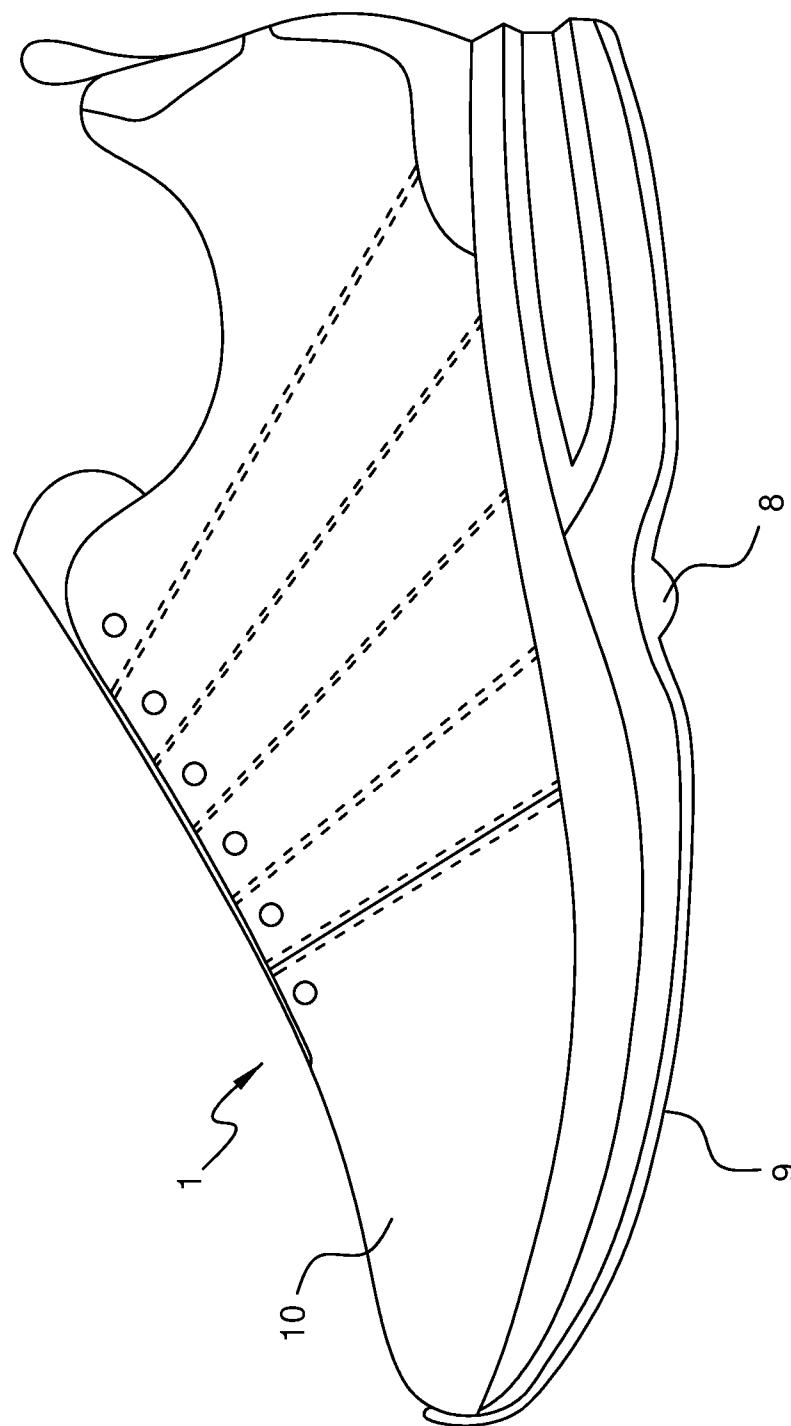


FIG. 5

6/7

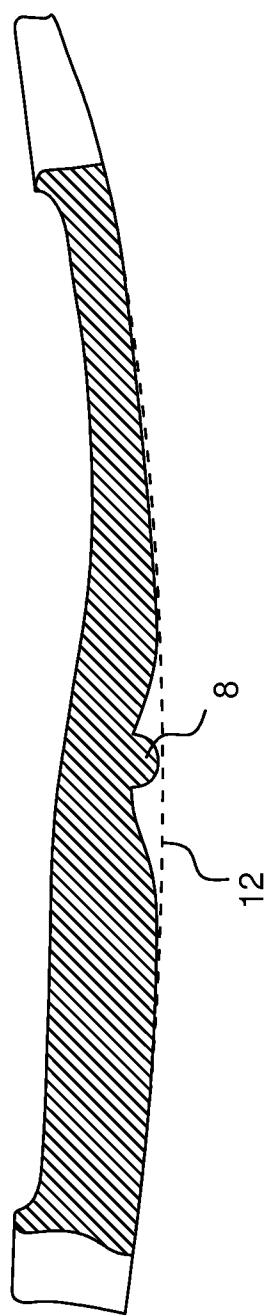


FIG. 6

7/7

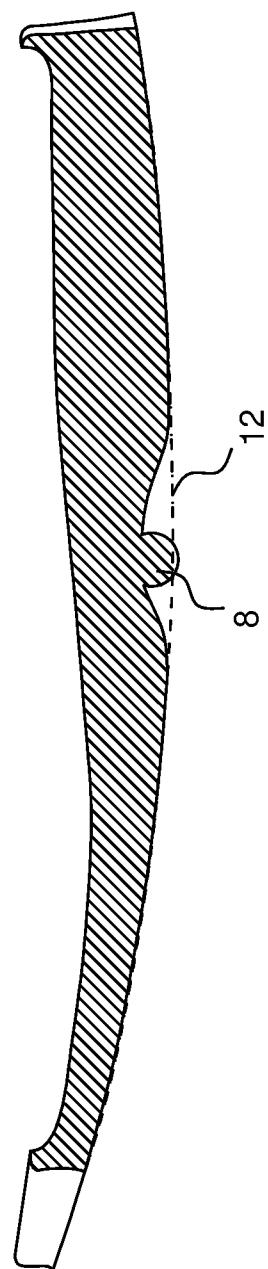


FIG. 7