OPIC

OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA

CIPO

(CANADIAN INTELLECTUAL

! PROPERTY OFFICE

(12) (19) (CA) Dem ande-Application

. ‘i “"
R R)
\ 'a' ckﬁ:o’a:c:o:'o.\’ e e e WO
S NN
AN SN PN
N
\ (21) (A1) ° °

(86)
(87)

1998/01/27
1998/08/13

(72) BASAVAIAH, MURALI US
(72) KRISHNAKUMAR, KAROOR S., US
(72) MURTHY, SRINIVASA D., US

(71) TANDEM COMPUTERS INCORPORATED, US

51) Int.C1.° GOG6F 11/34
30) 1997/01/28 (08/790,268) US

54) PROCEDE ET APPAREIL PERMETTANT DE TOLERER DES
PERTES DE TOPS D’HORLOGE AU COURS D’UNE REPRISE
DANS UN SYSTEME DE MULTITRAITEMENT

54y METHOD AND APPARATUS FOR TOLERANCE OF LOST
TIMER TICKS DURING RECOVERY OF A MULTI-

PROCESSOR SYSTEM

K2 2

1300 130b

0o ‘ 120b
[[l
i26g

lI8e \ 18k
j22e~— ! 'IZZb-\. M

12 mb 6

6o

(57) Cette mvention se rapporte a un procede et a un
apparell permettant de detecter et de tolerer des
situations dans lesquelles une ou plusicurs unités de
traitement d’un systeme de multitraitement ne peuvent
participer a des protocoles ou des se€quences
d’événements déclencheés ou commandés par leur
horloge. Ledit systeme de multitraitement comprend
plusieurs unités de traitement dotées chacune d’une
memoire. Ces unités de traitement sont couplees par un
reseau de communication inter-unités (constitue de
preférence de voies redondantes). Les unités de
traitement sont suspectées de se trouver en situation de

I*I Industrie Canada Industry Canada

Ii2n
|20

INTERPROCESSOR 4
COMMUNIGATION
NETWDRK

(57) A method and apparatus for detecting and tolerating
situattons 1 which one or more processors
(112a, b, ..., n) mm a multi-processor system cannot
participate i timer-driven or timer-triggered protocols
or event sequences. The multi-processor system includes
multiple processors each having a respective memory
(118a, b, ...,n). These processors are coupled by an inter-
processor communication network (114) (preferably
consisting of redundant paths). Processors are suspected
of having failed (ceased operations) outright or having a
failled timer mechanism when other processors detect the
absence of periodic "lamAlive" messages from other

OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA

SN [/] §
O e PR

b . .--
:“‘:. ‘l “c‘: ‘: .-‘ | LY |

OPIC CIPO

’: "o .:' \‘; ":‘a‘.‘ N ":
A N o 77 (A AT AN
L) 'a' .:. ’:;”;‘:‘:'. o -\\\\ \&S\‘\\i\g\\\ ‘
“g 0.-'9 '.Q.'o"‘ ‘.\\ \‘ \‘ \- \-
- "‘.-.3‘:;,1:?:1: >

PROPERTY OFFICE

defaillance immediate (¢’est a dire d’avoir interrompu
leur traitement) ou d’€tre soumise a une defaillance de
leur mecanisme d’horloge lorsque les autres unites de
traitement détectent 1’absence de messages periodiques
du type "je suis en vie" en provenance d’autres unites de
traitement. Dans ce cas, toutes les unités de traitement du
systeme sont soumises a une serie d’€tapes au cours
desquelles elles se transmettent, les unes aux autres et de
maniere repetee, leur statut et leur €tat de connectivite.
Conformément a 1'invention, au cours d’une telle
premiere €tape, une unite de traitement ne peut faire €tat
de sa capacit¢ de participer que s1 son mecanisme
d’horloge fonctionne. Elle amorce un ¢vénement
d’expiration d’horloge et ne divulgue pas son ctat de
sant¢ avant la survenue de cet ¢veénement d’expiration
d’horloge.

I*I Industrie Canada Industry Canada

(CANADIAN INTELLECTUAL

21 (A1) 2,275,242
(86) 1998/01/27
87) 1998/08/13

processors. When this happens, all of the processors 1n
the system are subjected to a series of stages in which
they repeatedly broadcast their status and their
connectivity to each other. During the first such stage,
according to the present mnvention, a processor will not
assert 1ts ability to participate unless 1ts timer mechanism
1s working. It arms a timer expiration event and does not
assert 1ts health until and unless that timer expiration
event occurs.

CA 02275242 1999-06-14
CORRECTED

VERSION*

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

PPN . 'y <7~ e s P
(31) International Patent Classification © : (11) International Publication Number: WO 98/34456
A3
GO6F 11/34 (43) International Publication Date: 13 August 1998 (13.08.98)
pee——————noe —_—
(21) International Application Number: PCT/US98/01484 | (81) Designated States: CA, JP, European patent (AT, BE, CH. DE,
DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). |
| (22) International Filing Date: 27 January 1998 (27.01.98) |
{ r
Published

' (30) Priority Data:

With international h z
08/790,268 28 January 1997 (28.01.97) US ith internationat search repor

(88) Date of publication of the international search report:

(71) Applicant: TANDEM COMPUTERS INCORPORATED 12 November 1998 (12.11.98)

[US/US}; 10435 North Tantau Avenue, Cupertino, CA
95014 (US).

(72) Inventors: BASAVAIAH, Murali; 825 East Evelyn Avenue
#216, Sunnyvale, CA 94086 (US). KRISHNAKUMAR,
Karoor, S.; 341 Branham Lane, East, San Jose, CA 95111 |
(US). MURTHY, Srinivasa, D.; 1410 Goldenlake Road, San

, Jose, CA 95131 (US).

(74) Agents: MENDENHALL, Larry et al.;, Townsend and
Townsend and Crew LLP, 8th floor, Two Embarcadero
Center, San Francisco, CA 94111--3834 (US).

(54) Title: METHOD AND APPARATUS FOR TOLERANCE OF LOST TIMER TICKS DURING RECOVERY OF A
MULTI-PROCESSOR SYSTEM

/IGO

=
.=

1300 iiza

R0o

. W
s

1200

L
o I7n
6o lien
I INTERPROCESSOR 4
COMMURIGCATION
NETWORX

(57) Abstract

A method and apparatus for detecting and tolerating situations in which one or more processors (112a, b, ..., n) in a multi-processor
System cannot participate in timer-driven or timer-triggered protocols or event sequences. The multi-processor system includes multiple
processors each having a respective memory (118a, b, ..., n). These processors are coupled by an Inter-processor communication network
(114) (preferably consisting of redundant paths). Processors are suspected of having failed (ceased operations) outright or having a failed
timer mechanism when other processors detect the absence of periodic "IamAlive" messages from other processors. When this happens, all
of the processors in the system are subjected to a series of stages in which they repeatedly broadcast their status and their connectivity to
each other. During the first such stage, according to the present invention, a processor will not assert its ability to participate unless its timer

| mechanism is working. It arms a timer expiration event and does not assert its health until and unless that timer expiration event occurs.

—
*(Referred to in PCT Gazette No. 02/1999, Section II)

“-“MM“WW—'WWW*-»N»qummmmmmmmmmMimmmmmwmmwwm ArAT L b Tt e o AR BRI b B L AR T e e TTT mEHaniind cabbhin MhALaR) s it SNt SRR A B SO I A A A 8 iy ARG S £ srhr s r SN 3t e g i Pyt oS} e € 41 Sy B AMR 4 et e e o ¢ emts

10

15

20

25

30

35

* Mt a L T I A 3 e S i LB AR L 2 MU ol 14 P L3 b AL N SN M R M ki | 106 O e A b SRR A=+ e e b 0 RCERAMI A B 0854 - AT VA Ot 7 AP ML I AP b s mias eyl

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

METHOD AND APPARATUS FOR TOLERANCE OF LOST TIMER
TICKS DURING RECOVERY OF A MULTI-PROCESSOR SYSTEM

This invention relates generally to fault-tolerant
multiprocessor systems. In particular, this invention relates
to methods for improving the resilience of a multiprocessor
system in the face of the failure of periodic or timed
activities on a constituent processor.

RELATED PATENT APPLICATIONS

U.S. Patent Application No. 08/265,585 entitled,
"Method and Apparatus for Fault-Tolerant Multi-processing
System Recovery from Power Failure or Drop-Outs," filed June
23, 1894, naming as inventors Robert L. Jardine, Richard M.
Collins and Larry D. Reeves, under an obligation of assignment
to the assignee of this invention, with Attorney Docket No.
010577-031900 / TA 271;

U.S. Patent Application No. 08/487,941 entitled, "A
Method to Improve Tolerance of Non-Homogeneous Power Outages,’
filed June 7, 1995, naming as inventors Robert L. Jardine,
Richard M. Ccllins and A. Richard Zacher, under an obligation
of assignment to the assignee of this invention, with Attorney
Docket No. 010577-033000 / TA 272;

U.S. Patent Application No. 08/ , entitled,
"Method and Apparatus for Split-Brain Avoidance in a Multi-
Processor System," filed on the same date as the instant
application, naming as inventors Robert L. Jardine, Murali
Basavalah and Karoor S. Krishnakumar, under an obligation of
assignment to the assignee of this invention, with Attorney
Docket No. 010577-035700 / TA 333;

U.S. Patent Application No. 08/ , entitled,
"Method and Apparatus for Node Pruning a Multi-Processor
System for Maximal, Full Connection During Recovery," filed on

the same date as the instant application, naming as inventors

PO AR R N0 W YA ALY S AMRPIITEAAIA E #1 Vvramandaniaz st s Bt e s sl ciande t ARTHEHRRAATMNR 1 1 ALK LIS SICEIANIRNELT A3 DI | LN IR ML VTN TAMA K P RARAL - R ML DM TR LI GG . SRR AR WM 10 L C o L ek ot ST L e | el IS, 14 AL b | 47 g 4P

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
2

Muralil Basavailiah and Karoor S. Krishnakumar, under an
obligation of assignment to the assignee of this invention,
with Attorney Docket No. 010577-040000 / TA 333 DIV 1;

U.S. Patent Application No. 08/ , entitled,
"Method and Apparatus for Distributed Agreement on Processor
Membership in a Multi-Processor System During Recovery," filed
on the same date as the instant application, naming as
inventors Robert L. Jardine, Murali Basavaiah, Karoor S.
Krishnakumar, and Srinivasa D. Murthy, under an obligation of
assignment to the assignee of this invention, with Attorney
Docket No. 010577-039800 / TA 333 DIV 3.

BACKGROUND OF THE INVENTION

Distributed, shared-nothing multi-processor
architectures and fault-tolerant software using process pairs
require that all processors in a system have a consistent
image of the processors making up the system. (The NonStop
Kernel® available from the assignee of this application is an
example of such fault-tolerant software.) This consistent
system i1mage is crucial for maintaining global system tables
required for system operation and for preventing data
corruption caused by, say, an input/output process pair (IOP)
of primary and backup processes on different processors
accessing the same I/0 device through dual-ported I/0
controllers or a shared bus (such as SCSI).

Detection of processor failures occurs quickly with
an IamAlive message scheme. Each processor periodically sends
IamAlive packets to each of the other processors in the
system. Each processor in a system determines whether another
processor 1s operational by timing packets from it. When the
time interval passes without receipt of a packet from a given
processor, the first processor decides that the second might
have failed.

In older systems, before regrouping was implemented,
the following could occur when the second processor then sent
a packet to the first. The first processor judged the second
to be functioning improperly and responded with a poison
packet. The first processor ignored the content of the packet

from the second.

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 | PCT/US98/01484

3

Ultimately, many or all of the other pProcessors
could end up ignoring the affected processor (except to try to
stop it). The affected processor was, in effect, outside of
the system and functioning as if it were an independent
System. This condition was sometimes called the split-brain
problem.

Without regrouping, the following situations can
oOccur: Both of the processes in a process pair running on
different processors can regard themselves as the primary,
destroying the ability to perform backup functions and
possibly corrupting files. All system processors can become
trapped in infinite loops, contending for common resources.
System tables can become corrupted.

Regrouping supplements the IamAlive/poison packet
method. Regrouping uses a voting algorithm to determine the
true state of each processor in the system. Each processor
volunteers its record of the state of all other processors,
compares 1its record with records from other processors and
updates its record accordingly. When the voting is complete,
all processors have the same record of the system's state.
The processors will have coordinated among themselves to
reintegrate functional but previously isolated processors and
O correctly identify and isolate nonfunctional processors.

Regrouping works only when physical communication
among processors remailns possible, regardless of the logical
State of the processors. If a processor loses all of its
communications paths with other processors, that processor
cannot be regrouped. It remains isolated until communications
are restored and the system is cold loaded. (Such a processor
usually stops itself because its self-checking code cannot
send and receive message system packets to and from itself.)

A processor's logical state and its condition are
distinguished. A processor has two logical states in a

properly configured system: up or down. However, a processor

has three conditions: dead, which is the same as the down

logical state; healthy, which is the same as the up logical
State; and malatose, which is described further below.

A processor is dead if it does not communicate with

L L T T TP

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
4

the rest of the system. Dead processors include those, for
example, that execute a HALT or a system freeze instruction,
that encounter low-level self-check errors such as internal
register parity errors, that execute infinite loops with all
interrupts disabled, that execute non-terminating instructions
due to data corruption or that are in a reset state.

Dead processors are harmless, but the regrouping
algorithm removes them from the system configuration. Other
processors detect dead processors and declare them down.

A processor is healthy if it is running its
operating system (preferably, the NonStop Kernel® operating
System available from the assignee of the instant application)
and can exchange packets with other processors (preferably,
over a redundant high-speed bus or switching fabric) within a
reasonable time. The regrouping algorithm prevents a
processor declaring down a healthy processor.

A malatose processor is neither dead nor healthy.
Such a processor either is not responding in a timely manner
(perhaps because of missing timer ticks) or is temporarily
frozen in some low-level activity. A malatose processor might
be, for example, flooded with highest-priority interrupts such
that the processor cannot take lower-priority interrupts or
might be flooded with lower-priority interrupts such that the
processor ralls behind in issuing IamAlive packets. A
malatose processor might be waiting for a faulty hardware
device on which the clocks have stopped or might be running
Loo long with interrupts disabled by the mutual exclusion
mechanism.

The regrouping algorithm detects a malatose
processor and forces it to become either healthy or dead, that
18 to say, either up or down. Correspondingly, a processor
halts itself when another processor that it has not declared
down declares it down.

With regard to regrouping, each processor in the
System 1is either stable (that is, waliting for the need to act)
Or perturbed, including several states described below.

While a processor is stable, the IamAlive message
scheme continues to operate. If a predetermined amount of

10

15

20

25

30

35

— P KA A paahd e s A A ;._.ml AL LR Ak B it L A PO N ot N A . A I At Ay U ot - At 5 LN s s Dot A P LA § 1O At A A TTY | oLl L LIS TGt A NI P AN 7t S PN T A e bt 9 bt b 3 s 2 4 e = T SRS SRR

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
5

time, say, 2.4 seconds, passes without an IamAlive message
from another processor, the processor becomes perturbed.

While perturbed, a processor exchanges specially
marked packets with other perturbed processors to determine
the current processor configuration of the system. When that
configuration is agreed upon, the processor becomes stable
again.

Processors spend most of their time stable.

A regroupling incident begins when a processor
becomes perturbed and ends when all processors become stable
again. Each regrouping incident has a sequence number that is
the number of regrouping incidents since the last system cold
load.

Each processor also maintains variables to store two
configurations, one old and one new. While a processor is
stable, bit-map variables called OUTER_SCREEN and INNER SCREEN
both contain the 0ld configuration.

While a processor is stable, it knows that every
processor in the old configuration is up and every processor
not in the old configuration is down. Each processor in the
old configuration has the same regrouping sequence number.

While a processor is perturbed, it broadcasts its
view of the configuration (and its own status) on its busses
Or fabrics. It sends this view periodically, for example,
every 0.3 seconds, to all other processors in the old

configuration. Receiving such a broadcast perturbs any stable
processor in the configuration.

The four stages of the regrouping protocol described
further below make all perturbed processors create the same

view of the system configuration. When regrouping completes,
all processors in the system are stable and contain the same
new configuration. Also, every processor in the new

configuration has the same regroup sequence number that is

greater than the number in the old configuration.

The new configuration contains no processor that was

not in the old configuration. All processors that remained
healthy throughout the incident are in the new configuration.

Any processor that was dead when the incident began

BRC AL TR VRS o L T

133 v ik el e, Ao Pl Y I ol e ek L e e e/ stielink bl Noulmbinmie- b A ARSI A AP IEL) LT Mkl v WOL: e L po-Hap LA S Er P, Mt G e P TR VS PR A Ry v re =y

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 | PCT/US98/01484
6

Or that became dead during the incident is not in the new
configuration. Regrouping restarts if a processor becomes
dead during an incident.

Correspondingly, processors that were malatose when
the incident began are in the new configuration as healthy
processors if they participated in the complete incident.

The regrouping method ensures that all processors in
the new configuration have included and excluded the same
processors.

Procegsor Stages of Pre-Existing Regroup
Each processor regroupiling according to the pre-

existing algorithm maintains an EVENT HANDLER() procedure and
a data structure herein termed the regroup control template
#_700 shown in Figure # 7. A variable herein termed
SEQUENCE_NUMBER contains the current regroup sequence number.

Each processor passes through the following stages
while running: Stage 0, Stage 5 and Stages 1 through 4.
Stage 0 is a special stage defined in the process control
block at system generation. Stage 5 1is the stable state
described above. Stages 1 through 4 together make up the
perturbed state also described above.

A processor malintains the current stage in the
variable STAGE. Also, the processor maintains the variables
KNOWN_STAGE 1 through KNOWN STAGE 4 for each of Stages 1
through 4, respectively. Each of these variables is a bit
mask that records the processor numbers of all processors
known to the maintaining processor to be participating in a
regroup incident in the stage corresponding to the wvariable.

A processor enters Stage 0 when it is cold loaded.
While it is in Stage 0, the processor does not participate in
any regrouping 1incident. Any attempt to perturb the processor
in this state halts the processor. The processor remains in
Stage 0 until its 1ntegration into the inter-process and
inter-processor message system is complete. Then the
processor enters Stage 5. Figures #_8A and # 8B summarize
sSubsequent actions.

A regrouping incident normally begins when a

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

7

processor fails to send an IamAlive packet in time, step
#_810. This failure perturbs the processor that detects the
failure.

When a processor is perturbed, step # 805, it enters
Stage 1. Stage 1 synchronizes all participating processors as
part of the same regrouping incident, step # 830. Because a
new incident can start before an older one is finished, a
method 1s needed to ensure that the participating processors
process only the latest incident.

Figure #_9 summarizes the transition from Stage 5 to
Stage 1. The processor increments the SEQUENCE_NUMBER $# 710,
sets the Stage #_720 to 1, sets the KNOWN_STAGE n variables to
zero, and then sets its own bit in KNOWN STAGE 1 # 750a to 1.
(The processor does not yet know which processors other than
itself are healthy.)

The message system awakens the processor
periodically, every 0.3 seconds in one embodiment, so the
processor can make three to six attempts to receive acceptable
input. More than three attempts occur if more than one
processor in the old configuration remains unrecognized, if a
power up has occurred, or if the algorithm was restarted as a
new incident.

When awakened, the processor broadcasts its status
to the old configuration of processors, step # 830. Its
status 1includes its regroup control template # 700.

Typically, status packets from other perturbed
processors eventually arrive. If a packet arrives from a
processor that was not in the old configuration as defined by
the OUTER_SCREEN #_730, this processor ignores the packet and
responds with a poison packet.

For a packet that it does not ignore, the processor
compares the sequence number in the packet with the
SEQUENCE_NUMBER #_710. If the packet sequence number is
lower, then the sender is not participating in the current
incident. Other data in the packet is not current and is
ignored. The processor sends a new Status packet to that

processor to synchronize it to make it participate in the
current incident.

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
8

If the sequence number 1n the packet is hicher than
the SEQUENCE_NUMBER # 710, then a new incident has started.

The SEQUENCE_NUMBER #_ 710 is set to the sequence number in the
packet. The processor reinitializes its data structures and
accepts the rest of the packet data.

If the sequence number in the packet is the same as
the SEQUENCE_NUMBER # 710, then the processor simply accepts
the packet data. Accepting the data consists of logically OR-
ing the KNOWN STAGE n fields in the packet with the
corresponding processor variables # 750 to merge the two
processors' knowledge into one configuration.

Stage 1 ends in either of two ways. First, all
processors account for themselves. That is to say, when a
processor notices that its KNOWN_STAGE 1 variable # 750a
includes all processors previously known (that is, equals the
OUTER_SCREEN # 730), then the processor goes to Stage 2.
However, 1in the event of processor failure(s), the processors
never all account for themselves. Therefore, Stage 1 ends on
a time out. The time limit is different for cautious and non-
cautious modes, but the processor proceeds to Stage 2 when

that time expires — whether all processors have accounted for
themselves or not.

Figure #_10 summarizes the transition from the
beginning of Stage 1 to the end of Stage 1. At the end of
Stage 1, KNOWN STAGE 1 #_ 750a identifies those processors that
this processor recognizes as valid processors with which to
communicate during the current incident. In later stages, the
processor accepts packets only from recognized processors.

Stage 2 builds the new configuration by adding to
the set of processors recognized by the processor all of those

processors recognized by recognized processors, step # 850.

In effect, the new configuration is a consensus among
communicating peers.

Figure #_11 summarizes conditions at the beginning
of Stage 2. The processor sets the Stage # 720 to 2, records
1ts status in KNOWN_STAGE 2, and copies KNOWN STAGE 1 to the
INNER_SCREEN #_740. The processor continues checking for
input and broadcasting status periodically, testing incoming

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

9

packets for acceptance against the OUTER SCREEN and
INNER_SCREEN #_730, # 740, step # 850.
Packets from old-configuration processors that did
not participate in Stage I are identified by the INNER SCREEN
5 #_740 and ignored. Packets from recognized processors are
accepted, and their configuratior data is merged into the
KNOWN_STAGE_n variables. When a packet from a recognized
processor identifies a previously unrecognized processor, the
new processor 1s also added to the INNER SCREEN # 740.

10 Malatose processors that may have been too slow to join the
current regroup incident in Stage 1 can thus still join in
Stage 2.

When KNOWN_STAGE 2 # 750b becomes equal to
KNOWN_STAGE_1 #_750a, no further changes to the configuration
15 can occur. Figure # 12 summarizes conditions at the end of
Stage 2. Stage 3 now begins.
At the beginning of Stage 3, as shown in Figure
#_13, the processor increments the Stage # 720 and copies the
new configuration to both the INNER SCREEN and the
20 OUTER_SCREEN #_740, #_730. A malatose processor can no longer
join the new configuration as a healthy processor.
Message-system cleanup, step # 860, is performed as
follows: The processors in the new configuration shut off the
message system to any processor not in the new configuration.
25 They discard any outstanding transmissions to any excluded
processor and discard any incoming transmissions from it.
Inter-processor traffic queues are searched for messages
queued from requesters/linkers in the excluded processor but
not canceled. Any uncanceled messages found are discarded.
30 Inter-processor traffic queues are searched for messages
queued from servers/listeners in the excluded processor but
not canceled. Any uncanceled messages found are attached to a
deferred cancellation queue for processing during Stage 4.
This cleanup ensures that no message exchanges begun
35 by a server/listener application in a processor in the new
| configuration remain unresolved because of exclusion of the
other processor from the new configuration. All messages that
could be sent to the excluded processor have been sent:; and

- ol LI ST I R SEFTHAS ; NERG-RSeiA SAPRAL] i QAN 2 Lo it AL V2 Sy b Al) b -+ e PRI S NN L ot Wk P B 1t AR that Mty b iy oY - Tt h e i R ¢ AN A AT PR A ' AT L b T G RN b P MTRCARACAY LN e o 50 WA s L R VB S S e 5 € 0! b 0 P NI i 1754 Sty il b 1L T Bk LM L2 A SrrMh (41 £y 3 EAbERd 1 O AR DS o €5 -
Tiea :yerPmark Tt LI e Frttatty VTN iR eH L TRV it DL) RATr ikt ARMEIT AN AR 1 IR e S AR AR 0 S M L

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

10

all messages that could be received from it have been
received.

Most processor functions occur as bus or timer
interrupt handler actions. Because some cleanup activities
take a long time, they cannot be done with interrupts
disabled. Instead, those activities are separated from others
for the same stage and deferred.

The deferred cleanup is done through a
message-system SEND QUEUED MESSAGES procedure that is invoked
by the dispatcher (the process scheduler). The deferred
activities are then performed with interrupts other than the
dispatcher interrupt enabled most of the time.

Periodic checking for input and the broadcasting of
status continues. When the deferred cleanup mentioned earlier
finishes, the processor records its status in KNOWN STAGE 3
750c.

Packets that make it past the INNER SCREEN and the
OUTER_SCREEN #_740, #_730 are merged into the KNOWN STAGE n
varlables # 750. When KNOWN STAGE 3 # 750c equals
KNOWN_STAGE_2 #_750b, all processors in the new configuration
have completed similar cleanup and are all in Stage 3. Figure
#_ 14 summarizes conditions at the end of Stage 3.

In Stage 4, the processor completes the cleanup
actions of Stage 3 and notifies processes that one or more
processor failures have occurred, step # 870. The processor
increments the Stage # 720 to 4 and does the following: sets
processor-status variables to show excluded processors in the
down state; changes the locker processor, if necessary, for
use in the GLUP protocol as described herein; processes
messages deferred from Stage 3; manipulates I/0 controller
tables when necessary to acquire ownership; and notifies
requesters/linkers.

Stage 4 1s the first point at which failure of
another processor can be known by message-system users in the
current processor. This delay prevents other processes from

- beginning activities that might produce incorrect results

because of uncanceled message exchanges with the failed
processor.

10

15

20

25

30

35

- ARSI b) T D TP) MNP I A TN SOl

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

11

The regrouping processor continues to check for
input and to broadcast status, step # 870. When the deferred
cleanup finishes, the processor records its status in
KNOWN_STAGE_4 #_750d. Figure # 15 shows this action.

Packets that make it past the INNER SCREEN and the
OUTER_SCREEN #_740, #_730 are merged into the KNOWN_STAGE n
variables #_750. When KNOWN_STAGE 4 # 750d equals
KNOWN_STAGE_3 #_750c, all processors in the new configuration
have completed similar cleanup and are all in Stage 4. Figure
#_16 summarizes conditions at the end of Stage 4.

At the beginning of Stage 5, the Stage # 720 becomes
>. One final broadcast and update occur. The OUTER_SCREEN
#_730 contains what has now become the old configuration for
the next regrouping incident. Figure # 17 shows this
situation.

Finally, higher-level operatirng system cleanup can
now begin. Global update recovery starts in the locker
processor.

The processor does its own cleanup processing.
Attempts to restart the failed processor can now begin.

Stopping and Restarting an Incident

A processor must complete Stages 2 through 4 within
& predetermined time, 3 seconds in one embodiment. If it does
not complete those stages within that time, some other
processor has probably failed during the regrouping.
Therefore, the incident stops and a new incident starts with
the processor returning to the beginning of Stage 1. Any
cleanup that remains incomplete at the restart completes ,
during the stages of the new incident. Cleanup actions either
have no sequencing requirements or have explicitly controlled
Sequences so that they are unaffected by a restart of the
algorithm.

During the restart, the INNER SCREEN and the
OUTER_SCREEN #_740, #_730 are not reinitialized. By not
changing these variables, the processor continues to exclude
from the new configuration any processors that have already
been diagnosed as not healthy. Processors known to be dead

. . AN ARl Ik T A
PNEASAAP =1 13 W ety S e o3t g i = : e et
RN o M SR rh T] AR Ial b b1 e L b AS S-S PR 2SI iU Pl B G IR IITCALS (1§ 3§ 1T SAmaaasbtE IR IR0 L, MR M A P i D v L g AL R 0 B 5 et s SO A I S A TR Ot bt AL AL IR OSSN AL L1 Mt 1 vk S Al Bkl At it Lokt anlaaainiens

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
12

are excluded by the OUTER_SCREEN # 740. Processors previously
recognized as healthy are the only ones with which the
INNER_SCREEN # 730 permits the processor to communicate.

The processor accepts status only from recognized
processors. Therefore, only a recognized processor can add
another processor to the configuration before the end of
Stage 2. As Stage 2 ends and Stage 3 begins, the regrouping
procegsors exclude the failing processor that caused the
regstart from the new configuration when the KNOWN STAGE 2
#_750b 1s copied to the OUTER SCREEN and INNER_ SCREEN # 740,
#_730. After Stage 2 ends, the configuration does not change
until a new incident starts.

Power Failure and Recoverv Regrouping

Wwhen a processor 1s powered up, it causes a new
incident to start. A word in a broadcast status packet
indicates that a power failure occurred so that receiving
processors can clear bus error counters and refrain from
shutting down the repowered processor's access to the busses
or fabric. Depending on the characteristics of the inter-
processor communications hardware (busses or fabrics), errors
are more likely just after a power outage when components are
powering on at slightly different times.

Effects of Inter-Processor Communications Path Failures

The effect on regrouping of a failure of
inter-processor communications paths (IPCPs) depends on
whether the failure is transient or permanent. A transient
faillure is one that allows occasional use of the IPCPs to
transmit packets. A permanent failure is one that prevents
any packet from passing through that component until the
component 1s replaced.

Transient IPCP failures during Stage 1 normally do
not affect regrouping. More than one attempt is made to
transmit a status packet, and redundant communications paths
are used for each packet. Transmission is almost always
successful. If transmission on the redundant paths does fail,
either the algorithm restarts or the processor stops.

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

13

A successfully transmitted packet can be received as

one of three types: unique, because a transient IPCP failure
occurred and the other copy of the packet could not be sent;
duplicated, because it was received over redundant IPCPs: or

5 Obsolete, because a processor transmitted a status packet, had
its status change, and then transmitted a new status packet,
but one or more paths delivered the status packets out of
order.

The regroup control template variables are updated
10 by setting bits to 1 but never by setting them to 0.

Duplicated, obsolete, or lost packets do not change the
accuracy of the new configuration because a bit is not cleared
by subsequent updates until a new incident starts. No harm
follows from receiving packets out of order.

15 The handling of permanent IPCP failures differs.
When a processor cannot communicate with itself over at least
one path, that processor halts with an error. This action
means that when all redundant IPCPs fail, the system halts all
processors automatically. Regrouping becomes irrelevant.

20 Failure of an IPCP element or IPCP-access element
does not affect regrouping as long as one two-way
communication path remains between two processors. A
processor that cannot communicate with at least one other
processor halts 1tself through the monitoring function of the

25 regrouping processor.

A processor that can communicate with at least one
other processor is included in the new configuration because
the new configuration is achieved by consensus. When each
processor receives a status packet, it adds the reported

30 configuration'to update 1ts own status records. This combined
configuration is automatically forwarded to the next processor
to receive a status packet from the updating processor.

For example, consider the following situation:

Given redundant IPCPs X and Y, processors 0 and 2 can send

35 only on IPCP X and receive only on IPCP Y. Processor 1, on
the other hand, can receive only on IPCP X and send only on
IPCP Y. Thus, processors 0 and 2 have a communication path
with processor 1. Eventually, all three processors will have

Farighiagld I P RN ALY KRS Wi iapsiA L T O AN SR AL G DTG bt RO ML AN i TR Ve SRR LB R L SRLEE P RN b (3 o) LA TLRAKEL b DAL S M1 AL T I RO Py b 4 -4 IR BN N TR P RIGE | e v b ih I ok SRR LT P LAY H AN £ e ko i o I S0 taihr et s Sk S - - AN AT - CH A It rr IV P TS 4 M 1) L b s At e
v A AL A A L N AR W S o - s N NI LA -D CINR L KIS A o B PRI AL SRRSO e AR ALY

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

14

the same new configuration. The processor status information

trom both processors 0 and 2 will have been relayed through
processor 1.

Unresolved Failure Scenarios

The pre-existing regroup algorithm works well for
processor failures and malatose processors. There are,
however, certain communications failure scenarios for which it
does not work well. In understanding these scenarios,
conceive of a working multi-processing system (such as a
NonStop Kernel® system) logically as a connected graph in
which a vertex represents a functioning processor and an edge
represents the ability for two processors to communicate
directly with each other. For a system to operate normally,
the graph must be fully connected, i.e., all processors can
communicate directly with all other processors. A logical
connection must exist between every pair of processors.

(The graph is a logical interconnection model. The
physical interconnect can be a variety of different
topologies, including a shared bus in which different physical
interconnections do not exist between every pair of
pProcessors.)

In the first scenario, two processors in the system
come to have lnconsistent views of the processors operating in
the system. They disagree about the set of vertices composing
the graph of the system. A "split brain" situation is said to
have occurred. This split-brain situation can lead each of
the primary and backup of an I/O process pair that resides
across the split brain to believe that it is the primary
process, with data corruption as a result.

Generally, split-brain situations can occur if
communication failures break up a system into two or more
distinct clusters of processors, which are cut off from one
another. The connectivity graph of the system then breaks
into two or more disjoint connected graphs.

In the second scenario, communication failures
result in the connectivity graph becoming only partially
connected. This happens when communication between a pair of

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

15

processors fails completely in spite of redundant paths. When
one of the processors notices that it has not received
lamAlive messages from the other for a certain period, it
activates a regroup operation. If, however, .there is a third
processor with which the two can communicate, the pre-existing
regroup operation decides that all processors are healthy and
terminates without taking any action. A message originating
on either of the processors and destined to the other
processor hangs forever: Both processors are healthy, and a
fault-tolerant message system guarantees that messages will be
dellvered unless the destination processor or process is down.
Until a regroup operation declares the destination processor
down, the message system keeps retrying the message but makes
no progress since there 1s no communication path between the
processors.

In this second scenaric, the whole system can hang
due to one or more of the following circumstances: The global
update (GLUP) protocol (described in U.S. Patent No. 4,718,002
(1988), incorporated herein by reference) that is used for
updating the replicated kernel tables assumes that a processor
can communicate with all healthy processors in the system. If
GLUP starts on a processor that cannot communicate with one of
the healthy processors, the GLUP protocol hangs in the whole
system, preventing the completion of activities such as named
process creation and deletion. A system may also hang if a
critical system process hangs waiting for the completion of a
hung message.

Such system hangs could lead to processors halting
due to the message system running out of resources.

Where the 1nter-processor communication path is
fault-tolerant (e.g., dual buses) while the processors are
fail-fast (e.g., single fault-detecting processors or
lock-stepped processors running the same code stream, where a
processor halts immediately upon detecting a self-fault), the
likelihood of communication breakdown between a pair of
processors becomes far less likely than the failure of a
processor. However, a software policy of downing single paths
due to errors increases the probability of this scenario.

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
16

Further, with the introduction of complex cluster
multi-processor topologies, connectivity failure scenarios
Seéém more likely. These could be the result of failures of
routers, defects in the system software, operator errors, etc.

In the third scenario, a processor becomes unable to
send the periodic IamAlive messages but nonetheless can
receive and send inter-processor communication messages.

(Such a situation results from, for example, corruption of the
time list preventing the reporting of timer expirations to the
operating system.) One of the other processor readily detects
this failure of the processor and starts a regroup incident.
However, since the apparently malatose processor can receive
the regroup packets and can broadcast regroup packets, the
faulty processor fully participates in the regroup incident.
This participation is sufficient to convince the other
brocessors that the apparently malatose processor is in fact
healthy. The processors quickly dub the regroup incident a
false start and declare no processors down. A new regroup
incident nonetheless starts the next time a processor detects
the missing IamAlives. Thus, the system goes through periodic
Tegroup events at the IamAlive-checking frequency (e.g., once
per 2.4 seconds), which terminate almost immediately without
detecting the failure.

Accordingly, there is a need for a multi-processor
regroup operation that avoids these split-brain, partial-
connection and timer-failure scenarios.

A goal of the present invention is a multi-processor
computer system wherein the constituent processors maintain a
consistent image of the processors composing the system.

Yet another goal of the present invention is s
multiprocessor computer system wherein the constituent
processors are fully connected when the system is stable.

Yet another object of the present invention is a
multiprocessor computer system wherein the failure of the
PIOCESSOr to receilive timer expirations is detected and the
processor declared down.

Another goal of the present invention is such a
multi-processor system, where said processors are maximally

CA 02275242 1999-06-14

WO 98/34456 | PCT/US98/01484
17

fully connected when the system is stable.

An object of the invention is such a multi-processor
system, where the system resources (particularly, processors)
that may be needed for meeting integrity and connectivity

5 requirements are minimally excluded.

Another object of the invention is such a
multiprocessor system where, when regrouping, the system takes
into account any momentarily unresponsive processor.

These and other goals of the invention will be

10 readlly apparent to one of ordinary skill in the art on the
reading of the background above and the description following.

SUMMARY OF THE INVENTION
Herein 1s disclosed a method and apparatus for
15 tolerating the loss of timer ticks in a multi-processor
computer system. The multi-processor system includes multiple
processors, each having a respective memory. The method and
apparatus include subjecting each of the multiple processors
to a method including respective advancement from a first to a
20 second stage, 1initially placing the each processor in the
first stage; then sending.status of advancement of a second of
the multiple processors. A processor receives the status of
advancement of the second processor and updates its status
only 1f notification of a time expiration has occurred on the
25 receiving processor. Each processor which has updated its
status advances to the second stage. The determination that

timer expirations have failed on a processor occurs when the
processor falls to advance from the first stage.

30 BRIEF DESCRIPTION OF THE DRAWINGS

Figure #_1 1s a simplified block diagram of a
multiple processing system;

Figure #_2 18 a graph representing a five-processor
multiprocessor system;

35 Figure #_3 1s a graph representing a two-processor
multiprocessor system;

Figure #_4 1s the graph of Fig. # 2, subjected to
communications faults;

LSV TR S MMM A s H HIFIEALR b |y ettt um A b A TR AR 4 2 i Tt S bbb AT bk bl pin bbbl A b .

10

15

20

25

30

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

18

Figure #_5 is the graph of Fig. # 3, subjected to
communications faults;

Figure #_6 is a flow diagram illustrating Stage I of
the regroup operation according to one embodiment of the
invention;

Figure # 7 is a diagram of the regroup control
template;

Figures #_8A and # 8B summarize the steps of a
regroup operation;

Figure #_9 summarizes the transition from Stage 5 to
Stage 1 according to one embodiment of the invention;

Figure #_10 summarizes the transition from the
beginning of Stage 1 to the end of Stage 1 according to one
embodiment of the invention;

Figure #_11 summarizes conditions at the beginning
Oof Stage 2 according to one embodiment of the invention:

Figure #_12 summarizes conditions at the end of
Stage 2 according to one embodiment of the invention;

Figure #_13 shows the status at the beginning of
Stage 3 according to one embodiment of the invention;

Figure #_14 summarizes conditions at the end of
Stage 3 according to one embodiment of the invention;

Figure #_15 shows the status at the beginning of
Stage 4 according to one embodiment of the invention:

Figure #_16 summarizes conditions at the end of
Stage 4 according to one embodiment of the invention:

Figure #_17 shows conditions at the beginning of

Stage 5 according to one embodiment of the invention:; and

Figures #_18A and #_18B are flow diagrams
l1llustrating an embodiment of the split brain avoidance
protocol according to one embodiment of the invention.

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

19

DESCRIPTION OF THE PREFERRED EMBODIMENT
IABLE OF CONTENTS

Definitions e e e e 19
5
Overview 00 d e e e e e . . e . 21
Data Structures'. e = 2 & « « = 23
10 Protocols L 24
Tie-breaker processor Seleculon c e e e e e e e e 24
Regroup and Split-Brain Avoidance 25
Stage I 0000 e e e e e e . 25
Stage II . . . c e e e e e e e e e e e e 28
15 Regroup and Node Prunlng e e e e e e e e e e e e e 31
Stage III o o 00 e e e e e e e 37
Stage IV . . e 38
Stages V and VI D 39
Restarts . . e e e e e e 40
20 | Regroup and Detectlon of Tlmer Fallures . 41
Scenarios Revisited 42
WHAT IS CLAIMED IS« v v v v v e e e oo, 48
25
Definitions
- canonical matrix: a connectivity matrix C is in
canonical form if and only if:
30 (1) 1f a processor i is dead, the row C(i,x) is
FALSE, and the column C(x,i1) is FALSE: and
(2) if C(i,j) is FALSE, C(j,i) is FALSE. This
ensures symmetric or bidirectional connectivity.
35 - connected graph: a graph in which no processor is
lsolated from all other processors in the graph.
- connectivity matrix: an NxN matrix C such that:
®@ N 1is the number of processors;
40 ® each processor 1s uniquely numbered between 1 and
N (or between 0 and N-1 if zero indexing is used):
® C(i,1) 1s TRUE if processor i is healthy;
® C(1,1) is FALSE if processor i is dead or
non-existent;
45 ® C(i,]J) 1is TRUE if processor i is connected to

processor J] and i # j; and

Jore A e LT v 1 NIRRT SN B w9 SRl s HiN SR AT S kR A MM) BN R TR s - . o7 Artndl it N A FEE oAU ¢ v Oub i W 5] VD bl bt et R A AR PL S v ik ol £ NI bl NGRSk 35 S SIEACO M S R et A Sl SV OO RIS Al A AW o N ke ey o b e e 3eld DR Dol A 2 O TG 0 FUEG 1 5 L SRR N DL NS BT S S A TR0 B [B kit 1 by i IR & A M BTG » P IR YA vt MR 3 3 YL O A R NS BPLOWE Lk Vs B i PGS v o LA R’ 1l s LA A s i) MY I 44 P 04 s .3

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

20

® C(1,j) is FALSE if processor i is not connected to
processor jJ and 1 # j.

- disconnect: in a graph, the lack of an edge between two
processors; a "missing" edge in a graph; a pair of
processors between which there is no edge; a pair (i,3j)
such that C(i,j) is FALSE or C(j,i) is FALSE.

- fully connected graph: a graph in which each processor
has an edge with all other processors.

- graph: a representation of the processors within a
multil-processor system and of the communication links
among those processors. The vertices of the graphs are
the processors, and the edges are the communication
links. The edges are bi-directional.

The terms "vertex" and "processor" are used
interchangeably, as are the terms "communication link, "
"link" and "edge."

(Redundant links between a pair of processors

are considered together as one link. In this embodiment,
the communication network is ServerNet®, available from

the assignee of the instant application, and the
communication links are ServerNet® paths. A ServerNet®

path is a sequence of ServerNet® links and routers.)

- droup: a proper subset of the processors in a multi-
processor system. The subset of processors is
interconnected communicatively. When a fully connected
multil-processor system breaks into groups, the groups are
disjoint and may not be fully interconnected.

- maximal, fully connected subgraph: a fully connected

subgraph that is not a proper subset of another fully
connected subgraph of the same graph.

10

15

20

25

30

35

eet hares e 1A NQAVERTIN MM Y RGNS~ AN U AN evpsis i s K N AR A 1 2 S E A A S L i MR LA o ok O MY ET LR DG RN e C o 1500 L MR N 0 |52 bl SR P EIR AL Ty i i e Mk P S My | sy vaRwciaia

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

21

overview

The multi-processor systems of the invention may be
constructed, using the teachings of the U.S. Patent No.
4,817,091, issued March 28, 1989 (Attorney Docket No. 010577-
49-3-1) and U.S. Patent Application No. 08/486,217, entitled
"Fail-Fagt, Fajl-Functional, Fault-Tolerant Multiprocessor
System," filed June 7, 1995, naming as inventors Robert W.
Horst, et al., under an obligation of assignment to the
assignee of this invention, with Attorney Docket No. 010577-
028210/TA 214-1. Therefore, U.S. Patent No. 4,817,091 and
U.S. Patent Application No. 08/486,217 are incorporated herein
Dy reference to the extent necessary.

FIG. #_1 1s a simplified block diagram of a
multi-processor system incorporating the present invention.
The processors #_112 are interconnected by a network # 114 and
connections #_116 that provide the processors # 112 with
lnterprocessor communication via transceivers # 117. The
network #_114 may be implemented by a standard communications
interconnect such as an Ethernet LAN or by a bus system that
lnterconnects processors #_ 112, in parallel, and is
independent from any input/output (I/0O) system that the
processors may have, such as is taught by U.S. Patent No.
4,817,091, mentioned above. Alternatively, the network # 114
could be implemented as part of a joint I/O system that
provides the processors # 112 not only with access to various
I/0 units (e.g., printers, secondary storage, and the like -
not shown) but also provides communication paths for
lnterprocessor communication for the processors # _112. The
network #_114 can also be any point-to-point network such as
rings, fully-connected stars and trees.

Internal to or otherwise associated with each of the
processors #_112 is a memory #_118 that is independent from
the memory #_118 of the other processors # 112 and a
time-of-day clock (not shown) independent of the time-of-day
clocks of the other processors # 112. Also associated with
each of the processors #_112 is a power supply # 120 that
receives primary power (e.qg., alternating current, not shown)
to supply therefrom the necessary electrical power (e.g.,

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
22

direct current) for operation of the associated processor
112.

In one embodiment, internal to or otherwise
associated with each of the processors # 112 is a
configuration option register # 119. The use of the
configuration option register # 119 is taught in U.S. Patent
Application No. 08/487,941 entitled, "Method to Improve
Tolerance of Non-Homogeneous Power Outages," naming as
inventors Robert L. Jardine, Richard N. Collins and A. Richard
Zacher, under an obligation of assignment to the assignee of
the instant invention, with Attorney Docket No. 010577-033000
/ TA 272. U.S. Patent Application No. 08/487,941 is
incorporated herein by reference.
| The network #_114 forms the medium that allows the
processors #_112 to send and receive messages to and from one
another to communicate data, status, and other information
therebetween. The medium i1s preferably a redundant network
with at least two paths between every pair of processors.

Fig. #_2 1s a graph # 200 representing a five-
processor multi-processor system # 200. The graph # 200 of
Fig. #_2 is fully connected. Each of the five processors 1-5
has a communications link with all of the other processors 1-
5.

Fig. #_3 1s a graph # 300 representing a two-
processor multi-processor system #_300. The system # 300 of
Fig. #_3 is also fully connected. The two processors 1, 2 are
in communication with each other.

Now assume that faults occur that divide the system
#_200 into the graph #_400 of Fig. #_4. In the graph # 400,
the group of processors 1, 3, 4 and 5 is fully connected, and
the group of processors 1, 2 and 5 is fully connected.

The processors of the graph # 400 all enter a
regroup operation on the detection of the communication
failures. According to the present invention, in order to
avoid split-brain problems and to maintain a fully connected
multlprocessor system, the processor 2 halts operations, while
each of the processors 1, 3, 4 and 5 continues operations.

Similarly, where communications failures divide the

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
23

system #_300 into the subgraphs of the processor 1 only and of
the processor 2 only of the system # 500 of Fig. # 5, the
processors perform a regroup operation. According to the
present invention, in order to avoid split-brain problems and
5 to maintain a fully connected multiprocessor system, the
processor 2 halts, while the processor 1 continues operations.

Data Structures
Described below are the data structures and

10 protocols used in a preferred embodiment to avoid split-brain,
partial connection and timer-failure according to the
invention.

Each processor # 112 in a multi-processor system
incorporating the invention maintains a connectivity matrix C.
15 The connectivity matrix is used to track the edges in the
graph that survive communications failures. The connectivity
matrix 1is also used to determine the maximal, fully connected
subgraph to survive the communications failures and to
determine whether each processor # 112 is to continue or halt
20 1ts operations.
The size of the connectivity matrix C is NxN, where
N is the number of processors # 112 in the multi-processor
system. In one embodiment, each entry in the matrix is a bit,
and each processor # 112 is uniquely numbered between 1 and N.

25 An entry C(i,j) indicates the ability of processor i to
receive a message from processor j. Herein, if the ability
exists, the entry is set to one (or logical TRUE). If the
ability does not exists, the entry is set to zero (or logical
FALSE) .

30 An entry C(1i,1i) is set to TRUE if the processor i is

healthy. The entry C(i,i) is FALSE if the processor i is dead
Or non-existent. If a processor does not get Regroup messages
from itself, it halts.
An entry C(1,J) 1s set to TRUE if the processor i is
35 communicatively connected to the processor j (i # j). The
entry C(1,j) is set to FALSE if the processor i is not
communicatively connected to processor j (i # j).

Each processor #_112 also maintains a node pruning

¢ A S A AT b WA AL S0, v M L R bt b SRAT 1T AN |30 101 3T ML TR TR U ol il 145 S AT AP AN 1T Sy AT W R M VPR AT S S OF S NN LIS A P OR SERECRIC PTGV AETETING. MMM 01 ARG g K P b s i U9~ 20 130N S P Dl b BRI A I L SRS 35 3 Aol Ao -kl 11 M40 A T o i bl s FAM Al Wbt 1 i AR PN M NI et 2 D I NPT b 04 SIS VU AL Pt LY Al AP sl LA A 1 v sl o) Pacre shiiedecaans .1 *

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
24

result variable. The pruning result variable is also a bit-
Structure, indicating which nodes of a multi-processor system
survive the node pruning protocol described hereinbelow.

Another data structure 1s the IamAlive message. In
one embodiment, an IamAlive message contains an identification
of the broadcasting pfocessor # 112, among other information.
When successfully communicated, an IamAlive message indicates
to the receiving processor # 112 the continued operation of
the broadcasting processor # 112.

Still another data structure is the Regroup message.
A Regroup message identifies the broadcasting processor # 112
and contains that processor's connectivity matrix. Thus, a
Regroup message contains that processor's view of the system,
including the identification of those processors # 112 it
believes form the system. The Regroup message includes a
pruning result variable and a cautious bit as well.

A multi-processor system according to one embodiment
of the invention maintains a mask of unreachable processors.
The mask 1s N-bit, where N is the number of processors # 112
in the multiprocessor system, each entry in the mask is a bit,
and each processor # 112 is uniquely numbered between 1 and N.
The maintenance and use of this mask is explained below.

Protocols

- Tie-breaker processor Selection
One of the processors # 112 has a special role in

the regroup process of the invention. This processor # 112 is
designated the tie breaker. As described below, the split -
brain avoidance process favors this processor # 112 in case of
ties. Further, the node pruning process (described below)
used to ensure full connectivity between all surviving
processors 1s run on the tie-breaker processor # 112. This
process also favors the tie breaker in case of large numbers
Oof connectivity failures.

In one embodiment, the lowest numbered processor
#_112 1n a group is selected as the tie breaker. This simple
selection process ensures that all processors # 112 in the
group select the same tie breaker.

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

25

- Regroup and Split-Brain Avoidance
Each of the processors # 112 of a multi-processor
System according to the invention uses the network # 114 for
broadcasting IamAlive messages at periodic intervals. In one
5 embodiment, approximately every 1.2 seconds each of the
processors #_112 broadcasts an IamAlive message to each of the
other processors #_112 on each of the redundant paths to each
other processor #_112. Approximately every 2.4 seconds each
processor #_112 checks to see what IamAlive messages it has
10 received from its companion processors # 112. When a
processor #_112 fails to receive an IamAlive message from a
processor (e.g., #_112b) that it knows to have been a part of
the system at the last check, the checking processor # 112
initiates a regroup operation by broadcasting a Regroup
15 message.

In effect, a regroup operation is a set of chances
for the processor #_112b from which an IamAlive message was

not received to convince the other processors # 112 that it is
in fact healthy. Processor # 112b's failure to properly

20 participate in the regroup operation results in the remaining
processors #_112 1gnoring any further message traffic from the
processor #_112b, should it send any. The other processors

#_112 ostracize the once-mute processor(s) # 112b from the
system.
25

-- Stage I
Turning now to Fig. # 6, a flow diagram illustrates

Stage I of the regroup operation, indicated generally with the
reference numeral #_600. Each of the processors # 112

30 executes Stage I of the regroup operation. In fact, as the
processors #_112 do not necessarily synchronize their
operation, certain processors check for IamAlive messages
earlier than others and enter the regroup operation before the
others.

35 A processor #_112 may also enter Stage I of the
regroup operation even though it has not detected an absence
of any IamAlive messages if it first receives a Regroup
message from a processor # 112 that has detected the absence

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
26

of an IamAlive message.

Thus, Stage I begins (steps # 662a or # 662b) when a
processor #_112 notes either that a companion processor has
failed to transmit its periodic IamAlive message (step # 662a)
Oor the processor #_112 receives a Regroup message from another
Oof the processors #_112 (step #_662b). When a processor # 112
notes either of theses occurrences, it commences Stage I of
the regroup operation.

Next, 1n addition to the actions of Stage I of the
pre-existing regroup operation, the processors # 112
participating in the regroup operation each start an internal
timer (not shown) that will determine the maximum time for
Stage I operation, step # _664. Each processor # 112 also
resets 1ts memory-resident connectivity matrix C to all
FALSE's (i.e., C(i,j) is zero for all i,5).

Also at step #_664, each processor # 112 suspends
all I/0 activity. (In one embodiment, a service routine holds
all subsequent I/0 requests in request queues rather than
sending them out on the network # 114.) Only Regroup messages
may flow through the network # 114 during this period. The
processors #_112 resume I/0 activity only after the regroup
operation finalizes the set of surviving processors (i.e.,
after Stage III).

At step #_666 each of the processors # 112 sends
PEr-processor, per-redundant-path Regroup messages, containing
the processor's view of the system, including its own
ldentity, a connectivity matrix C, and the optional cautious
bit. (The processors # 112 set and use the cautious bit
according to the teachings of U.S. Patent Application No.
08/265,585 entitled, "Method and Apparatus for Fault-Tolerant
Multi-processing System Recovery from Power Failure or Drop-
Outs, " filed Jun 23, 1994, naming as inventors Robert L.
Jardine, Richard M. Collins and Larry D. Reeves, under an
obligation of assignment to the assignee of this invention,
with Attorney Docket No. 010577-031900 / TA 271. U.S. Patent
Application No. 08/265,585 is incorporated herein by
reference.) This Regroup message prompts all other processors
#_112 — if they have not already done so on noting the failure

10

15

20

25

30

35

2 = AR L s Kot FUA I L U AL 605 R o S B S A S0P S L LT (Mt A DR M NI R B K MLAREAL TR T LA LIRS b e b ol el TR WAL A B BB AR GO AL SN G (k. S ANERIN AR EAANA 0t (0 G T S0 N LR S RTTICT Ll i NI LSRN 51 5 NI AR b i B 2nt b3 19 ERNEE) o 4 bt 35 BT A 2 13450

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

27

of a processor #_112 to send an IamAlive message — to also
enter the regroup operation.

At step #_668B, a processor # 112 examines the
Regroup message(s) it has received and compares the
connectivity matrix C contained in the message(s) with that
the processor #_112 maintains in its memory # 118. If there
are differences, the system view maintained in the memory 18
1s updated accordingly.

In one embodiment, the connectivity matrix in a
Regroup message 1s an NxN bit matrix. This bit matrix is OR-
ed with an NxN bit matrix that a processor # 112 receiving the
Regroup message maintains in its memory # 118. Thus, for any
processor 1 marked in any Regroup message as present, i.e.,
C(1,1) 1s set to TRUE in the Regroup message connectivity
matrix, the processor #_112 marks that processor i as present
in the memory-resident matrix, i.e., C(i,i) is set to TRUE in
the memory-resident connectivity matrix.

Thus, the connectivity matrix can include the KNOWN-
STAGE _n variables #_ 750 described above.

In addition, when a prccessor i receives a Regroup
message from a processor j (on any path), the processor i sets
the C(1,3j) entry of its memory-resident connectivity matrix to
TRUE, 1ndicating that processor i can receive messages from
processor 7.

As indicated above, twc entries exist for the pair
of processors i and j: C(i,j) and C(j,i). The processor i
sets the entry C{(i,]j) to TRUE when it receives a Regroup
message from processor j, while the processor j sets the entry
C(J,1) to TRUE when it receives a Regroup message from
processor 1. This dual-entry system allows the
multi-processor system to detect failures that break symmetry,
i.e., processor i can receive from processor j but processor y
cannot receive from processor 1i.

Stage I completes when all known processors # 112
are accounted as healthy, or some predetermined amount of time
has passed.

-t b oW 2 AT LT AT WA Ko Bl 3ol bR ol b L T NI § AT R0 S T TR 5 A MO | - AR IS) S VA TEN . Tt vy SLOAMNEAATIOAN ALt G L oAb e G A AR A 8 Mk cr A el My 37 it cha kB4 M1 1 = 43 %

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

28

-- Stage I1
The connectivity matrix 1s used to track the

processors known in Stage I and to determine when the
processors known in Stage II are the same as those from
Stage I. In the previously existing regroup operation, the
processors exited Stage II when the processors # 112
participating in Stage II agree as to the view of the system
#_100. In the regroup operation of the invention, Stage II
continues after the processors agree as to the view of the
system.

The connectivity matrix is also used to detect the
lack of full connectivity in the group of processors that
survive the initial stages of the regroup operation. After
Stage I and (the beginning of) Stage II of the regroup
operation have determined the set of present processors in a
connected subgraph, each processor applies the split-brain
avoildance methodology described below and illustrated in
Figures #_ 18A and #_ 18B to ensure that only one subgraph of
processors survives. The methodology involves selecting a
tie-breaker processor, step # 1805. A node-pruning protocol
may subsequently be run to select a fully connected subgraph.

In one embodiment, each processor # 112 selects as
the tie-breaker processor the processor # 112 that (1) was a
part of the system at the end of the last regroup operation to
complete (or at system startup, if no regroup operation has
completed) and (2) had the lowest unique identifying number.
All processors # 112 will pick the same tie-breaker processor
112.

More loosely, the processors # 112 select as the
tie-breaker the processor # 112 that had the lowest unique
identifying number just before the current regroup operation
began. This definition is more loose in that, as related
above, the current regroup operation may have begun in the
middle of an ongoing regroup operation. Thus, all of the
processors #_ 112 may not agree as to all of the processors
#_112 known just before the current regroup operation began.

In applying the split-brain avoidance methodology of
the invention, each processor # 112 makes the following

10

15

20

25

30

35

TR N AL AR AR ORI T, GOSN AT Kl B DY DA 1 A LR £ KRV NS gt N R TEMT KU S MMM AN AN 4T T 1004 R 31 0070 GG RNIAAO D L 1 TN SRR AT AR 10 BB b e On N A AR RN A H i B0t - AR A bl Uy SISO I I (5. 1t 12 el Ll 3P A P 185

CA 02275242 1999-06-14

WO 98/34456 | PCT/US98/01484

29

decisions:

1. If i1ts group has more than one-half of the
processors that were present before this regroup operation
Started, as given by the OUTER_SCREEN variable # 740 described
above, then the processor continues operations, steps # 1820
and #_1825.
2. If its group has less than one-half of the
processors that were present before this regroup operation
began, then it halts itself immediately, steps # 1810 and
1815.
3. If its group has exactly one-half of the
processors that were present before this regroup, and its
group has at least two processors, steps # 1830, then the tie-
breaker processor is used to break the tie as follows.
¢ 3.1: If its group includes the tie-breaker
processor, then the processcr continues operations, steps
#_1840 and # 1825.

¢ 3.2: If 1ts group does not have the tie-
breaker processor, then the processor halts itself
immediately, step # 1850.
4. If its group has exactly one processor and
eéxactly two processors existed before this regroup operation
began, then
. 4.1: If the processor is the tie-breaker
processor, then the processcr continues operations, steps
#_1860 and # 1865.

¢ 4.2: If the prbcessor 1s not the tie-breaker
processor, then the processor attempts to survive: The
processor first checks the state of the tie-breaker
processor, step # 1870. (In one embodiment, the
processor requests a service processor (SP) to get the
status of the tie breaker. The SP may have independent
knowledge about the status of the tie breaker and may be
able to return that status. The status returned is one
of the following five values: The processor is halted
(Or running non-operational code); the processor is in a
hardware-error (self-check) freeze state; the processor
1s running NonStop Kernel®; the SP is communicating with

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

30

the processor but for some reason cannot get the
processor's status; and the communication of the status
request failed for some reason.) If the tie breaker has
halted or is in a hardware-error freeze 'state, then the
processor survives, steps #_1880 and # 1865. If the
state of the sucéessfully communicating tie breaker
cannot be determined (e.g., the SP request failing due to
an SP connection failure, the SP replying that it cannot
determine the condition of the NonStop Kernel® tie
breaker, or the multi-processor system not including the
equivalent of service processors), step # 1890, then the
processor checks the mask of unreachable processors. If
the tie breaker is not marked unreachable, the processor
assumes the tle breaker is malatose and survives, steps
#_1895 and #_1865. If, however, the tie breaker is
marked unreachable, the processor assumes that the tie
breaker 1s healthy and applying this methodology. It
halts operations, steps #_1895 and # 1897.

This split-brain avoidance methodology could lead a
processor #_112 to halt itself. Indeed, even the tie-breaker
processor #_112 may halt itself. Therefore, if the processor
#_112 survives the application of the split-brain avoidance
methodology, it again selects a tie-breaker processor # 112.
In a preferred embodiment, each processor # 112 selects the
lowest -numbered surviving processor as a tie breaker for the
remainder of Stage II, the subsequent stages of the regroup
operation and in post-regroup operation, until another tie
breaker is selected as herein described. All processors # 112
that survive the application of the split-brain avoidance
methodology pick the same tie-breaker processor # 112.

If the processor is not the tie breaker, then it
stays 1n Stage II until it gets a message from the tie-breaker
processor # 112 (or regroup restarts after a stall-detection
time-out) .

This completes the split-brain avoidance protocol.
For a multi-processor system implementing the split-brain
avoidance protocol without the node pruning protocol, Stages
III through V complete as described above. However, a system

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

31

seeking to make itself or maintain itself as a maximally,
fully connected multi-processor completes Stage II and
continues, as described below. (Of course, a multi-processor
System can apply the node pruning methodology independently of
the split-brain avoidance methodology.)

- Regrou nd Node Pruni

If the processor is not the tie breaker, then it
stays 1in Stage II until it gets a message from the tie-breaker
processor #_112 or another processor # 112 in Stage III with
1ts pruning result variable set (or regroup restarts after a
Stall-detection time-out). As soon as a processor # 112 gets
such a Stage III packet, it enters Stage III and sets its
local pruning result variable to the value found in the
Stage III packet it received.

The tie breaker has additional Stage II
responsibilities of collecting connectivity information,
deciding when to stop collecting the information and pruning
the connectivity graph to determine the final group of
processors #_112 that survive the regroup operation.

In stages I and II, the connectivity information
builds up on all processors #_112 in their respective memory-
resident connectivity matrices C as the processors # 112
exchange Regroup messages containing copies of the memory -
resident matrices C. The tie breaker collects connectivity
information along with all the other processors # 112.

The tie breaker decides when to stop collecting the
connectivity information. It gives all processors # 112 a
reasonable amount of time to send Regroup messages and thereby
establish connectivity. If the tie breaker were to stop
collecting information too soon, the connectivity graph built
might be incomplete, resulting in available processors #_112
being declared down and pruned out in order to satisfy the
full connectivity requirement. Incomplete connectivity
information does not violate the requirements that the final
sSurviving group be consistent on all processors # 112 and

fully connected, but it can take out processors # 112 that
could have been saved.

SN RL, SAOTHCC) R L+t v e ey THEAHCRIRANAAT B o RN TVEN NP R REGRNTE 101N | n o T AN) B S ol Kot v IR Ao B AP el il P i bins+ e,
2 LRIl AL o DAL P AR RS L7 1 by S0 T LGN M A L, £ AL L e DD MINONS FE ANYN 1 3 AR TRAC ST L AN Hi 3 Ky L s AR 5 O A AT NN 5 HC T I LA I A0 0 S SN SO0 TS . Wl o

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
32

In one embodiment, the tie breaker waits 3 regroup
ticks (spaced 300 milliseconds apart) after completing the
split-brain methodology (and selecting itself as the tie
breaker) before proceeding to apply the node-pruning
methodology. Since each processor # 112 transmits Regroup
messages to all processors $#_112 at each Regroup tick and
whenever 1its regroup stage changes, this three-tick delay
allows each processor # 112 at least four chances to send
messages containing connectivity information: once when
Stage I is entered, once when Stage II is entered, and twice
more while the tie breaker waits. In addition, messages are
sent on all redundant paths.

Thus, the tie breaker stops collecting connectivity
information when the first of the following two events occurs:
(1) 1ts memory-resident connectivity matrix C indicates that
all paths are up (i.e., there is full connectivity) or (2a) a
predetermined number of regroup ticks have elapsed since the
completion of the application of the split-brain avoidance
methodology or (2b) for multi-processors systems not
implementing the split-brain avoidance protocol, a
predetermined number of regroup ticks have elapsed since the
determination that all Stage I processors have entered
Stage II.

After the tie-breaker processor # 112 stops
collecting connectivity information, the tie breaker applies
the pruning process and comes up with the final group of
surviving processors # 112. Note that the tie breaker can
prune itself out without affecting the efficacy of the pruning
methodology. The tie breaker always has the responsibility of
informing the other processors # 112 of its decision. The
pruned processors #_112 (including the tie breaker) do not
halt until they enter Stage IV.

To get a fully connected graph from the potentially
partially connected graph of surviving processors, the tie-
breaker processor #_112 first runs a process that lists all
the maximal, fully connected subgraphs. It then uses a
selection process to pick one from the set of alternatives.

In one embodiment, these processes run in interrupt

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
33

context on the tie-breaker processor # 112 and have low upper
bounds for execution time and memory requirements. The
process that lists all the candidate subgraphs requires a
large amount of memory and execution cycles if the number of

5 disconnects is large. Therefore, if the number of disconnects
1s larger than a fixed number (8 in one embodiment), then a
simpler scheme that picks a fully connected graph that is not
necessarily optimal is preferred.

The method for generating the complete list of

10 maximal, fully connected subgraphs in a graph represented by a
connectivity matrix is described below.

The 1input 1s the NxN connectivity matrix C described
above. The output is an array of sets of processors that form
maximal, fully connected subgraphs.

15 | The methodology uses the following property: When
the edge (i,j) is removed (forming the disconnect (1,3)) from
a fully connected graph that includes vertices i and j, two
maximal, fully connected subgraphs are formed. One subgraph
1s the original graph with vertex i (and the edges connected

20 to 1t) removed and the other subgraph is the original graph
with vertex j (and its edges) removed.

A partially connected graph can be viewed as a fully
connected graph to which a set of disconnects has been
applied. To compute the set of all maximal, fully connected

25 subgraphs, a processor # 112 first makes a list of the
disconnects in the connectivity matrix C. Next, the processor
#_112 mgkes an initial solution set that has one member - a
fully connected graph with all the vertices in the original
graph. The processor #_112 then successively improves the

30 solution set by applying the disconnects one by one.
The method has the following steps:
1. Compute the set of all dead processors, that
is, the set of all processors i such that C(i,i) is
FALSE.
35 2. Convert the connectivity matrix into canonical

form: Remove rows and columns corresponding to dead
processors, and make the matrix symmetric.

3. Compute the set of all disconnects, the set of

.........
: e i _ A P2 Rrsi - AMSAMFRAKECY ST i I A LA M KpMAMGE ERIN SRR | ity SO IR MRAR FEE R0 MIRELCSIMINE. PRI | TN AT TR FaM Y DA A M DU Src it AN Ab) B ik f A e e vl L 0l s

; . . v E x s RHCARI M I M SO N I i 0 3 - Vo LN LT il Ml 3 FEP N A A 2ty N e S it L bt WM AN it 2 cI T D0 S i . o

I T AR | NS v R A R A £ b 8 Y <0 R N I L YV LD 1 vh R A R Al] | A TERS LT - - LN R g T RN T 7L it B e b Pl o AN dapts w | 1 s L e STy

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

34

pairs (i,j) such that C(i,i) is TRUE, C(j,3j) is TRUE
(that 1s, processors i and j are alive) and C(i,j) is
FALSE. Let D be the size of the set of disconnects.

4. The variable groups is the solution array and
the variable numgroups is the number of entries in the
solution array. Start with an initial solution that
contains one group that is equal to the set of live

processors.
groups := live processors; /* groups is an array
of SET's*/
numgroups := 1; /* number of elements in the

array*/

All live processors # 112 are initially assumed
to be fully connected. Each disconnect is applied in
turn, breaking the groups in the array into fully
connected subgroups.

5. Process each disconnect by applying it to the
current elements in groups.
Applying a disconnect (i,j) to a group of
processors #_112 that does not contain processor i or 3
has no effect. Applying the disconnéct (1,J) to a group
that contains both processors i and j splits the group
into two fully connected subgroups, one the same as the
original with processor i removed and the other the same
as the original with processor j removed.
When a group thus splits into two subgroups, the
processor #_112 examines each of the new subgroups to see
whether it already exists or is a subset of an already

existing group. Only new and maximal subgroups are added to
the array of groups.

Following is sample C code to perform this
methodology. The sample code assumes a function
group_exists_or_ is_subset() to check if a given group is a
member of the current set of groups or is a subset of an
existing group. It also assumes a function library that

lmplements the set type (a type SET and functions SetMember (),
SetCopy(), SetDelete() and SetSwap()).

10

15

20

25

30

35

40

45

50

T T e LA I 5 RN TIHIc 208 L I G AT AR ST AL 5 b AT e L] LS+ 1 N SRR, EMAMORDERD: (5 AL B HN V-5 9 sl Ham b A VLA PG M2 A i AT M40 HAENE 4l § o) T L I 1 73 Y ik 4 LZ1AR A L)

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

35
for (i=0; i<D; i++) /* go through the disconnects*/

for (j=0; j < numgroups; j++) /* go through the groups
generated so far */

/* Split group j if it has both vertices of
disconnect i.¥*/
1f (SetMEmber(groups[jl,dlsconnects[ll[0]) &&
?etMember(groups[j],disconnects[i][1]))
/* We need to remove group J and replace it
with two new groups. This is done by modifying

group j in place and adding a new group at the
end of the array.*/

Nnumgroups ++;

/* copy group j to the end of the arrayx*/
SetCopy (groups [j] , groups [numgroups-1]) ;

/* remove the first vertex from group j */
SetDelete(groups[j], disconnects([i] [0]);
/* remove the second vertex from group added at
the end of the arrayr*/ '

SetDelete (groups [numgroups-1], disconnects
(1] [21);

/* Check if the new groups already exist or are
subgroups of existing groups.*/

/* First check the group added at the end.*/

1f (group_exists or is subset (groups,
numgroups-1, groups [numgroups-1]))
numgroups- - ;

/* Now check the updated group j. First,
switch it with the last element of the array.

To remove 1it, simply decrement the array
count. */

/* The j-th entry has been switched; it has to
be examined again */

SetSwap (groups [j], groups [numgroups-1}) ;

J==3

1f (group_exists or is subset (groups,
numgroups-1, groups [numgroups-1]))
numgroups- - ;

Now, numgroups 1s the number of maximal, fully
connected subgraphs, and groups contains these subgraphs.

Fd Mt 4 ALY aaB ik 1 4 B VoML A by b ot mAr i - mai e, A b M RN LADBATY | o8 NPT 1 T IR ST AR MY B DA IKIRE: L 1\ 0 g ST {2 A ST TR IV U T AL AL ot v ek A TR N Tl S A P el FubbRADS AALAIPARATMEY $h il & 3 o Padahief o4 & 3 Hubas P

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

36

From the set of subgroups thus found, one group

1f one treats all processors the same, the best

candidate for survival can be defined as the one with the
greatest number of members.

one can be picked.

survives.

In case of a tie, an arbitrary

In one embodiment, processors have different
survival priorities based on the kinds of services each

provides. For instance, in the Non-Stop Kernel® and Loosely

Coupled UNIX (LCU) operating system software available from

the assignee of the instant invention, processors that have a
primary or backup $SYSTEM process (a process providing a

System-wide service) have a higher survival priority.

As another example, the lowest-numbered processor
can have the highest survival priority, as explained above.

The execution speed of this node-pruning process

depends on the number of disconnects D and the number of fully

connected groups G. For a given D

, the order approximates
D*2D

Clearly, the worst case order is too large to attempt

for the example sixteen-processor system, but this is small

for very small values of D. In real life, very few

disconnects, if any, are expected.

In a preferred embodiment, when either N (number of
live nodes) or D (number of disconnects between live nodes) is

less than, e.g., 8, the above process for listing groups is
used.

This limits the number of groups generated and examined
Lo 256.

However, when the number of disconnects and maximal
fully connected subgraphs is large (e.g., greater than 8),

processes listing all groups become too time consuming to

execute 1in an interrupt context. Since disconnects result

from rare, multiple failures, picking a sub-optimal group as
the surviving group in the face of a large number of

disconnects is acceptable.

Therefore, when both N and D are greater than, e.g.,

8B, the tie breaker will pick one fully connected subgroup
randomly or by other simple means.

In the NonStop Kernel® and LCU preferred embodiments
mentioned above, a $SYSTEM processor is considered a critical

10

15

20

25

30

35

RN TR ST O AP SEHMTETAIR: A5 PETIMI 1 SR ETI AN 0 40 7 B3AT e i P MM 4 75 et SE TNV MIITAD (8063454 AR A 20 ErE TN SEVEYo MU 4 A O TR WAL T ARSIl DA 41 01 -1 4+ 5 14 4

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

37

resource, and the tile breaker attempts to select a group that
includes one of the $SYSTEM processors. If the processor
running the primary $SYSTEM process is healthy, the tie
breaker picks a group that includes that processor. If,
however, the processor running the primary $SYSTEM process has
died, but the processor running the backup $SYSTEM process is
alive, then a group that includes the latter processor is
selected.

If both $SYSTEM processors are dead, then the tie
breaker selects a group that includes itself.

The selection described above proceeds as follows:

1. Start with a group that contains a selected
processor. Select the primary S$SYSTEM processor if it is
healthy. If the primary $SYSTEM processor is dead, but the

backup $SSYSTEM processor is healthy, select the backup $SYSTEM
processor. Otherwise, select the tie breaker.

2. Examine each live processor. If it is
connected to all members of the current group, add the
processor to the group. (This process gives higher priority
tO the processors examined earlier since they need to have
connectivity to fewer processors to be added to the group.)

3. When all processors have been examined, the
group 1s complete. This group survives this regroup incident.
The tie breaker then enters the next stage (Stage III) of the
regroup operation.

-- Stage III
When the tie breaker enters Stage III, according to

the node pruning protocol, it additionally sets the Regroup

message pruning result variable to the group selected to
survive. The tie breaker then informs all other processors

#_112 that it has entered Stage III by sending them the value
of its pruning result variable.

In Stage III, each processor # 112 informs all

processors (including the pruned out ones) that it is in

Stage III and relays the tie breaker's pruning decision. If a
processor #_112 finds itself pruned out, it does not halt
until it enters Stage IV. To guarantee that all processors

PR A SN IR SN LG eI AT COE D M SRR AN LMMAIIYYSS: SRR SIS S% e R0 AT AT IR AT AP G v 3¢ Ho NN S I AT S+ FALAANIROL S M LATVATIN el sl b T A 4 A0 T+ A AT A 3+ 1.

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
38

#_112 get to know the tie breaker's pruning decision, the

pruned out processors # 112 participate in relaying the
pruning decision.

-- Stage IV
A processor #_112 in Stage III enters Stage IV when

1t determines that all of the processors # 112 known to be
available in Stage II have entered Stage III. This means that
all processors #_112 in the connected group have been informed
O©f the pruning decision. The processor # 112 can now commit
to the new surviving group. A processor # 112 that finds
itself pruned out stays in Stage III until it hears that a
processor #_112 that was not pruned out has entered Stage IV.
The pruned out processor # 112 then halts, since that survivor
processor #_112 in Stage IV can ensure that all other
survivors will enter Stage IV. (The tie-breaker processor
#_112 that executed the node pruning can now halt if it was
not among the survivors. The tie breaker's role in the
current regroup operation is complete.)

As a surviving processor enters Stage IV, it sets
l1ts OUTER_SCREEN and INNER_SCREEN # 730 and # 740 to reflect
the pruning result, selects the lowest-numbered surviving
processor #_112 as 1indicated by the pruning result variable as
the tie breaker for use in the next regroup operation, and
cleans up any messages from and to the processors # 112 that
did not survive.

I1f a regroup operation restarts at Stage III, a
processor #_112 checks the pruning result variable. If the
processor #_112 finds itself pruned out, it halts. This
guarantees that 1f any processor # 112 has committed to the
new surviving group and entered Stage IV, the pruned out
processors #_112 do not survive the restart of the regroup
operation.

If connectivity is very poor, a pruned out processor
(say, processor #_112b) can stall in Stage III. This can
happen, for instance, if all processors # 112 with which
processor #_112b can communicate have also been pruned out and
halt before processor #_112b can enter Stage IV. When the

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
39

processor #_112b detects that it is not making progress in
Stage III (after some number of clock ticks have passed), the
regroup operation restarts. As described above, this restart
will cause the processor # 112b to quickly kill itself.

5 A system with pruned out processors # 112 that have
been isolated could briefly experience a split-brain situation
as the surviving processors #_112 quickly complete regroup and
declare the pruned out processors # 112 dead while the pruned
Out processors #_112 are stalling in Stage III. This,

10 nowever, does not cause data corruption since these processors
#_112 suspend all I/O traffic while in stages I through III of
a regroup operation.
The pre-existing Stage III as described above

constitutes the remainder of this Stage IV of the regroup
15 operation of the invention.

-- Stages V and VI
The pre-existing stages IV and V are renumbered V

and VI for the regroup operation of the invention.
20

-- Maintenance of Mask of Unreachable Processors

If a processor #_112 detects that no packets are
getting through on any of the redundant paths to another
processor #_112, 1t sets to logical TRUE the bit in the mask

25 of unreachable processors corresponding to that other
processor #_112. A new regroup incident, however, does not
Start. Because regroup incidents suspend general I1/0, a
multiprocessor system should spend minimal time doing such
reconfiguring. A regroup incident will start soon enough on

30 the detection of missing IamAlives due to the link failure.

The mask of unreachable processors is used in
Stage II as described above. The mask is maintained until
Stage III.

When regroup 1s in Stage III, any node pruning has

35 already happened and the new group has self-pruned
accordingly. The mask is examined. If the new group contains
both the local processor # 112 and the unreachable processor
#_112, then the regroup operation restarts.

F 2 Y V - : B T T PN ITT P vl prlves el
VR R Ac: A 1 A MRS IRTURNY MOkt s o) GEEN WO PR AT b VAL D TR PR A i - P I 6 1o ol 1R 003 e AR I S P KW AN | 19 e PRy A8 2/ F B Mk b 31 e A st bR L RS 3 T A RV AR R A0 T 5 - B L LIGARTH 3250 3 A B S el Bak? G ik, bl M AR o TAIAIOINE Al Ao 0, s - Corbs St iit{ o: MR EIEIEAGE TN LrARRIIN TR MY oL b A~ Pt i e el I > SV IR Ovit i 4 O oAt ek byl
4% 357 TV S b W00 o & -l BRE R a -DALN AL LIrrh s MO Lk SO SIS N B LT A AR Aai ’ ULy S |

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

40

This seemingly complicated scheme 1s preferable to
restarting regroup each time a link failure is detected as the
former prevents a regroup operation from restarting many times
due to multiple link failures that are detected due to the
sending of regroup packets but which actually occurred before
the regroup incident started. In a preferred embodiment, in
order to detect regroup software bugs as well as severe
connectivity problems that get worse as regroup proceeds, the
processor # 112 halts if the regroup operation restarts more
than 3 times without completing once.

If a link comes up after a regroup operation has
started, its effect on the procedure depends on how far the
procedure has progressed. If the link comes up 1in time to
make the tie breaker consider the link operational, the link
"survives" (that 1s, one of the processors # 112 connected by
the link escapes certain death). Regroup packets have to go
in both directions, and this fact has to be conveyed to the
tie breaker before the tie breaker considers the link good.

If the link status change happens too late in the regroup
incident for the tie breaker to detect it, the link is
considered down and at least one of the processors # 112
connected by the link is killed. This exclusion is
acceptable. Therefore, a link coming up event is not reported
to regroup, unlike a link failure event.

-- Restarts

To make progress through the stages of a regroup
operation, a processor # 112 needs to hear from the processors
112 from which it has previously heard. If a processor
112 or communication link fails after a regroup operation
starts, the processor # 112 can stall in any of the stages
after Stage I. Therefore, a timer (not shown) detects the
lack of progress. The processor # 112 starts the timer when
1t enters Stage II of the regroup operation and clears the
timer on entering Stage VI when the regroup operation
stabilizes. If the timer expires before the algorithm ends,
the processor # 112 restarts the regroup operation (i.e.,
re-enters Stage I).

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

41

After a processor #_112 commits to a new group and
declares another processor # 112 dead, the banished processor
#_112 is not allowed to come back in when the regroup
operation restarts. A processor # 112 commits to a new group
when 1t enters Stage IV. It does so only after all processors
#_112 in the connected graph of processors known at Stage II
have entered Stage III and have set the pruning result
variable to the commit group. If the regroup operation
restarts now, all pruned out processors # 112 kill themselves
since the pruning result variable indicates that they have
been excluded. Processors # 112 that were not in the
connected graph (at Stage II) cannot join the group since they
dré not among the processors #_ 112 known at Stage II.

Message clean up actions must be completed

correctly, regardless of how many times the algorithm goes

through restarts.

- Regroup and Detection of Timer Faijlures

Independently of or in conjunction with the split-
brain avoidance and/or the node-pruning protocols, a
multiprocessor system can detect the loss of timer expirations
as follows: A processor # 112 running the regroup algorithm
does not advance through Stage I until the processor # 112
recelves a timer tick. If a processor has corrupted operating
System data structures (e.g., a time list), the regroup engine
will not receive its periodic ticks and will not advance
further than Stage I. Since the malatose processor # 112 does
not indicate that it has entered Stage I, the other Processors
will declare it down. The faulty processor halts on receipt
of a Stage II Regroup message or a poison packet indicating
that it has been eliminated.

In the split-brain avoidance and node-pruning
scenarios, the connectivity matrix preferably subsumes the
KNOWN_STAGE_n variables #_750. 1In these embodiments, a

processor #_112 does not update its connectivity matrix C
until it receives a timer tick.

Pra——

v ; I L LI T LT x Fulbgd o8 G2Hs e o IR AL DL £ b o MU S A 40 1 AT bR Nl AN MRS o AP MIINID NI SV AU S AN AT
; PRI LD NI S Rt 3 B 0 PRI A IR A SIS SANE A SRR 501 Wy A eI L) - I G G, NS LYW Mo b Lratdnl SHhtAERATar g
MO0 AP LSt vy i b ™

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

42

Scenarios Revisited

The application of the invention to the above five-
Processor and two-processor scenarios is described below.

Fig. #_2 is a graph # 200 logically representing a
five-processor multi-processor system #_200. The graph # 200
of Fig. # 2 is fully éonnected. When communication faults
occur dividing the system #_200 into the graph # 400 of Fig.
4, each processor #_112 applies the split-brain avoidance
methodology described above. The processor 2, for example,
may notice its failure to receive an IamAlive message from
processor 3, for example. The processor 2 accordingly
initiates a regroup operation. In Stage I of that Regroup
operation, the processor 2 starts its internal timer, resets
1ts connectivity matrix C and suspends I/O activity. The
pProcessor 2 then sends a Regroup message and receives and
compares Regroup messages, updating its connectivity matrix C
accordingly. The processor 2 receives Regroup messages from
processors 1 and 5, and these Regroup messages indicate the
existence of processors 3 and 4. When the appropriate time
limit has been reached, the processor 2 proceeds to Stage II.

In Stage II, the processor 2 selects the processor 1
as the tie-breaker processor # 112 since the processor 1 was

the lowest numbered processor # 112 at the end of the last
regroup operation to complete.

The processor 2 then applies the split-brain
avoidance methodology: The processor 2 recognizes that the
group of processors #_112 of which it is a part has more than
one-half of the processors that were present before this
regroup operation started. Accordingly, the processor 2
continues operations.

Indeed, the group has all five of the processors 1-5
in the system #_400, and all five of the processors 1-5 will

continue operations at this point. All five of the processors
1-5 select processor 1 as the tie breaker.

The tie-breaker processor 1 waits in Stage II until
either a reasonable amount of time to send Regroup messages

has passed or until its connectivity matrix C indicates that
all paths are up. Here, by assumption, all paths are not up,

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
43

and the tie-breaker processor 1 waits in Stage II the
reasonable amount of time. It then applies the node-pruning
methodology to determine the final group of processors # 112
Lo survive the regroup operation. It then distributes this

5 decision in a Stage III Regroup message with the node-pruning
result variable set to reflect the decision. The processors
2-5 wait in Stage II until they receive this Regroup message
with its pruning result variable set.

Using its memory-resident connectivity matrix C as

10 input, the tie breaker computes the set of all dead
processors. This set is the null set, and a conversion of the
matrix C to canonical form leaves this matrix C unchanged.

The tle breaker computes the set of disconnects as {(2, 3),
(2, 4), (3, 2), (4, 2)}, with D=4, and applies these

15 disconnects to the set of live processors {1, 2, 3, 4, 5}.

The resulting groups of processors #_112 are {1, 3, 4, 5} and
{1, 2, 5}. Thus, the number of maximal, fully connected
subgraphs is two.

Depending on the criteria for survival, either of

20 the two groups may survive. If the criterion is the largest
group, then the tie breaker selects the group {1, 3, 4, S} for
survival. If the criterion is the group with the lowest-
numbered processor, then either group can survive (with the
former criteria used as a tie breaker or with one group chosen

25 randomly, for example). If the processor 2 is running a high-
priority process, the tie breaker may chose the group {1, 2,
5} for survival. These are merely a few examples of the
criteria disclosed in the related patent applications
enumerated above or well-known within the art. Assume that

30 the group {1, 3, 4, 5} survives.

The tie-breaker processor communicates this decision
by setting the node-pruning variable in the next Regroup
message that it sends out. The sending of the message
indicates that the tie breaker is in Stage III, and the

35 receipt of that message (directly or indirectly) causes the
other processors 2-5 to enter into Stage III also. The
pruning result variable of all processors 2-5 in Stage III
hold the same value indicating that the processors 1, 3, 4 and

T o, B P ol AL aR L 3r =

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

44

5 are to continue operations and that the processor 2 is to
halt operations. Each of the processors 1-5 relays this
pruning result in the Regroup messages that it respectively
originates.

When each of the processors 1-5 gathers Regroup
messages i1ndicating that all of the processors # 112 known toO
it in Stage II have entered Stage III, then the processor
enters Stage IV and commits to the pruning result. At this
stage, processor 2 halts operations. The regroup operations
continues to completion. The maximal, fully connected group
of processors 1, 3, 4 and 5 continues operation as the newly
reconfigured system.

Likewise, Fig. # 3 is a graph # 300 logically
representing a two-processor multi-processor system #_300.
The graph #_ 300 of Fig. # 3 1s fully connected. When
communication faults occur dividing the system # 300 into the
graph # 500 of Fig. # 5, each processor # 112 marks the other
as unreachable in the mask of reachable processors and applies
the split-brain avoidance methodology described above. The
processor 1, for example, may notice its failure to receive an
TamAlive message from processor 2. The processor 1
accordingly initiates a regroup operation. In Stage I of that
Regroup operation, the processor 1 starts its internal timer,
resets its connectivity matrix C and suspends I/0 activity.
The processor 1 then sends a Regroup message and prepares to
receive and compare Regroup messages in order to update its
connectivity matrix C. In this scenario, however, the
processor 1 recelives no such Regroup messages. When the
appropriate time limit has been reached (and if the processor
1 of itself constitutes enough resources to continue
operations, if appropriate), the processor 1 proceeds to
Stage II.

In Stage II, the processor 1 selects itself as the
tie-breaker processor # 112 since it was the lowest numbered
processor #_112 at the end of the last regroup operation to
complete.

The processor 1 then applies the split-brain
avoidance methodology: The processor 1 recognizes that the

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

45

group of processors # 112 of which it is a part has neither
more nor less than one-half of the processors # 112 that were
present before the regroup operation began. Its group has
exactly one-half of the pre-existing processors # 112, and the
5 processor 1 uses the fact that it is itself the tie-breaker
processor #_ 112 as the decision point to continue operations.
Not being the tie breaker, the processor 2 attempts
to check the state of the tie-breaker processor 1 (in one
embodiment, using the service processors). If the state of
10 the tie breaker can be determined, the processor 2 realizes
that the tie breaker is healthy. The processor 2 halts.
Where the state of the tie-breaker processor 1
cannot be determined, the processor 2 checks the mask of
unreachable processors. Noting that the tie breaker is marked
15 unreachable, the processor 2 assumes that the tie breaker is
healthy and halts.
Thus, the tie-breaker processor 1 continues
operation while the processor 2 halts.
The processor 1 selects itself as the tie-breaker
20 processor # 112 and remains in Stage II until a reasonable
amount of time passes. (The processor 2 cannot and indeed
does not send Regroup messages as the communication fault has
occurred and the processor has halted.)

The processor 1 applies the pruning process and

25 determines the group of processors # 112 that are to survive
the regroup operation. Using its memory-resident connectivity
matrix C as input, the tie breaker computes the set of all
dead processors, {2}, and converts its matrix C into canonical
form. This conversion leaves a 1xl matrix C including only

30 the processor 1. The tie breaker computes the set of
disconnects as the set {(1, 2), (2, 1)}, with D=2. However,
as the set of live processors {1} does not include the
processor 2, applying these disconnects to that set has no
effect. The number of maximal, fully connected graphs is one,

35 and the tie breaker sets 1its pruning result variable to
indicate that only it will survive. The tie breaker
communicates this result in 1its subsequent Regroup messages
and thus passes through Stages III and IV. The system # 500

1 S AT N dr) a4 N STV 78 4 = MY 4 £ S0 Vbbb - S LA 05 TTE N L) ST i 145 DN Y PR3t 1 BRI ALY ; s M THAMEAR L T A A BLOLEED M A A CANEEMILE M) . 2 AR MICRAL vt * A LT P i i KL L) S i eI R ARSI MU M. MR N A M s iy - Bt 3e =t * vm i AR F A SN ANRALAS AA NI 03 - 13 e Wil FACH LD - ViE Wb rr NI L ST S ¢ AN T A SN T Sl OROR-Er i WAL G CHLCMCHICI Tl LGN 1AM A PTG MY KT T AL AT S M b bt Lo L

10

15

20

25

30

35

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

46

completes the regroup operation and continues operations with
only the processor 1 running.

Finally, consider again the logical multi-processor
systems # 200. Now, the processor 2 experiences a corruption
of its time list, fails to receive timer expiration interrupts
and loses its ability to send the requisite IamAlive messages.
The detection of the missing IamAlive messages by any of the
other processors 1 or 3-5 causes a regroup operation to begin.

In Stage I of the regroup operation as related
above, the processors 1-5, operating according to one
embodiment of the invention, each refrain from sending
respective Stage I Regroup messages until each receives a
timer expiration interrupt. Thus, the processors 1 and 3-5

readily proceed to send Stage I Regroup messages.

By hypothesils, the processor 2 does not receive
timer interrupts and thus never sends a Stage I Regroup
message. The other processors 1 and 3-5 update their
respective KNOWN_STAGE 1 variables # 750a (and/or their
respective connectivity matrices C) to reflect the healthiness
of the processors 1 and 3-5 and the apparent death of the
processor 2. After some predetermined amount of time has
passed waiting for the processor 2, the processors 1 and 3-5
proceed to Stage II.

In Stage II, the processors 1 and 3-5 now broadcast
Stage II Regroup messages. The processors 1 and 3-5 are
healthy and the processor 2 1s still malatose, and the
Stage II Regroup messages eventually reflect this condition.
The KNOWN_STAGE_2 variable #_750b becomes equal to the
KNOWN_STAGE 1 variable # 750a.

The processor 2, by hypothesis, still receives the
Regroup messages from the processors 1 and 3-5. It eventually
receives a Stage II Regroup message wherein the KNOWN_STAGE 1
and _2 variables #_750a, #_750b are equal and exclude the
processor 2. The processor 2 notices this type of Stage II
Regroup message and halts.

Processors 1 and 3-5 proceed through the remainder
of the regroup operation and form the system N 200'. Now,
instead of the IamAlives missing from the processor 2

10

TN NIRRT L - RO 2 N R MRAEINEX) ode e - AL

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

477

periodically perturbing the system N 200, the system N 200'
excludes the processor 2 altogether. (Also, the processor 2
18 dead and therefore harmless.)

Of course, the program text for such software
incorporating the invention herein disclosed can exist in its
static form on a magnetic, optical or other disk; in ROM, in
RAM or in another integrated circuit; on magnetic tape; or in
another data storage medium. That data storage medium may be
lntegral to or insertable into a computer system.

AT O SISO TN VG A TR L I IS0 ML il 6130 ADMERCCNBRNID AP S DD st Ol AN S LA A L2 VAN TN) i I N1 S TN A OO S CRPANT) Foth L L ML 1IN 1 - a WA sn€en® o ot o 0s e

v e Acht AR RN A i (e iR b AREAMAALTIRM A ¢ it et Yt R A e P b v SR T 3 TR P i S ARALIAIVMAS N + iy e b bt o b i ey

> 1akEXPAETOY AN MY WP S1e 2T Pev. t cw iy

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484
48
WHAT IS CLAIMED IS: '
1. In a multi-processor system having a plurality

Oof processors each having a respective memory, a method for
tolerating timer expiration failure in one of said plurality

o 3 O U s W

11
12
13
14
15
16
17
18
19
20

}-3

O © 3 O U bW N

N
o W N H O

Oof processors, said method comprising:

subjecting each of said plurality of processors to
method including respective advancement from a first to
second stage, 1nitially placing said each processor in
said first stage;

sending status of advancement of a second of said
plurality of processors;

receiving on said one processor said status of
advancement of said second processor;

after said receiving, updating status of said one
processor only 1f notification of a time expiration has
occurred on said one pProcessor;

respectively advancing to said second stage each
processor which has updated its status; and

determining that timer expirations have failed on
said one processor when said one processor fails to
advance from said first stage.

2. A computer system comprising:

a communications network:

d

a

a plurality of processors, communicatively connected

by means of said communications network, each of said
plurality of processors having a respective memory
wherein 1s located a computer program for causing said
computer system to tolerate timer expiration failure in
one of said plurality of processors by
subjecting each of said plurality of
processors to a method including respective
advancement from a first to a second stage,

initially placing said each processor in said

first stage;

sending status of advancement of a second

of said plurality of processors:

A=A F A A S MR a4 A2 A S AL I i, S 0 2T AUk SR UK AU s wical 4 o Lo e bt R o A O LI AR b= wLrmATOYIn o3 448 v, = oW+ o] Gt = Yl

16
17
18
18
20
21
22
23
24
25
26
27
28

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

49

receliving on said one processor said
status of advancement of said second processor;

after said receiving, updating status of
salid one processor only if notification of a
time expiration has occurred on said one
processor;

respectively advancing to said second
stage each processor which has updated its
status; and

determining that timer expirations have
failed on said one processor when said one
processor fails to advance from said first
stage.

3. An article of manufacture comprising a medium

for data storage wherein is located a computer program for

causing a multiprocessor system having a plurality of

processors, each having a respective memory, to tolerate timer

expiration failure in one of said plurality of processors by

subjecting each of said plurality of processors to a

method 1ncluding respective advancement from a first to a
second stage, 1niltially placing said each processor in
said first stage;

sending status of advancement of a second of said
plurality of processors;

receiving on said one processor said status of
advancement of said second processor;

after said receiving, updating status of said one
processor only 1if notification of a time expiration has
occurred on said one pProcessor;

respectively advancing to said second stage each
processor which has updated its status: and

determining that timer expirations have failed on
said one processor when said one processor fails to
advance from said first stage.

WO 98/34456

/ 100

12n

130n
;
126n

120n

12b

130D
[
126D

120b

180
-
16a

II2a

1300
.
1200

1200

CA 02275242 1999-06-14

PCT/US98/01484

1/18

= I P
——— o
T I: - <r
c e
B
|
N
e
=
P =
) ™ ez
u.::::
OOO
QO —
o 2=
o= = =
u..lz
— o
ZO
I v
I o
wiod -
e

I1Tb

ﬁ"‘"""‘""‘

170

1220~ —

SUBSTITUTE SHEET (RULE 26)

TR A Caraversh ol e abCaRIR I SN L KNI 1205 AR RO IS I A NPT IR SN AL ADTAON CIRIOH b TR+ 14 DAL K UM ML - 7o MRENORLIE Xt et VAT S FLe Tt v KA e st Lkt

/.

F/G.

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

2/18

200

'112 =112
\ \

Figure 2

Fioure 4

SUBSTITUTE SHEET (RULE 26)

w:Mmm1mwmmmmwmwm;umammsmwmmmmmmm A FD AR WA L -4y PR AR TP WY PR LY TSt At SUCrA it iat o P DA PATEIPURITI LS MM A . 50 PV LA S MM AM s) SR MM S SIS M Skt LT S AL TS = S A v 1) pod S

e HH MR et oot RS i I A A WAy o M SR MR

WO 98/34456

CA 02275242 1999-06-14

3/18

*300
112

* 500

SUBSTITUTE SHEET (RULE 26)

TN I 200 200N 0 TN SN PIVERE SO0 000 o2 o SO 6 A Mo T 0 - 000 A A ALCI S MM S RO AN A 350 CHLITNOITIES M TRT CIR I & .1 - ARAMALS §ATLun b7 4 1% . 2o s etrig et 1

PCT/US98/01484

112

Fioure 3

Figure 5

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

4/18

)
6225 6222

(.
Regroup Message Abs::et Slsaafgilwe

664

Start Timer;
Reset Connectivity Matnix;
Suspend /O Activity

Send Regroup

Message 666
Compare and Update 668
Al Known Ves
Processors
Accounted as
Heaithy?
NO
NoO INO
676 670 674
Yes No

Max Time Limit
Reached?

Min Time Limit
Reached?

Cautious Bit Set?

Enough
resources?

Stage 1l

NO
NoO

_ 682

Received
lamPresent
Message?

o Figure 6

SUBSTITUTE SHEET (RULE 26)

0T rem b eEP P AT S A M S A VLR I VI 05305 DTl el i AN 0 AN A ol A SENINMISL A0 MDA MM L MGt ol A A SNSRI 2 : : i -
PEPH ey A A W s 4 SERATANAEIN - RINCEDN AT o ST AW S SRS IR A AR T DM N A A Sl A okt it m M AL I . WA S iinbubichubiiv » iinbimtbiatminanbiupri o APPSR p aun SN A A3 Aurabviab v ey S SPRITS AL IAAT 75 st bt P+ -

WO 98/34456

CA 02275242 1999-06-14

5/18

700\
Sequence_Number 710

Power Failure Restart
Flag

STAGE 720
OUTER SCREEN 730

INNER_SCREEN 740
KNOWN_STAGE 1
750a

KNOWN_STAGE 2
750b

KNOWN_STAGE 3
750c

KNOWN_STAGE 4
750d

Figure 7

PCT/US98/01484

SUBSTITUTE SHEET (RULE 26)

mtmmmmAmu.»»mmrasﬁmwmmmm-mmmmmumm&mamﬁmwmmummmw4““'3*"”"-'“ ST ametere svur s Eeb pundmob¥ Al 1kl SR I AL M RN

CA 02275242 1999-06-14

WO 98/34456 PCT/US98/01484

6/18

Stage 5 ’

Wait for lamAlive
Packet, Timeout
Interrupt or Regroup
Packet

10

—805
Stable?
No
~820
Stage 1

~—830

Synchronize Healthy or
Malatose Processors:
Broadcast Status and

Receive Status from
Other Processors

~840
Stage 2

-850

Build New Processor
Configuration:
Broadcast Status and

Receive Status from
Other Processors

Stage 3 ’
Figure 84

SUBSTITUTE SHEET (RULE 26)

AN b A AN MMM e AT L ML T ENICEL S M R A W TNV MM | > AP AT L] 7 L Heerpyrpere e Lk S S - .
ARt auivcis w Mt BT] Criabie s £ HE A 2005 S Cullo A DM s} vt o PoTE RRHMEN D2 M T SErhhlR b rtintn H <PIMAAAETE-S e H ot AT Ly - 2.0 i WA AL I AL AL il ¢ 4 <+ M ERANE 7.0 74 W S AT TR 3G atot s 33 Uvil SR #6: Al W rabaipiieicy Skl aimmipiaid, LA A VMMM . A ubi it b oyt AAPETUICY «Fo bR Ma A e -t 0 A Skl 18 SR, oL iy Yot M T AP 3 44 e -

WO 98/34456

Figure 8B

CA 02275242 1999-06-14

7/18

Stage 3 ’

60

Clean Up Message
System; Broadcast
Status and Receive
Status from Other

Processors

65
Stage 4

70

Notify Processes of
Processor Failure;
Complete Clean Up of
Message System;
Broadcast Status and
Receive Status from

Other Processors

Stage 5)

SUBSTITUTE SHEET (RULE 26)

PCT/US98/01484

02275242 1999-06-14

CA

8/18 PCT/US98/01484

WO 98/34456

Power Failure Restart
Flag

Old Confiiguration
(Healthy Processors)

Old Confiiguration
(Healthy Processors)

XXXX XXXX XXXX XXXX

End of Stage 5

Sequence_ Number 710

Power Failure Restart
Flag

STAGE 720

OUTER_SCREEN 730

INNER_SCREEN 740

KNOWN_STAGE 2
750b

KNOWN_STAGE 3
750c

KNOWN_STAGE 4
750d

Figure 9

Power Failure Restart
Flag

Old Confiiguration
(Healthy Processors)

Old Confiiguration
(Healthy Processors)

0000 1000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

Beginning of Stage 1

ET (RULE 26)

SUBSTITUTE SHiI

02275242 1999-06-14

CA

PCT/US98/01484

WO 98/34456

9/18

[230 Jo pusy

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

1000 L1110 0001 O0LL

(s10ssad01d AYy)jeaH)

uonesnbijuo) pio

(s10ss9201d Ay)|eaH)

uoneinbiyuo) plo

bei4

He)say ainjied Jamod

01 24n3L.]

[230} Jo Juuiddagy

_ posL
¥ 3OVLS NMONM

_ 208!
€ 3OVLS NMONM

_ 405.
¢ 39YLS NMONM

_ ®eQ§.
1 "39V1S NMONX

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 000t 0000

(s10ss9201d A)jeaH)

OFL NI3HOS YNNI uoneinBijuon plo

(s10ss3201d AYyjjeay)
uonesnbijuo pio

0€L NIIYOS ¥ILNO

0L 4OV1S

be|4 be|4
JUR}SaY 9IN|ie4 Jamod

0}/ JaquinN 8suanbag

He}say ainjle{ 1amod -

SUBSTITUTE SHEET (RULE 26)

02275242 1999-06-14

CA

PCT/US98/01484

WO 98/34456

10/18

Z 23v3g Jo Suruuidagy

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0001 0000

1000 1110 0001 00LL

1000 L1 L0 O00L O0LL

(s10ssaoso0id AYjjesH)
uofjeinbiyuo) pio

bej4
He)say ainjied Jamod

| +!

[24131

_ POSL
b IOV.LS NMONM

20651

€ I9VLS NMONM

B (-]
Z 39VLS NMONY

_ EQgY
1 39VLS NMONM

OvZ NIIYDS HIANNI

0£L NIZYOS WIALNO

0¢. dOVI1S

be|4

He}Say ainjie Jomod

0L/ Jaqun) 9ouanbag

[23v)§ Jo puyg

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

1000 LLLO 000L 0011

(s10ssad01d Ayj|eaH)
uonetnbijuo) pio

(si0ssanoud Ayjjeay)
- uoneinbiyuo)d pIo

Gej4

HRISaYy ainjie4 Jamod

SUBSTITUTE SHEET (RULE 26)

02275242 1999-06-14

CA

PCT/US98/01484

WO 98/34456

11/18

Z 24018 fo puy

0000 0000 0000 0000

0000 0000 0000 0000

LOLL LL1LO 000 O0LL

}OLL LELO 0001 OOLL

LOLL L1110 0001 OOLL

(s10ssasoid AyjjeaH)
- uoneanbiyuod pi|o

bei4
Hejsay ainjie4 1amod

CI 24n31,]

_ PoSL
v 2OV1S NMONM

A0GL

€ dOVLS NMONM

_ 905.
Z 3OV.LS NMONM

_ ®OSL
1 3DVLS NMONM

ObL N3IYUOS HINNI

0€. NIIJXUOS ¥HIALNO

0¢c.l 49VI1S

bej
He)SIY ainjled 1amod

01, JaquinN asuanbag

Z 29v1§ Jo Suruuidagy

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0001 0000

1000 1110 0001 00}

1000 1110 0001 OOLL

(s10ssao01d Ayjjeay)
uofjesnbiyyuo9 p|o

be|
He)say ainjle4 Jamod

ET (RULE 26)

SUBSTITUTE SHE

02275242 1999-06-14

CA

PCT/US98/01484

WO 98/34456

8

12/1

£ 238’ fo urunudagy

0000 0000 0000 0000

0000 0000 0001 0000

LOLE LL1LO 0001 0011

LOLL LELO O00L 00LL

0Ll L1110 0001 0011

LOLL L1110 000L 00LL

be)4
He)say ainjled 1amod

€] 34na1.J

_ PosL
v 3OVLS NMONM

_ 2082
€ 39V1S NMONM

q05.

¢ A9V1S NMONMX

_ B0S.
1 39V.LS NMONM

Ov.Z NIIZYIDS HINNI

0€Z NIFYIOS ¥ILNO

0CL A0V1S

bej4
He)say ainjie 1amod

0L. JaquinN 8ouanbag

Z 2dvig Jo puy

0000 0000 0000 0000

0000 0000 0000 0000

LOLL 1110 000L 0011

LOLL 1110 0001 0O0LL

LOLL L1LLO 0001 00LL

(s1ossao0ud AyjjeaH)
uoneinbiyuo) pio

bej4
Hejsay ainjie4 1amod

ET (RULE 26)

SUBSTITUTE SHE

02275242 1999-06-14

CA

PCT/US98/01484

WO 98/34456

13/18

£ 24018 Jo puy

0000 0000 0000 0000

1OLL L1110 0001 001

LOLL LELO 0001 00LL

bOLL £LLO 0001 0011

LOLL LLLO 0001 0011

LOLL LELO 0001 0011

bej4

Hejsay ainjieq Jamod

pI 24n31,]

_ POSL
b 2OV.LS NMONM

_ 920§.
€ 39V.LS NMONM

_ 90s.
Z739V1S NMONX

_ e0§L
1 39VLS NMONM

Ov.Z NIIHOS HINNI
0€. N3JYOS ¥3ILNO

0CL 30V1S

bejd
HB)SaYy ainjieq4 Jamod

0L/ JdquinN 9o5uanbag

£ 23p3§ fo Sunundagy

0000 0000 0000 0000

0000 0000 000} 0000

LOLL LL1O 0001 0011

LOLLE L11LO 0001 O0LL
LOLL L1EO 0001 OOLE

LOLL L1100 0001 0011

be|4

}J1e}S 9y alnjie4 1omod

ET (RULE 26)

SUBSTITUTE SHI

02275242 1999-06-14

CA

PCT/US98/01484

WO 98/34456

14/18

(dnuvapo paasafop 121fv)
p 331§ fo SurmuiSagy

0000 0000 000} 0000

LOLL LELO 000) 001 L

LOLL LLLO 000L 00LL

LOLL LL10 0001 0011

LOLE LLLO O00L 00LL

LOLE 1110 000 001

bej4
Hejsay ainjle4 1omod

CI 24n31.J

P0OS.

b 39V.1IS NMONM

9082
£ IOV.LS NMONM

q0S§.

¢ 39V1S NMONM

e0g9.

} 39VY1S NMONM

Ov.Z NI3UDS HINNI

0€Z NIFYIOS ¥3ILNO

0¢Z 40V1S

bej|4
HB}SaY ainjie4 1amod

01/ Jaquinp asuanbag

£ 23vi§ fo puy

0000 0000 0000 0000

LOLL LL10 000 O0LL

LOLL L1110 000} 0011

LOLE LELO 000L 0011

LOLL LL1LO 0001 00LY

LOLL LLLO 0001 0011

bej4

Jejsay alnjie4 1amod

SUBSTITUTE SHEET (RULE 26)

02275242 1999-06-14

CA

PCT/US98/01484

WO 98/34456

15/18

p 2303 Jo pusg

LOLE L1110 0001 0011

LOLL E1LO 0001 00LE

LOLL LLLO 000L 00L)

LOLL LELO 000 001

LOLL 1110 000 0011

10OLL L1110 0001 0011

be|4

Hejsay ainjieq Jamod

91 24n31J

_ PosL.
¥ 3DVLS NMONM

_ 90§.
£ IDVIS NMONM

q06.

¢ 3OVLS NMONM

_ eogl
| "39V1S NMONX

OvZ NIJUOS HIANNI

0€Z NIFYDS ¥ILNO

0¢L 4ODV1S

be|4
Hejsay ainjie4 1amod

0L/ JaqunpN asuanbag

(dnuvayo pasiafop 43)fv)
p 23015 Jo umuidagy

0000 0000 000} 0000

LOLL L1110 0001 0011

LOLE LLLO 0001 0041

LOLL LL1O 0001 0031

LOLL LELO O00L O0L1

LOLL L1110 0001 00LL

bej4

Je)say ainjieq4 1amod

ET (RULE 26)

SUBSTITUTE SHi

02275242 1999-06-14

CA

PCT/US98/01484

WO 98/34456

16/18

§ 23v)§ Jo Sunnun8agy

LOLL LL10 0001 0OLL

LOLL L1110 000L 00LL

LOLL LLLO 0001 001}

LOLL L1110 0001 O0LL

LOLL LL10 0001 00L L

LOLL 1110 0001 OOLL

bej4
He)say ainjie4 1amod

LI 24131,

_ PoSL
v IOVLS NMONM

_ 205L
£ 39VLS NMONM

_ 90§.
2 39V.LS NMONM

_ e0SL
} 3OV1IS NMONX

OvZ NIFYIDS HINNI

0€Z NIIYOS ¥3ILINO

0¢Z 49VI1S

bejy
Hejsay ainjie4 1amod

01/ JaquinpN aosuanbag

p 230§ Jo pusg

10LL L1110 0001 00t

LOLL LLELO 000L 001}

LOLL LLLO 000L O0L)

LOLE L1100 0001 O0LI

LOLL LLLO 000L 001}

LOLL LLL0 000 00LL

be|

He}Say ainjie4 J1amod

I +}

SUBSTITUTE SHEET (RULE 26)

P A -4 et i A TS s+ oM A o
et L L g L P o S TR T T v AT AR MG S gtk Wit ~AP AR Ay DA AEVAEA aia Mbamirt ol LA

o e At LN SNSRI AL A AR I - A s 1 L daskca

T N et e)

CA 02275242 1999-06-14

WO 98/34456

1805
Select Tie-Breaker and
Determine Size of Group.

1810

Group
maller Than One-Hal
of Known
Processors?

Yes

1820

Group
Larger Than One-Hal
of Known
Processors?

Yes

1830

Only Two Processors Yes

Previously Known?

— 1840

Group Includes Tie-
Breaker?

Yes

Figure 184

PCT/US98/01484

17/18

~ 1815

— 1825

Continue Operation.

— 1850

Halt. —_— __,

SUBSTITUTE SHEET (RULE 26)

uimbiddere oo ‘MMWInwmwmm«mmw A LM VL DRI VLR W M L O D St L Lol i b N AN) AT IR AL 0 MMM, [N~ F bt - 13

CA 02275242 1999-06-14

WO 98/34456

Instant
Processor is
Tie-Breaker?

18/18

1860

Yes
Continue Operation.

1870

Attempt to Determine
State of Tie-Breaker,

Yes

Tie-Breaker
Halted or Frozen?

No

PCT/US98/01484

1865

1830 ~ 1895 ,
T;S.t;:z:,:e, ves Tie-Breaker
5
Indeterminate? Marked Unreachable ,
Tie-Breaker Actually Tie-Breaker Assumed l
1897
Halt. - l

Figure 18B

SUBSTITUTE SHEET (RULE 26)

TrAm et R A3 SSRLIEAN I M A

SN AR A IR L It B b Bt & 2y S

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - claims
	Page 52 - claims
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings

