(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

16 December 2004 (16.12.2004)

(10) International Publication Number

WO 2004/109503 A2

(51) International Patent Classification’: GO6F 9/40 (74)

(21) International Application Number:
PCT/EP2004/006586

(81)
(22) International Filing Date: 4 June 2004 (04.06.2004)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
10/453,530 4 June 2003 (04.06.2003) US
(71) Applicant (for all designated States except US): SAP
AKTIENGESELLSCHAFT [DE/DE]; Neurottstrasse
16, 69190 Walldorf (DE).
(84)

(72) Inventors: SOHN, Matthias, Eberhard; Shutzenstrasse
23a,, Speyer, 67346 (DE). LIENHARDT, Joerg; Hayden-
strasse 17, 69190 Walldorf (DE). KUMAR, Niraj; Flat N°
G-B Vaigai, Apartment 239, Defence Colony, 80 Ft Road,
Indiranagar, Bangalore, 560038 (IN). JOSHI, Vijay, Shri-
pad; 129, Ground Floor, 50-Feet Road, Hanumanthanagar,
Bangalore, 560019 (IN).

Agent: ROUND, Edward, Mark; Marks & Clerk, 57-60
Lincoln’s Inn Fields, London WC2A 3LS (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

Does YES

interfering Process

%, Hold Resource 2485
S, 110

NO

(54) Title: SYSTEM AND METHOD FOR ASYNCHRONOUS RESOURCE MANAGEMENT

h.

v

Return Control

140

Utitize Resource §
120

Return Control
130

47109503 A2 | IV YOO 0 O

Queue Resource
Request Until
Interfering Process

Is Complete
150

Utilize Resource
160

& (57) Abstract: A method and system for resolving access to a common resource for competing processes. According to one em-
& bodiment, a resource manager receives a request from a first process to access a resource, receives a request from a second process to
access the resource, the request from the second process arriving after the request from the first process, grants access to the resource
to the first process, queues the access request from the second process until the resource is released by the first process, and notifies
the second process that its access request has been queued, wherein upon receiving the notification, the second process resumes
g operation as if the second process had been granted access to and released the resource.

WO 2004/109503 A2 I} N0 A0VOA0 T 00000 O R

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

WO 2004/109503 PCT/EP2004/006586

SYSTEM AND METHOD FOR
ASYNCHRONOUS RESOURCE MANAGEMENT

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to the subject matter of the following U.S. patent
applications filed on 04 June 2003: no. 10/453,533 entitled “System and Method for
Incremental Object Generation,” no. 10/453,569 entitled “System and Method for
Object Navigation Grammar Completion,” no. 10/453,531 entitled “System and Method
for Rule Based Object Navigation,” and no. 10/453,529 entitled “System and Method
for Generator State Object Validation.”

BACKGROUND OF THE INVENTION

When two processes atfempt to access a common resource at the same time,
access is usually granted to the first process that requests the resource, while the second
process is forced to block (i.e., wait) until the first process releases the resource.
Forcing the second process to block for access to the resource can lead to bad usability,

especially when human computer users are left waiting in real-time for their programs

to resume operation.

Accordingly, there is a need in the art for a systern and method that allows a

process to resume operation before having access granted to a common resource.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide for resolving access to a common
resource for competing processes. According to one embodiment, a resource manager
receives a request from a first process to access a resource, receives a request from a
second process to access the resource, the request from the second process arriving after
the request from the first prdcess, grants access to the resource to the first process,
queues the access request from the second process until the resource is released by the

first process, and notifies the second process that its access request has been queued,

WO 2004/109503 PCT/EP2004/006586

wherein upon receiving the notification, the second process resumes operation as if the

second process had been granted access to and released the resource.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart that depicts a process for asynchronous resource

management in accordance with an embodiment of the present invention.

FIG. 2 is a block diagram that depicts a user computing device in accordance.

with an embodiment of the present invention.

FIG. 3 is a block diagram that depicts a network architecture for a development

environment in accordance with an embodiment of the present invention.

FIG. 4 is a block diagram that depicts modeling and generating an application
development environment and corresponding applications that are compatible with an

existing framework in accordance with an embodiment of the present invention.

FIG. 5 is a block diagram that depicts the metalevels of repository based
application development using the OMG Meta Object Facility (MOF) architecture in

accordance with an embodiment of the present invention.

FIG. 6 is a screen shot of an object browser for modeling business objects in

accordance with an embodiment of the present invention.

FIG. 7 is a screen shot of an object browser for modeling user interface elements

in accordance with an embodiment of the present invention.

FIG. 8 is a block diagram that depicts changelist management in accordance

with an embodiment of the present invention.

FIG. 9 is a block diagram that depicts changelist management in accordance

with an embodiment of the present invention.

FIG. 10 is a screen shot of a changelist browser in accordance with an

embodiment of the present invention.

WO 2004/109503 PCT/EP2004/006586

FIG. 11 is a screen shot of a particular changelist in accordance with an

embodiment of the present invention.

FIG. 12 is an abstract object repository model in accordance with an

embodiment of the present invention.

FIG. 13 is an general framework object model in accordance with an

embodiment of the present invention.

FIG. 14 is a detailed framework object model in accordance with an

embodiment of the present invention.

FIG. 15 is a block diagram that depicts the generation of invalidation rules into

application repository in accordance with an embodiment of the present invention.

FIG. 16 is a flow chart that depicts a process for generating invalidation rule

objects in accordance with an embodiment of the present invention.

FIG. 17 is a block diagram of a repository based application development

environment in accordance with an embodiment of the present invention.

FIG. 18 is a block diagram of a data structure representing a runtime object in

accordance with an embodiment of the present invention.

FIG. 19 is a sequence diagram that depicts the flow of a repository based
application development environment during invalidation of a development object in

accordance with an embodiment of the present invention.

FIG. 20 is a sequence diagram that depicts the flow of a repository based
application development environment during generation of a development object in

accordance with an embodiment of the present invention.

FIG. 21 is a screen shot of a generator settings window in accordance with an

embodiment of the present invention.

FIG. 22 is a block diagram of a data structure representing a runtime object in

accordance with an embodiment of the present invention.

WO 2004/109503 PCT/EP2004/006586

FIG. 23 is a diagram that depicts interfering validation/invalidation processes in

accordance with an embodiment of the present invention.

FIG. 24 is a sequence diagram that depicts the flow of a repository based
application development environment during invalidation of a development object in

accordance with an embodiment of the present invention.

DETAILED DESCRIPTION
OVERVIEW

FIG. 1 depicts a process for asynchronous resource management in accordance
with an embodiment of the present invention. When a process requests a common
resource (step 100) that is available (“no” branch of step 110), the process is able to
utilize the resource (step 120) and, upon releasing the resource, returns to its normal
operation (step 130). When an interfering process holds the resource (“yes” branch of
step 110), a resource manager queues the resource request until the interfering process is
complete (step 150), allowing the requesting p}ocess to resume normal operation even
though it had not utilized the resource (step 140). Once the interfering process is

complete, the resource manager utilizes the resource on behalf of the requesting process

(step 160).

Embodiments described below illustrate an application development

environment within which the present invention may be implemented.

DEVELOPMENT ENVIRONMENT
FIGS. 2 and 3 illustrate the components of a basic development environment in
accordance with an embodiment of the present invention. FIG. 2 depicts client
computing device 200, which may be a workstation, personal computer, handheld
personal digital assistant (“PDA”), or any other type of microprocessor-based device.
Client computing device 200 may include a processor 210, input device 220, output

device 230, storage device 240, client software 250, and communication device 260.

Input device 220 may include a keyboard, mouse, pen-operated touch screen,

voice-recognition device, or any other device that provides input from a user. Output

WO 2004/109503 PCT/EP2004/006586

device 230 may include a monitor, printer, disk drive, speakers, or any other device that

provides output to user.

Storage device 240 may include volatile and nonvolatile data storage, including
one or more electrical, magnetic or optical memories such as a RAM, cache, hard drive,
CD-ROM drive, tape drive or removable storage disk. Communication device 260 may
include a modem, network interface card, or any other device capable of transmitting
and receiving signals over a network. The components of client computing device 200

may be connected via an electrical bus or wirelessly.

Client software 250 may be stored in storage device 240 and executed by
processor 210, and may include, for example, the client side of a client/server
application such as the SAP Mobile Application Studio component of a mySAP
Customer Relationship Management (CRM) installation package that embodies the

functionality of the present invention.

FIG. 3 illustrates a network architecture for a development environment in
accordance with an embodiment of the present invention. According to one particular
embodiment, when developer 300a invokes an SAP Mobile Application Studio
application, client software 250 of client computing device 200a communicates with
server software 330 (e.g., the server side of the SAP Mobile Application Studio
application) of server 320 via network link 315a, network 310, and network link 315d.

Network link 315 may include telephone lines, DSL, cable networks, T1 or T3
lines, wireless network connections, or any other arrangement that implements the
transmission and reception of network signals. Network 310 may include any type of
interconnected communication system, and may implement any communications

protocol, which may secured by any security protocol.

Server 320 includes a processor and memory for executing program instructions,
as well as a network interface, and may include a collection of servers. In one particular
embodiment, server 320 may include a combination of enterprise servers such as an
application server and a database server. Database 340 may represent a relational or

object database, and may be accessed via a database server.

WO 2004/109503 PCT/EP2004/006586

Client computing device 200 and server 320 may implement any operating
system, such as Windows or UNIX. Client software 250 and server software 330 may
be written in any programming language, such as ABAP, C, C++, Java or Visual Basic.

REPOSITORY BASED APPLICATION DEVELOPMENT
An embodiment of the present invention may be implemented through the use of
a repository based application development environment. In this type of environment,
application metadata is modeled (e.g., developed and tested) using an application
repository, and then generated into a runtime application to be executed within its

corresponding application framework.

Overview

An application framework provides core services and functionality common to
any application that may run on the framework. An application may take the form of
runtime files that extend the basic functionality of the framework in order to achieve
individual application behavior. In order to recognize and execute the application, the
framework defines a particular format to which the application is expected to conform.
By distinguishing an application from its framework in this manner, application
development can focus on high-level functionality rather than the low-level, and

generally static, services and functionality provided by the framework.

In order for an application development environment to properly model and
generate applications to run on an existing ﬁameWork, the application development
environment needs to have intimate knowledge of the framework architecture. The
process of modeling and generating both an application development environment and

the corresponding applications in conformance with an existing framework is illustrated

in FIG. 4.

Application framework 400 may represent an existing object-oriented
framework with a three-tier architecture: presentation layer 410, business logic layer
415 and persistence layer 420. Presentation layer 410 may provide a user interface to
user 405, rendering data to and accepting data from user 405. Business logic layer 415
may act as a data provider to presentation layer 410, providing validation of user inputs

and business rules, and other standard operations, such as save, delete, revert, etc.
6

WO 2004/109503 PCT/EP2004/006586

Persistence layer 420 may provide an abstraction over user database 425, providing an

object-oriented wrapper over relational data stored in user database 425.

Modeler 445 and application generator 455 are part of a repository based
application development environment that enables application developers to model and
generate applications such as runtime application 460 to run on application framework
400. Since in this embodiment application framework 400 represents an object-oriented
framework, application framework 400 defines a particular object format to which it
expects runtime application 460 to conform. This object format is developed into
modeler 445 and application generator 455 so that they may correctly model and
generate runtime application 460. Metamodeler 435 provides a modeling (or, more
specifically, metamodeling) environment that enables framework developers to specify

the object format of application framework 400 to be developed into modeler 445.

Thus, framework developers use metamodeler 435 to specify the type of objects
(i.e., object type 430) defined by application framework 400. This object type
information is used to generate and develop modeler 445, which is used by application
developers to specify instances of these object types (i.e., object instance 440) in the
development and testing of an application’s metadata (i.e., metadata 450). Once the
development and testing of metadata 450 is complete, application generator 455

generates metadata 450 into runtime application 460 for execution within application

framework 400.

Transformation Between Application Metalevels

This repository based development environment can be described using the OMG
Meta Object Facility (MOF) architecture. The MOF is a 4 layer meta data architecture
described as follows:

e The user object layer (MO) is comprised of the information that one wishes to

describe. This information is typically referred to as data.

e The model layer (M1) is comprised of the metadata that describes information.

Metadata is informally aggregated as models.
e The metamodel layer (M2) is comprised of the descriptions (i.e. meta-metadata)

that define the structure and semantics of meta-data. Meta-metadata is

7

WO 2004/109503 PCT/EP2004/006586

informally aggregated as metamodels. A metamodel can also be thought of as a
modeling language (e.g., UML is defined by a metamodel) for describing
different kinds of data.

e The meta-metamodel layer (M3) is comprised of the description of the structure
and semantics of meta-metadata. In other words, it is the language for defining
different kinds of metadata. The OMG MOF specification contains a
standardized meta-metamodel which is designed to support the definition of

different kinds of modeling languages like UML, IDL etc.

FIG. 5, for example, metamodel 500 (the M2 layer) represents the object types
supported by application framework 400 that are specified by framework developers
using metamodeler 435. Repository generator 510 uses metamodel 500 to generate
framework-specific parts of application repository 520 (the M1 layer), which represent
an object repository (i.e., database structure) and corresponding object navigational
interface that are accessed by application developers via modeler 445 in the
development and testing of metadata 450. Application generator 455 generates
metadata 450 into runtime application 460 (the M0 layer) for execution within
appﬁcation framework 400. The M3 layer is not applicable to the current description of

the repository based development environment.

Modeler

FIGS. 6-11 illustrate modeling screens and changelist management employed by

modeler 445 in accordance with an embodiment of the present invention.

Modeling Screens

As shown in FIGS. 6 and 7, modeler 445 employs an object browser to enable
application developers to view a hierarchical display of development objects to be
generated into runtime application 460, and to model development objects for business
logic layer 415 (FIG. 6) and presentation layer 410 (FIG. 7) of runtime application 460.
A similar modeling environment may be employed to model development objects for

persistence layer 420.

WO 2004/109503 PCT/EP2004/006586

As an example, application framework 400 may define a business object type to
represent the business logic for business logic layer 415 of runtime application 460. In
the business world, one may wish to model a sales organization that offers products or
services to various customers. Since the organization would need to store information
on its customers and decide how to offer its products or services in different market
segments, a business object could represent customers, contact persons, products, sales

opportunities, sales activities and sales promotions.

A development object in modeler 445 may model each of the above business
objects. For purposes of this discussion, although the term “object” may either refer to
a class (i.e., object type 430) or an instance of a class (i.e., object instance 440), the term
“object” is generally meant to portray an instance of a class, while the term “object

type” is generally meant to portray the class itself.

Thus, as shown in the “Object Modeler” sub-window in FIG. 6, an application
developer has modeled several development objects (e.g., “Address”,
“BusinessPartner”, “LOGIN”, “Order”, “OrderItem” and ‘“Product”) representing
business objects. Since application framework 400 has also defined attributes for a
business object, modeler 445 provides those attributes (e.g., “Properties”, “Methods”,
“Event Handlers”, “Relations”, “SaveRules”, “DeleteRules” and ‘“UserExits”) for
development as shown under the “Order” object in the “Object Modeler” sub-window
in FIG. 6. The application developer develops the attributes for the business object

“Order” using the “Business Object - Order” sub-window in FIG. 6.

For example, the “Properties” attribute may represent the attributes of an entity
of a real business world, such as a Sales Order object having properties like order
number, order date, quantity. The “Methods” attribute may perform specific operations
to manipulate data, such as a Sales Order object having a method to calculate and get
the line items total. The “Event Handlers” attribute may describe a specific action that
can occur against pre-defined events. The “Relations” attribute may define the
interaction between different development objects based on business logic, such as a
customer being associated to one or more sales orders. Business rules (e.g., the

“SaveRules”, “DeleteRules” and “UserExits” attributes) may validate the object data for

WO 2004/109503 PCT/EP2004/006586

consistency, such as allowing the creation of a rule for the Sales Order object to check if

the range of the order amount is consistent.

FIG. 7 illustrates a similar modeling screen for UI objects, as defined by
application framework 400, to represent the screen elements for presentation layer 410
of runtime application 460. As shown in the “UIl Modeler” sub-window in FIG. 7, an
application developer has modeled several development objects (e.g.,
“CustomerAddress”, “CustomerDetail”, efc.) representing tiles, which are Ul objects
similar to frames or sub-windows. The application developer develops the UI object

“CustomerAddress” using the “Tile - CustomerAddress” sub-window in FIG. 7.

Changelist Management

As stated above, modeler 445 uses application repository 520 in the
development and testing of metadata 450. The framework-specific parts of application
repository 520 represent an object repository and corresponding object navigational
interface that provide for the storage and access of the development objects by modeler
445. Due to the importance of tracking changes in a parallel and distributed
development environment, application developers may operate on a development object
via changelists, which allow the developers to maintain different versions of the
development object in the object repository. This provides isolation of work in a multi-

user development environment, as depicted in FIG. 3.

A changelist is a collection of open versions of new or existing development
objects that are derived from the repository baseline. The repository baseline specifies
the current closed version of a development object in the object repository. As
illustrated in FIG. 8, the repository baseline includes version 5 of development object 1,
version 3 of development object 2, version 1 of development objects 3 and 4, and
version 3 of development object 5. Since a first application developer is working on
development objects 1 and 4, the first developer’s changelist includes version 6 of
development object 1 and version 2 of development object 4. Since a second
application developer is working on development objects 2 and 5, the second
developer’s changelist includes version 4 of development object 2 and version 4 of

development object 5. As illustrated in FIG. 9, when the second developer releases her

10

WO 2004/109503 PCT/EP2004/006586

changelist to the baseline, version 4 of development objects 2 and 5 become part of the

new repository baseline that is now available for development and testing by other

developers.

An application developer may manage changelists through a changelist browser,
as shown in FIG. 10, which keeps track of both open and released changelists of the
developer and others. The selection of a particular changelist, such as
“Y NewChangelist3” in the changelist browser in FIG. 10, may bring up an additional

window describing the details of the development objects in that changelist, as shown in

FIG. 11.

Modeler 445 may include known configuration management tools to handle
version management issues such as branching, collisions, etc. when developers work on

the same development objects at the same time.

INCREMENTAL GENERATION BASED ON INVALIDATION RULES
Within a repository based application development environment, such as the one
described above, an embodiment of the present invention may be implemented to enable
application generator 455 to generate only those elements of runtime application 460
that have been invalidated through rule-based navigation. The implementation of
invalidation rule based generation depends upon the structure of and relationship

between metadata 450 and runtime application 460.

Overview

According to one embodiment of the present invention, the structure of metadata
450 and runtime application 460 may be represented in the object repository of
application repository 520 based on the abstractions illustrated in the object repository
model of FIG. 12. Development objects (DevelopmentObject 1200) represents the class
of metadata 450, which is the pre-generation data representation of the development
objects as modeled by application developers in modeler 445. This data representation,
for example, could take the form of database tables wherein in each table represents a
development object type, each column represents a particular development object and
each row represents the attributes of a particular development object. Runtime objects

(RunTimeObject 1220) represent the class of runtime files of runtime application 460
11

WO 2004/109503 PCT/EP2004/006586

that are generated from the development object metadata to be executed by application
framework 400. Examples of runtime files could be binary files, JAVA class files and
HTML layout files. In this particular model, development objects are classified as main
development objects (RunTimeObjectOwner 1220) if they are top level objects

associated with runtime objects.

FIG. 13 illustrates an general framework object model (object model 1300) that
may be defined by a framework developer based on the object repository model of FIG.
12. In FIG. 13, the framework designer creates MDO to represent a main development
object type, and DO1 through DO6 to represent children development objects types
associated with MDO. Runtime object types RTO1 and RTO2 are associated with
MDO, since MDO is the top-level object in accordance with the object repository model

of FIG. 12.

- Based on the requirements of application framework 400 and application
generator 455 as defined by a framework developer, each runtime object type may only
be influenced or affected b.y changes in a particular set of development object types.
For example, during the modeling of specific instances of the framework object types of
FIG. 13 in modeler 445, changes made to development objects of types MDO, DO1,
DO2 and DOS may influence the associated runtime object of type RTO1, while
changes made to development objects of types MDO, DO3, DO4 and DO6 may
influence the associated runtime object of type RTO2. These relationships may be
formalized into a set of invalidation rules in advance of any application development,
and can be used during application development to invalidate only the influenced
runtime objects of a particular changed development object, so that application

generator 455 only has to regenerate the invalidated runtime objects instead of all

runtime objects.

Navigation Grammar Based on Object Semantics

The invalidation rules may be formalized with an object navigation grammar in
accordance with an embodiment of the present invention. For example, an object
navigation grammar could define a navigation path through the object repository of

application repository 520, starting from a changed development object and ending at

12

WO 2004/109503 PCT/EP2004/006586

that development object’s main development object, which is associated with the

runtime object that is influenced by the changed development object.

For example, the framework developer who created object model 1300 could

formalize the associated invalidation rules as mentioned above using the following

grammar:

RTO1l Invalidation Rules

AnyChange => DO5.parent.parent : {RTO1}
AnyChange => DO2.parent : {RTO1}
AnyChange => DOl.parent : {RTO1}

RTO2 Invalidation Rules

AnyChange => DO6.parent.parent : {RTO2}
AnyChange => DO4.parent : {RTO2}
AnyChange => DO3.parent.parent : {RTO2}

Using the first RTO1 invalidation rule as an example, the object navigation

grammar defines:
e the type of change required to fire the rule (e.g., “AnyChange”),

e the starting object type in the navigation path (e.g., “D05”),
e the navigation path via role names (e.g., “.parent.parent”), and
e the type of the resultant runtime object that requires invalidation (e.g.,

“fRTO1}™).

Based on these rules, if a development object of type DO2 were changed by an
application developer in modeler 445, the following of the above invalidation rules
could be applied to determine which runtime objects are influenced by the changed

DO2 development object:

13

WO 2004/109503 PCT/EP2004/006586

AnyChange => DO2.parent : {RTO1}
AnyChange => DO3.parent.parent : {RTO2}

The first of these rules is applied because the starting object type of the rule (DO2) is
that of the changed DO2 development object. This first rule thus specifies that the
RTO1 runtime object associated with the parent of the changed DO2 development
object should be invalidated. The second of these rules is applied because DO2 is in the
navigation path of DO3 (i.e., DO2 = DO3.parent), and thus the rule specifies that the
RTO2 runtime object associated with the parent of the changed DO2 development
object (i.e., DO2.parent = DO3.parent.parent) should be invalidated. This second rule is
applied because a corresponding DO3 development object associated with the changed
DO2 development object could have also been changed due to the change in the DO2
development object. For instance, the DO2 development object could have replaced its
associated DO3 development object with a different DO3 development object, thus
requiring invalidation of the changed DO2 development object’s influenced RTQ2
runtime object. If, in actuality, there is no corresponding DO3 development object
associated with the changed DO2 development, the rule merely specifies an

unnecessary, but rather harmless, invalidation.

The actions that may be specified by this object navigation grammar can be
further illustrated with respect to the more detailed framework object model of FIG. 14,
which may represent the types of development objects to be used for modeling
presentation layer 410 of runtime application 460. Each object in FIG. 14is a
development object type, except for the main development object types UlITile 1410
(and it’s corresponding runtime object types RR 1411, Class 1412 and HTML 1413),
UlTileSet 1420 (and it’s corresponding runtime object types RR 1421 and Class 1422),
UIBusinessComp 1430 (and it’s corresponding runtime object types RR 1431 and Class
1432), UlApplication 1440 (and it’s corresponding runtime object type Class 1441), and
Usages 1480 (and it’s corresponding runtime object type Class 1481). The RR runtime

objects may refer to binary files. The grammar may specify:

14

WO 2004/109503 PCT/EP2004/006586

e navigation to associated object or associated collection, specified by “.”
The cardinality of the relation can be 1 or many. For example:

a. navigation to associated object with cardinality 1 may be specified as:

UIObjLibReference.InteractionComp

b. navigation to associated object with cardinality more than one may be

specified as:

UlTileset.UITilesetContainers
e downcasting a pointer of an object to its sub class, specified by enclosing the
class to be cast to in “[J”
For example:
a. InteractionComp [UITile]
b. InteractionComp [UlITileset]
e upcasting a pointer of an object to its super class, specified by enclosing the
class to be cast to in “[*]”
For example:

a. UlBusinessComp["InteractionComp]

15

WO 2004/109503 PCT/EP2004/006586

e repeating any of the above operations or sets of operations zero or more

number of times, specified by enclosing them in “()*”

For example:

a. UICustomProperty.(InteractionComp[UIPopupTileset].Usages)*

[T 1

e the runtime object to be invalidated, specified in “{ }” following “::

There could be more than one runtime object to be invalidated. More than
one runtime object can be specified in “§ }” separated by comma. For

example:
a. UlTile::{class, HTML}
b. UlTileset::{class, RR}
e the change type that will trigger the firing of a particular invalidation rule,

specified by prefixing the rule with ‘<change type>=>’ where the <change

type> can be one of the following: ‘Create’, ‘Add’, ‘Modify’, ‘Delete’

For example:

a. modify=>UICustomProperty.(InteractionComp[UIPopupTileset].Us

ages)*::{class}
e language dependent rules and runtime objects
The grammar may handle language dependency at two levels. Firstly, a rule

itself may be specified as a language dependent/independent rule and
16

WO 2004/109503

PCT/EP2004/006586

secondly, the runtime object which has langnage dependency can further
define the scope of invalidation with respect to language. The languages on
which the rule or the runtime object is dependent may be specified in “<>”

separated by commas. For example:
a. modify=><EN>Parent[UITile]::{HTML<EN, DE>, class>}

Here the HTML runtime object needs to be invalidated in EN and DE
languages. Class needs to be invalidated but it is language independent.

“HTML<LANG*>" would specify all languages.

17

WO 2004/109503

PCT/EP2004/006586

predicates to be evaluated to resolve ambiguous object constructions

In some cases, an invalidation rule should specify information beyond a
simple navigation path in order to allow efficient use of the rule. For
example, this additional information may be used to evaluate the context of
objects that may have ambiguous constructions in the associated object
model. For instance, the following two relations may be defined between a

tile object and a text object:

Object Type(Role) (Role)Object Type
Tile (parent)--------- (caption) Text
Tile(parent)---------- (status) Text

Since the tile object type has the same role name for both relations, an
invalidation rule for a caption text would be indistinguishable from an
invalidation rule for a status text, namely “anychange=>Text.parent...”.
Thus, in order to avoid unnecessary invalidations, an additional meta rule
may be specified that would allow one to disambiguate an object

construction so that a determination can be made as to which rule should be

fired. For example:

a. modify=><EN><<LanguageText.Parent[UITile].Caption>>LangTex
t.Parent[UITile]::{HTML<EN>}

The part of the rule, such as <<LanguageText.Parent[UITile].Caption>>
is known as a meta rule that helps in disambiguation and determining which
rule has to be fired. Without this metarule, every rule with a text object type
not associated with a caption may have been needlessly fired, possibly

causing great inefficiencies.

18

WO 2004/109503 PCT/EP2004/006586

o several invalidation rules combined together

For example, modification of UICustomProperty 1450 of InteractionComp
1400 (which could be any of UlTile 1410, UlITileset 1420, UIBusinessComp
1430 and UIApplication 1440) may require invalidating the class file of the
corresponding interaction component. The rules to specify are:
modify=>UICustomProperty.InteractionComp [UITile]::{class}”
modify=>UICustomProperty.InteractionComp[UITileset]::{class}”
modify=>UICustomProperty.InteractionComp[UIBusinessComp]::{
class}”
modify=>UICustofnProperty.InteractionComp [UIApplication]::{cla

SS}”
The above rules could be clubbed together as:

modify=>UICustomProperty.InteractionComp[UITile, UlTileset,
UIBusinessComp, UIApplication]->{class}”

When UICustomProperty 1450 changes, this rule would be interpreted to
invalidate the class file of the corresponding InteractionComponent 1400,
which could be any of UITile 1410, UlTileset 1420, UIBusinessComp 1430
and UIApplication 1440.

Rule Objects

FIG. 15 illustrates how navigation grammar based invalidation rules may be
generated into the runtime of application repository 520 for runtime execution.
Initially, a framework developer defines in metamodeler 435 an invalidation rule for
each framework object type in object model 1300 that is relevant with respect to a
corresponding runtime object to be generated. This could be implemented in one
particular embodiment by adding property pages to the specification of certain UML

elements in the Rational Rose modeling software. Repository generator 510 may then

19

WO 2004/109503 PCT/EP2004/006586

extract the object model 1500 information from metamodeler 435 and dump it into an

XML file for subsequent processing.

Grammar Completion

Before dumping the invalidation rules into an XML file for further processing,
repository generator 510 may first create rule parser 1510 so that syntactic correctness
of the invalidation rules may be enforced. Repository generatof 510 may create rule
parser 1510 by first completing a framework-specific grammar file. This can be
accomplished by incorporating information such as class names and role names from
object model 1500 (e.g., from the Rational Rose .md] file) into a generic grammar file

based on the above-described grammar specification:

In order to illustrate a generic grammar file according to object model 1500, the

following relations are presumed to be defined in object model 1500:

Object Type (Role) (Role)Object Type
MDO (parent) -------~-~ (childl)DoO1
MDO (parent) ---------- (child2)DO2
MDO (parent) ---------- (child3) D04
DO2 (parent) --------- (child21)DO3
DO4 (parent) --------- (child31)DO5
DO6 (parent) --------- (child32) D06

Thus, the following represents the contents of a generic grammar file based on object

model 15 in accordance with an embodiment of the present invention:

rule spec!:
change_ type
IMPLIES
{lang_spec}
{METARULEBEGIN cls METARULEEND }

invalidation rule

;

20

WO 2004/109503

change_type!:
"modify™"
| "add"
| "delete"
| "create”
"AllChanges"

invalidation rule!:

cls
SCOPEOP
rto_ list
lang spec!:
LANGLEBRACK
(language
| LANG STAR)
RANGLEBRACK
rto list!:
LCURLY
rto_spec
(COMMA rto_spec) *
RCURLY
rto_spec!:
rto_type {lang_ spec}
;
clsl!:
(fw_class_list)
(operation) *
7

repetition operator!:

21

PCT/EP2004/006586

WO 2004/109503 PCT/EP2004/006586

STAR

| PLUS

;
operation!:

(navigation

| cast)

-
7

navigation!:
DOT
(
LPAREN (fw _role attrib_list) (operation)*
last recur nav repetition_ operator
| (Ew_role attrib_list)
)
last_recur navl!:
DOT
(fw_role_attrib list)
RPAREN
cast!:
(upcast
| downcast

)
upcast!:
LBRACKUP
fw_class_list (COMMA fw_class_list)*
RBRACK
downcast!:

LBRACKDOWN

22

WO 2004/109503 PCT/EP2004/006586

fw_class_list
(COMMA fw class list)*
RBRACK

//the following production rules are to be generated
lang dep_rto_types!:
("HTML"
l "Prj ")
lang_spec
lang indep rto_types!:
"class"
]"liSt"
rto_type!:
lang dep_rto_types
| lang_indep_rto_types
language!:
" ENII
l npE™"
fw_class_list!:
(fw_class)
fw role attrib list!:
(fw_role_attrib)
fw_class!:
HMDO n
l "pO1LN

23

WO 2004/109503

I"DOZ"

I"DO3"

I"DO4"
I"DO5"

I"DOG"

.
7

fw _role attrib!:

"parent"
| "childl"
mchild2"
"child3"

"child31"
"child3a"

4

#token
#token
#token
#token
#token
#token
#token

#token
#token
#token
#token
#token
#token

|
l
| "child2l"
|
I

SEMI ";
IMPLIES
LPAREN
RPAREN

f

LIS

n(n
n)u

LBRACKDOWN

LBRACKUP
RBRACK

LCURLY
RCURLY
COLON
COMMA
DOT
STAR

ll] n

n{u
n}n

" [Il

H[AH

24

PCT/EP2004/006586

WO 2004/109503 PCT/EP2004/006586

#token SCOPEQP "::"
#token PLUS "y
#token SPACE "[tnl+"
<<Skip();>>
#token IDENT "[a-zA-Z] [a-zA-Z0-9 /t*]#"

#token "[t]+" <<gkip () ;>>

#token "n" <<skip(); newline();>>
#token LANGLEBRACK et

#token RANGLEBRACK nsn

#token METARULEBEGIN "eM

#token METARULEEND "o

#token LANG
"LANG"

As seen from the contents of the above grammar file, the generic framework-
independent portion of the grammar file resides above the comment line stating “the
following production rules are to be generated.” The framework-dependent portion of
the grammar file resides below that comment line, which is where repository generator
510 may insert the relevant model information to complete the grammar. Once the
grammar is completed, repository generator 510 may then pass the grammar file to a
known parser generator (such as ANTLR/PCCTS) to generate rule parser 1510, which

may then be incorporated into repository generator 510.

Rule Object Generation

As described in FIG. 16, repository generator 510 may then retrieve the
invalidation rules from object model 1500 (step 1600), and parse and validate the rules
(step 1610). In parsing the rules, rule parser 1510 may check for syntactic correctness
of each rule based on the specified object navigation grammar, and check for
correctness of class names and role names based on the specified object model 1500.
Repository generator 510 may validate the rules, for example, by using object model
1500 to ensure that casting operations and navigation paths are supported by the model,

as well as making sure that the rule ends with 2 main development object type (instead

25

WO 2004/109503 PCT/EP2004/006586

of a development object type) and that the runtime object type to be invalidated is
properly associated with the ending main development object type. After the rules are
parsed and validated, repository generator 510 may dump them into an XML file for

subsequent processing.

Rule Generator 1520 may read the invalidation rules from the XML file and, using
XSL transformations, generate for each rule a corresponding rule object (rule objects
1530) to be compiled into repository runtime 1540 (step 1620) of application repository
520. According to one embodiment of the present invention, each rule object is
generated with a “navigate” function that:

e receives as input a development object (or a reference to the development object) of
a type that resides anywhere in the rule’s navigation path,

e navigates using object instances, starting from the received object type’s location in
the navigation path and proceeding through the subsequent steps of the navigation
path, and

¢ returns any resultant runtime object (or a reference to the runtime object) of a type
required by the rule.

In this manner, the rule object’s “navigate” function may be invoked to determine the

runtime objects, if any, that are influenced by a changed development object that lies

anywhere in the rule’s navigation path. The rule object’s “navigate” function is
overloaded to allow for the input of a development object of any type that is listed in the

rule’s navigation path.

So that a determination can be made of which development object types are
listed in a rule object’s associated navigation path, rule generator 1520 generates each
rule object with the functionality to provide this information. In addition, each rule
object may alsc; be generated with functionality to additionally provide a listing of any
influenced runtime object types specified at the end of the rule. This combined
functionality could enable an index to be constructed for fast runtime rule
determination. For example, assuming rule objects are generated for the RTO1 and
RTO?2 invalidation rules provided earlier (from the discussion of FIG. 13), the following

is a collection of the listings that may be provided by each of the rule objects:

26

WO 2004/109503 PCT/EP2004/006586

Rule Object DO Types RTO Types

Rule Object 1 DO1,MDO RTOL
Rule Object 2 DO2 , MDO RTOL
Rule Object 3 DO3,D0O2,MDO RTO2
Rule Object 4 DO4 , MDO RTO2
Rule Object 5 DO5,D04 , MDO RTO1
Rule Object 6 DO6,D04 , MDO RTO2

Rule Object 1 corresponds to the rule with starting object type DO1, Rule Object 2
corresponds to the rule with starting object type DO2, etc.

Based on these lists, repository runtime 1540 can generate the following index:

Changed DO Type Relevant Rule Objects

MDO 1,2,3,4,5,6
DO1 1

DO2 2,3
DO3 3

DO4 4,5,6
DO5 5

DO6 6

This index is constructed by matching each development object type with each rule
object that lists the development object type in its rule’s navigation path. Repository
runtime 1540 may use this index during runtime to immediately determine which rule
objects’ “navigate” function should be invoked when a development object is changed.
In an actual development environment with a large number of rules and associated
object types, this index can achieve substantial time savings during runtime because it
eliminates the need for repository runtime 1540 to check each rule object for its

relevance with respect to a development object every time it changes.

Incremental Generation

Within a repository based application development environment as illustrated in

FIG. 17, an embodiment of the present invention may be implemented to enable

27

WO 2004/109503 PCT/EP2004/006586

application generator 455 to generate (FIG. 20) only those runtime objects that have
been invalidated (FIGS. 19, 24) through rule-based navigation. As illustrated below,
this embodiment scales to support many client side developers by centrally storing
development objects and runtime objects (either baseline version or changelist version)
on the server side in object repository 1700, while allowing each developer client to

maintain cached copies of these objects locally.

Repository runtime 1540 may include several components, such as development
objects 1715, runtime objects 1720, rule engine 1730, rule objects 1530, change
management 1725 and invalidation manager 1735, that may implement particular client
side functionality of application repository 520. Application generator 455 may
similarly include several components, such as local runtime object state 1740 and
external validator 1705, that may implement particular functionality in the generation of
runtime objects. Repository server 1750 may include several components, such as
invalidation server 1755 and lock server 1760, that may implement particular server

side functionality of application repository 520.

According to this embodiment, application generator 455 initially generates all
new development objects into corresponding runtime objects, which are persisted to
both local file system 1745 and object repository 1700. These runtime objects may be
represented by the RTO 1800 data structure as shown in FIG. 18, which may include
MDO 1810, RTO type 1820, CL ID 1830, generation timestamp 1840, last source
change time 1850 and content 1860. MDO 1810 may represent the main development
object (or pointer thereto) from which the runtime object was generated. RTO type
1820 may represent the runtime object’s particular runtime object type. CL ID 1830
may represent an identifier denoting whether the runtime object was generated from a
main development object in the baseline or in one of many developer changelists.
Generation timestamp 1840 may represent the ﬁme that the runtime object was persisted
to object repository 1700 after being generated by application generator 455. Last
source change time 1850 may represent the most recent time that the main development
object from which the runtime object was generated had been changed. And content

1860 may represent the actual content (or pointer thereto) of the runtime object (e.g.,

class file, binary file, etc.).

28

WO 2004/109503 PCT/EP2004/006586

Invalidation of runtime objects may occur when, as illustrated in FIG. 19, an
application developer uses modeler 445 to make changes to development objects that
are in the developer’s changelist (step 1900). When the developer attempts to persist
the changed development objects to local file systerﬁ 1745 (step 1910), invalidation
manager 1735 initiates an invalidation process (step 1920) that first determines all
runtime objects that may be influenced by the changed development objects (step 1930).
This determination may be quickly made through invocation of the “navigate” function
of relevant rule objects that are selected from an index, as described above, of changed
development object types and relevant rule objects. Once invalidation server 1755
obtains locks from lock server 1760 for accessing the influenced runtime objects in
object repository 1700 (sfep 1940), invalidation manager 1735 invalidates the
influenced runtime objects by marking their state as invalid in object repository 1700
(step 1950). Their state may be marked as invalid by updating the last source change
time 1850 field of their runtime object data structures. (Instead of the last source
change time 1850 field, RTO 1800 may utilize a boolean field that indicates whether the
runtime object state is valid (e.g., TRUE) or invalid (e.g., FALSE).) Once this is
completed, the changed development object is persisted to local file system 1745 (step
1960). A similar invalidation process may occur when a developer releases the

development objects to the baseline, except that the development objects are stored in

object repository 1700.

To improve generator efficiency, only invalidated runtime objects are
regenerated, as illustrated in FIG. 20. When an application developer wishes to test
changed development objects, for example, the developer may explicitly request,
through the user interface of modeler 445, the generation of any corresponding runtime
objects. In order to comply with this request, modeler 445 first identifies the
development objects that have been changed (step 2000) by looking to the current
changelist. Modeler 445 then requests the needed runtime objects from application
generator 455 (step 2010) by providing application generator 455 with a list of the
current changelist development objects. Application generator 455 determines from this
changelist which runtime objects are needed based on the framework object model
information and object navigation. Application generator 455 also retrieves from

modeler 445 the current generator state (step 2005), which specifies user-selected

29

WO 2004/109503 PCT/EP2004/006586

settings that define how application generator 455 is to generate any runtime objects.
FIG. 21 illustrates a generator settings window that a developer may use to define the

generator settings.

7Next, for each requested runtime object, application generator 455 retrieves the
local state of the runtime object (generation timestamp 1840 of local RTO 1800) from
the runtime object in local file system 1745 (2015), and retrieves the server state of the
runtime object (generation timestamp 1840 and last source change time 1850 of the
server RTO 1800) from the runtime object in object repository 1700 (step 2020). Ifthe
server state is valid (i.e., the last source change time is not more recent than the
generation timestamp), and the server generation timestamp is not more recent than the
local generation timestamp, then generation is not necessary (step 2025) because the
local runtime object is valid and current. If the server state is valid but the server
generation timestamp is more recent than the local generation timestamp, generation is
still not necessary (step 2025) but the local runtime object is not current. In this case,
application generator 455 retrieves the more recent runtime object from object
repository 1700 and updates the local geﬁeration timestamp with the server generation
timestamp 1840 (step 2030). If the server state is invalid (i.e., the last source change
time is more recent than the generation timestamp), application generator 455
regenerates the runtime object (step 2025), updates the local generation timestamp (step
2030), and, upon obtaining a lock for the runtime object in object repository 1700 (step
2040), updates the server generation timestamp and the server last source change time
(step 2035) and persists the regenerated runtime object in object repository 1700 (step
2045). The requested runtime object is then stored in local file system 1745 for use by
the application developer in modeler 445, fulfilling the request (step 2050).

Validation Based On Generator State

The generator state mentioned in step 2005 specifies user-selected settings that
define how application generator 455 is to generate any runtime objects. As shown in
FIG 21, two possible settings are listed under the heading “Other Options” and include
“Include additional Debug Code” and “Extended Logging”. When the “Include
additional Debug Code” option is checked, for example, application generator 455

generates a logging call at the beginning and end of each application method, such as

30

WO 2004/109503 PCT/EP2004/006586

“gServices.Log ‘Entering method’ & MethodName” and “gServices.Log ‘Exiting
method’ & MethodName”. When the “Extended Logging” option is checked,
application generator 455 report all generation messages, such as warnings and

informational messages, instead of only the errors.

When application generator 455 checks the validity of a runtime object in step
2020 to determine whether it requires regeneration, application generator 455 looks to
the runtime object’s last source change time field in order to determine if the runtime
object requires regeneration (i.e., is invalid) due to a change in a development object
upon which the runtime object depends. According to another embodiment of the
present invention, even if the runtime object is valid, application generator 455 (via
external validator 1705) may also check whether the runtime object was last generated
according to the current generator state. If not, application generator 455 may

regenerate it according to the current generator state.

This generator state validation mechanism may be implemented by representing
runtime objects by the RTO 2200 data structure as shown in FIG. 22. This data
structure is identical to the RTO 1800 data structure discussed above, except that RTO
2200 may additionally include the generator state that was employed during the runtime
object’s last generation. For example, content 2260 may represent the content (or
pointer thereto) of RTO 2200 that was generated with the “Include additional Debug
Code” generation setting enabled (i.e., checked); generator settings 2270 may represent
the “Include additional Debug Code” generation setting. Generator settings 2270 may
represent the generator state in any form, including a textual description of the generator
settings and/or a hash code corresponding to the textual description of the generator
settings. Using such a hash code enables external validator 1705 to quickly compare the
current generator state with a generator settings 2270 field in steps 2015 and 2020

during runtime.

Locking

According to the embodiments illustrated in FIGS. 19 and 20, in order to
invalidate (step 1950) and validate (step 2045) runtime objects, invalidation server 1755
first obtains locks from lock server 1760 (steps 1940 and 2040, respectively) in order to

31

WO 2004/109503 PCT/EP2004/006586

proceed with the cotresponding invalidation/validation. When invalidation and
validation requests interfere with each other, as depicted by the request lifetime bars in
FIG. 23, the later request fails to obtain a lock from lock server 1760, causing the
request to block (i.e., wait) until the earlier request has completed. For example,
validation 2300 is blocked by invalidation 2310 because invalidation 2310 secured the
appropriate lock first. Similarly, invalidation 2330, invalidation 2350 and validation

2360 all have to block based on the embodiments according to FIGS. 19 and 20.

FIG. 24 illustrates an embodiment of the present invention that prevents such .
blocking by queuing invalidation requests for later processing when the invalidation
requests intersect validation requests. To illustrate, validation steps 2400, 2410, 2420
and 2430 of FIG. 24 mirror validation steps 1900, 1910, 1920 and 1930 of FIG. 19.
However, in step 1940 invalidation server 1755 blocks until it obtains locks from lock
server 1760 (step 1940) to update the runtime object state. In step 2440, on the other
hand, when invalidation server 1755 fails to obtain locks from lock server 1760 due to
an interfering request, it queues the invalidation request (step 2440) and informs
invalidation manager 1735 that the request has been queued. The changed development
object then proceeds to be persisted to local file system 1745 (step 2460) without the
server runtime object state updated. Once the interfering request is complete,
invalidation server 1755 obtains a lock for the queued invalidation request and proceeds

to update the runtime object state (step 2450).

The queueing of server invalidation requests preserves the integrity of the server
runtime object state, since the invalidation requests are not discarded and eventually
invalidate all influenced runtime objects on the server. Server validation requests, on
the other hand, may be discarded to prevent blocking, since the server runtime object
would still correctly reflect that the runtime object is outdated (causing another
generation at the next validation request). In each of these situations, the server runtime

object state correctly indicates the server runtime object state.

Several embodiments of the invention are specifically illustrated and/or
described herein. However, it will be appreciated that modifications and variations of
the invention are covered by the above teachings and within the purview of the

appended claims without departing from the spirit and intended scope of the invention.

32

WO 2004/109503 PCT/EP2004/006586

CLAIMS:
1. An apparatus for resolving access to a common resource for competing processes,
comprising:
a processor; and
a memory, coupled to the processor, storing instructions adapted to be executed
by the processor to
receive a request from a first process to access a resource,
receive a request from a second process to access the resource, the request
from the second process arriving after the request from the first process,
grant access to the resource to the first process,
queue the access request from the second process until the resource is
released by the first process, and
notify the second process that its access request has been queued, wherein
upon receiving the notification, the second process resumes operation as if the

second process had been granted access to and released the resource.

2. The apparatus of claim 1, wherein the request from the first process includes a

request to validate a runtime object in an application development environment.

3. The apparatus of claim 2, wherein the requested validation includes accessing the

resource to update a last source change time field of the runtime object.

4. The apparatus of claim 2, wherein the requested validation includes accessing the

resource to update a boolean field of the runtime object indicating validity of the

runtime object.

5. The apparatus of claim 1, wherein the request from the second process includes a

request to invalidate a runtime object in an application development environment.

6. The apparatus of claim 5, wherein the requested invalidation includes accessing the

resource to update a last source change time field of the runtime object.

33

WO 2004/109503 PCT/EP2004/006586

10.

11.

12.

13.

The apparatus of claim 5, wherein the requested invalidation includes accessing the

resource to update a boolean field of the runtime object indicating validity of the

runtime object.

A computer-implemented method for resolving access to a common resource for
competing processes, comprising:

receiving a request from a first process to access a resource;

receiving a request from a second process to access the resource, the request
from the second process arriving after the request from the first process;

granting access to the resource to the first process;

queueing the access request from the second process until the resource is
released by the first process; and

notifying the second process that its access request has been queued, wherein
upon receiving the notification, the second process resumes operation as if the

second process had been granted access to and released the resource.

The method of claim 8, wherein the request from the first process includes a request

to validate a runtime object in an application development environment.

The method of claim 9, wherein the requested validation includes accessing the

resource to update a last source change time field of the runtime object.

The method of claim 9, wherein the requested validation includes accessing the

resource to update a boolean field of the runtime object indicating validity of the

runtime object.

The method of claim 8, wherein the request from the second process includes a

request to invalidate a runtime object in an application development environment.

The method of claim 12, wherein the requested invalidation includes accessing the

resource to update a last source change time field of the runtime object.

34

WO 2004/109503 PCT/EP2004/006586
14. The method of claim 12, wherein the requested invalidation includes accessing the

resource to update a boolean field of the runtime object indicating validity of the

runtime object.

35

WO 2004/109503

y

Interfering Process
%, Hold Resource?e

Utilize Resource
120

Return Control
130

1/23

N, 110

PCT/EP2004/006586

y

y

Return Control

140

Queue Resource
Request Until
Interfering Process
Is Complete
150

Utilize Resource
160

FIG. 1

PCT/EP2004/006586

WO 2004/109503
2/23

Client Computing Device 200 ——\
Communication

Processor
210
‘ Device
260
Input Device
220

Output Device
230

(Storage Device\

240

Client Software |

FIG. 2

WO 2004/109503

PCT/EP2004/006586

3/23

Developer 300a

Developer 300b

Y=

FIG. 3

WO 2004/109503

Application Framework 400

X

User 405

Presentation Layer
410

il

Business Logic Layer
415

il

Persistence Layer
420

User
Database
425

4/23

—

Object
Type
430

Metamodeler

435

PCT/EP2004/006586

Object
Instance
440

Modeler
445

Application
Generator
455

Metadata
450

Runtime

460

Application

FIG. 4

WO 2004/109503 PCT/EP2004/006586
5/23

Metamodel
500

Repository

Generator
510

Application Repository
520

Application
Generator
455

Runtime Application
460

FIG. 5

WO 2004/109503 PCT/EP2004/006586
6/23

SAP Business ﬁpplicatian dio-ABSRepositury-[Basi]

Blgstdlatela e
{ E€3) Business Objects
: Address
BusinessPartner
LOGIN
Order
-} Propertties
3-[} Methods
F.;I*C} Event Handlers
B[Relations
B[} SaveRules
-} DeleteRules
i B[} UserExits S———
B~ @ Orderltem : SEN
éfg@ Product 00 ot VO
£{..} Business Queries g L
| B[} Combo Engines /BDoc Paramate sFavBar
5[} Business Rules

FI1G. 6

WO 2004/109503 PCT/EP2004/006586
7/23

Dustumerd
-V TileModel

ET]-ﬁ Detail Tiles
HIE SR =] Cictomend ddiess
~ B CustometDetail

EventHandlers
&1-[3) Custom Events

. |CustomerAddress <TILE>

| [Name Cust ddress
| [Caption Customer Address
Maximizable |Detault

t Helght 0 Rows

=53 Hypelif;nk Sources
- Intemal
-5 MaiTo

FIG. 7

WO 2004/109503 PCT/EP2004/006586
8/23

Devpt Devpt Devpt
Object 2 Object 4

Repository
Baseline

Change List 2

Change List 1

FIG. 8

WO 2004/109503 PCT/EP2004/006586
9/23

Devpt Devpt Devpt
Object 1 Devpt Object 3 Devpt Object 5
Object 2 Object 4

|

V4

Repository
Baseline

Change List 1

FIG. 9

WO 2004/109503 PCT/EP2004/006586

10/23

EhanisB;"‘o'ii:'l -

EC3 My Open Changelists

---- Y_NewChangelist11
qioom ¥_MNewChangelist12
: E—J'tﬂ My Released Changelists
Eiﬁ Released

' Y_BirgitTest]

B8] Y_NewChangelist1

; {8 Y_NewChangelist2

9 EEETE Y MewChanoelists

Hi o Queved for Transpart
----- Transported

?g‘ B3 Other Open Changelists .

| -] Other Released Changelists
B3 Imported Changelists

:} -7} Discarded Changelists

FIG. 10

] i, | Object Type] Change Type |
HEY_ctiimStieet_EN {Master) | Short Test Modify

WY _cimPostCode_EN Short Text | Modify
Y _ctdmCity_EN [Master) Short Text Modify
41Y_Customeraddress Tile Modify

FIG. 11

WO 2004/109503

PCT/EP2004/006586
11/23
DevelopmentObject
1200
1 RunTimeObjectOwner
1210
RunTimeObject

1220

FIG. 12

WO 2004/109503 PCT/EP2004/006586
12/23

——] DO1 RTO1
D03 RTO2
DO4
DO5
Object Model 1300

FIG. 13

WO 2004/109503 PCT/EP2004/006586
13/23
UlCustomProperty UlObjLibReference 1| Usages | 1.*
1450 1460 1480 I
1 1
1 1 Class 1481
1.] InteractionComp
1400
AR ARA ZL
>
UlPopupTileSet |1 /
1470
) .
__)
‘)
/ﬁaR 1411 | H
UITile + [Urtieset |7 RR 1421 |
1410 [—*|Class 1412_| 1420
| [Class 1422]

1

1.

\FHTML 1413 |

UlTileContainers | 1

1

*

UlTileSetContainers

/

1

1.*

1435

UlBusinessComp
Containers

1415 1425
JE
[J— 0
- RR 1431 i~
UlIBusinessComp 1| UlApplication Class 1441
1430 [Class 1432 | R N l

FIG. 14

WO 2004/109503

PCT/EP2004/006586

14/23

e e
[DOT |}------------
N—J Doz }---- -

DO3 |-----
O e
DOS |-----
DO6 |-----

Object Model 1500

Metamodeler 435

!

Rule Parser Rule Generator
1510 1520

Repository Generator 510

!

_

Rule Objects
1530

Repository Runtime 1540

Application Repository 520

/

FIG. 15

WO 2004/109503

15/23

Retrieve Rules
from Object Model
1600

Parse and Validate Rules
1610

Generate Rule Object
for Each Rule
1620

PCT/EP2004/006586

FIG. 16

WO 2004/109503 PCT/EP2004/006586
16/23
\
Modeler 445 —~O—
External
Validator
1705
Rule Engine (__\
Devpt Runtime 1730 Application
Objects Objects Generator O .
1715 1720 455 Local File | | " ciignt
System Side
Invalidation o 1745
Manager
Local RTO
Change Management 1735 State
1725 1740 \\\—‘_d/)
Repository Runtime 1540

Object Repository

1700

Invalidation Server

1755

Lock Server
1760

Repository Server 1750

"

Server
Side

FIG. 17

WO 2004/109503 PCT/EP2004/006586
17/23

RTO 1800
AN

MDO 1810

RTO Type 1820

CL ID 1830

Generation Timestamp 1840

Last Source Change Time 1850

Content 1860

FIG. 18

PCT/EP2004/006586

WO 2004/109503

18/23

Runtime

Objects
1720

Invalidation

Server
1755

Obtain
Locks For

Update
RTO State

1950

Invalidate
Applicable

RTOs

c

2B

E &

2 c N

i

.mM

0]

c oWN [0
aM7 =
K -~ O =
O o

Devpt

FIG. 19

PCT/EP2004/006586

WO 2004/109503

19/23

Change

Invalidtn

D
ED o
= o N
C =~
S Q-
& O
o
x e
IaM
i
S~
(o]
=

455

=
Yy
a9 B0
< 902
o= 8gd
(7p]
S
TS
Qa 02
O W
—
Q
D = [O]
]
c 3o L2880
308 5228
Oo& o o <
D = US+O|2
O x
EE o2
245 2588
3L S8h«
O w
B L8
b o
Q"N o= 2«
x 15 Anm.

Application
Generator

FIG. 20

WO 2004/109503
20/23

Ieneration Settings

PCT/EP2004/006586

- &

ogram Files\SAP's,Mo.bile\framework\Templates

i

C:\Progréh Ffleé\SAP‘;Mobiie\éuenApps

:] French
:] German

FIG. 21

WO 2004/109503 PCT/EP2004/006586
21/23

RTO 2200
j

MDO 2210

RTO Type 2220

CL ID 2230

Generation Timestamp 2240

Last Source Change Time 2250

Content 2260

Generator Settings 2270

FIG. 22

WO 2004/109503

PCT/EP2004/006586

Validation
2320

Invalidation
2330

o

-

Validation
2360

Invalidation
2370

Validation Invalidation
2300 2310
E B
!

: i
Validation Invalidation
2340 2350
[i

)
T !

I

[}

|

]
rdm

Runtime
Objects
1720

Update
RTO State
2450

PCT/EP2004/006586

Invalidation

2] o]
QH -
enuum.MSO4
3O © X Ex
o w xu

(s

—

Rule

23/23

Invalidation

Change

o2

e

2888

T=E=ES

S QN

Z a
jv £
X7 e
® o
53 22 |0
o D..2

Devpt

WO 2004/109503

FIG. 24

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

