连续萃取精馏分离乙腈 - 甲苯共沸混合物的方法

摘要

本发明公开了一种连续萃取精馏分离乙腈 - 甲苯共沸混合物的方法。该方法采用丙苯、正丁苯、异丁苯、仲丁基苯、叔丁基苯、均三甲苯、对二乙基苯或对叔丁基甲苯为萃取剂，萃取精馏塔在常压或减压下操作，进入萃取精馏塔的萃取剂与塔顶馏出物的质量比为 2:1 - 10:1，萃取剂的进料温度为 25 - 80℃，被分离的乙腈 - 甲苯共沸混合物由萃取精馏塔中部进入塔内，以回流比 1:1 - 5:1 由萃取精馏塔的塔顶采出含量合格的乙腈，由塔底采出甲苯和溶剂，进入萃取剂回收塔的中部，在萃取剂回收塔顶采出甲苯，回流比为 2:1 - 10:1，由回收塔塔底采出高纯萃取剂循环使用。本发明的优点在于采用萃取剂破坏乙腈 - 甲苯共沸物，分离出高纯的乙腈、甲苯产品。
1. 一种乙腈-甲苯共沸混合物的连续萃取精馏分离方法，该方法采用包括萃取精馏
塔、萃取精馏再沸器、萃取精馏冷凝器、萃取剂高位罐、萃取剂回收塔、萃取剂回收再沸
器和萃取剂回收冷凝器构成的分离系统，分离乙腈-甲苯共沸混合物，其特征在于包括以
下过程：采用丙苯、正丁苯、异丁苯、仲丁基苯、叔丁基苯、均三甲苯、对二乙基苯或对
叔丁基甲苯为萃取剂，萃取精馏塔以下列条件进行操作，在常压或减压下，进入萃取精馏
塔的萃取剂与塔顶馏出物的质量比为 2: 1-10: 1，萃取剂的进料温度为 25-80℃，被分
离的乙腈-甲苯共沸混合物由萃取精馏塔中部进入塔内，以回流比 1: 1-5: 1 由萃取精
馏塔的塔顶采出乙腈含量合格的乙腈产品，由塔底采出甲苯和溶剂，进入萃取剂回收塔的
中部，在萃取剂回收塔塔顶采出甲苯，回流比为 2: 1-10: 1，由回收塔塔底采出高纯萃
取剂，萃取剂循环使用。
连续萃取精馏分离乙腈－甲苯共沸混合物的方法

技术领域

本发明涉及一种应用连续萃取精馏分离乙腈－甲苯共沸混合物的方法，属于乙腈－甲苯共沸混合物的稳态萃取精馏分离技术。

背景技术

乙腈和甲苯是制药行业中常用的有机溶剂，在制药行业中产生的乙腈－甲苯废液，由于乙腈－甲苯形成共沸物而难以分离回收，从而易造成环境污染并增加药品的生产成本。萃取精馏是一种特种精馏分离技术，适合于共沸体系的分离。萃取精馏通过往精馏塔的顶部连续加入萃取剂以改变原组分间的相对挥发度来达到分离目的。萃取精馏按操作方式分为两种：连续萃取精馏和间歇萃取精馏。这两种操作方法各有特点，间歇萃取精馏适用于处理量较小的情况，而连续萃取精馏对于处理量大的情况是合适的。有关萃取精馏方面的文章和专利很多，尚未见公开发表的乙腈－甲苯共沸体系萃取精馏分离方面的资料。

发明内容

本发明的目的在于提供一种乙腈－甲苯共沸混合物的连续萃取精馏分离方法。

本发明是通过下述技术方案加以实现的。采用包括萃取精馏塔，萃取精馏再沸器，萃取精馏冷却器，萃取剂高位罐，萃取剂回收塔，萃取剂回收再沸器，萃取剂回收冷凝器构成的分离系统，分离乙腈－甲苯共沸混合物，其特征在于包括以下过程：

采用丙苯，正丁苯，异丁苯，仲丁基苯，叔丁基苯，对二乙基苯或对叔丁基甲苯为萃取剂，萃取精馏塔以下列条件进行操作，在常压或减压下，进入萃取精馏塔的萃取剂与塔顶馏出物的质量比为 2：1－10：1，萃取剂的进料温度为 25－80℃，被分离的乙腈－甲苯共沸混合物由萃取精馏塔中部进入塔内，以回流比 1：1－5：1 由萃取精馏塔的塔顶采出乙腈含量合格的乙腈产品，由塔底采出甲苯和溶剂，进入萃取剂回收塔的中部，在萃取剂回收塔顶采出甲苯，回流比为 2：1－10：1，由回收塔塔底采出高纯萃取剂，萃取剂循环使用。

具体流程(见附图)：乙腈－甲苯混合物由萃取精馏塔 1 中部进入塔内，而萃取剂由萃取剂高位罐 7 从靠近塔顶处加入塔内，在塔顶物料蒸汽经萃取精馏冷却器 2 冷却后，部分回流部分采出，回流比为 1：1－5：1，而塔底物料部分进入萃取精馏再沸器 3，部分采出，萃取精馏塔底采出的物料由萃取剂回收塔 4 的中部进入塔内，在塔顶物料蒸汽经萃取剂回收冷凝器 5 冷凝后，部分回流，部分采出，回流比为 2：1－10：1，而塔底物料部分进入萃取剂回收再沸器 6，部分采出，萃取剂回收塔底采出的高纯萃取剂打入萃取剂高位罐 7，循环使用。萃取精馏塔在常压下操作，萃取剂回收塔在常压或减压下操作。

本发明的优点在于采用萃取剂破坏乙腈－甲苯共沸物，分离出高纯的乙腈，甲苯产品，本流程为连续稳态过程，便于实现自动化控制，适合于规模较大的分离过程。
附图说明

图1为本发明装置及流程示意图。

图中：1—萃取精馏塔，2—萃取精馏冷凝器，3—萃取精馏再沸器，4—萃取剂回收塔，5—萃取剂回收冷凝器，6—萃取剂回收再沸器，7—萃取剂高位罐。

具体实施方式

实施例一

采用的萃取精馏塔直径为φ80mm，内装DIXON填料，填料层总高度为1.2m，其中在距塔顶0.2m处为萃取剂进口，在距离塔底0.5m处为原料进口。萃取剂回收塔直径为φ80mm，内装DIXON填料，填料层总高度为0.8m，进料口在塔的中间位置。原料为乙腈—甲苯混合物（其中含乙腈73%，甲苯27%，均为质量百分数）以1Kg/h的流量由萃取精馏塔的原料进口加入塔内，萃取剂1，4一二乙基苯从萃取剂高位罐由萃取剂进口加入萃取精馏塔内，萃取剂进料温度为70℃，流量为3Kg/h。在萃取精馏塔塔顶，物料蒸汽经萃取精馏冷凝器冷凝后，部分回流，部分作为乙腈成品采出，回流比2：1。塔顶温度为81.6℃，采出的乙腈纯度为99.3%，在萃取精馏塔塔底，物料部分进入再沸器进行汽化，部分采出，采出流量为3.27Kg/h，采出的物料进入萃取剂回收塔，由萃取剂回收塔中间的进料口进入塔内，萃取剂回收塔塔顶，物料蒸汽经萃取剂回收冷凝器冷凝后，部分回流，部分作为乙腈成品采出，回流比3：1。温度为87.5℃，采出的物料含甲苯99.9%，萃取剂1，4一二乙基苯由萃取剂回收塔塔底采出，采出的萃取剂纯度为99.9%，萃取剂打入萃取剂高位罐，循环使用。在操作过程中，萃取精馏塔在常压下操作，萃取剂回收塔在0.05Mpa（绝压）下操作。

实施例二

采用的装置同实施例一。乙腈—甲苯混合物（其中含乙腈73%，甲苯27%，均为质量百分数）以1Kg/h的流量由萃取精馏塔的原料进口加入塔内，萃取剂丙苯从萃取剂高位罐由萃取剂进口加入萃取精馏塔内，萃取剂进料温度为40℃，流量为4Kg/h。在萃取精馏塔塔顶，物料蒸汽经萃取精馏冷凝器冷凝后，部分回流，部分作为乙腈成品采出，回流比3：1。温度为81.5℃，采出的乙腈纯度为99.2%，在萃取精馏塔塔底，物料部分进入再沸器进行汽化，部分采出，采出流量为4.27Kg/h，采出的物料进入萃取剂回收塔，由萃取剂回收塔塔顶的进料口进入塔内，在萃取剂回收塔塔顶，物料蒸汽经萃取剂回收冷凝器冷凝后，部分回流，部分采出，回流比为8：1。温度为86.3℃，采出的物料含甲苯98.5%，萃取剂丙苯由萃取剂回收塔塔底采出，采出的萃取剂纯度为99.8%，萃取剂打入萃取剂高位罐，循环使用。在操作过程中，萃取精馏塔在常压下操作，萃取剂回收塔在0.05Mpa（绝压）下操作。

实施例三

萃取剂采用正丁苯，操作方法和装置同实施例一，得到的乙腈纯度为99.4%，甲苯纯度为……
度为 99.9%。
实施例四
萃取剂采用异丁苯，操作方法和装置同实施例一，得到的乙腈纯度为 99.3%，甲苯纯度为 99.9%。
实施例五
萃取剂采用叔丁苯，操作方法和装置同实施例一，得到的乙腈纯度为 99.3%，甲苯纯度为 99.9%。
实施例六
萃取剂采用仲丁基苯，操作方法和装置同实施例一，得到的乙腈纯度为 99.3%，甲苯纯度为 99.9%。
实施例七
萃取剂采用对叔丁基甲苯，操作方法和装置同实施例一，得到的乙腈纯度为 99.4%，甲苯纯度为 99.9%。
实施例八
萃取剂采用均三甲苯，操作方法和装置同实施例二，得到的乙腈纯度为 99.2%，甲苯纯度为 99.7%。
图 1