US008185837B2

a2z United States Patent (10) Patent No.: US 8,185,837 B2
Liu et al. (45) Date of Patent: May 22, 2012
(54) USER INTERFACE FRAMEWORK AND (56) References Cited

METHOD FOR UTILIZING SAME
U.S. PATENT DOCUMENTS

(75) Inventors: Chang Liu, San Gabriel, CA (US); 6,327,628 Bl * 12/2001 Anuffetal.cccoonene... 719/311
Giuseppe Manzari, Burbank, CA (US) 6,826,594 B1* 11/2004 Pettersen 709/203
7,047,318 B1* 5/2006 Svedloff 709/246
. . . 2008/0193100 Al* 82008 Baumetal.cccccoeeneee. 386/52
(73) Assignee: R}SSI;GY Enterprises, Inc., Burbank, CA 2008/0256469 AL* 10/2008 Jain etal. ...ooooocccocrn... 715/764
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this ~ WO WO 2006056985 A2 * 6/2006
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 860 days. Primary Examiner — Weilun Lo
Assistant Examiner — Rashedul Hassan
(21) Appl. No.: 12/287,277 74) Attorney, Agent, or Firm — Farjami & Farjami LLP
ey, Ag 1] 1]

(57) ABSTRACT

There is presented a user interface (UI) framework and sys-
tems and methods for its use. Such a system comprises a

(22) TFiled: Oct.7,2008

(65) Prior Publication Data . :
content server and a rich media content generated by a com-
US 2010/0005407 A1l Jan. 7, 2010 piling of a rich media source code, wherein the rich media
content is hosted by the content server. The rich media content
Related U.S. Application Data includes a first embedded graphics environment configured to

o o present display assets of the rich media content, and a first UI

(60) Provisional applicationNo. 61/133,746, filed on Jul. 1, framework ported to the first embedded graphics environ-
2008. ment, the first UT framework configured to interact with the

first embedded graphics environment to modify the display

51) Imt.CL assets of the rich media content in response to data received
P
GO6F 3/048 (2006.01) from a Ul layout feed. The first UI framework is configured to
(52) US.CL oo, 715/764; 715/760; 715/762 modify the display assets of the rich media content without
(58) Field of Classification Search 715/764 requiring modifications to the rich media source code or
""""""" 715 /760. 7 62’ recompiling of the rich media source code.
See application file for complete search history. 18 Claims, 4 Drawing Sheets
400
a0 Content
Management
System
(~—418
Content Server 402
Rich Media Content 410
412a 412b
< 414a 41<4b

. Embedded
Graphics ul u Graphics
Environment Bc o work Framework Envir;gmenl

~ /

U.S. Patent May 22, 2012 Sheet 1 of 4 US 8,185,837 B2

Fig. 1 100
(Prior Art) /

Pre-determine display assets for rich media

content 110

Generate source code for rich media content

specifying pre-determined display assets 120

Compile source code
130

Publish rich media content 140

Determine changes to display assets 150

Edit source code to incorporate changes 160

Recompile source code 170

Republish rich media content 180

Repeat steps 150 through 180 for each
set of changes to display assets

190

U.S. Patent May 22, 2012 Sheet 2 of 4 US 8,185,837 B2

Fig. 2 Vi

204
Content
Management
System
216
Content Server 202
Rich Media Content 210
212
g 214
Embedded
Graphics Ul Framework
Environment
206

208

A

U.S. Patent

Fig. 3

May 22, 2012 Sheet 3 of 4 US 8,185,837 B2

300

Produce source code incorporating Ul
framework for rich media content

310

Compile source code

320
Publish rich media content 330
Receive data from Ul layout feed for
determining display assets of rich media 340
content

Modify display assets of rich media
content in response to Ul layout feed
from content management system

350

U.S. Patent May 22, 2012 Sheet 4 of 4 US 8,185,837 B2

Fig. 4 Vi

Content
Management
System
" ~—416
Content Server 402
Rich Media Content 410
412a 412b
Q 414a 414b C
Embedded Embedded
Graphics ul Ul Graphics
Envir;?ment Framework - Framework Envir;gment

Packet
Network

408

US 8,185,837 B2

1
USER INTERFACE FRAMEWORK AND
METHOD FOR UTILIZING SAME

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation No. 61/133,746, filed on Jul. 1, 2008, which is hereby
incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the management
of network content. More particularly, the present invention
relates to updating network content using a content manage-
ment system.

2. Background Art

As the user base of packet networks, such as the Internet,
has broadened to include sophisticated vendors and consum-
ers, ever greater importance has been placed on those net-
works as sources of advertising and entertainment. Savvy and
increasingly demanding consumers desire to access fre-
quently updated information, and have increasingly lofty
expectations of the richness of web based content. Advertis-
ers, seeking to meet these enhanced consumer expectations,
have found the venerable Hypertext Markup Language
(HTML) format used in much of early web design to be too
constraining. As a result, more and more content has been
developed using formats more enabling of the dynamic, rich
media experience preferred by consumers. Embedded graph-
ics applications such as Flash and Silverlight, for example,
have made it possible for advertisers to provide the rich media
content that consumers now demand.

However, conventional approaches to providing rich media
content, such as rich web content, impose substantial burdens
on both the graphical designers responsible for the look and
feel of the content, and the content developers, i.e., program-
mers, charged with producing the application source code
providing the rich media experience. FIG. 1 shows flowchart
100 of a process flow for producing and updating rich media
content using a conventional approach. As shown in FIG. 1,
the conventional process flow includes an iterative interaction
between designers and programmers as rich media content is
first provided, and later modified.

Beginning with step 110, a typical conventional approach
to providing rich media content includes pre-determination of
the display assets to be included in the content, followed by
generation of the source code in step 120. Typically the pre-
determined display assets are specified in the source code,
requiring that the designers anticipate a full menu of display
assets prior to coding. In addition, the conventional approach
requires that the programmers be sufficiently familiar with
the aesthetic vision of the designers to appropriately capture
the predetermined display assets in the coding.

Following steps 110 and 120, which, as described, often
require joint effort on the part of the design and development
teams, the source code is compiled in step 130 and the result-
ing rich media content is published in step 140. Thus, steps
110 through 140 typically require collaborative effort
between graphical designers and programmers, and result in
rich media content that is limited in expression to those dis-
play assets predetermined by the designers and coded by the
developers. Subsequent changes to the display assets, such as
re-skinning, or introducing theme and/or logo changes, for
example, require going back into the source code to appro-
priately adjust the display assets defined within.

20

25

30

35

40

45

50

55

60

65

2

As a result, modifying rich media content according to the
conventional approach requires repetition of steps similar to
steps 110 through 140. That is to say, the changes or modifi-
cations to the pre-determined display assets are determined
by the graphical designers in step 150, which echoes initial
step 110. Then, the source code must be edited by the pro-
grammers to incorporate the new or modified definitions into
the code in step 160. The code must be recompiled in step 170
and republished in step 180. Moreover, steps 150 through 180
must be repeated for additional modifications to the display
assets made after republication in step 180.

In short, the conventional approach requires the participa-
tion of both designers and programmers for the delivery of
rich media content, both during its production, and during its
modification. In addition, the conventional approach requires
that the two working groups, i.e., graphic designers and pro-
grammer, have a sufficient understanding of the discipline
practiced by the other so that they may work in productive
cooperation. Also, because the conventional approach typi-
cally requires changes to the source code for each instance of
modification, those modifications require recompiling the
source code and republishing the rich media content. Because
modifying existing rich media content is such a burdensome
undertaking according to the conventional approach, there
are significant incentives to delay introduction of changes,
and to batch changes so as to spread the resource costs for
introducing content modifications over time.

The foregoing drawbacks of the conventional approach to
producing and modifying rich media content have been
described by reference to a single graphics environment. In
some cases, however, it may desirable to make the same rich
media content available across multiple graphics environ-
ments. For example, a producer of rich media content may
desire to provide the content in a Flash format, due to Flash’s
penetration of personal computing platforms, and also in
Java, for mobile device users seeking to enjoy the rich media
experience. In that situation, in addition to the drawbacks
described previously, are the significant disadvantages flow-
ing from the need to support a duplication of the rich media
content in the distinct graphics environments. Those addi-
tional disadvantages may include, for example, the resource
commitments required to produce multiple versions of the
content, as well as the problem of harmonizing the available
display assets, so that updates and changes to content ren-
dered in one graphics environment are appropriately reflected
in the others.

Accordingly, there is a need to overcome the drawbacks
and deficiencies in the art by presenting a solution enabling
content designers to dynamically update graphical features of
existing content, for example by means of a content manage-
ment system, without requiring that the source code of the
existing content be modified. It would additionally be advan-
tageous for the solution to enable concurrent updating of
existing content across multiple graphics environments.

SUMMARY OF THE INVENTION

There is provided a user interface framework and method
for utilizing same, substantially as shown in and/or described
in connection with at least one of the figures, as set forth more
completely in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will
become more readily apparent to those ordinarily skilled in

US 8,185,837 B2

3

the art after reviewing the following detailed description and
accompanying drawings, wherein:

FIG. 1 shows flowchart 100 of a conventional process flow
for producing and updating rich media content;

FIG. 2 shows a block diagram of a system for enabling
dynamic updating of rich media content using a user interface
framework, according to one embodiment of the present
invention;

FIG. 3 is a flowchart presenting a process tlow for produc-
tion and/or modification of rich media content, according to
one embodiment of the present invention; and

FIG. 4 shows a block diagram of a system for enabling
dynamic updating of rich media content across multiple plat-
forms using a user interface framework, according to one
embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present application is directed to a user interface
framework suitable for use with the wide array of embedded
graphics applications capable of providing rich media con-
tent, and a method for utilizing that framework. The following
description contains specific information pertaining to the
implementation of the present invention. One skilled in the art
will recognize that the present invention may be implemented
in a manner different from that specifically discussed in the
present application. Moreover, some of the specific details of
the invention are not discussed in order not to obscure the
invention. The specific details not described in the present
application are within the knowledge of a person of ordinary
skill in the art. The drawings in the present application and
their accompanying detailed description are directed to
merely exemplary embodiments of the invention. To maintain
brevity, other embodiments of the invention, which use the
principles of the present invention, are not specifically
described in the present application and are not specifically
illustrated by the present drawings. It should be borne in mind
that, unless noted otherwise, like or corresponding elements
among the figures may be indicated by like or corresponding
reference numerals.

The present inventors have recognized the drawbacks and
deficiencies of conventional solutions to producing and modi-
fying rich media content, and have succeeded in overcoming
those disadvantages by providing a user interface framework
and method for its use. FIG. 2 shows a diagram of exemplary
system 200 for enabling dynamic updating of rich media
content using a user interface framework, according to one
embodiment of the present invention. In the embodiment of
FIG. 2, system 200 comprises content server 202 including
rich media content 210, and content management system 204.
Rich media content 210 includes embedded graphics envi-
ronment 212, and user interface framework (Ul framework)
214, which is accessible by content management system 204
via user interface layout feed (UI layout feed) 216. Also
shown in FIG. 2 are packet network 206 and client system 208
represented as a personal computer (PC).

According to the embodiment of FIG. 2, a designer (not
shown in FIG. 2) of rich media content 210 may utilize
content management system 204, Ul layout feed 216, and Ul
framework 214 to produce and/or modify display assets pre-
sented by embedded graphics environment 212. As a result, a
consumer (also not shown in FIG. 2) using client system 208
and packet network 206 can enjoy rich media content 210
hosted on content server 202, which may be frequently modi-
fied by the designer to accommodate rapidly changing con-
sumer preferences. Although in the embodiment of FIG. 2,
client system 208 is represented as a PC, in one embodiment

20

25

30

35

40

45

50

55

60

65

4

client system 208 may be a mobile communication device
such as a tablet computer, mobile telephone, personal digital
assistant (PDA), digital media player, or wireless gaming
console for example.

As shown in FIG. 2, rich media content 210 may be
accessed through packet network 206. In one such embodi-
ment, rich media content 210 may comprise a rich web appli-
cation, accessible over a packet network such as the Internet,
for example. Alternatively, rich media content 210 may reside
on a server supporting a local area network (LAN), provided
at a recreational venue such as a theme park, for instance, or
included in another type of limited distribution network.

Embedded graphics environment 212 corresponds to any
embedded graphics application usable to display rich media
content 210. Thus embedded graphics environment 212 may
correspond to such presently available applications as Flash,
Silverlight, or Java, for example. For the purposes of the
present example, let us assume that embedded graphics envi-
ronment 212 is a Flash environment for supporting rich media
content 210. Ul framework 214 and UI layout feed 216,
together, form a logic and data bridge enabling dynamic
modification of the display assets available for use by the
Flash application. Thus, Ul framework 214 and UI layout
feed 216 enable a designer to control the Flash application
providing rich media content 210 using content management
system 204.

User interface framework 214 may comprise a universal
component library, for example, and/or a variety of data con-
tainers, providing respective elements and contexts from
which complex graphical constructs can be assembled. Ul
framework 214 is ported to embedded graphics environment
212, and can provide a logical interface between external Ul
layout feed 216 provided by content management system
204, and the Flash application corresponding to embedded
graphics environment 212. Because Ul framework 214 may
contain the elements and containers from which display
assets are produced, rather than the final form of those assets,
the universe of assets available to the Flash application need
not be predetermined when the source code is written, nor,
significantly, does the source code need to be edited and
recompiled to accommodate selection or modification of
those display assets.

UT framework 214 may be imported into the source code
for the Flash application when the code is originally pro-
duced, for example. In the case of Flash, Ul framework may
be distributed through archive .swc files, runtime shared
libraries, and ActionScript 3.0 files, for example. Where
embedded graphics environment 212 corresponds to a difter-
ent graphics application, Ul framework 214 may be imported
and distributed during source code composition in an analo-
gous manner. In one embodiment, UI framework 214 may be
configured to respond to its own events, overriding and/or
canceling native Flash events as they occur. Similarly, when
implemented in other embedded graphics environments, Ul
framework 214 may be coded into the application to manage
layout and to control events.

It is noted that although in the embodiment of FIG. 2, Ul
framework 214 is shown to be included in rich media content
210, residing on content server 202, more generally, Ul
framework 214 may be stored on any suitable computer-
readable medium. For example, instructions comprising Ul
framework 214 which, when executed by a computer, such as
content server 202, enable a designer of rich media content to
control the appearance of display assets presented by means
of embedded graphics environment 212 so as to produce
and/or modify those display assets dynamically.

US 8,185,837 B2

5

The expression “computer-readable medium,” as used in
the present application, refers to any medium that provides
instructions to a computer, such as content server 202. Thus,
a computer-readable medium may correspond to various
types of media, such as volatile media, non-volatile media,
and transmission media, for example. Volatile media may
include dynamic memory, such as dynamic random access
memory (dynamic RAM), while non-volatile memory may
include optical, magnetic, or electrostatic storage devices.
Transmission media may include coaxial cable, copper wire,
or fiber optics, for example, or may take the form of acoustic
or electromagnetic waves, such as those generated through
radio frequency (RF) and infrared (IR) communications.
Common forms of computer-readable media include, for
example, a compact disc read-only memory (CD-ROM),
DVD, or other optical disc; a RAM, programmable read-only
memory (PROM), erasable PROM (EPROM), FLASH
memory, or a transmission carrier wave.

UT layout feed 216 may take the form of an Extensible
Markup Language (XML) feed or a JavaScript Object Nota-
tion (JSON) feed, for example, specifying the graphics layout
determined by a graphical designer using content manage-
ment system 204. Ul framework 214 enables implementation
of the layout instructions delivered by Ul layout feed 216
within the specific context of embedded graphics environ-
ment 212, in this example Flash.

Because Ul framework 214 can be incorporated into a
variety of distinct embedded graphics environment, to man-
age layout and to control events in response to inputs provided
by UI layout feed 216, it enables layout management and
control over multiple platforms. In addition, because result-
ing rich media content 210 may be produced using the con-
tainers and components defined by Ul framework 214, sub-
stantially the same display assets can be supported by the
various embedded graphics environments with which Ul
framework 214 can interface, providing cross-platform con-
sistency in the look and feel of rich media content 210. More-
over, because Ul layout feed 216 may delivered to Ul frame-
work 214 in a generalized data format, such as an XML feed,
regardless of the specific identity of embedded graphics envi-
ronment 212, it is possible for a designer using content man-
agement system 204 to effectuate substantially similar
graphical layouts across multiple platforms concurrently,
using a single layout feed.

Turning now to FIG. 3, FIG. 3 presents a process flow for
production and/or modification of rich media content,
according to one embodiment of the invention. Certain details
and features have been left out of flowchart 300 that are
apparent to a person of ordinary skill in the art. For example,
a step may consist of one or more substeps or may involve
specialized equipment or materials, as known in the art.
While steps 310 through 350 indicated in flowchart 300 are
sufficient to describe one embodiment of the present inven-
tion, other embodiments may utilize steps different from
those shown in flowchart 300, or may include more, or fewer
steps.

Starting with step 310 in FIG. 3 and referring to FIG. 1 in
which a conventional approach to producing and moditying
rich media content is described, for comparative purposes,
step 310 of flowchart 300 comprises producing source code
incorporating a Ul framework for rich media content. As
described in relation to FIG. 2, because the Ul framework
may be utilized by a designer to specify a graphical layout at
any time after the source code has been compiled, the display
assets included in that layout need not be pre-determined
when the source code is produced. In addition, the present Ul
framework decouples the respective contributions of graphi-
cal designers and programmers. As a result, neither working

20

25

30

35

40

45

50

55

60

65

6

groups is required to acquire the professional expertise of the
other, nor is either constrained by the limitations imposed by
the other’s discipline.

Flowchart 300 continues with step 320, which comprises
compiling the source code produced in 320. Comparison with
FIG. 1 highlights one of the advantages of the present
embodiment. While in the conventional approach, changes to
the display assets included in rich media content require that
the source code be edited and the content recompiled for each
set of changes, the present embodiment avoids that drawback.
Because graphical layout is determined by a Ul layout feed
delivered to a Ul framework incorporated into the source
code, changes to display assets can be achieved on the fly,
without editing the source code or recompiling the applica-
tion providing the rich media content. As a result, according
to the present embodiment, the source code only needs to be
compiled once, at step 320.

Following compiling, the rich media content can be pub-
lished in step 330. Subsequently, a graphics designer is free to
produce or modify the display assets presented in the rich
media content simply by providing the Ul framework incor-
porated into the application with a Ul layout feed specifying
the combination of components and containers required to
produce the desired display assets. Thus the method of flow-
chart 300 continues with step 340 comprising receiving data
from the Ul layout feed for determining the display assets of
the rich media content, followed by appropriately modifying
the display assets of the rich media content in step 350.
Comparison of FIG. 3 and FIG. 1 provides some indication of
the advantages and efficiencies provided by the present solu-
tion.

For example, whereas in the conventional approach con-
tributions from both programmers and designers are required
in steps 110 and 120 of FIG. 1 for generation of the source
code, according to the present embodiment programmers
may work independently of designers to produce the appli-
cation source code in step 310. Furthermore, after publication
of the rich media content in step 140 of the conventional
approach, any changes to the graphics layout of the rich
media content requires participation of the programmers,
who must recode and recompile the application. By contrast,
according to the embodiment of FIG. 3, the participation of
programmers is no longer required after compiling in step
320. That is to say that all subsequent changes to graphical
layout can be effectuated by the graphical designers alone,
due to incorporation of the present invention’s Ul framework
into the original source code.

Thus, FIG. 3 describes a process flow that collapses steps
110 through 190 of the conventional approach of FIG. 1 into
many fewer steps. In addition, the steps described in FIG. 3
decouple the contributions of programmers and designers, so
that programmers alone may contribute to steps 310 and 320,
while designers alone may contribute to steps 330 through
350. Moreover, according to the embodiment of FIG. 3,
designers alone can render all future changes to the graphical
layout of the rich media content through use of a content
management system, without additional programmer sup-
port.

Turning now to FIG. 4, FIG. 4 shows a diagram of exem-
plary system 400 for enabling dynamic updating of rich
media content across multiple platforms using a Ul frame-
work, according to one embodiment of the present invention.
In the embodiment of FIG. 4, system 400 comprises content
server 402 including rich media content 410, and content
management system 404, corresponding respectively to con-
tent server 202 including rich media content 210, and content
management system 204 in FIG. 2. As in FIG. 2, rich media
content 410, in FIG. 4, includes UI framework 414a ported to
embedded graphics environment 412a, and accessible by
content management system 404 via Ul layout feed 416.

US 8,185,837 B2

7

However, in FIG. 4, rich media content 410 is also provided
with Ul framework 4145 ported to embedded graphics envi-
ronment 4125. Also shown in FIG. 4 are packet network 406
and client systems 408 and 409, corresponding respectively
to packet network 206 and client system 208, in FIG. 2.

According to the embodiment of FIG. 4, a designer (not
shown in FIG. 4) of rich media content 410 may utilize
content management system 404 and single Ul layout feed
416 to communicate graphical layout specifications to Ul
frameworks 414a and 414b, and thus to produce and/or
modify display assets displayed by both embedded graphics
environments 412a and 4125. As aresult, consumers (also not
shown in FIG. 4) using distinct client systems 408 and 409,
supporting distinct graphics environments, are able to enjoy
substantially the same rich media content 410. Furthermore,
modifications to the display assets presented by rich media
content 410 may be concurrently updated across embedded
graphics environments 412a and 4124 to provide the consum-
ers using client systems 408 and 409 with rich media content
having substantially the same look and feel.

By incorporating the user interface framework into appli-
cation source code produced to deliver rich media content, the
present disclosure describes an approach to providing rich
media content that enables modification of graphical layout
without recoding or recompiling the application. By utilizing
a user interface layout feed to specify the graphical layout of
the rich media content, the present disclosure describes an
approach enabling selection and modification of display
assets directly by a designer using a content management
system. Moreover, by providing the user interface layout feed
in a generalized data format, the present application discloses
a solution enabling a designer to render graphical layout
modifications concurrently across multiple graphics environ-
ments.

From the above description of the invention it is manifest
that various techniques can be used for implementing the
concepts of the present invention without departing from its
scope. Moreover, while the invention has been described with
specific reference to certain embodiments, a person of ordi-
nary skill in the art would recognize that changes can be made
in form and detail without departing from the spirit and the
scope of the invention. It should also be understood that the
invention is not limited to the particular embodiments
described herein, but is capable of many rearrangements,
modifications, and substitutions without departing from the
scope of the invention.

What is claimed is:

1. A system enabling dynamic updating of contents, the

system comprising:

a content server computer accessible over a packet net-
work;

a rich media content generated by a compiling of a rich
media source code, wherein the rich media content is
hosted by the content server, the rich media content
including:

a first embedded graphics environment configured to
present display assets of the rich media content; and

a first user interface (Ul) framework ported to the first
embedded graphics environment, the first UI framework
configured to interact with the first embedded graphics
environment to modify the display assets of the rich
media content in response to data received from a Ul
layout feed;

wherein the first Ul framework is further configured to
modify the display assets of the rich media content with-
out requiring modifications to the rich media source
code and a recompiling of the rich media source code.

20

25

30

35

40

45

50

55

60

65

8

2. The system of claim 1, wherein the first Ul framework is
further configured to respond to its own events, so as to
override or cancel native embedded graphics environment
defined events as they occur.

3. The system of claim 1, wherein the first Ul framework
comprises a universal component library.

4. The system of claim 1, wherein the first Ul framework
comprises a variety of data containers.

5. The system of claim 1, wherein the first embedded
graphics environment comprises Flash.

6. The system of claim 5, wherein the first UI framework is
ported to Flash by being distributed through archive .swc
files, runtime shared libraries, and ActionScript 3.0 files.

7. The system of claim 1, wherein the first embedded
graphics environment is one of Silverlight or Java.

8. The system of claim 1, wherein the UI layout feed
comprises an Extensible Markup Language (XML) feed.

9. The system of claim 1, wherein the UI layout feed
comprises a JavaScript Object Notation (JSON) feed.

10. The system of claim 1, further comprising:

a second Ul framework ported to a second embedded
graphics environment, the second UT framework config-
ured to interact with the second embedded graphics
environment to modify the display assets of the rich
media content in response to data received from the Ul
layout feed;

the system configured to enable modification of the display
assets of the rich media content across the first embed-
ded graphics environment and the second embedded
graphics environment concurrently.

11. The system of claim 1, further comprising a content

management system configured to provide the Ul layout feed.

12. A method enabling dynamic updating of contents, the
method comprising:

producing a rich media source code, the rich media source
code incorporating a user interface (UI) framework;

compiling the rich media source code to generate a rich
media content;

publishing the rich media content on a content server
accessible over a packet network;

receiving data from a Ul layout feed for determining dis-
play assets of the rich media content; and

modifying the display assets of the rich media content
using the UI framework in response to the data from the
Ul layout feed;

wherein the Ul framework modifies the display assets of
the rich media content without requiring modifications
to the rich media source code and a recompiling of the
rich media source code.

13. The method of claim 12, wherein the Ul framework is
configured to respond to its own events, so as to override or
cancel native events of an embedded graphics environment of
the rich media content as they occur.

14. The method of claim 13, the first embedded graphics
environment comprises Flash.

15. The method of claim 12, wherein providing the UI
layout feed comprises providing an Extensible Markup Lan-
guage (XML) feed.

16. The method of claim 12, wherein providing the Ul
layout feed comprises providing a JavaScript Object Notation
(JSON) feed.

17. The method of claim 12, wherein the Ul framework
comprises a universal component library.

18. The method of claim 12, wherein the Ul framework
comprises a variety of data containers.

#* #* #* #* #*

