wo 2017/151280 A1 | I 0N OO OO0 A A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization é 0 00 0O

International Bureau) L.
_").//)/ (10) International Publication Number

WO 2017/151280 A1

\

(43) International Publication Date
8 September 2017 (08.09.2017) WIPOIPCT

(51) International Patent Classification: ris; Qualcomm Incorporated, 5775 Morehouse Drive, San
GO6F 12/0811 (2016.01) GO6F 12/126 (2016.01) Diego, California 92121-1714 (US). MORROW, Michael
GOG6F 12/0888 (2016.01) GO6F 12/0831 (2016.01) William; Qualcomm Incorporated, 5775 Morehouse Drive,
GO6F 12/1027 (2016.01) GO6F 12/0871 (2016.01) San Diego, California 92121-1714 (US). BRIDGES, Jef-

frey Todd; Qualcomm Incorporated, 5775 Morehouse

(21) International Application Number: Drive, San Diego, California 92121-1714 (US). MCIL-

PCT/US2017/016971 VAINE, Michael Scott; Qualcomm Incorporated, 5775

(22) Imternational Filing Date: Morehouse Drive, San Diego, California 92121-1714 (US).

8 February 2017 (08.02.2017) SMITH, Rodney Wayne; Qualcomm Incorporated, 5775

- . Morehouse Drive, San Diego, California 92121-1714 (US).

(25) Filing Language: English DOCKSER, Kenneth Alan; Qualcomm Incorporated,

(26) Publication Language: English 5775 Morehouse Drive, San Diego, California 92121-1714

(US). SPEIER, Thomas Philip; Qualcomm Incorporated,

(30) Priority Data: 5775 Morehouse Drive, San Diego, California 92121-1714

15/057,121 1 March 2016 (01.03.2016) UsS (US).

(71) Applicant: QUALCOMM INCORPORATED [US/US]; (74 Agents: CICCOZZI, John L. et al; Muncy, Geissler,

ATTN: International IP Administration, 5775 Morehouse Olds & Lowe, P.C., 4000 Legato Road, Suite 310, Fairfax,
Drive, San Diego, California 92121-1714 (US). Virginia 22033 (US).

(72) Inventors: SARTORIUS, Thomas Andrew; Qualcomm (g1) Designated States (unless otherwise indicated, for every

Incorporated, 5775 Morehouse Drive, San Diego, Califor- kind of national protection available): AE, AG, AL, AM,
nia 92121-1714 (US). DIEFFENDERFER, James Nor-

[Continued on next page]

(54) Title: WRITE-ALLOCATION FOR A CACHE BASED ON EXECUTE PERMISSIONS

(57) Abstract: Systems and methods for managing access to

PROCESSING - .
SYSTEM a cache relate to determining one or more execute permis-
100 sions associated with a write-address of a write-request to the
\'\ cache. The cache may be a unified cache for storing data as

well as instructions. If there is a write-miss in the cache for

the write-request, a cache controller may determine whether

105 to implement a write-allocate policy or a write-no-allocate
c 15 : a cate |

policy for servicing the write-miss, based on the one or more

PROCESSOR . .o
LR 125 160 1|\‘/|1|c\)/lu 165 167 170172 execute permissions. The one or more execute permissions
/ / J J J can relate to a privilege level associated with the write-ad-
va [pa [sw]sw|sx[ux]—155 }120| dress. Execute permissions of a producing agent which gen-
e | e lelelele erated the write-request and an execute permission of a con-
s L i Pe suming agent which can execute from the write-address may
| oo be based on the privilege levels of the producing agent and
the consuming agent, respectively.
175
CACHE CONTROLLER
110
CACHE
135 145
TAG _ [INFORMATION 130

L] : L]

o | .

o | .

| 150
1
FIG. 1

WO 2017/151280 A1 WK 00T 000 T VR A AR

84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK,
DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH,
GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG,
KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU,
LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT,
QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL,
SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG,
US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

WO 2017/151280 PCT/US2017/016971

[0001]

[0002]

[0003]

[0004]

[0005]

WRITE-ALLOCATION FOR A CACHE BASED ON
EXECUTE PERMISSIONS

Field of Disclosure
Disclosed aspects are directed to managing cache allocation in processing
systems. More specifically, exemplary aspects are directed to write-allocation in a

unified cache based on execute permissions.

Background

Modern processors may include one or more levels of cache memories (or
simply, “caches™), which are designed to be high-speed memories. The information
stored in a cache (or “cached information™) can include data, instructions, or a
combination thereof. Depending on the type of cached information, caches may be
classified as a data cache (D-cache), instruction cache (I-cache), or a combined data and
instruction cache (also known as a “unified cache™).

The process of accessing a cache can involve a processor making a read or write
request for particular information, and checking the cache to see if the requested
information is present. If the information is present, then a cache “hit” is said to occur,
and if the information is not present, then a cache “miss™ is said to occur. Depending on
whether the request is for a read or a write, the hit or miss may be more particularly
referred to as a read-hit/read-miss or a write-hit/write-miss.

In more detail, in the case of a read-hit, an entry (hitting entry) is present in the
cache, corresponding to an address associated with the information requested by the
processor; and the information is read from the hitting entry and returned to the
processor from the cache. In the case of a write-hit, once again a hitting entry is present
in the cache, corresponding to an address to which the processor desires to write the
information; and the processor writes the information to the hitting entry in the cache.
The cases of read-miss and write-miss may be handled in different ways, as will be
explained below.

A read-miss occurs when the processor accesses the cache to read information
from an entry but the entry is not present in the cache. To service the read-miss, the
desired information is read from another cache or backing storage location, and then
supplied to the processor, and the desired information may also be placed into an entry

of the cache. Placing the desired information into an entry of the cache (either by

WO 2017/151280 PCT/US2017/016971

[0006]

[0007]

2

creating a new entry or replacing an existing entry with the desired information) is
referred to as allocation. Conventionally, allocation may be performed on a read-miss
(assuming other criteria such as access permissions, which will be described in the
following sections, are met).

However, in different implementations, write-misses may or may not entail
allocation. Considering a write-miss in more detail, a write-miss involves accessing the
cache to write information to a particular entry, but the entry is not present in the cache.
A write-miss may be serviced with a write-allocate policy or a write-no-allocate policy.
A write-allocate policy involves bringing in a cache-line-sized block stored at an
address associated with the write request (e.g., from a backing storage location) into an
entry of the cache (allocation) and storing the desired write information into the
allocated entry. Using a write-allocate policy can improve performance if/when
subsequent read requests are made to the allocated entry, because the corresponding
read accesses will result in a read-hit in the cache. Performance may be improved for
subsequent write accesses to the allocated entry, because the subsequent write accesses
will also result in a write-hit, wherein corresponding write information can update the
allocated entry without involving accesses to backing storage locations (keeping in

33

mind that a “write-through™ policy where write information is updated in backing
storage locations even in the case of a write-hit may nevertheless involve such accesses
to backing storage locations).

Under a write-no-allocate policy, servicing a write-miss in the cache may
involve proceeding to check backing storage locations for an address corresponding to
the write information, without subsequently updating or allocating the cache. This
means that an allocated entry will not be created and so subsequent write requests to the
unallocated entry will also miss. As previously described, read-misses may result in
allocation, and so, unless the entry is allocated based on a subsequent read access,
subsequent write requests will continue to result in a write-miss and proceed with a
write-no-allocate policy. = A write-no-allocate policy may be implemented in
environments where information written is not likely to have temporal locality with
information that is read. For example, where the cache is a D-cache, a write-no-allocate
policy may be in place where a program executed by the processor is not likely to read
data that was written relatively recently. Thus, allocating an entry upon a write-miss

may be avoided, which can improve performance in such cases.

WO 2017/151280 PCT/US2017/016971

[0008]

[0009]

[0010]

A combination of write-allocate and write-no-allocate policies, also referred to

>

as a “mixed allocation policy,” may be used in some implementations. In a mixed
allocation policy, write-allocation can vary based on the addresses associated with
read/write requests. The addresses may belong to different pages of memory, with each
memory page being associated with a different allocation policy. The allocation policy
attribute for a desired read/write memory access can be stored in and retrieved from a
memory management unit (MMU) as known in the art, for example, in a page table
entry (PTE) for the memory access. Accordingly, whether or not a write-miss results in
a write-allocate or write-no-allocate may be decided based on a configuration or
allocation policy attribute associated with the write request from the PTE.

As previously mentioned, memory access operations may also be influenced by
additional criteria, such as access permissions. For example, each memory page may
have associated permissions which may affect read and write operations for addresses
belonging to the memory page. A PTE associated with an address may be used by an
MMU in determining whether a read or write access desired by a processor has
corresponding read or write permissions, depending on which the read or write access,
respectively, may be allowed to proceed. Thus, if access permission exists for a
particular address (i.e., read permission exists for a read operation or write permission
exists for a write operation), then the corresponding access operation (read or write,
respectively) may be permitted.

Accordingly, determining whether an access operation for an address may result
in cache allocation may involve first determining whether corresponding access
permission exists, because if access permission does not exist, then the access operation
may not be permitted and therefore the question of allocation may not arise; and if
access permission does exist, then allocation may be based on particular allocation
policies which may be in place for the address. For example, in the case of a write
operation, determining the write-allocation policy for a write-miss in a cache may be a
two-step process, wherein the first step may involve determining whether or not write
permissions exist for the purported write operation. If write permission exists, then the
second step may involve determining whether to write-allocate or write-no-allocate if
there is a write-miss in the cache. If in the first step it is determined that write
permission does not exist, then the question of cache allocation may be moot because

the write operation may not be permitted and the cache may not be accessed.

WO 2017/151280 PCT/US2017/016971

[0011]

[0012]

[0013]

[0014]

4

In addition to read and write permissions, yet another type of permission which
may be associated with a memory address or a memory page may pertain to “execute”
permissions. Execute permissions may relate to instructions stored in memory, wherein,
if an address at which an instruction is stored has execute permissions, the instruction
may be executed; otherwise, the instruction may not be executed by a particular
program. Some memory pages, such as those targeted by code generators, just-in-time
(JIT) compilers and other programs which may involve reading/writing, as well as
executing instructions, may have read/write permissions as well as execute permissions
enabled. Code generators may write compiled programs to memory pages which have
read, write, and execute permissions, and thereafter, retrieve the compiled programs
from these memory pages for execution.

Thus, it can be appreciated that a unified cache which can store data as well as
instructions, may have read, write, and execute permissions associated with entries of
the unified cache. Conventional implementations may take into account read and write
permissions in determining whether memory access is allowed. However, known
approaches do not consider execute permissions in determining write-allocation policies

for write accesses which miss in unified caches.

SUMMARY

Exemplary aspects of this disclosure are directed to systems and methods for
managing access to a cache, which may be configured as a unified cache for storing data
as well as instructions. One or more execute permissions associated with a write-
address of a write-request to the cache may be determined, for example, by using logic
such as a memory management unit (MMU). If there is a write-miss in the cache for the
write-request, a cache controller may determine whether to implement a write-allocate
policy or a write-no-allocate policy for servicing the write-miss, based on the one or
more execute permissions.

In some aspects, the one or more execute permissions associated with the write-
address can pertain to execute permissions for one or more privilege levels applicable to
the write-address, such as a user privilege level, a supervisor privilege level, etc. A
producing agent which generated the write-request and a consuming agent which can
potentially execute from the write-address may each have a privilege level selected from

the one or more privilege levels. At the time of servicing the write-miss, the producing

WO 2017/151280 PCT/US2017/016971

[0015]

[0016]

[0017]

[0018]

agent, as well as, the privilege level of the producing agent may be known; however,
the potential consuming agent may not be known, and therefore, the associated privilege
level of the potential consuming agent may not be known. Accordingly, in some
aspects, the write-allocation policy for a write-miss may be based on (e.g., a function of)
execute permissions associated with the privilege level of the producing agent and/or
execute permissions associated with any other privilege level for the write-address.

For example, an exemplary aspect is directed to a method for managing a cache,
the method comprising determining one or more execute permissions associated with a
write-address of a write-request to the cache. If there is a write-miss in the cache for the
write-request, a determination of whether to implement a write-allocate policy or a
write-no-allocate policy for servicing the write-miss is based on the one or more execute
permissions.

Another exemplary aspect is directed to an apparatus comprising a cache, logic
configured to determine one or more execute permissions associated with a write-
address of a write-request to the cache, and a cache controller configured to implement a
write-allocate or a write-no-allocate policy for the write-request based on the one or
more execute permissions, if there is a write-miss in the cache for the write-request.

Another exemplary aspect is directed to an apparatus comprising means for
determining one or more execute permissions associated with a write-address of a write-
request to a cache, and means for implementing a write-allocate or a write-no-allocate
policy for the write-request based on the one or more execute permissions, if there is a
write-miss in the cache for the write-request.

Yet another exemplary aspect is directed to a non-transitory computer-readable
storage medium comprising code, which, when executed by a processor, causes the
processor to perform operations for managing a cache, the non-transitory computer-
readable storage medium comprising code for determining one or more execute
permissions associated with a write-address of a write-request to the cache, and code for
implementing a write-allocate or a write-no-allocate policy for the write-request based
on the one or more execute permissions, if there is a write-miss in the cache for the

write-request.

WO 2017/151280 PCT/US2017/016971

[0019]

[0020]

[0021]

[0022]

[0023]

[0024]

[0025]

[0026]

6

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are presented to aid in the description of aspects of the
invention and are provided solely for illustration of the aspects and not limitation
thereof.

FIG. 1 depicts an exemplary block diagram of a processor system according to
aspects of this disclosure.

FIG. 2 depicts an exemplary method for managing a cache according to aspects
of this disclosure.

FIG. 3 depicts an exemplary wireless device in which an aspect of the disclosure

may be advantageously employed.

DETAILED DESCRIPTION
Aspects of the invention are disclosed in the following description and related drawings
directed to specific aspects of the invention. Alternative aspects may be devised
without departing from the scope of the invention. Additionally, well-known elements
of the invention will not be described in detail or will be omitted so as not to obscure the
relevant details of the invention.
The word “exemplary” is used herein to mean “serving as an example, instance, or
illustration.” Any aspect described herein as “exemplary” is not necessarily to be
construed as preferred or advantageous over other aspects. Likewise, the term “aspects
of the invention™ does not require that all aspects of the invention include the discussed
feature, advantage or mode of operation.
The terminology used herein is for the purpose of describing particular aspects only and
is not intended to be limiting of aspects of the invention. As used herein, the singular
forms "a", "an" and "the" are intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further understood that the terms
"comprises", "comprising,", "includes" and/or "including", when used herein, specify
the presence of stated features, integers, steps, operations, elements, and/or components,
but do not preclude the presence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups thereof.
Further, many aspects are described in terms of sequences of actions to be performed
by, for example, elements of a computing device. It will be recognized that various

actions described herein can be performed by specific circuits (e.g., application specific

WO 2017/151280 PCT/US2017/016971

[0027]

[0028]

[0029]

7

integrated circuits (ASICs)), by program instructions being executed by one or more
processors, or by a combination of both. Additionally, these sequence of actions
described herein can be considered to be embodied entirely within any form of
computer readable storage medium having stored therein a corresponding set of
computer instructions that upon execution would cause an associated processor to
perform the functionality described herein. Thus, the various aspects of the invention
may be embodied in a number of different forms, all of which have been contemplated
to be within the scope of the claimed subject matter. In addition, for each of the aspects
described herein, the corresponding form of any such aspects may be described herein
as, for example, “logic configured to” perform the described action.

Exemplary aspects of this disclosure are directed to a processing system
comprising a cache. In some examples, the cache may be a unified cache configured to
store data and instructions. The information (data/instructions) stored or to be stored in
the unified cache may have associated read, write, and execute permissions. The read,
write, and execute permissions may depend on the memory address associated with the
information, or more generally, the memory page comprising the memory address.

In exemplary aspects, it is recognized that if the memory address has both write
permission and execute permission associated with it, then the information associated
with the memory address may have a high likelihood of future use. As previously
mentioned, having write permission may be a basic condition for allowing the
information to be written to the memory address. In an example, the information may
be an instruction (written as data, using a data write operation, since write permission
exists). The information may be fetched to be executed in the future (e.g., using an
instruction fetch, since execute permission exists). Given that the information may be
accessed for execution (or in other words, the memory address may be executed from)
in future, if a write-miss occurs at the time of attempting to write the information to the
unified cache, in exemplary aspects, a write-allocate policy may be implemented while
servicing the write-miss. Otherwise, if execute permissions do not exist, the write-miss
may be serviced based on a write-no-allocate policy. Thus, in exemplary aspects,
execute permissions associated with a write-address may be used to determine cache
allocation policy in the event of a write-miss for a write operation to the write-address.

In exemplary aspects, the unified cache may be accessed by one or more agents

or processes. For example, the information may be written to the unified cache by a

WO 2017/151280 PCT/US2017/016971

[0030]

[0031]

[0032]

writing agent, also referred to herein as a “producing agent”. The information may be
executed, or more generally, “consumed” by an agent referred to herein as a
“consuming agent”. In some cases, the producing agent and the consuming agent may
refer to processes of the same entity (e.g., a processor), while in some cases, the
producing agent and the consuming agent may be different entities (e.g., different
processors which can access the unified cache).

In a processing system, one or more processors, processes, or entities (e.g.,
which can access memory), may be operated under one or more privilege levels, such as
a user privilege level, a supervisor privilege level, etc., as known in the art. For each
privilege level, there may be corresponding read, write, and execute permissions
associated each memory address or page. Thus, the producing agent and the consuming
agent may be operated under the same or different privilege levels, and so the producing
agent and consuming agent may have execute permissions which are based on their
associated privilege levels.

When a write-request is generated by the producing agent, the consuming agent
which may potentially consume the information which will be written by the producing
agent may not be known. Thus, if the write-request results in a cache miss, then at the
time of servicing the write-miss, the producing agent, as well as the privilege level of
the producing agent may be known; however, the potential consuming agent may not
be known, and therefore, the associated privilege level of the potential consuming agent
may not be known. Accordingly, in some aspects, the write-allocation policy for a
write-miss may be based on (e.g., a function of) execute permissions associated with the
privilege level of the producing agent and/or execute permissions associated with any
other privilege level for the write-address.

In some cases, the producing agent and the consuming agent (whether they are
the same entity or different entities) may access the unified cache through a memory
management unit (MMU). For example, the MMU may comprise a translation
lookaside buffer (TLB) configured to cache translations of virtual addresses (supplied
by the agents) to physical addresses (used for addressing memory locations in the
unified cache as well as backing storage locations). The TLB may have one or more
page table entries (PTEs) as previously discussed, wherein each PTE may comprise a
virtual-to-physical address translation. In exemplary aspects, the PTE may be expanded

to further include, along with a translation to a write-address for a write-request

WO 2017/151280 PCT/US2017/016971

[0033]

[0034]

[0035]

9

generated by the producing agent, the write and execute permissions associated with the
write-address. The PTE comprising the write-address may include one or more execute
permissions associated with the write-address, wherein the one or more execute
permissions may pertain to execute permissions associated with one or more privilege
levels.

For the sake of simplicity, exemplary aspects will be discussed with reference to
a processing system comprising a processor and a unified cache, wherein the processor
can be operated in one or more privilege levels, wherein each privilege level has
associated read, write, and execute permissions. For the sake of simplicity, processes
executable by the same processor may be referred to as a producing agent or a
consuming agent based on the type of memory access request, but it will be understood
the disclosed aspects can be easily extended to other variations where the producing
agent and consuming agent may belong to different entities or processing units, without
departing from the scope of this disclosure.

Accordingly, with reference to FIG. 1 an exemplary processing system 100 is
illustrated, with processor 105, MMU 115 comprising TLB 125, and cache 110.
Processor 105 can be any type of processor component such as a microprocessor, a
general purpose processor, a central processing unit (CPU), a digital signal processor
(DSP), a programmable logic device, etc. In exemplary aspects, processor 105 may be
configured as a producing agent as well as a consuming agent, depending on the nature
of transactions processed, or more specifically, depending on the type of memory access
request generated by processor 105. In various alternatives, processor 105 may be
operated under one or more privilege levels, such as a user privilege level, a supervisor
privilege level, etc.

Cache 110 may be a level 1 (L1) cache, for example, and may be configured to
cache information which may be consumed by processor 105. In various aspects, a
cache controller identified by the reference numeral 175 may include logic and/or other
means for controlling access to cache 110 and for implementing the various cache
allocation policies for cache 110 according to aspects of this disclosure. Although not
specifically illustrated, processing system 100 may comprise a memory system with one
or more backing storage locations for cache 110 (e.g., alevel 2 (L2) cache which can be
shared with one or more other processors or processing cores which may also be present

in processing system 100, a main memory, etc.). If there is a miss (e.g., read-miss or

WO 2017/151280 PCT/US2017/016971

[0036]

[0037]

[0038]

10

write-miss) in cache 110 for a memory access request generated by processor 105, then
servicing the miss may involve accessing the one or more backing storage locations, in
accordance with techniques known in the art, and so these techniques will not be
discussed in exhaustive detail herein for the sake of conciseness. Aspects of this
disclosure are directed to allocation in cache 110 upon a miss, and more specifically,
write-allocation (e.g., write-allocate or write-no-allocate) upon a write-miss. Read-
misses in cache 110 may be handled in a conventional manner, e.g., with allocation, and
so, read-misses will also not be discussed in exhaustive detail in this disclosure.

In exemplary aspects, cache 110 may be configured as a unified cache, to store
instructions as well as data. A producing agent of processor 105 may be able to write
instructions in the form of data to cache 110. Subsequently the instructions in cache
110 may be fetched as instructions to be executed by a potential consuming agent of
processor 105. The producing agent and a potential consuming agent may be operated
under one or more privilege levels that are possible for processor 105, with each
privilege level having associated read, write, and execute permissions.

Before accessing cache 110, write permissions for the producing agent for an
intended write-address to which information is to be written may be determined, for
example, by determining whether the privilege level (user/supervisor) under which the
producing agent is operated has write permission for the write-address. Assuming the
producing agent has write permission for the write-address to which the information is
to be written to cache 110, if there is a write-miss, the corresponding write-miss may be
serviced as a write-allocate or as a write-no-allocate (e.g., wherein the write-allocation
policy may be implemented by cache controller 175) based on one or more of execute
permissions associated with the write-address, e.g., execute permissions for a user
privilege and/or execute permissions for a supervisor privilege. Examples of servicing
the write-miss using a write-allocate policy and a write-no-allocate policy based on one
or more functions or combinations of the one or more execute permissions will be
described in detail in the following sections, while keeping in mind that determining the
write-allocation policy can be based on various other combinations of the one or more
execute permissions.

Although any cache architecture (e.g., direct mapped, fully associative, set
associative, etc.) may be used for cache 110 without departing from the scope of this

disclosure, cache 110 is shown in FIG. 1 as a direct mapped cache, for convenience of

WO 2017/151280 PCT/US2017/016971

[0039]

[0040]

11

explanation. Thus, cache 110 is shown to comprise one or more cache lines or cache
entries 130, wherein each cache entry 130 comprises tag 135 and information 145. Tag
135 is a field formed by a selected subset of bits of addresses (more specifically,
physical addresses) at which corresponding information 145 is stored. Cache 110 can
be indexed based on tags 135. For example, cache controller 175 may compare tag 135
of all cache entries 130 with corresponding bits of an address for which a cache access
is desired (e.g., an address corresponding to a memory access request made by
processor 105) and if there is a match with tag 135 of any cache entry 130, then there is
a cache-hit and the cache entry whose tag 135 matches the address for the desired cache
access is referred to as the hitting cache entry. If tags 135 of none of cache entries 130
match the address for the desired cache access, then there is a cache-miss.

If there is a cache-miss for a write-address corresponding to a write operation, or
a write-miss, then in case a write-allocate policy is used to service the write-miss, a new
cache entry may be created in cache 110 (which may involve any manner of creating a
new cache entry or replacing an existing one by cache controller 175, using techniques
such as a most recently used (MRU), least recently used (LRU), etc., as known in the
art). Prior information corresponding to the write-address may be brought into cache
110 from a backing storage location where the write-address is found, and information
corresponding to the write operation may be written to the new cache entry and tagged
based on the write-address (more specifically, the tag may be based on a physical
address translation of the write-address if the write-address is specified as a virtual
address). In case a write-no-allocate policy is used, then servicing the write-miss
involves writing the information to the backing storage location where the write-address
is found, without creating a new cache entry and without writing the information in the
new cache entry in cache 110. The various permissions which may be used in
determining the write-allocation policy may be provided by MMU 115 in some aspects.

MMU 115 may be generally configured to manage access to cache 110 (e.g., in
cooperation with cache controller 175), as well as access to other memories not
explicitly shown. For the purposes of this disclosure, MMU 115 may comprise TLB
125 configured for address translation. Processor 105 may use virtual addresses in its
operation, whereas cache 110, as well as other memories in processing system 100, may
be indexed and accessed using physical addresses. TLB 125 may store a relatively

small number of virtual-to-physical address translations which are likely to be used by

WO 2017/151280 PCT/US2017/016971

[0041]

[0042]

12

processor 105, for example, to enable a fast address translation for memory access
requests generated by processor 105. In this regard, TLB 125 may be populated
according to known techniques to store address translations which have a high
likelihood of future use by processor 105 (e.g., frequently used address translations,
recently used address translations, etc.). If TLB 125 does not contain a translation for a
particular memory access request (i.e., there is a “TLB-miss™), then a more time-
consuming process of performing page table walks to determine the desired address
translation may be undertaken by MMU 115, but techniques for populating TLB 125
and/or handling a TLB-miss are beyond the scope of this disclosure.

In exemplary aspects, TLB 125 may include one or more TLB entries, also
referred to as page table entries (PTEs), collectively designated by the reference
numeral 120 in FIG. 1. Further details of an example PTE 155 of PTEs 120 are
illustrated. PTE 155 is shown to comprise virtual address (VA) 160, a corresponding
translation to physical address (PA) 140. Additionally, according to exemplary aspects,
TLB 125 may also include permission bits, such as supervisor write permission (SW)
165, user write permission (UW) 167, supervisor execute permission (SX) 170, and user
execute permission (UX) 172. SW 165 and UW 167 may be write (W) permissions
associated with supervisor (S) and user (U) privilege levels for PA 140 (which may be a
write-address, e.g., in a main memory), or more generally, for a memory page which
comprises physical address 140. Similarly, SX 170 and UX 172 may be execute (X)
permissions associated with supervisor (S) and user (U) privilege levels for PA 140.
PTE 155 can also include one or more read permission bits corresponding to physical
addresses or memory pages, but these are not specifically shown or described because
read accesses are not particularly discussed in this disclosure, as previously stated.

An example process for accessing cache 110, and more specifically for
determining write-allocation according to exemplary aspects, will now be described
with continued reference to FIG. 1. Accordingly, a particular memory access request
generated by processor 105 (or a producing agent of processor 105) is considered. The
memory access request may be a write-request to write information (e.g., write-data
which comprises an instruction) to a write-address. Since processor 105 makes the
write-request, the write-address may be expressed as a virtual address in the write-
request. Assuming a TLB-hit for PTE 155 in TLB 125 for the write-request, PTE 155

comprises VA 160 and a corresponding translation to PA 140 for the write-address.

WO 2017/151280 PCT/US2017/016971

[0043]

[0044]

[0045]

[0046]

13

Additionally, PTE 155 also comprises SW 165 and UW 167 corresponding to
PA 140. The privilege level (user/supervisor) of the producing agent which generated
the write-request may be known when the write-request is generated. Therefore, the
corresponding write permission, SW 165 or UW 167, is checked based on whether the
privilege level of the producer is supervisor or user, respectively. If the corresponding
write permission is not asserted (or de-asserted) then write permission for the write-
request may not be available, and cache controller 175, for example, may not permit
access of cache 110 for the write-request; the write-request may be terminated and/or an
exception/error flag may be generated and handled in ways which are beyond the scope
of this disclosure and therefore cache access may be avoided.

If the corresponding write permission is asserted, then the write-request may be
processed as follows. Cache controller 175, for example, may consult or probe cache
110, using the write-address or PA 140. If any of cache entries 130 has tag 135 which
matches corresponding bits of PA 140, then there is a cache-hit or write-hit and cache
controller 175 can write the write-data to the hitting cache entry. If, on the other hand,
none of tags 135 matched corresponding bits of PA 140, then there is a write-miss.

Processing the write-miss may be based on SX 170 and UX 172. At the time of
processing the write-miss, the potential consuming agent for the write-data may not be
known. Therefore, one or more of the execute permissions SX 170 and UX 172
associated with the write-address may be considered, since the privilege level of a
potential consuming agent which might execute the write-address may be one of a
supervisor privilege or user privilege. One or more combinations of SX 170 and UX
172 will be described in detail in the following sections, in making the determination of
whether to write-allocate or write-no-allocate in cache 110 while servicing the write-
miss.

If, based on SX 170 and UX 172, the write-miss is determined to be serviced as
a write-allocate, then one or more backing storage locations (e.g., L2 cache, L3 cache,
main memory, etc.) are probed and the first backing storage location which comprises
the write-address or PA 140 is accessed. The prior information stored in the backing
storage location at PA 140 is read out and cache controller 175 may create new cache
entry 150 in cache 110. Cache controller 175 may write the write-data to information
145 of the new cache entry 150, and set tag 135 of the new cache entry 150 based on
bits of PA 140.

WO 2017/151280 PCT/US2017/016971

[0047]

[0048]

[0049]

[0050]

[0051]

[0052]

14

On the other hand, if, based on SX 170 and UX 172, the write-miss is
determined to be serviced as a write-no-allocate, then one or more backing storage
locations (e.g., L2 cache, L3 cache, main memory, etc.) are probed and the first backing
storage location which comprises PA 140 is accessed. The prior information stored in
the backing storage location at PA 140 overwritten with the first data, but a new cache
entry 150 is not created in cache 110.

The functions or combinations of SX 170 and UX 172 upon which write-allocate
or write-no-allocate determinations may be based, will now be described in greater
detail. Once again, in the following examples, it will be assumed that the corresponding
write permission (SW 165 or UW 167) based on the privilege level of the producing
agent is asserted. Further, the producing agent’s privilege level may be known, which
means that the producing agent’s execute permission associated with the known
privilege level may also be known, however, the privilege level or execute permission
associated with a potential consuming agent may not be known, but may be assumed to
be one of SX 170 or UX 172,

In a first example, the write-miss may be serviced as a write-allocate only if SX
170 is asserted, i.e., only if there is execute permissions for supervisor privilege. In this
example, the value of UX 172 may not be considered.

In a second example, the write-miss may be serviced as a write-allocate only if
UX 172 is asserted, i.e., only if there is execute permissions for user privilege. In this
example, the value of SX 170 may not be considered.

In a third example, the write-miss may be serviced as a write-allocate only if at
least one of SX 170 or UX 172 is asserted, i.e., if there is execute permissions for
supervisor privilege and/or user privilege.

In a fourth example, the write-miss may be serviced as a write-allocate only if
the execute permission for the producing agent’s privilege level is asserted (i.e., only if
SX 170 or UX 172 is asserted based on whether the producing agent is operated in a
supervisor privilege level or a user privilege level, respectively). For example, the
producing agent may be operated under a supervisor privilege to produce instructions or
code to be consumed or executed by potential consuming agents with supervisor
privilege only (but not by potential consuming agents with user privilege); or the
producing agent may be operated under a user privilege to produce instructions or code

to be consumed or executed by potential consuming agents operated under user

WO 2017/151280 PCT/US2017/016971

[0053]

[0054]

[0055]

[0056]

15

privilege only (but not by potential consuming agents with supervisor privilege). Thus,
in these examples, the execute permission associated with a privilege level which is not
the privilege level of the producing agent is not considered, but only the execute
permission associated with the privilege level of the producing agent is considered.

In a fifth example, the write-miss may be serviced as a write-allocate only if the
execute permission for the privilege level which is not the producing agent’s privilege
level is asserted (i.e., only if SX 170 or UX 172 is asserted based on whether the
producing agent is operated in a user privilege level or a supervisor privilege level,
respectively). Thus, this example, only the execute permission associated with a
privilege level which is not the privilege level of the producing agent is considered, but
the execute permission associated with the privilege level of the producing agent is not
considered.

In addition to the above-enumerated examples, various other algorithms or
logical functions of SX 170 and/or UX 172 may be devised, within the scope of this
disclosure, in determining the write-allocation policy in the case of the write-miss.

Furthermore, in some aspects, in determining and implementing a write-
allocation policy based on one or more execute permissions (e.g., SX 170 and/or UX
172 associated with the write-address or PA 140), cache controller 175, for example,
may override an existing write-allocation policy or a default write-allocation policy.
For example, a default write-no-allocate policy can be overridden to enforce write-
allocate, or a default write-allocate policy can be overridden to enforce write-no-allocate
for a write-miss based on one or more execute permissions associated with the write-
address.

Accordingly, it will be appreciated that exemplary aspects of this disclosure can
include any logic configured to determine one or more execute permissions associated
with a write-address of a write-request to cache 110. In some aspects the logic can
comprise MMU 115 as described above. However, in various alternative configurations
of processing system 100, the logic configured to determine the one or more execute
permissions need not include an MMU such as MMU 115. For example, the logic can
include any other entity or unit, such as cache controller 175, used for controlling access
to cache 110, wherein information regarding write and execute permissions for the
various privilege levels (e.g., user/supervisor) may be provided to such logic. In some

cases, address translation may not be performed for cache access, and so a TLB such as

WO 2017/151280 PCT/US2017/016971

[0057]

[0058]

[0059]

16

TLB 125 may be avoided; for example, if cache 110 is virtually tagged (i.e., using
virtual address 160) supplied by memory access requests generated by processor 105,
cache 110 may be accessed without a TLB and so the logic can include cache controller
175 configured to determine information pertaining to the above-described write and
execute permissions for the various privilege levels (e.g., user/supervisor) which are
possible. In some cases, where processor 105 may not use virtual addresses, the
generated memory access requests may already be physical addresses and cache 110
may be a physically tagged cache (as shown in FIG. 1), and so the logic can comprise
cache controller 175 configured to determine the above-described write and execute
permissions. Other alternatives for cache access, cache configuration, and suitable logic
configured to determine write and execute permissions for an intended write address to
the cache are also possible, as will be recognized by one of skill in the art.

Accordingly, it will be appreciated that exemplary aspects include various
methods for performing the processes, functions and/or algorithms disclosed herein.
For example, FIG. 2 illustrates method 200 of managing a cache, such as cache 110
configured as a unified cache, to store data as well as instructions.

More specifically, Block 205 of method 200 comprises determining one or more
execute permissions associated with a write-address of a write-request to the cache. For
example, the one or more execute permissions associated with the write-address (e.g.,
physical address 140) may be based on execute permissions for one or more privilege
levels (e.g., user/supervisor) associated with a memory page (e.g., of memory 305,
shown and discussed with reference to FIG. 3 below) comprising the write-address.
The one or more execute permissions can correspond to the execute permissions for a
producing agent which generated the write-request and an execute permission of a
potential consuming agent which may execute the write-address. The producing agent
and the consuming agent may be processes of processor 105 configured to access cache
110. In some aspects, the one or more execute permissions associated with the write-
address may be retrieved from a page table entry (e.g., PTE 155) of a translation
lookaside buffer (e.g., TLB 125) comprising an address translation (e.g., physical
address 140) for the write-address and the one or more execute permissions (e.g., SX
170, UX 172) associated with the write-address.

In Block 210, method 200 can include determining if there is a write-miss in the

cache for the write-request (e.g., cache controller 175 may probe cache 110 using

WO 2017/151280 PCT/US2017/016971

[0060]

[0061]

[0062]

[0063]

[0064]

17

physical address 140). If there is a write-miss, cache controller 175, for example, may
determine whether to implement a write-allocate policy or a write-no-allocate policy for
servicing the write-miss, based on the one or more execute permissions.

It will be appreciated that the foregoing Blocks 205-210 are not limiting of the
examples. As such, Blocks 205-215 can be combined and/or their order can be
rearranged, as practicable.

FIG. 3 is a block diagram of a particular illustrative aspect of a computing device 300,
according to exemplary aspects. Computing device 300 may be configured to perform
method 200 of FIG. 2 in exemplary aspects. As shown, computing device 300 includes
processor 105. MMU 115 comprising TLB 125, cache controller 175, and cache 110 as
described with reference to FIG. 1 have been shown, although the additional details of
these components that are shown in FIG. 1 are omitted from FIG. 3 for the sake of
clarity. It will be understood that although aspects such as MMU 115 comprising TLB
125, cache controller 175, and cache 110 have been shown as components which are
outside processor 105 in FIGS. 1 and 3, this arrangement is purely for the sake of
illustration, and not to be construed as a limitation. For example, in some
implementations, components such as MMU 115 comprising TLB 125, cache controller
175, or cache 110 may be configured within the block illustrated as processor 105.
Skilled persons will recognize various other arrangements and configurations that are
possible for processor 105, MMU 115 comprising TLB 125, cache controller 175, and
cache 110 according to aspects of this disclosure.

FIG. 3 also shows memory 305, which may be a backing storage location for cache 110,
such as main memory. Although not shown, one or more other caches or other memory
structures may also be included in computing device 300. Also shown in FIG. 3 are
display 315 and display controller 310, with display controller 310 coupled to processor
105 and to display 315.

In some aspects, FIG. 3 may include some optional blocks showed with dashed lines.
For example, computing device 300 may optionally include coder/decoder (CODEC)
320 (e.g., an audio and/or voice CODEC) coupled to processor 105; speaker 330 and
microphone 335 coupled to CODEC 320; and wireless controller 325 (which may
include a modem) coupled to wireless antenna 340 and to processor 105.

In a particular aspect where one or more of the above-described optional blocks are

present, processor 105, display controller 310, memory 305, CODEC 320, and wireless

WO 2017/151280 PCT/US2017/016971

[0065]

[0066]

[0067]

[0068]

18

controller 325 can be included in a system-in-package or a system-on-chip device 345;
and display 315, input device 350, speaker 330, microphone 335, wireless antenna 340,
and power supply 355 may be external to system-on-chip device 345, and may be
coupled to a component of system-on-chip device 345, such as an interface or a
controller.

It should be noted that although FIG. 3 generally depicts a computing device, processor
105 and memory 305 may be integrated into a set top box, a music player, a video
player, an entertainment unit, a navigation device, a personal digital assistant (PDA), a
fixed location data unit, a server, a computer, a laptop, a tablet, a communications
device, and a mobile phone, or other electronic devices. Further, at least one or more
exemplary aspects of computing device 300 may be integrated in at least one
semiconductor die.

Those of skill in the art will appreciate that information and signals may be represented
using any of a variety of different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols, and chips that may be
referenced throughout the above description may be represented by voltages, currents,
electromagnetic waves, magnetic fields or particles, optical fields or particles, or any
combination thereof.

Further, those of skill in the art will appreciate that the various illustrative logical
blocks, modules, circuits, and algorithm steps described in connection with the
embodiments disclosed herein may be implemented as electronic hardware, computer
software, or combinations of both. To clearly illustrate this interchangeability of
hardware and software, various illustrative components, blocks, modules, circuits, and
steps have been described above generally in terms of their functionality. Whether such
functionality is implemented as hardware or software depends upon the particular
application and design constraints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for each particular application,
but such implementation decisions should not be interpreted as causing a departure from
the scope of the present invention.

The methods, sequences and/or algorithms described in connection with the
embodiments disclosed herein may be embodied directly in hardware, in a software
module executed by a processor, or in a combination of the two. A software module

may reside in RAM memory, flash memory, ROM memory, EPROM memory,

WO 2017/151280 PCT/US2017/016971

[0069]

[0070]

19

EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other
form of storage medium known in the art. An exemplary storage medium is coupled to
the processor such that the processor can read information from, and write information
to, the storage medium. In the alternative, the storage medium may be integral to the
processor.

Accordingly, an aspect of the invention can include computer readable media
embodying a method for managing a cache. Accordingly, the invention is not limited to
illustrated examples and any means for performing the functionality described herein
are included in embodiments of the invention.

While the foregoing disclosure shows illustrative embodiments of the invention, it
should be noted that various changes and modifications could be made herein without
departing from the scope of the invention as defined by the appended claims. The
functions, steps and/or actions of the method claims in accordance with the
embodiments of the invention described herein need not be performed in any particular
order. Furthermore, although elements of the invention may be described or claimed in
the singular, the plural is contemplated unless limitation to the singular is explicitly

stated.

WO 2017/151280 PCT/US2017/016971

20
CLAIMS
WHAT IS CLAIMED IS:
1. A method for managing a cache, the method comprising:

determining one or more execute permissions associated with a write-address of
a write-request to the cache; and

if there is a write-miss in the cache for the write-request, determining whether to
implement a write-allocate policy or a write-no-allocate policy for servicing the write-

miss, based on the one or more execute permissions.

2. The method of claim 1, wherein the cache is a unified cache configured to store

data and instructions.

3. The method of claim 1, wherein the one or more execute permissions associated
with the write-address are based on one or more execute permissions associated with a

memory page comprising the write-address.

4, The method of claim 1, wherein the one or more execute permissions comprise

execute permissions for one or more privilege levels associated with the write-address.

5. The method of claim 4, wherein an execute permission of a producing agent
which generated the write-request is based on a privilege level of the producing agent
and an execute permission of a consuming agent configured to execute from the write-

address is based on a privilege level of the consuming agent.

6. The method of claim 4, wherein the producing agent and the consuming agent

are processes of a processor configured to access the cache.

7. The method of claim 4, wherein the one or more privilege levels comprise a user

privilege level and a supervisor privilege level.

WO 2017/151280 PCT/US2017/016971

21

8. The method of claim 4, further comprising determining whether the producing
agent has write permission for the write-address before accessing the cache for the

write-request.

9. The method of claim 1, wherein determining the one or more execute
permissions associated with the write-address comprises retrieving the one or more
execute permissions from a page table entry (PTE) of a translation lookaside buffer
(TLB) comprising an address translation for the write-address and the one or more

execute permissions associated with the write-address.

10. The method of claim 1, wherein determining whether to write-allocate or write-
no-allocate in the cache for servicing the write-miss comprises overriding an existing

write-allocation policy for the cache.

11. An apparatus comprising:

a cache;

logic configured to determine one or more execute permissions associated with a
write-address of a write-request to the cache; and

a cache controller configured to implement a write-allocate or a write-no-
allocate policy for the write-request based on the one or more execute permissions, if

there is a write-miss in the cache for the write-request.

12. The apparatus of claim 11, wherein the cache is a unified cache configured to

store data and instructions.

13. The apparatus of claim 11, wherein the one or more execute permissions
associated with the write-address are based on one or more execute permissions

associated with a memory page comprising the write-address.

14. The apparatus of claim 11, wherein the one or more execute permissions
comprise execute permissions for one or more privilege levels associated with the write-

address.

WO 2017/151280 PCT/US2017/016971

22

15. The apparatus of claim 14, comprising a producing agent configured to generate
the write-request and a consuming agent configured to execute from the write-address,
wherein an execute permission of the producing agent is based on a privilege level of
the producing agent and an execute permission of a consuming agent is based on a

privilege level of the consuming agent.

16. The apparatus of claim 14 further comprising a processor configured to access
the cache, wherein the producing agent and the consuming agent are processes

executable by the processor.

17. The apparatus of claim 14, wherein the one or more privilege levels comprise a

user privilege level and a supervisor privilege level.

18. The apparatus of claim 11, wherein the logic comprises a memory management
unit (MMU) compring a translation lookaside buffer (TLB), wherein the TLB comprises
a page table entry (PTE) configured to store an address translation for the write-address

and the one or more execute permissions associated with the write-address.

19. The apparatus of claim 11, wherein the cache controller is configured to override
an existing write-allocation policy to implement the write-allocate or write-no-allocate

policy for the write-request based on the one or more execute permissions.

20. The apparatus of claim 11, integrated into a device, selected from the group
consisting of a set top box, a music player, a video player, an entertainment unit, a
server, a navigation device, a personal digital assistant (PDA), a fixed location data unit,

a computer, a laptop, a tablet, a communications device, and a mobile phone.

21. An apparatus comprising:

means for determining one or more execute permissions associated with a write-
address of a write-request to a cache; and

means for implementing a write-allocate or a write-no-allocate policy for the
write-request based on the one or more execute permissions, if there is a write-miss in

the cache for the write-request.

WO 2017/151280 PCT/US2017/016971

23

22, The apparatus of claim 21, wherein the cache comprises means for storing data

and 1nstructions.

23. The apparatus of claim 21, comprising means for generating the write-request
and means for executing from the write-address, wherein execute permissions of the
means for generating and the means for executing are based on privilege levels of the

means for generating and the means for executing.

24, The apparatus of claim 21, further comprising means for storing an address
translation for the write-address and the one or more execute permissions associated

with the write-address.

25. The apparatus of claim 21, comprising means for overriding an existing write-

allocation policy.

26. A non-transitory computer-readable storage medium comprising code, which,
when executed by a processor, causes the processor to perform operations for managing
a cache, the non-transitory computer-readable storage medium comprising;

code for determining one or more execute permissions associated with a write-
address of a write-request to the cache; and

code for implementing a write-allocate or a write-no-allocate policy for the
write-request based on the one or more execute permissions, if there is a write-miss in

the cache for the write-request.

27. The non-transitory computer-readable storage medium of claim 26, comprising

code for generating the write-request and code for executing from the write-address.

28. The non-transitory computer-readable storage medium of claim 26, wherein the
one or more execute permissions comprise execute permissions for one or more

privilege levels associated with the write-address.

WO 2017/151280 PCT/US2017/016971

24

29. The non-transitory computer-readable storage medium of claim 26, further

comprising code for overriding an existing write-allocation policy.

WO 2017/151280

PCT/US2017/016971

1/3
PROCESSING
SYSTEM
100
105 A1
160 140 165 167 170172
/ / / / /
VA PA |sw|sw|sx|[ux |—155 }120
) ;e o e e!le
® : ™ : ° : ° : ™ : ™
]] [}]]
]]]]]
]] [}]]
]] [}]]
/175
CACHE CONTROLLER
/110
CACHE
f135 /145
TAG |INFORMATION +130
[) : []
o | °
° ' °
i /150

FIG. 1

WO 2017/151280 PCT/US2017/016971

2/3

200

\\

f205

Determine one or more execute permissions associated
with a write-address of a write-request to a cache

f210

If there is a write-miss in the cache for the write-request,
determine whether to implement a write-allocate policy or
a write-no-allocate policy for servicing the write-miss,
based on the one or more execute permissions

FIG. 2

AlddNns .
43MOd € Ol4

PCT/US2017/016971

313

WO 2017/151280

sge~’
C T
_] r=——=—
_ T--Jﬂzozaomgs:
e — _ —_— —_— — —
_ 53000 | gee”
_ wu--¢. NENVERLS "
I oce”
0ze
[] | Tyzmownoo | |
L _SST13IM | |
sze” _
sz1- _
AHOWIN - YITIOHINOD |
5oL~ ore”’ _
|
T |
She \A/
\\ 30IA3A LNdNI AVdSIa rﬂ_. A
ope

00¢ 0se~’ Gre-’

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/016971
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F12/0811 GO6F12/0888 GO6F12/1027 GO6F12/126 GO6F12/0831
GO6F12/0871
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 5 606 687 A (MEHRING PETER A [US] ET
AL) 25 February 1997 (1997-02-25)
column 1, line 33 - column 2, line 56;
claims 1-11

column 3, line 14 - column 4, line 54;
figures 1-3

1-29

EP 1 304 620 Al (TEXAS INSTRUMENTS INC
[US]; TEXAS INSTR FRANCE S A [FR])

23 April 2003 (2003-04-23)
paragraphs [0026] - [0028],
[0043], [0050] - [0070],

- [0087]; claims 1, 2,10,
4, 5, 6

1-29

[0032],
[0073], [0081]
11; figures 3,

_/__

See patent family annex.

Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

7 April 2017

Date of mailing of the international search report

21/04/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Jardon, Stéphan

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/016971

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

GB 2 526 849 A (ADVANCED RISC MACH LTD
[GB]) 9 December 2015 (2015-12-09)
abstract; claims 1-5

page 2, line 2 - page 5, line 11

page 12, line 11 - page 14, line 14;
figures 1, 2

page 19, Tine 12 - page 21, line 25;
figures 5a,5b

US 2007/079070 Al (PIRY FREDERIC C M [FR]
ET AL) 5 April 2007 (2007-04-05)
paragraphs [0004] - [0008], [0011] -
[0027], [0039] - [0040], [0047] -
[0063]; claims 1-2, 7, 13; figure 2

EP 0 989 496 A2 (TEXAS INSTRUMENTS INC
[US]) 29 March 2000 (2000-03-29)
paragraphs [0108] - [0109], [0129] -
[0132]; figure 22

1,11,21,
26

1-29

1-29

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/016971
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5606687 A 25-02-1997 NONE
EP 1304620 Al 23-04-2003 EP 1304620 Al 23-04-2003
US 2003101320 Al 29-05-2003
GB 2526849 A 09-12-2015 CN 105159844 A 16-12-2015
GB 2526849 A 09-12-2015
JP 2015232879 A 24-12-2015
US 2015356019 Al 10-12-2015
US 2007079070 Al 05-04-2007 NONE
EP 0989496 A2 29-03-2000 AT 294415 T 15-05-2005
DE 69924939 D1 02-06-2005
DE 69924939 T2 09-03-2006
EP 0989496 A2 29-03-2000
JP 2000215102 A 04-08-2000

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report

