

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2005268984 B2

(54) Title
Method for post-treating titanium dioxide pigments

(51) International Patent Classification(s)
C09C 1/36 (2006.01)

(21) Application No: **2005268984** (22) Date of Filing: **2005.07.08**

(87) WIPO No: **WO06/012969**

(30) Priority Data

(31) Number **10 2004 037 272.1** (32) Date **2004.07.31** (33) Country **DE**

(43) Publication Date: **2006.02.09**
(44) Accepted Journal Date: **2010.07.29**

(71) Applicant(s)
Kronos International, Inc.

(72) Inventor(s)
Drews-Nicolai, Lydia;Bluemel, Siegfried

(74) Agent / Attorney
Davies Collison Cave, 255 Elizabeth Street, Sydney, NSW, 2000

(56) Related Art
US 4450012 A (MESSER et. al.) 22 May 1984
JP 07-292277 A (SAKAI KAGAKU KOGYO KK) 7 November 1995
GB 1365999 A (LAPORTE INDUSTRIES LTD) 4 September 1974

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
9. Februar 2006 (09.02.2006)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2006/012969 A1

(51) Internationale Patentklassifikation⁷: **C09C 1/36**

(21) Internationales Aktenzeichen: PCT/EP2005/007387

(22) Internationales Anmeldedatum:
8. Juli 2005 (08.07.2005)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
10 2004 037 272.1 31. Juli 2004 (31.07.2004) DE

(71) Anmelder: **KRONOS INTERNATIONAL, INC.**
[DE/DE]; Postfach 10 07 20, 51307 Leverkusen (DE).

(72) Erfinder: **BLUEMEL, Siegfried**; An der Deckersweide,
40883 Ratingen (DE). **DREWS-NICOLAI, Lydia**;
Hofrichterstr. 3, 51057 Köln (DE).

(74) Gemeinsamer Vertreter: **KRONOS INTERNATIONAL, INC.**; Patente und Literatur, Peschstrasse 5,
51373 Leverkusen (DE).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für
jede verfügbare nationale Schutzrechtsart): AE, AG, AL,

AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN,
YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für
jede verfügbare regionale Schutzrechtsart): ARIPO (BW,
GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC,
NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR POST-TREATING TITANIUM DIOXIDE PIGMENTS

(54) Bezeichnung: VERFAHREN ZUR NACHBEHANDLUNG VON TITANDIOXID-PIGMENTEN

(57) **Abstract:** The invention relates to a method for the post-treatment of titanium dioxide for the production of particularly weather-resistant titanium dioxide pigments with good optical properties. The method is characterised in that in addition to the water-containing oxides of tin and zirconium, at least one further oxide of the group aluminium, silicon and titanium is co-precipitated on the particle surface. The addition of the post-treatment components to the aqueous TiO₂ suspension either occurs in acidic solution (pH value of max. 3) or in alkaline solution (pH value of min. 10). The pH value is subsequently adjusted to 6 to 8. By means of subsequent tempering of the pigment at elevated temperatures of over 125 and up to 500 °C, the colour tone b can be improved. The pigment is particularly suitable for use in dyes, paints and plastics.

(57) **Zusammenfassung:** Die Erfindung betrifft ein Verfahren zur Nachbehandlung von Titandioxid, um besonders witterungsstabile Titandioxid-Pigmente mit guten optischen Eigenschaften herzustellen. Das Verfahren ist dadurch gekennzeichnet, dass neben den wasserhaltigen Oxiden von Zinn und Zirkon wenigstens ein weiteres aus der Gruppe Aluminium, Silicium und Titan gemeinsam auf die Partikeloberfläche aufgefäßt wird. Die Zugabe der Nachbehandlungskomponenten in die wässrige TiO₂-Suspension findet entweder im sauren (pH-Wert von höchstens 3) oder im alkalischen (pH-Wert von mindestens 10) Bereich statt. Anschließend wird der pH-Wert auf 6 bis 8 eingestellt. Durch abschließende Temperung des Pigments bei höheren Temperaturen über 125 bis zu 500 °C kann der Farbton b verbessert werden. Das Pigment ist besonders geeignet zur Verwendung in Farben, Lacken und Kunststoffen.

WO 2006/012969 A1

Method for post-treating titanium dioxide pigments

5 The invention relates to a method for the post-treatment of titanium dioxide pigments, to titanium dioxide pigments manufactured in this way, and to their use in paints, coatings and plastics.

It is known that undesirable photocatalytic reactions, induced by UV absorption, lead to
10 degradation of the pigmented material when using TiO_2 as a white pigment in paints and coatings, plastics, etc.

In this context, TiO_2 pigments absorb light in the near ultraviolet range, resulting in the development of electron-hole pairs that produce highly reactive radicals on the TiO_2 surface.

15 In organic media, the radicals formed lead to binder degradation. It is known that the photoactivity of TiO_2 can be reduced by subjecting the TiO_2 particles to inorganic post-treatment, e.g. with oxides of Si and/or Al and/or Zr. It is further known that the photoactivity, and also other pigment properties, can be improved by the use of Sn compounds, for example.

20 Several examples of Sn as a component of the post-treatment of TiO_2 pigments are given in patents JP 61 141 616 and JP 61 286 221, which describe the production of conductive layers on TiO_2 , which are manufactured by means of a combination of a tin coating and an antimony coating.

25 Patents DE 29 51 805 C2 and US 3,316,204 describe the production of laminating paper pigments, where patent DE 29 51 805 C2 describes a laminating paper pigment with a coating of Ce phosphate and Al phosphate, as well as an outer layer made of a fluoride compound, which can, among other things, be a Sn fluoride. Patent US 3,316,204 describes a coating of Sn oxide and Al oxide, where the pigments produced are subsequently calcined at temperatures in excess of 625 °C in order to obtain particularly great resistance to UV
30 radiation when used in the laminating sector.

Further, patents JP 58 134 158 and US 4,405,376 describe pigments with improved dispersibility, good gloss and good stability, which are particularly suitable for the paints and coatings sector. Among them, patent JP 58 134 158 describes a coating made of Sn phosphate and hydrous aluminium oxide.

35 At this point and below, the oxide precipitated onto the particle surface is always taken as also meaning the respective hydrous oxide.

US 4,405,376 (DE 31 45 620 C3) discloses pigments with an inner layer of Sn oxide and Zr

oxide, together with an outer layer of Al oxide. Application of the inner layer of Sn oxide and Zr oxide is accomplished either by neutralisation with NaOH at a pH value of 2 following addition of the Zr and Sn compound, or by addition of an acidic Sn compound at a pH value of 10 to 10.5 following addition of the Zr compound. An outer Al oxide layer is subsequently

5 applied to the inner Sn/Zr oxide layer. The pigments manufactured according to the patent described above demonstrate high gloss, good dispersibility and high photostability (chalk resistance). At the same time, however, the pigments display an undesirable yellow discolouration.

10 The present invention seeks to provide a method by which titanium dioxide pigments can be manufactured that, compared to the prior art, demonstrate a further improvement in photostability (chalk resistance), while retaining good optical properties.

According to one aspect the present invention provides a method for the post-treatment of 15 titanium dioxide that comprises the following steps:

- a) Production of an aqueous suspension of titanium dioxide base material with a pH value of not more than 3, or a pH value of not less than 10,
- b) Addition of water-soluble compounds of tin and zirconium, as well as water-soluble compounds of at least one further element from the group comprising aluminium, 20 silicon and titanium, whereby the pH value does not exceed 3, or the pH value does not drop below 10,
- c) Adjustment of the pH value of the suspension to between 6 and 8.

Further advantageous embodiments of the invention are described in the sub-claims.

25 In contrast to the method according to US 4,405,376 (DE 31 45 620 C3) which produces separate layers of Zr/Sn oxide and Al oxide as a result of intermediate neutralisation of the suspension, the method according to the invention is characterised in that a neutral pH value of between 6 and 8 is only set when all components - Sn, Zr and at least one other from the group comprising Al, Si and Ti - have been added to the suspension. Surprisingly, control of 30 the method in accordance with the invention leads to greatly improved weather resistance of the TiO₂ pigments.

Further layers can subsequently be applied by precipitation, e.g. a final Al oxide layer for improving the hiding power.

35 The starting titanium dioxide pigment is base material produced by the familiar sulphate or chloride process, and is present either in anatase form or in rutile form. Particularly base material manufactured by the sulphate process should preferably be stabilised in the familiar

manner by means of calcining additives, such as potassium, aluminium, phosphorus, lithium and the like. Starting with an aqueous titanium dioxide base material suspension, the method according to the invention can be implemented both with a highly acidic pH value of 3 at most, preferably 2 at most, and with a highly alkaline pH value of at least 10, preferably at least 11 (Step a).

5 During the subsequent Step (b), aqueous solutions of the post-treatment components Sn, Zr, and at least one other from the group comprising Al, Si and Ti, are added to the suspension. During addition, the pH value of the suspension remains in the range specified in Step (a), i.e. 3 at most, preferably 2 at most, or at least 10, preferably at least 11. A retention time of

10 15 to 30 minutes can be allowed after each addition.

Subsequently, in Step (c), the suspension is adjusted to a pH value of between 6 and 8 by adding either alkaline or acidic compounds.

This can be followed by the precipitation of further layers, e.g. the precipitation of a final Al_2O_3 layer.

15

For treatments starting in the acidic range of pH values, aqueous Sn and Zr salt solutions are initially added, as well as at least one other component - Al and/or Ti and/or Si compounds - (Step b). It is important in this context that the pH value is 3 at most during the addition of all components. Consequently, acidic Sn or Zr salt solutions are used with preference. It is also possible to use alkaline solutions as an alternative, in which case acid must be added at the same time to ensure that the pH value does not exceed 3. The person skilled in the art is familiar with suitable substances and the quantities required for control. The order of addition is irrelevant for the purposes of the invention.

20 The pH value is subsequently increased to the neutral range between 6 and 8 (Step c) using a lye, e.g. NaOH, or an alkaline compound, in combination with a lye, where appropriate. In particular, alkaline compounds already used in Step (b) can also be selected (e.g. sodium aluminate or sodium silicate).

25 Optionally, a stirring time for homogenisation can be introduced between Step (b) (additions in the pH value range up to 3 at most) and Step (c) (increasing the pH value).

30

The order of addition of the components is likewise variable when precipitating in the alkaline range. The treatment components - aqueous solutions of Sn and Zr, as well as of Al and/or Si and/or Ti - are initially added to the suspension (Step b) at a pH value of at least 10, preferably at least 11. During this time, the pH value is maintained at at least 10, preferably at least 11, e.g. by parallel addition of a lye, such as NaOH. The person skilled in the art is familiar with suitable substances and the quantities required for control. For example, the water-soluble, alkaline Al compound and/or the alkaline Si compound are added to the

suspension first, followed by the aqueous solutions of the Sn and Zr components, as well as the Ti component, where appropriate.

The pH value is subsequently lowered into the neutral range between 6 and 8 (Step c) using an acid, e.g. HCl, or an acidic compound, in combination with an acid like HCl, where

5 appropriate. In particular, acidic compounds already used in Step (b) can also be selected (e.g. acidic Sn or Zr compounds, or aluminium sulphate).

The water-soluble compounds indicated below can, for example, be used as post-treatment components in the described embodiments of the method according to the invention, and all

10 other embodiments, although this list is not to be regarded as exhaustive:

Acidic tin compounds open to consideration include acid-reacting tin salts of both bivalent and tetravalent tin, e.g. stannous chloride or stannous sulphate. Sodium and potassium stannate, for example, are available as alkaline tin compounds.

Suitable acidic zirconium compounds include, for example, zirconium sulphate, zirconium

15 oxychloride or zirconium nitrate. The alkaline zirconium compound can, for example, be selected from the group of zirconium carbonate complexes.

Suitable as the alkaline aluminium compound are alkali aluminates, particularly sodium aluminate. Aluminium sulphate and aluminium chloride are open to consideration as acid-reacting aluminium compounds.

20 Alkali silicates, particularly sodium silicate (water glass), are used with preference as alkaline silicon compounds.

Suitable titanium compounds are titanyl compounds, such as titanyl sulphate or titanyl chloride.

25 In this context, the quantities of the post-treatment compounds used in Step (b), calculated as their oxides and referred to the TiO_2 base material, are as follows:

0.1 to 1.0% by weight SnO_2 , preferably 0.2 to 0.5% by weight;

0.1 to 1.5% by weight ZrO_2 , preferably 0.2 to 1.0% by weight;

0.1 to 1.5% by weight SiO_2 , preferably 0.2 to 1.0% by weight;

30 0.1 to 1.0% by weight TiO_2 ;

0.1 to 3.0% by weight Al_2O_3 , preferably 0.2 to 1.5% by weight.

An Al oxide layer can subsequently be applied to the TiO_2 particles coated in accordance with the method described above, using known post-treatment methods and in variable

35 quantities, preferably up to 6.0% by weight, calculated as Al_2O_3 and referred to the TiO_2 base material.

Final treatment of the TiO_2 suspension is performed by methods familiar to the person skilled in the art. For example, the suspension is set to a final pH value of roughly 7. Preferably the final pH value is set to at least 7 particularly to at least 7.5. Hereby improved optical properties, particularly an improved tone b, are achieved. Particularly when using the special 5 embodiment of the process which starts in the alkaline region with a pH value of at least 10, the tone b can be optimised by setting the final pH value to at least 7 preferably to at least 7.5. Subsequently the pigment is freed of the water-soluble salts by washing. Drying is usually accomplished at roughly 110 to 160 °C. Finally, the pigment is milled.

10 It is known that relatively high tin contents in the coating can lead to discolouration of the titanium dioxide pigment, particularly to an increase in the tone b. The tone b can be greatly improved, without impairing stability, by tempering the pigments post-treated according to the invention at temperatures from over 125 °C to up to 500 °C, preferably at about 160 °C and particularly at about 250 °C.

15 The pigments manufactured according to the invention thus display improved photostability (chalk resistance) compared to the reference pigments and, following tempering, also better optical properties (brightness and tone). They are particularly suitable for pigmenting plastics, paints and coatings.

20

Examples

The invention is explained on the basis of a number of examples below, although these are not to be taken as being a restriction. The quantities indicated in % by weight refer in each 25 case to the TiO_2 base material. Each addition is followed by a stirring time of roughly 15 to 30 minutes.

Example 1

A sand-milled suspension of TiO_2 base material, manufactured by the chloride process, with 30 a TiO_2 concentration of 450 g/l is set to a pH value of 2 with HCl at 60 °C. While stirring, 0.5% by weight SnO_2 are added to the suspension in the form of stannous chloride solution, followed by 0.5% by weight ZrO_2 in the form of zirconium oxychloride. While stirring, 0.3% by weight Al_2O_3 in the form of sodium aluminate are added, the pH value subsequently being adjusted to roughly 7 by further addition of sodium aluminate.

35 Using a fixed-pH method, Al_2O_3 - added in the form of sodium aluminate - is precipitated by addition of HCl at a pH value of 7 to 8, such that the total quantity of Al_2O_3 is 3.0% by weight. Finally, the suspension is freed of the water-soluble salts by washing, dried for 16 hours at

160 °C or at 250 °C, and subsequently milled.

The chalk resistance of the pigment is 100%. The tone b is 0.4 after drying at 160 °C, and 0.3 after drying at 250 °C.

5 Example 2

A sand-milled suspension of TiO_2 base material, manufactured by the chloride process, with a TiO_2 concentration of 450 g/l is set to a pH value of 2 with HCl at 60 °C. While stirring, 0.5% by weight SnO_2 are added to the suspension in the form of stannous chloride solution. Subsequently, 0.5% by weight ZrO_2 are added to the suspension in the form of zirconium sulphate, followed in the next step by 0.5% by weight SiO_2 in the form of sodium water glass. The pH value is roughly 1.4. Subsequently, 2.6% by weight Al_2O_3 are added in the form of sodium aluminate, and 0.4% by weight Al_2O_3 in the form of aluminium sulphate. Finally, the suspension is set to a pH value of 7, freed of the water-soluble salts by washing, dried and milled.

15 The chalk resistance of the pigment is 111%.

Example 3

A sand-milled suspension of TiO_2 base material, manufactured by the chloride process, with a TiO_2 concentration of 450 g/l is set to a pH value of 2 with HCl at 60 °C. While stirring,

20 0.5% by weight SnO_2 are added to the suspension in the form of stannous chloride solution. Subsequently, 0.5% by weight ZrO_2 are added to the suspension in the form of zirconium sulphate, followed by 0.2% by weight TiO_2 in the form of titanyl chloride. In the next step, 0.3% by weight SiO_2 are added to the suspension in the form of sodium water glass. This is followed by the addition of 0.3% by weight Al_2O_3 in the form of sodium aluminate and 25 subsequent adjustment of the pH value to 8 by further addition of sodium aluminate. Subsequently, Al_2O_3 - added in the form of sodium aluminate - is precipitated by addition of HCl at a pH value of 7 to 8, using a fixed-pH method, such that the total quantity of Al_2O_3 is 3.0% by weight.

30 The suspension is finally set to a pH value of 7, freed of the water-soluble salts by washing, dried for 16 hours at 160 °C or at 250 °C, and milled.

The chalk resistance of the pigment is 111%. The tone b is 0.5 after drying at 160 °C, and 0.3 after drying at 250 °C.

Example 4

35 A sand-milled suspension of TiO_2 base material, manufactured by the chloride process, with a TiO_2 concentration of 450 g/l is set to a pH value of 11 with NaOH at 60 °C. While stirring, 0.5% by weight ZrO_2 are added to the suspension in the form of zirconium oxychloride. The

pH value of the suspension is stabilised at 11 with NaOH. In the next step, 0.5% by weight SiO₂ are added to the suspension in the form of sodium water glass, followed by 0.5% by weight SnO₂ in the form of SnCl₂. The pH value is subsequently set to between 7 and 8 with HCl.

5 Subsequently, 3.0% by weight Al₂O₃ - added in the form of sodium aluminate - are precipitated by addition of HCl at a fixed pH value of 7 to 8. Finally, the suspension is set to a pH value of 7, freed of the water-soluble salts by washing, dried for 16 hours at 160 °C or at 250 °C, and subsequently milled. The chalk resistance of the pigment is 90%. The tone b is 0.5 after drying at 160 °C, and 0.3

10 after drying at 250 °C.

Comparative example A

A sand-milled suspension of TiO₂ base material, manufactured by the chloride process, with a TiO₂ concentration of 450 g/l is set to a pH value of 2 with HCl at 60 °C. While stirring, 15 0.5% by weight SnO₂ are added to the suspension in the form of stannous chloride solution, followed by 0.5% by weight ZrO₂ in the form of zirconium sulphate. In the next step, the suspension is set to a pH value of 8 by adding NaOH. Subsequently, Al₂O₃ is admixed in the form of parallel addition of sodium aluminate and HCl at a fixed pH value of 7 to 8, such that the total quantity of Al₂O₃ is 3.0% by weight.

20 Finally, the suspension is freed of the water-soluble salts by washing, dried for 16 hours at 160 °C, and milled. The chalk resistance of the pigment is 83%. The tone b is 0.5 after drying at 160 °C.

Comparative example B

25 Comparative example B corresponds to Example 4 without the addition of SiO₂: A sand-milled suspension of TiO₂ base material, manufactured by the chloride process, with a TiO₂ concentration of 450 g/l is set to a pH value of 11 with NaOH at 60 °C. While stirring, 0.5% by weight ZrO₂ are added to the suspension in the form of zirconium oxychloride. The pH value of the suspension is stabilised at 11 with NaOH. Subsequently, 0.5% by weight 30 SnO₂ are added in the form of SnCl₂. Subsequently, 3.0% by weight Al₂O₃ - added in the form of sodium aluminate - are precipitated by addition of HCl at a fixed pH value of 7 to 8. Finally, the suspension is set to a pH value of 7, freed of the water-soluble salts by washing, dried for 16 hours at 160 °C and subsequently milled.

35 The chalk resistance of the pigment is 83%. The tone b is 0.5 after drying at 160 °C.

Testing

The photostability of the pigments produced in accordance with the examples and the comparative examples is tested in an alkyd paint system exposed to accelerated weathering.

5 Weathering takes place in a Weather-Ometer (WOM), a weathering machine comprising a ventilated test chamber with

- a.) Radiation source (carbon electrodes that generate an arc in operation)
- b.) Radiation filter made of special glass
- c.) Device for sprinkling the specimens with water
- 10 d.) Atomiser for creating atmospheric humidity
- e.) Rotary specimen holder

The test cycle simulates outdoor exposure in accelerated fashion. The paint weathers within the test period. The chalk resistance is examined in parallel. In addition, a reference pigment is used as the standard in every test cycle.

15 Chalking is measured according to DIN 53159. A piece of wet, black photographic paper is pressed onto the chalking paint surface for this purpose. The onset of chalking (chalk resistance) is defined as the day on which pigment and filler particles leave a complete, white imprint. The chalk resistance is indicated in percent, referred to the standard.

20 The optical properties, particularly the tone b, are determined on the basis of DIN 5033 by measuring the brightness L*, tone a* and tone b* of titanium dioxide pigments in paint and solvent-free powder tablets. The powder tablet is produced under defined conditions from the pigment to be tested. A HUNTERLAB colorimeter is used to determine the reflectance values.

25

Test results

It can be seen that, compared to the process known from the prior art (DE 31 45 620 C3), where a separate Zr/Sn oxide layer is applied by precipitation, the process according to the 30 invention leads to substantially improved photostability (chalk resistance) of the TiO₂ pigment. This applies to treatment in the acidic range (Examples 1, 2 and 3 / Comparative example A) and in the alkaline range (Example 4 / Comparative example B).

The results for example pigments 1, 3 and 4 additionally demonstrate that the tone b of the 35 TiO₂ pigment treated with Sn oxide can be shifted towards lower values by final tempering at elevated temperatures (e.g. 250 °C as opposed to 160 °C).

8a

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

5

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that the prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to

10 which this specification relates.

The claims defining the invention are as follows:

1. Method for the post-treatment of titanium dioxide, wherein the method includes the following steps:
 - 5 a) Production of an aqueous suspension of titanium dioxide base material with a pH value of not more than 3, or a pH value of not less than 10,
 - b) Addition of water-soluble compounds of tin and zirconium, as well as water-soluble compounds of at least one further element from the group comprising aluminium, silicon and titanium, where the pH value does not exceed 3, or the pH value does not drop below 10,
 - 10 c) Adjustment of the pH value of the suspension to between 6 and 8.
2. Method according to Claim 1, wherein 0.1 to 1.0% by weight, preferably 0.2 to 0.5% by weight, of a tin compound are used, 15 calculated as SnO_2 and referred to the TiO_2 base material.
3. Method according to Claim 1, wherein 0.1 to 1.5% by weight, preferably 0.2 to 1.0% by weight, of a zirconium compound are 20 used, calculated as ZrO_2 and referred to the TiO_2 base material.
4. Method according to Claim 1, wherein 0.1 to 3.0% by weight, preferably 0.2 to 1.5% by weight, of an aluminium compound are used, calculated as Al_2O_3 and referred to the TiO_2 base material.
- 25 5. Method according to Claim 1, wherein 0.1 to 1.5% by weight, preferably 0.2 to 1.0% by weight, of a silicon compound are used, calculated as SiO_2 and referred to the TiO_2 base material.
6. Method according to Claim 1, wherein 30 0.1 to 1.0% by weight of a titanium compound are used, calculated as TiO_2 and referred to the TiO_2 base material.
7. Method according to any one of Claims 1 to 6, wherein the method includes Step 35 d) Precipitation of an outer layer of aqueous aluminium oxide.
8. Method according to Claim 7, wherein after step d) the final pH value is set at least 7 preferably to at least 7.5.

9. Method according to Claim 1 or 2, wherein
the tin compound used is selected from the group comprising stannous chloride, stannous sulphate, potassium stannate and sodium stannate.

5 10. Method according to Claim 1 or 3, wherein
the zirconium compound used is selected from the group comprising zirconium sulphate, zirconium oxychloride, zirconium nitrate and zirconium carbonate.

10 11. Method according to any one of Claims 1, 4 or 7, wherein
the aluminium compounds used are alkali aluminates, particularly sodium aluminate, or acidic aluminium compounds, particularly aluminium sulphate or aluminium chloride.

15 12. Method according to Claim 1 or 5, wherein
the silicon compound used is an alkali silicate, particularly sodium silicate.

13. Method according to Claim 1 or 6, wherein
the titanium compound used is a titanyl compound, particularly titanyl sulphate or
20 titanyl chloride.

14. Method according to any one of Claims 1 to 12, wherein
in Step c), either a lye or an acid is added, or one of the compounds added in Step b), or mixtures thereof.

25 15. Method according to one or more of Claims 1 to 13, wherein
the titanium dioxide is finally tempered at temperatures from over 125°C to up to 500°C, preferably at about 160°C and particularly at about 250°C.

30 16. Titanium dioxide pigment obtained by the method according to any one of Claims 1 to 15.

17. Use of the titanium dioxide pigment according to Claim 16 in paints, coatings and plastics.

35 18. A method for the post-treatment of titanium dioxide substantially as hereinbefore described with reference to the non-comparative examples.