(54) 发明名称
取代的噁唑烷酮类及其用途

(57) 摘要
本发明涉及新的取代噁唑烷酮类（Oxazolidinone），涉及它们的制备方法，涉及它们用于治疗和预防疾病的用途和它们用于制备用来治疗和预防疾病（特别是栓栓塞病症）的药物的用途。
1. 下式的化合物，

![化学结构式](image)

其中
n 表示数字 0, 1, 2 或 3，
R 表示氯，三氟甲氧基，甲基，乙基，正丙基，甲氧基，甲氧基甲基或乙氧基甲基，
R 表示氢或甲基，
或其盐，其溶剂合物或其盐的溶剂合物中的一种。

2. 根据权利要求 1 所述的化合物，其特征在于
n 表示数字 0, 1 或 2，
R 表示氯，三氟甲氧基，甲基，乙基，正丙基，甲氧基或甲氧基甲基，
R 表示氢或甲基，
或其盐，其溶剂合物或其盐的溶剂合物中的一种。

3. 根据权利要求 1 或 2 所述的化合物，其特征在于
n 表示数字 0, 1 或 2，
R 表示甲基，甲氧基或甲氧基甲基，
R 表示氢，
或其盐，其溶剂合物或其盐的溶剂合物中的一种。

4. 根据权利要求 1 至 3 中任一所述的化合物，其特征在于
n 表示数字 1 或 2，
R 表示甲基，
R 表示氢，
或其盐，其溶剂合物或其盐的溶剂合物中的一种。

5. 用于制备根据权利要求 1 所述的式 (I) 的化合物或者其盐，其溶剂合物或其盐的溶剂合物中的一种的方法，其特征在于
[A] 在第一步骤中，使下式的化合物

![化学结构式](image)

与下式的化合物反应
在该式中 n、R¹ 和 R² 具有权利要求 1 中给出的含义，
以产生下式的化合物，

在该式中 n、R¹ 和 R² 具有权利要求 1 中给出的含义，
且在第二步骤中，在光气或光气等同物存在下环化以产生式 (I) 的化合物
或者

[B] 下式的化合物

在该式中 n、R¹ 并 R² 具有权利要求 1 中给出的含义，
与下式的化合物反应

其中
X 表示卤素，优选溴或氯，或者烃基。
6. 根据权利要求 1-4 中任一所述的化合物，用于治疗和 / 或预防疾病。
7. 根据权利要求 1-4 中任一所述的化合物用于制备用来治疗和 / 或预防疾病的药物的
用途。
8. 根据权利要求 1-4 中任一所述的化合物用于制备用来治疗和 / 或预防血栓栓塞病症
的药物的用途。
9. 根据权利要求 1-4 中任一所述的化合物用于在体外防止血液凝固的用途。
10. 药物，其包括根据权利要求 1-4 中任一所述的化合物结合毒性无毒的药学上合适的
助剂。
11. 药物，其包括根据权利要求 1-4 中任一所述的化合物结合其它活性成分。
12. 根据权利要求 10 或 11 所述的药物，用于治疗和 / 或预防血栓栓塞病症。

13. 用于在人和动物中治疗和 / 或预防血栓栓塞病症的方法，使用抗凝固有效量的至少一种根据权利要求 1-4 中任一所述的化合物。根据权利要求 10-12 中任一所述的药物或根据权利要求 7 或 8 获得的药物。

14. 用于在体外防止血液凝固的方法，其特征在于加入抗凝固有效量的根据权利要求 1-4 中任一所述的化合物。

15. 根据权利要求 1-4 中任一所述的化合物用于制备用来治疗和 / 或预防肺动脉高压的用途。

16. 根据权利要求 1-4 中任一所述的化合物用于制备用来治疗和 / 或预防下列病症的药物的用途：脓毒症、全身性炎症综合征 (SIRS)、脓毒性器官功能障碍、脓毒性器官衰竭和多器官衰竭、急性呼吸困难综合征 (ARDS)、急性肺损伤 (ALI)、脓毒性休克、DIC（“弥漫性血管内凝血”）和 / 或脓毒性器官衰竭。

17. 如权利要求 1-4 中任一所述的化合物，用于治疗和 / 或预防血栓栓塞病症的方法中。
取代的噁唑烷酮类及其用途

[0001] 本发明涉及新的取代噁唑烷酮类 (0xazolidinone)，涉及它们的制备方法，涉及它们用于治疗和/或预防疾病的用途和它们用于制备用来治疗和/或预防疾病（特别是血栓栓塞病症）的药物的用途。

[0002] 血液凝固是生物体的保护性机制，借此能快速并可靠地“密封”血管壁中的缺陷。因此，失血能够被避免或最小化。血管损伤之后的止血法主要由凝固体系实施，在该凝固体系中血浆蛋白的复杂的反应的酶级联被触发。该过程涉及众多的凝血因子，其中每种因子一旦被激活分别将最接近的非活性前体转变为其活性形式。在级联末期，发生可溶性纤维蛋白原向不溶性纤维蛋白的转变，导致血凝块形成。在血液凝固中，传统上区分出内在的和外来的体系，其以最终共同的反应途径结束。在此，因子 Xa 和 IIa (凝血酶) 扮演关键角色。

[0003] 因子 Xa 捆绑两个凝固途径的信号，因为经由因子 VIIa/组织因子（外来的途径）和经由因子 X 酶 (Tenase) 复合物（内在的途径）通过转化因子 X 两者形成。活化的丝氨酸蛋白酶 Xa 将凝血酶原分裂为凝血酶。

[0004] 经由一系列反应，凝血酶将信号从所述级联传递至血液的凝固状态。凝血酶将纤维蛋白原直接分裂成纤维蛋白。其将因子 XII (该因子 XII 是稳定纤维蛋白凝块所需的) 活化成因子 XIIa。另外，凝血酶是血小板凝聚的潜在触发器（经由 PAR-1 活化），其还显著有助于止血。通过将 TAFI（凝血酶可活化的纤维蛋白溶解抑制剂）活化成 TAFIa，具有血栓调节素的复合物中的凝血酶抑制所述凝块的融化。因子 V 和 VIII 的活化增强凝血酶的产生并因此进而放大凝固反应, 在具有血栓调节素的复合物中产生的活化的蛋白质 C 对抗该提高的凝血酶产生，因而防止过度的止血（血栓形成）。

[0005] 除了血液中游离存在的因子 X 和凝血酶之外，结合形式也是公知的。在纤维蛋白凝块的形成期间，凝血酶和凝血酶原酶 (处于复合物 (Komplex) 形式中的因子 Xa) 结合至纤维蛋白骨架。这些酶分子仍然是活性的且不能由内源性抗凝血酶 III 抑制。因此，以此方式，凝块仍然具有一般性的凝固效力。

[0006] 在由于全身因素引起的许多心血管循环疾病和代谢紊乱疾病中，例如高脂血症、糖尿病或吸烟，由于血液流动因血停滞而改变造成的，例如心房纤颤性颤动，或由于血管壁的病态改变造成的，例如内皮功能障碍或动脉粥样硬化，存在提高的凝固和血小板活化趋向。该不期望的过度的止血可能通过形成富含纤维蛋白和血小板的血栓引起血栓栓塞病症和伴随着有生命危险的状态的血栓形成并发症。

[0007] 止血受复杂调节机制支配。凝固体系不受控制的活化或活化过程的抑制缺陷可能导致形成局部血栓形成或脉管（动脉、静脉、淋巴管）或心室中的栓塞。这可能导致严重的血栓形成的或血栓栓塞的病症。此外，全身性的高凝固性可能导致散布的血管内凝固范围内的消耗性凝血病。血栓栓塞并发症进一步在微血管病的溶血性贫血、体外循环系统如血液透析、以及心脏瓣膜修复术和支架中遇到。

[0008] 血栓栓塞病症是大多数工业化国家中最常见的发病和死亡的起因 [Heart Disease: A Textbook of Cardiovascular Medicine, Eugene Braunwald,第 5 版, 1997, W.B. Saunders Company, Philadelphia]。
来自现有技术的公知抗凝血剂如用于抑制或防止血液凝固的物质具有各种且常重大的缺点。因此，在实践中，血栓形成/血栓栓塞病症的有效治疗方法或预防措施经证实是困难和不令人满意的。

[0015] 最近，已经描述了其中低分子量凝血酶和因子Xa抑制剂以不同混合比在体外和体内测试的方案。在此，发现了强烈的协同效应。Tanogitran被描述为低分子量物质，其抑制凝血酶和因子Xa两者，但是其强烈优选用于凝血酶抑制。该物质处于开发中，不是经口可生物利用的。

[0016] 对于抗凝栓形成的药物，治疗广度具有中心重要性。用于凝血抑制的治疗活性剂量与其中可能出血的剂量之间的间距应该尽可能地大，以使得在最低的风险预测实现最大治疗活性。

[0017] 如通过低分子量凝血酶与因子Xa抑制剂的混合物进行的实验所示，抑制凝血酶和因子Xa两者的化合物借助于它们的双重特性而具有特别强烈的协同作用，因此在控制血栓形成中特别有效。以此方式，所述化合物抑制凝血级联的两种关键酶，而无需完全阻滞各个酶。保持其余的因子Xa和凝血酶导致良好的止血并因此导致特别有利的治疗广度。在兔子中的动静脉分流模型中，可以表明，选择性因子Xa抑制剂PD0313052和选择性凝血酶抑制剂阿加曲班的仅仅弱抗血栓形成活性剂量的辅助给药导致强烈的超加性的抗血栓形成效果。另外，当具有最大协同效应的各个剂量合并时，没有观察到增加的出血。这些观察结果能够得出以下结论：凝血酶和因子Xa的同时抑制提高了抗血栓形成作用和出血风险之间的间距所说的治疗广度 (Journal of Thrombosis and Haemostasis, 4 :834–841)。

[0018] 该协同作用在作为物质浓度的函数的前凝血酶时间通过与纯因子Xa和凝血酶抑制剂直接比较而进行研究时特别显著。对所述凝血级联的两种关键酶的强烈影响被认为是存在血栓形成的高风险时，或者在血栓形成可能导致致死病症时特别有利。这二者例如涉及到急性冠状动脉综合征类型动脉粥样硬化性病症或急性心肌梗塞之后的状态的情况下。

[0019] 此外，与肝素、水蛭素和维生素K拮抗剂不同，抑制凝血酶和因子Xa二者的化合物还将对与纤维蛋白凝结结合的凝血因子是活性的。已经存在的凝块的血栓形成效力的限制是预防动脉阻塞的关键。这特别有效地通过抑制存在的凝血酶活性和凝块中凝血酶的形成二者而实现。尽管纯的凝血抑制剂不能通过凝块结合的含因子Xa的凝血酶原酶复合物防止血凝和凝血酶产生且所述抑制效果因此可能在高度激发的凝固中通过产生的大量凝血酶过度补偿，但纯的因子Xa抑制剂不能够抑制已经存在的凝血酶活性。由于抑制同样不可能通过生理机制进行，该凝块结合的凝血酶造成特别大的风险。相反，双重化合物，即抑制凝血酶和因子Xa二者的化合物，既能够抑制凝血酶产生又能够抑制凝块上的凝血酶活性，因此还防止可能的凝块生长。

[0020] 因此，本发明的目的是提供双重化合物，即抑制凝血酶和因子Xa二者的化合物，且其通过抑制凝血酶产生和凝块上的凝血酶活性防止它们可能的生长，其具有宽的治疗窗口，用于在人和动物中控制疾病，特别是血栓栓塞病症。

[0021] 本发明提供下式的化合物
[0022] 其中

[0023] n 表示数字 0、1、2 或 3，

[0024] R' 表示氢、三氟甲基、甲基、乙基、正丙基、甲氧基、甲氧基甲基或乙氧基甲基，

[0025] R 表示氢或甲基，

[0026] 和它们的盐、它们的溶剂合物和它们的盐的溶剂合物。

[0027] 例如式 (1) 所包括的下文提及的化合物如果已经存在了盐、溶剂合物和它们的盐的溶剂合物，则本发明化合物是式 (1) 的化合物和它们的盐、溶剂合物和它们的盐的溶剂合物，式 (1) 所包括的下文提及的化合物和它们的盐、溶剂合物和它们的盐的溶剂合物，以及式 (1) 所包括的下文在示例性实施方案提及的化合物和它们的盐、溶剂合物和它们的盐的溶剂合物。

[0028] 根据它们的结构，本发明化合物可以以立体异构形式（非对映体，非对映体）存在。因此，本发明包括对映体或非对映体以及它们各自的混合物。从对映体和 / 或非对映体的此类混合物，可以以公知方式分离出立体异构一致的组分。

[0029] 如果本发明化合物能够以互变异构形式存在，则本发明包括所有互变异构形式。

[0030] 在本发明的上下文中，优选的盐是本发明化合物的生理学可接受的盐。本发明还包括优选其本身来说并不适合用于药理学应用，但可以例如用于分离或纯化本发明化合物的盐。

[0031] 本发明化合物的生理学可接受的盐包括无机酸、羧酸和磺酸的酸加成盐，例如盐酸、氢溴酸、硫酸、磷酸、甲磺酸、乙磺酸、甲苯磺酸、苯磺酸、萘二磺酸、乙酸、三氟乙酸、丙酸、乳酸、酒石酸、苹果酸、柠檬酸、富马酸、马来酸和苯甲酸的盐。

[0032] 本发明化合物的生理学可接受的盐还包括常规碱的盐，例如且优选，碱金属盐（例如钠盐和钾盐）、碱土金属盐（例如钙盐和镁盐）和铵盐，衍生自氢或具有 1-16 个碳原子的有机胺，例如且优选，乙胺、二乙胺、三乙胺、乙烯二异丙基胺、单乙醇胺、二乙醇胺、三乙醇胺、二环己胺、二甲氨基乙醇、普鲁卡因、苯基胺和 N- 甲基吗啉、精氨酸、赖氨酸、乙二胺和 N- 甲基哌啶。

[0033] 在本发明的上下文中，溶剂合物是处于固体或液态的本发明化合物通过与溶剂分子配位形成络合物的那些形式。水合物是特定形式的溶剂合物，其中与水进行配位。在本发明的上下文中，优选的溶剂合物是水合物。

[0034] 此外，本发明还包括本发明化合物的前药。术语“前药”包括在其本身来说是可以是生物学活性的或非活性的，但在其于体内停留时间期间转变为本发明化合物（例如代谢地或水解地）的化合物。

[0035] 优选式 (1) 化合物，其中
[0037] n 表示数字 0、1 或 2，
[0038] R¹ 表示氢，三氟甲氧基，甲基，正丙基，甲氧基或甲氧基甲基，
[0039] R² 表示氢或甲基，
[0040] 和它们的盐、它们的溶剂合物和它们的盐的溶剂合物。
[0041] 还优选这样的式 (I) 化合物，其中
[0042] n 表示数字 0、1 或 2，
[0043] R¹ 表示甲基，甲氧基或甲氧基甲基，
[0044] R² 表示氢，
[0045] 和它们的盐、它们的溶剂合物和它们的盐的溶剂合物。
[0046] 还优选这样的式 (I) 化合物，其中
[0047] n 表示数字 0、1 或 2，
[0048] R¹ 表示甲基，
[0049] R² 表示氢，
[0050] 和它们的盐、它们的溶剂合物和它们的盐的溶剂合物。
[0051] 还优选这样的式 (I) 化合物，其中
[0052] n 表示数字 1 或 2，
[0053] R¹ 表示甲基，
[0054] R² 表示氢，
[0055] 和它们的盐、它们的溶剂合物和它们的盐的溶剂合物。
[0056] 还优选其中 n 表示数字 1 或 2 的式 (I) 的化合物。
[0057] 还优选其中 n 表示数字 1 的式 (I) 的化合物。
[0058] 还优选其中 R¹ 表示甲基的式 (I) 的化合物。
[0059] 还优选其中 R² 表示氢的式 (I) 的化合物。
[0060] 还优选其中 R¹ 表示甲基和 R² 表示氢的式 (I) 的化合物。
[0062]

![化学结构式]

[0063] 和其盐、其溶剂合物和其盐的溶剂合物。所述化合物描述于实施例 2 中。
[0065]
[0066] 和其盐、其溶剂合物和其盐的溶剂合物。所述化合物描述于实施例 6 中。

[0069] 和其盐、其溶剂合物和其盐的溶剂合物。所述化合物描述于实施例 10 中。

[0070] 基团的各个组合或优选组合中的在每一情况下给出的基团定义还独立于基团的各个给定组合而被其它组合的任何基团定义所代替。

[0071] 非常特别优选两个或更多个的以上提及的优选范围的组合。

[0072] 本发明此外提供了用于制备式 (I) 的化合物或其盐、其溶剂合物或其盐的溶剂合物的方法，其中

[0073] [A] 下式的化合物

[0074] (II)

[0075] 在第一步骤中与下式的化合物反应

[0076] (III)

[0077] 其中 n、R¹ 和 R² 具有如上给出的含义，

[0078] 以产生下式的化合物，
其中 n, R^1 和 R^2 具有如上给出的含义。

以及在第二步骤中，在光气或光气等同物如羰二咪唑（CDI）的存在下环化以产生式 (I) 的化合物

或者

(B) 下式的化合物

其中 n, R^1 和 R^2 如以上所定义

与下式的化合物反应

其中

X 表示卤素，优选溴或者氯，或者醚基。

如果醚基在所述方法过程中受到保护，例如通过甲硅烷基保护基保护，则这些保护基在所述方法 [A] 或 [B] 结束后使用本领域技术人员公知的方法除去，例如通过与溶剂如四氢呋喃中的四丁基氟化铵反应，或通过与甲醇中的氯化氢反应除去。

通过使用乙腈 / 水梯度并添加有碱的反相柱上的色谱，特别是通过使用 RP18Phenomenex Luna C18 (2) 柱和二乙胺作为碱，或者通过在有机溶剂中溶解所述盐并用碱式盐如碳酸氢钠的水溶液提取（ausschütte⅟n)，能够获得所述盐的游离碱。

本发明还提供了用于制备式 (I) 的化合物或其溶剂合物的方法，其中所述化合物的盐或所述化合物的盐的溶剂合物通过色谱法在向所述化合物添加碱的条件下转化。

方法 [A] 的第二步骤的反应通常在惰性溶剂中，在路易斯酸的存在下，优选在室温 - 溶剂回流的温度范围，在大气压下实施。

惰性溶剂是例如极性非质子溶剂，例如乙腈、丁腈、二氯甲烷或氯仿，优选乙腈。

路易斯酸是例如高氯酸镁、三氟甲磺酸锆 (III)、溴化锂、三氟甲基磺酸镁或三氯化铝，优选高氯酸镁。
方法 [A] 的第二步骤的反应通常在惰性溶剂中，在碱的存在下，在室温—溶剂回流的温度范围，在大气压下实施。

惰性溶剂是指如极性非质子溶剂，例如乙腈或二甲基乙二醇，例如 4-N, N- 二甲基氨基吡啶。

优选与 N, N- 磺二唑啉作为磺酸等同物通过添加 4-N, N- 二甲基氨基吡啶作为碱反应。

如果在方法 [B] 中 X 是卤素，则反应通常在惰性溶剂中，任选地在碱的存在下于 -30°C 至 50°C 的温度范围，在大气压下实施。

惰性溶剂是如四氢呋喃，氯甲烷，吡啶，二氯甲烷或二甲基亚砜，优选四氢呋喃或二氯甲烷。

碱是例如三乙胺，二异丙基乙胺或 N- 甲基吗啉，优选二异丙基乙胺。

如果在方法 [B] 中 X 是羟基，则反应通常在惰性溶剂中，在脱水剂的存在下，任选地在碱的存在下于 -30°C 至 50°C 的温度范围，在大气压下实施。

惰性溶剂是如四氢呋喃，氯甲烷或二氯甲烷，烃，如苯，硝基甲烷，二氯甲烷或二甲基甲烷，优选四氢呋喃或二氯甲烷。

在适，合的脱水剂是如，碳二亚胺，例如，N, N'- 二乙基，N, N', N- 二异丙基，N, N' - 二异丙基，N, N' - 二环己基碳二亚胺，N-(3- 二甲基氨基丙基)-N'- 乙基苯二亚胺（HBTU），N- 环己基碳二亚胺 -N' - 丙氧基甲基 - 聚苯乙烯 (PS- 碳二亚胺) 或烯基化合物，如烯二唑啉，如 1,2- 噁唑啉化合物 (Oxazoliumverbindung)，如 2- 乙基 -5- 苯基 -1,2- 噁唑啉 (oxazolium) 3- 硫酸盐或 2- 叔丁基 -5- 甲基异噁唑啉高氯酸盐，或酰氨基化合物，如 2- 乙氧基 -1- 乙氧基磷亚基 - 1,2- 二氯嗪啉，或丙烷膦酸酯，或氯甲酸异丁酯，或双 (2- 氧代 -3- 噁唑烷基) 磷酰氯或苯并三唑基氧基 - 三 (二甲基氨基) 六氟磷酸酯，或 O-(苯并三唑 -1- 基)-N,N,N',N'- 四甲基脲基六氟磷酸盐 (HATU)，2- (2- 氧代 -1-(2H) - 吡啶基)-1,3,3- 四甲基脲基四氟硼酸盐 (TPTU) 或 O-(7- 氨基苯并三唑 -1- 基)-N,N,N',N'- 四甲基脲基六氟磷酸盐 (HATU)，或 1- 羟基苯并三唑 (HOt), 或苯并三唑 -1- 基氧基三 (二甲基氨基) 六氟磷酸酯 (BOP)，或 N- 羟基琥珀酰亚胺，或它们与碱的混合物。

碱是如碱金属碳酸盐，例如，碳酸钠或碳酸钾，或碳酸氢钠或碳酸氢钾，或有有机碱，例如三烷基胺如三乙胺，N- 甲基吗啉，N- 甲基哌啶，4- 二甲基氨基吡啶或二异丙基乙胺。

与 HATU 或与 EDC 的缩合优选在 HOt 存在下实施。

通式 (II) 和 (VI) 的化合物是已知的或者能够由已知的方法从相应起始化合物合成。

式 (III) 的化合物是已知的或者能够通过还原下式化合物中的硝基制备。
[0111] 其中 R₁ 和 R₂ 具有如上给出的含义。

[0112] 该反应通常使用还原剂在惰性溶剂中，优选在室温下溶剂回流的温度范围内，在大气压至 3 巴实施。

[0113] 还原剂是例如钯活性碳（Palladium auf Aktivkohle）和氢气、二氯化锡、三氯化钛或甲酸铵以及在乙醇和乙酸乙酯混合物中的钯活性碳，优选钯活性碳和氢气或二氯化锡。

[0114] 惰性溶剂是例如醚，如乙醚，甲基叔丁基醚，1,2-二甲氧基乙烷，二氯杂环己烷，四氢呋喃，乙二醇二甲醚或二甘醇二甲醚，醇，如甲醇，乙醇，正丙醇，异丙醇，正丁醇或叔丁醇，烃，如苯，二甲苯，甲苯，环己烷或石油级分，或其它溶剂，如二甲基甲酰胺，二甲基乙酰胺，乙腈或吡啶；优选溶剂是甲醇，乙醇，异丙醇或在二氯化锡的情况下，二甲基甲酰胺。

[0115] 式 (VII) 的化合物是已知的，能够通过公知方法从相应的起始化合物合成或者能够类似于实施例部分描述的方法制备。

[0116] 式 (V) 的化合物是已知的或者能够通过从下式化合物中除去邻苯二甲酰亚胺保护基而制备。

[0117]

[0118] 其中 R₁ 和 R₂ 具有如上给出的含义。

[0119] 该反应通常使用甲酰水溶液或水合肼的乙醇溶液，优选使用甲酰水性溶液在溶剂回流下在大气压下实施。

[0120] 式 (VIII) 的化合物是已知的，能够如方法 [A] 所述制备或者能够通过公知方法从适当的起始化合物合成。

[0121] 在式 (III)、(IV)、(V)、(VII) 和 (VIII) 的化合物中，羟基可任选带有甲硅烷基保护基，例如叔丁基 (二苯基) 甲硅烷基。

[0122] 本发明化合物的制备可以通过以下合成方案示例说明：

[0123] 方案 1：

[0124]
[0125] 本发明化合物具有预料不到的有用药理学活性范围。

[0126] 因此它们适用于作为用来治疗和 / 或预防人和动物疾病的药物。

[0127] 本发明化合物是凝血因子 Xa 和凝血酶（因子 IIa）的双重抑制剂，特别地作为抗凝血剂起作用。所述化合物抑制凝血酶和因子 Xa 二者，通过抑制凝血酶产生和凝块上的凝
血酶活性防止它们可能的生长并具有宽的治疗窗口。

【0128】本发明还提供了本发明化合物用来治疗和/或预防病症，优选血栓栓塞病症和/或血栓栓塞并发症的用途。

【0129】“血栓栓塞病症”在本发明意义上特别地是病症如伴随着 ST 段抬高 (STEMI) 和没有 ST 段抬高 (非 STEMI) 的心肌梗死、稳定型心绞痛、不稳定型心绞痛、冠状动脉介入如血管成形术或冠状动脉分流术后的再闭合 (ReoKlusion) 和再狭窄、周边动脉阻塞疾病、肺栓塞、重度静脉血栓形成和肾静脉血栓形成、暂时的缺血性发病以及血栓形成的和血栓栓塞的中风。

【0130】因此，本发明化合物还适用于在具有急性、间歇性或持续性心律不齐（例如心房纤细性颤动）的患者和经历心脏复律的患者以及具有心脏瓣膜病症或具有人造心脏瓣膜的患者中预防和治疗心原性的血栓栓塞，例如脑缺血、中风和全身性血栓栓塞和缺血。

【0131】血栓栓塞并发症还在微血管病的溶血性贫血、体外血液循环系统如血液透析和心脏瓣膜修复术中遇到。

【0132】此外，本发明化合物还适用于预防和/或治疗肺动脉高压。

【0133】术语“肺动脉高压”包括肺动脉高压的特定形式，如通过例如世界卫生组织 (WHO) 所测定的 (Clinical Classification of Pulmonary Hypertension, 威尼斯 2003)。可以提及的实例是肺动脉高压、与左心病症有关的肺动脉高压、与肺病症和/或缺氧有关的肺动脉高压以及由于慢性血栓栓塞造成的肺动脉高血压 (CTEPH)。

【0134】“肺动脉高压”包括自发的肺动脉高压 (IPAH, 过去还称为原发性肺动脉高压)，家族性肺动脉高压 (FPAH) 以及相关性肺动脉高压 (APAH)，其与胶原病 (Kollagenoses) 有关，先天性系统性肺 Shuntvitation, 门静脉高压症, HIV 感染, 特定药品和药剂的摄取，伴随者其它病症（甲状腺病症）, 糖尿病储存病症、戈谢病 (Morus Gaucher)、遗传性毛细血管扩张症 (Teleangiectasy)、血红蛋白病 (hämoglobinopathien)、脊髓增生病、脾切除术，伴随着显着静脉毛细血管作用的病症，例如肺静脉闭塞病症和肺毛细血管血红蛋白病，以及新生儿的持续性肺动脉高压。

【0135】与左心病症有关的肺动脉高压包括患病的左心房或心室以及二尖瓣的或主动脉的瓣膜缺陷。

【0136】与肺病症和/或缺氧有关的肺动脉高压包括慢性梗阻性肺病症、间质肺病症、睡眠呼吸暂停综合征、肺气泡气过低、慢性高山病和肺内缺陷。

【0137】由于慢性血栓栓塞造成的肺动脉高压 (CTEPH) 包括肺动脉近端的血栓栓塞闭塞、肺动脉远端的血栓栓塞闭塞和非血栓形成的肺栓塞（肿瘤、寄生虫、外来体）。

【0138】本发明还提供了本发明化合物用于制备用来治疗和/或预防与结节病、组织细胞增多症 X 和淋巴管憩病 (lymphangiomatosis) 有关的肺动脉高压。

【0139】此外，根据本发明的物质还可以适合于治疗肺和肝纤维组织形成。
[0141] 此外，本发明化合物还可以适用于治疗和/或预防脓毒症（或败血症）、全身性炎症综合征(SIRS)、脓毒性器官功能障碍、脓毒性器官衰竭和多器官衰竭、急性呼吸困难综合征(ARDS)、急性肺损伤(ALI)、脓毒性休克(DIC（弥慢性血管内凝血或消耗性凝血病）和/或脓毒性器官衰竭。

[0143] 在脓毒性的过程中，可能有伴随着在不同器官中形成微血栓和继发性出血性并发症的凝固体系的普遍活化（弥慢性血管内凝血或消耗性凝血病，以下称为“DIC”）。此外，可能有伴随着脉管增加的渗透性以及液体和蛋白渗出进入血管外腔的内皮损伤。随着脓毒性进一步发展，可能有器官衰竭（例如肾衰竭、肝衰竭、呼吸衰竭、中枢神经缺陷和/或心血管衰竭）或多器官衰竭。“脓毒性休克”表示需要治疗的低血压发作，该低血压推动其它器官损伤并且与预后恶化有关。

[0144] 病原体可以是细菌（Bakterien）（革兰氏阴性和革兰氏阳性）、真菌、病毒和/或真核生物。引入点或原发性感染可以是例如肺炎、尿路感染或腹膜炎。感染可能但并不一定地与菌血症有关。

[0145] DIC 和/或 SIRS 可能在脓毒性过程中，以及由于手术、肿瘤疾病、烧伤或其它损伤而出现，在 DIC 中，在受损内皮细胞表面，外来体表面或受损的血管外组织的表面上存在凝血体系的大量活化。结果，在多个器官的小脉管中存在凝固，伴随着相关的缺氧和后续的器官功能障碍。其次，存在凝血因子（例如因子X、凝血酶原和纤维蛋白原）和血小板消耗，这降低了血液凝固的能力并可能导致严重的出血。

[0146] 脓毒症的治疗首先由原来的清除感染性起因组成，例如通过手术的病灶改造和抗生作用。其次，其在于受影响器官系统的临时性密集医疗援助。该疾病的多个阶段的治疗已经例如描述于以下出版物中（Dellinger等人，Crit Care Med 2004;32;858-873）。对于 DIC，没有经证实的奏效治疗。

[0147] 本发明还提供了包括至少一种本发明化合物和一种或多种其它活性成分，特别是用于治疗和/或预防上述病症的其它活性成分的药物。示例性和优选的活性成分组合是：

[0148] • 抗生素治疗
[0149] • 多种抗生素或抗真菌药剂组合是合适的，作为计划的治疗（在存在微生物诊断之前）或作为特异性治疗。

[0150] • 液体治疗
[0151] • 例如晶质或胶态液体。

[0152] • 血管加压药
[0153] • 例如正肾上腺素（Norepinephrin）、多巴胺或加压素

[0154] • 变力治疗
[0155] 例如多巴酚丁胺
[0156] 皮质类固醇
[0157] 例如氢化可的松或氟氢可的松
[0158] 重组的人活化蛋白质 C
[0159] Xigris
[0160] 血液产品
[0161] 例如红血球浓缩物、血小板浓缩物、促红细胞生成因子或新鲜冰冻血浆
[0162] 例如在脓毒症引起的急性肺损伤（ALI）
[0163] 或急性呼吸困难综合征（ARDS）的情况下人工换气
[0164] 例如允许性高碳酸血症、降低的潮气量
[0165] 例如镇静、止痛和神经肌肉阻断
[0166] 例如地西泮、劳拉西泮、咪达唑仑或丙泊酚。类阿片：例如芬太尼、氢吗啡酮、吗啡、哌替啶或瑞芬太尼。NSAID：例如酮咯酸、布洛芬或对乙酰氨基酚。神经肌肉阻断：例如泮库溴铵（Pancuronium）
[0167] 例如葡萄糖控制
[0168] 例如胰岛素、葡萄糖
[0169] 例如肾替代方法
[0170] 例如连续的静脉-静脉血液过滤（Hämodialfiltration）或间歇性的血液透析。用于肾保护的低剂量多巴胺。
[0171] 例如抗凝血剂
[0172] 例如用于血栓形成预防或肾脏替代方法，例如未分级的肝素、低分子量肝素、类肝素、水蛭素、比伐卢定或阿加曲斑。
[0173] 例如碳酸氢盐治疗
[0174] 例如应激性溃疡预防
[0175] 例如 H2-受体抑制剂、抗酸剂
[0176] 此外，本发明化合物还可以用于防止体外凝固，例如用于保存血液和血浆产品，用于清洁/预处理导管和其它医疗辅助品和仪器，用于涂布体内或体外使用的医疗辅助品和仪器的合成表面或用于包括因子 Xa 和 / 或因子 IIa 的生物样品。
[0177] 本发明还提供了本发明化合物用来治疗和 / 或预防疾病，特别是以上提及的病症的用途。
[0178] 本发明还提供了本发明化合物用于制备用来治疗和 / 或预防疾病（特别是以上提及的病症）的药物的用途。
[0179] 本发明还提供了使用抗凝固有效量的本发明化合物用于制备用来治疗和 / 或预防病症（特别是以上提及的病症）的药物的用途。
[0180] 本发明还提供了用于防止血液体外凝固的方法，特别是在寒冷或包含因子 Xa 和 / 或因子 IIa 的生物样品中，该方法的特征在于加入抗凝固有效量的本发明化合物。
[0181] 本发明还提供了包括本发明化合物和一种或多种其它活性成分，特别是用于治疗和 / 或预防上述病症的其它活性成分的药物，例如且优选，提及下述活性成分或组合：
[0182] 例如降低物质，特别是 HMG-CoA-(3-羟基-3-甲基戊二酰-辅酶 A) 还原酶抑制
剂，例如洛伐他汀（Mevacor；US 4,231,938），辛伐他汀（Zocor；US 4,444,784），普伐他汀
（Pravachol；US 4,346,227），氟伐他汀（Lescol；US 5,354,772）和阿托伐他汀（Lipitor；
US 5,273,995）。

[0183] • 卵状动脉的治疗剂/血管舒张药（Vasodilator），特别是ACE（血管紧张肽转化
酶）抑制剂，例如卡托普利（Captopril）、替诺普利（Lisinopril）、依那普利（Enalapril）、
雷米普利（Ramipril）、西拉普利（Cilazapril）、贝那普利（Benazepril）、福辛普利
（Fosinopril）、喹那普利（Quinapril）和培哚普利（Perindopril），或 AIHI（血管紧张素
II）受体拮抗剂，例如恩比沙坦（Embusratam）（US 5863930）、氯沙坦、缬沙坦、厄贝沙坦、
坎地沙坦（Candesartan）、依普沙沙坦和替米沙坦（Temisartan），或 β－肾上腺素能受体
拮抗剂，例如卡维地洛（Carvedilol），阿普洛尔（Alpenolol），比索洛尔（Bisoprolol），
醋丁洛尔（Acebutolol），阿替洛尔（Atenolol），倍他洛尔（Betaxolol），卡替洛尔
（Catecolol），美托洛尔（Metoprolol），纳多洛尔（Nadolol），吲哚洛尔（Penbutolol），吲
哚洛尔（Pindolol），萘替丙硝酯（Propanolol）和噻吗洛尔（Timolol），或 α－β－肾上
腺素能受体拮抗剂，例如哌唑嗪（Prazosin）、布那唑嗪（Bunazosin）、多沙唑嗪
（Doxazosin）和特拉唑嗪（Terazosin）或利尿剂，例如氢氯噻嗪（Hydrochlorothiazid）、呋喃苯
酸（Furosemid）、布美他尼（Bumetanid）和依帕尼（Piretanid），托拉塞米（Torasemid），阿米
洛利（Amilorid）和双肽利嗪（Dihydralazin）或钙通道阻滞剂，例如维拉帕米（Verapamil）
和地尔硫卓（Diltiazem），或二氢吡啶衍生物，例如硝苯地平（Nifedipin）（Adalat）和尼
群地平（Nitrendipine）（Bayontens），或硝基甲酯，例如 5－硝酸异山梨醇酯、二硝酸
异山梨醇酯和三硝酸甘油酯，或引起早磷酸鸟苷（cGMP）增加的物质，例如可溶性鸟昔酸
环化酶的激活剂（WO 98/16223，WO 98/16507，WO98/23619，WO 00/06567，WO 00/06568，
WO 00/06569，WO 00/21954，WO00/66582，WO 01/17998，WO 01/19776，WO 01/19355，WO
01/19780，WO01/19778，WO 07/045367，WO 07/045376，WO 07/045370，WO
07/045373）。

[0184] • 溶纤酶原激活剂（溶栓剂/溶血纤剂）和推动血栓溶解/纤维蛋白溶解的化合物，例
如血纤蛋白溶酶原激活物抑制剂的抑制剂（PAI 抑制剂）或凝血酶活化的纤维蛋白溶
解抑制剂的抑制剂（TAFI 抑制剂），例如组织纤溶酶原激活剂（t-PA），链激酶，瑞替普酶和
尿激酶；

[0185] • 抗凝固活性物质（抗凝血剂），例如肝素（UFH），低分子量肝素（NMH），例
如亭扎肝素（Tinzaparin），含托肝素（Certoparin），帕肝素（Parnaparin），那屈肝素
（Nadroparin），阿地肝素（Ardeparin），依诺肝素（Enoxaparin），瑞肝素（Reviparin），达肝
素（Dalteparin），达那肝素（Danaparoid），

[0186] AVE 5026（Sanofi-Aventis，Company Presentation 2008年 2月 12日），

[0188] ORG42675（Organon International Inc，Company World Wide Website2007年 4
月），

[0189] • 以及直接的凝血酶抑制剂（DTI），例如，

[0190] Exanta（希美加群（Ximelagatan））

[0191]
[0192] Rendix（达比加群 (Dabigatran)）

[0193]

[0195]

[0197]

[0199] N-[(苯氧基) 羧基]-L- 芳丙氨酸基 -N-[1S]-1-（二羟基烷烃基）-4- 甲氧基丁基]-D- 脯氨酸胺 [WO 2005/084685]

[0200]
[0201] 索非加群 (Sofigatran) [WHO Drug Information 2007, 21, 77]

[0205] TGN-255 (flovacagatran)

[0207] 以及直接的因子 Xa 抑制剂, 例如

82(Suppl. 1), 213页，

[0212]

[0213] WO 2004/056784 中公开的化合物

[0215] N-[4-溴-2-[(5-氯吡啶-2-基)氨基甲酰基]-6-羟苯基]-1-异丙基哌啶-4-羧酰胺 [JP 2005/179272]

[0216]

[0217] WO 2000/242270 中公开的化合物，

[0219]

[0220] WO 2007/008142 中公开的化合物，

[0222]

[0224]

[0226]

[0228]

[0231] US 2005/0020645 中公开的化合物，

[0235]
说明书

[0239] EMD-503982 [Merck KGaA Annual Report 2006, 48-49],

[0241]

[0243]

[0245]

[0247]

[0250] N-[(7-[(5-氯-1H-吲唑-2-基)-磺酰基]-5-氧代-1'-丙酰四氢-8aH-螺[1,3-唱唑并[3,2-a]吡啶-2,4'-哌啶]-8a-基)甲基]-N'-甲基甘氨酸[W02006/106804]

[0253] WO 2006/002099中公开的化合物,

[0256] AVE3247[Sanofi Aventis Company Presentation,Paris 2007年2月13日]

[0257] SAR377142(SSR-7142)[Sanofi Aventis Company Presentation,Paris 2007年2月13日]

[0258] HMR-2906[XVIIth Congress of the International Society for Thrombosis and
说明书

Haemostasis, Washington D.C., USA, 1999 年 8 月 14-21 日; Generating greater value from our products and pipeline. Aventis SA company presentation, 2004 年 2 月 5 日。

[0260] 磷酸肝素；
[0261] • 抑制血小板聚集的物质（血小板聚集抑制剂、凝血细胞聚集抑制剂），例如乙酰水杨酸（例如阿司匹林），噻氯匹定（Ticlid），氯吡格雷（Plavix）和普拉格雷（Prasugrel）；
[0262] • 纤维蛋白原受体拮抗剂（糖蛋白 - IIb/IIIa 拮抗剂），例如阿昔单抗 (Abciximab)、依非巴特 (Eptifibatide)、替罗非班 (Tirofiban)、拉米非班 (Lamifiban)、来瑞非班 (Lefradafiban) 和瑞非班 (Fradafibran)；
[0263] • 以及抗心律失常药。
[0264] 本发明进一步涉及药物，其包含至少一种本发明化合物、通常连同一种或多种惰性的、无毒的、药学上适合的助剂 (Hilfsstoff)，本发明还涉及该药物用于上述目的的用途。
[0265] 本发明化合物可以全身给药，或局部给药。为此目的，它们可以以合适的方式给药，例如，通过口服的、非经肠的、经肺的、经鼻的、舌下的、经舌的、经面颊的、直肠的、真皮的、透皮的、经胃的、经耳的路径或者作为植入物或移植片固定膜。
[0266] 本发明化合物可以适用于这些给药途径的给药形式给药。
[0267] 适合于口服给药的是按照现有技术起作用并迅速起效；或以改良的方式递送本发明化合物的给药形式，其含有处于晶体的、或非晶态的、或溶解形式的本发明化合物。例如，片剂 (未包装或未包装片剂，例如具有肠溶包衣或者不能溶解或延迟溶解并控制本发明化合物释放的包衣)、在口中快速崩解的片剂、或薄膜 / 糊米纸袋剂 (Oblate)、薄膜 / 冻干剂 (lyophilisates)、胶囊 (例如且优选硬的或软的明胶胶囊)、糖衣片剂、粒剂、丸剂、粉剂、乳剂、悬浮液、气雾剂或溶液。
[0268] 可进行非经肠给药而绕开吸收步骤 (例如静脉内的、动脉内的、心内的、脊柱内的或者腰髓内的) 或者包括吸收步骤 (例如肌肉的、皮下的、肺内的、透皮的或者腹内的)。适合于非经肠给药的给药形式尤其是为溶液、悬浮液、乳剂、冻干剂或无菌粉剂形式的用于注射和输注的制剂。
[0269] 例如，适合于其它给药途径的是：用于吸入的药物形式 (尤其是粉剂吸入器、喷雾器)、滴鼻剂、溶液或喷雾剂；经舌、舌下或经面颊给药的片剂、薄膜 / 糊米纸囊剂或胶囊、栓剂，用于耳朵或眼睛的制剂、阴道胶囊、水性悬浮液 (洗液、振荡合剂 (Schüttelmixture))、亲脂性悬浮液、软膏、霜剂、经皮治疗体系 (例如贴剂)、乳液、糊剂、泡沫、扑粉、植入物或移植片固定膜。
[0270] 优选口服或非经肠给药，尤其是口服给药。
[0271] 本发明化合物可以转变为所述给药形式。这可以以其本身已知的方式，通过与惰性的、无毒的、药学上适合的助剂混合而进行。这些助剂尤其包括：载体 (例如微晶纤维素、乳糖、甘露糖醇)、溶剂 (例如液体聚乙二醇)、乳化剂和分散剂或润湿剂 (例如十二烷基硫酸钠、聚氧山梨聚山梨酸酯)、粘合剂 (例如聚乙二醇磷酸单酯)、合成的和天然的多聚物 (例如白蛋白)、稳定剂 (例如抗氧化剂，例如抗坏血酸)、色素 (Farbstoff) (例如无机颜料，例
说明书

如氧化铁) 和味道和/或气味遮蔽剂。

[0272] 通常证明有利的非经肠给药的给药量是大约 0.001-5mg/kg, 优选大约 0.01-1mg/kg 体重, 以实现有效的结果。口服给药剂量为大约 0.01-100mg/kg, 优选大约 0.01-20mg/kg, 且非常特别优选 0.1-10mg/kg 体重。

[0273] 然而视需要, 背离所述量可能是必要的, 特别是随体重、给药途径、个体对于活性成分的响应、制剂的性质和进行给药的时间或间隔而变化。因此, 在有些情况中小于上述最低量可能就是足够的, 而在其它情况下必须超过所述上限。倘若给药较大的量, 可能可取的是将其在一天中分为多个单独剂量。

[0274] 以下示例性实施方案举例说明本发明。本发明并不局限于所述实施例。

[0275] 除非另外指出, 否则在以下测试和实施例中的百分比数据是重量百分比; 份数是重量份数。用于液体/液体溶液的溶剂比率、稀释比率和浓度数据在每一情况下基于体积。

[0276] A. 实施例

[0277] 缩写

[0278] CDI 胺二咪唑

[0279] d 天, 双峰 (在 NMR 中)

[0280] DC 薄层色谱

[0281] DCI 直接化学离子化 (在 MS 中)

[0282] dd 双二重峰 (在 NMR 中)

[0283] DMAP 4-二甲基氨基吡啶

[0284] DMF N,N-二甲基甲酰胺

[0285] DMSO 二甲基亚砜

[0286] d, Th. 理论值 (在产率中)

[0287] eq. 当量

[0288] ESI 电喷射离子化 (在 MS 中)

[0289] h 小时

[0290] HPLC 高压、高效液相色谱法

[0291] LC-MS 偶联的液相色谱-质谱法

[0292] m 多重峰 (在 NMR 中)

[0293] min 分钟

[0294] MS 质谱法

[0295] NMR 核磁共振谱

[0296] RP 反相 (在 HPLC 中)

[0297] RT 室温

[0298] Rf 保留时间 (在 HPLC 中)

[0299] s 单重峰 (Singulet) (在 NMR 中)

[0300] THF 四氢呋喃

[0301] LC-MS 和 HPLC 方法

[0302] 方法 1 (HPLC): 仪器: HP 1100, 含 DAD 检测; 柱: Kromasil 100RP-18, 60 毫米×2.1 毫米, 3.5 微米; 流动相 A: 5 毫升高氯酸 (70%) / 升的水, 流动相 B: 乙腈; 梯度: 0 分钟 2%
B, 0.5 分钟 2% B, 4.5 分钟 90% B, 6.5 分钟 90% B, 6.7 分钟 2% B, 7.5 分钟 2% B; 流速: 0.75ml/min; 柱温: 30°C; 检测: UV210 纳米。

方法 2 (HPLC): 仪器: HP1100, 含 DAD 检测; 柱: Kromasil 100RP-18, 60 毫米 × 2.1 毫米; 3.5 微米; 流动相 A: 5 毫升高氯酸 (70% 强度)/ 升的水, 流动相 B: 乙腈; 梯度: 0 分钟 2% B, 0.5 分钟 2% B, 4.5 分钟 90% B, 9 分钟 90% B, 9.2 分钟 2% B, 10 分钟 2% B; 流速: 0.75ml/min; 柱温: 30°C; 检测: UV210 纳米。

方法 3 (LC-MS): MS 仪器类型: Micromass ZQ; HPLC 仪器类型: Waters Alliance 2795; 柱: Phenomenex Synergi 2µ Hydro-RP Mercury 20 毫米 × 4 毫米; 流动相 A: 1 升的水 +0.5 毫升 50% 的甲酸, 流动相 B: 1 升的乙腈 +0.5 毫升 50% 的甲酸; 梯度: 0.0 分钟 90% A → 2.5 分钟 30% A → 3.0 分钟 5% A → 4.5 分钟 5% A; 流速: 0.0 分钟 1ml/min, 2.5 分钟 / 3.0 分钟 4.5 分钟 2ml/min; 烘箱: 50°C; UV 检测: 210 纳米。

方法 4 (LC-MS): MS 仪器类型: Micromass ZQ; HPLC 仪器类型: HP 1100 系列; UV DAD; 柱: Phenomenex Synergi 2µ Hydro-RP Mercury 20 毫米 × 4 毫米; 流动相 A: 1 升的水 +0.5 毫升 50% 的甲酸, 流动相 B: 1 升的乙腈 +0.5 毫升 50% 的甲酸; 梯度: 0.0 分钟 90% A → 2.5 分钟 30% A → 3.0 分钟 5% A → 4.5 分钟 5% A; 流速: 0.0 分钟 1ml/min, 2.5 分钟 / 3.0 分钟 4.5 分钟 2ml/min; 烘箱: 50°C; UV 检测: 210 纳米。

方法 5 (LC-MS): 仪器: Micromass Quattro LCZ 与 HPLC Agilent 系列 1100; 柱: Phenomenex Synergi 2µ Hydro-RP Mercury 20 毫米 × 4 毫米; 流动相 A: 1 升的水 +0.5 毫升 50% 的甲酸, 流动相 B: 1 升的乙腈 +0.5 毫升 50% 的甲酸; 梯度: 0.0 分钟 90% A → 2.5 分钟 30% A → 3.0 分钟 5% A → 4.5 分钟 5% A; 流速: 0.0 分钟 1ml/min, 2.5 分钟 / 3.0 分钟 4.5 分钟 2ml/min; 烘箱: 50°C; UV 检测: 210 纳米。

方法 6 (LC-MS): MS 仪器类型: Micromass ZQ; HPLC 仪器类型: HP 1100 系列; UV DAD; 柱: Phenomenex Gemini 3µ 30 毫米 × 3.00 毫米; 流动相 A: 1 升的水 +0.5 毫升 50% 的甲酸, 流动相 B: 1 升的乙腈 +0.5 毫升 50% 的甲酸; 梯度: 0.0 分钟 90% A → 2.5 分钟 30% A → 3.0 分钟 5% A → 4.5 分钟 5% A; 流速: 0.0 分钟 1ml/min, 2.5 分钟 / 3.0 分钟 4.5 分钟 2ml/min; 烘箱: 50°C; UV 检测: 210 纳米。

方法 7 (LC-MS): 仪器: Micromass Platform LCZ 与 HPLC Agilent 系列 1100; 柱: Thermo Hypersil GOLD 3µ 20 毫米 × 4 毫米; 流动相 A: 1 升的水 +0.5 毫升 50% 的甲酸, 流动相 B: 1 升的乙腈 +0.5 毫升 50% 的甲酸; 梯度: 0.0 分钟 100% A → 0.2 分钟 100% A → 2.9 分钟 30% A → 3.1 分钟 10% A → 5.5 分钟 10% A; 烘箱: 50°C; 流速: 0.8ml/min; UV 检测: 210 纳米。

方法 8 (LC-MS): MS 仪器类型: Waters ZQ; HPLC 仪器类型: Waters Alliance 2795; 柱: Phenomenex Onyx Monolithic C18, 100 毫米 × 3 毫米; 流动相 A: 1 升的水 +0.5 毫升 50% 的甲酸, 流动相 B: 1 升的乙腈 +0.5 毫升 50% 的甲酸; 梯度: 0.0 分钟 90% A → 2 分钟 65% A → 4.5 分钟 5% A → 6 分钟 5% A; 流速: 2ml/min; 烘箱: 40°C; UV 检测: 210 纳米。

方法 9 (GC-MS): 仪器: Micromass GCT, GC6890; 柱: RestekRTX-35MS, 30m × 250 微米 × 0.25 微米; 负定性氢流速: 0.88ml/min; 烘箱: 60°C; 入口: 250°C; 梯度: 60°C (保持 0.30 分钟), 50°C / 分钟 → 120°C, 16°C / 分钟 → 250°C, 30°C / 分钟 → 300°C (保持 1.7 分钟)。

方法 10 (GC-MS): 仪器: Micromass GCT, GC6890; 柱: RestekRTX-35, 15m × 200 微
米 × 0.33 微米；恒定氨流量 0.88ml/min；烘箱 70℃；入口 250℃；梯度 70℃，30℃/分钟→310℃（保持3分钟）。

原材料

实施例 1A

5-氯-N-[2S]-环氧乙烷-2-基甲基] 嘧啶-2-甲酰胺

实施例 1A 如 W004/101557（实施例 6A）中所述制备。

实施例 2A

3-（羟甲基）吡啶-2(1H)-酮

在室温，将 23.2 克（144 毫摩尔）六甲基二硅烷和 0.781 克（7.19 毫摩尔）三甲基氯硅烷加入至 10.0 克（71.9 毫摩尔）2-羟基烟酸在 100 毫升甲苯中的悬浮液中，且混合物用 KPG 搅拌器在 110℃搅拌 30 分钟。然后将混合物冷却至 -40℃，并将 22.5 克（158 毫摩尔）的二异丁基氢化铝在二氯甲烷中的 1M 溶液滴加至所述溶液中。将所述混合物温热至室温，在室温搅拌 18 小时并最后处于 -10℃，用稀盐酸调节到 pH = 4，并如此加入 500 毫升甲醇以使温度不超过 -10℃。滤出形成的沉淀，将 100 毫升水加入至滤液，在 50℃搅拌混合物 1 小时并滤出沉淀。浓缩滤液产生 8.55 克（理论值的 95%）所需化合物。

'H-NMR (400MHz, DMSO-d6, δ / ppm): 11.53 (br. s, 1H), 7.40 (d, 1H), 7.25 (d, 1H), 6.19 (dd, 1H), 5.00 (t, 1H), 4.28 (d, 2H)。

HPLC (方法 1): R = 0.27 min。

MS (ESIpos, m/z): 148 (M+Na)^+。

实施例 3A

3-（[[叔丁基（二苯基甲硅烷基）氧基甲基]氨基）甲基]吡啶-2(1H)-酮

在室温，将 0.65 克（9.59 毫摩尔）咪唑、2.42 克（8.79 毫摩尔）叔丁基二苯基氯硅烷和 0.10 克（0.80 毫摩尔） DMAP 加入至 1.00 克（7.99 毫摩尔）在 19 毫升 DMF 中的来自
实施例 2A 的化合物中，且混合物搅拌 18 小时。然后加入 180 毫升水，且混合物在 0°C 保持 3 小时。过滤后，残余物通过色谱法在硅胶上提纯（乙酸乙酯 / 乙基二甲基胺 1000 : 1）。这产生 801 毫克（理论值的 27%）所需化合物。

[0328] \({^1}H-NMR (400MHz, DMSO-d_6, \delta / ppm): 11.61 (br. s, 1H), 7.69 - 7.52 (m, 5H), 7.51 - 7.38 (m, 6H), 7.30 (d, 1H), 6.29 (dd, 1H), 4.51 (s, 2H), 1.05 (s, 9H). \)

[0329] HPLC（方法 2）: R_t = 5.27min。

[0330] MS (DCI, m/z): 364 (M+H)^+。

[0331] 实施例 4A

[0332] 3-([叔丁基 (二苯基) 甲硅烷基] 氧基) 甲基)-1-(2- 氯 -4- 硝基苯基) 吡啶 -2(1H)-酮

[0333]

[0334] 在 0°C, 将 0.500 克 (4.46 毫摩尔) 叔丁醇钾加入至 1.08 克 (2.97 毫摩尔) 在 21 毫升 DMSO 中的来自实施例 3A 的化合物中，且混合物在室温下搅拌 30 分钟。加入 0.571 克 (3.27 毫摩尔) 2- 氯 -1- 氯 -4- 硝基苯，且混合物在室温搅拌。4.5 小时后，加入 200 毫升水，且混合物随后用乙酸乙酯提取三次。合并的有机相由水洗涤并随后以硫酸钠干燥。过滤之后，将溶剂在减压下除去。残余物通过色谱法在硅胶上提纯（环己烷 / 乙酸乙酯 9 : 1）。这产生 872 毫克（理论值的 56%）所需化合物。

[0335] \({^1}H-NMR (400MHz, DMSO-d_6, \delta / ppm): 8.52 (d, 1H), 8.32 (dd, 1H), 7.85 (d, 1H), 7.76 (dd, 1H), 7.68 - 7.63 (m, 4H), 7.59 - 7.55 (m, 1H), 7.54 - 7.41 (m, 6H), 6.54 (dd, 1H), 4.56 (br. s, 2H), 1.07 (s, 9H). \)

[0336] HPLC（方法 2）: R_t = 6.05min。

[0337] MS (DCI, m/z): 519 (M+H)^+。

[0338] 实施例 5A

[0339] 1-(4- 氨基 -2- 氯苯基) -3-([叔丁基 (二苯基) 甲硅烷基] 氧基) 甲基) 吡啶 -2(1H)-酮

[0340]
[0341] 将 800 毫克 (1.54 毫摩尔) 来自实施例 4A 的化合物溶于 48 毫升 THF 中。然后加入 50 毫克 (0.05 毫摩尔) 针钯活化混合物在大气压下在室温氯化。然后过滤反应混合物，滤饼由 THF 洗涤并从滤液除去溶剂。反应产物（纯度：95%）进一步反应而无需另外提纯。

[0342] HPLC（方法 1）：R₁ = 5.55 min。

[0343] MS（ESIpos, m/z）: 489 (M+H)⁺。

[0344] 实施例 6A

[0346]

[0347] 将 386 毫克 (1.77 毫摩尔) 来自实施例 1A 的化合物加入至 789 毫克 (1.61 毫摩尔) 的来自实施例 5A 的化合物的 24 毫升乙腈溶液中。将 540 毫克 (2.42 毫摩尔) 高氯酸镁加入至悬浮液中。在室温 19 小时后，加入 193 毫克 (0.952 毫摩尔) 来自实施例 1A 的化合物，并在室温继续搅拌另外 30 小时。然后加入 523 毫克 (2.46 毫摩尔) 1,1'-羰二咪唑和 19 毫克 (0.09 毫摩尔) DMAP，且混合物在 60℃加热。21 小时后，混合物由水、饱和氯化钠溶液和乙酸乙酯稀释。该含水相用乙酸乙酯提取两次，并且合并的有机相以硫酸钠干燥。过滤后，除去溶剂且残余物通过色谱法在硅胶上提纯（环己烷 / 乙酸乙酯 1:1）。这产生 533 毫克（理论值的 45%）所需产物。

[0348] ¹H-NMR (400MHz, DMSO-d₆, δ / ppm): 8.97 (t, 1H), 7.85 (dd, 1H), 7.73 (dd, 1H), 7.70-7.63 (m, 5H), 7.58 (dd, 1H), 7.53-7.38 (m, 8H), 7.19 (d, 1H), 6.47 (dd, 1H), 4.91-4.82 (m, 1H), 4.55 (br. s, 2H), 4.24 (dd, 1H), 3.89 (dd, 1H), 3.65-3.58 (m, 2H), 1.07 (s, 9H)。
[0349] HPLC (方法 2)：$R_t = 6.07 \text{ min}$.

[0350] MS (ESIpos, m/z)：732 (M+H)$^+$.

[0351] 实施例 7A

[0352] 3-[[叔丁基(二苯基)甲硅烷基]氧基]甲基)-1-(2-甲基-4-硝基苯基)吡啶-2(1H)-酮

[0353]

[0354] 类似于实施例 4A，使 1.50 克 (4.13 毫摩尔) 来自实施例 3A 的化合物与 704 毫克 (4.54 毫摩尔) 2-氯-5-硝基苯甲苯反应。这产生 570 毫克 (理论值的 28%) 题标化合物。

[0355] 1H-NMR (400MHz, DMSO-d$_6$, δ / ppm)：8.29 (d, 1H), 8.17 (dd, 1H), 7.76 (dd, 1H), 7.07-7.63 (m, 4H), 7.61 (d, 1H), 7.47 (d, 1H), 7.51-7.41 (m, 6H), 6.52 (t, 1H), 4.63-4.51 (m, 2H), 2.12 (s, 3H), 1.07 (s, 9H).

[0356] HPLC (方法 4)：$R_t = 3.39 \text{ min}$.

[0357] MS (ESIpos, m/z)：499 (M+H)$^+$.

[0358] 实施例 8A

[0359] 1-(4-氨基-2-甲基苯基)-3-[[叔丁基(二苯基)甲硅烷基]氧基]甲基)吡啶-2(1H)-酮

[0360]

[0361] 将 555 毫克 (1.11 毫摩尔) 来自实施例 7A 的化合物溶于 15 毫升 THF 中，加入 150 毫克钯钯活性碳且混合物在氢气流中在大气压下氢化直至得到理论值的氢气。滤出催化剂，这在减压 (im Vakuum) 下浓缩后产生 520 毫克 (理论值的 99%) 题标化合物。

[0362] 1H-NMR (400MHz, DMSO-d$_6$, δ / ppm)：7.70-7.63 (m, 5H), 7.51-7.41 (m, 6H), 7.40-7.36 (m, 1H), 6.78 (d, 1H), 6.47-6.41 (m, 2H), 6.38 (t, 1H), 5.22 (s, 宽, 2H), 4.59-4.48 (m, 2H), 1.81 (s, 3H), 1.06 (s, 9H).

[0363] HPLC (方法 5)：$R_t = 3.20 \text{ min}$.

[0364] MS (ESIpos, m/z)：469 (M+H)$^+$.

[0365] 实施例 9A

32
CN 101743244 A

说明书

N-[[((5S)-3-4-[3-[[叔丁基（二苯基）甲硅烷基]氧基）甲基]2-氧代吡啶-1(2H)-基]-3-甲基-苯基]-2-氧代-1,3-噁唑烷-5- 基）甲基]-5-氯噻吩-2-甲酰胺

[0368] 522 毫克（1.11 摩尔）来自实施例 8A 的化合物溶于 10 毫升乙腈中，并在 0℃加入 266 毫克（1.22 摩尔）来自实施例 1A 的化合物。加入 373 毫克（1.67 摩尔）高氯酸镁，且混合物在室温搅拌 20 小时。然后加入 271 毫克（1.67 摩尔）1,1’-环二碳二唑和 14 毫克（0.11 摩尔）DMAP, 且反应混合物在 60℃加热 20 小时。混合物然后在减压下浓缩，加入水和叔丁基甲醚。混合物用乙酸乙酯提取两次。合并的有机相以硫酸钠干燥并浓缩。残余物通过制备 HPLC 提纯。这产生 562 毫克（理论值的 71%）所需产物。[0369] ¹H-NMR（400MHz，DMSO-d₆，δ /ppm）：8.97（t, 1H），7.74-7.63（m, 6H），7.58-7.41（m, 9H），7.23（d, 1H），7.19（d, 1H），6.45（t, 1H），4.89-4.80（m, 1H），4.58-4.49（m, 2H），4.21（t, 1H），3.90-3.83（m, 1H），3.63-3.58（m, 2H），1.98（s, 3H），1.07（s, 9H）。[0370] HPLC（方法 4）：Rₜ = 3.39min。[0371] MS（ESIpos, m/z）：712/714（[^37Cl/[^35Cl]（M+H）⁺）。[0372] 实施例 10A
[0373] 3-[[叔丁基（二苯基）甲硅烷基]氧基）甲基]-1-(2-甲氧基-4-硝基苯基) 吡啶-2(1H)-酮

[0374] 5.00 克（13.8 摩尔）来自实施例 3A 的化合物与 2.59 克（15.1 摩尔）1-氟-2-甲氧基-4-硝基苯反应。产物通过色谱法在硅胶上提纯（流动相戊烷 / 乙酸乙酯 = 5 : 1），产生 2.70 克（理论值的 38%）标题化合物。[0376] ¹H-NMR（400MHz，DMSO-d₆，δ /ppm）：7.97（d, 1H），7.92（dd, 1H），7.74-7.70（m, 1H），7.68-7.64（m, 4H），7.61（d, 1H），7.52-7.43（m, 7H），6.46（t, 1H），4.54（s, 2H），3.88（s, 3H），33
1.07 (s, 9H)。

[0377] HPLC (方法 5): Rₜ = 3.32 min。

[0378] MS (ESI pos, m/z): 515 (M+H)⁺。

[0379] 实施例 11A

[0380] 1-([4-氨基-2-甲氧基苯基]-3-([卤丁基(二苯基)甲硅烷基]氧基)甲基)吡啶-2(1H)酮

[0381]

[0382] 类似于实施例 8A 氢化 2.60 克 (5.05 毫摩尔) 来自实施例 10A 的化合物。这产生 2.40 克 (理论值的 95%) 标题化合物。

[0383] ¹H-NMR (400MHz, DMSO-d₆, δ/ppm): 7.70-7.61 (m, 5H), 7.51-7.42 (m, 6H), 7.34-7.31 (m, 1H), 6.79 (d, 1H), 6.35-6.29 (m, 2H), 6.15 (dd, 1H), 5.35 (s, 宽, 2H), 4.50 (s, 2H), 3.60 (s, 3H), 1.06 (s, 9H)。

[0384] HPLC (方法 5): Rₜ = 3.13 min。

[0385] MS (ESI pos, m/z): 485 (M+H)⁺。

[0386] 实施例 12A

[0387] N-[(((S)-3-[(3-([卤丁基(二苯基)甲硅烷基]氧基)甲基)-2-氧代吡啶-1(2H)-基]-3-甲氧基苯基)-2-氧代-1,3-噻唑烷-5-基)甲基]-5-氯噻吩-2-甲酰胺

[0388]

[0389] 类似于实施例 6A，使 2.30 克 (4.75 毫摩尔) 来自实施例 11A 的化合物与来自实施例 1A 的化合物反应。产物通过色谱法在硅胶上提纯 (流动相: 二氯甲烷 / 甲醇 = 25:1)。这产生 3.10 克 (理论值的 88%) 所需产物。

[0390] ¹H-NMR (400MHz, DMSO-d₆, δ/ppm): 8.98 (t, 1H), 7.71-7.63 (m, 6H), 7.52-7.38 (m, 8H), 7.25 (d, 1H), 7.20 (d, 1H), 7.10 (dd, 1H), 6.40 (t, 1H), 4.90-4.82 (m, 1H), 4.52 (s, 2H), 4.24 (t, 1H), 3.89 (dd, 1H), 3.71 (s, 3H), 3.64-3.59 (m, 2H), 1.07 (s, 9H)。
HPLC (方法 3): Rᵣ = 3.17 min.

MS (ESIpos, m/z): 728/730 (\(^{35}\)Cl/\(^{37}\)Cl) (M+H)⁺.

实施例 13A

3-(((叔丁基 (二苯基) 甲硅烷基) 氧基) 甲基)-1-[4-硝基-2-(三氟甲基) 苯基] 吡啶-2(1H)-酮

[0396] 类似于实施例 4A, 使 1.50 克 (4.13 毫摩尔) 来自实施例 3A 的化合物与 949 毫克 (4.54 毫摩尔) 1-氟-4-硝基-2-(三氟甲基) 苯反应。产物通过色谱法在硅胶上提纯（流动相异戊烷 / 乙酸乙酯 = 5∶1), 产生 1.00 克 (理论值的 44%) 标题化合物。

[0397] ¹H-NMR (400MHz, DMSO-d₆, δ / ppm): 8.65 (dd, 1H), 8.61 (d, 1H), 7.92 (d, 1H), 7.78-7.74 (m, 1H), 7.67-7.63 (m, 4H), 7.61-7.58 (m, 1H), 7.62-7.41 (m, 6H), 6.52 (t, 1H), 4.58-4.50 (m, 2H), 1.06 (s, 9H).

[0399] MS (ESIpos, m/z): 553 (M+H)⁺.

实施例 14A

1-[4-氨基-2-(三氟甲基) 苯基]-3-(((叔丁基 (二苯基) 甲硅烷基) 氧基) 甲基) 吡啶-2(1H)-酮

[0401] 类似于实施例 8A 氧化 1.00 克 (1.81 毫摩尔) 来自实施例 13A 的化合物。这产生 930 毫克 (理论值的 98%) 标题化合物。

[0402] ¹H-NMR (400MHz, DMSO-d₆, δ / ppm): 7.70-7.62 (m, 5H), 7.51-7.37 (m, 7H), 7.04 (d, 1H), 6.95 (d, 1H), 6.82 (dd, 1H), 6.37 (t, 1H), 5.85 (s, 2H), 4.51 (s, 2H), 1.06 (s, 9H).

[0404] MS (ESIpos, m/z): 523 (M+H)⁺.

实施例 15A

N-(((5S)-3-[4-[3-(((叔丁基 (二苯基) 甲硅烷基) 氧基) 甲基)]-2-氧代吡
喹啉-1(2H)-基]-3-[(三氟甲基)苯基]-2-氧代-1,3-吗啉烷-5-基)甲基]-5-氯喹

[0409] 证明 6A，使 930 毫克 (1.78 毫摩尔) 来自实施例 14A 的化合物与来自实施例 1A 的化合物反应。产物通过制备 HPLC 提纯。这产生 465 毫克 (理论值的 28%) 所需产物。

[0411] 1H-NMR (400MHz, DMSO-d₆, δ / ppm): 8.97 (t, 1H), 8.11 (dd, 1H), 7.82 (dd, 1H), 7.75-7.71 (m, 1H), 7.68 (d, 1H), 7.67-7.63 (m, 1H), 7.55 (d, 1H), 7.53-7.41 (m, 1H), 7.19 (d, 1H), 6.45 (t, 1H), 4.93-4.85 (m, 1H), 4.57-4.48 (m, 2H), 4.29 (dt, 1H), 3.98-3.92 (m, 1H), 3.66-3.60 (m, 2H), 1.06 (s, 3H)。

[0412] HPLC (方法 3): R₄ = 3.25min。

[0413] MS (ESIpos, m/z): 766/768 (15Cl/17Cl) (M+H)⁺。

[0414] 实施例 16A

[0415] 3-溴-1-(2-氯-4-硝基苯基) 吡啶-2(1H)-酮

[0416] 将 2.00 克 (11.5 毫摩尔) 的 3-溴吡啶-2(1H)-酮 (O. S. Tee, M. Pavent, J. Am. Chem. Soc. 1982, 104, 4142-4146) 溶于 40 毫升 DMF。将混合物冷却至 0℃，并加入 2.04 克 (17.2 毫摩尔, 95%) 丁醇钾。在大约 15 分钟以后，除去冰浴，并在另外 30 分钟以后，加入 2.22 克 (12.6 毫摩尔) 2-氯-1-氯-4-硝基苯。混合物在室温下搅拌 4 小时。然后将混合物加入至水中并用乙酸乙酯提取三次。合并有机相用饱和氯化钠溶液振荡并以硫酸钠干燥。在减压下除去溶剂，并将残余物悬浮在戊烷中并用抽滤滤出。获得的固体用环己烷 / 乙酸乙酯 10:1 蒸腾，由抽滤滤出产物并用环己烷 / 乙酸乙酯 10:1 洗涤。这产生 2.54 克 (理论值的 67%) 所需化合物。

[0418] 1H-NMR (400MHz, DMSO-d₆, δ / ppm): 8.57 (d, 1H), 8.37 (dd, 1H), 8.11 (dd, 1H), 7.94 (d, 1H), 7.73 (dd, 1H), 6.39 (t, 1H)。

[0419] HPLC (方法 3): R₄ = 1.76min。

[0420] MS (ESIpos, m/z): 329/331 (15Cl/17Cl) (M+H)⁺。
实施例 17A

1-(4-氨基-2-氯苯基)-3-溴吡啶-2(1H)-酮

将 2.00 克 (6.07 毫摩尔) 来自实施例的化合物 16A 溶于 80 毫升甲醇。加入 6.83 克 (30.3 毫摩尔) 氯化锡二水合物，且混合物在回流下加热 2 小时。然后浓缩溶液。在硅胶上柱过滤 (流动相二氯甲烷：甲醇 = 25 : 1) 之后，将残余物溶于乙酸乙酯并用饱和碳酸氢钠溶液摇动。有机相以硫酸钠干燥并浓缩。这产生 1.60 毫克 (理论值的 87%) 标题化合物。

H-NMR (400MHz, DMSO-d6, δ/ppm): 8.00 (dd, 1H), 7.56 (dd, 1H), 7.08 (d, 1H), 6.73 (d, 1H), 6.58 (dd, 1H), 6.22 (t, 1H), 5.71 (s, 2H)。

HPLC (方法 5): Rr = 1.69min。

MS (ESIpos, m/z): 299/301 (35Cl/37Cl) (M+H)+。

实施例 18A

N-((1S)-3-[4-(3-溴-2-氧代吡啶-1(2H)-基)-3-氯苯基]-2-氧代-1,3-二噁烷-5-基甲基)-5-氯喹啉-2-甲酰胺

起初在 0℃将 1.60 克 (5.34 毫摩尔) 来自实施例 17A 的化合物加入 25 毫升乙腈中，并加入 1.28 克 (5.88 毫摩尔) 来自实施例 1A 的化合物。加入 1.79 克 (8.01 毫摩尔) 高氯酸镁，且混合物在室温搅拌 20 小时。然后加入另外 0.38 克 (1.76 毫摩尔) 来自实施例 1A 的化合物和 0.54 克 (2.4 毫摩尔) 高氯酸镁，且混合物再搅拌 20 小时。然后加入 1.30 克 (8.01 毫摩尔) CDI 和 65 毫克 (0.53 毫摩尔) DMAP。混合物在 60℃加热 20 小时并随后在减压下浓缩，加入水和乙酸乙酯。除去有机相，以硫酸钠干燥并浓缩。将产物从甲醇重结晶。这产生 1.32 克 (理论值的 45%) 标题化合物。

H-NMR (400MHz, DMSO-d6, δ/ppm): 8.97 (t, 1H), 8.06 (dd, 1H), 7.88 (dd, 1H), 7.69 (d, 1H), 7.66-7.56 (m, 3H), 7.20 (d, 1H), 6.31 (t, 1H), 4.92-4.85 (m, 1H), 4.25 (t, 1H), 3.91 (dd, 1H), 3.65-3.60 (m, 2H)。

HPLC (方法 4): Rr = 2.37min。

实施例 19A

3-烯丙基-1-(2-氯-4-硝基苯基) 吡啶-2(1H)-酮
[0437] 起初将 1.00 克 (3.03 毫摩尔) 来自实施例 16A 的化合物、922 毫克 (6.07 毫摩尔) 醋酸化物和 124 毫克 (152 毫摩尔) [1,1’-双（二苯基膦基）二茂铁] 钯三氯化物放入 20 毫升脱气 THF 中。滴加 765 毫克 (4.55 毫摩尔) 2-烯丙基-4-4,5,5-四甲基-1,3,2- 二氧杂磷戊环 (dioxaborolan) 及混合物在回流下加热过夜。加入饱和碳酸氢钠溶液，且混合物用乙酸乙酯提取三次。合并的有机相以硫酸钠干燥并浓缩。产物通过制备 HPLC 提纯，产生 616 毫克（理论值的 70%）标靶化合物。

[0438] \(^1H \)-NMR (400MHz, DMSO-d_6, \(\delta \) / ppm): 8.54 (d, 1H), 8.34 (dd, 1H), 7.86 (d, 1H), 7.50 (dd, 1H), 7.42–7.39 (m, 1H), 6.37 (t, 1H), 6.01–5.90 (m, 1H), 5.15–5.06 (m, 2H), 3.20 (d, 2H).

[0439] HPLC (方法 5): R_t = 2.22 min.

[0440] MS (ESIpos, m/z): 291/293 (\(^35Cl/\(^37Cl \)) (M+H)^+).

[0441] 实施例 20A

[0442] 3-烯丙基-1-(4-氨基-2-氯苯基) 吡啶-2(1H)-酮

[0443] H_2C=\begin{array}{c|c|c|c|c} & & & & \\ \text{NO}_2 & & & & \\ \text{Cl} & & & & \\ & & & & \\ \end{array} \begin{array}{c|c|c|c|c} & & & & \\ \text{H}_{2}\text{C} & & & & \\ \text{NH}_2 & & & & \\ \text{Cl} & & & & \\ & & & & \\ \end{array}

[0444] 类似于实施例 17A, 用氧化铝纸层析 815 毫克 (2.80 毫摩尔) 来自实施例 19A 的化合物。这产生 737 毫克（理论值的 99%）标靶化合物。

[0445] \(^1H \)-NMR (400MHz, DMSO-d_6, \(\delta \) / ppm): 7.34–7.27 (m, 2H), 7.02 (d, 1H), 6.72 (d, 1H), 6.57 (dd, 1H), 6.21 (t, 1H), 6.00–5.89 (m, 1H), 5.64 (s, 宽, 2H), 5.13–5.04 (m, 2H), 3.16 (d, 2H).

[0446] HPLC (方法 3): R_t = 1.70 min.

[0447] MS (ESIpos, m/z): 261/263 (\(^35Cl/\(^37Cl \)) (M+H)^+).

[0448] 实施例 21A

[0449] N-((5S)-3-4-(3-烯丙基-2-氧代吡啶-1(2H)-基)-3-氯苯基]-2-氧代-1,3-噻唑烷-5-基) 甲基)-5-氯噻吩-2-甲酰胺

[0450] H_2C=\begin{array}{c|c|c|c|c} & & & & \\ \text{NO}_2 & & & & \\ \text{Cl} & & & & \\ & & & & \\ \end{array} \begin{array}{c|c|c|c|c} & & & & \\ \text{H}_{2}\text{C} & & & & \\ \text{N} & & & & \\ \text{Cl} & & & & \\ & & & & \\ \end{array}

[0451] 类似于实施例 18A, 使 735 毫克 (2.82 毫摩尔) 来自实施例 20A 的化合物与来自实
施例 1A 的产物反应。产物通过从甲醇重结晶而提纯。这产生 826 毫克（理论值的 58%）所需产物。

[0452] 1H-NMR (400MHz, DMSO-d_6, δ / ppm): 8.98 (t, 1H), 7.86 (d, 1H), 7.69 (d, 1H), 7.62–7.57 (m, 1H), 7.51 (d, 1H), 7.43–7.39 (m, 1H), 7.37–7.34 (m, 1H), 7.20 (d, 1H), 6.30 (t, 1H), 6.01–5.90 (m, 1H), 5.14–5.07 (m, 2H), 4.92–4.85 (m, 1H), 4.25 (t, 1H), 3.90 (dd, 1H), 3.65–3.60 (m, 2H), 3.19 (d, 2H)。

[0453] HPLC (方法 3): R_t = 2.22 min。

[0454] MS (ESIpos, m/z): 504/506/508 ([C_1_2/C_{35}C_{37}C_{37}C_{37}] (M+H)^+)。

[0455] 实施例 22A

[0456] 3-溴-1-(2-甲基-4-硝基苯基) 吡啶-2(1H)-酮

[0457] ![Br-N-O-N.png](attachment:Br-N-O-N.png)

[0458] 将 44.5 克 (280 毫摩尔) 的 3-溴吡啶-2(1H)-酮溶于 750 毫升无水二甲基亚砜中，并在室温下逐份（portionsweise）加入 33.4 克 (298 毫摩尔) 叔丁醇钾。悬浮液在该温度搅拌 1 小时，然后加入 38.5 克 (280 毫摩尔) 1-氟-2-甲基-4-硝基苯并使该反应溶液在 80℃加热 20 小时。使溶液冷却并小心地由水稀释。滤出所得晶状沉淀，用少许水洗涤并在减压下干燥。这产生 62 克（理论值的 80%）所需产物。

[0459] 1H-NMR (400MHz, DMSO-d_6, δ / ppm): δ = 8.34 (d, 1H), 8.21 (d, 1H), 8.10 (dd, 1H), 7.71–7.63 (m, 2H), 6.36 (t, 1H), 2.17 (s, 3H)。

[0460] LC-MS (方法 3): R_t = 1.72 min

[0461] MS (ESIpos, m/z): 309 (M+H)^+。

[0462] 实施例 23A

[0463] 1-(2-甲基-4-硝基苯基)-3-乙烯基吡啶-2(1H)-酮

[0464]

[0465] 将 50 克 (162 毫摩尔) 来自实施例 22A 的化合物溶于 700 毫升无水二氧杂环己烷中，加入 62 克 (194 毫摩尔) 三丁基乙烯基锡和 4.7 克 (4 毫摩尔) 四 (三苯基膦) 钯钯和混合物在回流下加热 15 小时。使混合物冷却并通过硅藻土过滤。滤饼由乙酸乙酯洗涤且合并的滤液在减压下蒸发至干。将残余物施加于硅胶并在 800 克硅胶上使用环己烷和乙酸乙酯的梯度色谱处理。这产生 27 克（理论值的 62%）所需产物。

[0466] 1H-NMR (400MHz, DMSO-d_6, δ / ppm): δ = 8.35 (d, 1H), 8.2 (dd, 1H), 7.75 (dd, 1H), 7.60 (d, 1H), 7.55 (dd, 1H), 6.75 (dd, 1H), 6.45 (t, 1H), 6.15 (dd, 1H), 5.3 (dd, 1H), 2.17 (s, 3H)。
3h)。

[0467] LC-MS (方法 4): R_c = 1.86min

[0468] MS (ESI pos): m/z = 257 (M+H)⁺

[0469] 实施例 24A

[0470] 3-[(2-羟乙基)-1-(2-甲基-4-硝基苯基) 吡啶-2(1H)-酮

[0471] \[
\text{HO} \quad \text{O} \\
\text{N} \quad \text{C} \quad \text{C} \quad \text{H}_3 \\
\text{O} \quad \text{O} \\
\text{H}_3 \quad \text{NO}_2
\]

[0472] 在冰冷却下，将 40 克 (326 毫摩尔) 9-稠杂双环 [3.3.1] 廿烷在 650 毫升四氢呋喃中的溶液以 45 分钟加入到 38 克 (148 毫摩尔) 来自实施例 23A 的化合物中。将混合物在该温度再搅拌 1 小时，然后以 15 分钟加入 30 克 (747 毫摩尔) 氢氧化钠在 740 毫升水中的溶液。如此加入 151 毫升 30% 的过氧化氢溶液，使温度不超过 30°C。在添加结束后，除去冷却并继续搅拌另外 30 分钟。混合物由乙酸乙酯反复提取，合并的有机相用 780 克 (1.63 摩尔) 亚硫酸氢钠溶液洗涤，分留有机相并由乙酸乙酯再次提取含水相。合并的有机相用饱和氯化钠溶液洗涤，以硫酸镁干燥并在减压下蒸发至干。将残余物施于硅胶并使用环己烷和乙酸乙酯的梯度色谱处理。合并包含产物的级分并在减压下浓缩至干。这产生 38 克 (理论值的 93%) 所需产物。

[0473] 1H-NMR (400MHz, DMSO-d₆, δ ppm): δ = 8.33 (d, 1H), 8.18 (d, 1H), 7.57 (d, 1H), 7.48-7.40 (m, 2H), 6.33 (t, 1H), 4.58 (t, 1H), 3.62-3.50 (m, 2H), 2.62 (t, 2H), 2.15 (s, 3H).

[0474] LC-MS (方法 6): R_c = 1.57min

[0475] MS (ESI pos): m/z = 275 (M+H)⁺

[0476] 实施例 25A

[0477] 3-[(2-[[叔丁基(二苯基甲硅烷基)氧基]乙基]-1-(2-甲基-4-硝基苯基) 吡啶-2(1H)-酮

[0478] \[
\text{H}_3 \quad \text{C} \\
\text{H}_3 \quad \text{Si} - \text{O} \\
\text{C} \\
\text{H}_3 \quad \text{C} \\
\text{O} \\
\text{N} \\
\text{C} \\
\text{H}_3 \quad \text{C} \\
\text{H}_3 \quad \text{NO}_2
\]

[0479] 将 38 克 (138 毫摩尔) 来自实施例 24A 的化合物溶于 200 毫升无水 N, N-二甲基甲酰胺中，并在 0°C 加入 12.2 克 (198 毫摩尔) 的咪唑并逐份地加入 46 克 (135 毫摩尔) 叔丁基 (氯) 二苯基硅烷。将混合物搅拌过夜并随后由水稀释，并用乙酸乙酯提取三次。合
并的有机相用饱和氯化钠溶液洗涤两次，以硫酸镁干燥，过滤并在减压下蒸发。将残余物施加于硅胶并使用环己烷和乙酸乙酯的梯度色谱处理。合并包含产物的级分并在减压下蒸发至干。这产生 62 克（理论值的 88％）所需产物。

LC-MS (方法 5): R_t = 3.18 min

MS (ESIpos): m/z = 483 (M+H)⁺

实施例 27A

1-(4-(氨基-2-(甲基苯基)) -3-(2-[[叔丁基(二苯基)甲硅烷基]氧基]乙基) 吡啶 -2(1H)- 酮

将 62 克 (121 毫摩尔) 来自实施例 25A 的化合物溶于 2 升的乙醇和乙酸乙酯 1:1的混合物中，并加入 46 克 (726 毫摩尔) 甲酸铵和 0.6 克钯炭。在 80℃加热混合物。在 45 分钟后，使混合物冷却并透过硅胶过滤。滤饼由乙酸乙酯洗涤且滤液在减压下蒸发至干。这产生 36 克（理论值的 61％）所需产物。

LC-MS (方法 7): R_t = 1.84 min

MS (ESIpos): m/z = 221 (M+H)⁺

实施例 27A

将 35.6 克 (74.1 毫摩尔) 来自实施例 26A 的化合物溶于 800 毫升无水乙腈中，并在 0℃加入 19 克 (89 毫摩尔) 来自实施例 1A 的化合物。加入 25 克 (110 毫摩尔) 高氯酸
镁，除去冷却且混合物在室温搅拌 15 小时。加入 24 毫克 (148 毫摩尔)1,1-二甲基氨乙烷和 180 毫克 (1.4 毫摩尔)N,N-二甲基氨基乙烷，且混合物在回流下加热 2 小时。使混合物冷却并在减压下馏出溶剂。然后将残余物导出至乙酸乙酯中，由水洗涤并用饱和氯化钠溶液洗涤三次。以硫酸镁干燥后，将混合物过滤并在减压下蒸发至干。将残余物施加于硅胶并使用环己烷和乙酸乙酯的梯度色谱处理。合并包含产物的级分并在减压下蒸发至干。这产生 46.4 克 (理论值的 84%) 所需产物。

LC-MS (方法 5); \(R_t = 3.31 \text{ min} \)

MS (ESIpos) : \(m/z = 700 \text{ (M+H)}^+ \)

实施例 28A

3-溴-1-(2-甲氧基-4-硝基苯基)吡啶-2(1H)-酮

将 70 克 (403 毫摩尔) 3-溴吡啶-2(1H)-酮溶于 1 升无水二甲基亚砜中，并在室温下加入 54 克 (484 毫摩尔) 叔丁醇钾。在该温度搅拌悬浮液 1 小时。加入 69 克 (403 毫摩尔)1-氯-2-甲氧基-4-硝基苯，并在 80℃加热反应溶液 20 小时。将该混合物小心地由 5 升水稀释。滤出沉淀的固体，由水洗涤并在减压下干燥。这产生 103 克 (理论值的 72%) 所需产物。

\[\text{H-NMR (400MHz, DMSO-}d_6, \delta / ppm; \delta = 8.05 \text{ (dd, 1H)}, 8.1 \text{ (d, 1H)}, 7.95 \text{ (dd, 1H)}, 7.7 \text{ (d, 1H)}, 7.6 \text{ (dd, 1H)}, 6.3 \text{ (t, 1H)}, 3.9 \text{ (s, 3H).} \]

MS (ESIpos) : \(m/z = 342 \text{ (M+NH}_3\text{)'} \)

实施例 29A

1-(2-甲氧基-4-硝基苯基)-3-乙烯基吡啶-2(1H)-酮

将 100 克 (308 毫摩尔) 来自实施例 28A 的化合物溶于 1.4 升无水二氧杂环己烷中，加入 8.9 克 (7.7 毫摩尔) 四 (三甲基膦) 钯和 117 克 (370 毫摩尔) 三丁基乙烯基锡。将混合物在回流下加热 16 小时。然后使反应溶液冷却并通过硅藻土过滤。将该滤液在减压下浓缩至干。将残余物在硅胶上使用环己烷和乙酸乙酯的梯度色谱处理。合并包含产物的级分并在减压下浓缩至干。加入石油醚直至开始结晶。滤出晶体并在减压下干燥。这产生 37 克 (理论值的 41%) 所需产物。

\[\text{H-NMR (400MHz, DMSO-}d_6, \delta / ppm; \delta = 8.0 \text{ (m, 2H)}, 7.7 \text{ (m, 2H)}, 7.5 \text{ (dd, 1H)}, 6.7 \text{ (q, 1H)}, 6.4 \text{ (t, 1H)}, 6.1 \text{ (dd, 1H)}, 5.3 \text{ (dd, 1H)}, 3.9 \text{ (s, 3H).} \]
在 0℃，将 36 克 (299 毫摩尔) 9- 硝杂双环 [3.3.1] 呋喃在 600 毫升四氢呋喃中的溶液在 45 分钟内加入到 37 克 (136 毫摩尔) 来自实施例 29A 的化合物中。在该温度下另外 1 小时之后，以 15 分钟过程加入 27 克 (680 毫摩尔) 氢氧化钠 (在水中 1N) 的溶液。将混合物再搅拌 5 分钟，并随后加入 125 毫升 30% 的过氧化氢溶液以使温度不超过 30℃。除去冷却，且混合物再搅拌 30 分钟。混合物由乙酸乙酯反复提取，合并的有机相用 730 克 (1.50 摩尔) 亚硫酸氢钠溶液洗涤，分离有机相并由乙酸乙酯再提取含水相。合并的有机相用饱和氯化钠溶液洗涤，以硫酸镁干燥并在减压下蒸发至干。将残余物吸收在硅胶上并使用环己烷和乙酸乙酯的梯度色谱处理。合并产物再次并在减压下蒸发至干。为了进行结晶，加入叔丁基甲醚。滤出晶体并在减压下干燥。这产生 24 克 (理论值的 60%) 所需产物。

1H-NMR (400MHz, DMSO-d6, δ / ppm): δ = 8.0 (d, 1H), 7.95 (dd, 1H), 7.6 (d, 1H), 7.4 (d, 1H), 6.35 (t, 1H), 4.6 (t, 1H), 3.9 (s, 3H), 3.55 (m, 2H), 2.6 (m, 2H)。

MS (ESIpos) : m/z = 291 (M+H)⁺

实施例 31A

3-(2-(N, N- 二甲基氨基 - 甲硅烷基) 氧基) 乙基) -1-(2- 甲氧基 -4- 硝基苯基) 吡啶 -2(1H) - 酮

将 24 克 (81 毫摩尔) 来自实施例 30A 的化合物溶于 200 毫升无水 N,N- 二甲基甲酰胺中，并加入 7.2 克 (106 毫摩尔) 咪唑和 27 克 (98 毫摩尔) 叔丁基(氯) 二苯基硅烷。在 16 小时后，将混合物由 1.2 升水稀释并用乙酸乙酯提取三次。合并的有机相用水洗涤两次，以硫酸镁干燥，过滤并在减压下浓缩。为了进行结晶，加入叔丁基甲醚，滤出所得晶体并在减压下干燥。这产生 30 克 (理论值的 67%) 所需产物。

1H-NMR (400MHz, DMSO-d6, δ / ppm): δ = 8.0 (d, 1H), 7.95 (dd, 1H), 7.6-7.5 (m,
5H), 7.5-7.4 (m, 8H), 6.35 (t, 1H), 3.8 (m, 5H), 2.7 (m, 2H), 1.0 (s, 9H).

[0517] 实施例 32A

[0518] 1-(4-氨基-2-甲氧基苯基)-3-(2-[[叔丁基(二苯基甲硅烷基)氧基]乙基)吡啶-2(1H)-酮

[0519]

[0520] 将 25 克 (48 毫摩尔) 来自实施例 31A 的化合物溶于 800 毫升的乙醇和乙酸乙酯

1：1 的混合物中，并加入 18 克 (286 毫摩尔) 甲酸铵和 800 毫克钯钯碳。在 80℃加热混合物。在 60 分钟后，使混合物冷却并通过硅胶过滤。滤饼由乙酸乙酯洗涤，且滤液在减压下浓缩至干。这产生 27 克（理论值的 98%）所需产物。

[0521] 1H-NMR (400MHz, DMSO-d_6, δ / ppm): δ = 7.6 (m, 4H), 7.4 (m, 6H), 7.3 (dd, 1H),

7.25 (dd, 1H), 6.75 (d, 1H), 6.3 (d, 1H), 6.2 (dd, 1H), 6.1 (t, 1H), 5.3 (b, 2H), 3.8 (m, 2H),

3.6 (s, 3H), 2.7 (m, 2H), 1.0 (s, 9H).

[0522] MS (ESIpos) : m/z = 499 (M+H)^+

[0523] 实施例 33A

[0525]

[0526] 将 29 克 (58 毫摩尔) 来自实施例 32A 的化合物溶于 600 毫升无水乙醇中，并在

0℃加入 15 克 (69 毫摩尔) 来自实施例 1A 的化合物。加入 19 克 (87 毫摩尔) 高氯酸镁，

除去冷却且混合物在室温搅拌 15 小时。然后加入 19.0 克 (116 毫摩尔) 1,1-羰二嗪和

141 毫克 (1.21 毫摩尔) N,N-二甲基氨基吡啶，且混合物在回流下加热。在 2 小时后，使混
合物冷却并在减压下馏出溶剂。然后将残余物导出至乙酸乙酯中，由水洗涤并用饱和氯化钠溶液洗涤三次。以硫酸镁干燥后，将混合物过滤并在减压下蒸发至干。将残余物在硅胶上使用环己烷和乙酸乙酯的梯度色谱处理。合并包含产物的级分并在减压下浓缩至干。这产生 37 克（理论值的 85%）所需产物。

[0527] \(^1\)H-NMR (400MHz, DMSO-d_6) : \(\delta = 9.0\) (t, 1H), 7.7 (d, 1H), 7.6 (m, 4H), 7.5-7.3 (m, 9H), 7.2 (m, 2H), 7.1 (m, 1H), 6.2 (t, 1H), 4.8 (m, 1H), 4.4 (t, 1H), 3.9 (m, 1H), 3.8 (b, 2H), 3.7 (s, 3H), 3.65 (m, 2H), 2.7 (m, 2H), 1.0 (s, 9H)。

[0528] LC-MS (方法 8) : Rt = 4.53min
[0529] MS (ESIpos) : m/z = 742 (M+H)'
[0530] 实施例 34A
[0531] 2-(溴甲基)-1-氟-4-硝基苯

[0532] ![2-(溴甲基)-1-氟-4-硝基苯](image)

[0533] 将 186 克（1.20 摩尔）2-氟-5-硝基甲苯溶于 1.2 升四氯化碳中，并加入 214 克（1.20 摩尔）N-溴琥珀酰亚胺。加入 19.7 克（120 毫摩尔）偶氮二异丁腈，且混合物在回流下加热。在 16 小时以后，使该混合物冷却，过滤并在减压下蒸发至干。将残余物溶于 300 毫升二氯甲烷，并加入 300 克海沙。然后将混合物再一次在减压下浓缩至干，并将残余物施加于 1 千克硅胶柱上。将产物使用环己烷和乙酸乙酯的 20 : 1 混合物色谱处理，并在减压下将产物级分蒸发至干。残余物用环己烷结晶并在减压下干燥。这产生 92 克（理论值的 32%）所需产物。

[0534] \(^1\)H-NMR (400MHz, DMSO-d_6, \(\delta / ppm\)) : \(\delta = 8.57-8.52\) (m, 1H), 8.33-8.27 (m, 1H), 7.56 (t, 1H), 4.62 (s, 2H)。

[0535] GC-MS (方法 9) : R_t = 7.79min
[0536] MS (ESIpos) : m/z = 154 (M-Br)'
[0537] 实施例 35A
[0538] 1-氟-2-(甲氧基甲基)-4-硝基苯

[0539] ![1-氟-2-(甲氧基甲基)-4-硝基苯](image)

[0540] 将 30 克（128 毫摩尔）来自实施例 34A 的化合物溶于 1.3 升无水甲苯中，并加入 45 克（192 毫摩尔）氧化铝 (I) 和 24.6 克（769 毫摩尔）无水甲醇。将混合物在 60℃下加热 16 小时。然后使混合物冷却并通过硅胶过滤。将产物使用环己烷和环己烷 / 乙酸乙酯 25 : 1 的梯度分级洗脱。将产物级分在减压下蒸发至干并在减压下干燥。这产生 17 克
（理论值的72%）所需产物。

\[\text{H-NMR (400MHz, DMSO-\text{d}_6, \delta ppm):} \delta = 8.41-8.36 (m, 1H), 8.22-8.16 (m, 1H), 7.26 (t, 1H), 4.58 (s, 2H), 3.49 (s, 3H). \]

[0542] GC-MS（方法9）: R_t = 6.52min

[0543] MS (ESI(pos)): m/z = 154 (M-CH_3)^+

[0544] 实施例36A

[0545] 3-溴-1-[2-(甲氧基甲基)-4-硝基苯基] 吡啶-2(1H)-酮

![化学结构式]

[0547] 将38克（391毫摩尔）3-溴-2-羟基吡啶溶于1250毫升无水二甲基亚砜中，并逐份地加入53克（469毫摩尔）叔丁醇钾。将混合物再搅拌1小时，然后加入72.4克（391毫摩尔）来自实施例35A的化合物。在加入已经结束后，将混合物在80℃加热3小时。然后使混合物冷却，并在室温下继续搅拌另外16小时。然后将反应溶液冷却至15℃，并在该温度下用1N盐酸将pH小心地调节至pH = 3。加入4升水，且混合物用2升乙酸乙酯提取三次。合并的有机相用饱和氯化钠溶液洗涤并以硫酸镁干燥。溶液然后在减压下蒸发至干，并加入叔丁基甲醚以便结晶。滤出晶体并在减压下干燥。这产生94克（理论值的71%）所需产物。

\[\text{H-NMR (400MHz, DMSO-\text{d}_6, \delta ppm):} \delta = 8.37 (d, 1H), 8.33 (dd, 1H), 8.10 (dd, 1H), 7.73-7.67 (m, 2H), 6.35 (t, 1H), 4.3 (q, 2H), 3.3 (s, 3H). \]

[0549] LC-MS（方法6）: R_t = 1.88min

[0550] MS (ESI(pos)): m/z = 339 (M+H)^+

[0551] 实施例37A

[0552] 1-[2-(甲氧基甲基)-4-硝基苯基]-3-乙烯基吡啶-2(1H)-酮

![化学结构式]

[0554] 将94克（277毫摩尔）来自实施例36A的化合物溶于1.2升无水二氧杂环己烷中，并加入8克（6.9毫摩尔）四（三苯基膦）钯（0）。在室温下，缓慢加入105克（333毫摩尔...
尔）三丁基乙烯基锡，并在添加已经结束之后，将该混合物在回流下加热 21 小时。使反应溶液冷却并经过硅藻土过滤。滤饼由乙酸乙酯洗涤且合并的有机滤液在减压下浓缩至干。将保留的残余物溶于二氯甲烷中并施加于硅藻土上。将产物在 1.2 千克硅胶上使用环己烷和乙酸乙酯的梯度色谱处理。合并包含产物的级分并在减压下浓缩至干。这产生 23 克（理论值的 29%）所需产物。

\[0555\] 1H-NMR (400MHz, DMSO-d$_6$, δ / ppm): δ = 8.36 (d, 1H), 8.31 (dd, 1H), 7.77 (dd, 1H), 7.67 (d, 1H), 7.56 (dd, 1H), 6.80–6.71 (m, 1H), 6.45 (t, 1H), 6.14 (dd, 1H), 5.33 (dd, 1H), 4.37–4.22 (m, 2H), 3.26 (s, 3H)。

\[0556\] LC-MS (方法 6): R$_t$ = 2.07min

\[0557\] MS (ESIpos): m/z = 387 (M+H)$_+^+$

\[0558\] 实施例 38A

\[0559\] 3-（2-羟基乙基）-1-[2-（甲氧基甲基）-4- 硝基苯基] 吡啶 -2(1H)-酮

\[0560\]

\[0561\] 将 23 克 (80 毫摩尔) 来自实施例 37A 的化合物溶于 80 毫升无水四氢呋喃中并冷却到 5°C。在 15 分钟期间内，加入 21 克 (176 毫摩尔) 9-硼杂双环 [3.3.1] 戊烷 (在四氢呋喃中的 0.5M 溶液)。除去冷却，且混合物在室温下再搅拌 2 小时。然后将混合物再次冷却至 5°C，并加入 400 毫升的 1N 氢氧化钠水溶液。在添加已经结束之后，在该温度逐份地加入 81 毫升 30% 的过氧化氢溶液。在用 500 毫升乙酸乙酯稀释后，将混合物用 32 毫升 40% 的亚硫酸氢钠溶液洗涤以消除过氧化物。分离有机相，且水相用乙酸乙酯提取四次。合并的有机相用饱和氯化钠溶液洗涤，以硫酸镁干燥，并且在过滤后在减压下浓缩至干。将残余物在硅胶上使用环己烷和乙酸乙酯的梯度色谱处理。合并包含产物的级分并在减压下浓缩至干。这产生 20 克（理论值的 77%）所需产物。

\[0562\] 1H-NMR (400MHz, DMSO-d$_6$, δ / ppm): δ = 8.36 (d, 1H), 8.30 (dd, 1H), 7.62 (d, 1H), 7.45 (d, 1H), 6.33 (t, 1H), 4.60 (t, 1H), 4.35–4.20 (m, 2H), 3.62–3.55 (m, 2H), 3.32 (s, 3H), 2.62 (t, 2H)。

\[0563\] LC-MS (方法 8): R$_t$ = 1.60min

\[0564\] MS (ESIpos): m/z = 305 (M+H)$_+^+$

\[0565\] 实施例 39A

\[0566\] 3-（2-[[邻丁基（二苯基甲硅烷基）氧基乙基]-1-[[2-（甲氧基甲基）-4- 硝基苯基] 吡啶 -2(1H)-酮

\[0567\]
[0568] 将20克（65 毫摩尔）来自实施例38A的化合物溶于75毫升无水N,N-二甲基甲酰胺中，并且，在冰冷却下，首先加入5.3克（78 毫摩尔）喹啉并随后，在3分钟期间内，逐份地加入19克（72 毫摩尔）叔丁基二苯基氯硅烷。除去冷却，且混合物在室温下再搅拌19小时。将反应溶液由乙酸乙酯稀释，由水洗涤三次并用饱和氯化钠溶液洗涤两次。混合物然后以硫酸镁干燥，过滤并在减压下浓缩至干。将叔丁基甲醚加入至残余物中，滤出所得晶体并在减压下干燥。这产生39克（理论值的90%）所需产物。

[0569] ^1H-NMR (400MHz, DMSO-d_6, δ/ppm): δ = 8.35 (d, 1H), 8.31 (dd, 1H), 7.65–7.35 (m, 13H), 6.35 (t, 1H), 4.32–4.14 (m, 2H), 3.92–3.80 (m, 2H), 3.32 (s, 3H), 2.78–2.71 (m, 2H), 0.97 (s, 9H)。

[0570] LC-MS (方法8): R_t = 4.59min

[0571] MS(ESIpos): m/z = 543 (M+H)^+

[0572] 实施例40A

[0573] 1—[4-氨基-2-(甲氧基甲基)苯基]—3—[2-[[叔丁基(二苯基)氯硅烷基]氧化]乙基]吡啶—2(1H)—酮

[0574] 将25克（48 毫摩尔）来自实施例39A的化合物溶于500毫升乙酸乙酯和500毫升乙醇中。加入18克（286 毫摩尔）甲酸铵和1克钯碳，且混合物在回流下加热45分钟。然后使反应溶液冷却并通过硅胶过滤。将该滤液在减压下浓缩至干。这产生25克（理论值的100%）所需产物。

48
说明书

[0576] ^1H-NMR (400 MHz, DMSO-d6, δ / ppm): δ = 7.65-7.20 (m, 12H), 6.79 (d, 1H), 6.68 (d, 1H), 6.54 (dd, 1H), 6.20 (t, 1H), 5.46-5.25 (m, 2H), 4.04-3.91 (m, 2H), 3.87-3.77 (m, 2H), 3.07 (s, 3H), 2.75-2.68 (m, 2H), 0.95 (s, 9H).

[0577] LC-MS (方法 6): R_t = 3.22 min

[0578] MS (ESIpos): m/z = 513 (M+H)^+

[0579] 实施例 41A

[0580] N-[[5S]-3-[[4-[3-(2-[[叔丁基（二苯基）甲硅烷基）氧基）乙基]-2-氧代吡啶-1(2H)基]-3-（甲氧基-甲基）苯基]-2-氧代-1,3-噻唑烷-5-基]甲基]-5-氯噻吩-2-甲酰胺

[0581]

[0582] 将 25 克 (47 毫摩尔) 来自实施例 40A 的化合物溶于 500 毫升无水乙腈中，并加入 15 克 (61 毫摩尔) 来自实施例 1A 的化合物和 16 克 (71 毫摩尔) 高氯酸镁。将混合物在室温下搅拌 5 小时，然后再加入 1 克 (4.1 毫摩尔) 来自实施例 1A 的化合物。在 21 小时以后，加入 15.3 克 (95 毫摩尔) 稀乙酸钠和 116 毫克 (0.65 毫摩尔) 4-二甲基氨基吡啶，且混合物在回流下加热 3.5 小时。然后在减压下除去溶剂，并将残余物导出在 800 毫升乙酸乙酯中。溶液用水洗涤并用饱和氯化钠溶液洗涤两次，以硫酸镁干燥并随后在减压下浓缩。将残余物在硅胶上使用环己烷和乙酸乙酯的梯度分离。合并包含产物的级分并在减压下浓缩至干。这产生 26.5 克 (理论值的 72%) 所需产物。

[0583] ^1H-NMR (400 MHz, DMSO-d6, δ / ppm): δ = 9.00 (t, 1H), 7.73-7.35 (m, 15H), 7.23 (d, 1H), 7.19 (d, 1H), 6.28 (t, 1H), 4.90-4.81 (m, 1H), 4.28-3.80 (m, 6H), 3.62 (t, 2H), 3.11 (s, 3H), 2.79-2.71 (m, 2H), 0.97 (s, 9H).

[0584] LC-MS (方法 6): R_t = 3.39 min

[0585] MS (ESIpos): m/z = 756 (M+H)^+

[0586] 实施例 42A

[0587] (2-氟-5-硝基苯基) (三苯基) 溴化鎓

[0588]
[0589] 将 20 克（85.5 毫摩尔）来自实施例 34A 的化合物溶于 250 毫升无水甲苯中，并加入 22.4 克（85.5 毫摩尔）三苯基膦。将溶液在回流下加热 16 小时，导致沉淀形成。使混合物冷却，并滤出沉淀。在用乙醚洗涤后，在减压下干燥沉淀。这产生 39 克（理论值的 92%）所需产物。

[0590] 1H-NMR (400MHz, DMSO-d$_6$, δ / ppm): δ = 8.30-8.23 (m, 1H), 7.98-7.88 (m, 4H), 7.81-7.70 (m, 12H), 7.45 (t, 1H), 5.32 (d, 2H)。

[0591] 实施例 43A

[0592] 1- 氟 -4- 硝基 -2- [(1E)-丙 -1- 烯 -1- 基] 苯

[0593]

[0594] 在 10℃, 将 5.99 克（32.7 毫摩尔）双（三甲基甲硅烷基）酰胺酸滴加到 13.5 克（27.3 毫摩尔）来自实施例 42A 的化合物在 145 毫升二氧杂环己烷的溶液中。在该温度搅拌混合物 1 小时。然后加入 2.40 克（54.5 毫摩尔）乙醛在 5 毫升二氧杂环己烷中的溶液，并在室温搅拌反应 1 小时。然后加入 400 毫升水，混合物用二氯甲烷提取三次且合并的有机相用饱和氯化钠水溶液洗涤两次。以硫酸钠干燥及后续的过滤后，在减压下除去溶剂。产物通过色谱法在硅胶上提纯（流动相：环己烷 / 乙酸乙酯 = 40 : 1）。这产生 5.2 克（理论值的 100%）所需产物，为 E/Z 异构体混合物。

[0595] 1H-NMR (400MHz, DMSO-d$_6$, δ / ppm): δ = 8.47-8.05 (m, 2H), 7.58-7.42 (m, 1H), 6.70-6.05 (m, 2H), 1.90-1.78 (m, 3H)。

[0596] GC-MS (方法 10): R = 2.64and 2.70mm

[0597] MS (ESIpos): m/z = 181 (M+H)$^+$

[0598] 实施例 44A

[0599] 3- 溴 -1- (4- 硝基 -2- [(1E)-丙 -1- 烯 -1- 基] 苯基) 吡啶 -2(1H)- 酮

[0600]
将 0.96 克（5.52 毫摩尔）3-溴吡啶-2(1H)-酮溶于 17 毫升 DMSO。将混合物冷却至 0°C，并如此加入 1.00 克（5.52 毫摩尔）叔丁醇钾，以使内部温度不超过 30°C。在室温下 1 小时后，加入 1.00 克（5.52 毫摩尔）自实施例 43A 的化合物在 5 毫升 DMSO 中的溶液。在 80°C 3 小时后，加入 200 毫升水和 50 毫升氯化钠溶液，且混合物用乙酸乙酯提取三次。合并的有机相用饱和氯化钠溶液洗涤并以硫酸钠干燥。溶剂在减压下除去且产物通过色谱法在硅胶上提纯（流动相：环己烷 / 乙酸乙酯 = 4 : 1）。这产生 935 毫克（理论值的 49％）所需化合物，为 E/Z 异构体混合物。

H-NMR (400MHz, DMSO-d₆, δ/ppm): 8.52-8.27 (m, 1H), 8.22-8.16 (m, 1H), 8.13-8.04 (m, 1H), 7.76-7.61 (m, 2H), 6.65-5.90 (m, 3H), 1.83-1.69 (m, 3H)。

HPLC（方法 1）: Rₑ = 4.20 min。

MS (ESI, m/z): 335 (M+H)⁺。

实施例 45A

1-{4-硝基-2-[(1E)-丙-1-烯-1-基]苯基}-3-乙烯基吡啶-2(1H)-酮

将 929 毫克（2.77 毫摩尔）来自实施例 44A 的化合物溶于 14 毫升无水二氧杂环己烷中，并加入 64 毫克（0.06 毫摩尔）四（三苯基膦）钯（0）。在室温下，缓慢加入 1.06 克（3.33 毫摩尔）三丁基乙烯基锡，并在添加已行完毕之后，将该混合物在回流下加热 21 小时。使反应溶液冷却并通过硅藻土过滤。滤饼随后由乙酸乙酯洗涤且合并的有机滤液在减压下浓缩至干。产物通过色谱法在硅胶上提纯（流动相：环己烷 / 乙酸乙酯 = 4 : 1）。这产生 568 毫克（理论值的 70%）所需产物。

H-NMR (400MHz, DMSO-d₆, δ/ppm): 8.52-8.24 (m, 1H), 8.21-8.14 (m, 1H), 7.78-7.58 (m, 2H), 6.79-6.68 (m, 1H), 6.65-6.52 (m, 1H), 6.47-6.38 (m, 1H), 6.20-5.90 (m, 3H), 5.39-5.28 (m, 1H), 1.83-1.70 (m, 3H)。

HPLC（方法 1）: Rₑ = 4.33 min

MS (ESIpos, m/z): 283 (M+H)⁺
将 452 克 (1.60 毫摩尔) 来自实施例 45A 的化合物溶于 1.7 毫升无水四氢呋喃中并冷却到 0°C。缓慢加入 488 毫克 (176 毫摩尔) 9- 硝基双环 [3.3.1] 印烷 (在四氢呋喃中的 0.5M 溶液), 且混合物在室温下搅拌 2 小时。然后将混合物再次冷却至 0°C, 并缓慢加入 8 毫升的 1N 氢氧化钠水溶液。在添加已经结束之后, 在该温度滴加 1.6 毫升 30% 的过氧化氢溶液。搅拌混合物在 0°C 搅拌 30 分钟并随后用 1.3 毫升 40% 的亚硫酸氢钠溶液洗涤以消除过氧化物, 并用 500 毫升乙醇乙醇稀释。除去有机相, 且含水相用乙酸乙酯提取两次。合并的有机相用饱和氯化钠溶液洗涤, 以硫酸钠干燥, 并且在过滤后在减压下浓缩至干。产物通过色谱法在硅胶上提纯（流动相:环己烷/乙酸乙酯 = 2 : 1）。这产生 514 毫克 (理论值的 100%) 所需产物。

[0616] ¹H-NMR (400MHz, DMSO-d₆, δ / ppm): 8.51-8.24 (m, 1H), 8.22-8.14 (m, 1H), 7.68-7.55 (m, 1H), 7.48-7.36 (m, 2H), 6.61-6.50 (m, 1H), 6.37-6.26 (m, 1H), 6.09-6.86 (m, 1H), 4.63-4.56 (m, 1H), 3.63-3.54 (m, 2H), 2.65-2.56 (m, 2H), 1.83-1.69 (m, 3H)。

[0617] HPLC (方法 1): tᵣ = 3.71 min

[0618] MS (ESIpos): m/z = 301 (M+H)⁺

[0619] 实施例 47A

[0620] 1- (4- 氨基 -2- 丙基苯基) -3- (2- 羟乙基) 吡啶 -2(1H) - 酮

[0621]

将 520 毫克 (1.73 毫摩尔) 来自实施例 46A 的化合物溶于 10 毫升 THF 中。加入 30 毫升钯碳, 且混合物在室温在氢气气氛中在大气压下氢化。然后通过硅藻土过滤反应混合物, 滤饼由 THF 洗涤三次并从滤液除去溶剂。反应产物进一步反应而无需另外提纯。这产生 471 毫克 (理论值的 89%) 所需产物。

[0623] HPLC (方法 1): tᵣ = 3.00 min

[0624] MS (ESIpos): m/z = 273 (M+H)⁺

[0625] 实施例 48A

[0626] 3- 烯丙基 -1- (2- 甲基 -4- 硝基苯基) 吡啶 -2(1H) - 酮

[0627]
[0628] 在已经通过加热干燥的烧瓶中，起初将 1.50 克（4.85 毫摩尔）来自实施例 22A 的化合物，1.44 克（9.46 毫摩尔）氟化铝和 0.561 克（0.48 毫摩尔）四（三苯基膦）钯加入 30 毫升脱气 THF 中。滴加 2.04 克（121 毫摩尔）2-烯丙基-4,4,5,5-四甲基-1,3,2-二氧杂环戊环（dioxaborolan）在 5 毫升脱气 THF 中的溶液，且混合物在回流下加热过夜。混合物随后用二氯甲烷稀释，并加入水。相分离后，含水相用二氯甲烷提取三次。合并的有机相以硫酸钠干燥并浓缩。产物通过色谱法在硅胶上提纯，产生 1.18 克（理论值的 62%）标题化合物。

[0629] ¹H-NMR (400MHz, DMSO-d₆, δ / ppm): 8.31 (d, 1H), 8.18 (dd, 1H), 7.57 (d, 1H), 7.46 (dd, 1H), 7.44-7.38 (m, 1H), 6.35 (t, 1H), 5.96 (ddddd, 1H), 5.16-5.06 (m, 2H), 3.20 (d, 2H), 2.15 (s, 3H)。

[0630] HPLC (方法 2): Rₘ = 4.05 min。

[0631] MS (ESIpos, m/z): 271 (M+H)+。

[0632] 实施例 49A

[0633] 3-(3-羟基基)-1-(2-甲基-4-硝基苯基) 吡啶-2(1H)-酮

[0634] 在 0℃，将 18.5 毫升（9.25 毫摩尔）- 硼杂双环 [3.3.1] 环烷在 THF 中的 0.5M 溶液缓慢滴加到处于 4 毫升 THF 中的 1.00 克（3.70 毫摩尔）来自实施例 48A 的化合物中。在室温下一小时后，将混合物再次冷却至 0℃，并滴加 18.5 毫升（18.5 毫摩尔）氢氧化钠在水中的 1M 溶液。将混合物在 0℃再搅拌 30 分钟，并随后如此加入 3.24 毫升 30%的过氧化氢溶液，以使温度不超过 30℃。将混合物在冰冷却下搅拌 30 分钟，然后加入乙酸乙酯和继之以 11 克（40 毫摩尔）亚硫酸氢钠溶液。分离有机相，且含水相用乙酸乙酯提取两次。合并的有机相由饱和氯化钠水溶液洗涤。有机相以硫酸钠干燥并随后在减压下蒸发至干。残余物在硅胶上色谱处理（环己烷 / 乙酸乙酯 1 : 4）。产生 1.03 克（理论值的 83%）所需产物。

[0635] ¹H-NMR (400MHz, DMSO-d₆, δ / ppm): δ = 8.31 (d, 1H), 8.18 (dd, 1H), 7.66-7.51 (m, 1H), 7.47-7.38 (m, 2H), 6.33 (t, 1H), 4.46 (t, 1H), 3.46-3.38 (q, 2H), 2.52-2.45 (m, 2H), 2.15 (s, 3H), 1.73-1.62 (m, 2H)。

[0636] HPLC (方法 1): Rₘ = 3.51 min。

[0637] MS (DCI, m/z): 289 (M+H)+

[0639] 实施例 50A
1-(4-氨基-2-甲基苯基)-3-(3-羟丙基)吡啶-2(1H)-酮

将475毫克（1.65毫摩尔）来自实施例49A的化合物溶于48毫升THF中。然后加入50毫克（0.05 毫摩尔）的钯碳，且混合物在氩气中在大气压下在室温氯化。然后过滤混合物，滤饼由THF洗涤三次并从滤液除去溶剂。反应产物进一步反应而无需另外提纯。

HPLC(方法1): R = 2.82min。
MS(DCl, m/z): 259 (M+H)^+。

实施例51A
3-溴-1-(2,6-二甲基-4-硝基苯基) 吡啶-2(1H)-酮

将2.81克（16.1毫摩尔）的3-溴吡啶-2(1H)-酮（O. S. Tee, M. Pavent, J. Am. Chem. Soc. 1982, 104, 4142-4146.）溶于100毫升DMF中。将混合物冷却至0℃, 并加入2.71克（24.2毫克）的叔丁醇钾。除去冷却, 且混合物在室温下搅拌30分钟。加入3.00克（17.7毫克）1-氨基-2,5-二甲基-4-硝基苯, 且混合物在80℃搅拌18小时, 在100℃搅拌36小时并在120℃搅拌18小时。然后将混合物加入至水中并用乙酸乙酯提取三次。合并的有机相以硫酸钠干燥。残余物通过色谱法在硅胶上提纯（环己烷/乙酸乙酯 4:1）。这产生2.04克（理论值的38%）所需化合物。

^H-NMR(100MHz, DMSO-d_6, δ / ppm): δ = 8.19(s, 2H), 8.14(dd, 1H), 7.62(dd, 1H), 6.43(t, 1H), 2.11(s, 6H)。
HPLC(方法1): R = 4.13min。
MS(ESIpos, m/z): 323 (M+H)^+。

实施例52A
1-(2,6-二甲基-4-硝基苯基)-3-乙烯基吡啶-2(1H)-酮

将2.00克（6.19毫摩尔）来自实施例51A的化合物溶于31毫升无水二氧杂环乙
烧中，并加入2.36克（7.42毫摩尔）三丁基乙烯基锡和143毫克（0.124毫摩尔）四（三苯基膦）钯和混合物在100℃下搅拌5小时。使混合物冷却并通过硅藻土过滤。滤饼用水洗涤三次，且合并的滤液在减压下浓缩至干。残余物通过色谱法在硅胶上提纯（环己烷/乙酸乙酯4:1）。这产生846毫克（理论值的51%）所需产物。

[0656] 1H-NMR (400MHz, DMSO-d6, δ / ppm); δ = 8.17 (s, 2H), 7.78 (dd, 1H), 7.48 (dd, 1H), 6.75 (dd, 1H), 6.48 (dd, 1H), 6.14 (dd, 1H), 5.33 (dd, 1H), 2.10 (s, 6H)。

[0657] HPLC（方法1）: R = 4.25min

[0658] MS (ESI pos): m/z = 271 (M+H)^+

[0659] 实施例53A

[0660] 1-(2,6-二甲基-4-硝基苯基)-3-(2-羟乙基) 吡啶-2(1H)-酮

[0661]

[0662] 在冰冷却下，将902毫克（7.40 毫摩尔）9-硼杂双环[3.3.1]壬烷在14.8 毫升四氢呋喃的溶液加入至800毫克（296 毫摩尔）来自实施例52A的化合物中。混合物在室温下搅拌3小时并随后冷却至0℃, 并以15分钟加入591毫克（14.8 毫摩尔）的氢氧化钠水溶液。如此加入2.60毫升30%的过氧化氢溶液，以使得温度不超过30℃。在添加已经结束之后，将混合物在0℃搅拌30分钟。在冰冷却下，将8.73克（32.6 摩尔）亚硫酸氢钠在12毫升水中的溶液加入该反应混合物中。混合物由50毫升乙酸乙酯稀释，除去有机相且含水相用乙酸乙酯提取两次。合并的有机相用饱和氯化钠溶液洗涤，以硫酸钠干燥并在减压下蒸发至干。残余物通过色谱法在硅胶上提纯（环己烷/乙酸乙酯1:2）。这产生765毫克（理论值的89%）所需产物。

[0663] 1H-NMR (400MHz, DMSO-d6, δ / ppm); δ = 8.15 (s, 2H), 7.46 (dd, 1H), 7.35 (dd, 1H), 6.37 (dd, 1H), 4.62 (dd, 1H), 4.25 (d, 1H), 2.62 (dd, 2H), 2.08 (s, 6H)。

[0664] HPLC（方法1）: R = 3.59min

[0665] MS (ESI pos): m/z = 289 (M+H)^+

[0666] 实施例54A

[0667] 3-(2-[[叔丁基（二苯基）甲硅烷基]氧基]乙基)-1-(2,6-二甲基-4-硝基苯基) 吡啶-2(1H)-酮
将 760 毫克（2.64 毫摩尔）来自实施例 53A 的化合物和 0.55 毫升（3.9 毫摩尔）三乙胺溶于 7 毫升无水 N,N- 二甲基甲酰胺中。加入 16 毫克（0.13 毫摩尔）4- 二甲基氨基吡啶和 1.09 克（3.95 毫摩尔）叔丁基（氯）二苯基硅烷，且混合物在室温下搅拌 2 小时。然后将混合物加入至水中，并在析出后用乙酸乙酯提取三次。合并的有机相用水洗涤两次，以硫酸钠干燥，过滤并在减压下蒸发。残余物通过色谱法在硅胶上提纯（环己烷 / 乙酸乙酯 5 : 1）。这产生 971 毫克（理论值的 58%）所产产物。

HPLC（方法 2）: Rₜ = 5.97 min
MS (ESIpos): m/z = 527 (M+H)⁺

1-(4- 氨基 -2,6- 二甲基苯基)-3-(2-[[叔丁基 (二苯基) 甲硅烷基] 氧基) 乙基) 吡啶 -2(1H) - 酮

将 970 毫克（1.84 毫摩尔）来自实施例 54A 的化合物溶于 20 毫升 THF 中。然后加入 200 毫克硫酸铵，且混合物在室温在氢气流中在大气压下氢化。然后通过硅藻土过滤反应混合物，滤饼由 THF 洗涤三次并从滤液除去溶剂。反应产物 (1.00 克) 进一步反应而无需另外提纯。

HPLC（方法 2）: Rₜ = 4.99 min
MS (ESIpos): m/z = 497 (M+H)⁺
[0681] 将 800 毫克 (1.61 毫摩尔) 来自实施例 55A 的化合物溶于 15 毫升无水乙醇中，并加入 385 克 (1.77 毫摩尔) 来自实施例 1A 的化合物和 539 毫克 (2.41 毫摩尔) 高氯酸镁。该混合物在室温下搅拌 5.5 小时。然后加入 652 毫克 (4.03 毫摩尔), 1,1- 硒二咪唑和 19 毫克 (0.16 毫摩尔)N,N- 二甲基氨基吡啶, 且混合物在回流下加热 18 小时。混合物被冷却并被加入至 100 毫升水和 100 毫升乙酸乙酯中。在相分离后, 含水相用乙酸乙酯提取两次且合并的有机相以硫酸钠干燥。过滤后, 将混合物在减压下蒸发至干。残余物通过色谱法在硅胶上提纯（环己烷 / 乙酸乙酯 1 : 2）。这产生 664 毫克（理论值的 55%）所需产物。

[0682] 1H-NMR (400 MHz, DMSO-d$_6$, δ / ppm): δ = 8.99 (t, 1H), 7.70 (d, 1H), 7.63-7.45 (m, 4H), 7.48-7.31 (m, 9H), 7.28 (dd, 1H), 7.20 (d, 1H), 6.32 (t, 1H), 4.90-4.81 (m, 1H), 4.22 (dd, 1H), 3.89-3.82 (m, 3H), 3.62 (t, 2H), 2.76 (dd, 2H), 1.94 (s, 6H), 0.95 (s, 9H)。

[0683] HPLC (方法 2): R$_f$ = 5.92min

[0684] MS (ESIpos): m/z = 740 (M+H)$^+$

[0685] 工作实施例

[0686] 实施例 1

[0688]

[0689] 将 367 毫克 (1.41 毫摩尔 ; 在 THF 中 1M) 四丁基氯化铵加入至 515 毫克 (0.703 毫摩尔) 来自实施例 6A 的化合物在 8 毫升 THF 中的溶液中。在室温 3 小时后, 混合物由水、饱和氯化钠水溶液和乙酸乙酯稀释。由乙酸乙酯提取含水相, 且合并的有机相以硫酸钠干燥。过滤后, 从混合物除去溶剂且残余物通过色谱法在硅胶上提纯（二氯甲烷 / 甲醇 20 : 1）。这产生 278 毫克（理论值的 78%）所需产物。

[0690] 1H-NMR (400 MHz, DMSO-d$_6$, δ / ppm): 8.97 (t, 1H), 7.87 (dd, 1H), 7.69 (d, 1H), 7.59 (ddd, 1H), 7.56-7.48 (m, 2H), 7.46-7.38 (m, 1H), 7.20 (d, 1H), 6.37 (dd, 1H), 5.15 (dd, 1H), 4.48 (dd, 1H), 3.62 (s, 3H), 1.55 (s, 9H)。
1H), 4.93–4.82 (m, 1H), 4.33 (br, d, 2H), 4.24 (dd, 1H), 3.90 (dd, 1H), 3.62 (dd, 2H)。

[0691] HPLC（方法 2）：Rt = 3.88 min。

[0692] MS（DC1, m/z）：494 (M+H)^+。

[0693] 实施例 2

[0695] 将 530 毫克 (0.74 毫摩尔) 来自实施例 9A 的化合物溶于 9 毫升 THF 中。加入 1.5 毫升四丁基氯化铵在 THF 中的 1M 溶液，且混合物在室温搅拌 30 分钟。加入少许水，浓缩混合物且产物通过制备 HPLC 提纯。这产生 335 毫克（理论值的 93%）所需产物。

[0697] ^1H-NMR (400MHz, DMSO-d_{6}, δ/ppm)：9.00 (t, 1H), 7.70 (d, 1H), 7.55–7.49 (m, 3H), 7.39 (d, 1H), 7.23 (d, 1H), 7.20 (d, 1H), 6.36 (t, 1H), 5.14 (s, 宽, 1H), 4.90–4.82 (m, 1H), 4.38–4.29 (m, 2H), 4.22 (t, 1H), 3.91–3.85 (m, 1H), 3.62 (t, 2H), 2.01 (s, 3H)。

[0698] HPLC（方法 3）：Rt = 1.66 min。

[0699] MS（ESIpos, m/z）：474/476 (^{35}Cl/^{37}Cl) (M+H)^+。

[0700] 实施例 3

[0702] 类似于实施例 2，将 491 毫克 (0.67 毫摩尔) 来自实施例 12A 的化合物用 THF 中的四丁基氯化铵去甲硅烷基化。产物通过制备 HPLC 提纯。这产生 287 毫克（理论值的 87%）所需产物。

[0704] ^1H-NMR (400MHz, DMSO-d_{6}, δ/ppm)：9.02 (t, 1H), 7.71 (d, 1H), 7.50–7.46 (m, 1H), 7.45 (d, 1H), 7.34 (d, 1H), 7.26 (d, 1H), 7.20 (d, 1H), 7.12 (dd, 1H), 6.29 (t, 1H), 5.11 (s, 宽, 1H), 4.91–4.83 (m, 1H), 4.30 (s, 宽, 2H), 4.25 (t, 1H), 3.91 (dd, 1H), 3.73 (s, 3H), 3.65–3.60 (m, 2H)。

[0705] HPLC（方法 3）：Rt = 1.63 min。

[0706] MS（ESIpos, m/z）：490/492 (^{35}Cl/^{37}Cl) (M+H)^+。

[0707] 实施例 4

[0708] 5-氯-N-([(5S)-3-[4-[3-(羟甲基)-2-氧代吡啶-1(2H)-基]-3-(三氟甲基)
苯基-2-氧代-1,3-噁唑烷-5-基甲基) 噻吩-2-甲酰胺

[0709]

[0710] 类似于实施例 2。将 370 毫克 (0.48 毫摩尔) 来自实施例 15A 的化合物用 THF 中的四丁基氟化铵去甲硅烷基化。产物通过制备 HPLC 提纯。这产生 200 毫克（理论值的 78%）所需产物。

[0711] ¹H-NMR (400MHz, DMSO-d₆, δ ppm): 8.99 (t, 1H), 8.13 (d, 1H), 7.83 (dt, 1H), 7.69 (d, 1H), 7.56 (d, 1H), 7.53 (dd, 1H), 7.47-7.42 (m, 1H), 7.20 (d, 1H), 6.35 (t, 1H), 5.17 (t, 1H), 4.94-4.86 (m, 1H), 4.33-4.27 (m, 3H), 3.99-3.93, (m, 1H), 3.67-3.61 (m, 2H).

[0712] HPLC（方法 3）: Rₜ = 1.82min。

[0713] MS(ESIpos, m/z): 528/530 (35Cl/37Cl)(M+H)⁺。

[0714] 实施例 5

[0716]

[0717] 将 400 毫克 (0.79 毫摩尔) 来自实施例 21A 的化合物溶于 6 毫升 THF 和 4 毫升水的混合物中。加入 161 毫克 (0.016 毫摩尔) 四氧化锇在叔丁醇中的 2.5M 溶液和 509 毫克 (2.38 毫摩尔) 四碘化硅，且混合物在室温搅拌 20 小时。然后将混合物由水稀释并用二氯甲烷提取，干燥和浓缩。将残留物溶于 4 毫升 THF 和 4 毫升水的混合物中，并加入 30.0 毫克 (0.79 毫摩尔) 酚氢化钠。将混合物在室温搅拌 1 小时并随后由水稀释和用二氯甲烷提取。将有机相干燥，浓缩并通过制备 HPLC 提纯。这产生 47 毫克（理论值的 12%）所需产物。

[0718] ¹H-NMR (400MHz, DMSO-d₆, δ ppm): 8.97 (t, 1H), 7.85 (d, 1H), 7.69 (d, 1H), 7.62-7.56 (m, 1H), 7.51-7.47 (m, 1H), 7.42-7.36 (m, 2H), 7.20 (d, 1H), 6.27 (t, 1H), 4.92-4.84 (m, 1H), 4.59 (t, 1H), 4.24 (t, 1H), 3.90 (dd, 1H), 3.65-3.55 (m, 4H), 3.18-3.15 (m, 2H)。

[0719] HPLC（方法 5）: Rₜ = 1.94min。

[0720] MS(ESIpos, m/z): 508/510 (35Cl₂/37Cl)(M+H)⁺。

[0721] 实施例 6

[0722] 5-氯-N-[[3-(3-4-[3-(2-羟乙基) -2-氧代吡啶-1(2H)-基]-3-甲基苯
基)-2-氧代-1,3-哒唑烷-5-基)甲基]唆吩-2-甲酰胺

[0724] 在冰解下，将 400 毫升的甲醇中的 1.25N 盐酸加入至 43.8 克 (60.3 毫摩尔) 自实施例 27A 的化合物中。在 1 小时后，混合物由二氯甲烷稀释，并在除去含水相。有机相用水洗涤两次，以硫酸钠干燥，并在过滤后在压下浓缩至干。将残余物加于硅胶并使用环己烷和乙酸乙酯的梯度色谱处理。合并包含产物的级分并在压下浓缩干。这产生 19.6 克 (理论值的 66%) 所需产物。

[0725] 1H-NMR (400MHz, DMSO-d₆, δ/ppm): δ = 8.98 (t, 1H), 7.70 (d, 1H), 7.55–7.47 (m, 2H), 7.40 (dd, 1H), 7.35 (dd, 1H), 7.25–7.17 (m, 2H), 6.26 (t, 1H), 4.90–4.82 (m, 1H), 4.60 (t, 1H), 4.22 (t, 1H), 3.92–3.84 (m, 1H), 3.66–3.54 (m, 1H), 2.60 (t, 2H), 2.01 (s, 3H)。

[0726] LC-MS (方法 5): R₉ = 1.87min

[0727] MS (ESIpos): m/z = 488 (M+H)⁺

[0728] 实施例 7

[0730] 在 0°C 下，将 37 克 (49 毫摩尔) 自实施例 33A 的化合物溶于 313 毫升的在甲醇中的 1.25N 盐酸中。在 1 小时后，将溶液在压下蒸发并用二氯甲烷稀释。有机相用水洗涤两次，以硫酸镁干燥，并在过滤后在压下蒸发至干。将残余物在硅胶上使用氯氯甲烷和甲醇的梯度色谱处理。合并产物级分并在压下蒸发至干。这产生 19 克 (理论值的 78%) 所需产物。

[0732] 1H-NMR (400MHz, DMSO-d₆, δ/ppm): δ = 9.00 (t, 1H), 7.70 (d, 1H), 7.45 (d, 1H), 7.35 (dd, 1H), 7.31 (dd, 1H), 7.25 (d, 1H), 7.20 (d, 1H), 7.15–7.08 (m, 1H), 6.19 (t, 1H), 4.81–4.83 (m, 1H), 4.60 (t, 1H), 4.25 (t, 1H), 3.94–3.87 (m, 1H), 3.74 (s, 3H), 3.66–3.53 (m, 4H), 2.62–2.55 (m, 2H)。

[0733] MS (ESIpos): m/z = 504 (M+H)⁺

[0734] 实施例 8

[0737] 在冰冷却下，将 135 毫升的甲醇中的 1.25N 盐酸加入至 27 克（34 毫摩尔）来自实施例 41A 的化合物中。在该温度再搅拌混合物 45 分钟。在冰冷却下，使用 1N 氢氧化钠水溶液将 pH 调节至 7，并用二氯甲烷反复提取冷溶液。合并的有机相用饱和氯化钠溶液洗涤并用硫酸镁干燥。将混合物在减压下蒸发至干，且残留物在硅胶上使用二氯甲烷和甲醇的梯度色谱处理。合并包含产物的级分并在减压下浓缩至干。这产生 16.4 克（理论值的 89％）所需产物。

[0738] 1H-NMR (400MHz, DMSO-d_6, δ/ ppm): δ = 8.98 (t, 1H), 7.72-7.66 (m, 2H), 7.62-7.56 (m, 1H), 7.40 (dd, 1H), 7.36 (dd, 1H), 7.27 (d, 1H), 7.20 (d, 1H), 6.25 (t, 1H), 4.30-4.28 (m, 1H), 4.09 (t, 1H), 2.60 (t, 2H)

[0739] LC-MS (方法 6): R_c = 1.96 min

[0740] MS (ESIpos): m/z = 518 (M+H)^+

[0741] 实施例 9

[0742] 5-氯-N-[(5S)-3-[4-3-(2-羟乙基)-2-氧代吡啶-1(2H)-基]-3-丙基苯基]-2-氧代-1,3-噻唑烷-5-基]甲基) 吡啶-2-甲酰胺

[0743] 将 450 毫克（1.65 毫摩尔）来自实施例 47A 的化合物溶于 10 毫升无水乙醇中，并加入 395 毫克（1.82 毫摩尔）来自实施例 1A 的化合物和 552 毫克（2.47 毫摩尔）高氯酸镁。该混合物在室温下搅拌 3.5 小时。然后加入 669 毫克（4.13 毫摩尔）磺二氧唑和 20 毫克（0.16 毫摩尔）4-二甲氨基吡啶，且混合物在回流下加热 3 小时。在室温下 18 小时后，加入 10 毫克（0.08 毫摩尔）4-二甲氨基吡啶，且混合物在 60℃搅拌 6 小时。然后将混合物加入至 100 毫升水中并用 50 毫升乙酸乙酯稀释。在相分离后，含水相用 50 毫升乙酸乙酯提取两次。合并的有机相用饱和氯化钠溶液洗涤，以硫酸钠干燥并随后在减压下浓缩。残余物使用乙醇/水混合物通过制备 HPLC 提纯。这产生 28 毫克（理论值的 3％）所
需产物。

\[\text{H-NMR (400MHz, DMSO-\text{d}_{6}, \delta / ppm):} \delta = 8.98 (t, 1H), 7.70 (d, 1H), 7.54-7.45 (m, 2H), 7.40-7.31 (m, 2H), 7.23-7.17 (m, 2H), 6.25 (t, 1H), 4.90-4.81 (m, 1H), 4.22 (dd, 1H), 3.92-3.85 (m, 1H), 3.65-3.50 (m, 4H), 2.62-2.58 (m, 2H), 2.28 (t, 2H), 1.50-1.32 (m, 2H), 0.77 (t, 3H). \]

HPLC (方法2): R_t = 4.11min

MS (DCI, m/z) = 516 (M+1)^+

实施例10

[0751] 将 580 毫克 (2.24 摩尔) 来自实施例50A 的化合物溶于 12.7 毫升无水乙醇中，并加入 538 毫克 (2.47 摩尔) 来自实施例1A 的化合物和 751 毫克 (3.37 摩尔) 高氯酸镁。该混合物在室温下搅拌 3.5 小时。然后加入 437 毫克 (2.69 摩尔) 羟二咪唑和 27 毫克 (0.23 摩尔) 4-二甲基氨基吡啶，且混合物在回流下加热 18 小时。然后将混合物加入至 100 毫升水中并用 50 毫升乙酸乙酯提取三次。合并的有机相用饱和氯化钠溶液洗涤，以硫酸钠干燥并随后在减压下浓缩。残余物通过制备 HPLC 提纯。这产生 175 毫克（理论值的 16%）所需产物。

\[\text{H-NMR (400MHz, DMSO-\text{d}_{6}, \delta / ppm):} \delta = 8.99 (t, 1H), 7.70 (d, 1H), 7.57-7.47 (m, 2H), 7.40-7.31 (m, 2H), 7.23 (d, 1H), 7.20 (d, 1H), 6.26 (t, 1H), 4.90-4.81 (m, 1H), 4.46 (dd, 1H), 4.22 (t, 1H), 3.91-3.85 (m, 1H), 3.62 (t, 2H), 3.42 (ddd, 2H), 3.31 (s, 1H), 2.48-2.42 (m, 1H), 2.01 (s, 3H), 1.67 (ddd, 2H). \]

HPLC (方法2): R_t = 3.92min

MS (DCI, m/z) = 502 (M+1)^+

实施例11

[0756]
说明书

[0758] 将 660 毫克 (0.891 毫摩尔) 来自实施例 56A 的化合物溶于 20 毫升 THF 中, 并加入 512 毫克 (1.96 毫摩尔) 四丁基氢化铵。在 1 小时后, 将混合物在减压下浓缩至干。残余物通过色谱法在硅胶上提纯 (流动相: 二氯甲烷/甲醇 10: 1:1% 三乙胺)。这产生 396 毫克 (理论值的 85%) 所需产物。

[0759] \(^1^H\) NMR (400 MHz, DMSO-d6, \(\delta / \text{ppm}) : \delta = 8.98 (t, 1H), 7.69 (d, 1H), 7.42 (dd, 1H), 7.38 (d, 1H), 7.25 (dd, 1H), 7.19 (d, 1H), 6.29 (t, 1H), 4.90-4.81 (m, 1H), 4.60 (t, 1H), 4.20 (t, 1H), 3.86 (dd, 1H), 3.64-3.52 (m, 4H), 2.62 (t, 2H), 1.95 (s, 6H)。

[0760] HPLC (方法 1): R\textscript{t} = 3.92 min

[0761] MS (ESIpos): m/z = 502 (M+H)

[0762] B. 药理学活性的评估

[0763] 本发明化合物用于治疗血栓栓塞病症的适合性可使用下列测定体系展现:

[0764] a) 测试描述（体外）

[0765] a.1) 在缓冲液中因子 Xa 抑制的测量

[0766] 为了测定上述物质的因子 Xa 抑制, 构造生物测试体系, 其中因子 Xa 底物的转变被用于测定底物因子 Xa 的酶活性。在此, 因子 Xa 从肽底物分裂氨基甲基香豆素, 荧光测量该物质。所述测定在微量滴定板中实施。

[0767] 在 22℃, 将待测试物质以不同浓度溶于二甲基亚砜中并用人因子 Xa (1.3mmol/l, 溶于 50 毫摩尔/升 Tris 缓冲液 [C, C, C-三（羟基甲基）氨基甲烷], 100 毫摩尔/升氯化钠, 5 毫摩尔/升氯化钙, 0.1% BSA[牛血清白蛋白] 中, pH7.4) 培养 30 分钟。然后加入底物 (来自 Bachem 公司的 5 微摩尔/升 Boc-Ile-Glu-Gly-Arg-AMC)。在培养 30 分钟后, 在 360 纳米波长激发样品并在 460 纳米测量发射。将具有测试物质的试验批次测量的发射与没有测试物质的对照批料 (仅有二甲基亚砜代替处于二甲基亚砜中的测试物质) 相比较并由浓度/活性关系计算 IC\textsubscript{50} 值。

[0768] a. 2) 缓冲液中凝血酶抑制的测量

[0769] 为了测定上述物质的凝血酶抑制, 构造生物测试体系, 其中凝血酶底物的转变被用于测定人凝血酶的酶活性。在此, 凝血酶从肽底物分裂氨基甲基香豆素, 荧光测量该物质。所述测定在微量滴定板中实施。

[0770] 在 22℃, 将待测试物质以不同浓度溶于二甲基亚砜中并用人凝血酶 (0.06nmol/l, 溶于 50 毫摩尔/升 Tris 缓冲液 [C, C, C-三（羟基甲基）氨基甲烷], 100 毫摩尔/升氯化钠, 0.1% BSA[牛血清白蛋白] 中, pH7.4) 培养 15 分钟。然后加入底物 (来自 Bachem 公司的 5 微摩尔/升 Boc-Asp(0Bzl)-Pro-Arg-AMC)。在培养 30 分钟后, 在 360 纳米波长激发样品并在 460 纳米测量发射。将具有测试物质的实验批次测量的发射与没有测试物质的对照批料 (仅有二甲基亚砜代替处于二甲基亚砜中的测试物质) 相比较并由浓度/活性关系计算 IC\textsubscript{50} 值。

[0771] a. 3) 选择性的测定

[0772] 为了展现所述物质对于凝血酶和因子 Xa 抑制的选择性, 检验测试物质对其它人丝氨酸蛋白酶的抑制, 例如对因子 XIIa、因子 XIa、胰蛋白酶和纤溶酶。为了测定因子 XIIa(10nmol/l, 来自 Kordia), 因子 XIa(0.4nmol/l, 来自 Kordia), 胰蛋白酶 (83μM/毫升, 来自 Sigma) 和纤溶酶 (0.1 微克/毫升, 来自 Kordia) 的酶活性, 将这些酶溶解 (50 毫摩
尒/升的Tris缓冲液[C, C-三(羟甲基)氨基甲烷], 100毫摩尔/升的氯化钠, 0.1%BSA[牛血清白蛋白], 5毫摩尔/升的氯化钙, pH7.4) 并用处于二甲基亚砜的不同浓度的测试物质以及用不含测试物质的二甲基亚砜培养 15 分钟。然后通过添加适当的底物开始酶促反应(对于因子XIIa, 来自Bachem的5 μmol/l的H-Pro-Phe-Arg-AMC; 对于胰蛋白酶, 来自Bachem的5 μmol/l的Boc-Ile-Glu-Gly-Arg-AMC; 对于因子Xla, 来自Bachem的5 μmol/l的Boc-Glu(Obzl)-Ala-Arg-AMC; 对于纤溶酶, 来自Bachem的50 μmol/l的MeOSuc-Ala-Phe-Lys-AMC)。在23℃ 30 分钟的培养时间后, 测量荧光(激发:360 纳米, 发射:460 纳米)。将具有测试物质的试验批次的发信与不含测试物质的对照批次(仅有二甲基亚砜代替处于二甲基亚砜中的测试物质)相比较, 并由浓度/活性关系计算 IC₅₀ 值。

[0773] a. 4) 血浆样品中可能的抑制剂的因子 Xa 抑制活性的测定

[0774] 为了测定血浆样品中因子 Xa 的抑制, 通过来自南尾蛇毒素的蛋白酶活化血浆中存在的因子 X。然后通过添加显色底物测量可能的抑制剂的因子 Xa 活性或其抑制。

[0775] 将不同浓度的待测试物质溶于二甲基亚砜中并与来匹卢定(Refludan)水溶液(10微克/毫升)混合。在透明96孔平底板中, 将30微升柠檬酸盐血浆(Octapharma)与10微升底物稀释液混合。然后, 加入20微升南尾蛇毒素(拉塞尔蛇蛇毒素(RVV); RVV试剂:Pentapharm 121-06, 最终浓度 0.6mL) 在氯化钙水溶液缓冲液 (氯化钙的最终浓度 0.05M) 的溶液或20微升不含 RVV试剂的氯化钙水溶液 (氯化钙的最终浓度 0.05M)(作为未激发样品的参照)。在添加20微升 ChromozymX 底物 (最终浓度 1.6毫摩尔/升, Bachem L-1565, 在水中稀释) 之后, 在20分钟内使用 405 纳米的测量滤光片在SpectraFluor Reader中每分钟测量样品。在达到最大信号的约 70% (大约 12 分钟)时测定 IC₅₀ 值。

[0776] 来自该测试的代表性活性数据列于下表1中:

[0777] 表1

<table>
<thead>
<tr>
<th>实施例编号</th>
<th>IC₅₀ [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>167</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

[0779] a. 5) 血浆样品中可能的抑制剂的凝血酶抑制活性的测定

[0780] 将不同浓度的待测试物质溶于二甲基亚砜中并由水稀释。在白色96孔平底板中, 将20微升物质稀释液与20微升的Ca缓冲液(200mM HEPES+560mM氯化钠+10mM氯化钙 +0.4%PEG)中的Ecarin 溶液 (Ecarin试剂, 来自Sigma E-0504, 每批最终浓度 20mU) 或与20微升Ca缓冲液 (作为未激发对照) 混合。进一步地, 加入20微升荧光凝血酶底物 (来自 Bachem公司 I-1120, 最终浓度 50毫摩尔/升) 和20微升柠檬酸盐血浆 (来自Octapharma公司) 并彻底均化。在20分钟内每在 SpectraFluorplus Reader中使用 360 纳米的激发滤光片和465 纳米的发射滤光片每分钟测量所述板。在达到最大信号的大约
70%（大约 12 分钟）时测定 IC50 值。

[0781] 来自该测试的代表性活性数据列于下表 2 中：

<table>
<thead>
<tr>
<th>实施例编号</th>
<th>IC50 [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>198</td>
</tr>
<tr>
<td>6</td>
<td>186</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>74</td>
</tr>
</tbody>
</table>

[0784] a. 6) 凝血酶生成测定（凝血酶生成图（Thrombogram））

[0785] 测试物质对凝血酶生成图（根据 Hemker 的凝血酶生成测定）的影响在人血浆（来自 Octapharma 公司的 Octaplas®）中体外测定。在根据 Hemker 的凝血酶生成测定中，通过测量底物 I-1140（Z-Gly-Gly-Arg-AMC, Bachem）的荧光分裂产物测定凝固血浆中凝血酶的活性。使用来自 Thrombinoscope 公司的试剂（PPP 试剂, 30pM 重组内皮组织因子, HEPES 中的 24 μM 磷脂）来起动凝固反应。所述反应在不同浓度的测试物质或相应溶剂的存在下实施。此外，使用来自 Thrombinoscope 公司的凝血酶校准器，其酰胺分解活性是计算血浆样品中的凝血酶活性所需的。

[0786] 所述测试根据制造商（Thrombinoscope BV）的说明书实施：4 微升测试物质或溶剂, 76 微升血浆和 20 微升 PPP 试剂或凝血酶校准器在 37°C 培养 5 分钟。在添加 20 微升的在 20mM Hepes 中的 2.5mM 凝血酶底物, 60mg/ml LBSA, 102mM 氯化钙之后，在 120 分钟期间内每 20 秒测量凝固酶生成。使用来自 Thermo Electron 公司的配制 390/460 纳米滤光片对和分配器的荧光计 (Fluoroskan Ascent) 实施测量，使用 Thrombinoscope 软件，计算凝血酶生成图和图形地呈现。计算的是下列参数：滞后时间、到达峰值的时间、峰值、ETP（内源性凝血酶有效性）和起动尾部（starttail）。

[0787] a. 7) 抗凝固活性的测定

[0788] 测试物质的抗凝固活性在人血浆、兔子血浆和大鼠血浆中体外测定。为此，以柠檬酸钠 / 血液的 1/9 混合比抽出血液，使用 0.11 摩尔浓度的柠檬酸钠溶液作为接收体。在血液已经抽出之后，立即将其彻底地混合并在大约 4000g 离心 15 分钟。移液管移走上层清液。

[0789] 在不同浓度的测试物质或相应溶剂存在下，使用商售测试试剂盒（来自 Boehringer Mannheim 的 Neoplastin® 或来自 Instrumentation Laboratory 的 Hemoliance® Recombiplastin）测定凝固酶生成时间（PT, 同义词：凝血酶生成时间，快速测试）。在 37°C 用血浆培养测试化合物 3 分钟。然后通过添加凝血酶酶起动凝固，并测定凝固出现时的时间点。测定造成凝固酶生成时间加倍的测试物质的浓度。

[0790] 在不同浓度的测试物质或相应溶剂存在下，使用商售测试试剂盒（来自 Roche 公司的凝血酶试剂）测定凝固酶生成时间（TT）。在 37°C 用血浆培养测试化合物 3 分钟。然后通过添加凝血酶酶起动凝固，并测定凝固出现时的时间。测定造成凝血酶生成时间加倍的测试
物质的浓度。

在不同浓度的测试物质或相应溶剂存在下，用商售试剂盒（来自 Roche 公司的 PTT 试剂）测定活性部分凝血酶原时间（APTT）。在 37°C 用血浆和 PTT 试剂（脑磷脂，中性土）培养测试化合物 3 分钟。然后通过添加 25mM 氯化钙起始凝固，并测定凝固出现时的时间。测定造成 APTT 加倍的测试物质的浓度。

a. 8) 凝血酶的激活

借助于来自 Pentapharm 公司的纤维蛋白溶酶 Monovettes 中的全血中实施凝血酶的激活。在预先抽出自来自 Sarstedt 公司的柠檬酸钠 Monovettes 中的全血中实施测量。将 Monovette 中的血液使用振荡器保持运动并在 37°C 预培养 30 分钟。制备氯化钙

在水中的 2M 原液。将其由 0.9%的氯化钠水溶液稀释 1：10。对于所述测量，起初将 20

微升的该 200mM 氯化钙溶液加入所述杯子中（氯化钙最终浓度 12.5mM）。加入 3.2 微升物质

或溶剂。通过添加 300 微升全血起始测量。在所述添加后，使用移液管尖端将混合物略

略吸入移液管并在不产生气泡的情况下再次释放。所述测量在 2.5 小时至 3 小时内实施或者当纤维蛋白溶解出现时停止。为了进行评估，测定下列参数：CT（凝固时间 [秒]），CFT（凝

块形成时间 [秒]），MCF（最大凝块硬度 [毫米]）和 α 角 [°]。每 5 秒测定测量点并

矩形地表示，y 轴为 MCF [毫米] 而 x 轴为时间为秒 [秒]。

a. 9) 血栓结合的凝血因子凝血酶和因子 Xa 的抑制

在由抗凝剂启动治疗之前，在治疗中期间或即使在治疗前形成的血液凝块包含大量凝血因子，其可能有利于发展血栓形成。这些凝血因子牢固地结合至所述血栓且不能被冲洗掉。在某些临床情况中，这可能导致患者出现危险。在以下实施的测试中，能检验

在人血栓中的生物（促凝血的 (prokoagulatorisch)）活性的凝血酶和因子 Xa 二者。

体外形成的血栓

从人血浆体外形成血栓并检验结合的凝血因子凝血酶和因子 Xa 的活性。为此，将 300 微升血浆与 30 微升脂微泡和 30 微升氯化钙水溶液在 48 孔 MTP 板中混合并培养 30

分钟。该步骤及其后步骤在 37°C 实施并具有恒定搅动（300 转 / 分）。将形成的血栓转移

至新的 48 孔 MTP 板中并在 10 分钟时期内用 0.9%的氯化钠溶液洗涤两次，在洗涤步骤过

程中将上述血栓轻轻地抹在滤纸上。将血栓转移至缓冲液 B (Owens Veronal Buffer, 1%

BSA) 中并培养 15 分钟，轻轻地抹在滤纸上并在缓冲液 B 中的不同浓度的测试物质中

培养 30 分钟。然后如上所述洗涤凝块两次。轻抹所布血栓并转移至缓冲液 D (240 微升

Owens’ Veronal Buffer, 1% BSA 和 15,6mM 氯化钙）中并在有可能或者没有 0.6 μM 凝血酶

原的情况下降培养 45 分钟。通过添加 75 微升的 1% EDTA 溶液停止反应。在缓冲液 A (7.5mM

Na,EDTA × 2H,0,175mM 氯化钠, 1% BSA, pH8,4) 中的血栓中或在来自最后步骤的上层清液

中分别测量凝血酶活性。为此，以 50 μM 的最终浓度使用底物 I-1120, 并在荧光光度数

器 (360/465nm) 中测量所得荧光。

该血栓结合的凝血酶的活性不能通过治疗相关浓度的选择性因子 Xa 抑制剂抑

制。相反，其能够用双重因子 IIa/因子 Xa 抑制剂或因子 IIa 参考抑制剂抑制。

在添加凝血酶后，如果存在血栓结合的因子 Xa（凝血酶原酶复合物），则形成新

的凝血酶，其通过荧光底物检测。该重新开始的凝血酶形成不能通过纯凝血抑制剂阻止；但

是，其能够通过双重因子 IIa/因子 Xa 抑制剂或通过选择性因子 Xa 参考抑制剂抑制。
所述血栓结合的凝血酶活性的生物活性通过添加荧光标记的纤维蛋白原测试，所述荧光标记的纤维蛋白原通过活性凝血酶转变为纤维蛋白并与血栓结合。为此，将如上所述形成的血栓用250微升用Alexa488标记的纤维蛋白原溶液（100微克/毫升）和30微升的100mM氯化钙溶液（或者没有不同浓度的测试物质）中培养。在荧光板读数器中在合适的波长测量上层溶液的荧光。此外，每15分钟洗涤血栓两次并用荧光显微镜评估。来自上层溶液的荧光的降低和血栓荧光的增加能够通过双重因子IIa/因子Xa抑制剂抑制，但不能被通过因子Xa参考抑制剂抑制。

体内形成心内血栓（Intrakardiale Thromben）[患者材料]

用在心脏手术期间取自患者左心室的血栓重复实验。为此，将所述血栓解冻并分成多个块（湿重10-100毫克）。根据规程，在反复洗涤或不洗涤的情况下使用所述血栓，并类似于上述所述的方法使用所述底物I-1120（最终浓度100μM）测量凝血酶活性。

a. 10）具体诊断凝固以及内源性血栓症小鼠和大鼠中的器官功能

凝血酶/抗凝血酶复合物

凝血酶/抗凝血酶复合物（在下文称为“TAT”）是通过凝固活化内源形成的凝血酶的量度。使用ELISA检测（Enzygnost TAT micro;Braun）检测TAT。通过离心从柠檬酸盐血液获得血浆。将50微升TAT样品缓冲液加入至50微升血浆中，并略略摇动样品以及在室温下培养15分钟。用吸滤出样品，并用洗涤缓冲液（300微升/孔）洗涤孔3次。在洗涤期间，通过轻拍所述板除去液体。加入共轭溶液（100微升），并在室温下培养所述板15分钟。吸滤样品，并用洗涤缓冲液（300微升/孔）洗涤孔3次。然后加入示病底物（100微升/孔），将所述板在黑暗中在室温下培养30分钟，加入终止溶液（100微升/孔）并在492纳米测量颜色（Saphire读数器）。
具有血栓的尼龙丝线。在实验开始之前测定尼龙丝线自身的重量。

【0813】为了测定出血时间，在打开所述旁路循环后，立即使用刀片将所述大鼠尾部的尖端剪短3毫米。然后将所述尾部放入保持在37°C温度的生理盐水中，并在15分钟内观察从切断处的出血。测定直至出血停止至少30秒的时间（初始出血时间），在15分钟内总的出血时间（累积出血时间）及经由收集的血红蛋白光度测量出血量。

【0814】在体外循环建立且所述尾部尖端被剪短之前，将测试物质给药至清醒状态的动物，要么经由侧的颈椎静脉内作为单次推注给药或者作为具有后继的持续输注的推注给药，要么使用咽管经口给药。

【0815】c）药物动力学的测定（体内）

【0816】为了测定体内药物动力学，将测试物质溶于各种配制剂（例如血浆、乙醇、DMSO、PEG400等等）或这些溶剂的混合物并静脉内或经口给药于小鼠、大鼠、狗或猴子。静脉内给药作为快速推注或作为输注实施。给药剂量为0.1-5毫克/千克。在至少24小时时间内的不同时间间隔借助于导液管或作为牺牲血样（Tötungspflasma）采集血样。此外，在一些情况下，还采集器官、组织和尿样。测试样品中物质的定量测定使用在所讨论的基质中调节的校准样品进行。样品中存在的蛋白质通过乙醚或甲醇沉淀除去。然后将样品通过HPLC使用反相柱在2300HTLC系统（Cohesive Technologies, Franklin, MA, USA）中分馏。所述HPLC系统经由涡轮离子喷射界面（Turbo Ion Spray Interface）连接至API 3000三重四极杆（Triple Quadrupole）质谱仪（Applied Biosystems, Darmstadt, Germany）。使用经验证的动力学分析程序分析血浆浓度-时间曲线。

【0817】通过体外测定在使用Caco-2细胞或在其他转运体中过表达的细胞的通量检测中检验用于转运蛋白的物质的亲合性（Troutman MD, Thakker DR, Pharm. Res. 20(8) 1210-1224 (2003); Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J, J. Med. Chem. 46, 1716-1725 (2003); Merino G, Jonker JW, Wagenaar E, Pulido MM, Molina AI, Alvarez AI, Schinkel AH, Drug Metab. Dispos. 33(5) 614-618 (2005))。为此，将细胞在24小时或96孔滤板上培养3-15天。为了测定渗透，将HEPES缓冲溶液中的物质顶端地（A）或底部地（B）加入到细胞中，并将混合物培养2小时。在0小时和2小时后，从顺式-和反式-隔室取出样品并通过LC-MS/MS分析。使用由Schwab等人出版的公式计算Papp值。当Papp(B-A)/Papp(A-B)比率为＞2或＜0.5时，将物质分类为活性转运。

【0818】d）内源毒性中介的活性的测定（体内）

【0819】使用大鼠或小鼠实施检查。在小鼠模型（NMRI,雄性）中，腹膜内注射50毫克/千克LPS（大肠杆菌血清型055:B5, Sigma-Aldrich）。在经由尾静脉静脉内注射、皮下注射、腹膜内注射或使用胃管经口给药之前至多一小时，给药所述测试物质。在LPS给药四小时后，麻醉（ketavet/Rompun）动物并通过手术打开腹部。将柠檬酸钠溶液（3.2% w/v）（公式：以克计的体重/13乘以100微升）注入到底腔静脉中，并在30秒后采集血液样本（大约1毫升）。从所述血液测定多个参数，例如细胞血液组分（特别是红细胞、白细胞和血小板）、乳酸浓度、凝固活性（PTT）或器官功能障碍或器官衰竭和凋亡的参数。

【0820】e）在大鼠上用于DIC测试的方法描述

【0821】将LPS（大肠杆菌055B5,由Sigma制造，溶于PBS中）以250微克/千克的剂量静脉内给药于雄性Wistar大鼠的尾静脉中（给药体积2毫升/千克）。将测试物质溶
于 PEG400/H2O 60% /40%中并在 LPS 注射之前 30 分钟经口给药（给药体积 5 毫升 / 千克）。在 LPS 注射后 1、5 或 4 小时，通过穿刺心脏处终端麻醉（Trapanal® 100 毫克 / 千克 i.p.）的动物抽血，并获得用于测定纤维蛋白原、PT、TAT 和血小板数目的柠檬酸盐血浆。任选地，获得血清用于测定肝脏酶、肾功能参数和细胞活素（Cytokine）。使用可商购的 ELISA（R&D Systems）测定 TNFα 和 IL-6。

[0822] 还可测量器官功能的直接参数，例如左和右心室壁、动脉压、排尿、肾灌注和血液气体以及酸 / 碱状态。

[0823] C. 药物组合物的示例性实施方案
[0824] 本发明化合物能够以以下方式转变为药物制剂：
[0825] 片剂；
[0826] 成型；
[0827] 100 毫克的本发明化合物、50 毫克的乳糖（一水合物）、50 毫克的玉米淀粉（天然的）、10 毫克的聚乙烯吡咯烷酮（PVP25）（来自 BASF, Ludwigshafen, 德国）以及 2 毫克的硬脂酸镁。
[0828] 片剂重 212 毫克。直径 8 毫米，曲率半径 12 毫米。
[0829] 制备：
[0830] 将本发明化合物、乳糖和淀粉的混合物由 PVP 在水中的 5% 溶液（m/m）造粒。颗粒被干燥后与硬脂酸镁混合 5 分钟。使用常规压片机压制该混合物（参见上文以规格化所述片剂）。作为指南，将 15kN 的压缩力用于所述压制。
[0831] 可口服给药的悬浮液；
[0832] 成型；
[0833] 1000 毫克的本发明化合物、1000 毫克的乙醇（96%）、400 毫克的Rhodigel®（来自 FMC 公司的黄原胶, Pennsylvania, USA）和 99 克的水。
[0834] 10 毫升口服悬浮液相当于单剂量的本发明化合物 100 毫克。
[0835] 制备：
[0836] 将所述 Rhodigel 悬浮在乙醇中，并将本发明化合物加入至悬浮液中。在搅拌下加入水。将混合物搅拌大约 6 小时直至所述 Rhodigel 完全溶解。
[0837] 可口服给药的溶液；
[0838] 成型；
[0839] 500 毫克的本发明化合物、2.5 克的聚山梨酸酯和 97 克的聚乙二醇 400。20 克口服溶液相当于单剂量的本发明化合物 100 毫克。
[0840] 制造：
[0841] 在搅拌下将本发明化合物悬浮在聚乙二醇和聚山梨酸酯的混合物中。持续搅拌直至本发明化合物完全溶解。
[0842] 静脉内溶液：
[0843] 将本发明化合物以低于饱和溶解度的浓度溶解在生理学可接受的溶剂中（例如等渗氯化钠溶液、葡萄糖溶液 5%和 / 或 PEG 400 溶液 30%）。所述溶液通过过滤灭菌并填充至无菌和无热原的注射容器中。