PLURAL COATED ABRASION AND CORROSION RESISTANT ARTICLE

Filed: Aug. 26, 1974

Appl. No.: 500,829

Related U.S. Application Data

U.S. Cl. ... 428/461; 428/500; 427/44; 427/404; 427/409; 252/389 A

Int. Cl. ... B32B 15/08

Field of Search ... 117/71 M, 75, 93.31, 117/130 E, 131, 132 A, 161 UT, 161 UD, 161 KP; 252/389 A; 260/859, 885; 427/404, 409, 44; 428/461, 500

References Cited

UNITED STATES PATENTS
2,767,105 10/1956 Fletcher 117/71 M
3,437,514 4/1969 Burdall 1,7/161 ZA
3,528,844 9/1970 Burdall et al. 260/885
3,586,526 6/1971 Aronoff et al. 117/161 UT
3,586,526 6/1971 Lahana et al. 117/161 UT

OTHER PUBLICATIONS

Gotoda et al., Annual Report of Osaka Laboratory for Radiation Chemistry, In No. 4, JAERI 5027, 100-113 (Japan).

Primary Examiner—Dennis E. Talbert, Jr.
Assistant Examiner—Charles R. Wolfe, Jr.
Attorney, Agent, or Firm—Roger L. May, Keith L. Zerschling

ABSTRACT

A radiation polymerizable protective coating composition or paint, coated articles bearing such a protective coating and processes for preparing such articles. The radiation polymerizable paint, on a non-polymerizable solvent, pigment, initiator and particulate filler-free basis consists essentially of a binder solution of: (1) an alpha-beta olefinically unsaturated organic resin containing about 0.5 and about 5 units of olefinic unsaturation per 1,000 units of molecular weight; (2) a compound polymerizable with said resin upon exposure to ionizing radiation; and (3) between about 0.05 and about 1.0 parts per 100 parts of the total of said alpha-beta olefinically unsaturated resin and said compound polymerizable therewith of a mono- or diester of phosphoric acid bearing one or more sites of vinyl unsaturation. The composition exhibits excellent quality and good adhesion to a variety of substrates, in particular metals, including vapor deposited metals. Preferred articles bearing such a coating are prepared by: applying a base coat to a substrate and curing the same; vapor depositing a coating of a metal over the surface of the base coat; and applying to and curing on the surface of the deposited metal the radiation polymerizable topcoat, preferably with little or no pigment contained therein.

7 Claims, No Drawings
PLURAL COATED ABRASION AND CORROSION RESISTANT ARTICLE

This application is a continuation-in-part of Ser. Nos. 431,631 and 431,658, both filed Jan. 8, 1974 both now abandoned, and relates to: radiation polymerizable coatings of excellent quality which display unusually good adhesion to a variety of substrates; coated articles bearing such a radiation polymerizable coating; and processes for preparing such articles.

More particularly, this application relates to radiation polymerizable coating compositions which are particularly suited as corrosion and abrasion resistant protective coatings for vapor deposited metal surfaces as well as to articles comprising such a vapor deposited metal surface bearing the protective coating and processes for preparing the same. Such protectively coated, vapor deposited metal bearing articles are a particularly preferred embodiment of the invention since they are suitable for use as a substitute for plated metal surfaces used for trim or brightwork on the exterior of automobiles.

Still more particularly, this application relates to an improvement of coating compositions which generally, exclusive of nonpolymerizable solvents, pigments and other non-reactive components, consist essentially of a film forming solution of: (1) an alpha-beta olefinically unsaturated organic resin containing between about .5 and about 5 units of olefinic unsaturation per 1,000 units of molecular weight; and (2) a compound polymerizable therewith upon exposure to ionizing radiation. Representative of such radiation polymerizable coating compositions are those disclosed in the following U.S. Pat. Nos.: 3,437,514; 3,437,512; 3,437,513; 3,528,844; 3,542,586; 3,542,587; 3,577,262; 3,577,263; 3,577,264; 3,577,265; 3,585,065; 3,586,528; 3,586,530; 3,632,399; 3,641,210; 3,642,939; 3,649,337; 3,650,811; 3,650,812; 3,650,813; 3,660,143; 3,660,144; 3,660,145; and 3,660,471. Although the compositions disclosed in each of these patents will be discussed further hereinafter, the complete disclosure of each of the patents is incorporated herein by reference.

The coatings disclosed by the above patents may be classified as finish coatings and, as such, are required to provide not only an excellent appearance, but also physical properties which will enable the coated part to withstand the elements to which it may be exposed. Although the coatings are suitable to provide an external finish on a variety of substrates, they do not adhere well to metal or metal bearing substrates such as those having vapor deposited metal surfaces nor do they provide adequate corrosion protection when applied to such surfaces. The coating compositions of this invention solve such problems by providing improved corrosion resistance and adhesion, particularly when applied to surface bearing vapor deposited metal coatings.

BRIEF DESCRIPTION OF THE INVENTION

The coating compositions of this invention, on a non-polymerizable solvent pigment, initiator and particulate filler-free basis consist essentially of a binder solution of: (1) an alpha-beta olefinically unsaturated organic resin containing between about .5 and about 5 units of olefinic unsaturation per 1,000 units of molecular weight; (2) a compound polymerizable with said resin upon exposure to ionizing radiation; and (3) between about .05 and about 1.0 parts per 100 parts of the total of said alpha-beta olefinically unsaturated resin and said compound polymerizable therewith of a mono- or diester of phosphoric acid bearing one or more sites of vinyl unsaturation and having the formula:

\[R - O - \begin{array}{c} \| \end{array} A \begin{array}{c} \| \end{array} O - OR' \]

where:

- \(R = H, C_1 \) or \(C_2 \)
- \(A = C_{nH_{2n}}, 2 \leq n \leq 6 \)
- \(R' = H, C_1 \) to \(C_4 \) alkyl or \(C_4 \) chloro- or bromo-alkyl

These coating compositions, which are radiation polymerizable, are preferably cured by exposure to ionizing radiation or ultraviolet radiation. The coating compositions provide an excellent protective surface which adheres well to a variety of substrates, in particular metals and vapor deposited metals, and, thus, can be employed in the preparation of a wide variety of articles. One such preferred article or material, which is useful as a substitute for metal plated materials used for trim or brightwork on the exterior of automobiles, is prepared by: (1) vapor depositing a metal layer on the surface of a prepared substrate; (2) coating the deposited metal surface with the radiation polymerizable coating of this invention; and (3) curing the coating by exposure to radiation, preferably ionizing radiation or ultraviolet radiation.

The radiation polymerizable coating composition and the coated articles formed therefrom as well as the processes for preparing the same will be described more fully in the detailed description of the invention which follows.

PRIOR ART

An article entitled "Radiation Curing of Mixture of Diallylphthalate Prepolymer and Vinyl Monomer" by Gatoda et al appearing at Nippon Genshiryo Kenkyusho, Nempo 1970, JAERI 5026, 121-9 (Japan) discloses radiation polymerizable coating compositions which may contain several of the organophosphate esters within the purview of this invention. The article further teaches the strong adhesion of the diallylphthalate prepolymer-vinyl monomer-organophosphate ester coatings to metal surfaces as a shop primer to prevent corrosion. However, the article teaches the use of the organophosphate esters only in amounts equal to or greater than 2 weight percent based on the total of the other two components. In this connection, the article also teaches that as the amount of organophosphate ester is increased, the salt water resistance of the coating is increased. These teachings are contrary to the instant invention which, as mentioned above, requires between about 0.05 and about 1.0 parts of organophosphate ester per 100 parts of the total of the other two components. In fact, it has been found quite unexpectedly that while the organophosphate esters when included in the coatings of the invention in amounts up to 1% by weight serve to protect the underlying metal from corrosive or chemical attack, amounts greater than 1% by weight and certainly amounts of 2% by weight or greater cause the coating compositions to fail in water.
3

DETAILED DESCRIPTION OF THE INVENTION

I. Radiation Polymerizable Coating Composition

In this application, the term "paint" is meant to include finely divided pigment and/or particulate filler as well as other additives in a film-forming, resin comprising, binder or the binder without pigment, particulate filler, and other additives. Thus, the binder which is ultimately converted to a weather and wear-resistant film can be all or virtually all that is used to form the film, or it can be a vehicle for pigment and other additives.

The radiation polymerizable coating compositions or paints of this invention, which overcome the deficiencies of prior art coatings, on a non-polymerizable solvent, pigment, initiator and particulate filler-free basis, consist essentially of a binder solution of: (1) an alpha-beta olefinically unsaturated organic resin containing between about .5 and about 5 units of olefinic unsaturation per 1,000 units of molecular weight; (2) a compound polymerizable with said resin upon exposure to ionizing radiation; and (3) between about 0.05 and about 1.0 parts per 100 parts of the total of said alpha-beta olefinically unsaturated resin and said compound polymerizable therewith of a mono- or diester of phosphonic acid bearing one or more sites of vinyl unsaturation and having the formula:

\[
\begin{align*}
R & \quad O \quad \begin{array}{c} \vdots \ \vdots \ \vdots \\
\end{array} \quad \begin{array}{c} \vdots \ \vdots \ \vdots \\
\end{array} \quad \begin{array}{c} \vdots \ \vdots \ \vdots \\
\end{array} \quad \begin{array}{c} \vdots \ \vdots \ \vdots \\
\end{array} \\
\end{align*}
\]

where:

- \(R = H, Cl \) or \(CH_3 \)
- \(A = C_nH_{2n+2}, 2 \leq n \leq 6 \)
- \(R' = H, C_1 = C_2 \) alkyl or \(C_1 = C_4 \) bromo- or chloroalkyl

A. Alpha-Beta Olefinically Unsaturated Resins

The term "alpha-beta olefinically unsaturated organic resin" as used herein means an organic resin having olefinic unsaturation provided by an alpha-beta olefinically unsaturated monomer. The term "alpha-beta unsaturation" as used herein includes both the olefinic unsaturation that is between two carbon atoms which are in the alpha and beta positions relative to an activating group such as a carboxyl group, e.g., the olefinic unsaturation of maleic anhydride, and the olefinic unsaturation between the two carbon atoms which are in the alpha and beta positions with respect to the terminus of an aliphatic carbon-to-carbon chain, e.g., the olefinic unsaturation of acrylic or methacrylic acid or styrene. The binder solution of the coating compositions of this invention preferably includes between about 90 and about 10 parts, preferably between about 80 and about 20 parts of such an alpha-beta olefinically unsaturated resin containing between about 0.5 and about 5 units, preferably between about 0.5 and about 3 units, of unsaturation per 1,000 units of molecular weight. The selection of the particular alpha-beta olefinically unsaturated organic resin will, of course, depend upon the particular selection of the compound polymerizable therewith as well as the type of substrate being coated, the intended use of the end product and the desired viscosity of the binder, keeping in mind the desired mode of application. The following discussion of alpha-beta olefinically unsaturated resins is presented as a summary of the various types of resins which may be employed in radiation curable paints known in the prior art and taught in the above-incorporated prior art patents. Of course, the particular details regarding the various prior art radiation curable compositions are more adequately described in the patent disclosures incorporated herein by reference.

U.S. Pat. No. 3,437,514 to Burlant discloses a number of preferred types of alpha-beta olefinically unsaturated resins useful in this invention, which types are generic to a number of resins disclosed by others of the patents listed above. One of these resins is of the vinyl resin type. The term "vinyl resin" as used in this context is one which is formed from "vinyl monomers" and which includes the requisite amount of alpha-beta olefinic unsaturation. The term "vinyl monomers" is intended to mean monomeric compounds having a terminal group and excludes allylic compounds, resins and modified acrylic resins, the former meaning a resin formed exclusively of acrylic monomers and the latter meaning a resin formed from a major amount of acrylic monomers and a minor amount of non-acrylic monomers. The term "acrylic monomers" means an alpha-beta monounsaturated monocarboxylic acid or esters thereof and includes, but not by way of limitation, acrylic acid, alkylacrylic acids, e.g., methacrylic acids, monohydric and polyhydric alcohol esters of acrylic acid and alkylacrylic acids, e.g., glycidyl methacrylate, 2-hydroxyethyl methacrylate, etc. These resins have a molecular weight in excess of about 1,000, commonly about 5,000 to about 25,000. Similar alpha-beta olefinically unsaturated vinyl monomer containing polymers are disclosed in U.S. Pat. Nos. 3,528,844; 3,542,586; 3,542,587; 3,577,265; 3,586,527; 3,586,528; 3,586,530; 3,641,210; and 3,642,939. All of these vinyl monomer containing polymers may be prepared by conventional free radical initiated copolymerization using two or more, preferably three or more, vinyl monomers at least one of which has a free or pendant functional group within its molecular structure, e.g., hydroxyethyl methacrylate. This functionality allows the polymer intermediate to be reacted with various other monomers such as glycidyl methacrylate to provide the desired alpha-beta olefinic unsaturation.

A third type of unsaturated organic resin useful in this invention and taught by the Burlant patent is a silicone-modified organic resin comprising a polyester having incorporated therein a cyclic or acyclic siloxane which prior to reaction of incorporation has a reactive
hydroxyl or hydrocarbonoxy group bonded to at least two of its silicon atoms. Such a resin can also be prepared by reacting a siloxane with a hydroxylated vinyl resin prepared by reacting vinyl monomers, at least one of which is a hydroxylated monomer. Various modifications of resins of this type are taught in U.S. Pat. Nos. 3,437,512; 3,437,513; 3,650,811; 3,650,812; 3,650,813; 3,577,264 and 3,632,399.

A fourth alpha-beta olefinically unsaturated organic resin disclosed by Burlant and useful in this invention is a urethane-modified organic polymer formed by reacting a diisocynate monomer and an organic resin having in its molecular structure a plurality of hydrogen atoms which are labile with respect to an isocyanate group.

A final category of alpha-beta olefinically unsaturated organic resins disclosed by Burlant comprises epoxy resins having requisite amounts of unsaturation. Similar epoxy containing resins are also disclosed in U.S. Pat. Nos. 3,577,263 and 3,660,145.

Still other alpha-beta olefinically unsaturated resins are taught by several of the patents enumerated above. For example, both U.S. Pat. Nos. 3,660,144 and 3,660,145 teach alpha-beta olefinically unsaturated elastomeric particles of crosslinked acrylic polymer for use in radiation curable paints and U.S. Pat. No. 3,585,065 teaches an alpha-beta olefinically unsaturated siloxane resin for use in a film-forming binder system. Of course, the subject invention is not limited to the types of unsaturated resin summarized above, but may include any alpha-beta olefinically unsaturated organic resin having the requisite unsaturation and being polymerizable upon being subjected to ionizing radiation. It should also be appreciated that the radiation polymerizable paints of this invention may also employ mixtures of the various alpha-beta olefinically unsaturated organic resins where desired for the particular application.

B. Compound Polymerizable with Alpha-Beta Olefinically Unsaturated Resin

The compound polymerizable by exposure to ionizing radiation with the alpha-beta olefinically unsaturated organic resin is included in the paint binder solution in an amount ranging between about 90 and about 10 parts, preferably between about 80 and about 20 parts. The compound is preferably a vinyl monomer as defined above or a mixture of vinyl monomers. The preferred vinyl monomers taught by the above patents are esters of C\textsubscript{4} - C\textsubscript{6} monohydric alcohols and acrylic or methacrylic acids, e.g., methylmethacrylate, ethyl acrylate, butyl acrylate, butyl methacrylate, octyl acrylate, 2-ethyl hexylacrylate, etc. Alcohols of higher carbon numbers, e.g., C\textsubscript{7} - C\textsubscript{14} as well as difunctional alcohols can also be used to prepare esters or diesters. Vinyl hydrocarbon monomers, e.g., styrene and alkylated styrenes such as vinyl toluene, alpha-methyl styrene, etc., may also be used separately or in combination with the aforementioned vinyl monomers. In combination with the acrylate monomers and/or vinyl hydrocarbon monomers, there may be used minor amounts of other vinyl monomers such as nitriles, e.g., acrylonitrile, acrylamide or n-methyl carboxylates, e.g., vinyl acetate. Such vinyl monomers are useful in combination with each of the alpha-beta olefinically unsaturated resins discussed previously and taught by the various patents.

Other vinyl containing compounds which may be employed in combination with the alpha-beta olefinically unsaturated resins are divinyl monomers, trivinyl monomers, tetrafunctional monomers, and mixtures thereof. These di-, tri-, and tetravinyl compounds are preferably acrylates, methacrylates or vinyl hydrocarbons. The most preferred are esters of acrylic or methacrylic acids and polyhydric C\textsubscript{4} - C\textsubscript{6} alcohols, e.g., neopentylglycol dimethacrylate, 1,6 hexanediol diacrylate, 1,3 butylene dimethacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, etc.

Other vinyl containing compounds which are polymerizable with the above-discussed organic resins upon introduction of ionizing radiation, are divinyl and tetrafunctional compounds such as those disclosed by U.S. Pat. Nos. 3,586,527, 3,586,528; and 3,586,530. These compounds are formed by first reacting a diepoxy or monooxide with acrylic acid and/or methacrylic acid and then subsequently reacting the resultant ester condensation product with a saturated acylhalide. The divinyl and tetravinyl compounds disclosed in these patents are homopolymerizable and copolymerizable with each other and with various monovinyl monomers as mentioned above.

Still other compounds polymerizable with the alpha-beta olefinically unsaturated resins may be employed as the second binder component. Included in such compounds are the alpha-beta unsaturated siloxanes taught in U.S. Pat. Nos. 3,577,262 and 3,577,263 as well as the alpha-beta unsaturated diurethanes of U.S. Pat. No. 3,585,065 formed by reacting an unsaturated diisocyanate with an unsaturated polyester.

C. Mono- or Diester of Phosphoric Acid

The coating compositions of the invention include about 0.05 and about 1.0 parts, preferably between about .1 and about .6 parts, and more preferably between about .2 and about .5 parts, per 100 parts of the total of said alpha-beta olefinically unsaturated resin and the compound polymerizable therewith of a mono- or diester of phosphoric acid bearing one or more sites of vinyl unsaturation and having the formula:

\[
\begin{align*}
R &= \text{H, Cl or CH}_3 \\
A &= \text{C}_n\text{H}_{2n+1}, 2 \leq n \leq 6 \\
R' &= \text{H, C}_1 \text{ to C}_6 \text{ alkyl or } \text{C}_1 \text{ to C}_6 \text{ chloro- or bromoalkyl} \\
\end{align*}
\]

where:

- \(R = \text{H, Cl or CH}_3 \)
- \(A = \text{C}_n\text{H}_{2n+1}, 2 \leq n \leq 6 \)
- \(R' = \text{H, C}_1 \text{ to C}_6 \text{ alkyl or } \text{C}_1 \text{ to C}_6 \text{ chloro- or bromoalkyl} \)
- \(R'' = \text{H, C}_1 \text{ to C}_6 \text{ alkyl or } \text{C}_1 \text{ to C}_6 \text{ chloro- or bromoalkyl} \)

Representative of the various species of organophosphorus esters falling within the above formula are: (1) 2-methacryloyloxyethyl phosphates (\(R=\text{CH}_3, A=\text{CH}_2\text{CH}_2-, R''=\text{H}, m=l \); (2) di(2-methacryloyloxyethyl) phosphates (\(R=\text{CH}_3, A=\text{CH}_2\text{C}-, m=2 \); (3) 2-acryloyloxyethyl phosphates (\(R=\text{H}, A=\text{CH}_2\text{CH}_3, R''=\text{H}, m=1 \); (4) di(2-acryloyloxyethyl) phosphates (\(R=\text{H}, A=\text{CH}_2\text{CH}_3, m=2 \); (5) methyl (2-methacryloyloxyethyl) phosphates (\(R=\text{CH}_3, A=\text{CH}_2\text{CH}_3, R''=\text{CH}_3, m=1 \); (6) ethyl methacryloyloxyethyl phosphates (\(R=\text{CH}_3, A=\text{CH}_2\text{CH}_3, R''=\text{CH}_3, m=1 \); (7) methyl acryloyloxyethyl phosphates (\(R=\text{H}, A=\text{CH}_2\text{CH}_3, R''=\text{CH}_3, m=1 \));
and (8) ethyl acryloyloxyethyl phosphate \((R=H, A=CH\text{CH}_2, R'=CH\text{CH}_2, n=1) \). The preferred organophosphate esters are 2-methacryloyloxyethyl phosphate, 2-(2-methacryloyloxyethyl) phosphate, 2-acryloyoxethyl phosphate and di(2-acryloyloxyethyl) phosphate, with 2-methacryloyloxyethyl phosphate being most preferred. Exemplary of the many other organophosphate esters which are encompassed by the above formula are those in which the \(R' \) groups of (1) through (8) are replaced by propyl, butyl and isobutyl groups or by chloro or bromo substituted ethyl, propyl, butyl and isobutyl groups.

D. Photoinitiators

When the paint compositions of this invention are polymerized by exposure to ultraviolet radiation it may be desirable to include a photoinitiator or photosensitizer in the paint. The use of such photoinitiators and examples of various ones which may be employed will be discussed hereinafter in greater detail.

E. Inert Solvents and Other Additives

Inert solvents, i.e., solvents that do not enter into the polymerization or crosslinking reactions of the paint binder polymer/monomer system under normal exposure to radiation, can be added to the coating formulation to reduce viscosity and aid in control of application properties. Such solvents are normally selected to be substantially more volatile than the monomeric constituents of the paint formulation, thus allowing them to evaporate prior to irradiation of the coatings. Suitable solvents include, by way of example and not by way of limitation: toluene; butyl acetate; methyl ethyl ketone; isopropanol; benzene; tetrahydrofuran; dioxane; methylisobutyl ketone; methylene chloride; chloroform; ethylene chloride; trichloroethylene; trichloroethane; and mixtures thereof. Additional materials such as catalysts, pigments, plasticizers, etc., all of which are well known in the formulation of coating compositions and, in particular in the art of radiation polymerizable coating compositions, may be included in the coating compositions of the invention.

II. Coated Articles and Processes for Making Same

The radiation polymerizable paints discussed above display unusually good adhesion to a variety of substrates including wood, paper, glass, shaped polymeric surfaces and metal, particularly vapor deposited metal surfaces. In addition to these outstanding adhesion properties, the coatings of the invention also exhibit excellent water resistance and intercoat adhesion. The novel paint compositions of the invention, like prior art radiation polymerizable paints discussed above, may be applied to a variety of substrates by conventional means, e.g., brushing, spraying, roller coating, flow coating, etc., to an average thickness which is preferably in the range of from about 0.1 to about 4.0 mils depending on the substrate and the intended end use of the coated product.

The novel paint compositions of the invention may be cured or polymerized by exposure to radiation, preferably ionizing radiation or ultraviolet light. In either case, the paint compositions may be cured at relatively low temperatures, e.g., between room temperature \((20^\circ \text{C} \text{ to } 25^\circ \text{C})\) and the temperature at which significant vaporization of its most volatile component is initiated, (ordinarily between about 20° C and about 70° C).

The term "ionizing radiation" as employed herein means radiation having sufficient energy to remove an electron from a gas atom, forming an ion pair, and hence radiation with energy of, or equivalent to, about 5,000 electron volts. The preferred method of curing paint films of this invention by exposure to ionizing radiation is by subjecting such films to a beam of polymerization-effecting electrons which is at its source of emission within the range of, or equivalent to, 150,000 to 450,000 electron volts. In this method of curing, it is preferred to employ a minimum of 25,000 electron volts per inch of distance between the radiation emitter and the workpiece where the intervening space is occupied by air. Adjustment is made for the resistance of the intervening gas which is preferably an oxygen-free inert gas such as nitrogen, helium, or combustion products of natural gas. It is, however, within the scope of the use of ionizing radiation to effect polymerization using either that which is conventionally termed "high energy particle radiation" or "ionizing electromagnetic radiation".

When such ionizing radiation is employed to cure the paint compositions of this invention, the radiation energy is applied at dose rates of from about 0.1 to about 100 Mrads per second upon a preferably moving workpiece with the coating receiving a total dose in the range of from about 0.1 to about 100, preferably from about 1 to about 25 Mrads. The abbreviation "Mrads" as employed herein means 1 million Rads. The term "Rads" means that dose of radiation which results in the absorption of 100 ergs of energy per gram of absorber, e.g., coating film. The electron emitting means may be a linear electron accelerator capable of producing a direct current potentially in the range hereinafter set forth. In such a device, electrons are ordinarily emitted from a hot filament and accelerated through a uniform voltage gradient. The electron beam, which may be about 1/8 inch in diameter at this point is scanned in one direction to make a fan-shaped beam and then passed through a metal window, e.g., a magnesium-thorium alloy of about 0.003 inch thickness.

As mentioned above, the radiation polymerizable coating compositions of this invention may also be cured by exposure to ultraviolet light. Preferably, paint compositions according to this invention which are cured by exposure to ultraviolet light contain little or no pigment. Upon exposure to light of wave lengths less than about 390 nm, most of the vinyl monomers employed in the paint compositions of this invention will fragment and produce radicals which can initiate polymerization. However, in order to make more efficient use of the output of high intensity UV sources and thereby attain a commercially feasible rate of cure, it is preferred to include a photoinitiator or photosensitizer in compositions to be cured by ultraviolet radiation.

Photoinitiators (or sensitizers) are substances, generally organic compounds which, upon exposure to light of appropriate wave length, give rise to or promote the production of polymerization initiating species. It is preferred to employ a photoinitiator which decomposes to yield, or otherwise results in the production of, one or more free radical species upon exposure to light having a wavelength of less than about 380 nm. In order for any photochemical reaction to occur, there must be some overlap between the wave length of light incident upon the reaction medium (the coating) and the wave length absorbed by the photoinitiating species. Thus, the selection of an appropriate photoiniti-
tor depends not only upon its efficacy as a polymerization initiator, but also upon the light source(s) used.

Many different types of free-radical initiators and sensitizers have been studied in acrylic systems and these are well known in the art. The rate of cure of the paint compositions of this invention, is, of course, a function of the type of initiator and its concentration, the intensity of incident light of appropriate wave length and the type and concentration of polymerization inhibitors. Also, the detailed compositions of the coating formulation can have a significant effect on the rate of cure, especially at low exposure levels. Thus, in the end analysis, the amount of ultraviolet radiation which is necessary to achieve the desired properties in the final film formed from the paint compositions of this invention will vary with the composition of the paint itself and one of ordinary skill in this art will be able to determine the optimal exposure to UV light in view of the various factors discussed above with a minimum of experimentation.

Included among the many suitable photoinitiators are: organic carbonyl compounds such as acetone, benzophenone, benzanthrone, benzoin, benzoin methyl ether, 2,2-dithioacetoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, benzoin n-butyl ether and benzoin iso-butyl ether; peroxides such as hydrogen peroxide, di-t-butyl peroxide, ergosterol peroxide and benzyl peroxide organic sulphur compounds such as diphenyl disulfides, dibenzoyl disulfides and dibenzo-thiazol disulfides; and azo compounds such as 2,2'-azobis-(2-methylpropionitrile), α,α'-azobisisobutyronitrile, azomethane, azobenzene, α-azobis-1-cyclohexane carbonitrile; and other well known initiators such as 2-ethylhexyl-2-cyano-3,3-diphenylacrylate. Based on availability, solubility in the coating compositions of this invention, freedom from color and efficiency of curing at minimal UV exposure levels, the preferred photoinitiators are 2,2-dithioacetoacetophenone, benzophenone and 2-ethylhexyl-2-cyano-3,3-diphenylacrylate. The amount of each photoinitiator necessary to suitably initiate polymerization in the paint compositions of this invention when curing by exposure to UV light will be apparent to those skilled in the art. It has been found, however, that generally the presence of a photoinitiator in the amount of from about 0.5 to about 5.0 parts per 100 parts of the total reactive vehicle solids in the paint composition will produce adequate curing upon exposure to a low pressure ultraviolet lamp.

A. Coated Articles Including Vapor Deposited Metals

As discussed above, the coating compositions of this invention are particularly suited as abrasion and corrosion resistant protective coatings for surfaces bearing vapor deposited metals. Such coated articles bearing vapor deposited metals are a particularly preferred embodiment of this invention since they are suitable for use as a substitute for plated metal surfaces used for trim or brightwork on the exterior of automobiles.

Vapor deposition of metals, and in particular vacuum metallizing, is a simple and relatively low cost process by which thin layers of metals are deposited on prepared surfaces of substrates such as metal, plastic, glass, paper and other materials. Surfaces bearing vapor deposited metals, and in particular plastic substrates bearing thin deposits of aluminum, have been considered as a substitute for plated metal surfaces used for trim or brightwork on the exterior of automobiles. Since vapor deposition of metals produces very attractive surfaces and is substantially less expensive than processes for metal plating, such as chrome plating, it would appear to be ideally suited for producing such trim or brightwork. However, due to severe abrasion and corrosion problems, articles produced by vapor depositing metals have not been deemed suitable for exterior automotive use. The coating compositions of this invention, when applied over the surface of such vapor deposited metals afford the protection necessary to overcome this problem.

Vapor deposition of metals is well known and the detailed procedures will be apparent to those skilled in the art. Physical vapor deposition, the process most commonly used for decoration of plastics, involves formation of the coating by physical means alone. Two of the most commonly used techniques, i.e., resistive heating and electron beam heating, involve stepwise heating in vacuum, first melting and then vaporizing the material to be deposited. Other well known techniques such as sputtering may also be employed. The choice of methods depends to some extent on the material to be deposited. A review of physical vapor deposition techniques may be found in [Vapor Deposition], C. F. Powell, J. H. Oxley and J. M. Blocker, Jr., eds., John Wiley & Sons, Inc. New York (1966), p. 221 ff. Resistive heating of a carbon filament or basket or of a refractory crucible is commonly used for vapor deposition of aluminum, the most common evaporant for deposition on plastic parts. Electron beam heating of an evaporant contained in a suitable crucible or hearth is recommended for deposition of alloys and metals which have low vapor pressures or which form alloys with conventional filaments or crucibles at normal evaporating temperatures. Iron-chrome alloys can be deposited best using electron-beam heating techniques or sputtering.

Chemical vapor deposition techniques, also discussed in Powell et al., can in principle also be used in the formation of the composite coated articles of this invention. Such techniques involve the transfer of material across temperature or concentration gradients between the substrate and the surrounding atmosphere and formation of coatings by chemical reactions at the surface of the substrate. Chemical vapor deposition techniques often involve a new type of the substrate to moderately high temperatures to form the final metallic coating. Application of these techniques is thus restricted to those substrates capable of withstanding the required process conditions.

B. Preferred Plural Coated Embodiment

The preferred coated article of this invention is prepared by: applying a base coat to a substrate and curing the coating; vapor depositing a metal layer on the base coat; applying the coating composition of this invention over the metalized surface; and curing the coating with radiation.

C. Base Coat Compositions

The base coat fills minor surface imperfections of the substrate, provides a high-gloss surface to receive the metal deposit, improves adhesion of the deposit, and reduces the quantity of gas liberated from the substrate at reduced pressures. In selecting a base coat it is thus important that the composition display good intercoat adhesion, i.e., adhere well to both the substrate and the metal layer.
The lacquers and the radiation polymerizable compositions useful as base coats in the process of this invention may be applied by conventional means, e.g., spray coating, dip coating, flow coating, etc., to an average thickness which is preferably in the range of from about 0.1 to about 4.0 mils. The lacquers useful as base coats are well-known in the prior art and may be air dried or heat cured. Most base-curing lacquers cure in 1-3 hours at temperatures ranging from 140°F to 180°F. The radiation polymerizable base coats may be cured at relatively low temperatures, e.g., between room temperature (20° to 25°C) and the temperature at which significant vaporization of its most volatile reactive component is initiated, (ordinarily between about 20°C and about 70°C). The radiation energy is applied at doses rates of from about 0.1 to 100 Mrads per second upon a preferably moving workpiece with the coating receiving a total dose in the range of from about 0.1 to about 100, preferably from about one to about 25 Mrads. It will be appreciated that the use of radiation polymerizable base coats will substantially lessen the processing time necessary for producing the plural coated articles of the invention. The lacquer base coats which may be employed are well-known in the art of vapor deposition, and in particular vacuum metallizing, and consist essentially of a cross-linkable or curable resin in a volatile solvent. Representative of the organic resins which may be employed individually or in combination to formulate such a lacquer are: acrylic resins, alkyd resins (pure and modified), polyesters, conventional varnishes, urea-formaldehyde resins, vinyl polymers, acrylonitrile polymers, phenolic resins, cellulose resins, polyurethanes, butyl rubber and chlorinated butyl rubber, silicon resins, melamine-formaldehyde resins, polystyrenes, natural rubber, and modified phenolic resins. Numerous base coats employing such organic resins are commercially available. Radiation polymerizable base coat compositions which may be employed in the process and articles of this invention include the coating formulation including an alpha-beta olefinically unsaturated urethane modified organic resin discussed above and disclosed in U.S. Pat. No. 3,437,514. That composition, exclusive of non-polymerizable solvents, pigments and other non-reactive components consists essentially of: (1) between about 90 and about 10 parts, preferably between about 70 and about 30 parts, of the alpha-beta olefinically unsaturated urethane modified organic resin; and (2) between about 10 and about 90, preferably about 30 and about 70 parts of vinyl solvent monomers. The alpha-beta olefinically unsaturated urethane modified organic resin is formed by reacting diisocyanate monomer and an organic resin having in its molecular structure a plurality of hydrogen atoms which are labile with respect to the isocyanate group, e.g., a labile hydrogen of an amine, amide, alcohol or carboxylic acid, and subsequently reacting the product with a hydroxylated vinyl monomer. The organic resin used in this preparation may be a polyester or a resin formed by copolymerization of acrylic monomers, i.e., acrylic and methacrylic acids as well as esters formed therefrom. Exemplary of the many diisocyanates which may be employed to form the alpha-beta olefinically unsaturated resins are: 2,4 tolylene diisocyanate, 4,4'-diphenyl-methane diisocyanate, dianisidine diisocyanate, Tolidene diisocyanate, hexamethylenediisocyanate, etc. The formation of various polyesters, such as hydroxyl-terminated polyesters and polymers or copolymers formed from acrylon monomers and bearing functional groups which will react with the diisocyanate compounds are well known in the art.

Another suitable formulation for use as a base coat in this invention is disclosed in the application filed concurrently herewith and entitled “Protective Coating Composition, Plural Coated Article and Process for Preparing Same-A” which is a continuation-in-part of both Ser. No. 393,702 filed Aug. 31, 1973 and Ser. No. 431,663 filed Jan. 8, 1974. That formulation, exclusive of non-polymerizable solvents, pigments and other non-reactive components consists essentially of a solution of: (1) between about 90 and about 10 parts, preferably about 70 and about 30 parts, of a saturated, thermoplastic, vinyl polymer prepared from at least about 85 weight percent of monofunctional vinyl monomers; and (2) between about 10 and about 90 parts, preferably between about 30 and about 70 parts, of vinyl solvent monomers for said vinyl polymer, at least about 10 weight percent of said solvent monomers being selected from the group consisting of divinyl monomers, trivinyl monomers, tetravinyl monomers and mixtures thereof.

The saturated, thermoplastic, vinyl resin polymers useful in the base coat composition may be prepared from a single vinyl monomer of from mixtures of vinyl monomers by conventional polymerization techniques, e.g., suspension, emulsion, bulk or solution, bulk or solution polymerization on conventional free radical initiators such as peroxides and hydroperoxides as well as azobis (iso-5butyronitrile). Preferred monomers for preparation of the vinyl homopolymer or copolymer resins are monofunctional monomers and monomethacrylates as well as monovinyl hydrocarbons. The most preferred monomers are esters or acrylic or methacrylic acid and C₁₋₅ mono- or di-functional alcohols, e.g., methyl methacrylate, butyl methacrylate, butyl acrylate, 2-ethyl hexyl acrylate, cyclohexyl acrylate and mixtures thereof. Monovinyl hydrocarbons suitable for use in forming polymers are styrene and substituted styrenes, such as alpha-methyl styrene, vinyl toluene, t-butyl styrene, chlorostyrene and mixtures thereof.

As indicated above, the saturated thermoplastic vinyl resin polymers of copolymers useful in the base coat formulation of the invention should be formed from at least 85 weight percent of monofunctional vinyl monomers. However, difunctional monovinyl monomers such as acrylic and methacrylic acids, acrylamide, methacrylamide, 2-hydroxyethyl methacrylate, methacryloyloxyethyl phosphate and 2-acrylamido-2-methylpropanesulfonic acid, may be used as a minor component of the polymer, i.e., up to a combined total of about 15 weight percent. The incorporation of such monomers may be desirable in some cases to provide a measure of polarity to the coating resin. However, it should be recognized that a concomitant effect of increased polarity is increased water sensitivity. Thus, it is preferred not to employ such polar monomers in the preparation of the paints of this invention unless necessary for the particular application.

The essentially linear, gel-free thermoplastic polymers formed from the preferred monomers set forth above should have number average molecular weights...
(M₄) of less than about 250,000 but not less than about 2,000. Preferred values lie between about 3,000 and about 100,000, with most preferred values being between about 5,000 and about 50,000.

While the base coat compositions may include mixtures of polymers or copolymers formed from vinyl monomers as discussed above, it is preferred that the paint solution contain little or no alpha-beta olefinically unsaturated resins as conventionally employed in radiation-curable paint resins discussed above. Even though the properties of the paint, particularly adhesion properties, will be affected by its inclusion, up to 5 weight percent based on the total of polymer and solvent monomer of such alpha-beta olefinically unsaturated resins may be tolerated.

At least about 10 weight percent and preferably at least about 15 weight percent of the vinyl solvents of this base coat formulation of the invention are selected from the group consisting of divinyl monomers, trivinyl monomers and tetravinyl monomers. These di-, tri-, and tetravinyl compounds are preferably acrylates, methacrylates or vinyl hydrocarbons. The most preferred are esters of acrylic or methacrylic acids and polyhydric C₆–C₈ alcohols, e.g., neopentylglycol diacrylate, 1,6-hexanediol diacrylate, 1,3-butylenedimethacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, and pentaerythritol tetraacrylate. Other divinyl monomers which may be employed are disclosed in U.S. Pat. Nos. 3,586,528; 3,586,529; 3,586,530; 3,586,531; and 3,595,687.

These divinyl compounds are formed by reacting either a monopoxide or diepoxide with acrylic acid or methacrylic acid and subsequently reacting the resultant ester condensation product with a saturated acyl halide or a vinyl unsaturated acryl halide. Further tetravinyl compounds which may be employed are disclosed in U.S. Pat. Nos. 3,586,526; 3,586,527; and 3,591,626. These tetravinyl compounds are formed by reacting a diepoxide with acrylic acid and/or methacrylic acid and then subsequently reacting the resultant ester condensation product with a vinyl unsaturated acrylhalide.

The remaining of the vinyl solvent monomer used in combination with the saturated, thermoplastic vinyl resin polymers or copolymers discussed above may be monofunctional, monovinyl monomers such as those used in the preparation of the polymer or copolymer. A further base coat formulation for use in the process and articles of this invention is disclosed in the application filed concurrently herewith and entitled “Protective Coating Composition, Plural Coated Article and Process for Making Same -B” which application is a continuation-in-part of both Ser. Nos. 431,632 and 431,654 filed Jan. 8, 1974. The coating formulation disclosed in that application differs from that discussed in the first above mentioned application by the inclusion in the composition of between about 0.05 and about 1.0 parts, preferably between about 0.2 and about 0.6 parts and still more preferably between about 0.2 and about 0.5 parts, per 100 parts of the total of the saturated, thermoplastic resin and the vinyl monomer solvent of the same monomer diesters of phosphoric acid which are included in the compositions of this application.

A final base coat composition which may be employed in making the preferred plural coated articles of this invention is a composition which is the same as that disclosed and claimed in the first above-mentioned application with the exception that the composition includes between about 0.05 and about 1.0 parts, preferably about 0.1 and about 0.6 parts, and still more preferably between about 0.2 and about 0.5 parts, per 100 parts of the total of the saturated thermoplastic polymer and the vinyl solvent monomer, of a triester of phosphoric acid having the formula:

\[
\begin{align*}
R & \quad O \\
\mid & \quad \mid \\
\mid & \quad \mid \\
H_2C & = C-O-\overline{A}-O-\overline{A}-P(O-O)_{\overline{R'}}, & m = 1, 2, 3
\end{align*}
\]

where:

- R = H₂⁻, Cl or CH₃, A = C₄H₉⁻, 2 ≤ n ≤ 6, R' = C₁ to C₆ alkyl or C₁ to C₆ bromo- or chloroalkyl.

It should be appreciated that it is within the scope of this invention as defined above to employ various combinations of the various polymers in preparing the various coating compositions. Therefore, it should be understood that the following specific examples are presented by way of illustration and not by way of limitation.

EXAMPLE I

a. A vinyl monomer comprising polymer is prepared from the following reactants:

<table>
<thead>
<tr>
<th>Reactant</th>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Methyl methacrylate</td>
<td>329</td>
</tr>
<tr>
<td>B. Ethyl acrylate</td>
<td>349</td>
</tr>
<tr>
<td>C. Glycidyl methacrylate</td>
<td>123</td>
</tr>
<tr>
<td>D. Azobisisobutyronitrile</td>
<td>10</td>
</tr>
<tr>
<td>E. Hydroquinone</td>
<td>0.4</td>
</tr>
<tr>
<td>F. Tetraethyl ammonium bromide</td>
<td>3.6</td>
</tr>
<tr>
<td>G. Methacrylic acid</td>
<td>74.5</td>
</tr>
<tr>
<td>H. Xylene (solvent)</td>
<td>1000</td>
</tr>
</tbody>
</table>

To a reaction vessel equipped with a stirrer, condenser, thermometer and nitrogen inlet and exit tubes is charged the xylene which is then heated to a reflux temperature (138°C). To the refluxing xylene is added a mixture of components A, B, C and D. Heating of the reaction mixture is then continued at 135°C for 4 hours after which the reaction mixture is cooled to 90°C. After cooling, components E, G and F are added in that order and the temperature increased to 135°C. The reaction is then continued until an acid number of less than 1 is obtained after which the xylene solvent is removed by vacuum distillation.

b. A coating composition is prepared from the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsat. acryl. from (a)</td>
<td>55</td>
</tr>
<tr>
<td>Neopentyl glycol diacrylate</td>
<td>10</td>
</tr>
<tr>
<td>2-ethyl hexyl acrylate</td>
<td>14</td>
</tr>
<tr>
<td>2-methacryloyloxyethyl phosphate</td>
<td>2</td>
</tr>
</tbody>
</table>

c. The components of the composition are mixed together, reduced to spray viscosity (15 sec. Ford cup No. 4) with a 1:1 mixture of toluene and butyl acetate, sprayed on plastic substrates coated with vacuum deposited aluminum and cured by electron beam irradiation at:

- Average current density: 275 Kilovolts
- Current: 30 Milliamps
- Dose: 7 Mrads
The coating so obtained displays excellent adhesion, no softening or color change, and the underlying metal is similarly unaffected by 240 hours exposure to water at 90° F. No failure is observed after 168 hours in a 5% salt spray corrosion test booth (ASTM Test No. B-117).

EXAMPLE II

The procedure of Example I is repeated except that the 2-methacyrloyloxyethyl phosphate is omitted. The cured coatings exhibit very poor adhesion (coating fail taped cross-hatch adhesion tests) and allow removal of the underlying metal adjacent to a scribed line when the coated article is subjected to the salt spray exposures specified in Example VII.

EXAMPLE III

The procedures of Example I are followed with the exception that the unsaturated acrylic resin is prepared in the following manner:

<table>
<thead>
<tr>
<th>Step I Terpolymer</th>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Methylmethacrylate</td>
<td>100</td>
</tr>
<tr>
<td>(2) Butyl acrylate</td>
<td>60</td>
</tr>
<tr>
<td>(3) Glycidyl methacrylate</td>
<td>40</td>
</tr>
<tr>
<td>(4) t-Butyl Peroctoate</td>
<td>8</td>
</tr>
<tr>
<td>(5) Xylene</td>
<td>30</td>
</tr>
</tbody>
</table>

A mixture of items (1), (2), (3) and (4) is added dropwise over a 2 hour period at a reaction flask (equipped with a condenser, thermometer, agitator, and dropping funnel) containing (5) maintained at reflux with a nitrogen sparge throughout. The solution is maintained at reflux for at least 4 hours after addition is complete.

<table>
<thead>
<tr>
<th>Step II Adduct</th>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) Hydroquinone</td>
<td>0.1</td>
</tr>
<tr>
<td>(7) Acrylic acid</td>
<td>24.3</td>
</tr>
<tr>
<td>(8) Tetraethyl amine</td>
<td>0.7</td>
</tr>
</tbody>
</table>

(6) is added to the solution from Step I. The unsaturated acid (7) and catalyst (8) are added to the refluxing solution. The esterification reaction is continued at reflux until 90–95% of (7) is consumed. The polymer so obtained has a molecular weight (Mw) of 3,000.

The coating so obtained displays excellent adhesion to a variety of substrates including metal, vapor deposited metals, wood, glass and polymeric substrates. The coating displays excellent adhesion to vapor deposited stainless steel and does not soften or change color upon 240 hours immersion in water at 90° F.

EXAMPLE IV

The procedure of Example I is repeated except that 2.5 parts by weight of 2-methacyrloyloxyethyl phosphate are used. The cured films adhere well when dry but develop an unacceptable bluish haze upon exposure to water.

EXAMPLE V

A composition is prepared using the same components and amounts as Example I, but substituting 0.3 parts by weight of di (2-methacyrloyloxyethyl phosphate for the 2-methacyrloyloxyethyl phosphate. The coating adheres well to vapor deposited metal substrates as aluminum, stainless steel and antimony and provides adequate corrosion protection.

EXAMPLE VI

A coating composition is prepared in accordance with the procedures of Example III with the exception that 3 parts per 100 parts of reactive solids in the coating of 2,2 diethoxycetophenone is added. This coating composition is applied to a substrate comprising a surface of vapor deposited alloy of iron and chrome (80% Fe/20% Cr) and cured by exposure to UV light. The coating exhibits excellent abrasion and water resistance.

EXAMPLE VII

The procedure of Example VI is repeated with the difference that (1) and equimolar amount of styrene is substituted for methyl methacrylate in the preparation of the vinyl monomer comprising polymer; and (2) 0.7 parts of 2-acryloxyethyl phosphate are employed. The coating adhere well to metal substrates and provide adequate corrosion resistance.

EXAMPLE VIII

The procedure of Example I is repeated with the difference that (1) and equimolar amount of butyl acrylate is substituted for ethyl acrylate in the preparation of the vinyl monomer comprising polymer and (2) 0.25 parts of di (2-acryloxyethyl) phosphate are employed. The coatings composition is applied to metal, glass, wood and plastic substrates and cured by ionizing radiation. The cured coatings are durable and exhibit good adhesion and water resistance.

EXAMPLE IX

A coating composition is prepared from the following components:

<table>
<thead>
<tr>
<th>Components</th>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsaturated acrylci resin prepared in Example I</td>
<td>55</td>
</tr>
<tr>
<td>1,6 hexamethyldiacylate</td>
<td>10</td>
</tr>
<tr>
<td>2-ethylhexyl acrylate monomer</td>
<td>15</td>
</tr>
<tr>
<td>Phospor M*</td>
<td>2</td>
</tr>
</tbody>
</table>

*Phospor M is a product of Yushi Seika, K.K., a subsidiary of Nihon Oil & Fat Co., Ltd. and is primarily 2-methacyrloyloxyethyl phosphate.

The above components are mixed, reduced to spray viscosity (15 sec Ford Cup No. 4) with a 1:1 mixture of toluene and butyl acetate sprayed on panels vapor deposited aluminum and antimony and cured by electron beam irradiation at:

Average current density	225 Kilovolts
Current	30 Milliamperes
Dose	7 Mrad
Atmosphere	Nitrogen and carbon dioxide (less than 1% oxygen)
The films formed from the above composition display excellent adhesion and corrosion resistance when immersed in a 5% aqueous solution of sodium chloride for a period of 30 days. The films also display no softening of color change, and the underlying metal is similarly affected by 240 hours exposure to water at 90° F.

EXAMPLE X

The procedure of Example IX is repeated with the exception that the Phosmor M is omitted. The resulting coatings exhibit very poor adhesion (coatings fail taped cross-hatch adhesion test) and allow removal of the underlying metal adjacent to a scribed line.

EXAMPLE XI

The procedure of Example IX is repeated except that 3.0 parts of Phosmor M is employed. The cured films adhere well when dry but develop an unacceptable blush haze upon exposure to water.

EXAMPLE XII

A coating composition is formed from the following components:

<table>
<thead>
<tr>
<th>Parts by weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsaturated acrylic resins solids</td>
<td>50</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td>14</td>
</tr>
<tr>
<td>2-ethylhexyl acrylate</td>
<td>13</td>
</tr>
<tr>
<td>Isobutylacrylate</td>
<td>23</td>
</tr>
<tr>
<td>methyl-2-methacryloyloxyethoxy phosphate</td>
<td>7.7</td>
</tr>
</tbody>
</table>

The coating composition is mixed, applied to a glass substrate bearing a vapor deposited metal surface, and cured by electron beam irradiation at:

<table>
<thead>
<tr>
<th>Average current density</th>
<th>275 Kilovolts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>30 Milliamps</td>
</tr>
<tr>
<td>Dose</td>
<td>7 Mrad</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>Nitrogen and carbon dioxide (less than 1% oxygen)</td>
</tr>
</tbody>
</table>

The resultant coatings adhere well and provide adequate corrosion protection.

EXAMPLE XIII

A coating composition is prepared in accordance with Example XII except that 2 parts by weight of alpha 2,2 diethoxycetophenone are included.

The film forming composition so obtained it applied to a substrate and cured thereon by exposure for 3 minutes in a nitrogen atmosphere to radiation from a low pressure mercury lamp (intensity about 4×10^{5} photons sec.$^{-1}$ cm.$^{-2}$, major UV peak at 2537 angstroms) at a distance of 1 inch. The cured coating displays adhesion to metal and vapor deposited aluminum and solvent and water resistance essentially equivalent to those of a comparable electron beam curing coating.

EXAMPLE XIV

To 75 parts by weight of a paint binder solution comprising an alpha-beta olefinically unsaturated polyester resin prepared in accordance with Example I of U.S. Pat. No. 3,437,514 is added 0.125 parts of ethylacryloyloxyethoxy phosphate. The binder solution is mixed, applied to a vacuum metallized substrate and cured by electron beam irradiation. The resultant coatings adhere well and provide adequate protection in a 5% salt spray.

EXAMPLE XV

To 75 parts by weight of a paint binder solution prepared in accordance with Example I of U.S. Pat. No. 3,437,514 is added 0.375 parts of methacryloyloxyethyl phosphate. The binder solution is mixed, applied to a vacuum metallized substrate and cured by electron beam irradiation. The coatings adhere well and provide adequate protection upon immersion and exposure to a 5% salt spray.

EXAMPLE XVI

The 75 parts by weight of the silicone-modified polyester paint binder solution prepared in accordance with Example XV U.S. Pat. No. 3,437,514 is added 0.6 parts ethylacryloyloxyethyl phosphate. The resin binder is mixed, sprayed on vacuum aluminized test panels and exposed to ionizing radiation to cure the same. The coatings adhere well and provide adequate protection upon water immersion and exposure to a 5% salt spray.

EXAMPLE XVII

To 75 parts by weight of the silicone-modified polyester paint binder resin prepared in accordance with Example XV of U.S. Pat. No. 3,437,514 is added 0.5 parts by weight of 2-methacryloyloxyethyl phosphate and 1.3 parts by weight of 2-ethylhexyl 1,2-cyano 3,3-diphenylacrylate. The resin binder solution is mixed, applied to a plastic substrate bearing a vapor deposited metal layer and cured by exposure to UV irradiation. The coatings adhere well and provide adequate protection upon water immersion and exposure to a 5% salt spray.

EXAMPLE XVIII

To 75 parts by weight of the silicone-modified polyester paint binder solution prepared in accordance with Example XV U.S. Pat. No. 3,437,514 is added 0.3 parts of Phosmor M. The binder solution is mixed, drawn down on stainless steel test panels and cured by electron beam irradiation. The films so formed adhere well and provide adequate protection upon water immersion and exposure to 5% salt spray.

EXAMPLE XIX

To 90 parts by weight of each of the paint dispersions prepared in accordance with Example I U.S. Pat. No. 3,660,145 is added 0.6 parts by weight of di(2-methacryloyloxyethyl phosphate. The dispersions are applied to metal substrates by spraying and cured by electron beam irradiation. The coatings adhere well and provide adequate protection upon water immersion and exposure to 5% salt spray.

EXAMPLE XX

a. An alpha-beta olefinically unsaturated urethane modified organic resin in prepared from the following components:

<table>
<thead>
<tr>
<th>Mole Percent</th>
<th>Wt. Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Adipic acid</td>
<td>24</td>
</tr>
<tr>
<td>(2) Maleic anhydride</td>
<td>8</td>
</tr>
<tr>
<td>(3) Neopentylglycol</td>
<td>38</td>
</tr>
</tbody>
</table>
Components (1), (2) and (3) are charged to a reaction vessel equipped in the usual way for a polyester synthesis (i.e., so that water can be removed during the course of the reaction) and heated gradually to 230°C. When an acid value less than 16 is obtained (average reaction time 4.5 hours), the mixture is cooled to 150°C and 0.04 weight percent hydroquinone is added. The mixture is further cooled to below 100°C and reduced to 70% solids with butyl acrylate.

Component (4) is added at room temperature and the mixture is heated at 60°-70°C until an isocyanate level of 5% is obtained.

Component (5) is added at 70°C and the mixture is heated at 80°-100°C until the isocyanate is essentially completely reacted. The mixture is reduced to 60% solids with equal parts 2-hydroxyethyl acrylate and butyl acrylate. (b) A coating composition is prepared from the following components:

<table>
<thead>
<tr>
<th>Mole Percent</th>
<th>Wt. Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) Hexamethylenediisocyanate</td>
<td>16</td>
</tr>
<tr>
<td>(5) 2-hydroxyethyl acrylate</td>
<td>14</td>
</tr>
</tbody>
</table>

Components (1), (2) and (3) are charged to a reaction vessel equipped in the usual manner for polyester synthesis (i.e., so that water can be removed during the course of the reaction) and heated gradually to 230°C. When an acid value less than 16 is obtained (average reaction time 16 hours), the mixture is cooled to 150°C and 0.04 weight percent hydroquinone is added. The mixture is further cooled to below 100°C and reduced to 70% solids with butyl acrylate.

Component (4) is added at room temperature and the mixture heated at 60°-70°C until an isocyanate level of 5% is obtained.

Component (5) is added at 70°C and the mixture heated at 80°-100°C until the isocyanate is completely reacted. The mixture is reduced to 60% solids with equal parts 2-hydroxyethylacrylate and butylacrylate.

The listed components are mixed in indicated proportions by weight, sprayed on a plastic substrate and cured with an electron beam in a nitrogen atmosphere at 280 KV, 40 ma, total dose of 10 Mrads.

B. A layer of 430 stainless steel is deposited on the base coat by conventional vapor deposition technique employing electron beam heating of the evaporant.

To a reaction vessel equipped with a stirrer, condenser, thermometer and nitrogen inlet and exit tubes is charged the xylene and is then heated to a reflux temperature (138°C). To the refluxing xylene is added a mixture of components (1), (2), (3), and (4). Heating of the reaction mixture is then continued at 135°C for four hours after which the reaction mixture is cooled to 90°C. After cooling, components (5), (6), and (7) are added in that order and the temperature increased to 135°C. The reaction is then continued until an acid number of less than 1 is obtained after which the xylene solvent is removed by vacuum distillation.
21 a cloth soaked in methylethyl ketone. Also, the plural coated article is unaffected by immersion in water at 90° F for 240 hours and 10 day immersion in a 5% aqueous sodium chloride solution.

EXAMPLE XXII

The procedure of Example XXI is repeated with the exception that: (1) The top coat formulation is prepared by adding 0.125 parts of ethylmethacryloyloxyethyl phosphate to 75 parts by weight of a paint binder solution comprising an alpha-beta olefinically unsaturated polyester resin prepared in accordance with Example I U.S. Pat. No. 3,437,514; and (2) The top coat formulation is applied to the metalized surface by flow coating. The resultant plural coated article exhibits excellent adhesion properties and is not affected by 240 hours exposure to either water at 90° F or a 5% aqueous sodium chloride solution.

EXAMPLE XXIII

The procedure of Example XXI is repeated with the exception that the unsaturated acrylic resin is prepared in the following manner:

A mixture of items (1), (2), (3) and (4) is added dropwise over a two hour period to a reaction flask equipped with condenser, thermometer, agitator and dropping funnel and containing (5) maintained at reflux for at least 4 hours after the addition is complete.

<table>
<thead>
<tr>
<th>Step I Preparation of the Terpolymer</th>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Methylmethacrylate</td>
<td>100</td>
</tr>
<tr>
<td>(2) Butylacrylate</td>
<td>60</td>
</tr>
<tr>
<td>(3) Glycidyl methacrylate</td>
<td>40</td>
</tr>
<tr>
<td>(4) T-butyl peroctoate</td>
<td>8</td>
</tr>
<tr>
<td>(5) Xylene</td>
<td>300</td>
</tr>
</tbody>
</table>

(6) is added to the solution from Step I. The unsaturated acid (7) and catalyst (8) are added to the refluxing solution. The esterification reaction is conducted at reflux until 90-95% of (7) is consumed. The polymer so obtained has a molecular weight (M₂) of 3,000.

The plural coated article passes cross-hatch adhesion test, withstands at least 50 rubs with a cloth soaked in methylethyl ketone and shows no deleterious effects from exposure to water at 90° F and an aqueous 5% salt solution for 240 hours.

EXAMPLE XXIV

The procedure of Example XXI is repeated with the exception that 0.3 parts of di(2-methacryloyloxyethyl) phosphate is employed in the top coat formulation as the organophosphate ester additive. The plural coated article is comparable to that of Example XXIII.

EXAMPLE XXV

The procedure of Example XXI is repeated with the exception that the organophosphate ester employed in Phosmor M.* The plural coated articles so produced show excellent adhesion properties, water resistance and corrosion resistance. *Phosmor M is a product of Yushi Seihin K.K., a subsidiary of Nihon Oil and Fat Co., Ltd. and is primarily 2-methacryloyloxyethylphosphate.

EXAMPLE XXVI

The procedure of Example XXI is repeated with two exceptions: (1) the base coat composition is prepared from commercial electron beam polymerizable resins as follows:

<table>
<thead>
<tr>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) RD 2107-30* 40</td>
</tr>
<tr>
<td>(2) RD 2278-38* 20</td>
</tr>
<tr>
<td>(3) Hydroxethylacrylate 50</td>
</tr>
<tr>
<td>(4) Methylmethacrylate 10</td>
</tr>
</tbody>
</table>

*Both of these resins are unsaturated polyurethanes manufactured by Hugthon Chemical Company of Erie, Pennsylvania.

The coated article so obtained passes cross-hatch adhesion tests and can withstand a minimum of 50 rubs with a cloth soaked in methylethyl ketone. The surface coating does not soften or change color and the underlying metal is similarly unaffected by 240 hours exposure to water at 90° F. No failure is observed in 240 hours immersion in a 5% aqueous sodium chloride solution.

EXAMPLE XXVII

The procedure of Example XXVI is repeated with the exception that an equimolar amount of butylacrylate is substituted for ethylacrylate in the preparation of the vinyl monomer containing polymer of the top coat composition; and 0.25 parts of methyl (2-methacryloyloxyethyl) phosphate is employed as the organophosphate additive. The plural coated article is of comparable quality with that of Example XXVI.

EXAMPLE XXVIII

The procedure of Example XXI is repeated with the exception that: (1) an equimolar amount of styrene is substituted for methylmethacrylate in the preparation of the vinyl monomer containing polymer; and (2) 0.7 parts of di(2-acryloyloxyethyl) phosphate are employed. The plural coated article is of comparable quality with that of Example XXI.

EXAMPLE XXIX

The procedure of Example XXI is repeated with the exception that the base coat comprises a commercially available base coat lacquer Red Spot SM 1817 sold by Red Spot Paint and Varnish Company and including a urealkyd type polymer. The base coat is applied to the substrate and cured by heating at 90 minutes at 170° F. The plural coated article withstands a minimum of 50 rubs with a cloth soaked in methylethyl ketone, passes cross-hatch adhesion tests and exhibits no deleterious effects from exposure for 240 hours to either water at 90° F or a 5% aqueous solution of sodium chloride.
EXAMPLE XXX

The procedure of Example XXIX is repeated with the exception that the top coat contains 0.35 parts of Phosmor M as the organophosphate additive. The plural coated article is of comparable quality with that of Example XXIX.

EXAMPLE XXXI

The procedure of Example XXIX is repeated with the exception that 0.6 parts of ethylmethacryloyloxyethyl phosphate is employed as the organophosphate additive. The plural coated article is of comparable quality with that of Example XXIX.

EXAMPLE XXXII

A plural coated article is prepared as follows:

(A) The same base coat as applied in Example XXIX is applied to a plastic substrate by dip coating and cured by heating to 170°F for 90 minutes.

(B) An iron/chrome alloy layer (80% Fe/20% Cr) is applied by conventional vapor deposition technique.

(C) A top coat having the following formulation is prepared:

<table>
<thead>
<tr>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsaturated acrylic resin prepared in Example XXIX</td>
</tr>
<tr>
<td>2-ethylhexyl acrylate monomer</td>
</tr>
<tr>
<td>1,6 hexanedioldiacrylate</td>
</tr>
<tr>
<td>methylacryloxyethyl phosphate</td>
</tr>
</tbody>
</table>

The above components are mixed, reduced to spray viscosity (15 sec. Ford Cup No. 4) with a 1:1 mixture of toluene and butylacetate, sprayed on the vapor deposited surface and cured by exposure to electron beam irradiation at:

<table>
<thead>
<tr>
<th>Average Current Density</th>
<th>275 KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>30 ma</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>7 Mrads</td>
</tr>
</tbody>
</table>
| Nitrogen and carbon dioxide (less than 1% oxygen) | 0.5%

The resultant plural coated article passes cross-hatch adhesion tests, withstands a minimum of 60 rubs with a cloth soaked in methyl ethyl ketone and is not affected by exposure for 240 hours to either water at 90°F or a 5% aqueous solution of sodium chloride.

EXAMPLE XXXIII

A plural coated article is prepared as follows:

(A) A lacquer base coat, Red Spot SM 1817 is flow coated onto a plastic substrate and cured.

(B) An aluminum layer is applied to the base coat surface by conventional vacuum deposition technique.

(C) A top coat having the same composition as employed in Example XXIII except for the use of 0.7 parts of ethylacryloyloxyethyl phosphate as the organophosphate additive is sprayed onto the metalized surface and cured by exposure to an electron beam (9 Mrad dose).

The resultant plural coated article exhibits good adhesion as well as excellent solvent resistance and corrosion resistance.

EXAMPLE XXXIV

A plural coated article is prepared in accordance with the procedures of Example XXXIII with the exception that the top coat employed is prepared by adding 0.125 parts of ethylmethacryloyloxyethyl phosphate to 75 parts by weight of a solution comprising an alpha-beta olefinically unsaturated polyester resin prepared in accordance with Example I of U.S. Pat. No. 3,437,514. The resultant plural coated article is of comparable quality with the article of Example XXXIII.

EXAMPLE XXXV

The procedure of Example XXXIII is repeated with the exception that the top coat is prepared by adding 0.6 parts of ethylacryloyloxyethyl phosphate to 75 parts by weight of the silicone-modified polyester solution prepared in accordance with Example XV of U.S. Pat. No. 3,437,514. The resulting plural coated article is of comparable quality with the article of Example XXXIII.

A plural coated article is prepared as follows:

A. Preparation and application of Base Coat Formulation.

An electron beam polymerizable coating is prepared from the following materials in the manner hereinafter set forth:

<table>
<thead>
<tr>
<th>Step 1 Preparation of resin</th>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Water</td>
<td>150</td>
</tr>
<tr>
<td>(2) Triton X200*</td>
<td>5.2</td>
</tr>
<tr>
<td>(3) 1% aqueous K$_2$SO$_4$</td>
<td>30</td>
</tr>
<tr>
<td>(4) Methyl methacrylate</td>
<td>600</td>
</tr>
<tr>
<td>(5) Water</td>
<td>270</td>
</tr>
<tr>
<td>(6) Triton X200*</td>
<td>3.5</td>
</tr>
<tr>
<td>(7) Triton X105**</td>
<td>10.7</td>
</tr>
<tr>
<td>(8) K$_2$SO$_4$</td>
<td>1.2</td>
</tr>
<tr>
<td>(9) Octanol</td>
<td>2.1</td>
</tr>
</tbody>
</table>

* Triton X200, a product of Rohm & Haas Co., is a nonionic surfactant containing 28% active component (the sodium salt of an alkylaryl polyester sulfonate).

** Triton X105, a product of Rohm & Haas Co., is a nonionic surfactant containing 70% active component (an alkylaryl-polyether alcohol averaging 30 ethylene oxide units).

Items 1 and 2 are charged to a reactor provided with a condenser, a thermometer, an agitator, and a dropping funnel. The mixture is boiled to remove dissolved oxygen, and cooled slightly to 90°C. Item 3 is added. A mixture of the remaining ingredients is then added slowly over a period of about 40 minutes while maintaining the reaction mixture at reflux. Following the monomer addition, the mixture is maintained at reflux for an additional two hours. The latex so obtained is cooled and coagulated by adding it dropwise to three volumes of rapidly stirred methanol heated to about 40°C. The polymeric precipitant is isolated by filtration, washed with methanol, dried in vacuo and used in the subsequent preparation of coating materials. The polymer molecular weight (M_m) is about 10,000.

<table>
<thead>
<tr>
<th>Step II Formulation of Coating</th>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Polymer from Step I</td>
<td>24.4</td>
</tr>
<tr>
<td>(2) Neopentylglycol diacrylate</td>
<td>36.4</td>
</tr>
<tr>
<td>(3) 2-ethylhexyl acrylate</td>
<td>39.4</td>
</tr>
<tr>
<td>(4) Butyl acetate</td>
<td>40</td>
</tr>
<tr>
<td>(5) Toluene</td>
<td>40</td>
</tr>
<tr>
<td>(6) Methyl ethyl ketone</td>
<td>10</td>
</tr>
</tbody>
</table>
A solution of polymer is prepared using the above listed monomers and solvents. The film-forming solution so obtained is applied to a plastic substrate and is cured thereon under an inert atmosphere by electron beam irradiation using a total dosage of 9 Mrds (voltage 275 kV, current 40 mA).

B. An aluminum layer is applied to the base coat by conventional vapor deposition technique.

C. The same top coat as employed in Example XXI is applied to the metallized surface by flowing coat.

The resultant plural coated article displays excellent adhesion properties and withstands at least 50 rubs with a cloth soaked in methyl ethyl ketone. The article also is not adversely affected by exposure for 240 hours to either water at 90°F or a 5% aqueous sodium chloride solution.

EXAMPLE XXXVII

The procedure of Example XXXVI is repeated with the exception that the top coat formulation is prepared by adding 0.125 parts of ethylacryloyloxyethyl phosphate to 75 parts of the solution comprising an alpha-beta olefinically unsaturated polyester resin prepared in accordance with Example 1 of U.S. Pat. No. 3,437,514. The resultant plural coated article is of comparable quality with the coated article of Example XXXVI.

EXAMPLE XXXVIII

A plural coated article is prepared as follows:

A. A base coat having the following formulation is applied to an ABS (acrylonitrile-butadiene-styrene copolymer) plastic substrate and cured by electron beam irradiation:

<table>
<thead>
<tr>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Acryloid B82</td>
</tr>
<tr>
<td>(2) Pentaerythritol triacrylate</td>
</tr>
</tbody>
</table>

The solution is adjusted to spray viscosity by dilution with a mixture of butyl acetate, toluene, methyl ethyl ketone and isopropanol in proportion by weight 4:1:1:1.

B. A layer of type 430 stainless steel is applied to the surface of the base coat by conventional vacuum deposition technique employing electron beam heating of the evaporant.

C. A top coat having the same formulation as in Example XXIII is applied to the metallized surface by spraying and cured by exposure to electron beam irradiation.

The resultant plural coated article passes cross-hatch adhesion tests and withstands a minimum of 50 rubs with a cloth soaked in methyl ethyl ketone. The article is also not adversely affected by exposure for a period of 240 hours to water at 90°F or a 5% aqueous sodium chloride solution.

EXAMPLE XXXIX

The procedure of Example XXXVII is repeated with the exception that the top coat formulation is prepared by adding 0.5 parts of di(2-methacryloyloxyethyl)phosphate to 75 parts by weight of the silicone-modified polyester resin prepared in accordance with Example XV of U.S. Pat. No. 3,437,514. The resultant plural coated article is of comparable quality with the article of Example XVIII.

EXAMPLE XXXX

A plural coated article is prepared as follows:

A. Preparation and application of Base Coat

An electron beam polymerizable coating is prepared from the following materials in the manner hereinafter set forth:

<table>
<thead>
<tr>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Methyl methacrylate</td>
</tr>
<tr>
<td>(2) t-butyleroorilactate</td>
</tr>
<tr>
<td>(3) Toluene</td>
</tr>
<tr>
<td>(4) 10% t-butyleroorilactate in toluene</td>
</tr>
</tbody>
</table>

A mixture of items 1 and 2 is added dropwise over a two hour period to a reaction flask (equipped with a condenser, thermometer, agitator, and dropping funnel) containing item 3 maintained at reflux. The mixture is refluxed two to three additional hours; item 4 is charged to the flask at the end of the first hour. The polymer so obtained has a number average molecular weight of about 13,000.

EXAMPLE XXXXI

A plural coated article is prepared as follows:

A. Preparation and application of Base Coat

The polymer solution from Step I is mixed with monomers to give the ratios of polymer to monomer indicated above. The resulting solution is reduced to spray viscosity (about 15 seconds, Ford Cup No. 4) using a mixture of butyl acetate, toluene, ethyl acetate and isopropanol in proportion by weight 4:4:4:1.

The film forming composition so obtained is applied to a glass substrate and cured by electron beam irradiation.

B. An aluminum layer is applied by conventional vacuum deposition technique.

C. A top coat having the same formulation as applied in Example XXXII is flow coated onto the vacuum metallized surface and cured by electron beam irradiation.

The resultant plural coated article passes cross-hatch adhesion tests and withstands a minimum of 60 rubs with a cloth soaked in methyl ethyl ketone. The article is also not adversely affected by 240 hours exposure to either water at 90°F or a 5% aqueous sodium chloride solution.

EXAMPLE XXXXII

A plural coated article is prepared as follows:

A. Preparation and application of Base Coat

The polymer solution from Step I is mixed with monomers to give the ratios of polymer to monomer indicated above. The resulting solution is reduced to spray viscosity (about 15 seconds, Ford Cup No. 4) using a mixture of butyl acetate, toluene, ethyl acetate and isopropanol in proportion by weight 4:4:4:1.
The base coat composition is formulated from the following materials.

<table>
<thead>
<tr>
<th>Parts by Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Acryloid B49N* (solids basis)</td>
<td>35</td>
</tr>
<tr>
<td>(2) 2-ethylhexylacrylate</td>
<td>30</td>
</tr>
<tr>
<td>(3) Neopentylglycol diacrylate</td>
<td>35</td>
</tr>
</tbody>
</table>

*Acryloid B49N is marketed by Rohm & Haas Co. and is described as a methyl methacrylate copolymer having a glass transition temperature of 50°C. It is supplied as a 45% by weight solution in toluene at Brookfield viscosity of 6,000 to 10,000 at 25°C. The number average molecular weight is about 15,000. The composition is reduced to spray viscosity using an inert solvent mixture of toluene, methyl ethyl ketone, butyl acetate, and isopropyl in a ratio of 4:4:1:1, sprayed on a metal substrate and cured by electron beam irradiation.

B. An aluminum layer is applied to the base coat surface by conventional vacuum deposition technique.

C. Top coat formulations are prepared by adding 0.6 parts by weight of 2-acryloxyloxyethyl phosphate to the coating dispersions formed in accordance with Example I of U.S. Pat. No. 3,660,145. The plural coated articles formed by applying each of the top coats so formed to the metallized surface and cured by electron beam irradiation exhibit good adhesion properties and withstand a minimum of 50 rubs with a cloth soaked in methyl ethyl ketone. The articles also withstand exposure for 240 hours to both water at 90°C and a 5% sodium chloride solution.

EXAMPLE XXXXII

A plural coated article is prepared as follows:

A. A base coat having the following formulation is prepared:

<table>
<thead>
<tr>
<th>Parts by Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Elvacite 6011* (40% solids in a 30/70 mixture of acetone and toluene)</td>
<td>40.0</td>
</tr>
<tr>
<td>(2) Trimethylolpropane triacrylate</td>
<td>24.0</td>
</tr>
<tr>
<td>(3) Hydroxylpropylacrylate</td>
<td>8.0</td>
</tr>
<tr>
<td>(4) 2-ethylhexylacrylate</td>
<td>16.0</td>
</tr>
<tr>
<td>(5) Methyl ethyl ketone</td>
<td>12.0</td>
</tr>
</tbody>
</table>

*Elvacite 6011 is a methyl methacrylate polymer manufactured by DuPont. The inherent viscosity of a solution of 25 grams polymer in 50 ml chloroform measured at 25° C in a No. 50 Cannon-Fenske viscometer is 34.

The above materials are mixed together and the formulation reduced to spray viscosity (1 Zahn Cup, 40 Secs) with a 1:1 mixture of toluene and butyl acetate. The formulation is then sprayed onto a plastic substrate and cured by electron beam irradiation.

B. An antimony layer is applied to the base coat surface by conventional vacuum deposition technique.

C. A top coat formulation is prepared as follows:

a. An alpha-beta olefinically unsaturated urethane modified organic resin is prepared from the following components:

<table>
<thead>
<tr>
<th>Mole Percent</th>
<th>Wt. Percent</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Adipic Acid</td>
<td>24</td>
<td>28.0</td>
</tr>
<tr>
<td>(2) Maleic anhydride</td>
<td>8</td>
<td>5.6</td>
</tr>
<tr>
<td>(3) Neopentyl glycol</td>
<td>38</td>
<td>31.1</td>
</tr>
<tr>
<td>(4) Hexamethylendisocyanate</td>
<td>16</td>
<td>22.1</td>
</tr>
<tr>
<td>(5) 2-hydroxyethyl acrylate</td>
<td>14</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Components (1), (2), and (3) are charged to a reaction vessel equipped in the usual way for a polyester synthesis (i.e., so that water can be removed during the course of the reaction) and heated gradually to 230°C.

When an acid value less than 16 is obtained (average reaction time 4.5 hours), the mixture is cooled to 150°C and 0.04 weight percent hydroquinone is added. The mixture is further cooled to below 100°C and reduced to 70% solids with butyl acrylate.

Component (4) is added at room temperature and the mixture is heated at 60-70°C until an isocyanate level of 5% is obtained.

Component (5) is added at 70°C and the mixture is heated at 80-100°C until the isocyanate is essentially completely reacted. The mixture is reduced to 60% solids with equal parts 2-hydroxyethyl acrylate and butyl acrylate.

b. A coating composition is prepared from the following components:

<table>
<thead>
<tr>
<th>Parts by Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Resin solution from (a)</td>
<td>65</td>
</tr>
<tr>
<td>(2) 2-ethylhexyl acrylate</td>
<td>25</td>
</tr>
<tr>
<td>(3) Neopentyl glycol diacrylate</td>
<td>10</td>
</tr>
<tr>
<td>(4) di(2-acryloxyloxyethyl) phosphate</td>
<td>35</td>
</tr>
</tbody>
</table>

The above materials are mixed, reduced to spray viscosity and sprayed on the metallized surface. The resultant plural coated article passes cross-hatch adhesion tests and exhibits good solvent resistance and corrosion resistance.

EXAMPLE XXXXIII

A plural coated article is prepared as follows:

A. The same base coat formulation as employed in Example XXXXIII is sprayed onto a glass substrate and cured by electron beam irradiation.

B. A stainless steel layer is applied to the base coat surface by conventional vapor deposition technique.

C. A top coat formulation is prepared from the following components:

<table>
<thead>
<tr>
<th>Parts by Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsaturation acrylic resin from Example I</td>
<td>50</td>
</tr>
<tr>
<td>Methylmethacrylate</td>
<td>14</td>
</tr>
<tr>
<td>2-ethylhexylacrylate</td>
<td>13</td>
</tr>
<tr>
<td>Isobutylacrylate</td>
<td>23</td>
</tr>
<tr>
<td>methyl-2-methacryloyloxyethyl phosphate</td>
<td>7</td>
</tr>
</tbody>
</table>

The above materials are mixed, reduced to spray viscosity, sprayed on the metallized surface and cured by electron beam irradiation.

The plural coated article passes cross-hatch adhesion tests and withstands a minimum of 50 rubs with a cloth soaked in methyl ethyl ketone.

EXAMPLE XXXXIV

The procedure of Example XXXVI is repeated with the exception that 0.5 parts of 2-methacryloyloxyethyl phosphate are included in the base coat formulation. The plural coated article is comparable to that of Example XXXVI.

EXAMPLE XXXXV

The procedure of Example XXXVII is repeated with the exception that 0.4 parts of di(2-methacryloyloxyethyl) phosphate is included in the base coat formulation. The plural coated article is comparable to that of Example XXXVII.
EXAMPLE XXXVI

The procedure of Example XXXVIII is repeated with the exception that 0.75 parts of 2-acryloyloxyethyl phosphate are included in the base coat formulation. The plural coated article is comparable to that of Example XXXVIII.

EXAMPLE XXXVII

The procedure of Example XXXIX is repeated with the exception that 0.8 parts of di(2-acryloyloxyethyl) phosphate is included in the base coat formulation. The plural coated article is comparable to that of Example XXXIX.

EXAMPLE XXXVIII

The procedure of Example XXX is repeated with the exception that 0.25 parts of methyl (2-methacryloyloxyethyl) phosphate are included in the base coat formulation. The plural coated article is comparable to that of Example XXX.

EXAMPLE XXXIX

The procedure of Example XXXXI is repeated with the exception that 0.4 parts of ethylmethylacryloyloxyethyl phosphate are included in the base coat formulation. The plural coated article is comparable to the article of Example XXXXI.

EXAMPLE L

The procedure of Example XXXXII is repeated with the exception that 0.5 parts of ethylmethylacryloyloxyethyl phosphate are included in the base coat formulation. The plural coated article is of comparable quality to that of Example XXXXI.

EXAMPLE L1

The procedure of Example XXIII is repeated with the exception that 0.6 parts of ethylmethylacryloyloxyethyl phosphate is included in the base coat formulation. The plural coated article is of comparable quality with the article of Example XXXXIII.

It will be understood by those skilled in the art that modification can be made in the foregoing examples and within the scope of the invention as hereinbefore described and hereafter claimed.

We claim:
1. A plural coated abrasion and corrosion resistant article comprising:
 A. A substrate;
 B. An organic base coat film on a surface of said substrate;
 C. A layer of metal on the surface of said base coat film; and
 D. A top coat film on said metal layer, said top coat film comprising the in situ formed polymerization product of a solution which, exclusive of non-polymerizable solvents, pigments and other non-reactive components, consists essentially of (1) between about 90 and about 10 parts of an alpha-beta olefinically unsaturated organic resin containing between about 0.5 and about 5 units of olefinic unsaturation per 1000 units of molecular weight, (2) between about 10 and about 90 parts of vinyl monomers polymerizable with said resin upon exposure to ionizing radiation, at least about 10 weight percent of said monomers being selected from the group consisting of divinyl monomers, trivinyl monomers, tetravinyl monomers and mixtures thereof, and (3) between about 0.05 and about 0.6 parts per 100 parts of the total of said alpha-beta olefinically unsaturated resin and said vinyl solvent monomers polymerizable therewith of a mono- or diester of phosphoric acid bearing one or more sites of vinyl unsaturation and having the formula:
 \[
 \begin{align*}
 R & \quad O \\
 H_2C & = C \quad = C \quad = O \quad - A \quad - O_1l_a \quad \quad P \quad = \quad O \quad - R' \quad l_a \quad m \quad = \quad 1 \quad \text{or} \quad 2 \\
 & \quad OH
 \end{align*}
 \]
 where:
 - \(R = H, Cl \) or \(CH_3 \)
 - \(A = C_a H_{2n} \), \(2 \leq n \leq 6 \)
 - \(R' = H, Cl \) or \(C_1 \) to \(C_6 \) chloro- or bromo-alkyl or \(C_1 \) to \(C_4 \) alkyl.
 2. A plural coated article in accordance with claim 1 wherein said layer of metal is a vapor deposited metal layer.
 3. An article in accordance with claim 1 wherein said base coat film is the in situ cured product of a lacquer comprising a crosslinkable resin in a volatile solvent.
 4. An article in accordance with claim 1 wherein said base coat film is in the in situ formed polymerization product of a solution which, exclusive of non-polymerizable solvent, pigments and other non-reactive components, consists essentially of (1) between about 90 and about 10 parts of a saturated, thermoplastic, vinyl polymer having a number average molecular weight of from about 2,000 to about 250,000 and being prepared from at least about 85 weight percent of monofunctional vinyl monomers and (2) between about 10 and about 90 parts of vinyl solvent monomers for said vinyl polymer, at least about 10 weight percent of said monomers being selected from the group consisting of divinyl monomers, trivinyl monomers, tetravinyl monomers and mixtures thereof.
 5. An article in accordance with claim 1 wherein said base coat film comprises the in situ formed polymerization product of a solution which, exclusive of non-polymerizable solvents, pigments and other non-reactive components, consists essentially of (1) between about 90 and about 10 parts of a saturated thermoplastic, vinyl polymer having a number average molecular weight of from about 2,000 to about 250,000 and being prepared from at least about 85 weight percent of monofunctional vinyl monomers; (2) between about 10 and about 90 parts of vinyl solvent monomers for said vinyl polymer, at least about 10 weight percent of said solvent monomers being selected from the group consisting of divinyl monomers, trivinyl monomers, tetravinyl monomers and mixtures thereof; and (3) between about 0.05 and about 1.0 parts per 100 parts of the total of said thermoplastic vinyl polymer and said vinyl solvent monomers of a mono- or diester of phosphoric acid bearing one or more sites of vinyl unsaturation and having the formula:
 \[
 \begin{align*}
 H_2C & = C \quad = C \quad = O \quad - A \quad - O_1l_a \quad \quad P \quad = \quad O \quad - R' \quad l_a \quad m \quad = \quad 1 \quad \text{or} \quad 2 \\
 & \quad OH
 \end{align*}
 \]
where:

$R = H, Cl$ or CH_3

$A = C_nH_{2n}, 2 \leq n \leq 6$

$R' = H, C_1$ to C_4 alkyl or C_1 to C_4 chloro- or bromo-alkyl.

6. An article in accordance with claim 1 wherein said base coat film comprises the in situ formed polymerization product of a solution which, exclusive of non-polymerizable solvents, pigments and other non-reactive components, consists essentially of (1) between about 90 and about 10 parts of an alpha-beta olefinically unsaturated urethane modified organic resin containing between about 0.5 and about 5 units of olefinic unsaturation per 1000 units of molecular weight; and (2) between about 10 and 90 parts of vinyl solvent monomers for said organic resin, at least about 10 weight percent of said monomers being selected from the group consisting of divinyl monomers, trivinyl monomers, tetravinyl monomers and mixtures thereof.

7. An article in accordance with claim 1 wherein said organophosphate ester is selected from the group consisting of: 2-methacryloyloxyethyl phosphate, di(2-methacryloyloxyethyl) phosphate, 2-acryloyloxyethyl phosphate, di(2-acryloyloxyethyl) phosphate, methyl 2-methacryloyloxyethyl phosphate, ethyl methacryloyloxyethyl phosphate, methyl acryloyloxyethyl phosphate and ethyl acryloyloxyethyl phosphate.

* * * *