

[19] Patents Registry [11] 1255222 B
The Hong Kong Special Administrative Region
香港特別行政區
專利註冊處

[12] **STANDARD PATENT (R) SPECIFICATION**
轉錄標準專利說明書

[21] Application no. 申請編號 [51] Int. Cl.
18114351.4 C07F 9/6561 (2006.01)
[22] Date of filing 提交日期
06.02.2015

[54] METHODS FOR PREPARING ANTI-VIRAL NUCLEOTIDE ANALOGS
製備抗病毒核苷酸類似物的方法

[62] Derived from application no. 15101331.9 under section 22 of the Patents Ordinance (Chapter 514) 根據《專利條例》(第 514 章) 第 22 條，此為申請編號 15101331.9 的分開申請	[73] Proprietor 專利所有人 Gilead Sciences, Inc. 333 Lakeside Drive FOSTER CITY, CA 94404 UNITED STATES OF AMERICA
[30] Priority 優先權 07.10.2011 US 201161544950 P	[72] Inventor 發明人 Denise, A. COLBY Andrew, Anthony MARTINS Benjamin, James ROBERTS Robert, William SCOTT Nicole, S. WHITE
[43] Date of publication of application 申請發表日期 09.08.2019	[74] Agent and / or address for service 代理人及/或送達地址 DEACONS 5th Floor, Alexandra House Central HONG KONG
[45] Date of publication of grant of patent 批予專利的發表日期 17.07.2020	
EP Application no. & date 歐洲專利申請編號及日期 EP 18153951.1 03.10.2012	
EP Publication no. & date 歐洲專利申請發表編號及日期 EP 3333173 13.06.2018	
Date of grant in designated patent office 指定專利當局批予專利日期 26.06.2019	

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 3 333 173 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
26.06.2019 Bulletin 2019/26

(51) Int Cl.:
C07F 9/6561 (2006.01)

(21) Application number: **18153951.1**

(22) Date of filing: **03.10.2012**

(54) METHODS FOR PREPARING ANTI-VIRAL NUCLEOTIDE ANALOGS

VERFAHREN ZUR HERSTELLUNG ANTIVIRALER NUKLEOTIDANALOGA

PROCÉDÉS DE PRÉPARATION D'ANALOGUES NUCLÉOTIDIQUES ANTIVIRaux

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**
Designated Extension States:
BA ME

(30) Priority: **07.10.2011 US 201161544950 P**

(43) Date of publication of application:
13.06.2018 Bulletin 2018/24

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
12798029.0 / 2 764 002

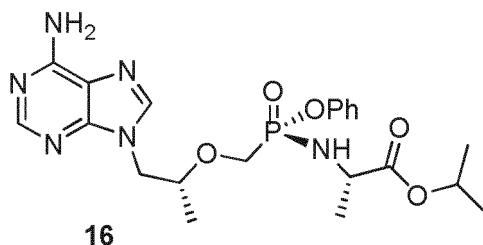
(73) Proprietor: **Gilead Sciences, Inc.
Foster City, CA 94404 (US)**

(72) Inventors:

- COLBY, Denise, A.
San Francisco, CA California 94127 (US)**
- MARTINS, Andrew, Anthony
Edmonton, Alberta T6R 2J7 (CA)**
- ROBERTS, Benjamin, James
San Mateo, CA California 94403 (US)**
- SCOTT, Robert, William
San Mateo, CA California 94401 (US)**
- WHITE, Nicole, S.
San Mateo, CA California 94403 (US)**

(74) Representative: **Carpmaels & Ransford LLP
One Southampton Row
London WC1B 5HA (GB)**

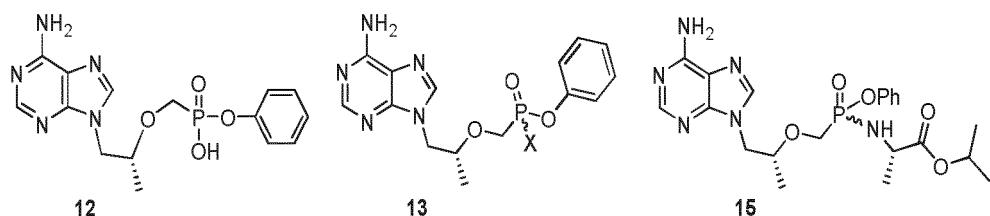
(56) References cited:
US-B2- 7 390 791 US-B2- 7 803 788


EP 3 333 173 B1

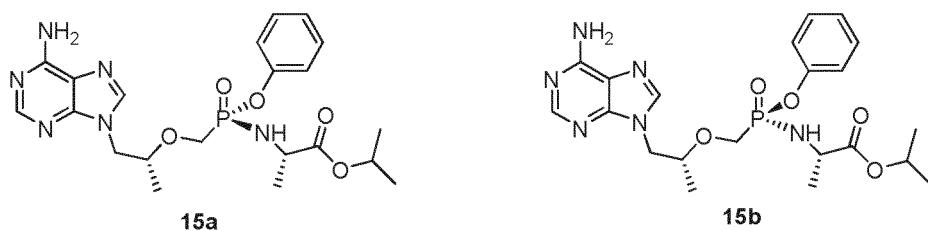
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**BACKGROUND OF THE INVENTION**5 **Description of Related Art**

[0001] U.S. Patent Nos. 7,390,791 and 7,803,788 describe certain prodrugs of phosphonate nucleotide analogs that are useful in therapy. One such prodrug is 9-<{(R)-2-<[(S)-<[(S)-1-(isopropoxycarbonyl)ethyl]amino]phenoxyphosphinyl)methoxy]propyl}adenine (compound **16**):


10

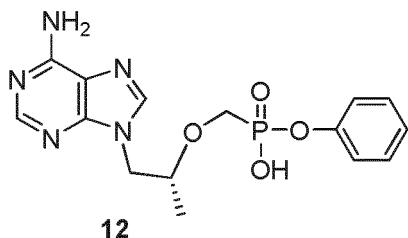
20 **[0002]** This compound is also known by the Chemical Abstract name L-alanine, N-[(S)-[(1R)-2-(6-amino-9H-purin-9-yl)-1-methylethoxy]methyl]phenoxyphosphinyl]-1-methylethyl ester. U.S. Patent Nos. 7,390,791 and 7,803,788 also disclose a monofumarate form of this compound and its preparation method (see, e.g., Example 4).


25 **[0003]** Compound **12**, compound **13** (wherein X is halo), and compound **15**:

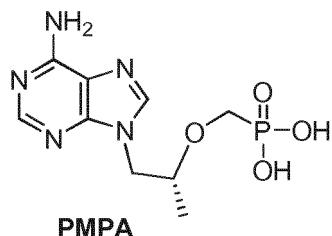
30

40 are synthetic intermediates that are useful for preparing compound **16**. Compound **15** is depicted as a mixture of diastereomers at the phosphorus center. The two diastereomers that make up the mixture of compound **15** are shown here as compounds **15a** and **15b**. Isomer **15a** is identical in structure to compound **16**.

45

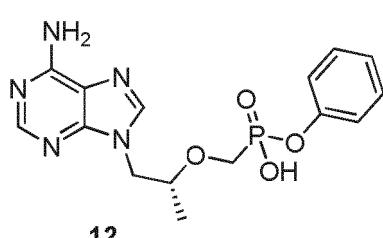

50 **[0004]** Currently, there is a need for improved methods for preparing compounds **12**, **13**, **15**, and **16**. In particular, there is a need for improved methods for preparing compounds **13**, **15**, and **16** in high diastereomeric purity. Such improved methods may provide higher yields, be easier to perform, or use less costly or toxic reagents than currently available methods.

55

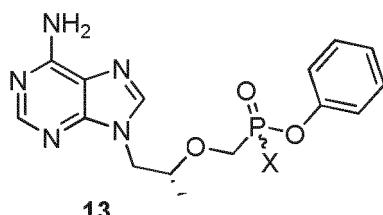

SUMMARY OF THE INVENTION

[0005] Described are an improved method for isolating 9-<{(R)-2-<[(S)-<[(S)-1-(isopropoxycarbonyl)ethyl]amino]phenoxyphosphinyl)methoxy]propyl}adenine (compound **16**) using crystallization-induced dynamic resolution; improved methods for preparing compounds **13** and **15** in high diastereomeric purity; and an improved method for preparing compound **12**.

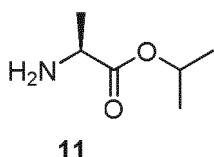
[0006] Accordingly, the invention provides a method for preparing compound **12**:


10 comprising treating PMPA:

20 with triphenylphosphite in the presence of a suitable base to provide compound 12.


25 **[0007]** Also disclosed is a method comprising subjecting a solution comprising: a) a suitable solvent; b) a suitable base; c) the diastereomeric mixture 9-{(R)-2-[(R,S)-[(S)-1-(isopropoxycarbonyl)ethyl]amino]phenoxyphosphinyl)methoxy]propyladenine; and, optionally, d) one or more seed crystals of 9-{(R)-2-[(S)-[(S)-1-(isopropoxycarbonyl)ethyl]amino]phenoxyphosphinyl)methoxy]propyladenine, to conditions that provide for the selective crystallization of 9-{(R)-2-[(S)-[(S)-1-(isopropoxycarbonyl)ethyl]amino]phenoxyphosphinyl)methoxy]propyladenine.

[0008] Also provided is a method for preparing compound 13 that is at least about 90% diastereomerically pure by treating a toluene solution of compound 12:



40 with thionyl chloride to provide compound 13, where X = Cl.

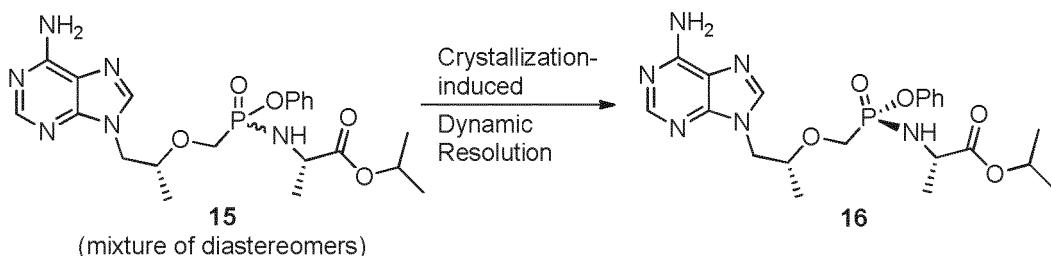
[0009] Also disclosed is a method for preparing 9-{(R)-2-[(R,S)-[(S)-1-(isopropoxycarbonyl)ethyl]amino]phenoxyphosphinyl)methoxy]propyladenine (compound 15) that is at least about 90% diastereomerically pure compound 16, comprising treating compound 13:

(wherein X is halo) that is at least about 90% diastereomerically pure with amine 11:

under conditions that provide compound **15** that is at least about 90% diastereomerically pure compound **16** (i.e., isomer **15a**).

DETAILED DESCRIPTION OF THE INVENTION

5


[0010] The invention is defined by the appended claims.

[0011] Specific values listed below for radicals, substituents, and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents.

10 Preparation of Compound **16** by Crystallization-induced Dynamic Resolution

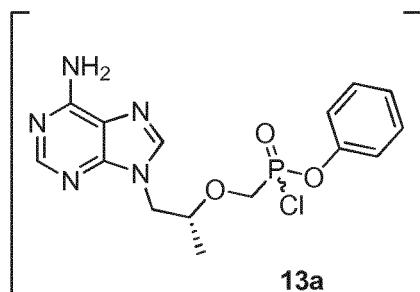
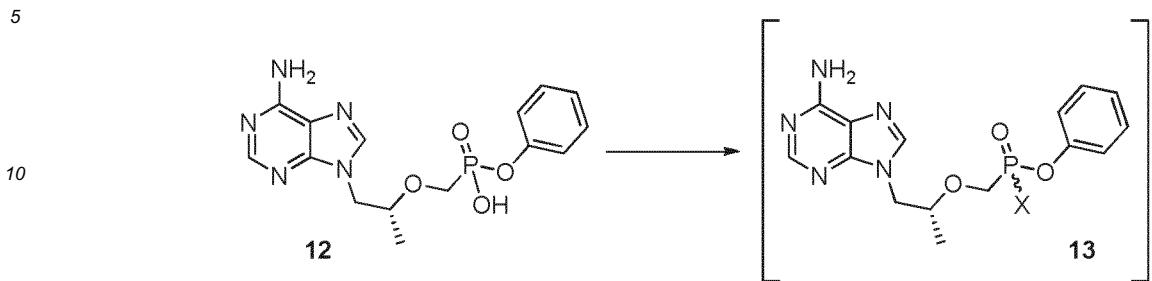
[0012] In one embodiment, there is provided a method for the crystallization-induced dynamic resolution of 9-<{(R)-2-[(*(R,S*)-{[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy]propyl}adenine (compound **15**):

15

20 to provide 9-<{(R)-2-[(*(S*)-{[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy]propyl}adenine (compound **16**). The method comprises subjecting a solution comprising: a) a suitable solvent; b) a suitable base; c) 9-<{(R)-2-[(*(R,S*)-{[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy]propyl}adenine; and, optionally, d) one or more seed crystals of 9-<{(R)-2-[(*(S*)-{[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy]propyl}adenine, to conditions that provide for the epimerization of the phosphorus center, under conditions that also provide selective crystallization of 9-<{(R)-2-[(*(S*)-{[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy]propyl}adenine.

25 **[0013]** The crystallization can be carried out in any suitable solvent. For example, it can be carried out in an aprotic organic solvent, or in a mixture thereof. For example, the aprotic organic solvent may comprise ethyl acetate, methyl acetate, propyl acetate, isopropyl acetate, diethyl ether, diisopropyl ether, tetrahydrofuran, dichloromethane, acetone, 30 methyl ethyl ketone, methyl *tert*-butylether, toluene, or acetonitrile, or a mixture thereof. In one embodiment, the solvent comprises acetonitrile.

35 **[0014]** The resolution can be carried out in the presence of any suitable base. For example, the resolution can be carried out in the presence of a base selected from 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD), tetramethylguanidine, a Verkade base (e.g., 40 2,8,9-triisopropyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane, and 2,8,9-triisobutyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane), a metal carbonate (e.g., M_xCO_3), a metal phenoxide ($M^{+}OPh$), and PhOTMS in combination with a fluoride ion source (e.g., $R_4N^+ \cdot F^-$, TASF (tris(dimethylamino)sulfonium difluorotrimethylsilicate), or TBAT (tetrabutylammonium triphenyldifluorosilicate), and mixtures thereof, wherein each M is a suitable metal such as an alkali metal or an alkaline earth metal, and each R is, for example, a (C_1-C_6) alkyl. In one specific embodiment, the base is DBU.

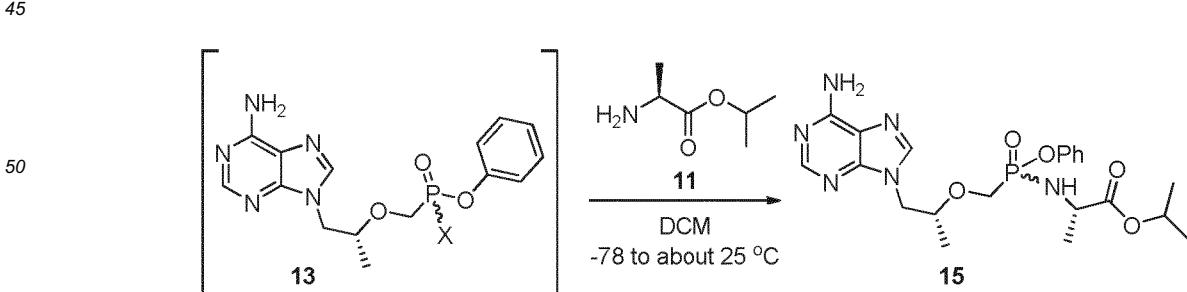


45 **[0015]** The resolution can also be carried out at any suitable temperature, for example, a temperature in the range of from about 0 °C to about 50 °C. In one specific embodiment, the resolution is carried out at a temperature of about 20 °C.

50 **[0016]** In one specific embodiment, the resolution is carried out in the presence of phenol.

55 **[0017]** The percentage of compound **16** in the starting diastereomeric mixture can be anywhere in the range from about 0% to about 99%. In one embodiment, the percentage of compound **16** in the starting diastereomeric mixture is in the range from about 0% to about 20%. In one embodiment, the percentage of compound **16** in the starting diastereomeric mixture is in the range from about 20% to about 99%. In one embodiment, the percentage of compound **16** in the starting diastereomeric mixture is in the range from about 50% to about 99%. In one embodiment, the final compound **16** is at least about 90%, about 95%, about 97%, or about 99% diastereomerically pure. In one embodiment, the final compound **16** contains less than 1% of any diastereomeric impurities. In one embodiment, the final compound **16** is free of any detectable diastereomeric impurities.

Preparation of Compound **13** that has High Diastereomeric Purity

[0018]



40

that is at least about 90% diastereomerically pure. In one embodiment, the final compound **13a** is at least about 90%, about 95%, about 97%, or about 99% diastereomerically pure. In one embodiment, the final compound **13a** contains less than 1% of any diastereomeric impurities. In one embodiment, the final compound **13a** is free of any detectable diastereomeric impurities.

Preparation of Compound **15** in High Diastereomeric Purity

[0021]

[0022] Compound **15** can be prepared by treating compound **13** (wherein X is halo) that is at least about 90% diastereomerically pure with amine **11** under conditions that provide compound **15** that is at least about 90% diastereomerically pure in the specific isomer **15a**, also represented herein as compound **16**. For example, compound **15** can be prepared

by treating compound **13** with amine **11** in a suitable organic solvent at a suitable temperature (e.g., a temperature in the range from about -78 °C to about 25 °C). Suitable solvents include organic solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, dichloromethane, 1,2-dichloroethane, trichloroethylene, 1,4-dioxane, acetonitrile, toluene, chlorobenzene, sulfolane, and isopropyl acetate, and mixtures thereof. The reaction conveniently can be carried out in the presence of a suitable base, such as, for example, triethylamine ((C₂H₅)₃N), *N,N*-diisopropylethylamine ([(CH₃)₂CH]₂NC₂H₅], or 1,8-bis(dimethylamino)-naphthalene (proton sponge, C₁₄H₁₈N₂). Following the reaction, the resulting material can be washed with an aqueous solution containing a suitable wash reagent, such as, for example, sodium phosphate monobasic (NaH₂PO₄), potassium bicarbonate (KHCO₃), citric acid (C₆H₈O₇), or sodium bicarbonate (NaHCO₃). The resulting organic solution can be dried over a suitable drying agent, for example, sodium sulfate, magnesium sulfate, or calcium chloride to provide compound **15** that is at least about 90% diastereomerically pure compound **16**.

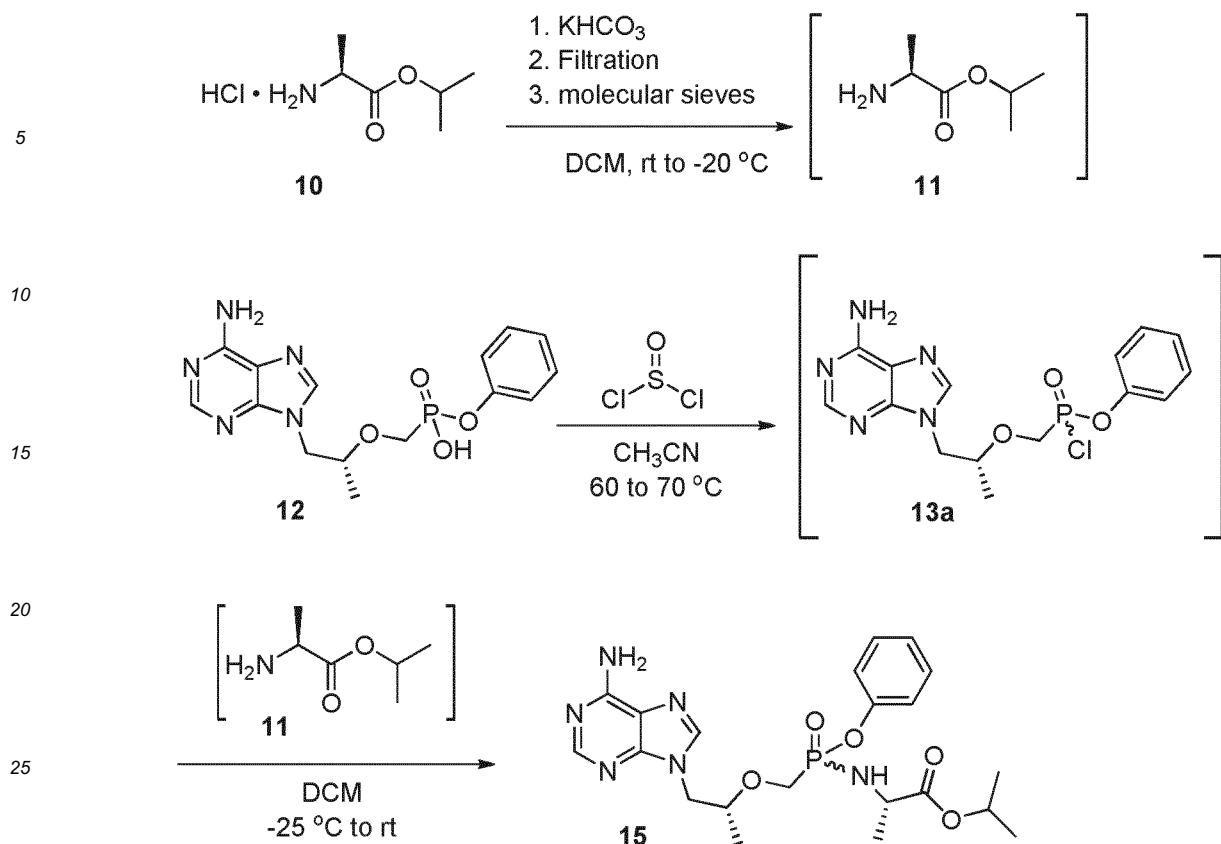
[0023] In one embodiment, compound **13** that is at least about 90% diastereomerically pure (wherein X is chloro) is treated with amine **11** in dichloromethane at a temperature of -25 °C to 25 °C in the presence of triethylamine. The resulting reaction mixture is then washed with an aqueous solution containing sodium phosphate monobasic (NaH₂PO₄) and potassium bicarbonate (KHCO₃) and dried over sodium sulfate to provide compound **15** that is at least about 90% diastereomerically pure compound **16**. In one embodiment, the starting compound **13** and resulting compound **15** are at least about 95% or 97% diastereomerically pure. In one embodiment, the final compound **15** contains at least about 90%, about 95%, about 97%, or about 99% diastereomerically pure compound **16**. In one embodiment, the final compound **15** contains less than 1% of any diastereomeric impurities.

Preparation of Compound **12**

[0024] Compound **12** can be prepared as described in, e.g., U.S. Patent No. 7,390,791, or it can be prepared as described herein. In one embodiment of the invention, there is provided a method for preparing compound **12** comprising treating PMPA with triphenylphosphite in the presence of a suitable base to provide compound **12**. The reaction conveniently can be carried out in a suitable solvent, such as, for example, acetonitrile, N-methylpyrrolidone (NMP), dichloroethane, pyridine, an alkyl acetate (e.g., ethyl acetate), or a dialkyl ether (e.g., diethyl ether), or a mixture thereof. The reaction conveniently also can be carried out in the presence of a suitable base, such as, for example, a trialkylamine (e.g., triethylamine), 2-methylimidazole, dimethylaminopyridine (DMAP), 1,5-diazobicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), or pyridine, or a mixture thereof. The reaction conveniently also can be carried out at a suitable temperature, such as, for example, a temperature from about 20 °C to about 120 °C (e.g., from about 20 °C to about 82 °C). In one specific embodiment, PMPA is treated with triphenylphosphite in the presence of triethylamine and dimethylaminopyridine in acetonitrile at about 80 °C to provide compound **12**.

[0025] The following Examples 1-4 do not form part of the invention.

Example 1: Preparation of Diastereomeric Mixture 9-((R)-2-[((R,S)-{[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy]propyl)adenine (Compound **15**)


[0026]

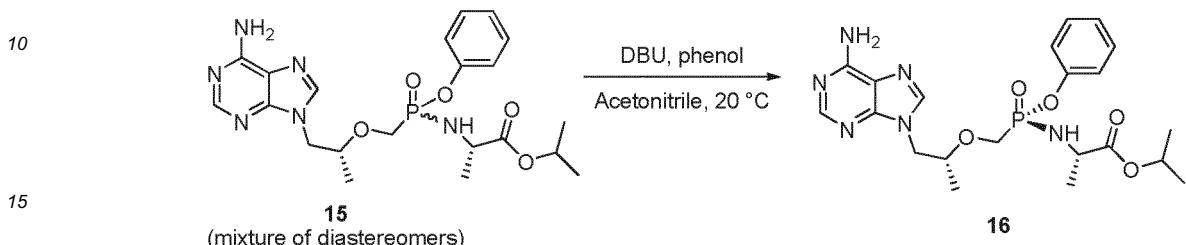
40

45

50

55

a. Preparation of Compound 11. Isopropyl L-alanine ester hydrochloride (compound 10) (1 kg, 5.97 mol, 1.0 equiv) and potassium bicarbonate (1.45 kg, 14.5 mol, 2.43 equiv) were agitated in DCM (4 kg) for 10 to 14 hours with maximum agitation, maintaining the pot temperature between 19 °C and 25 °C. The mixture was then filtered and rinsed forward with DCM (2 kg). The filtrate was dried over a bed of 4 Å molecular sieves until the water content of the solution was ≤ 0.05%. The resultant stock solution containing compound 11 was then cooled to a pot temperature of -20 °C and held for further use.


b. Preparation of Compound 13a. To a solution of thionyl chloride (0.72 kg, 6.02 mol, 2.19 equiv) in acetonitrile (5.5 kg) at 60 °C was added compound 12 (1 kg, 2.75 mol, 1.00 equiv) in 10 equal portions over 2 hours. The pot temperature was then adjusted to 70 °C and stirred for 1 to 3 hours until the reaction was deemed complete. The pot temperature was then adjusted to 40 °C and vacuum applied. The mixture was distilled to dryness, maintaining a maximum jacket temperature of 40 °C. The dry residue was then taken up in dichloromethane (30 kg) and the pot temperature adjusted to 19 °C to 25 °C. The resultant slurry containing compound 13a was held for further use.

c. Preparation of Compound 15. To the stock solution of isopropyl L-alanine ester 11 (4.82 equiv) at -25 °C was added slurry containing compound 13a (1.0 equiv) over a minimum of 2 hours, maintaining the pot temperature ≤ -10 °C. The mixture was then held at a temperature ≤ -10 °C for at least 30 minutes, then the pH checked using water wet pH paper. If the pH was < 4, adjustment with triethylamine to pH 4-7 was performed. The pot temperature was then adjusted to room temperature (19 °C to 25 °C). In a separate vessel, a solution of sodium phosphate monobasic (2.2 kg, 18 mol, 6.90 equiv) in water (16 kg) was prepared. Half of the sodium phosphate monobasic solution was charged to the phosphonamide reactor, and vigorously stirred. The layers were settled and partitioned. The organic layer was washed again with the remaining half of sodium phosphate monobasic solution. In a separate vessel, a solution of potassium bicarbonate (1.1 kg, 11 mol, 4.22 equiv) in water (5.5 kg) was prepared. Half of the potassium bicarbonate solution was charged to the organic phase, and vigorously stirred. The layers were settled and partitioned. The organic layer was washed again with the remaining half of the potassium bicarbonate solution, followed by a final water (3.3 kg) wash. The organic phase was then retained and distilled to a volume of approximately 6 L. The resultant solution was analyzed for water content. If the water content was > 1.0%, DCM could be charged and the distillation to approximately 6 L repeated. When the solution water content was less than or about 1.0%, the pot temperature was adjusted to 19 °C to 25 °C prior to discharge of the stock solution in DCM to provide the diastereomeric mixture 9-{(R)-2-[((R,S)-{[(S)-1-(isopropoxycarbonyl)ethyl]amino]phenoxyphosphinyl)methoxy]propyl}adenine (compound 15). ¹H NMR (400 MHz, CDCl₃): δ 1.20 - 1.33 (m, 12H), 3.62 - 3.74 (m, 1H), 3.86 - 4.22 (m, 5H), 4.30 - 4.44 (m, 1H), 4.83 - 5.10 (m, 1H), 6.02 (br s, 3H), 7.18 - 7.34 (m, 5H), 7.98 - 8.02 (m, 1H), 8.32 -

8.36 (m, 1H); ^{31}P NMR (162 MHz, CDCl_3): δ . 21.5, 22.9.

Example 2: Crystallization-induced Dynamic Resolution of Diastereomeric Mixture 9-<{((R,S)-{[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy}propyl}adenine (Compound 15) to Provide 9-<{((R)-2-[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy}propyl}adenine (Compound 16)

[0027]

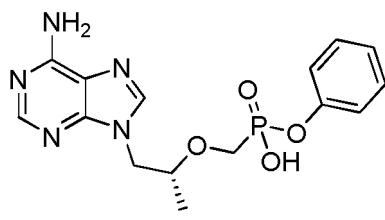
[0028] A 22 wt% solution of 9-<{((R)-2-[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy}propyl}adenine (compound 15) in acetonitrile (2.3 kg solution, 0.51 kg compound 15, 1.1 mol, 1 equiv) was charged to a vessel equipped with an overhead stirrer, distillation apparatus, and nitrogen inlet. The mixture was concentrated by distillation at 100 to 300 mbar over a temperature range of 45 °C to 55 °C to a final concentration of 30 to 35 wt%. The distillation apparatus was then removed and the solution was cooled to 20 °C. The solution was seeded with 2.0% compound 16 and allowed to stir for one hour at 20 °C. Phenol (9.9 g, 0.11 mol, 0.1 equiv) and DBU (16 g, 0.11 mol, 0.1 equiv) were added and the mixture was stirred for an additional 24 hours, or until the weight percent of compound 16 remaining in solution was less than 12%. The slurry was then cooled to 0 °C and stirred for an additional 18 hours at 0 °C. The slurry was filtered and washed with a 1:1 solution of isopropyl acetate:acetonitrile (1.5 L) at 0 °C. The solids were dried in a vacuum oven at 50 °C to give 0.40 kg of compound 16 (80% yield) as a white solid. ^1H NMR (400 MHz, CDCl_3): δ 1.21 (m, 9H), 1.28 (d, J = 7.0 Hz, 3H), 3.65 (dd, J = 13.1, 10.7, 1H) 4.00 (m, 4H), 4.33 (dd, J = 14.4, 3.1 Hz, 1H), 5.00 (m, 1H) 6.00 (bs, 2H), 6.99 (m, 2H), 7.07 (m, 1H), 7.19 (m, 2H), 7.97 (s, 1H), 8.33 (s, 1H). ^{31}P NMR (162 MHz, CDCl_3): δ . 20.8.

Example 3: Preparation of Compound 13a in High Diastereomeric Purity

[0029] To a slurry of compound 12 (10.0 g, 27.5 mmol, 1.00 equiv) in toluene (60 mL) at ambient temperature was added thionyl chloride (3.0 mL, 41 mmol, 1.5 equiv). The slurry was heated to 70 °C and agitated for 48 to 96 hours until reaction and diastereomeric enrichment were deemed complete by HPLC (Target: > 97.0% conversion of compound 12 to compound 13a and > 90:10 diastereomeric ratio of compound 13a). The mixture was concentrated to dryness by vacuum distillation, and the dry residue was taken up in toluene (50 mL). The resultant slurry containing compound 13a was held at ambient temperature for further use.

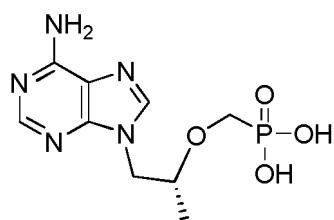
Example 4: Preparation of 9-<{((R)-2-[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy}propyl}adenine (Compound 15) in High Diastereomeric Purity

[0030] To a solution of isopropyl L-alanine ester 11 (4.50 equiv) in DCM (80 mL) at -25 °C was added a slurry containing compound 13a (1.00 equiv) that is at least 90% diastereomerically pure in toluene (50 mL) over a minimum of 45 minutes, maintaining the internal temperature \leq -20 °C. The mixture was then held at a temperature \leq -20 °C for at least 30 minutes, and the pH checked using water wet pH paper. If the pH was < 4, it was adjusted with triethylamine to pH 4 to 7. The pot temperature was adjusted to room temperature (19 °C to 25 °C). The mixture was transferred to a separatory funnel and washed sequentially with 10% w/v aqueous solution of sodium phosphate monobasic (2 x 50 mL), 15% w/v aqueous solution of potassium bicarbonate (2 x 20 mL), and water (50 mL). The final organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo* to a viscous amber oil. The oil was dissolved in toluene/acetonitrile (4:1) (50 mL), and the solution was seeded with 9-<{((R)-2-[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy}propyl}adenine (about 1 mg, 99:1 diastereomeric ratio) and stirred for 2 hours at ambient temperature. The resultant slurry was filtered and the filter cake was washed with toluene/acetonitrile (4:1) (15 mL) and dried in a vacuum oven at 40 °C for 16 hours to give the product, 9-<{((R)-2-[(S)-1-(isopropoxycarbonyl)ethyl]amino}phenoxyphosphinyl)methoxy}propyl}adenine (compound 15), as a white solid (10.0 g, 76.4%, 97.5:2.5 diastereomeric ratio in favor of compound 16). ^1H NMR (400 MHz, CDCl_3): δ 1.20 - 1.33 (m, 12H), 3.62 - 3.74 (m, 1H), 3.86 - 4.22 (m, 5H), 4.30 - 4.44 (m, 1H), 4.83 - 5.10 (m, 1H), 6.02 (br s, 3H), 7.18 - 7.34 (m, 5H), 7.98 - 8.02 (m, 1H), 8.32 - 8.36 (m,


1H); ^{31}P NMR (162 MHz, CDCl_3): δ . 21.5, 22.9.

Example 5: Preparation of Compound **12**

[0031] PMPA (100.0 g, 0.35 mol, 1 equiv) was charged to a vessel equipped with an overhead stirrer, reflux condenser, and nitrogen inlet, followed by acetonitrile (800 mL). To the vessel was added triethylamine (71.0 g, 0.70 mol, 2 equiv) followed by DMAP (42.6 g, 0.35 mol, 1 equiv) and triphenylphosphite (162.1 g, 0.52 mol, 1.5 equiv). The mixture was heated to 80 °C and agitated for \geq 48 hours at 80 °C or until the reaction was complete by ^{31}P NMR. (A sample directly from the reaction is taken and an insert containing 10% H_3PO_2 in D_2O is added. The intermediate formed is the PMPA anhydride and is at 7 to 8 ppm; the product is at 12.3 to 12.6 ppm. The reaction is deemed complete when less than 5% anhydride is present). The reaction mixture was distilled to approximately 1.5 volumes of acetonitrile and diluted with ethyl acetate (200 mL) and water (300 mL). The aqueous layer was separated and washed with ethyl acetate (200 mL) twice. The aqueous layer was recharged to the vessel and pH adjusted to pH 3 using 12.1 M HCl (21.0 mL). The reaction was then seeded with 0.05% of compound **12** and allowed to stir at 25 °C. An additional 12.1 M HCl was added over 20 minutes (7.0 mL) until pH 2 was achieved. The crystallization was allowed to stir at ambient temperature for 30 minutes and then cooled to 10 °C over 2 hours. Once at 10 °C, the crystallization was allowed to stir for 2.5 hours at 10 °C. The slurry was filtered and washed with pH 1.5 water (200 g). After drying in the vacuum oven, 102.2 g of compound **12** (81% yield) was obtained as a white solid. ^1H NMR (400 MHz, D_2O): δ 1.31 (d, J = 6.1 Hz, 3H), 3.59 (dd, J = 14.0, 9.0 Hz, 1H), 3.85 (dd, J = 14.0, 9.0 Hz, 1H), 4.1 (m, 1H), 4.3 (dd, J = 15.0, 9.0 Hz, 1H), 4.5 (dd, J = 15.0, 2 Hz, 1H), 6.75 (d, J = 7 Hz, 2H), 7.15 (t, J = 7 Hz, 1H), 7.25 (t, J = 7 Hz, 2H), 8.26 (s, 1H), 8.35 (s, 1H). ^{31}P NMR (162 MHz, D_2O): δ . 14.8.


Claims

1. A method for preparing compound **12**:

35

comprising treating PMPA:

45

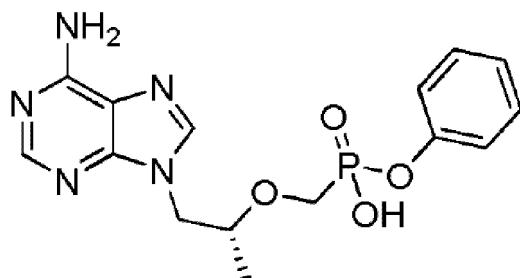
PMPA

with triphenylphosphite in the presence of a suitable base to provide compound **12**.

50

2. The method of claim 1, wherein PMPA is treated with triphenylphosphite in the presence of triethylamine and dimethylaminopyridine in a suitable solvent to provide compound **12**.
3. The method of claim 1 or 2, wherein PMPA is treated with triphenylphosphite in acetonitrile at a temperature in the range of from about 20 °C to about 82 °C.

55

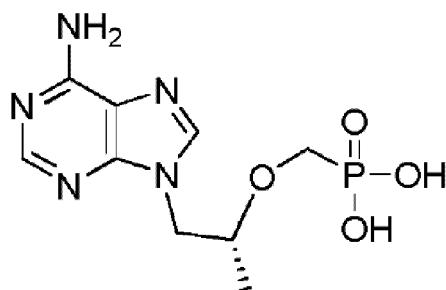

Patentansprüche

1. Verfahren zur Herstellung von Verbindung 12:

5

10

15


12

bei dem man PMPA:

20

25

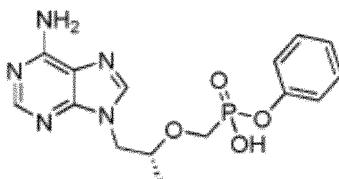
30

PMPA

in Gegenwart einer geeigneten Base mit Triphenylphosphit behandelt, was Verbindung 12 ergibt.

2. Verfahren nach Anspruch 1, bei dem man PMPA in Gegenwart von Triethylamin und Dimethylaminopyridin in einem geeigneten Lösungsmittel mit Triphenylphosphit behandelt, was Verbindung 12 ergibt.

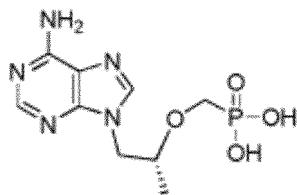
3. Verfahren nach Anspruch 1 oder 2, bei dem man PMPA in Acetonitril bei einer Temperatur im Bereich von etwa 20 °C bis etwa 82 °C mit Triphenylphosphit behandelt.


40

Revendications

1. Procédé pour la préparation du composé 12 :

45


50

12

55 comprenant le traitement de la PMPA (9-[(R)-2-(phosphonomethoxy)propyl]adenine - 9-[(R)-2-(phosphonométhoxy)propyl]adénine) :

5

PMPA

10 avec du phosphite de triphényle en présence d'une base appropriée pour obtenir le composé 12.

2. Procédé selon la revendication 1, la PMPA étant traitée avec du phosphite de triphényle en présence de triéthylamine et de diméthylaminopyridine dans un solvant approprié pour obtenir le composé 12.

15 3. Procédé selon la revendication 1 ou 2, la PMPA étant traitée avec du phosphite de triphényle dans de l'acétonitrile à une température dans la plage de 20°C jusqu'à environ 82°C.

20

25

30

35

40

45

50

55

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 7390791 B [0001] [0002] [0024]
- US 7803788 B [0001] [0002]