
US 20120331377A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0331377 A1

HOWell et al. (43) Pub. Date: Dec. 27, 2012

(54) CONTENTRENDERING ON A COMPUTER (22) Filed: Sep. 7, 2012

Related U.S. Application Data
75) I tors: Gareth Alan Howell. Bothell, WA (US): (75) Inventors MN FAR RNA SR (63) Continuation of application No. 12/397.351, filed on

(US); Brendyn O'Dell-Alexander, Mar. 4, 2009.
Seattle, WA (US); Nicholas Allen Publication Classification
Robarge, Redmond, WA (US); Zhenjun
Zhu, Redmond, WA (US): Sugandha (51) Int. Cl.
Sudesh Kumar Kapoor, Sammamish, G06F 3/0 (2006.01)
WA (US); Kiran Akella Venkata, G06F I7/00 (2006.01)
Bellevue, WA (US); Juraj Gottweis, (52) U.S. Cl. .. 715/234; 715/760
Bellevue, WA (US)

(57) ABSTRACT

(73) Assignee: MICROSOFT CORPORATION Portions of content are transformed into portions of rendered
Redmond, WA (US) s content. While the portions of the content are being trans

formed into portions of the rendered content, each discrete
portion of the rendered content can be provided to the appli

21) Appl. No.: 13/606,704 cation program after that portion is completed. pp progr p p

APPLICATION SERVER 116

DOCUMENT STORE 112 RENDERING
MODULE 118

DOCUMENT 110 APPLICATION
MANAGER 120

BACKEND CACHE 122

COMPUTER 104
NETWORK

108
WEBBROWSER 106

US 2012/0331377 A1 Dec. 27, 2012 Sheet 1 of 5 Patent Application Publication

L ‘813

80|| || || NEWßOOC] (TERJECINE}}

Z0|| CINE | NOH-]

US 2012/0331377 A1 Dec. 27, 2012 Sheet 2 of 5 Patent Application Publication

Z '81-I 890Z LNE|W|\OOO ONOOES ?7?Ž EDETTO ONIHECINEM Ž?Ž HE?WNWW OWOTNMOCI

Patent Application Publication Dec. 27, 2012 Sheet 3 of 5 US 2012/0331377 A1

s
CN
O
CY

-
D
?h
O

CD
1.

H
CO

D
C

1.

US 2012/0331377 A1 Dec. 27, 2012 Sheet 4 of 5 Patent Application Publication

g007

QË ‘81+ |NEWTWOOC] (HO-| || SETTOERH E/\[EOE}}

|NEWTWOOC] HO NO|| HOd èHECINE|}}

US 2012/0331377 A1 Dec. 27, 2012 Sheet 5 of 5 Patent Application Publication

ÕIG

90G STIG WELSÅS

US 2012/0331377 A1

CONTENTRENDERING ON A COMPUTER

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of co-pending
U.S. patent application Ser. No. 12/397.351 entitled “Content
Rendering on a Computer filed Mar. 4, 2009, which is
expressly incorporated by reference herein.

BACKGROUND

0002 Productivity application programs, such as word
processing applications, spreadsheet applications, and pre
sentation applications, enable users to create different types
of documents. These documents may include data that is
native to a particular document type and even to a particular
application program. In order to view this native data, a user
may view the document through the productivity application
program that created the document. For example, a user may
rely on a particular word processing application to view a
word processing document that was created by the word
processing application.
0003) A problem can arise when documents are shared
across the WorldWideWeb (hereinafter referred to as “web”)
through web browsers. In particular, typical web browsers
may not be capable of reading a given document in its native
format. In order to address this problem, a web server can be
implemented to execute code that is capable of rendering a
document from its native format into a web-compatible for
mat that can be viewed through the web browser.
0004 Conventional implementations of such web servers
render a document in its entirety prior to providing the ren
dered version to the web browser. This is sometimes referred
to as document pre-rendering. During pre-rendering, a user
who requests to view a given document may be forced to wait
a significant amount of time before the document has been
completely rendered. This delay can cause Substantial frus
tration and inconvenience for the user.
0005. It is with respect to these considerations and others
that the disclosure made herein is presented.

SUMMARY

0006 Technologies are described herein for rendering
content, Such as documents. An application server is provided
for rendering documents and other content from a native
document format into a web-compatible format capable of
being viewed through a web browser or other suitable appli
cation. The application server includes a rendering module,
which is operative to incrementally render documents.
Through incremental rendering, the application server can
provide portions of rendered documents to the web browser
while the native documents are still being rendered. Other
example implementations of the technologies described
herein include converting a document from one format into
another format (e.g., transforming a document from a binary
file format into an Office Open XML format, a Portable
Document Format (“PDF), and the like).
0007. A download manager is also provided in order to
increase the throughput of the rendering module. While the
rendering module is rendering one document, the download
manager may begin retrieving other documents to be ren
dered at a later time. These other documents may be down
loaded from a storage server and stored in a rendering queue
on the application server. Once the rendering module

Dec. 27, 2012

becomes available, the rendering module can immediately
begin rendering these other documents directly from the ren
dering queue without any downtime while waiting for docu
ments to be retrieved.
0008. One or more caches are also provided in order to
reduce the amount of work utilized to retrieve documents and
other content. Examples of caches include a document cache,
an authorization cache, and a location cache. The document
cache may be operative to store rendered documents in the
front end, thereby eliminating the need to retrieve the ren
dered documents from other storage units in the back end. The
authorization cache may be operative to store authorization
and authentication data, thereby eliminating the need to re
authorize or re-authenticate a user who later accesses the
same document. The location cache may be operative to store
the location of a rendered document. Through the use of the
location cache, the rendered document can be efficiently
retrieved from the relevant storage unit without the need to
query multiple storage units.
0009. According to one embodiment, a method is pro
vided herein for rendering content for viewing through a web
browser operating on a computer. Portions of the content are
transformed into portions of rendered content. While the por
tions of the content are being transformed into portions of the
rendered content, at least one of the portions of the rendered
content can be provided to an application program.
0010. It should be appreciated that the above-described
Subject matter may also be implemented as a computer-con
trolled apparatus, a computer process, a computing System, or
as an article of manufacture such as a computer-readable
medium. These and various other features will be apparent
from a reading of the following Detailed Description and a
review of the associated drawings.
0011. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed Subject matter, nor is it intended that this Summary
be used to limit the scope of the claimed subject matter.
Furthermore, the claimed subject matter is not limited to
implementations that solve any or all of the disadvantages
noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

0012 FIG. 1 is a block diagram showing an illustrative
system architecture operative to render documents for view
ing through a web browser, in accordance with embodiments;
0013 FIG. 2 is a block diagram showing an illustrative
implementation of an application manager from the system
architecture of FIG. 1, in accordance with embodiments;
0014 FIG. 3 is a block diagram showing an illustrative
implementation of a frontend from the system architecture of
FIG. 1, in accordance with embodiments;
0015 FIG. 4A is a flow diagram showing an illustrative
process for rendering content for viewing through a web
browser, in accordance with embodiments;
0016 FIG. 4B is a flow diagram showing an illustrative
process for fetching a portion of the rendered content, in
accordance with embodiments; and
0017 FIG. 5 is a computer architecture diagram showing
an illustrative computer hardware architecture for a comput
ing system capable of implementing the embodiments pre
sented herein.

US 2012/0331377 A1

DETAILED DESCRIPTION

0018. The following detailed description is directed to
technologies for rendering content, such as documents.
Through the utilization of the technologies and concepts pre
sented herein, an application server is provided that is opera
tive to incrementally render a document or other content from
its native format into another format. Such as a web-compat
ible format. In contrast to pre-rendering, as content is being
incrementally rendered, each discrete portion of the docu
ment or other content that has been rendered can be made
available to the user. One or more caches may also be pro
vided in order to reduce the amount of work utilized to
retrieve rendered content.
0019 Embodiments described herein may refer to pages
and slides as discrete portions of documents and rendered
documents. However, it should be appreciated that pages and
slides are merely examples of discrete portions and are not
intended to be limiting. Other kinds of discrete portions, as
contemplated by those skilled in the art, may be similarly
implemented.
0020. Although not so limited, embodiments described
herein primarily refer to documents and document rendering.
However, it should be appreciated that the embodiments
described herein may be similarly applied to any suitable
content which can be rendered from a native format into
another format. Such content may include any multimedia,
Such as text, images, audio, video, and combinations thereof.
Further, embodiments described herein primarily refer to the
rendered format as a web-compatible format capable of being
viewed through a web browser. However, it should be appre
ciated that the rendered format may be other suitable formats
as contemplated by those skilled in the art.
0021 While the subject matter described herein is pre
sented in the general context of program modules that execute
in conjunction with the execution of an operating system and
application programs on a computer system, those skilled in
the art will recognize that other implementations may be
performed in combination with other types of program mod
ules. Generally, program modules include routines, pro
grams, components, data structures, and other types of struc
tures that perform particular tasks or implement particular
abstract data types. Moreover, those skilled in the art will
appreciate that the subject matter described herein may be
practiced with other computer system configurations, includ
ing hand-held devices, multiprocessor systems, microproces
sor-based or programmable consumer electronics, minicom
puters, mainframe computers, and the like.
0022. In the following detailed description, references are
made to the accompanying drawings that form a part hereof,
and which are showing by way of illustration specific
embodiments or examples. Referring now to the drawings, in
which like numerals represent like elements through the sev
eral figures, concepts and technologies for providing on-de
mand content viewing will be described. In particular, FIG. 1
is a block diagram showing a system architecture 100 opera
tive to render documents and to retrieve rendered documents
according to embodiments. The architecture 100 includes a
front end 102 that is operative to communicate with a com
puter 104. The front end 102 may receive and process
requests from a web browser 106 over a network 108, such as
the Internet. For example, the front end 102 may receive a
Hypertext Transfer Protocol (“HTTP) message with a
request for a specific document. Such as document 110A,
stored in a document store 112. It should be appreciated that

Dec. 27, 2012

the components of the architecture 100 may reside on the
same server, according to further embodiments. Splitting the
architecture 100 into the front ends and application servers is
merely an implementation design choice and is not intended
to be limiting.
0023. In response to receiving the HTTP request, the web
front end 102 may attempt to retrieve, from an output store
114, a web-compatible rendered document 110B correspond
ing to the requested document 110A. For example, the ren
dered document 110B may be stored in the output store 114 if
the document 110A was recently rendered. If the output store
114 contains the rendered document 110B corresponding to
the document 110A, then the output store 114 may return the
rendered document 110B to the front end 102.

0024. If the output store 114 does not contain the rendered
document 110B, then the application server 116, and more
specifically the rendering module 118, may retrieve the docu
ment 110A from the document store 112. According to
embodiments, a rendering module 118 in the application
server 116 is operative to render (i.e., convert, transform) the
document 110A into the rendered document 110B. The ren
dering module 118 may generate the rendered document
110B in any format capable of being displayed by a suitable
web browser. Example formats may include an image format
(e.g., Portable Network Graphics (“PNG”), Joint Photo
graphic Experts Group (“JPEG), etc.), MICROSOFT SIL
VERLIGHT, ADOBE FLASH, and the like. The rendering
module 118 may also generate the rendered document 110B
into a web-ready rendition that may include Extensible
Markup Language (XML), scripts, HypertextMarkup Lan
guage (“HTML'), images, and/or the like, such that indi
vidual data types in the web-ready rendition can be under
stood collectively by the web browser. Each of these data
types may be made available to the user upon being generated
by the incremental rendering process described herein. The
rendering module 118 may also be operative to concurrently
render multiple documents. Upon generating the rendered
document 110B, the application server 116 may store the
rendered document 110B in the output store 114 and return
the rendered document 110B to the front end 102.

0025. Upon receiving the rendered document 110B, the
front end 102 may respond to the HTTP request by providing
the rendered document 110B to the web browser 106 via the
HTTP protocol. The web browser 106 can then display the
rendered document 110B, which is a full-fidelity representa
tion of the corresponding document 110A. The full-fidelity
representation contains the same formatting (e.g., layout,
resolution, content, etc.) found in the original representation.
Thus, a user can expect the same experience viewing a given
document whether the document is viewed through a produc
tivity application program or through a web browser, such as
the web browser 106. The full-fidelity representation can be
contrasted against a lower-fidelity representation in which,
for example, the layout may be changed or the resolution and
content may be reduced. In other embodiments, the rendered
document 110B may be utilized for non-viewing scenarios,
Such as converting binary files to another document type for
editing. For example, a MICROSOFT OFFICE binary file
may be rendered into an OPEN OFFICE EXTENSIBLE
MARKUP LANGUAGE (“OOXML) file.
0026. It should be appreciated that the components and the
configuration of the components within the architecture 100
of FIG. 1 are merely illustrative and are not intended to be
limiting. In other embodiments, the architecture 100 may

US 2012/0331377 A1

include additional front ends and/or additional application
servers. Further, multiple front ends and/or multiple applica
tion servers may reside on the same server. For example,
additional front ends may be utilized to handle a greater
quantity of requests from web browsers. In one embodiment,
the additional application servers are deployed to handle the
rendering of heavier loads. In another embodiment, addi
tional application servers are deployed to render different
types of documents. For example, one application server may
be dedicated to rendering word processing documents, while
another application server may be dedicated to rendering
presentations. In yet another embodiment, additional appli
cation servers are deployed to render different elements of a
given document. The rendered elements can then be com
bined to create the rendered document. For example, one
application server may render video in a presentation, while
another application server may render the text in the presen
tation. In this case, the front end 102 may be operative to
combine the results of the two application servers to form the
rendered presentation.
0027. In some embodiments, in response to a single
request to render a document in a given format, the front end
102 may direct the application server 116 to render the docu
ment into multiple formats in order to Support multiple uses
across multiple device types and web client configurations.
For example, the web browser 106 may request from the front
end 102 a given document rendered in ADOBE FLASH. The
front end 102 may determine, through a user profile associ
ated with the user operating the web browser.106, that the user
frequently accesses documents in ADOBE FLASH,
MICROSOFT SILVERLIGHT, Portable Network Graphics
(“PNG”), mobile, and full versions. The front end 102 may
also determine, through the user profile that the user fre
quently accesses documents in a web-ready rendition includ
ing a combination of XML, scripts, HTML, images, and/or
the like. In this case, the front end 102 may fulfill the request
by rendering the document in one or more of these versions.
Other suitable data may be similarly utilized to determine
whether the frontend 102 directs the application server 116 to
render a document into multiple formats in response to a
single render request. By proactively rendering documents
into multiple formats in response to a single request rather
than rendering the document in response to specific requests
for the additional formats, the architecture 100 can more
expeditiously provide the rendered documents.
0028. According to embodiments, the application server
116 further includes an application manager 120. The appli
cation manager 120 is operative to manage incremental ren
dering of the document 110A into the rendered document
110B. As used herein, “incremental rendering refers to pro
viding portions of the rendered document 110B as the docu
ment 110A is being rendered by the rendering module 118.
For example, the rendered first page of a word processing
document or a rendered first slide of a presentation may be
provided to the front end 102, which can then provide the
rendered first page or the rendered first slide to the web
browser 106 for display. Other embodiments may render any
particular page or slide in the document. Other embodiments
may also render other portions of content besides pages or
slides. As the remainder of the word processing document or
presentation is being rendered by the rendering module 118,
the application manager 120 may provide the additional ren
dered pages and rendered slides to the web browser 106.

Dec. 27, 2012

0029. In order to provide incremental rendering, the appli
cation manager 120 may make available portions of the ren
dered document 110B as the document 110A is being ren
dered by the rendering module 118. The front end 102 can
then retrieve these portions of the rendered document 110B,
as necessary, from the application server 116. In one embodi
ment, the portions of the rendered document 110B are stored
in a backend cache 122 in the application server 116.
0030. During incremental rendering, the pages or slides of
a document may be rendered in any predefined order. The
rendered pages or slides are then made available to the front
end 102 in the same order as they were rendered. In one
embodiment, the documents are rendered from the beginning
of the document to the end of the document.
0031. In contrast to conventional pre-rendering where a
user must wait until the entire document is rendered, incre
mental rendering reduces the amount of rendering time
before a user can view a portion, such as the beginning or
Some other portion, of the document. For example, in con
ventional pre-rendering, a user desiring to view a first page of
a word processing document or a first slide of a presentation
would need to wait until the entire word processing document
or presentation is rendered. In an illustrative implementation
of incremental rendering, the user can more quickly view the
first page or the first slide prior to the remainder of the word
processing document or the presentation being rendered.
0032. In some embodiments, the user may request a page
Nora slide N of a document where the variable N represents
any page or slide within the document. The request may occur
prior to or while the document is being rendered. Upon
receiving the request for the page Norslide N, the application
manager 120 may direct the rendering module 118 to render
the page N or the slide N by seeking the particular page or
slide within the document. The rendered page Norslide N can
then be made available to the front end 102. Upon making
available the rendered page N or slide N, the application
manager 120 may proceed with rendering the remainder of
the document.

0033. In some embodiments, the rendering module 118 is
operative to incrementally render a document even when the
document has yet to be fully downloaded. That is, the render
ing module 118 may begin rendering the document while it is
being downloaded from the document store 112, rather than
wait until the entire file has been downloaded. This approach
to rendering a document before it has fully downloaded may
reduce the amount of time it takes for the rendering module
118 to render a document, especially if the document is rela
tively large.
0034 Turning now to FIG. 2, additional details regarding
the application manager 120 will be described. In particular,
FIG. 2 is a block diagram showing the application manager
120 according to embodiments. The application manager 120
includes a download manager 202 and a rendering queue 204.
According to embodiments, the download manager 202 is
operative to download documents from the document store
112 prior to the rendering module 118 rendering the docu
ments. The download manager 202 may then store the down
loaded documents in the rendering queue 204 until the ren
dering module 118 is available to render the documents. It
should be appreciated that the rendering queue 204 may oper
ate without the download manager 202. However, the down
load manager 202 may be utilized to speed processing
through the rendering queue 204. Further, even when the
download manager 202 is present, the rendering queue 204

US 2012/0331377 A1

may operate independently of the download manager 202 to
handle instances when the application manager 120 is over
loaded.

0035. In an illustrative example, if a request is made to
render a first document 206A and a second document 206B,
the download manager 202 may download the first document
206A from the document store 112, and the rendering module
118 may begin rendering the first document 206A. As the
rendering module 118 renders the first document 206A, the
download manager 202 may concurrently download the sec
ond document 206B from the document store 112 and store
the second document 206B in the rendering queue 204. Upon
rendering the first document 206A, the rendering module 118
can then immediately proceed to rendering the second docu
ment 206B from the rendering queue 204 without waiting for
the second document 206B to be downloaded. In this way,
throughput of the rendering module 118 is improved by elimi
nating any idle time found in conventional implementations
where the rendering module 118 would wait for the second
document 206B to download.
0036. It should be appreciated that the rendering queue
204 may be configured to store any number of documents, as
contemplated by those skilled in the art. In some embodi
ments, the download manager 202 may be configured by a
user to adjust the number of documents being downloaded
simultaneously and the maximum number of documents
stored in the rendering queue 204 that are awaiting rendering.
In this way, the user can ensure that the number of documents
being downloaded and/or stored at any given time does not
place an excessive burden on system resources.
0037 Turning now to FIG. 3, additional details regarding
the front end 102 will be described. In particular, FIG. 3 is a
block diagram showing the front end 102 according to
embodiments. The front end 102 includes a request merge
module 302 and several caches 304, including a document
cache 304A, an authorization cache 304B, and a location
cache 304C. According to embodiments, the request merge
module 302 maintains tracking data identifying a particular
application server that is currently rendering a given docu
ment. The request merge module 302 may utilize this tracking
data to direct additional requests for the same document to the
same application server. By directing additional requests for
the same document to the same application server, redundant
work between application servers is reduced, and other appli
cation servers are free to render other documents.
0038. As previously described, the system architecture
100 of FIG. 1 may include multiple front ends and multiple
application servers. These front ends may or may not be
capable of communicating with each other. In the case where
front ends do not communicate with each other, the request
merge module 302 may be configured to perform consistent
hashing in order to identify a particular application server for
a particular document request. In consistent hashing, one or
more aspects of a given document request may be analyzed in
order to map these aspects to a particular application server. In
this way, separate front ends can direct multiple requests for
the same document to the same application server, even when
the front ends cannot communicate with each other. An
example of an aspect of a document request is the name of the
document being requested. It should be appreciated that con
sistent hashing in this case can significantly increase the
likelihood that documents are not rendered multiple times on
different application servers (e.g., multiple front ends could
receive requests for the same document). Without consistent

Dec. 27, 2012

hashing, many application servers may receive these requests
and process the same document. Other hashing techniques
capable of mapping document requests to application servers
may be similarly utilized.
0039. The caches 304 may improve performance of the
front end 102 by reducing the need for the front end 102 to
access other parts of the system architecture 100, such as the
output store 114 and the application server 116. According to
embodiments, the document cache 304A is operative to cache
at least portions of rendered documents according to popu
larity. For example, documents that are frequently requested
can be retrieved directly from the document cache 304A
instead of accessing the output store 114 or the application
server 116. Any of a variety of factors and methodologies may
be utilized for determining the popularity of documents, as
contemplated by those skilled in the art.
0040. According to embodiments, the authorization cache
304B is operative to store authorization or authentication
information associated with users. Access to the documents
and the rendered documents may be restricted based on an
authorization process whereby a user enters identification
information, Such as a username and password. For example,
when a user attempts to access a particular document, the
front end 102 may access an authorization module (not
shown), which requests information, such as a login identifier
and password, identifying the user. The authorization module
may then determine whether the user has permission to access
the document. The authorization module may be configured
to permit access to the document only when the authorization
module Verifies that the user has permission.
0041. When the authorization module successfully veri
fies the user, the authorization cache 304B may store state
information indicating that the user has been verified. The
front end 102 may utilize this state information to verify that
the user has or does not have permission to access the docu
ment without the need for accessing the authorization mod
ule. In this way, the front end 102 is not required to send
credentials to an remote authorization service, thereby opti
mizing performance of the front end 102. Further, the user
does not have to re-enter identification information for addi
tional requests to access the same document.
0042. The state information stored in the authorization
cache 304B may be particularly useful when a user requests
only a portion of a given document at a time. For example, a
user may initially request only a first page of a multi-page
document. Upon Submitting the request for the first page of
the document, the user may be required to enter identification
information (i.e., credentials) in order to view the first page. If
the user Subsequently requests additional pages of the docu
ment, the front end 102 can expeditiously authorize the user
based on the credentials stored in the authorization cache
304B. Thus, each authentication of the user does not neces
sarily result in the user being prompted for credentials. Fur
ther, the need to re-query other servers to authenticate and
authorize the user can be eliminated. The authorization cache
304B may be configured to store the state information for any
amount of time after which the state information may be
deleted.

0043. According to embodiments, the location cache
304C, which may also be referred to as a "dictionary', is
operative to store the location of a given rendered document.
For example, the location cache 304C may indicate the par
ticular storage unit that stores aparticular rendered document.
Examples of storage units may include the output store 114

US 2012/0331377 A1

and the backend cache 122. The storage units may be part of
the system architecture 100 or separate from the system archi
tecture 100. By storing the location of rendered documents in
the location cache 304C, the front end 102 can direct requests
for a rendered document to the specific storage unit, as
opposed to individually querying each storage unit and caus
ing additional loads on the storage units.
0044) Referring now to FIGS. 4A and 4B, additional
details will be provided regarding the embodiments presented
herein for rendering documents for viewing through a web
browser. In particular, FIG. 4A is a flow diagram illustrating
one method for rendering content for viewing through a web
browser operating on a computer. FIG. 4B is a flow diagram
illustrating one method for fetching a rendered portion of the
content. The method of FIG. 4B may be performed concur
rently or after the method of FIG. 4A is performed. It should
be appreciated that the logical operations described herein are
implemented (1) as a sequence of computer implemented acts
or program modules running on a computing system and/or
(2) as interconnected machine logic circuits or circuit mod
ules within the computing system. The implementation is a
matter of choice dependent on the performance and other
requirements of the computing system. Accordingly, the logi
cal operations described herein are referred to variously as
states, operations, structural devices, acts, or modules. These
operations, structural devices, acts, and modules may be
implemented in Software, in firmware, in special purpose
digital logic, and any combination thereof. It should be appre
ciated that more or fewer operations may be performed than
shown in the figures and described herein. These operations
may also be performed in a different order than those
described herein.
0045. In FIG. 4A, a routine 400 begins at operation 402,
where the front end 102 receives a request from the web
browser 106 for a document, such as the document 110A. The
routine 400 then proceeds to operation 404, where the front
end 102 directs the rendering module 118 to begin incremen
tally rendering the document 110A. In particular, the render
ing module 118 may retrieve the document 110A from the
document store 112. Upon retrieving the document 110A
from the document store 112, the rendering module 118 may
render the first page or the first slide of the document 110A. In
Some embodiments, the request may specify a particular slide
or page of the document 110A. In this case, the rendering
module 118 may render the particular page or the particular
slide instead of the first page or the first slide. Upon generat
ing the first page or the first slide of the rendered document
110B, the routine proceeds to operation 406.
0046. At operation 406, the rendering module 118 deter
mines whether the document 110A has been completely ren
dered. If the document 110A has been completely rendered,
then the routine 400A terminates. If the document 110A has
not been completely rendered, the routine 400 proceeds back
to operation 404 where the next page or next slide of the
document 110A is rendered. Operation 404 may be repeated
as many times as necessary until the document 110A has been
completely rendered into the rendered document 110B.
0047. In FIG. 4B, a routine 400B begins at operation 408,
where the front end 102 receives a request from the web
browser 106 for a document, such as the document 110A. The
routine 400B then proceeds to operation 410, where as pages
or slides of the rendered document 110B are rendered by the
rendering module 118, the application manager 120 may
make available these pages or slides of the rendered docu

Dec. 27, 2012

ment 110B to the front end 102. If a particular page or par
ticular slide is requested, the application manager 120 may
also make available that particular page or particular slide.
The rendering module 118 may make available the pages or
slides of the rendered document 110B through the backend
cache 122. The front end 102 may then retrieve the pages or
slides of the rendered document 110B from the backend
cache 122 and transmit the pages or slides of the rendered
document 110B to the web browser 106 for display.
0048. It should be appreciated that the routine 400B may
be performed while the document 110A is being incremen
tally rendered according to the routine 400A. That is, while
the rendering module 118 is rendering pages or slides of the
document 110A according to routine 400A, the application
manager 120 may fulfill requests for those rendered pages or
slides according to routine 400B. In this way, the front end
102 can continue to retrieve the additional pages or slides of
the rendered document 110 B without waiting for the entire
rendered document 110B to be generated. Further, while the
application manager 120 is fulfilling requests for pages or
slides of the rendered document 110B, the rendering module
118 may continue to render additional pages or slides from
the document 110A.

0049 According to some embodiments, additional
requests for other documents may be received by the frontend
102. Instead of waiting until the rendering module 118 has
completed rendering the document 110A into the rendered
document 110B, the download manager 202 may retrieve the
other documents from the document store 112 and store the
documents in the rendering queue 204 while the rendering
module 118 is still rendering the document 110A. Upon ren
dering the document 110A into the rendered document 110B,
the rendering module 118 can begin rendering these other
documents without waiting for them to be retrieved from
document store 112.

0050. According to some embodiments, additional
requests for the document 110A may be directed to the same
application server 116. In this way, other application servers
can be available to render other documents. Further, accord
ing to some embodiments, the rendering module 118 may
render the document 110A into multiple formats in response
to a single request.
0051 Referring now to FIG. 5, an exemplary computer
architecture diagram showing a computer 500 is illustrated.
The computer 500 includes a processing unit 502 (“CPU”), a
system memory 504, and a system bus 506 that couples the
memory 504 to the CPU 502. The computer 500 further
includes a mass storage device 512 for storing one or more
program modules 514. Such as the rendering module 118, and
one or more databases 516, such as the document store 112.
Other program modules 514 may include the web browser
106, the download manager 202, and the request merge mod
ule 302. Other databases 516 may include the output store
114, the rendering queue 204, and the caches 304. The mass
storage device 512 is connected to the CPU 502 through a
mass storage controller (not shown) connected to the bus 506.
The mass storage device 512 and its associated computer
readable media provide non-volatile storage for the computer
500. Although the description of computer-readable media
contained herein refers to a mass storage device, such as a
hard disk or CD-ROM drive, it should be appreciated by those
skilled in the art that computer-readable media can be any
available computer storage media that can be accessed by the
computer 500.

US 2012/0331377 A1

0052 By way of example, and not limitation, computer
readable media may include Volatile and non-volatile, remov
able and non-removable media implemented in any method
or technology for storage of information Such as computer
readable instructions, data structures, program modules, or
other data. For example, computer-readable media includes,
but is not limited to, RAM, ROM, EPROM, EEPROM, flash
memory or other solid state memory technology, CD-ROM,
digital versatile disks (“DVD), HD-DVD, BLU-RAY, or
other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by the computer 500.
0053 According to various embodiments, the computer
500 may operate in a networked environment using logical
connections to remote computers through a network, Such as
the network 108. The computer 500 may connect to the net
work 108 through a network interface unit 510 connected to
the bus 506. It should be appreciated that the network inter
face unit 510 may also be utilized to connect to other types of
networks and remote computer systems. The computer 500
may also include an input/output controller 508 for receiving
and processing input from a number of input devices (not
shown), including a keyboard, a mouse, a microphone, and a
game controller. Similarly, the input/output controller 508
may provide output to a display or other type of output device
(not shown).
0054 Based on the foregoing, it should be appreciated that
technologies for rendering content, such as documents, for
viewing through a web browser are presented herein.
Although the subject matter presented herein has been
described in language specific to computer structural fea
tures, methodological acts, and computer readable media, it is
to be understood that the invention defined in the appended
claims is not necessarily limited to the specific features, acts,
or media described herein. Rather, the specific features, acts
and mediums are disclosed as example forms of implement
ing the claims.
0055. The subject matter described above is provided by
way of illustration only and should not be construed as lim
iting. Various modifications and changes may be made to the
subject matter described herein without following the
example embodiments and applications illustrated and
described, and without departing from the true spirit and
scope of the present invention, which is set forth in the fol
lowing claims.

What is claimed is:

1. A method for rendering content on a computer, the
method comprising:

receiving a request to view the content from a web browser;
in response to receiving the request to view the content,

transforming a first portion of the content into a second
portion of rendered content, wherein the rendered con
tent is adapted to provide a representation of the content
capable of being viewed in the web browser; and

sending the second portion of the rendered content to the
web browser.

2. The method of claim 1, wherein the content is capable of
being viewed by an application program adapted to create the
content, and wherein the content is incapable of being viewed
by the web browser.

Dec. 27, 2012

3. The method of claim 1, the method further comprising:
while sending the second portion of the rendered content to

the web browser, transforming a third portion of the
content into a fourth portion of the rendered content; and

sending the fourth portion of the rendered content to the
web browser.

4. The method of claim 1, wherein the representation com
prises a full-fidelity representation of the content.

5. The method of claim 1, wherein in response to receiving
the request to view the content, transforming the first portion
of the content into the second portion of rendered content
comprises:

determining whether the rendered content is available in a
content Store;

in response to determining that the rendered content is
available in the content store, retrieving the rendered
content from the content store and sending the rendered
content to the web browser; and

in response determining that the rendered content is not
available in the content store, transforming the first por
tion of the content into the second portion of rendered
COntent.

6. The method of claim 1, wherein receiving the request to
view the content from the web browser comprises receiving
the request to view the content from the web browser over a
communications network; and

wherein sending the second portion of the rendered content
to the web browser comprises sending the second por
tion of the rendered content to the web browser over the
communications network.

7. The method of claim 1, the method further comprising
determining whether a user operating the web browser has
permission to view the content; and

wherein in response to receiving the request to view the
content, transforming the first portion of the content into
the second portion of rendered content comprises in
response to receiving the request to view the content and
determining that the user has permission to view the
content, transforming the first portion of the content into
the second portion of the rendered content.

8. The method of claim 1, wherein receiving the request to
view content from the web browser comprises receiving a first
request to view first content from a first web browser and
receiving a second request to view second content from a
second web browser;

wherein in response to receiving the request to view the
content, transforming the first portion of the content into
the second portion of rendered content comprises in
response to receiving the first request to view the first
content and the second request to view the second con
tent, transforming a third portion of the first content into
a fourth portion of first rendered content and transform
ing a fifth portion of the second content into a sixth
portion of second rendered content; and

wherein sending the second portion of the rendered content
to the web browser comprises sending the fourth portion
of the first rendered content to the first web browser and
sending the sixth portion of the second rendered content
to the second web browser.

9. The method of claim 1, wherein at least a portion of the
rendered content comprises Hypertext Markup Language
(HTML).

10. The method of claim 1, wherein the content comprises
a document.

US 2012/0331377 A1

11. A computer-readable storage medium comprising
computer-executable instructions stored thereon which,
when executed by a computer, cause the computer to:

receive a request to view content from a web browser;
when the request to view the content has been received,

transform a first portion of the content into a second
portion of rendered content, wherein the rendered con
tent is adapted to provide a representation of the content
capable of being viewed in the web browser; and

send the second portion of the rendered content to the web
browser.

12. The computer-readable storage medium of claim 11,
wherein the computer-readable storage medium comprises
further computer-executable instructions stored therein
which, when executed by the computer, cause the computer
to:

while the second portion of the rendered content is sent to
the web browser, transform a third portion of the content
into a fourth portion of the rendered content; and

send the fourth portion of the rendered content to the web
browser.

13. The computer-readable storage medium of claim 11,
wherein to receive the request to view content from the web
browser, the computer-executable instructions, when
executed by the computer, cause the computer to receive a
first request to view first content from a first web browser and
receive a second request to view second content from a sec
ond web browser;

whereinto when the request to view the content is received,
transform the first portion of the content into the second
portion of rendered content, the computer-executable
instructions, when executed by the computer, cause the
computer to when the first request to view the first con
tent and the second request to view the second content
are received, transform a third portion of the first content
into a fourth portion of first rendered content and trans
form a fifth portion of the second content into a sixth
portion of second rendered content; and

wherein to send the second portion of the rendered content
to the web browser, the computer-executable instruc
tions, when executed by the computer, cause the com
puter to send the fourth portion of the first rendered
content to the first web browser and send the sixth por
tion of the second rendered content to the second web
browser.

14. The computer-readable storage medium of claim 11,
wherein the representation comprises a full-fidelity represen
tation of the content.

15. The computer-readable storage medium of claim 11,
wherein the content is capable of being viewed by an appli
cation program adapted to create the content, and wherein the
content is incapable of being viewed by the web browser.

Dec. 27, 2012

16. A rendering computer system comprising:
a processor;
a memory communicatively coupled to the processor; and
a program module which executes in the processor from

the memory and which, when executed by the processor,
causes the processor to
receive, via a communications network, a request to

view content from a web browser,
when the request to view the content has been received,

transform a first portion of the content into a second
portion of rendered content, wherein the rendered
content is adapted to provide a representation of the
content capable of being viewed in the web browser,
and

send, via the communications network, the second por
tion of the rendered content to the web browser.

17. The rendering computer system of claim 16, wherein
the program module, when executed by the processor, further
causes the processor to:

while the second portion of the rendered content is sent to
the web browser, transform a third portion of the content
into a fourth portion of the rendered content; and

send, via the communications network, the fourth portion
of the rendered content to the web browser.

18. The rendering computer system of claim 16, whereinto
receive the request to view content from the web browser, the
program module, when executed by the processor, further
causes the processor to receive a first request to view first
content from a first web browser and receive a second request
to view second content from a second web browser;

whereinto when the request to view the content is received,
transform the first portion of the content into the second
portion of rendered content, the program module, when
executed by the processor, further causes the processor
to when the first request to view the first content and the
second request to view the second content are received,
transform a third portion of the first content into a fourth
portion of first rendered content and transform a fifth
portion of the second content into a sixth portion of
second rendered content; and

wherein to send the second portion of the rendered content
to the web browser, the program module, when executed
by the processor, further causes the processor to send the
fourth portion of the first rendered content to the first
web browser and send the sixth portion of the second
rendered content to the second web browser.

19. The rendering computer system of claim 16, wherein
the representation comprises a full-fidelity representation of
the content.

20. The rendering computer system of claim 16, wherein
the content is capable of being viewed by an application
program adapted to create the content, and wherein the con
tent is incapable of being viewed by the web browser.

