METHODS AND APPARATUS FOR IN SITU SUBSTRATE TEMPERATURE MONITORING BY ELECTROMAGNETIC RADIATION EMISSION

Inventor: Enrico Magni, Pleasanton, CA (US)

Correspondence Address:
IPSG, P.C.
P.O. BOX 700640
SAN JOSE, CA 95170 (US)

Appl. No.: 12/014,656
Filed: Jan. 15, 2008

Related U.S. Application Data
Continuation of application No. 10/640,350, filed on Aug. 12, 2003, now Pat. No. 7,341,673.

Publication Classification
Int. Cl. C23F 1/08 (2006.01)
U.S. Cl. 156/345.27

ABSTRACT
A method in a plasma processing system of determining the temperature of a substrate. The method includes providing a substrate comprising a set of materials, wherein the substrate being configured to absorb electromagnetic radiation comprising a first set of electromagnetic frequencies, to convert the first set of electromagnetic frequencies to a set of thermal vibrations, and to transmit a second set of electromagnetic frequencies. The method also includes positioning the substrate on a substrate support structure, wherein the substrate support structure includes a chuck; flowing an etchant gas mixture into a plasma reactor of the plasma processing system; and striking the etchant gas mixture to create a plasma, wherein the plasma comprises the first set of electromagnetic frequencies. The method further includes processing the substrate with the plasma thereby generating the second set of electromagnetic frequencies; calculating a magnitude of the second set of electromagnetic frequencies; and converting the magnitude to a temperature value.
FIG. 3A

Signal Intensity (au) (302)
METHODS AND APPARATUS FOR IN SITU SUBSTRATE TEMPERATURE MONITORING BY ELECTROMAGNETIC RADIATION EMISSION

[0001] This application is a continuation application under 37 CFR 1.53(b) of and claims the benefit under 35 U.S.C. 120 of a commonly-owned patent application entitled "METHODS AND APPARATUS FOR IN SITU SUBSTRATE TEMPERATURE MONITORING BY ELECTROMAGNETIC RADIATION EMISSION" filed Aug. 12, 2003, by inventors Enrico Magni, Attorney Docket No. LMRX-P022/P1047, application Ser. No. 10/640,350, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] The present invention relates in general to substrate manufacturing technologies and in particular to methods and apparatus for in situ wafer temperature monitoring by electromagnetic radiation emission.

[0003] In the processing of a substrate, e.g., a semiconductor wafer or a glass pane, plasma is often employed. As part of the processing of a substrate (chemical vapor deposition, plasma enhanced chemical vapor deposition, plasma enhanced chemical vapor deposition, automatic wafer deposition, etc.) for example, the substrate is divided into a plurality of dies, or rectangular areas, each of which will become an integrated circuit. The substrate is then processed in a series of steps in which materials are selectively removed (etching) and deposited (deposition) in order to form electrical components thereon.

[0004] In an exemplary plasma process, a substrate is coated with a thin film of hardened emulsion (i.e., such as a photoreist mask) prior to etching. Areas of the hardened emulsion are then selectively removed, causing parts of the underlying layer to become exposed. The substrate is then placed in a plasma processing chamber on a substrate support structure comprising a mono-polar or bi-polar electrode, called a chuck. Appropriate etchant source gases (e.g., C₂F₆, CF₃H, CH₃F, C₄F₆, CH₄, C₂H₂, N₂, O₂, Ar, He, H₂, NH₃, SF₆, BF₃, Cl₂, etc.) are then flowed into the chamber and struck to form a plasma 102, in order to etch exposed areas of substrate 104, such as a semiconductor wafer or a glass pane. Substrate 104 generally sits on chuck 106. Electromagnetic radiation produced by plasma 102, in combination kinetic energy transferred by the plasma itself, causes substrate 104 to absorb thermal energy. In order to determine substrate temperature, probe 108 extends from beneath substrate 104 to contact the substrate. However, probe 108 may also dislodge the wafer from the chuck, and subsequently ruin a costly wafer.

[0005] Another technique is the measurement of Infrared (IR) radiation from the substrate with a conventional pyrometer. Generally, heated materials emit electromagnetic radiation in the IR region. This region generally comprises a wavelength range from 8 to 14 μm, or a frequency range from 400 to 4000 cm⁻¹, where cm⁻¹ is known as wavenumber (1/wavelength) and is equivalent to frequency. Measured IR radiance can then be used to calculate substrate temperature by using Plank's radiation law for blackbody radiation.

[0006] Referring now to FIG. 1B, a simplified cross-sectional view of a plasma processing system is shown, in which a conventional pyrometer is used to determine wafer temperature. As in FIG. 1A, an appropriate set of etchant source gases is flowed into chamber 100 and struck to form a plasma 102, to etch exposed areas of substrate 104. Substrate 104 generally sits on a chuck 106. Plasma 102 may also produce a spectrum of electromagnetic radiation, some of which is generally IR. It is this radiation (along with kinetic energy transferred by the plasma itself) that may cause substrate 104 to absorb thermal energy. Substrate 104, in turn, also generates IR radiance corresponding to its temperature. However, since substrate's 104 IR radiance is generally substantially smaller than that of the plasma, a pyrometer may not be able to distinguish between the two. Hence, the calculated temperature would be approximately that of the background plasma itself and not of the substrate.

[0007] Still another technique is the use of an interferometer to measure a change in substrate thickness due to absorbed thermal energy. Generally, an interferometer measures a physical displacement by sensing a phase difference of an electromagnetic beam reflected between two surfaces. In a plasma processing system, an electromagnetic beam may be transmitted at a frequency for which the substrate is translucent, and positioned at an angle beneath the substrate. A first portion of the beam may then reflect on the substrate's bottom surface, while the remaining portion of the beam may reflect on the substrate's top surface.

[0008] Referring now to FIG. 1C, a simplified cross-sectional view of a plasma processing system is shown, in which an interferometer is used to determine wafer temperature. As in FIG. 1A, an appropriate set of etchant source gases is flowed into chamber 100 and struck to form a plasma 102, to etch exposed areas of substrate 104, such as a semiconductor wafer or a glass pane. Substrate 104 generally sits on chuck 106. Plasma 102 produces electromagnetic radiation, some of which is IR. This radiation (along with kinetic energy transferred by the plasma itself), causes substrate 104 to absorb thermal energy and expand by an amount 118. An electromagnetic beam transmitter 108, such as a laser, transmits beam 112 at a frequency for which substrate 104 is translucent. A portion of the beam reflects then reflects 114 at point 124 on the substrate's bottom surface, while the remaining portion of beam 116 reflects at point 122 on the substrate's top surface. Since the same beam 112 is reflected at two points 122 and 124, the resulting beams 114 and 116 may be out of
phase, but otherwise identical. Interferometer 130 can then measure the phase shift and determine the substrate thickness 1118. By taking successive measures, a change in substrate thickness may be determined. However, a change to substrate thickness may only be used determine a corresponding change in temperature, and not a specific temperature. Furthermore, since the transmitter is also located in the plasma processing system, it can become damaged by plasma 102, and may also produce contaminants that may affect manufacturing yield.

[0012] Because of those difficulties, substrate temperature is normally inferred from the rate of heat dissipation from the plasma processing system. Generally, some type of cooling system is coupled to the chuck in order to achieve thermal equilibrium once the plasma is ignited. That is, although substrate temperature in generally stabilized within a range, its exact value is commonly unknown. For example, in creating a set of plasma processing steps for the manufacture of a particular substrate, a corresponding set of process variables, or recipe, is established. Since the substrate temperature may not be directly measured, optimizing a recipe is difficult. The cooling system itself is usually comprised of a chiller that pumps a coolant through cavities in within the chuck, and helium gas pumped between the chuck and the wafer. In addition to removing the generated heat, the helium gas also allows the cooling system to rapidly calibrate heat dissipation. That is, increasing helium pressure subsequently also increases the heat transfer rate.

[0013] Referring now to FIG. 1D, a simplified diagram of temperature versus time is shown for a substrate, after the plasma is ignited. Initially, the substrate is at ambient temperature 406. As the plasma is ignited, the substrate absorbs thermal energy during a stabilization period 408. After a period of time, the substrate temperature stabilizes at 410. Since the duration of stabilization period 408 may be a substantial portion of the total plasma processing step, decreasing stabilization period 408 may directly improve yield. If the substrate temperature could be directly measured in a plasma processing system, the cooling system could be optimized to minimize stabilization period 408.

[0014] In addition, depending on the plasma processing activity, its duration, or its order relative to other steps, a different amount of heat may be generated and subsequently dissipated. Since as previously explained, substrate temperature may directly affect the plasma process, first measuring and then adjusting the substrate temperature would allow plasma processing steps to be better optimized.

[0015] Furthermore, the physical structure of the plasma processing chamber, itself, may change. For example, pollutants may be cleaned from the plasma processing system by striking the plasma without the substrate. However, the chuck is no longer shielded by the substrate, and is subsequently etched. As the cleaning process is repeated, the substrate’s surface roughness increases, modifying its heat transfer efficiency. Eventually, the cooling system cannot adequately compensate, and the recipe’s parameters are invalidated. Since it is often impractical to determine when this point is exactly reached, the chuck is generally replaced after a certain amount of operational hours, which in practice is normally only a fraction of its useful life. This can both increase production costs, since an expensive chuck may be needlessly replaced, and reduces yield, since the plasma processing system must be taken offline for several hours to replace the chuck.

[0016] In addition, recipe parameters may need to be adjusted since an otherwise identical piece of fabrication equipment may be installed at a different time, or is used to a different degree, its maintenance cycle does not necessarily match that of the others. The recipe parameters may need to be adjusted when moving the process to a newer version of the plasma processing system, or when transferring the process to a plasma processing system that can process a larger substrate size (e.g., 200 mm to 300 mm). Ideally, it would be beneficial to maintain the same recipe parameters (e.g., chemistry, power, and temperature). However, since wafer temperature is inferred and not measured, the process may need to be substantially adjusted through trial and error in order to achieve a similar production profile.

[0017] In view of the foregoing, there are desired improved methods and apparatus for in situ wafer temperature monitoring.

SUMMARY OF THE INVENTION

[0018] The invention relates, in one embodiment, to a method in a plasma processing system of determining the temperature of a substrate. The method includes providing a substrate comprising a set of materials, wherein the substrate being configured to absorb electromagnetic radiation comprising a first set of electromagnetic frequencies, to convert the first set of electromagnetic frequencies to a set of thermal vibrations, and to transmit a second set of electromagnetic frequencies. The method also includes positioning the substrate on a substrate support structure, wherein the substrate support structure includes a chuck; flowing an etchant gas mixture into a plasma reactor of the plasma processing system; and striking the etchant gas mixture to create a plasma, wherein the plasma comprises the first set of electromagnetic frequencies. The method further includes processing the substrate with the plasma thereby generating the second set of electromagnetic frequencies; calculating a magnitude of the second set of electromagnetic frequencies; and converting the magnitude to a temperature value.

[0019] The invention relates, in another embodiment, to an apparatus for determining temperature in a plasma processing system. The apparatus includes a substrate comprising a set of materials, wherein the substrate is configured to absorb electromagnetic radiation comprising a first set of electromagnetic frequencies, to convert the first set of electromagnetic frequencies to a set of thermal vibrations, and to transmit a second set of electromagnetic frequencies. The apparatus also includes a substrate support structure, wherein the substrate support structure includes a chuck, and the substrate is positioned on the substrate support structure; a means of flowing an etchant gas mixture into a plasma reactor of the plasma processing system; and a means of striking the etchant gas mixture to create a plasma, wherein the plasma comprises the first set of electromagnetic frequencies. The apparatus further includes a means of processing the substrate with the plasma thereby generating the second set of electromagnetic frequencies; a means of calculating a magnitude of the second set of electromagnetic frequencies; and a means of converting said magnitude to a temperature value.

[0020] These and other features of the present invention will be described in more detail below in the detailed description of the invention and in conjunction with the following figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] The present invention is illustrated by way of example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numerals refer to similar elements and in which:

0022 FIG. 1A depicts a simplified cross-sectional view of a plasma processing system in which a temperature probe is used to determine wafer temperature;

0023 FIG. 1B depicts a simplified cross-sectional view of a plasma processing system in which a conventional pyrometer is used to determine wafer temperature;

0024 FIG. 1C depicts a simplified cross-sectional view of a plasma processing system in which an interferometer is used to determine wafer temperature;

0025 FIG. 1D depicts a simplified diagram of temperature versus time for a substrate, after the plasma is ignited;

0026 FIG. 2A depicts a simplified diagram of a process in which a phonon is shown, according to one embodiment of the invention;

0027 FIG. 2B depicts a simplified diagram of a process in which a substrate temperature is measured, according to one embodiment of the invention;

0028 FIG. 2C depicts a more detailed diagram of FIG. 2B, according to one embodiment of the invention; and

0029 FIGS. 3A-E depict the measurement of phonons for substrate in a plasma processing system, according to one embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

0030 The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.

0031 While not wishing to be bound by theory, it is believed by the inventor herein that in a plasma processing system, phonons can be used for in situ wafer temperature monitoring. In general, phonons are thermal energy vibrations in a substrate, which, in turn, generate electromagnetic waves. Discrete bonded materials within the substrate, particularly ones that exist within a crystalline structure, generally radiate electromagnetic radiation at a frequency unique to the material, and with a magnitude correlated to the total amount of absorbed thermal energy in the substrate. In a non-obvious manner, by measuring the magnitude of radiation at a frequency that is characteristic of a substrate material, but generally found anywhere else in the plasma processing system, the temperature of the substrate can be calculated in a substantially accurate manner. In one embodiment, this calculation can be accomplished using Plank's radiation law for blackbody radiation, corrected by the substrate's specific emissivity.

0032 A number of frequencies may be used, preferably in the IR and far-IR regions. The frequency selected should substantially correspond to a region of the spectrum where substrate material has a strong absorption coefficient. A large number of spectral regions may be used. Most favorable phonons are in the region between 6 μm and 50 μm. In one embodiment, for a Si substrate, a measurable radiation may be produced by Si—Si vibrations at 16.4 μm. In another embodiment, the monitored phonon may be produced by the Si—O—Si vibration at 9.1 μm, where interstitial oxygen participates to the atomic motion. Other spectral regions may be used, taking advantage of the rich Si—Si, Si—O, and Si—C (substitutional carbon) vibrational spectrum.

0033 Referring now to FIG. 2A, a simplified diagram of a process in which a phonon is shown, according to one embodiment of the invention. In a plasma processing system, a plasma 201 is struck producing electromagnetic radiation 202 across the entire spectrum from the X-ray region to the microwave region. Most of this radiation 202 is partially absorbed by substrate 206 and partially transmitted 212. Examples are light in the near infrared and in the infrared proper, at frequencies for which the substrate has a low absorbance or extinction coefficient. The portion that is absorbed is substantially converted to thermal energy. The remaining portion 202 is substantially absorbed in its entirety and converted to thermal energy. The aggregate thermal energy, in turn, causes phonons 210 in materials bonded within the substrate’s lattice structure, which subsequently cause radiation 214 to be produced at a specific measurable frequency.

0034 Referring now to FIG. 2B, a simplified diagram of a process in which a substrate temperature is measured, according to one embodiment of the invention. As in FIG. 2A, a plasma 201 is struck in a plasma processing system producing electromagnetic radiation 202. The portion of the electromagnetic radiation that is absorbed is substantially converted to thermal energy. This thermal energy, in turn, creates phonons 210 in materials bonded within the substrate’s lattice structure, which subsequently cause radiation 214 to be created, and subsequently measured by detector 212. Radiation 214 is in thermal equilibrium with the emitting substrate. The detector 212 consists of 1) a device capable of discriminating the emitted electromagnetic radiation according to its frequency (or wavelength), and 2) a device capable of measuring the electromagnetic radiation intensity at the frequency (or wavelength) selected by device 1). In one embodiment, detector 212 may have an optical dispersing element as monochromator (e.g. multilayer dielectric interference filter, prism, gratings, Fabry-Perot interferometer) that is optimized to transmit radiation intensity for the band of the electromagnetic spectrum corresponding to the selected material. In another embodiment, a suitable band filter is used to select the radiation of interest. Any photosensitive device capable of measuring the radiation intensity selected by the monochromator may be used in the detector. Examples are thermal detectors (thermopile) photoconductive and photovoltaic detectors.

0035 Referring now to FIG. 2C, a more detailed diagram of FIG. 2B is shown, according to one embodiment of the invention. As in FIG. 2A, a plasma 201 is struck in plasma processing system 200 producing electromagnetic radiation 202. The portion of the electromagnetic radiation that is absorbed is substantially converted to thermal energy, which subsequently causes phonons to be created within substrate 206. By measuring radiation 214 at a frequency corresponding to the selected material with detector 220 (i.e., Si—Si at 16.4 μm, Si—O—Si at 9.1 μm, etc.), the temperature of substrate 206 can be calculated.

0036 Plasma processing system 200 further may include some type of cooling system is coupled to the chuck in order to achieve thermal equilibrium. This cooling system is usually comprised of a chiller that pumps a coolant through
cavities in within the chuck, and helium gas pumped between the chuck and the wafer. In addition to removing the generated heat, the helium gas also allows the cooling system to rapidly calibrate heat dissipation. That is, increasing helium pressure subsequently also increases the heat transfer rate.

[0037] In contrast to the prior art, substrate 206 temperature can be maintained in a substantially stable manner during plasma processing by adjusting the temperature setting of the chiller 220 and the pressure of helium 220. In particular, as the chuck's heat transfer efficiency is reduced during subsequent plasma cleanings, helium 220 pressure can be increased to compensate, thereby substantially maintaining substrate temperature. This may allow the chuck to be used for a substantially longer period of time, decreasing chuck replacement costs. In addition, yield may further be maintained or improved, since plasma processing system 200 can be operated for a longer duration before maintenance is required.

[0038] Furthermore, a specific plasma processing step can be optimized for a narrow substrate temperature band, as opposed to being sub-optimized to a broad substrate temperature window. In addition, process steps can be more easily interchanged since residual process heat from a previous step can be rapidly attenuated.

[0039] Referring now to FIGS. 3A-E, the measurement of phonons for substrate in an Exelent™ HPT plasma processing system is shown, according to one embodiment of the invention. Although in this example, the Exelent HPT plasma processing system is shown, other plasma processing systems can be used as well. The etch process is conducted under the following process conditions:

- Pressure: 50 mT
- Power: 1800 W (2 MHz)/1200 W (27 MHz)
- Plasma Composition: Ar: 270 sccm; C6F6: 25 sccm; O2: 10 sccm
- Temperature: 20°C
- Duration: 300 sec

[0040] Referring now to FIG. 3A, a simplified diagram of signal intensity versus time within a plasma processing system is shown, according to one embodiment of the invention. No substrate is present during the execution of this test. In general, as the plasma is struck, the chamber walls absorb thermal energy over time 316 generating photons. In this example, the resulting electromagnetic radiation is being measured for Si—Si at 16.4 µm. In another embodiment, radiation produced by Si—O—Si would also produce a substantially similar diagram at 9.1 µm. This figure shows that the electromagnetic radiation increases in intensity as the plasma chamber walls become hotter and hotter by action of the plasma. As the plasma is turned off at 320, the corresponding signal intensity also is reduced, since the chamber walls begin to cool. This figure shows that the electromagnetic radiation emitted by the chamber walls may interfere with the substrate temperature measurement if not dealt with correctly.

[0041] Referring now to FIG. 3B, a simplified diagram of wavenumber versus absorbance within a plasma processing system is shown, according to one embodiment of the invention. Three graphs are shown. Graph 324 displays substrate absorbance for a substrate at 20°C. Graph 326 displays substrate absorbance for a substrate at 70°C. And graph 328 displays substrate absorbance for a substrate at 90°C. In general, the higher the substrate temperature, the more negative the corresponding absorbance becomes. Across the spectrum of IR radiation generated in the plasma processing system, two absorbance peaks become apparent, a first peak 330 at 16.4 µm produced by Si—Si, and a second peak 332 at 9.1 µm produced by Si—O—Si. The most spectral variation is observed for the two peaks at 16.4 µm and 9.1 µm. The signal intensity is most sensitive to the substrate temperature at these wavelengths. Graph 324 shows positive absorbance at both 16.4 µm and 9.1 µm, indicating that the substrate absorbs more electromagnetic radiation at these wavelengths than it emits. Graphs 326 and 328 show negative absorbance at both 16.4 µm and 9.1 µm, for the substrate emits more radiation than it absorbs at these wavelengths. The radiation emitted by the substrate and measured by the detector is in thermal equilibrium with the substrate and is independent on the radiation emitted by the plasma and by the processing chamber walls.

[0042] Referring now to FIG. 3C, a simplified diagram of wavelength versus absorbance within a plasma processing system is shown for two temperature ranges, according to one embodiment of the invention. Across the spectrum of IR radiation generated in the plasma processing system at 20°C, 340, the substrates temperature is such that the amount of radiation emitted by the substrate is similar to the amount absorbed, and hence there are no apparent peaks. However, at a substrate temperature of 90°C, two absorbance peaks again become apparent, a first peak 330 at 16.4 µm produced by Si—Si, and a second peak 332 at 9.1 µm produced by Si—O—Si.

[0043] Referring now to FIG. 3D, a simplified diagram of signal intensity versus temperature within a plasma processing system is shown, according to one embodiment of the invention. Graph 346 measures signal intensity 342 versus temperature 307, while graph 348 measures signal intensity 342 versus temperature 307. As in FIG. 3B, the higher the substrate temperature, the higher the corresponding signal intensity.

[0044] Referring now to FIG. 3E, a simplified diagram of absorbance versus temperature within a plasma processing system is shown for two measured wavelengths, according to one embodiment of the invention. A first graph 330 is shown for Si—Si at 16.4 µm produced, and a second graph 332 is shown for Si—O—Si at 9.1 µm. As the temperature 307 increases, the corresponding absorbance 305 decreases in a substantially linear fashion.

[0045] While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. For example, although the present invention has been described in connection with an Exelent HPT plasma processing system, other plasma processing systems may be used. It should also be noted that there are many alternative ways of implementing the methods of the present invention.

[0046] Advantages of the invention include measuring the temperature of a substrate in situ in a plasma processing system. Additional advantages may include optimizing the replacement of plasma processing structures, such as the chuck, increasing the yield of the plasma processing process itself, and facilitating the determination and transfer of a recipe from a first plasma processing system to a second plasma processing system. Having disclosed exemplary embodiments and the best mode, modifications and variations
may be made to the disclosed embodiments while remaining within the subject and spirit of the invention as defined by the following claims.

1-27. (canceled)

28. An apparatus for determining a temperature of a substrate in a plasma processing system, said plasma processing system configured to process said substrate using a plasma, the apparatus comprising:
 a detector for measuring a magnitude of emitted phonon-generated radiation of a select signal, said select signal having a select frequency that corresponds to a frequency predetermined in advance based on material composition of said substrate to be strongly absorbed by said substrate, said substrate positioned between said plasma and said detector such that said detector is protected from said plasma; and
 a means for converting said magnitude of said emitted phonon-generated radiation of said select signal to a temperature value of said temperature.

29. The apparatus of claim 28, wherein said plasma processing system further includes an electromagnetic radiation measuring device.

30. The apparatus of claim 28, wherein said substrate is positioned between said plasma and said electromagnetic radiation measuring device.

31. The apparatus of claim 28, wherein said means for converting said magnitude of said emitted phonon-generated radiation of said select signal to a said temperature value of said temperature is configured to use Plank’s radiation law for blackbody radiation.

32. The apparatus of claim 28, wherein said detector includes at least an electromagnetic measuring device.

33. The apparatus of claim 32, where said electromagnetic measuring device comprises a narrow-band pyrometer.

34. The apparatus of claim 32, where said electromagnetic measuring device comprises a monochrometer.

35. The apparatus of claim 32, where said electromagnetic measuring device comprises a grating.

36. The apparatus of claim 32, where said electromagnetic measuring device comprises a band pass optical filter.

37. The apparatus of claim 28, wherein said plasma processing system further includes a cooling system, and said cooling system is adjusted to maintain said temperature value substantially constant.

38. The apparatus of claim 28, wherein said substrate is a wafer.

39. The apparatus of claim 28, wherein said substrate is a glass panel.

40. The apparatus of claim 28, wherein said plasma is associated with a first set of electromagnetic frequencies, and said first set of electromagnetic frequencies comprise the infrared spectrum.

41. The apparatus of claim 28, wherein said emitted phonon-generated radiation is associated with a first set of electromagnetic frequencies and said second set of electromagnetic frequencies comprise the infrared spectrum.

42-55. (canceled)

56. The apparatus of claim 28, wherein said plasma processing system includes a substrate support structure for supporting said substrate, and said detector is disposed inside said substrate support structure such that said substrate is protected from contaminants produced by said detector.

57. A plasma processing system for processing a substrate using a plasma, the plasma processing system comprising:
 a substrate support structure for supporting said substrate;
 a detector for measuring a magnitude of emitted phonon-generated radiation of a select signal, said select signal having a select frequency that corresponds to a frequency predetermined in advance based on material composition of said substrate to be strongly absorbed by said substrate, said substrate positioned between said plasma and said detector such that said detector is protected from said plasma; and
 a means for converting said magnitude of said emitted phonon-generated radiation of said select signal to a temperature value of a temperature of said substrate.

58. The plasma processing system of claim 57, wherein said detector is disposed inside said substrate support structure such that said substrate is protected from contaminants produced by said detector.

59. The plasma processing system of claim 57, further comprising a cooling system, said cooling system configured to maintain said temperature value substantially constant.

60. The plasma processing system of claim 57, wherein said detector includes at least an electromagnetic measuring device.

61. The plasma processing system of claim 57, wherein said emitted phonon-generated radiation is associated with a first set of electromagnetic frequencies, and said second set of electromagnetic frequencies comprise the infrared spectrum.