An animal resistant insert for a trash container is disclosed. The insert comprises a platform portion bounded by an edge and a flange portion extending from the edge of the platform portion at an angle. The flange portion terminates at a terminal circumference, the terminal circumference being approximately equal to the inner circumference of the trash container. The insert further comprises at least one handle extending from the platform portion. The insert may also comprise a rim of resilient material attached to the terminal circumference of the flange portion and at least one ventilation hole disposed on the platform portion. The invention may further comprise a replaceable cover for sealing and uncovering the ventilation holes.
ANIMAL RESISTANT INSERT FOR A TRASH CONTAINER

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The invention relates generally to the field of trash container accessories. More specifically, the invention relates to the field of means for preventing animal access to trash in trash containers. More specifically, the invention relates to a trash container insert that prevents animals from accessing trash inside a trash container.

[0003] 2. Description of Related Art

[0004] As urban sprawl increases, people’s homes are ever closer to areas inhabited by wildlife. A natural consequence of this intermingling of humans with wild animals is the attraction of scavengers, such as raccoons, foxes, opossums, armadillos and other animals to trash containers stored outside the home. Such containers are often covered by loosely fitting covers or hinged lids for easy opening. Unfortunately, such covers and lids pose little obstacle to animals attracted to food within the containers. Animals are then able to dig through the refuse in the containers, destroying garbage bags in order to reach food remains and littering the surrounding area with garbage. The spilling of garbage out of the bags also makes trash disposal by municipal waste management services difficult—particularly via automated trucks—as loose trash is likely to spill or blow away and litter areas surrounding the collection vehicle. Additionally, loose garbage can adhere to the inside of the trash container, increasing odors, supporting the growth of microorganisms and resulting in other undesirable effects.

[0005] Several means have been employed to prevent animals from accessing trash containers. Such means inhabit two general categories: the use of repellent odors and the use of locking mechanisms. The use of repellent odors usually involves spraying the trash container and/or the bags left inside of it with ammonia or some commercially available repellent that is pungent to animals. Similar effects can be achieved through the use of moth balls. However, ammonia and moth balls can pose health hazards to small children and household pets. Additionally, they may pose hazards to the wild animals, exceeding the goal of merely repelling them.

[0006] Latching and locking mechanisms for trash containers come in many forms, such as those seen in U.S. Pat. No. 5,050,762 to Gorgi and U.S. Pat. No. 5,385,258 to Sutherland. These approaches work under the premise that manual manipulation of even simple mechanisms is too difficult for animals that lack thumbs. Most trash containers are made of rigid plastic or some other sturdy material that prevent animals from chewing through their exteriors. Consequently, if the animal is unable to open the lid, the animal will not gain access to the trash inside the container. One drawback of locking mechanisms, though, is that they may pose some hassle for humans who are attempting to deposit garbage into the container, particularly, when it is dark where the trash container is stored. Additionally, users may have to place their garbage on the ground before opening the container, where they do not have a free hand.

[0007] Accordingly, there is a need in the art for an effective means that prevents animals from accessing the contents of a trash container, that is simple for humans to operate, and that poses no health hazards to wildlife, humans, or pets.

SUMMARY OF THE INVENTION

[0008] The present invention provides an insert for a trash container that prevents animals from accessing the contents of the container. The invention overcomes disadvantages of prior inventions and provides other advantages, as described below. The invention is directed to an animal resistant insert comprising a platform portion bounded by an edge and a flange portion extending from the edge of the platform portion at an angle. The flange portion terminates at a terminal circumference, the terminal circumference being approximately equal to the inner circumference of the trash container. The insert further comprises at least one handle extending from the platform portion. The insert may also comprise a rim of resilient material, such as rubber, vinyl or plastic, attached to the terminal circumference of the flange portion and at least one ventilation hole disposed on the platform portion. The invention may further comprise a replaceable cover for sealing and uncovering the ventilation holes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1A is an illustration of a top perspective view of a rectangular convex embodiment of the invention.

[0010] FIG. 1B is an illustration of a side perspective view of a rectangular convex embodiment of the invention.

[0011] FIG. 2A is an illustration of a top perspective view of a rectangular recessed embodiment of the invention.

[0012] FIG. 2B is an illustration of a side perspective view of a rectangular recessed embodiment of the invention.

[0013] FIG. 3A is an illustration of a top perspective view of a circular convex embodiment of the invention.

[0014] FIG. 3B is an illustration of a side perspective view of a circular convex embodiment of the invention.

[0015] FIG. 4A is an illustration of a top perspective view of a circular recessed embodiment of the invention.

[0016] FIG. 4B is an illustration of a side perspective view of a circular recessed embodiment of the invention.

DETAILED DESCRIPTION

[0017] Referring now to the drawings, wherein like features are designated by like numbers, the present invention is directed to an apparatus that may be inserted into a trash container to prevent access to the containers contents by animals. For clarity, it will be necessary to briefly describe the features of trash containers to which the description will refer. A rectangular trash container has four sides that connect and cooperate to form a cavity. The container's sides have a uniform thickness, thereby creating an inner circumference that bounds the cavity. The inner circumference may be uniform, or it may decrease when moving from the cavity mouth to the bottom portion. The rectangular shape may be rounded or squared at the corners. The container has a bottom portion connected with distal ends of each side, thereby acting as a floor of the cavity and creating
A circular trash container has a cylindrical shape whose inner volume forms a cavity. The container's cylinder has a uniform thickness, thereby creating an inner circumference that bounds the cavity. The inner circumference may be uniform, or it may decrease when moving from the cavity mouth to the bottom portion. The container has a bottom portion connected with distal ends of the cylinder, thereby acting as a floor of the cavity and creating a cavity mouth at the opposite end of the cylinder. The container has a lid portion that covers the cavity mouth.

FIG. 1A is an illustration of a top perspective view of a rectangular convex embodiment of the invention. The insert 100 has a rectangular platform portion 101. The platform portion is connected with at least one handle 104, which extends from the platform portion 101. Preferably, the at least one handle 104 extends perpendicularly from the platform portion 101. The platform portion 101 is also connected with a flange portion 102. The flange portion 102 extends from a continuous edge of the platform portion 101 at a uniform angle. In the embodiment shown in **FIG. 1A**, the flange portion 102 extends in the direction opposite the handle 104.

The angle between platform portion 101 and the flange portion 102 may be as little as one hundred degrees (100°) and as large as one hundred fifty degrees (150°). The angle is preferably between one hundred twenty (120°) and one hundred fifty (150°) degrees; more preferably, between one hundred thirty-five (135°) and one hundred fifty (150°) degrees; and most preferably, one hundred thirty-five (135°) degrees. Where the convex embodiment of the insert 100 is used in a trash container of decreasing inner circumference, those skilled in the art will appreciate that a slightly lower angle may be required to allow the insert 100 to be used in such a trash container, without any handle 104 preventing full closure of the lid of the trash container. Those skilled in the art will appreciate that the angle may be increased by shortening the straight-line distance 108 between the edge of the platform portion 101 and the terminal circumference 103, such that the insert 100 must be placed deeper inside such a trash container before contacting the decreasing inner circumference of the container.

The flange portion 102 forms substantially the same shape as the platform portion 101, though the circumference of the flange portion 102 is an increasing multiple of the platform portion 101. This creates a convex space within the bounds of the flange portion 102 and the platform portion 101. The terminal circumference 103 of the flange portion 102 equals the cavity circumference of a trash container at the container's cavity mouth. In this way, the insert 100 is held in place frictionally through contact between the flange portion 102 and the inner circumference of the container. Where the cavity circumference of the trash container decreases as one moves toward its bottom portion, the insert 100 is also held in place through the inability for the insert 100 to fit beyond a certain position in the trash container.

As described above, the insert 100 has at least one handle 104 attached to the platform portion 101. A single handle 104 may be attached to the center of the platform portion 101 or to one edge of the platform portion 101. Alternatively, two handles 104 may be attached near opposite sides of the platform portion 101. Preferably, one handle is attached close to one edge of the platform portion 101, such that the insert 100 need not be pulled out of its position in a trash container all at once. This positioning of the handle 104 prevents a user from encountering the total frictional resistance caused by contact between the inner circumference of the trash container and the entire terminal circumference 103 of the flange portion 102. More preferably, two handles 104 are placed at opposite sides of the platform portion 101, such that both handles 104 may be used in inserting the insert 100 into a trash container, and either or both handles 104 may be used to remove the insert 100 from the trash container.

The insert 100 may also have at least one ventilation hole 105, which may be located in the flange portion 102, or in the platform portion 101. The ventilation holes 105 are intended to prevent vacuum suction caused by, for example, decreases in temperature of any air sealed inside the trash container by the insert 100. The ventilation holes 105 are also provided to relieve pressure caused by methane gas generation or heating of air sealed inside the container by the insert 100. The ventilation holes 105 are preferably small enough to prevent mice or other small rodents from passing through them. In order to reduce odor escaping from the ventilation holes 105, a replaceable cover 106 may be provided. The replaceable cover 106 may comprise any means for uncovering the ventilation holes 105 and then substantially sealing them when they are not needed. For example, the replaceable cover 106 may comprise a durable strip of material having a border that connects with a compatible outline of material surrounding the ventilation holes 105, such that the two borders connect via hook and loop fasteners.

As shown in **FIG. 1B**, a resilient rim 107 may be integrated with the terminal circumference 103 of the flange portion 102. The rim may comprise, for example, a resilient strip of rubber, plastic, or polymer that improves the fit of the insert 100 in a trash container, by slightly increasing the terminal circumference 103 of the flange portion 102, and by increasing the amount of friction between the flange portion 102 and the inner circumference of the trash container. The rim 107 may be attached by adhesive or through other suitable means.

The insert 100 is preferably formed from a rigid material that resists both animal chewing and cracking due to temperature change. The insert 100 may be formed of its various portions and assembled. For example, the platform portion 101, the flange portion 102, and the handle(s) 104 may be separately formed and assembled at various seams. Alternatively, the insert 100 may be formed in integral fashion (except for any replaceable cover 106 or rim 107), such as a single piece of molded plastic or aluminum material. The insert may have rounded corners that match the dimensions of a trash container’s rounded corners. Alternatively, rounded corners may be used in conjunction with a trash container that has square corners without substantially affecting the utility of the invention. In fact, the small space caused by the rounded corners of the insert failing to fully contact the squared corners of a trash container provides an additional venting means. Alternatively, the insert may have squared corners to fit the corner
dimensions of the trash container. Preferably, the rectangular embodiments of the invention insert 100 have rounded corners.

[0026] In order to use the insert 100, a user places it into a trash container, such that the handle 104 extends toward the cavity mouth of the trash container. This may be done by matching the terminal circumference 103 of the flange portion 102 insert to the inner circumference of the trash container cavity and forcibly sliding the insert 100 down the inner circumference of the trash container to a user-determined level below the cavity mouth of the container, such that it covers the contents of the trash container. Once in place, a barrier is formed between the cavity mouth of the trash container and its contents. Animals will be unable to lift the entire insert 100 out of the can due to its frictional resistance and due to the fact that most animals, such as raccoons and opossums, will have to be standing on the insert 100 to even try. Finally, where an animal’s weight causes the insert 100 to sink into the trash container, the barrier between the animal and the container’s contents will be maintained.

[0027] FIG. 2A is an illustration of a top perspective view of a rectangular recessed embodiment of the invention. The insert 200 has a rectangular platform portion 201. The platform portion is connected with at least one handle 204, which extends from the platform portion 201. Preferably, the at least one handle 204 extends perpendicularly from the platform portion 201. The platform portion 201 is also connected with a flange portion 202. The flange portion 202 extends from a continuous edge of the platform portion 201 at a uniform angle. In the embodiment shown in FIG. 2A, the flange portion 202 extends in the direction of the handle 204. The angle between platform portion 201 and the flange portion 202 may be as little as one hundred degrees (100°) and as large as one hundred fifty degrees (150°). Preferably, the angle is between one hundred (100°) and one hundred thirty-five (135°) degrees. More preferably, the angle is between one hundred thirty-five (100°) and one hundred fifty degrees (150°). Most preferably, the angle is one hundred fifty degrees (150°).

[0028] The flange portion 202 forms substantially the same shape as the platform portion 201, though the circumference of the flange portion 202 is an increasing multiple of the platform portion 201. This creates a recessed cavity within the bounds of the flange portion 202 and the platform portion 201. The terminal circumference 203 of the flange portion 202 equals the cavity circumference of a trash container at the container’s cavity mouth. In this way, the insert 200 is held in place frictionally through contact between the flange portion 202 and the inner circumference of the container. Where the cavity circumference of the trash container decreases as one moves toward its bottom portion, the insert 200 is also held in place through the inability for the insert 200 to fit beyond a certain position in the trash container.

[0029] As described above, the insert 200 has at least one handle 204 attached to the platform portion 201. A single handle 204 may be attached to the center of the platform portion 201 or to one edge of the platform portion 201. Alternatively, two handles 204 may be attached near opposite sides of the platform portion 201. Preferably, one handle is attached close to one edge of the platform portion 201, such that the insert 200 need not be pulled out of its position in a trash container all at once. This positioning of the handle 204 prevents a user from encountering the total frictional resistance caused by contact between the inner circumference of the trash container and the entire terminal circumference 203 of the flange portion 202. More preferably, two handles 204 are placed at opposite sides of the platform portion 201, such that both handles 204 may be used in inserting the insert 200 into a trash container, and either or both handles 204 may be used to remove the insert 200 from the trash container. No handle 204 should extend higher than the terminal circumference 203 of the flange portion 202.

[0030] The insert 200 may also have at least one ventilation hole 205, which may be located in the flange portion 202, or in the platform portion 201. The ventilation holes 205 are intended to prevent vacuum suction caused by, for example, decreases in temperature of any air sealed inside the trash container by the insert 200. The ventilation holes 205 are also provided to relieve pressure caused by methane gas generation or heating of air sealed inside the container by the insert 200. The ventilation holes 205 are preferably small enough to prevent mice or other small rodents from passing through them. In order to reduce odor escaping from the ventilation holes 205, a replaceable cover 206 may be provided. The replaceable cover 206 may comprise any means for uncovering the ventilation holes 205 and then substantially sealing them when they are not needed. For example, the replaceable cover 206 may comprise a durable strip of material having a border that connects with a compatible outline of material surrounding the ventilation holes 205, such that the two borders connect via hook and loop fasteners.

[0031] As shown in FIG. 2B, a resilient rim 207 may be integrated with the terminal circumference 203 of the flange portion 202. The rim may comprise, for example, a resilient strip of rubber, plastic, or polymer that improves the fit of the insert 200 in a trash container, by slightly increasing the terminal circumference 203 of the flange portion 202, and by increasing the amount of friction between the flange portion 202 and the inner circumference of the trash container. The rim 207 may be attached by adhesive or through other suitable means.

[0032] The insert 200 is preferably formed from a rigid material that resists both animal chewing and cracking due to temperature change. The insert 200 may be formed of its various portions and assembled. For example, the platform portion 201, the flange portion 202, and the handle(s) 204 may be separately formed and assembled at various seams. Alternatively, the insert 200 may be formed in integral fashion (except for any replaceable cover 206 or rim 207), such as a single piece of molded plastic or aluminum material. The insert may have rounded corners that match the dimensions of a trash container’s rounded corners. Alternatively, rounded corners may be used in conjunction with a trash container that has square corners without substantially affecting the utility of the invention. In fact, the small space caused by the rounded corners of the insert failing to fully contact the squared corners of a trash container provides an additional venting means. Alternatively, the insert may have squared corners to fit the corner dimensions of the trash container. Preferably, the rectangular embodiments of the invention insert 200 have rounded corners.
In order to use the insert 200, a user places it into a trash container, such that the handle 204 extends toward the cavity mouth of the trash container. This may be done by matching the terminal circumference 203 of the flange portion 202 to the inner circumference of the trash container cavity and forcibly sliding the insert 200 down the inner circumference of the trash container to a user-determined level below the cavity mouth of the container, such that it covers the contents of the trash container. Once in place, a barrier is formed between the cavity mouth of the trash container and its contents. Animals will be unable to lift the entire insert 200 out of the can due to its frictional resistance and due to the fact that most animals, such as raccoons and opossums, will have to be standing on the insert 200 to even try. Finally, where an animal’s weight causes the insert 200 to sink into the trash container, the barrier between the animal and the container’s contents will be maintained.

FIG. 3A is an illustration of a top perspective view of a circular convex embodiment of the invention. The insert 300 has a circular platform portion 301. The platform portion is connected with at least one handle 304, which extends from the platform portion 301. Preferably, the at least one handle 304 extends perpendicularly from the platform portion 301. The platform portion 301 is also connected with a flange portion 302. The flange portion 302 extends from a continuous edge of the platform portion 301 at a uniform angle. In the embodiment shown in FIG. 3A, the flange portion 302 extends in the direction opposite the handle 304.

The angle between platform portion 301 and the flange portion 302 may be as little as one hundred degrees (100°) and as large as one hundred fifty degrees (150°). The angle is preferably between one hundred twenty (120°) and one hundred fifty (150°) degrees; more preferably, between one hundred thirty-five (135°) and one hundred fifty degrees (150°); and most preferably, one hundred thirty-five degrees (135°). Where the convex embodiment of the insert 300 is used in a trash container of decreasing inner circumference, those skilled in the art will appreciate that a slightly lower angle may be required to allow the insert 300 to be used in such a trash container, without any handle 304 preventing full closure of the lid of the trash container. Those skilled in the art will appreciate that the angle may be increased by shortening the straight-line distance 308 between the edge of the platform portion 301 and the terminal circumference 303, such that the insert 300 must be placed deeper inside such a trash container before contacting the decreasing inner circumference of the container.

The flange portion 302 forms substantially the same shape as the platform portion 301, though the circumference of the flange portion 302 is an increasing multiple of the platform portion 301. This creates a convex space within the bounds of the flange portion 302 and the platform portion 301. The terminal circumference 303 of the flange portion 302 equals the cavity circumference of a trash container at the container’s cavity mouth. In this way, the insert 300 is held in place frictionally through contact between the flange portion 302 and the inner circumference of the container. Where the cavity circumference of the trash container decreases as one moves toward its bottom portion, the insert 300 is also held in place through the inability for the insert 300 to fit beyond a certain position in the trash container.

As described above, the insert 300 has at least one handle 304 attached to the platform portion 301. A single handle 304 may be attached to the center of the platform portion 301 or to one edge of the platform portion 301. Alternatively, two handles 304 may be attached near opposite sides of the platform portion 301. Preferably, one handle is attached close to one edge of the platform portion 301, such that the insert 300 need not be pulled out of its position in a trash container all at once. This positioning of the handle 304 prevents a user from encountering the total frictional resistance caused by contact between the inner circumference of the trash container and the entire terminal circumference 303 of the flange portion 302. More preferably, two handles 304 are placed at opposite sides of the platform portion 301, such that both handles 304 may be used in inserting the insert 300 into a trash container, and either or both handles 304 may be used to remove the insert 300 from the trash container.

The insert 300 may also have at least one ventilation hole 305, which may be located in the flange portion 302, or in the platform portion 301. The ventilation holes 305 are intended to prevent vacuum suction caused by, for example, decreases in temperature of any air sealed inside the trash container by the insert 300. The ventilation holes 305 are also provided to relieve pressure caused by methane gas generation or heating of air sealed inside the container by the insert 300. The ventilation holes 305 are preferably small enough to prevent mice or other small rodents from passing through them. In order to reduce odor escaping from the ventilation holes 305, a replaceable cover 306 may be provided. The replaceable cover 306 may comprise any means for uncovering the ventilation holes 305 and then substantially sealing them when they are not needed. For example, the replaceable cover 306 may comprise a durable strip of material having a border that connects with a compatible outline of material surrounding the ventilation holes 305, such that the two borders connect via hook and loop fasteners.

As shown in FIG. 3B, a resilient rim 307 may be integrated with the terminal circumference 303 of the flange portion 302. The rim may comprise, for example, a resilient strip of rubber, plastic, or polymer that improves the fit of the insert 300 in a trash container, by slightly increasing the terminal circumference 303 of the flange portion 302, and by increasing the amount of friction between the flange portion 302 and the inner circumference of the trash container. The rim 307 may be attached by adhesive or through other suitable means.

The insert 300 is preferably formed from a rigid material that resists both animal chewing and cracking due to temperature change. The insert 300 may be formed of various portions and assembled. For example, the platform portion 301, the flange portion 302, and the handle(s) 304 may be separately formed and assembled at various seams. Alternatively, the insert 300 may be formed in integral fashion (except for any replaceable cover 306 or rim 307), such as a single piece of molded plastic or aluminum material.

In order to use the insert 300, a user places it into a trash container, such that the handle 304 extends toward the cavity mouth of the trash container. This may be done by matching the terminal circumference 303 of the flange
portion 302 insert to the inner circumference of the trash container cavity and forcibly sliding the insert 300 down the inner circumference of the trash container to a user-determined level below the cavity mouth of the container, such that it covers the contents of the trash container. Once in place, a barrier is formed between the cavity mouth of the trash container and its contents. Animals will be unable to lift the entire insert 300 out of the can due to its frictional resistance and due to the fact that most animals, such as raccoons and opossums, will have to be standing on the insert 300 to even try. Finally, where an animal’s weight causes the insert 300 to sink into the trash container, the barrier between the animal and the container’s contents will be maintained.

[0042] FIG. 4A is an illustration of a top perspective view of a circular recessed embodiment of the invention. The insert 400 has a circular platform portion 401. The platform portion is connected with at least one handle 404, which extends from the platform portion 401. Preferably, the at least one handle 404 extends perpendicularly from the platform portion 401. The platform portion 401 is also connected with a flange portion 402. The flange portion 402 extends from a continuous edge of the platform portion 401 at a uniform angle. In the embodiment shown in FIG. 4A, the flange portion 402 extends in the direction of the handle 404. The angle between platform portion 401 and the flange portion 402 may be as little as one hundred degrees (100°) and as large as one hundred fifty degrees (150°). Preferably, the angle is between one hundred (100°) and one hundred thirty-five (135°) degrees. More preferably, the angle is between one hundred thirty-five (135°) and one hundred fifty degrees (150°). Most preferably, the angle is one hundred fifty degrees (150°).

[0043] The flange portion 402 forms substantially the same shape as the platform portion 401, though the circumference of the flange portion 402 is an increasing multiple of the platform portion 401. This creates a recessed space within the bounds of the flange portion 402 and the platform portion 401. The terminal circumference 403 of the flange portion 402 equals the cavity circumference of a trash container at the container’s cavity mouth. In this way, the insert 400 is held in place frictionally through contact between the flange portion 402 and the inner circumference of the container. Where the cavity circumference of the trash container decreases as one moves toward its bottom portion, the insert 400 is also held in place through the inability for the insert 400 to fit beyond a certain position in the trash container.

[0044] As described above, the insert 400 has at least one handle 404 attached to the platform portion 401. A single handle 404 may be attached to the center of the platform portion 401 or to one edge of the platform portion 401. Alternatively, two handles 404 may be attached near opposite sides of the platform portion 401. Preferably, one handle is attached close to one edge of the platform portion 401, such that the insert 400 need not be pulled out of its position in a trash container all at once. This positioning of the handle 404 prevents a user from encountering the total frictional resistance caused by contact between the inner circumference of the trash container and the entire terminal circumference 403 of the flange portion 402. More preferably, two handles 404 are placed at opposite sides of the platform portion 401, such that both handles 404 may be used in inserting the insert 400 into a trash container, and either or both handles 404 may be used to remove the insert 400 from the trash container. No handle 404 should extend higher than the terminal circumference 403 of the flange portion 402.

[0045] The insert 400 may also have at least one ventilation hole 405, which may be located in the flange portion 402, or in the platform portion 401. The ventilation holes 405 are intended to prevent vacuum suction caused by, for example, decreases in temperature of any air sealed inside the trash container by the insert 400. The ventilation holes 405 are also provided to relieve pressure caused by methane gas generation or heating of air sealed inside the container by the insert 400. The ventilation holes 405 are preferably small enough to prevent mice or other small rodents from passing through them. In order to reduce odor escaping from the ventilation holes 405, a replaceable cover 406 may be provided. The replaceable cover 406 may comprise any means for uncovering the ventilation holes 405 and then substantially sealing them when they are not needed. For example, the replaceable cover 406 may comprise a durable strip of material having a border that connects with a compatible outline of material surrounding the ventilation holes 405, such that the two borders connect via hook and loop fasteners.

[0046] As shown in FIG. 4B, a resilient rim 407 may be integrated with the terminal circumference 403 of the flange portion 402. The rim may comprise, for example, a resilient strip of rubber, plastic, or polymer that improves the fit of the insert 400 in a trash container, by slightly increasing the terminal circumference 403 of the flange portion 402, and by increasing the amount of friction between the flange portion 402 and the inner circumference of the trash container. The rim 407 may be attached by adhesive or through other suitable means.

[0047] The insert 400 is preferably formed from a rigid material that resists both animal chewing and cracking due to temperature change. The insert 400 may be formed of its various portions and assembled. For example, the platform portion 401, the flange portion 402, and the handle(s) 404 may be separately formed and assembled at various seams. Alternatively, the insert 400 may be formed in integral fashion (except for any replaceable cover 406 or rim 407), such as a single piece of molded plastic or aluminum material.

[0048] In order to use the insert 400, a user places it into a trash container, such that the handle 404 extends toward the cavity mouth of the trash container. This may be done by matching the terminal circumference 403 of the flange portion 402 insert to the inner circumference of the trash container cavity and forcibly sliding the insert 400 down the inner circumference of the trash container to a user-determined level below the cavity mouth of the container, such that it covers the contents of the trash container. Once in place, a barrier is formed between the cavity mouth of the trash container and its contents. Animals will be unable to lift the entire insert 400 out of the can due to its frictional resistance and due to the fact that most animals, such as raccoons and opossums, will have to be standing on the insert 400 to even try. Finally, where an animal’s weight causes the insert 400 to sink into the trash container, the barrier between the animal and the container’s contents will be maintained.
It will be appreciated that the invention may have many embodiments, wherein changes to the configuration of the invention do not cause a departure from its scope. For example, the placement of the handles and ventilation holes on the platform portion of the insert, except to the extent explained herein, do not provide significant additional advantages such as to depart from the scope of the invention.

What is claimed is:

1. An animal resistant insert for a trash container, the trash container having an inner circumference, comprising:
 - a platform portion having a continuous edge;
 - a flange portion extending from the edge of the platform portion at an angle;
 - the flange portion terminating at a terminal circumference, the terminal circumference being approximately equal to the inner circumference of the trash container; and
 - at least one handle extending from the platform portion.

2. The animal resistant insert of claim 1, further comprising a rim attached to the terminal circumference of the flange portion.

3. The animal resistant insert of claim 2, wherein the rim comprises a strip of resilient material.

4. The animal resistant insert of claim 3, wherein the resilient material is chosen from a group including rubber, plastic, vinyl and flexible polymeric material.

5. The animal resistant insert of claim 1, further comprising at least one ventilation hole disposed on the platform portion.

6. The animal resistant insert of claim 5, further comprising a replaceable cover for sealing and uncovering the ventilation holes.

7. The animal resistant insert of claim 1, wherein the edge of the platform portion and the terminal circumference of the flange portion are rectangular in shape.

8. The animal resistant insert of claim 7, wherein the edge of the platform portion and the terminal circumference of the flange portion have rounded corners.

9. The animal resistant insert of claim 1, wherein the edge of the platform portion and the terminal circumference of the flange portion are circular in shape.

10. An animal resistant insert for a trash container, the trash container having an inner circumference, comprising:
 - a platform portion having a continuous edge;
 - a flange portion extending from the edge of the platform portion at an angle;
 - the flange portion terminating at a terminal circumference, the terminal circumference being approximately equal to the inner circumference of the trash container; and
 - at least one handle extending from the platform portion; and
 - a rim attached to the terminal circumference of the flange portion.

11. The animal resistant insert of claim 10, wherein the rim comprises a strip of resilient material.

12. The animal resistant insert of claim 11, wherein the resilient material is chosen from a group including rubber, plastic, vinyl and flexible polymeric material.

13. The animal resistant insert of claim 10, further comprising at least one ventilation hole disposed on the platform portion.

14. The animal resistant insert of claim 13, further comprising a replaceable cover for sealing and uncovering the ventilation holes.

15. The animal resistant insert of claim 10, wherein the edge of the platform portion and the terminal circumference of the flange portion are rectangular in shape.

16. The animal resistant insert of claim 15, wherein the edge of the platform portion and the terminal circumference of the flange portion have rounded corners.

17. The animal resistant insert of claim 10, wherein the edge of the platform portion and the terminal circumference of the flange portion are circular in shape.

18. An animal resistant insert for a trash container, the trash container having an inner circumference, comprising:
 - a platform portion having a continuous edge;
 - a flange portion extending from the edge of the platform portion at an angle;
 - the flange portion terminating at a terminal circumference, the terminal circumference being approximately equal to the inner circumference of the trash container; and
 - at least one handle extending from the platform portion; and
 - a rim attached to the terminal circumference of the flange portion.

19. The animal resistant insert of claim 18, wherein the rim comprises a strip of resilient material.

20. The animal resistant insert of claim 19, wherein the resilient material is chosen from a group including rubber, plastic, vinyl and flexible polymeric material.

21. The animal resistant insert of claim 18, further comprising a replaceable cover for sealing and uncovering the ventilation holes.

22. The animal resistant insert of claim 18, wherein the edge of the platform portion and the terminal circumference of the flange portion are rectangular in shape.

23. The animal resistant insert of claim 22, wherein the edge of the platform portion and the terminal circumference of the flange portion have rounded corners.

24. The animal resistant insert of claim 18, wherein the edge of the platform portion and the terminal circumference of the flange portion are circular in shape.

* * * * *