Abstract: Disclosed herein are processes for making L-ornithine phenyl acetate. The process may include, for example, intermixing a halide salt of L-ornithine with silver phenyl acetate. The process may also include forming a phenyl acetate salt in situ. The present application also relates to various compositions obtained from these processes, including crystalline forms.
— of inventorship (Rule 4.17(iv))

Published:
— with international search report (Art. 21(3))
METHODS OF MAKING L-ORNITHINE PHENYL ACETATE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit priority to U.S. Application No. 61/390,585, filed Oct. 6, 2010, which is hereby incorporated by reference in its entirety.

BACKGROUND

Field

[0002] The present application relates to the fields of pharmaceutical chemistry, biochemistry, and medicine. In particular, it relates to methods of making L-ornithine phenyl acetate salts.

Description

[0003] Hyperammonemia is a hallmark of liver disease and is characterized by an excess of ammonia in the bloodstream. Hepatic encephalopathy is a primary clinical consequence of progressive hyperammonemia and is a complex neuropsychiatric syndrome, which may complicate acute or chronic hepatic failure. It is characterized by changes in mental state including a wide range of neuropsychiatric symptoms ranging from minor signs of altered brain function to overt psychiatric and/or neurological symptoms, or even deep coma. The accumulation of unmetabolized ammonia has been considered as the main factor involved in the pathogenesis of hepatic encephalopathy, but additional mechanisms may be associated.

[0004] L-Ornithine monohydrochloride and other L-ornithine salts are available for their use in the treatment of hyperammonemia and hepatic encephalopathy. For example, U.S. Publication No. 2008/0119554, which is hereby incorporated by reference in its entirety, describes compositions of L-ornithine and phenyl acetate for the treatment of hepatic encephalopathy. L-Ornithine has been prepared by enzymatic conversion methods. For example, U.S. Patent Nos. 5,405,761 and 5,591,613, both of which are hereby incorporated by reference in their entirety, describe enzymatic conversion of arginine to form L-ornithine salts. Sodium phenyl acetate is commercially available, and also available as an injectable solution for the treatment of acute hyperammonemia. The injectable solution is marketed as AMMONUL.
Although salt forms may exhibit improved degradation properties, certain salts, particularly sodium or chloride salts, may be undesirable when treating patients having diseases associated with the liver disease, such as hepatic encephalopathy. For example, a high sodium intake may be dangerous for cirrhotic patients prone to ascites, fluid overload and electrolyte imbalances. Similarly, certain salts are difficult to administer intravenously because of an increased osmotic pressure, i.e., the solution is hypertonic. High concentrations of excess salt may require diluting large volumes of solution for intravenous administration which, in turn, leads to excessive fluid overload. Accordingly, there exists a need for the preparation of L-ornithine and phenyl acetate salts which are favorable for the treatment of hepatic encephalopathy or other conditions where fluid overload and electrolyte imbalance are prevalent.

SUMMARY

Some embodiments disclosed herein include a process for making L-ornithine phenyl acetate.

Some embodiments disclosed herein include a process for making L-ornithine phenyl acetate salt comprising intermixing an L-ornithine, or a salt thereof, and phenyl acetic acid, or a salt thereof.

Some embodiments include a process for making L-ornithine phenyl acetate salt comprising intermixing a phenyl acetate salt, L-ornithine benzoate, and a solvent; and isolating a composition comprising at least 70% crystalline L-ornithine phenyl acetate by weight.

In some embodiments, the process further includes forming L-ornithine benzoate by intermixing an L-ornithine salt, a benzoate salt and a first solvent to form an intermediate solution.

In some embodiments, the process further includes removing at least a portion of a salt from said intermediate solution before intermixing the phenyl acetate salt, wherein said salt is not an L-ornithine salt.

In some embodiments, the salt removed from the intermediate solution comprises an anion derived at least in part from the L-ornithine salt and a cation derived at least in part from the benzoate salt.

In some embodiments, the L-ornithine salt is L-ornithine hydrochloride and said anion is chloride.
In some embodiments, the benzoate salt is silver benzoate and the cation is a silver ion.

In some embodiments, the process further comprises adding hydrochloric acid before removing at least a portion of the salt.

In some embodiments, at least about 90% by weight of the salt is removed from the intermediate solution.

In some embodiments, the process further comprises forming L-ornithine benzoate by intermixing an L-ornithine salt, a benzoate salt and a solvent to form an intermediate solution, and isolating L-ornithine benzoate from said intermediate solution.

In some embodiments, the process further comprises removing at least a portion of a salt from the intermediate solution before isolating the L-ornithine benzoate, wherein the salt is not an L-ornithine salt.

In some embodiments, the process further comprises adding hydrochloric acid before removing at least a portion of the salt.

In some embodiments, the isolation of L-ornithine benzoate comprises crystallizing L-ornithine benzoate from the intermediate solution.

In some embodiments, the phenyl acetate salt is dispersed in a solution which is intermixed with L-ornithine benzoate and the solvent.

Some embodiments include a process for making L-ornithine phenyl acetate salt comprising: preparing a solution of phenyl acetate salt by mixing a phenyl acetic acid and an appropriate base in a first solvent; intermixing an L-ornithine benzoate with the solution of phenyl acetate salt; and isolating a composition comprising L-ornithine phenyl acetate.

In some embodiments, the appropriate base is selected from the group consisting of an alkali metal hydroxide and an alkali metal alkoxide.

In some embodiments, the process further comprises forming L-ornithine benzoate by intermixing an L-ornithine salt, a benzoate salt and a second solvent to form an intermediate solution.

In some embodiments, the composition comprises at least about 0.10% by weight benzoate salt.

In some embodiments, the composition comprises no more than 5% by weight benzoate salt.
In some embodiments, the composition comprises no more than 3% by weight benzoate salt.

In some embodiments, the composition comprises no more than 1% by weight benzoate salt.

In some embodiments, the L-ornithine salt is L-ornithine hydrochloride.

In some embodiments, the benzoate salt is silver benzoate.

In some embodiments, the composition further comprises at least 10 ppm silver.

In some embodiments, the composition comprises at least 20 ppm silver.

In some embodiments, the composition comprises at least 25 ppm silver.

In some embodiments, the composition comprises no more than 600 ppm silver.

In some embodiments, the composition comprises no more than 100 ppm silver.

In some embodiments, the composition comprises no more than 65 ppm silver.

In some embodiments, the phenyl acetate is an alkali metal salt.

In some embodiments, the alkali metal salt is sodium phenyl acetate.

In some embodiments, the composition comprises no more than 100 ppm sodium.

In some embodiments, the composition comprises no more than 20 ppm sodium.

In some embodiments, the L-ornithine salt is a halide salt.

In some embodiments, the L-ornithine halide salt is L-ornithine hydrochloride.

In some embodiments, the composition comprises no more than 0.1% by weight chloride.

In some embodiments, the composition comprises no more than 0.01% by weight chloride.
Some embodiments include a process for making L-ornithine phenyl acetate salt comprising: increasing the pH value of a mixture comprising an L-ornithine salt at least until an intermediate salt precipitates, wherein said intermediate salt is not an L-ornithine salt; isolating the intermediate salt from said mixture; intermixing phenyl acetic acid with said mixture; and isolating L-ornithine phenyl acetate salt from said solution.

In some embodiments, the pH value is increased to at least 8.0.

In some embodiments, the pH value is increased to at least 9.0.

In some embodiments, increasing the pH value comprises adding a pH modifier selected from the group consisting of sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide, calcium hydroxide, magnesium hydroxide, barium hydroxide, ammonium hydroxide, sodium carbonate, sodium bicarbonate, potassium hydroxide, potassium bicarbonate, calcium carbonate, magnesium carbonate, barium carbonate, sodium methoxide, potassium i-butoxide, dibutylamine, tryptamine, lithium hydride, sodium hydride, calcium hydride, butyl lithium, ethyl magnesium bromide or combinations thereof.

In some embodiments, the intermediate salt comprises an anion derived at least in part from the L-ornithine salt.

In some embodiments, the intermediate salt comprises a cation derived at least in part from the pH modifier.

In some embodiments, the pH modifier is selected from the group consisting of sodium hydroxide, sodium methoxide, calcium hydroxide, calcium carbonate and barium hydroxide.

Some embodiments include a process for making L-ornithine phenyl acetate salt comprising intermixing an L-ornithine salt, a phenyl acetate salt and a solvent to form a solution, and isolating L-ornithine phenyl acetate from said solution.

In some embodiments, the L-ornithine salt is a halide salt. In some embodiments, the halide salt is not L-ornithine hydrochloride.

In some embodiments, the phenyl acetate salt is silver phenyl acetate.

In some embodiments, the L-ornithine salt is L-ornithine hydrochloride.

Some embodiments include compositions of L-ornithine phenyl acetate prepared according to the methods disclosed herein.
BRIEF DESCRIPTION OF THE DRAWINGS

[0056] FIGURE 1 is an X-ray powder diffraction pattern of Form I.
[0057] FIGURE 2 shows differential scanning calorimetry results for Form I.
[0058] FIGURE 3 shows thermogravimetric gravimetric/differential thermal analysis of Form I.
[0059] FIGURE 4 shows the H nuclear magnetic resonance spectrum obtained from a sample of Form I.
[0060] FIGURE 5 shows dynamic vapor sorption results for Form I.
[0061] FIGURE 6 is an X-ray powder diffraction pattern of Form II.
[0062] FIGURE 7 shows differential scanning calorimetry results for Form II.
[0063] FIGURE 8 shows thermogravimetric gravimetric/differential thermal analysis of Form II.
[0064] FIGURE 9 shows the H nuclear magnetic resonance spectrum obtained from a sample of Form II.
[0065] FIGURE 10 shows dynamic vapor sorption results for Form II.
[0066] FIGURE 11 is an X-ray powder diffraction pattern of Form III.
[0067] FIGURE 12 shows differential scanning calorimetry results for Form III.
[0068] FIGURE 13 shows thermogravimetric gravimetric/differential thermal analysis of Form III.
[0069] FIGURE 14 shows the H nuclear magnetic resonance spectrum obtained from a sample of Form III.
[0070] FIGURE 15 shows dynamic vapor sorption results for Form III.
[0071] FIGURE 16 is an X-ray powder diffraction pattern of Form V.
[0072] FIGURE 17 shows differential scanning calorimetry results for Form V.
[0073] FIGURE 18 shows thermogravimetric gravimetric/differential thermal analysis of Form V.
[0074] FIGURE 19 shows the H nuclear magnetic resonance spectrum obtained from a sample of Form V.
[0075] FIGURE 20 shows dynamic vapor sorption results for Form V.
FIGURE 21 shows the 1H nuclear magnetic resonance spectrum obtained from a sample of L-ornithine benzoate.

FIGURE 22 shows the 1H nuclear magnetic resonance spectrum obtained from a sample of L-ornithine phenyl acetate.

DETAILED DESCRIPTION

Some embodiments disclosed herein include a method of making L-ornithine phenyl acetate salt. L-Ornithine phenyl acetate may be produced, for example, through an intermediate salt, such as L-ornithine benzoate. As shown in Scheme 1, an L-ornithine salt of Formula I can be reacted with a benzoate salt of Formula II to obtain the intermediate L-ornithine benzoate.

Scheme 1

Various salts of L-ornithine may be used in the compound of Formula 1, and therefore X in Formula I can be any ion capable of forming a salt with L-ornithine other than benzoic acid or phenyl acetic acid. X can be a monoatomic anion, such as, but not limited to, a halide (e.g., fluoride, chloride, bromide, and iodide). X can also be a polyatomic anion, such as, but not limited to, acetate, aspartate, formate, oxalate, bicarbonate, carbonate, sulfate, nitrate, isonicotinate, salicylate, citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, glutamate, methanesulfonate, ethanesulfonate, benzensulfonate,
p-toluenesulfonate, pamoate (i.e., 1,1'-methylene-bis-(2-hydroxy-3-naphthoate), phosphate and the like. X may be an organic or inorganic group. In some embodiments, X is a monovalent ion. In some embodiments, X is chloride.

[0080] Similarly, the benzoate salt of Formula II is not particularly limited, and therefore Y in Formula II can be any appropriate ion capable of forming a salt with benzoic acid. In some embodiments, Y can be a monoatomic cation, such as an alkali metal ion (e.g., Li⁺, Na⁺, and K⁺) and other monovalent ions (e.g., Ag⁺). Y may also be a polyatomic cation, such as ammonium, L-arginine, diethylamine, choline, ethanolamine, 1H-imidazole, trolamine, and the like. In some embodiments, Y is an inorganic ion. In some embodiments, Y is silver.

[0081] Many other possible salts of L-ornithine and benzoic acid may be used for the compounds of Formulae I and II, respectively, and can readily be prepared by those skilled in the art. See, for example, Bighley L.D., et al., "Salt forms of drugs and absorption," In: Swarbrick J., Horlan J.C., eds. Encyclopedia of pharmaceutical technology, Vol. 12. New York: Marcel Dekker, Inc. pp. 452-499, which is hereby incorporated by reference in its entirety.

[0082] The intermediate L-ornithine benzoate (i.e., Formula III) can be prepared by intermixing solutions including compounds of Formulae I and II. As an example, the compounds of Formulae I and II may be separately dissolved in water and dimethyl sulfoxide (DMSO), respectively. The two solutions may then be intermixed so that the L-ornithine and benzoic acid react to form the salt of Formula III. Alternatively, the two salt compounds can be directly dissolved into a single solution. In some embodiments, L-ornithine and benzoic acid are dissolved in separate solvents, and subsequently intermixed. In some embodiments, L-ornithine is dissolved in an aqueous solution, benzoic acid is dissolved in an organic solvent, and the L-ornithine and benzoic acid solutions are subsequently intermixed.

[0083] Non-limiting examples of solvents which may be used when intermixing L-ornithine and benzoate salts include acetonitrile, dimethylsulfoxide (DMSO), cyclohexane, ethanol, acetone, acetic acid, 1-propanol, dimethylcarbonate, N-methyl-2-pyrrolidone (NMP), ethyl acetate (EtOAc), toluene, isopropyl alcohol (IPA), diisopropyl ether, nitromethane, water, 1,4-dioxane, diethyl ether, ethylene glycol, methyl acetate (MeOAc), methanol, 2-butanol, cumene, ethyl formate, isobutyl acetate, 3-methyl-1-butanol, anisole, and combinations thereof. In some embodiments, the L-
ornithine benzoate solution includes water. In some embodiments, the L-ornithine benzoate solution includes DMSO.

[0084] Upon intermixing L-ornithine and benzoate salts, counterions X and Y may form a precipitate that can be removed from the intermixed solution using known methods, such as filtration, centrifugation, and the like. In some embodiments, X is chloride, Y is silver, and the reaction produces a precipitate having AgCl. Although Scheme 1 shows the compounds of Formula I and II as salts, it is also within the scope of the present application to intermix the free base of L-ornithine and benzoic acid to form the intermediate of L-ornithine benzoate. Consequently, forming and isolating the precipitate is optional.

[0085] The relative amount of L-ornithine and benzoate salts that are intermixed is not limited; however the molar ratio of L-ornithine to benzoic acid may optionally be in the range of about 10:90 and 90:10. In some embodiments, the molar ratio of L-ornithine benzoate can be in the range of about 30:70 and 70:30. In some embodiments, the molar ratio of L-ornithine to benzoate can be in the range of about 40:60 and 60:40. In some embodiments, the molar ratio of L-ornithine to benzoate is about 1:1.

[0086] In embodiments where X and Y are both inorganic ions (e.g., X and Y are chloride and silver, respectively), additional amounts of X-containing salt may be added to encourage further precipitation of the counterion Y. For example, if X is chloride and Y is silver, the molar ratio of L-ornithine hydrochloride to silver benzoate may be greater than 1:1 so that an excess of chloride is present relative to silver. Accordingly, in some embodiments, the molar ratio of L-ornithine to benzoic acid is greater than about 1:1. Nevertheless, the additional chloride salt is not required to be derived from an L-ornithine salt (e.g., L-ornithine hydrochloride). For example, dilute solutions of hydrochloric acid may be added to the solution to further remove silver. Although it is not particularly limited when the additional X-containing salt is added, it is preferably added before the AgCl is initially isolated.

[0087] As shown in Scheme 2, the L-ornithine benzoate can react with a phenyl acetate salt of Formula IV to form L-ornithine phenyl acetate. For example, sodium phenyl acetate can be intermixed with a solution of L-ornithine benzoate to form L-ornithine phenyl acetate. Various salts of phenyl acetate may be used, and therefore Z in Formula IV can be any cation capable of forming a salt with phenyl acetate other than
benzoic acid or L-ornithine. In some embodiments, Z can be a monoatomic cation, such as an alkali metal ion (e.g., Li⁺, Na⁺, and K⁺) and other monovalent ions (e.g., Ag⁺). Z may also be a polyatomic cation, such as ammonium, L-arginine, diethylenetriamine, choline, ethanolamine, 1H-imidazole, trolamine, and the like. In some embodiments, Z is an inorganic ion. In some embodiments, Z is sodium.

[0088] The phenyl acetate salt may optionally be prepared in solution using phenyl acetic acid and an appropriate base. This solution may be intermixed with L-ornithine benzoate to obtain L-ornithine phenyl acetate as described above. As an example, phenyl acetic acid may be intermixed with sodium hydroxide in isopropanol to obtain a solution of sodium phenyl acetate. The solution of sodium phenyl acetate can then be intermixed with a solution of L-ornithine benzoate. Alternatively, the phenyl acetate salt may optionally be isolated as a solid before intermixing with L-ornithine benzoate.

[0089] The base for preparing phenyl acetate salt is not particularly limited and will be selected, in part, based upon the desired phenyl acetate salt. As an example, sodium phenyl acetate may be obtained by adding sodium hydroxide or sodium methoxide. The base can be an inorganic base or an organic base. In some embodiments, the base is an alkali metal base. For example, the base may include lithium hydroxide, sodium hydroxide, and potassium hydroxide. In some embodiments, the base is an alkaline earth metal salt. As an example, the base may include calcium hydroxide, magnesium hydroxide, and barium hydroxide. In some embodiments, the base is water-soluble. Non-limiting examples of bases include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium methoxide, potassium methoxide, calcium methoxide, magnesium methoxide, sodium tert-butoxide, potassium tert-butoxide, calcium tert-butoxide, and magnesium tert-butoxide.

[0090] The relative amount of L-ornithine salt and phenyl acetate salt that are intermixed is also not limited; however the molar ratio of L-ornithine to phenyl acetate may optionally be in the range of about 10:90 and 90:10. In some embodiments, the molar ratio of L-ornithine to phenyl acetate can be in the range of about 30:70 and 70:30. In some embodiments, the molar ratio of L-ornithine to phenyl acetate can be in the range of about 40:60 and 60:40. In some embodiments, the molar ratio of L-ornithine to phenyl acetate is about 1:1.
The L-ornithine phenyl acetate of Formula V may then be isolated from solution using known techniques. For example, by evaporating any solvent until the L-ornithine phenyl acetate crystallizes, or alternatively by the adding an anti-solvent miscible in the L-ornithine phenyl acetate solution until the L-ornithine phenyl acetate precipitates from solution. Another possible means for isolating the L-ornithine phenyl acetate is to adjust the temperature of the solution (e.g., lower the temperature) until the L-ornithine phenyl acetate precipitates.

The method of isolating the L-ornithine phenyl acetate affects the crystalline form that is obtained. The crystalline forms are discussed further below and are also disclosed in three related applications: (i) U.S. Provisional Application No. 61/166,676, filed April 3, 2009; (ii) PCT/US2010/029708, filed in English on April 1, 2010; and (iii) U.S. Application No. 12/753,763, filed April 2, 2010. These applications are hereby incorporated by reference in their entirety.

The isolated L-ornithine phenyl acetate may be subjected to various additional processing, such as drying and the like. In some embodiments, L-ornithine phenyl acetate may be subsequently intermixed with a dilute HCl solution to precipitate
residual silver. The L-ornithine phenyl acetate may again be isolated from solution using similar methods disclosed above.

[0094] As would be appreciated by a person of ordinary skill in the art, guided by the teachings of the present application, L-ornithine phenyl acetate may similarly be prepared using an intermediate salt other than L-ornithine benzoate. Thus, for example, L-ornithine, or a salt thereof (e.g., L-ornithine hydrochloride), can be intermixed with a solution having acetic acid. L-Ornithine acetate may then be intermixed with phenyl acetic acid, or a salt thereof (e.g., sodium phenyl acetate), to obtain L-ornithine phenyl acetate. Scheme 3 illustrates one example of a process for forming L-ornithine phenyl acetate using L-ornithine acetate as an intermediate salt.

[0095] Other salts may be used besides benzoate and acetate. In some embodiments, the intermediate salt can be a pharmaceutically acceptable salt of L-ornithine. For example, the intermediate L-ornithine salt can be an acetate, aspartate, formate, oxalate, bicarbonate, carbonate, sulfate, nitrate, isonicotinate, salicylate, citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzensulfonate, p-toluenesulfonate, pamoate (i.e., 1,1'-methylene-bis-(2-hydroxy-3-naphthoate) or phosphate. The free acid of the intermediate is preferably a weaker acid relative to phenyl acetic acid. In some embodiments, the intermediate is an L-ornithine salt with an anion component that exhibits a pK_a value that is higher than the pK_a value of phenyl acetic acid. As an example, for L-ornithine acetate, acetic acid and phenyl acetic acid exhibit pK_a values of about 4.76 and 4.28, respectively.
L-Ornithine phenyl acetate may also be prepared, in some embodiments, without forming an intermediate salt, such as L-ornithine benzoate. Scheme 4 illustrates an exemplary process for preparing L-ornithine phenyl acetate without an intermediate salt. A pH modifier may be added to a solution of L-ornithine salt (e.g., as illustrated in Scheme 4 by the compound of Formula I) until a salt precipitates from solution, where the salt is not an L-ornithine salt. As an example, sodium methoxide (NaOMe) can be added to a mixture of L-ornithine hydrochloride until sodium chloride precipitates from solution to leave a free base of L-ornithine. The precipitate may optionally be isolated from solution using known techniques, such as filtration, centrifugation, and the like. The free base of L-ornithine (e.g., as illustrated in Scheme 4 by the compound of Formula I-a) may be intermixed with phenyl acetic acid, or a salt thereof (e.g., as illustrated in Scheme 4 by the compound of Formula IV), to obtain L-ornithine phenyl acetate. The L-ornithine phenyl acetate of Formula V may then be isolated as previously described.
A pH modifier can include a basic compound, or anhydrous precursor thereof, and/or a chemically protected base. Non-limiting examples of pH modifiers include sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide, calcium hydroxide, magnesium hydroxide, barium hydroxide, ammonium hydroxide, sodium carbonate, sodium bicarbonate, potassium hydroxide, potassium bicarbonate, calcium carbonate, magnesium carbonate, barium carbonate, sodium methoxide, potassium methoxide, sodium i-butoxide, potassium i-butoxide, dibutylamine, tryptamine, lithium hydride, sodium hydride, calcium hydride, butyl lithium, ethyl magnesium bromide and combinations thereof. Also, the amount of pH modifier to be added is not particularly limited; however the molar ratio of L-ornithine to pH modifier may optionally be in the range of about 10:90 and 90:10. In some embodiments, the molar ratio of L-ornithine to pH modifier can be in the range of about 30:70 and 70:30. In some embodiments, the molar ratio of L-ornithine to pH modifier can be in the range of about 40:60 and 60:40. In some embodiments, the molar ratio of L-ornithine to pH modifier is about 1:1. The pH modifier may, in some embodiments be added to adjust the pH value to at least about 8.0; at least about 9.0; or at least about 9.5.

Another process for forming L-ornithine phenyl acetate, in some embodiments, includes reacting a halide salt of L-ornithine with silver phenyl acetate (Scheme 5). As an example, L-ornithine hydrochloride may be intermixed with silver phenyl acetate and a solvent. AgCl may then precipitate and is optionally isolated from
the solution. The remaining L-ornithine phenyl acetate can also be isolated using known methods. This process can be completed using generally the same procedures and conditions outlined above.

[0099] The relative amount of L-ornithine salt and phenyl acetate salt that are intermixed is also not limited; however the molar ratio of L-ornithine to phenyl acetate may optionally be in the range of about 10:90 and 90:10. In some embodiments, the molar ratio of L-ornithine to phenyl acetate can be in the range of about 30:70 and 70:30. In some embodiments, the molar ratio of L-ornithine to phenyl acetate can be in the range of about 40:60 and 60:40. In some embodiments, the molar ratio of L-ornithine to phenyl acetate is about 1:1.

[0100] The L-ornithine phenyl acetate may then be isolated from solution using known techniques. For example, by evaporating any solvent until the L-ornithine phenyl acetate crystallizes, or alternatively by the adding an anti-solvent miscible in the L-ornithine phenyl acetate solution until the L-ornithine phenyl acetate precipitates from solution. Another possible means for isolating the L-ornithine phenyl acetate is to adjust the temperature of the solution (e.g., lower the temperature) until the L-ornithine phenyl acetate precipitates.

[0101] Scheme 5

[0102] The compositions obtained according to the methods disclosed herein can be processed into various forms (e.g., crystalline Form 2, amorphous, etc.) as discussed further below. And the composition can be formulated for various routes of administration. In some embodiments, the compositions can be used to treating or ameliorating hyperammonemia or hepatic encephalopathy.

Compositions of L-Ornithine Phenyl Acetate

[0103] Also disclosed herein are compositions of L-ornithine phenyl acetate that may be formed by the process disclosed herein. The compositions of the present application advantageously have low amounts of inorganic salts, particularly alkali metal salts and/or halide salts, and therefore are particularly suited for oral and/or intravenous
administration to patients with hepatic encephalopathy. Meanwhile, these compositions may exhibit similar stability profiles compared to other salts (e.g., mixtures of L-ornithine hydrochloride and sodium phenyl acetate). The compositions may, in some embodiments, be obtained by one of the processes disclosed in the present application. For example, any of the disclosed processes using L-ornithine benzoate as an intermediate may yield the compositions of the present application.

[0104] The compositions, in some embodiments, can include a crystalline form of L-ornithine phenyl acetate (e.g., Forms I, II, III and/or V disclosed herein). In some embodiments, the composition may include at least about 20% by weight of a crystalline form of L-ornithine phenyl acetate (preferably at least about 50% by weight, and more preferably at least about 80% by weight). In some embodiments, the composition consists essentially of a crystalline form of L-ornithine phenyl acetate. In some embodiments, the composition includes a mixture of at least two (e.g., two, three or four forms) of Forms I, II, III, and V.

[0105] The compositions, in some embodiments, include Form II. For example, the compositions may include at least about 20%; at least about 50%; at least about 90%; at least about 95%; or at least about 99% of Form II. Similarly, the compositions may also include, for example, Forms I, III or V. The compositions may optionally include at least about 20%; at least about 50%; at least about 90%; at least about 95%; or at least about 99% of Forms I, II, III and/or V.

[0106] Also within the scope of the present application are amorphous forms of L-ornithine phenyl acetate. Various methods are known in the art for preparing amorphous forms. For example, a solution of L-ornithine phenyl acetate may be dried under vacuum by lyophilization to obtain an amorphous composition. See P.C.T. Application WO 2007/058634, which published in English and designates the U.S., and is hereby incorporated by reference for disclosing methods of lyophilization.

[0107] It is preferred that the composition have low amounts (if any) of alkali and halogen ions or salts, particular sodium and chloride. In some embodiments, the composition comprises no more than about 100 ppm of alkali metals (preferably no more than about 20 ppm, and most preferably no more than about 10 ppm). In some embodiments, the composition comprises no more than about 100 ppm of sodium (preferably no more than about 20 ppm, and most preferably no more than about 10 ppm). In some embodiments, the composition comprises no more than about 0.1% by weight of
halides (preferably no more than about 0.01% by weight). In some embodiments, the composition comprises no more than about 0.1% by weight of chloride (preferably no more than about 0.01% by weight).

[0108] The reduced content of alkali metals and halides provides a composition suitable for preparing concentrated isotonic solutions. As such, these compositions can be more easily administered intravenously compared to, for example, administering mixtures of L-ornithine hydrochloride and sodium phenyl acetate. In some embodiments, an about 45 to about 55 mg/mL solution of L-ornithine phenyl acetate in water (preferably about 50 mg/mL) is isotonic with body fluids (e.g., the solution exhibits an osmolality in the range of about 280 to about 330 mOsm/kg).

[0109] The compositions may also include residual amounts of the anion from an intermediate salt formed during the process of making the L-ornithine phenyl acetate composition. For example, some of the processes disclosed herein yield compositions having benzoic acid or a salt thereof. In some embodiments, the composition comprises at least about 0.01% by weight benzoic acid or a salt thereof (preferably at least about 0.05% by weight, and more preferably about 0.1% by weight). In some embodiments, the composition comprises no more than about 3% by weight benzoic acid or a salt thereof (preferably no more than about 1% by weight, and more preferably no more than about 0.5% by weight). In some embodiments, the composition includes a salt, or an acid thereof, in the range of about 0.01% to about 3% by weight (preferably about 0.1% to about 1%), wherein the salt is selected from acetate, aspartate, formate, oxalate, bicarbonate, carbonate, sulfate, nitrate, isonicotinate, salicylate, citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzensulfonate, p-toluensulfonate, pamoate (i.e., 1,1'-methylene-bis-(2-hydroxy-3-napthoate) or phosphate.

[0110] Similarly, a composition prepared using an acetate intermediate may have residual amounts of acetic acid or acetate. In some embodiments, the composition includes at least about 0.01% by weight acetic acid or acetate (preferably at least about 0.05% by weight, and more preferably about 0.1% by weight). In some embodiments, the composition includes no more than about 3% by weight acetic acid or acetate (preferably no more than about 1% by weight, and more preferably no more than about 0.5% by weight).
[0111] The compositions may also include low amounts of silver. Exemplary processes disclosed herein utilize, for example, silver benzoate, but still yield compositions with surprisingly low amounts of silver. Thus, in some embodiments, the composition includes no more than about 600 ppm silver (preferably no more than about 100 ppm, and more preferably no more than about 65 ppm). In some embodiments, the composition includes at least about 10 ppm silver (alternatively at least about 20 or 25 ppm silver).

Pharmaceutical Compositions

[0112] The compositions of L-ornithine phenyl acetate prepared by the processes disclosed above may also be formulated for administration to a subject (e.g., a human). L-Ornithine phenyl acetate, and accordingly the compositions disclosed herein, may be formulated for administration with a pharmaceutically acceptable carrier or diluent. L-ornithine phenyl acetate may thus be formulated as a medicament with a standard pharmaceutically acceptable carrier(s) and/or excipient(s) as is routine in the pharmaceutical art. The exact nature of the formulation will depend upon several factors including the desired route of administration. Typically, L-ornithine phenyl acetate is formulated for oral, intravenous, intragastric, subcutaneous, intravascular or intraperitoneal administration.

[0113] The pharmaceutical carrier or diluent may be, for example, water or an isotonic solution, such as 5% dextrose in water or normal saline. Solid oral forms may contain, together with the active compound, diluents, e.g. lactose, dextrose, saccharose, cellulose, corn starch or potato starch; lubricants, e.g. silica, talc, stearic acid, magnesium or calcium stearate, and/or polyethylene glycols; binding agents, e.g. starches, gum arabic, gelatin, methylcellulose, carboxymethylcellulose or polyvinyl pyrrolidone; disaggregating agents, e.g. starch, alginic acid, alginates or sodium starch glycolate; effervescing mixtures; dyestuffs; sweeteners; wetting agents, such as lecithin, polysorbates, laurylsulphates; and, in general, non-toxic and pharmacologically inactive substances used in pharmaceutical formulations. Such pharmaceutical preparations may be manufactured in known manners, for example, by means of mixing, granulating, tabletting, sugar-coating, or film-coating processes.

[0114] Liquid dispersions for oral administration may be syrups, emulsions or suspensions. The syrups may contain as carriers, for example, saccharose or saccharose with glycerine and/or mannitol and/or sorbitol.
Suspensions and emulsions may contain a carrier, for example a natural gum, agar, sodium alginate, pectin, methylcellulose, carboxymethylcellulose, or polyvinyl alcohol. The suspensions or solutions for intramuscular injections may contain, together with L-ornithine phenyl acetate, a pharmaceutically acceptable carrier, e.g. sterile water, olive oil, ethyl oleate, glycols, e.g. propylene glycol, and if desired, a suitable amount of lidocaine hydrochloride.

The medicament may consist essentially of L-ornithine phenyl acetate and a pharmaceutically acceptable carrier. Such a medicament therefore contains substantially no other amino acids in addition to L-ornithine and phenyl acetate. Furthermore, such a medicament contains insubstantial amounts of other salts in addition to L-ornithine phenyl acetate.

Oral formulations may generally include dosages of L-ornithine phenyl acetate in the range of about 500 mg to about 100 g. Accordingly, in some embodiments, the oral formulation includes the L-ornithine phenyl acetate compositions disclosed herein in the range of about 500 mg to about 50 g. In some embodiments, the oral formulation is substantially free of alkali metal salts and halides (e.g., contains no more than trace amounts of alkali metal salts and halides).

Intravenous formulations may also generally include dosages of L-ornithine phenyl acetate in the range of about 500 mg to about 100 g (preferably about 1 g to about 50 g). In some embodiments, the intravenous formulation is substantially free of alkali metal salts and halides (e.g., contains no more than trace amounts of alkali metal salts and halides). In some embodiments, the intravenous formulation has a concentration of about 5 to about 300 mg/mL of L-ornithine phenyl acetate (preferably about 25 to about 200 mg/mL, and more preferably about 40 to about 60 mg/mL).

The composition, or medicament containing said composition, may optionally be placed in sealed packaging. The sealed packaging may reduce or prevent moisture and/or ambient air from contacting the composition or medicament. In some embodiments, the packaging includes a hermetic seal. In some embodiments, the packaging sealed under vacuum or with an inert gas (e.g., argon) within the sealed package. Accordingly, the packaging can inhibit or reduce the rate of degradation for the composition or medicament stored within the packaging. Various types of sealed packaging are known in the art. For example, U.S. Patent Number 5,560,490, is hereby
incorporate by reference in its entirety, discloses an exemplary sealed package for medicaments.

Crystalline Forms of L-Ornithine Phenyl Acetate

[0120] Also disclosed herein are crystalline forms of L-ornithine phenyl acetate, and in particular, crystalline Form I, Form II, Form III, and Form V. L-Ornithine phenyl acetate may, in some embodiments, be obtained using the processes disclosed above and then crystallized using any of the methods disclosed herein.

Form I

[0121] The precise conditions for forming crystalline Form I may be empirically determined and it is only possible to give a number of methods which have been found to be suitable in practice.

[0122] Thus, for example, crystalline Form I may generally be obtained by crystallizing L-ornithine phenyl acetate under controlled conditions. As an example, precipitating L-ornithine phenyl acetate from a saturated solution by adding ethanol at reduced temperatures (e.g., 4°C or -21°C). Exemplary solvents for the solution that yield crystalline Form I upon adding ethanol include, but are not limited to, cyclohexanone, 1-propanol, diethyl carbonate, N-methylpyrrolidine (NMP), diethyl ether, 2-butanol, cumene, ethyl formate, isobutyl acetate, 3-nethyl-1-butanol, and anisole.

[0123] Accordingly, in the context of the processes for making L-ornithine phenyl acetate disclosed above, the process can yield Form I by utilizing particular isolation methods. For example, L-ornithine phenyl acetate may be isolated by adding ethanol at reduced temperature to yield Form I.

[0124] Crystalline Form I was characterized using various techniques which are described in further detail in the experimental methods section. FIGURE 1 shows the crystalline structure of Form I as determined by X-ray powder diffraction (XRPD). Form I, which may be obtained by the methods disclosed above, exhibits characteristic peaks at approximately 4.9°, 13.2°, 17.4°, 20.8° and 24.4° 2θ. Thus, in some embodiments, a crystalline form of L-ornithine phenyl acetate has one or more characteristic peaks (e.g., one, two, three, four or five characteristic peaks) selected from approximately 4.9°, 13.2°, 17.4°, 20.8°, and 24.4° 2θ.

[0125] As is well understood in the art, because of the experimental variability when X-ray diffraction patterns are measured on different instruments, the peak positions
are assumed to be equal if the two theta (2Θ) values agree to within 0.2° (i.e., ± 0.2°). For example, the United States Pharmacopeia states that if the angular setting of the 10 strongest diffraction peaks agree to within ± 0.2° with that of a reference material, and the relative intensities of the peaks do not vary by more than 20%, the identity is confirmed. Accordingly, peak positions within 0.2° of the positions recited herein are assumed to be identical.

[0126] FIGURE 2 shows results obtained by differential scanning calorimetry (DSC) for Form I. These results indicate an endotherm at 35° C, which is possibly associated with a desolvation and/or dehydration to Form II. A second transition at about 203° C indicates the melting point for the crystal. To explore the possible existence of a desolvation and/or dehydration transition, Form I was analyzed by thermogravimetric gravimetric/differential thermal analysis (TG/DTA), which is shown in FIGURE 3. Form I exhibits a 11.28% weight loss at about 35° C, and therefore these results further suggest that Form I exhibits a desolvation and/or dehydration transition at about 35° C. The melting point of about 203° C could also be observed by TGA testing. Accordingly, in some embodiments, the crystalline form of L-ornithine phenyl acetate is characterized by differential scanning calorimetry as having an endotherm at about at about 35° C. In some embodiments, a crystalline form of L-ornithine phenyl acetate exhibits a weight loss of about 11% at about 35° C, as determined by TGA. In some embodiments, a crystalline form of L-ornithine phenyl acetate exhibits a melting point of about 203° C.

[0127] FIGURE 4 shows nuclear magnetic resonance (NMR) integrals and chemical shifts for Form I. The integrals confirm the presence of L-ornithine phenyl acetate: 7.5 (aromatic CH), 3.8 (CH adjacent to NH$_2$), 3.6 (CH$_2$ unit of phenyl acetate), 3.15 (CH$_2$ adjacent to NH$_2$) and 1.9 (aliphatic CH units) ppm (integrals: 5:1:2:2:4 protons; 1.2, 0.25, 0.5, 0.5, 1.0). Amine protons and hydroxyl protons were not observed due to proton exchange at both the zwitterion and site of salt formation. Meanwhile, FIGURE 5 shows dynamic vapor sorption (DVS) results for Form I, and show a water uptake of about 0.2% by weight. XRPD results following DVA analysis (not shown) confirm that Form I did not transition to a different polymorph. Form I can therefore be characterized as non-hygroscopic and stable over a wide range of humidity.

[0128] A 7-day stability study of Form I at 40°C/75%RH indicated that a transformation to Form II occurred under these conditions. Form I also converts to Form
II at elevated temperatures (e.g., 80° or 120° C), with or without applying a vacuum, after 7 or 14 days. Accordingly, Form I is metastable.

[0129] Single crystal x-ray diffraction (SXRD) was also used to determine the structure of Form I at -20° and -123° C, and the results are summarized in TABLES 1 and 2. The results confirm that Form I is a solvate having ethanol and water molecules within the unit cell. In some embodiments, a crystalline form of L-ornithine phenyl acetate can be represented by the formula C15H28N2O6. In some embodiments, a crystalline form of L-ornithine phenyl acetate can be represented by the formula \([C_5H_{13}N_2O_2][C_8H_7O_2]EtOH.H_2O\). In some embodiments, a crystalline form of L-ornithine phenyl acetate exhibits a single crystal X-ray crystallographic analysis with crystal parameters approximately equal to the following: unit cell dimensions of a=5.3652(4) Å, b=7.7136(6) Å, c=20.9602(18) Å, c^90°, β=94.986(6)°, γ=90°; a monoclinic crystal system, and a P21 space group.

TABLE 1 - Crystallographic Data of Form I Collected at -20° C

<table>
<thead>
<tr>
<th>Empirical Formula</th>
<th>C_{15}H_{28}N_{2}O_{6} or [C_{5}H_{13}N_{2}O_{2}][C_{8}H_{7}O_{2}]EtOH.H_{2}O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula Weight</td>
<td>332.39</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space Group</td>
<td>P21</td>
</tr>
</tbody>
</table>
| Unit Cell Dimensions | a = 5.3652(4) Å α = 90°
| | b = 7.7136(6) Å β = 94.986(6)°
| | c = 20.9602(18) Å γ = 90° |
| Volume | 864.16(12) Å³ |
| Number of Reflections | 1516 (2.5° < θ < 28°) |
| Density (calculated) | 1.277 mg/cm³ |
Form Π

[0130] The precise conditions for forming crystalline Form Π may be empirically determined and it is only possible to give a number of methods which have been found to be suitable in practice.

[0131] Thus, for example, crystalline Form Π may be prepared by crystallization under controlled conditions. Crystalline Form Π can be prepared by, for example, evaporating a saturated organic solution of L-ornithine phenyl acetate. Non-limiting examples of organic solutions that may be used to obtain Form Π include ethanol, acetone, benzonitrile, dichloromethane (DCM), dimethyl sulfoxide (DMSO), ethyl acetate (EtOAc), acetonitrile (MeCN), methyl acetate (MeOAc), nitromethane, tert-butyl methyl ether (TBME), tetrahydrofuran, and toluene. Other solvents may yield a mixture of Form I and Π, such as, but not limited to, 1,4 dioxane, 1-butanol, cyclohexane, IPA, THF, MEK, MeOAc and water.

[0132] Form II can also be obtained by precipitating L-ornithine phenyl acetate from a saturated organic solution by adding an anti-solvent for L-ornithine phenyl acetate, such as IPA. Form II may be precipitated over a broad range of temperatures (e.g., room temperature, 4° C, and -21° C). Non-limiting examples of suitable solvents for the saturated organic solution include cyclohexanone, 1-propanol, dimethyl carbonate, N-methylpyrrolidone (NMP), diisopropyl ether, diethyl ether, ethylene glycol, dimethylformamide (DMF), 2-butanol, cumene, isobutyl acetate, 3-methyl-1-butanol, and

TABLE 2 - Crystallographic Data of Form I Collected at -123° C

<table>
<thead>
<tr>
<th>Empirical Formula</th>
<th>(\text{C}{15} \text{H}{28} \text{N}{2} \text{O}{6} \text{ or}) [\text{C}{5}\text{H}{13}\text{N}{2}\text{O}{2}]\left[\text{C}{5}\text{H}{2}\text{O}{2}\right]\text{EtOH.H}{2}\text{O}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula Weight</td>
<td>332.39</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space Group</td>
<td>(\text{P2}_1)</td>
</tr>
<tr>
<td>Unit Cell Dimensions</td>
<td>(a = 5.3840(9) \text{ Å} \quad \alpha = 90°)
(b = 7.7460(12) \text{ Å} \quad \beta = 95.050(12)°)
(c = 21.104(4) \text{ Å} \quad \gamma = 90°)</td>
</tr>
<tr>
<td>Volume</td>
<td>876.7(3) \text{ Å}³</td>
</tr>
<tr>
<td>Number of Reflections</td>
<td>1477 ((2.5° < \theta < 18°))</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.259 mg/cm(^3)</td>
</tr>
</tbody>
</table>
anisole. Alternatively, the same listed solvents (e.g., cyclohexanone) can be used to form a solution of L-ornithine phenyl acetate, and Form II may be precipitated by adding ethanol at ambient conditions. As another example, Form II may also be obtained by forming a slurry of L-ornithine phenyl acetate with the listed organic solvents and cycling the temperature between 25° and 40° C every 4 hours for about 18 cycles (or 72 hours).

Accordingly, in the context of the processes for making L-ornithine phenyl acetate disclosed above, the process can yield Form II by utilizing particular isolation methods. For example, L-ornithine phenyl acetate may be isolated by adding IPA, or evaporating the organic solvent, to yield Form II.

FIGURE 6 shows the crystalline structure of Form II as determined by XRPD. Form II, which may be obtained by the methods disclosed above, exhibits characteristic peaks at approximately 6.0°, 13.9°, 14.8°, 17.1°, 17.8° and 24.1° 2Θ. Thus, in some embodiments, a crystalline form of L-ornithine phenyl acetate has one or more characteristic peaks (e.g., one, two, three, four, five or six characteristic peaks) selected from approximately 6.0°, 13.9°, 14.8°, 17.1°, 17.8° and 24.12° Θ.

FIGURE 7 shows results obtained by differential scanning calorimetry (DSC) for Form II. These results indicate a melting point of about 202° C, which is approximately the same as the melting point for Form I. This suggests that Form I transitions to Form II upon heating above about 35° C. Form II was also analyzed using TG/DTA, as shown in FIGURE 8, and exhibits an about 9.7% weight loss associated with residual solvent. The melting point of about 202° C could also be observed by TGA testing. Accordingly, in some embodiments, a crystalline form of L-ornithine phenyl acetate exhibits a melting point of about 202° C.

A 7-day stability study of Form II at 40°C/75%RH failed to produce an observable phase change. In fact, Form II was stable over 14 days when exposed to elevated temperatures, varying pHs, UV light or oxygen. Accordingly, Form II is considered stable.

FIGURE 9 shows nuclear magnetic resonance (NMR) integrals and chemical shifts for Form II. The integrals confirm the presence of L-ornithine phenyl acetate: 7.5 (aromatic CH), 3.8 (CH adjacent to NH2), 3.6 (CH2 unit of phenylacetate), 3.15 (CH2 adjacent to NH2) and 1.9 (aliphatic CH2 units) ppm (integrals: 5:1:2:2:4 protons; 7.0, 1.4, 2.9, 3.0, 5.9). Amine protons and hydroxyl protons were not observed due to proton exchange at both the zwitterion and site of salt formation. Meanwhile,
FIGURE 10 shows dynamic vapor sorption (DVS) results for Form II, and show a water uptake of about 0.3% by weight. XRPD results following DVA analysis (not shown) confirm that Form II did not transition to a different polymorph. Form II can therefore be characterized as non-hygroscopic and stable over a wide range of humidity.

Single crystal x-ray diffraction (SXRD) was also used to determine the structure of Form II at 23° and -123° C, and the results are summarized in TABLES 3 and 4. The results demonstrate that Form II is anhydrous and therefore structurally different from Form I. In some embodiments, a crystalline form of L-ornithine phenyl acetate can be represented by the formula C_{13}H_{20}N_{2}O_{4}. In some embodiments, a crystalline form of L-ornithine phenyl acetate can be represented by the formula [C_{5}H_{13}N_{2}O_{2}][C_{8}H_{7}O_{2}]. In some embodiments, a crystalline form of L-ornithine phenyl acetate exhibits a single crystal X-ray crystallographic analysis with crystal parameters approximately equal to the following: unit cell dimensions of a = 6.594(2) Å, c = 90°, b = 6.5448(18) Å, B = 91.12(3)°, c = 31.632(8) Å, γ = 90°; a monoclinic crystal system; and a P2i space group.

| TABLE 3 - Crystallographic Data of Form II Collected at 23° C |
|-----------------------------------|-------------------|
| Empirical Formula | C_{13}H_{20}N_{2}O_{4} or [C_{5}H_{13}N_{2}O_{2}][C_{8}H_{7}O_{2}] |
| Formula Weight | 268.31 |
| Crystal System | Monoclinic |
| Space Group | P2i |
| Unit Cell Dimensions | a = 6.594(2) Å, α = 90°, b = 6.5448(18) Å, β = 91.12(3)°, c = 31.632(8) Å, γ = 90° |
| Volume | 1364.9(7) Å³ |
| Number of Reflections | 3890 (3° < θ < 20.5°) |
| Density (calculated) | 1.306 mg/cm³ |
TABLE 4 - Crystallographic Data of Form II Collected at -123° C

<table>
<thead>
<tr>
<th>Empirical Formula</th>
<th>C${15}$H${28}$N2O6 or [C${5}$H${13}$N${2}$O2][C${8}$H${7}$O$_2$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula Weight</td>
<td>332.39</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space Group</td>
<td>$P2_1$</td>
</tr>
<tr>
<td>Unit Cell Dimensions</td>
<td>$a = 5.3652(4)$ Å, $\alpha = 90^\circ$</td>
</tr>
<tr>
<td></td>
<td>$b = 7.7136(6)$ Å, $\beta = 94.986(6)^\circ$</td>
</tr>
<tr>
<td></td>
<td>$c = 20.9602(18)$ Å, $\gamma = 90^\circ$</td>
</tr>
<tr>
<td>Volume</td>
<td>864.16(12) Å3</td>
</tr>
<tr>
<td>Number of Reflections</td>
<td>1516 (2.5° < θ < 28°)</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.277 mg/cm3</td>
</tr>
</tbody>
</table>

Form III

[0139] The precise conditions for forming crystalline Form III may be empirically determined and it is only possible to give a number of methods which have been found to be suitable in practice.

[0140] Thus, for example, Form III may be obtained by placing a saturated solution of L-ornithine phenyl acetate in a cooled temperature environment of about -21° C, where the solution is a mixture of acetone and water (e.g., equal parts volume of acetone and water). As another example, adding IPA to a saturated solution of L-ornithine phenyl acetate in 2-butanol can yield Form III when completed at ambient conditions. Furthermore, Form III may be obtained, for example, by adding IPA to a saturated solution of L-ornithine phenyl acetate in isobutyl acetate when completed at reduced temperatures of about -21° C.

[0141] Accordingly, in the context of the processes for making L-ornithine phenyl acetate disclosed above, the process can yield Form III by utilizing particular solvents and isolation methods. For example, L-ornithine phenyl acetate may be formed within a mixture of acetone and water, and subsequently placed in a cool environment of about -21° C to yield Form III.

[0142] FIGURE 11 shows the crystalline structure of Form III as determined by XRPD. Form III, which may be obtained by the methods disclosed above, exhibits characteristic peaks at approximately 5.8°, 14.1°, 18.6°, 19.4°, 22.3° and 24.8° 2Θ. Thus, in some embodiments, a crystalline form of L-ornithine phenyl acetate has one or more
characteristic peaks (e.g., one, two, three, four, five or six characteristic peaks) selected from approximately 5.8°, 14.1°, 18.6°, 19.4°, 22.3° and 24.8° 2θ.

[0143] FIGURE 12 shows results obtained by differential scanning calorimetry (DSC) for Form III. These results indicate a melting point of about 203°C, which is approximately the same as the melting points for Form I and Form II. Additionally, Form III exhibits an endotherm at about 40°C. Form III was also analyzed using TG/DTA, as shown in FIGURE 13, and exhibits no significant weight loss before the melting point. Form III may therefore be characterized as anhydrous. The melting point of about 203°C could also be observed by TGA testing. Accordingly, in some embodiments, a crystalline form of L-ornithine phenyl acetate exhibits a melting point of about 203°C. In some embodiments, a crystalline form of L-ornithine phenyl acetate is characterized by differential scanning calorimetry as having an endotherm at about 40°C. In some embodiments, a crystalline form of L-ornithine phenyl acetate is anhydrous.

[0144] A 7-day stability study of Form III at 40°C/75%RH indicated that a transformation to Form II occurred under these conditions. In contrast, Form II is stable at elevated temperatures, with or without vacuum, for periods of 7 or 10 days. Accordingly, Form III is most likely metastable, but more stable than Form I.

[0145] FIGURE 14 shows nuclear magnetic resonance (NMR) integrals and chemical shifts for Form III. The integrals confirm the presence of L-ornithine phenyl acetate: 7.5 (aromatic CH), 3.8 (CH adjacent to NH2), 3.6 (CH2 unit of phenyl acetate), 3.15 (CH2 adjacent to NH2) and 1.9 (aliphatic CH2 units) ppm (integrals: 5:1:2:2:4 protons; 4.2, 0.8, 1.7, 1.7, 3.0). Amine protons and hydroxyl protons were not observed due to proton exchange at both the zwitterion and site of salt formation. Meanwhile, FIGURE 15 shows dynamic vapor sorption (DVS) results for Form III, and show a water uptake of about 2.0% by weight. XRPD results following DVS analysis (not shown) confirm that Form III did not transition to a different polymorph. Form III therefore exhibits greater water uptake compared to Forms I and II; however Form III is still characterized as non-hygroscopic and stable over a wide range of humidity at room temperature.

Form V

[0146] The precise conditions for forming crystalline Form V may be empirically determined and it is only possible to give a number of methods which have been found to be suitable in practice.
Thus, for example, Form V may be obtained by placing a saturated solution of L-ornithine phenyl acetate in a cooled temperature environment of about -21°C, where the solution is cyclohexanone. As another example, the same saturated solution may yield Form V when evaporating the solvent.

Form V also forms from saturated solutions of L-ornithine phenyl acetate having diisopropyl ether as a solvent. For example, a saturated solution having a solvent ratio of about 1 to 2 of diisopropyl ether and IPA will yield Form V when placed in a cooled temperature environment of about 4°C. Similarly, a solution having only the solvent diisopropyl ether can yield Form V when placed in a cooled temperature environment of about -21°C.

FIGURE 16 shows the crystalline structure of Form V as determined by XRPD. Form V, which may be obtained by the methods disclosed above, exhibits characteristic peaks at approximately 13.7°, 17.4°, 19.8°, 20.6° and 23.7° 2θ. Thus, in some embodiments, a crystalline form of L-ornithine phenyl acetate has one or more characteristic peaks (e.g., one, two, three, four, or five characteristic peaks) selected from approximately 13.7°, 17.4°, 19.8°, 20.6° and 23.7° 2θ.

FIGURE 17 shows results obtained by differential scanning calorimetry (DSC) for Form V. These results indicate a melting point of about 196°C, which is below the melting point of other forms. Form V also exhibits an endotherm at about 174°C. Form V was also analyzed using thermal gravimetric analysis (TGA), as shown in FIGURE 18, and exhibits no significant weight loss before the melting point. Form V may therefore be characterized as anhydrous. The melting point of about 196°C could also be observed by TGA testing. Accordingly, in some embodiments, a crystalline form of L-ornithine phenyl acetate exhibits a melting point of about 196°C. In some embodiments, a crystalline form of L-ornithine phenyl acetate is characterized by differential scanning calorimetry as having an endotherm at about 174°C. In some embodiments, a crystalline form of L-ornithine phenyl acetate is anhydrous.

FIGURE 19 shows nuclear magnetic resonance (NMR) integrals and chemical shifts for Form V. The integrals confirm the presence of L-ornithine phenyl acetate: 7.5 (aromatic CH), 3.8 (CH adjacent to NH2), 3.6 (CH2 unit of phenyl acetate), 3.15 (CH2 adjacent to NH2) and 1.9 (aliphatic CH2 units) ppm (integrals: 5:1:2:2:4 protons; 4.2, 0.8, 1.7, 1.7, 3.0). Amine protons and hydroxyl protons were not observed due to proton exchange at both the zwitterion and site of salt formation. Meanwhile,
FIGURE 19 shows dynamic vapor sorption (DVS) results for Form V, and show a water uptake of about 0.75% by weight. XRPD results following DVS analysis (not shown) suggest that Form V transitioned to Form Π, but the chemical composition was unchanged. Form V is therefore characterized as non-hygrosopic, but not stable over a wide range of humidity.

[0152] A 7-day stability study of Form V at 40°C/75%RH indicated that a transformation to Form Π occurred under these conditions; however the chemical composition was unchanged. Accordingly, Form V is most likely metastable.

EXAMPLES AND EXPERIMENTAL METHODS

[0153] Additional embodiments are disclosed in further detail in the following examples, which are not in any way intended to limit the scope of the claims.

Example 1: Small-scale Batch Process to Produce L-Ornithine Phenyl Acetate

[0154] About 8.4 g (0.049 moles) of L-ornithine hydrochloride was dissolved in 42 mL H₂O and, separately, about 11.4 g of silver benzoate was dissolved in 57 mL DMSO. Subsequently, the silver benzoate solution was added to the L-ornithine hydrochloride solution. Combining the two mixtures resulted in an immediate, exothermic precipitation of a creamy white solid (AgCl). The solid was removed by vacuum filtration and retaining the filtrate (L-ornithine benzoate in solution). 200 mL of IPA was added to the filtrate and the mixture was cooled to 4 °C. A crystalline solid precipitated after about 3 hours (L-ornithine benzoate) which was isolated by vacuum filtration. Yield: 60%.

[0155] 7.6 g (0.03 moles) of the L-ornithine benzoate was dissolved in 38 mL H₂O and about 4.4 g of sodium phenyl acetate was dissolved 22 mL H₂O. Subsequently, the sodium phenyl acetate solution was added to the L-ornithine benzoate solution and left to stir for about 10 minutes. About 240 mL of IPA (8:2 IPA:H₂O) was added and the solution stirred for 30 minutes before cooling to 4 °C. A crystalline solid precipitated after about 3 hours at 4 °C (L-ornithine phenyl acetate). The precipitate was isolated by vacuum filtration and washed with 48-144 mL of IPA. Yield: 57%.

Example 2: Large-scale Batch Process to Produce L-Ornithine Phenyl Acetate

[0156] Two separate batches of L-ornithine phenyl acetate were prepared as follows:
[0157] About 75 kg of L-Ornithine monohydrochloride was dissolved in 227 kg of water. To the resulting solution was added 102 kg of silver benzoate dissolved in 266 kg of DMSO at room temperature within 2 hours. Initially, a strong exothermy was observed and the silver chloride precipitated. The receiver containing the solution was then washed with 14 kg of DMSO that was added to the reaction mass. In order to remove the silver chloride formed, the reaction mass was filtered over a lens filter prepared with 10 kg of Celite and a GAF filter of 1 mm. After filtration, the filter was washed with an additional 75 kg of water. The reaction mass was placed in a different tank after filtration to prevent contamination with residual silver chloride. The reaction mass was then heated at 35 ± 2 °C and 80 kg of sodium phenyl acetate was added. At this point the reaction mass was stirred at 35 ± 2 °C for at least 30 minutes.

[0158] In order to precipitate the final product, 353 kg of IPA was added to the reaction mass. The reaction mass was then cooled to 0 ± 3 °C within 6 hours, stirred for 1 hour and then the product isolated in a centrifuge.

[0159] About 86 kg of final wet product was obtained. The product was then dried at 40 ± 5 °C for about 6.5 to 8 hours to provide about 75 kg of L-ornithine phenyl acetate. Yield: 63.25%. TABLE 5 summarizes measurements relating to the final product.

<table>
<thead>
<tr>
<th>Test</th>
<th>Batch 1</th>
<th>Batch 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity</td>
<td>98.80%</td>
<td>98.74%</td>
</tr>
<tr>
<td>Benzoate</td>
<td>0.17%</td>
<td>0.14%</td>
</tr>
<tr>
<td>Silver</td>
<td>28 ppm</td>
<td>157 ppm</td>
</tr>
<tr>
<td>Chloride</td>
<td>0.006%</td>
<td>0.005%</td>
</tr>
<tr>
<td>Sodium</td>
<td>7 ppm</td>
<td>26 ppm</td>
</tr>
<tr>
<td>Total Impurities</td>
<td>0.17%</td>
<td>0.14%</td>
</tr>
<tr>
<td>Physical Form</td>
<td>Form II</td>
<td>Form II</td>
</tr>
</tbody>
</table>

TABLE 5 - Analytical Results for Large-scale Batch Process

Example 3: Preparing Sodium Phenyl Acetate Solution In Situ

[0160] Phenyl acetic acid (PAA) was dissolved in a solution of isopropanol. About 1 molar equivalent of sodium hydroxide was added to the solution and stirred. The obtained solution was added dropwise to a solution having about 1 molar equivalent of L-
ornithine benzoate. L-ornithine phenyl acetate was precipitated from this solution using generally the same procedures described in Example 2. Yield: 53.5%. The white powder was further characterized and is summarized in TABLE 6 under the heading "Trial A."

Example 4: Water/IPA Solvent Ratios for Isolating L-Ornithine Phenyl Acetate

Several studies were completed to consider the effect of the solvent composition on the yield and product purity. The trials were completed using a similar protocol to Examples 2 and 3 and detailed in TABLE 6.

Trials A, B, and D include various ratios of water/IPA and demonstrate that yield can be improved by increasing the relative amount of IPA. Trial D crystallized the product upon intermixing the IPA, while Trials A and B include cooling the solution to obtain the product. In addition, Trial F demonstrates that reducing the volume of reaction mass may also facilitate precipitation of the final product.

Trials C, E, and G include a distillation step to remove water from the reaction mass prior to adding IPA. The yield for Trials C, E, and G was 70.0%, 51.2%, and 68.0%, respectively.

TABLE 6 - Experimental Results for Water/IPA ratio

<table>
<thead>
<tr>
<th>Trial Description</th>
<th>Water/IPA ratio</th>
<th>Precipitation Conditions</th>
<th>Yield (%)</th>
<th>Product Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIAL A</td>
<td>41:59</td>
<td>during cooling to 0 °C</td>
<td>53.5%</td>
<td>white powder</td>
</tr>
<tr>
<td>TRIAL B</td>
<td>46:54</td>
<td></td>
<td>50.5%</td>
<td>white powder</td>
</tr>
<tr>
<td>TRIAL C</td>
<td>Unknown</td>
<td>during distillation</td>
<td>70.0%</td>
<td>off-white powder</td>
</tr>
<tr>
<td>TRIAL D</td>
<td>30:70</td>
<td>during IPA dosage</td>
<td>61.2%</td>
<td>white powder</td>
</tr>
<tr>
<td>TRIAL E</td>
<td>Unknown</td>
<td>during IPA dosage</td>
<td>51.2%</td>
<td>white powder</td>
</tr>
<tr>
<td>TRIAL F</td>
<td>46:54</td>
<td>during IPA dosage</td>
<td>51.5%</td>
<td>white powder</td>
</tr>
</tbody>
</table>
Example 5: Reducing Silver Content in L-Ornithine Phenyl Acetate

[0165] Batch 2 from Example 2 exhibited higher amounts of silver (157 ppm), and therefore procedures were tested for reducing the silver content. Nine trials were completed; each generally including dissolving about 20 g of L-ornithine phenyl acetate from Batch 2 into 1.9 parts water, and then subsequently adding 10.8 parts IPA. A crystalline form was isolated at 0 °C by filtration.

[0166] For four trials, 8.0 mg or 80 mg of heavy metal scavengers SMOPEX 102 or SMOPEX 112 were added to the aqueous solution and stirred for 2 hours. The scavengers failed to reduce the silver content below 126 ppm. In still another trial, the L-ornithine phenyl acetate was crashed out in a solution of IPA, rather than crystallized; however this trial also failed to reduce the silver content below 144 ppm.

[0167] The last three trials included adding diluted HCl to the solution to precipitate remaining amount of silver as AgCl. The precipitate was then removed by filtration. The three trials included adding: (1) 1.0 g of 0.33% HCl at 20° C; (2) 1.0 g of 0.33% HCl at 30° C; and (3) 0.1 g of 3.3% HCl at 20° C. The three trials reduced the silver content to 30 ppm, 42 ppm, and 33 ppm, respectively, and each trial yielding greater than 90% L-ornithine phenyl acetate. Accordingly, the addition of HCl was effective in reducing the amount of residual silver.

Example 6: Process for Preparing L-Ornithine Phenyl Acetate from L-Ornithine Free Base by Using an Alkali Metal Alkoxide Base

[0168] As a general procedure, L-ornithine hydrochloride was suspended in a solvent. Subsequently, the reaction mass was heated and a base, sodium methoxide, was added. NaCl formed and was removed from the system by filtration. The reaction mass was cooled and a molar equivalent of phenyl acetic acid was added to the reaction mass to form L-ornithine phenyl acetate. The final product was isolated, washed and dried. A summary of the trials for this process is provided in TABLE 7.
The resulting L-ornithine phenyl acetate was found to exhibit high amounts of chloride (at least about 1% by weight), and presumably include similar amounts of sodium. The yields were about 50% for Trials 2, 4, and 5.

Example 7: Process for Preparing L-Ornithine Phenyl Acetate without an Intermediate Salt

Further studies were completed using generally the same procedure as Example 6. The results are shown in TABLE 8:

<table>
<thead>
<tr>
<th>Trial</th>
<th>Base</th>
<th>Eq. of Base</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NaOMe 21% in MeOH</td>
<td>1.0 eq.</td>
<td>MeOH</td>
</tr>
<tr>
<td>2</td>
<td>NaOMe 21% in MeOH</td>
<td>0.95 eq.</td>
<td>IPA</td>
</tr>
<tr>
<td>3</td>
<td>NaOMe 21% in EtOH</td>
<td>1.0 eq.</td>
<td>EtOH</td>
</tr>
<tr>
<td>4</td>
<td>NaOMe 21% in MeOH</td>
<td>1.0 eq.</td>
<td>MeOH</td>
</tr>
<tr>
<td>5</td>
<td>NaOMe 21% in MeOH</td>
<td>1.0 eq.</td>
<td>MeOH w/ IPA for precipitation</td>
</tr>
<tr>
<td>6</td>
<td>NaOMe 21% in MeOH</td>
<td>1.0 eq.</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>7</td>
<td>NaOMe 21% in MeOH</td>
<td>1.0 eq.</td>
<td>Water/IPA</td>
</tr>
<tr>
<td>8</td>
<td>NaOMe 21% in MeOH</td>
<td>1.0 eq.</td>
<td>Water/IPA</td>
</tr>
<tr>
<td>9</td>
<td>NaOMe 21% in MeOH</td>
<td>1.0 eq.</td>
<td>n-butanol</td>
</tr>
</tbody>
</table>

Example 8: Process for Preparing L-Ornithine Phenyl Acetate from L-Ornithine Free Base by Using a Carbonate Base

1 part L-ornithine hydrochloride by mole was suspended in about 10.6 parts ethanol. Subsequently, the reaction mass (suspension) was heated to about 50 °C and about 1 part calcium carbonate was added. The reaction mass was stirred for about 2
hours. The free L-ornithine base was isolated by filtration to obtain a powder, while the CaCl$_2$ remained in solution. The filtered powder was dissolved in water and filtered to remove unreacted calcium carbonate. About 1 part phenyl acetic acid by mole in isopropanol was intermixed with the aqueous L-ornithine solution. The final product precipitated from solution and was isolated, washed, and dried. Yield: 44.5%.

Example 9: Process for Preparing L-Ornithine Phenyl Acetate from L-Ornithine Free Base by Using an Inorganic Base

[0172] 1 part L-ornithine hydrochloride by mole was suspended in about 10.6 parts ethanol. Subsequently, the reaction mass (suspension) was heated to about 50 °C and about 0.5 part calcium hydroxide by mole was added. The reaction mass was stirred for about 1.5 hours. The free L-ornithine base was isolated by filtration and washed with ethanol. The filtered solid was dissolved in water and phenyl acetic acid (1.0 equivalent) in isopropanol was added dropwise to the aqueous L-ornithine solution at room temperature. After at least 30 minutes stirring at room temperature, IPA was added to precipitate the final product. The final product was isolated, washed, and dried. Yield: 43.95%.

[0173] Alternatively, L-ornithine free base was also prepared in an aqueous solution. 1 part L-ornithine hydrochloride by mole was dissolved in about 4.1 parts water. Subsequently, about 0.5 part calcium hydroxide by mole was added to the solution and stirred for about 30 minutes. The free L-ornithine base was then not isolated by filtration. Next, about 1 part phenyl acetic acid in isopropanol was intermixed with the aqueous L-ornithine solution. The final product precipitated from solution was isolated, washed, and dried. Yield: >100%.

Example 10: Process for Preparing L-Ornithine Phenyl Acetate from L-Ornithine Free Base by Using Barium Hydroxide

[0174] To 1.0 equivalent of L-ornithine hydrochloride in an aqueous solution was added 2.7 molar equivalent of barium hydroxide. Subsequently, the reaction mass was refluxed for 2 hours and then cooled to room temperature. Sulfuric acid (6N) was added slowly to acidify the resulting reaction mass until pH was about 1.5. The insoluble barium sulfate formed was filtered through by using a 0.2 µm filter. The filtrate was then concentrated by distillation and neutralized to pH 7-7.5 by adding a barium hydroxide solution. The barium sulfate salt formed was removed again. Finally, a solution of phenyl acetic acid (1.13 equivalents) with sodium hydroxide in IPA was added at 35 °C to
the resulting solution at 35 °C. IPA was added and the reaction mixture was cooled to 0 °C to in order to precipitate the final product. The final product was isolated by filtration, washed with a mixture of water and IPA, and dried. Yield: 37.2%.

Example 11: Process for Preparing L-Ornithine Phenyl Acetate via an Acetate Intermediate

[0175] Dissolve 25 mg of L-ornithine hydrochloride in 5 vols of H₂O, and then add excess acetic acid (about 5 vols) to form a slurry. Subject the slurry to temperature cycling between 25 °C and 40 °C every 4 hours for about 3 days. Add 1 equivalent of phenyl acetic acid (with respect to L-ornithine) and stir for about 4-6 hours (possibly heat). Use IPA as an anti-solvent, add enough to obtain a ratio of 70:30 (IPA:H₂O). Isolate by vacuum filtration and dry for about 4-8 hours at 80 °C to remove any residual acetic acid.

Example 12: Process for Preparing L-Ornithine Phenyl Acetate from Halide L-Ornithine Salt and Phenyl Acetate Salt

[0176] L-ornithine monohydrochloride is dissolved in water at a concentration of 300 - 350 g/Kg (~3 volumes water). To the resulting solution is added 1 molar equivalent of silver phenyl acetate in 2.5 volumes DMSO (0.4 g/g) at room temperature within 2 hours. The receiver containing the solution is then washed with DMSO and added to the reaction mass. The silver chloride formed can be filtered through the reaction mass over a lens filter prepared with Celite and a GAF filter. After filtration, the filter is washed with an additional volume of water.

[0177] In order to precipitate the final product, IPA is added to the reaction mass to a final concentration range of 65-95% IPA. The reaction mass is then cooled to 0 ± 3 °C within 6 hours, stirred for 1 hour and then the product isolated in a centrifuge.

[0178] The isolated wet product is redissolved in an aqueous dilute HCl solution (0.33%) representing between 1-3.5 molar equivalents of HCl. The reaction mass is filtered over a lens filter prepared with Celite and a GAF filter to remove the silver chloride formed. After filtration, the filter is washed with an additional volume of water.

[0179] To precipitate the final product, IPA is added again to the reaction mass to a final concentration range of 60-80% IPA. The reaction mass is then cooled to 0
± 3 °C within 6 hours, stirred for 1 hour and then the product is isolated in a centrifuge. The final product is then dried at 40+5 °C for about 6.5 to 8 hours to provide crystalline L-ornithine phenyl acetate.
WHAT IS CLAIMED IS:

1. A process for making L-ornithine phenyl acetate salt comprising:
 preparing a solution of phenyl acetate salt by mixing a phenyl acetic acid and a base in a solvent;
 intermixing L-ornithine benzoate with the solution of phenyl acetate salt;
 and
 isolating a composition comprising L-ornithine phenyl acetate.

2. The process of Claim 1, further comprising forming L-ornithine benzoate, wherein forming L-ornithine benzoate comprises intermixing an L-ornithine salt, a benzoate salt and a first solvent to form an intermediate solution.

3. The process of Claim 2, further comprising removing at least a portion of a salt from said intermediate solution before intermixing with the phenyl acetate salt, wherein said removed salt is not an L-ornithine salt.

4. The process of Claim 3, wherein said removed salt comprises an anion derived at least in part from the L-ornithine salt and a cation derived at least in part from the benzoate salt.

5. The process of Claim 4, wherein the L-ornithine salt is L-ornithine hydrochloride and said anion is chloride.

6. The process of any one of Claims 4-5, wherein the benzoate salt is silver benzoate and the cation is a silver ion.

7. The process according to any one of Claims 3-6, wherein the process further comprises adding hydrochloric acid before said removing at least a portion of the salt.

8. The process according to any one of Claims 3-7, wherein at least about 90% by weight of said removed salt is removed.

9. The process of Claim 1, further comprising forming L-ornithine benzoate, wherein forming L-ornithine benzoate comprises:
 intermixing an L-ornithine salt, a benzoate salt and a first solvent to form an intermediate solution; and
 isolating L-ornithine benzoate from said intermediate solution.

10. The process of Claim 9, further comprising removing at least a portion of a salt from said intermediate solution before isolating the L-ornithine benzoate, wherein said removed salt is not an L-ornithine salt.
11. The process of Claim 11, wherein the process further comprises adding hydrochloric acid before said removing at least a portion of the salt.

12. The process of any one of Claims 9-11, wherein isolating L-ornithine benzoate comprises crystallizing L-ornithine benzoate from said intermediate solution.

13. The process of any one of Claims 1-12, wherein the base is selected from the group consisting of an alkali metal hydroxide and an alkali metal alkoxide.

14. The process of any one of Claims 1-13, further comprising forming L-ornithine benzoate, wherein forming L-ornithine benzoate comprises intermixing an L-ornithine salt, a benzoate salt and a second solvent to form an intermediate solution.

15. The process of any one of Claims 1-14, wherein said composition comprises at least about 0.10% by weight benzoate salt.

16. The process of any one of Claims 1-15, wherein said composition comprises no more than 5% by weight benzoate salt.

17. The process of Claim 16, wherein said composition comprises no more than 3% by weight benzoate salt.

18. The process of Claim 17, wherein said composition comprises no more than 1% by weight benzoate salt.

19. The process of any one of Claims 14-18, wherein the L-ornithine salt is L-ornithine hydrochloride.

20. The process of any one of Claims 14-19, wherein the benzoate salt is silver benzoate.

21. The process of Claim 20, wherein said composition further comprises at least 10 ppm silver.

22. The process of Claim 21, wherein said composition comprises at least 20 ppm silver.

23. The process of Claim 22, wherein said composition comprises at least 25 ppm silver.

24. The process of any one of Claims 1-23, wherein said composition comprises no more than 600 ppm silver.

25. The process of Claim 24, wherein said composition comprises no more than 100 ppm silver.
26. The process of Claim 25, wherein the composition comprises no more than 65 ppm silver.

27. The process of any one of Claims 1-26, wherein the phenyl acetate salt is an alkali metal salt.

28. The process of Claim 27, wherein the alkali metal salt is sodium phenyl acetate.

29. The process of Claim 28, wherein said composition comprises no more than 100 ppm sodium.

30. The process of Claim 29, wherein said composition comprises no more than 20 ppm sodium.

31. The process of any one of Claims 1-30, wherein the composition comprises no more than 0.1% by weight chloride.

32. The process of Claim 31, wherein the composition comprises no more than 0.01% by weight chloride.

33. The process of any one of Claims 1-32, wherein the composition comprises a crystalline form exhibiting an X-ray powder diffraction pattern comprising at least one characteristic peak, wherein said characteristic peak is selected from the group consisting of approximately 6.0°, 13.9°, 14.8°, 17.1°, 17.8° and 24.1° 2θ.

34. A process for making L-ornithine phenyl acetate salt comprising:

 intermixing an L-ornithine salt, silver phenyl acetate and a solvent to form a solution; and

 isolating a composition comprising L-ornithine phenyl acetate from said solution.

35. The process of Claim 34, wherein the L-ornithine salt is a halide salt.

36. The process of Claim 35, wherein the L-ornithine salt is L-ornithine hydrochloride.

37. The process of Claim 35, wherein the L-ornithine salt is not L-ornithine hydrochloride.

38. The process of any one of Claims 34-37, further comprising preparing the silver phenyl acetate by mixing a phenyl acetic acid and a base in a solvent.
39. The process of any one of Claims 34-38, wherein the process further comprises adding hydrochloric acid to the solution before isolating L-ornithine phenyl acetate from the solution.

40. The process of any one of Claims 34-39, wherein said composition further comprises at least 10 ppm silver.

41. The process of Claim 40, wherein said composition comprises at least 20 ppm silver.

42. The process of Claim 40, wherein said composition comprises at least 25 ppm silver.

43. The process of any one of Claims 34-42, wherein said composition comprises no more than 600 ppm silver.

44. The process of Claim 43, wherein said composition comprises no more than 100 ppm silver.

45. The process of Claim 43, wherein the composition comprises no more than 65 ppm silver.

46. The process of any one of Claims 34-45, wherein said composition comprises no more than 100 ppm sodium.

47. The process of Claim 46, wherein said composition comprises no more than 20 ppm sodium.

48. The process of any one of Claims 34-47, wherein the composition comprises no more than 0.1% by weight chloride.

49. The process of any one of Claims 34-48, wherein the composition comprises no more than 0.01% by weight chloride.

50. The process of any one of Claims 34-49, wherein the composition comprises a crystalline form exhibiting an X-ray powder diffraction pattern comprising at least one characteristic peak, wherein said characteristic peak is selected from the group consisting of approximately 6.0°, 13.9°, 14.8°, 17.1°, 17.8° and 24.1° 2Θ.

51. A composition prepared according to the method of any one of 1-50.
FIG. 1

X-ray powder diffraction pattern of Form 1
FIG. 3
Thermogravimetric Gravimetric/Differential Thermal Analysis of Form I

% TG

% Sum

Temp Cell

DSC mV

DTG mg/min

206.86°C
35.37°C

11.28%
63.27%

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

0.00
50.00
100.00
150.00
200.00
250.00

0.00
20.00
40.00
60.00
80.00
10.00
20.00

1H nuclear magnetic resonance spectrum obtained from Form I
FIG. 5

Dynamic Vapor Sorption Results for Form 1
FIG. 8

Thermogravimetric Gravimetric/Differential Thermal Analysis of Form II
FIG. 11

X-ray powder diffraction pattern of Form III
FIG. 18

Thermogravimetric Gravimetric/Differential Thermal Analysis of Form V
Representative 1H Spectra of L-ornithine phenyl acetate
INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2011/054983

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl.

- C07C 227/18 (2006.01)
- C07C 229/26 (2006.01)
- C07C 57/46 (2006.01)
- A61K 31/198 (2006.01)
- A61K 31/192 (2006.01)
- A61P 1/16 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAPLUS: SEARCH USING CAS REGISTRY NO CORRESPONDING TO L-ORNITHINE PHENYL ACETATE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>MX 2003009902 A (JOSE MANUEL & FRANCISCO LARA OCHOA) 3 May 2005 See abstract & page 5, lines 15-25</td>
<td>5 1</td>
</tr>
<tr>
<td>A</td>
<td>US 2008/01 19554 A (JALAN et al) 22 May 2008 Cited in the Application See abstract</td>
<td>1-5 1</td>
</tr>
<tr>
<td>P, X</td>
<td>WO 2010/1 15055 A (OCERA THERAPEUTICS, INC) 7 October 2010 See abstract; page 63, paragraphs [0248]-[0249]; & page 75, claim 82</td>
<td>1-5 1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 December 2011</td>
<td>09/12/2011</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pct@ipaustralia.gov.au
Facsimile No. +61 2 6283 7999

Authorized officer

MARC KLOTH
AUSTRALIAN PATENT OFFICE
(ISO 9001 Quality Certified Service)
Telephone No.: +61 3 9935 9609

Form PCT/ISA/210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2011/054983

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. [] Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority **found multiple inventions in this international application**, as follows:

[See Supplemental Box]

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. [] As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

[] The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

[] The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

[] No protest accompanied the payment of additional search fees.
This International Application does not comply with the requirements of unity of invention because it does not relate to one invention or to a group of inventions so linked as to form a single general inventive concept.

This Authority has found that there are different inventions based on the following features that separate the claims into distinct groups:

- Claims 1-33 & 51 (in part) are directed to a method of preparing L-ornithine phenyl acetate salt using a benzoate salt. The method is specific to this group of claims.
- Claims 34-50 & 51 (in part) are directed to a method of preparing L-ornithine phenyl acetate salt using silver phenyl acetate. The method is specific to this group of claims.

PCT Rule 13.2, first sentence, states that unity of invention is only fulfilled when there is a technical relationship among the claimed inventions involving one or more of the same or corresponding special technical features. PCT Rule 13.2, second sentence, defines a special technical feature as a feature which makes a contribution over the prior art.

When there is no special technical feature common to all the claimed inventions there is no unity of invention.

In the above groups of claims, the identified features may have the potential to make a contribution over the prior art but are not common to all the claimed inventions and therefore cannot provide the required technical relationship. The only feature common to all of the claimed inventions and which provides a technical relationship among them is L-ornithine phenyl acetate salt. However this feature does not make a contribution over the prior art because it is disclosed in:

D1: MX 2003009902 A (JOSE MANUEL & FRANCISCO LARA OCHOA) 3 May 2005

Therefore in the light of this document this common feature cannot be a special technical feature. Therefore there is no special technical feature common to all the claimed inventions and the requirements for unity of invention are consequently not satisfied \textit{aposteriori}.
This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MX 2003009902</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2008119554</td>
<td>AU 2005308622</td>
</tr>
<tr>
<td></td>
<td>CA 2589261</td>
</tr>
<tr>
<td></td>
<td>CN 101102816</td>
</tr>
<tr>
<td></td>
<td>EA 200701146</td>
</tr>
<tr>
<td></td>
<td>EA 200900105</td>
</tr>
<tr>
<td></td>
<td>EP 1824563</td>
</tr>
<tr>
<td></td>
<td>EP 2153870</td>
</tr>
<tr>
<td></td>
<td>EP 2319581</td>
</tr>
<tr>
<td></td>
<td>JP 2008521784</td>
</tr>
<tr>
<td></td>
<td>KR 20070100721</td>
</tr>
<tr>
<td></td>
<td>MX 2007006171</td>
</tr>
<tr>
<td></td>
<td>NO 20073254</td>
</tr>
<tr>
<td></td>
<td>NZ 555870</td>
</tr>
<tr>
<td></td>
<td>SG 158073</td>
</tr>
<tr>
<td></td>
<td>WO 2006056794</td>
</tr>
<tr>
<td></td>
<td>ZA 200704950</td>
</tr>
<tr>
<td></td>
<td>w o 2010115055</td>
</tr>
<tr>
<td></td>
<td>US 2010280119</td>
</tr>
</tbody>
</table>

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

END OF ANNEX