R. MARTINI

RADIO RECEIVER CONTROL MECHANISM

Filed April 18, 1929

2 Sheets-Sheet 1

Inventor

Robert Martini

By Clarence O'Brien

Attorney
The present invention relates to a control mechanism for radio receiving sets and has for one of its important objects to incorporate a clock in the receiving set so as to be mounted in the panel and to provide circumjacent the face of the clock a dial with indicia thereon for tuning purposes and an indicator associated with the dial controlled by the tuning operating mechanism.

Another very important object of the invention resides in the provision of a tuning control mechanism which is easy and convenient to manipulate.

A still further very important object of the invention resides in the provision of an improved structure in a radio receiving set which is exceedingly simple, inexpensive to manufacture and assemble, thoroughly efficient and reliable in use and operation, and otherwise well adapted for the purpose for which it is designed.

With the above and numerous other objects in view as will appear as the description proceeds, the invention resides in certain novel features of construction, and in the combination and arrangement of parts as will be hereinafter more fully described and claimed.

In the drawings:

Figure 1 is a front elevation of a portion of a radio receiving set showing my improved mechanism incorporated therein.

Figure 2 is a vertical section taken substantially on the line 2—2 of Figure 1.

Figure 3 is a detail section taken substantially on the line 3—3 of Figure 2.

Figure 4 is a fragmentary rear elevation of the upper portion of the clock, and

Figure 5 is a perspective view of the indicator.

Referred to the drawings in detail, it will be seen that the casing or box of the receiving set includes a bottom 5 and a front panel 6, among other usual elements which will not be necessary to refer to herein. A bracket 7 rises from the bottom 5 and is anchored thereto as at 8, and terminates at its upper end in a bearing 9. A bracket 10 rises from the bottom 5, being fixed thereto as at 11 and terminates at its upper end in a bearing 12 at a lower level than the bearing 9. The bracket 10 is located between the bracket 7 and the panel 6. The panel 6 is provided with an opening 14 for receiving a collar 15 of cylindrical formation projecting inwardly from a flange 16 of circular construction about the front portion of an electric clock mechanism 17, the face of which is denoted by numeral 18. This flange 16 is in the nature of a dial and has an arcuate slot 19 formed therein circumjacent to and concentric with the face 18, provided with suitable indicia 20 adjacent the slot 19. A conventional control shaft is denoted by the numeral 21 and is journaled in the bearing 9 and has fixed thereto a sprocket 22. A manipulating shaft 23 is journaled through bearing 12 and has one end journaled in an opening 24 in the lower portion of the bracket 7 and the other end is journaled through a bearing structure 25 in the dial 6 and a knob 27 is fixed on the front end of the shaft 23. A sprocket 28 is fixed on the shaft 23 adjacent the bracket 7, and a chain 29 is trained over the sprockets 22 and 28. The sprocket 28 is much smaller in diameter than the sprocket 22.

An indicator comprises an arm 30 projecting from the sprocket 22 at right angles thereto and forwardly thereof from a point adjacent the periphery thereof and the forward end of this arm 30 merges into a relatively thin portion 31 extending through the slot 19 and terminating at its ends in a diamond shaped pointer 33, for cooperating with indicia 20.

From the above detailed description it will be seen that when the knob 27 is turned, the pointer 33 is moved and may be set at the desired indicium to place the condensers properly for tuning a certain station in, as will be quite apparent to those skilled in this art.

Thus it will be seen that the indicia is so arranged in respect to the clock that by looking at a program, one may easily and conveniently tune the radio receiving set for the selected program at the scheduled time.

It will further be seen that the mechanism is exceedingly simple in its details of construction and may be manufactured and in--
stalled in a radio set at a moderate cost and in operation is thoroughly efficient and reliable besides being easy to manipulate and having no parts which are likely to easily become out of order.

It is thought that the construction, operation, utility and advantages of this invention will now be quite apparent to those skilled in this art, without a more detailed description thereof.

The present embodiment of the invention has been disclosed in considerable detail merely for the purposes of exemplification, since in actual practice it attains the features of advantage enumerated as desirable in the statement of the invention and the above description.

It will be apparent that changes in the details of construction and in the combination and arrangement of parts may be resorted to, without departing from the spirit or scope of the invention as hereinafter claimed or sacrificing any of its advantages.

What is claimed is:

1. In a radio receiving set, a casing bottom, a panel having an opening, a face, and having an annular flange projecting therefrom circumjacent the face and provided with a collar telescopically mounted in the opening, said flange forming a dial and being provided with an arcuate slot circumjacent and concentric to the face and having indicia thereon, a pointer on the shank, said shank being slidable through the slot, and control means operatively connected with the shank for moving the shank when the control mechanism is manipulated.

2. In a radio receiving set, a casing bottom, a panel having an opening, a face, and having an annular flange projecting therefrom circumjacent the face and provided with a collar telescopically mounted in the opening, said flange forming a dial and being provided with an arcuate slot circumjacent and concentric to the face and having indicia thereon, a pointer on the shank, said shank being slidable through the slot, a bracket rising from the bottom, a second bracket rising from the bottom shorter than the first bracket and disposed between the first bracket and the panel, a manipulating shaft journaled through the upper end of the second bracket, through the panel and having one end journaled in a lower portion of the first bracket, a condenser control shaft journaled in the second bracket, sprockets on the shaft, and a chain trained over the sprockets, said shank being fixed to the sprocket on the condenser control shaft.

3. In a radio receiving set, a casing bottom, a panel having an opening, a face, and having an annular flange projecting therefrom circumjacent the face and provided with a collar telescopically mounted in the opening, said flange forming a dial and being provided with an arcuate slot circumjacent and concentric to the face and having indicia thereon, a pointer on the shank, said shank being slidable through the slot, a bracket rising from the bottom, a second bracket rising from the bottom shorter than the first bracket and disposed between the first bracket and the panel, a manipulating shaft journaled through the upper end of the second bracket, through the panel and having one end journaled in a lower portion of the first bracket, a condenser control shaft journaled in the second bracket, sprockets on the shaft, and a chain trained over the sprockets, said shank being fixed to the sprocket on the condenser control shaft.

4. In a radio receiving set, a casing bottom, a panel having an opening, a face, and having an annular flange projecting therefrom circumjacent the face and provided with a collar telescopically mounted in the opening, said flange forming a dial and being provided with an arcuate slot circumjacent and concentric to the face and having indicia thereon, a pointer on the shank, said shank being slidable through the slot, a bracket rising from the bottom, a second bracket rising from the bottom shorter than the first bracket and disposed between the first bracket and the panel, a manipulating shaft journaled through the upper end of the second bracket, through the panel and having one end journaled in a lower portion of the first bracket, a condenser control shaft journaled in the second bracket, sprockets on the shaft, and a chain trained over the sprockets, said shank being fixed to the sprocket on the condenser control shaft, said shank being in the form of an arm fixed to the socket on the condenser shaft to extend perpendicularly therefrom and having its forward end comparatively thin to slide through the slot, and a diamond shaped pointer on the extremity of said relatively thin end.

In testimony whereof I affix my signature.

ROBERT MARTINI.